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Abstract

K-means is a basic building block of modern machine learning. As
such, its performance has a critical impact on workflows and explorations
it is involved in. In this thesis, we focus on application domains that in-
volve large sparse datasets and investigate the feasibility of the Futhark
programming language to map k-means and its generalization, mixture
models, to efficient GPU code. We propose a framework that abstracts
from the (possibly sparse) representation of the data while maintaining
the efficiency of sparse representations, where they are used. We demon-
strate, that the implementation of k-means, spherical k-means, Gaussian
mixture models and von Mises-Fisher mixture models through our frame-
work is possible without the need to explicitly address the underlying
data representation. Our k-means implementation yields performance
speedups of at least factor 10 over the multicore CPU implementation
of scikit-learn and our implementation of Gaussian mixture models with
diagonal covariance matrices achieves a speedup of factor 1893 over a
single-core CPU implementation that does not support sparse data repre-
sentations.
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Chapter 1

Introduction

Unsupervised clustering is an important tool in the field of modern machine
learning. It is used whenever an unlabeled set of samples needs to be divided
into subgroups based on the features of the samples. In a simple case, this
could be the physical location of 3-dimensional points. One of the common
algorithms for unsupervised clustering is k-means, which takes a set of n d-
dimensional samples as well as an integer k as input. The algorithm then finds
k cluster centers, such that the cumulative distances from every point to their
nearest cluster are minimized. This can be achieved by iteratively executing
two steps:

1. Assigning points to their nearest cluster. For this we need to compute
the distances from all points to all cluster centers and select the cluster
with the smallest distance for every point.

2. Calculating the centroid of each cluster. The centroid is computed by
summing up the data points assigned to each cluster and then dividing
this sum by the number of points assigned to the respective cluster.

Similarly, mixture models can be used for unsupervised clustering. In-
stead of representing clusters by their centers, here clusters are represented
by probability distributions and data are classified by calculating the likeli-
hood of the data being a sample of each distribution. This distribution could
be a Gaussian distribution, but other probability distributions, for example
von Mises-Fisher distributions [1] can also be used. Expressing the clusters in
this way allows to describe the shapes of the clusters, whereas k-means only
describes the location of the clusters.

Modifications of k-means and mixture models are used in many applica-
tions that range from data mining [2], to feature extraction for other learning
algorithms [3], to classification of unseen data [4]. Since these algorithms are
such widely used and versatile tools, and the datasets involved often contain
many samples, accelerating them through the use of GPUs will be a benefit to
their users and will enable more efficient workflows and learning pipelines.

As discussed in [1], there are several application domains of unsupervised
clustering, like document classification or gene expression analysis that deal
with high-dimensional and highly sparse data. In this type of data, most en-
tries are zeroes and only relatively few entries contain nonzero values. For
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CHAPTER 1. INTRODUCTION 5

example, in document clustering the bag of words model can be used to rep-
resent documents. A document is represented as a vector where each entry in-
dicates the number of occurrences of one word from a fixed dictionary. Since
most documents only use a fraction of all words in this dictionary, a lot of
entries have count 0.

Implementing algorithms that work on these types of data for GPUs poses
a challenge because of the highly irregular fashion in which sparse data is usu-
ally represented, since GPUs generally favor regular data layouts. This the-
sis explores the performance characteristics of different sparse representations
and implementations on the example of the classical (unmodified) k-means al-
gorithm on the GPU. For this purpose, the functional and data-parallel array
language Futhark [5] is used, as well as the CUDA programming language
for experiments involving lower level constructs that are not supported by
Futhark.

Our experiments show that for the distance computation step of k-means
the CSR format yields the best performance, whereas for the reduction step
the COO format is better suited. For higher k values, sorting the data points
by their cluster assignments yields performance benefits. Our implementation
that uses a combination of the two formats achieves speedups of at least factor
10 over a multicore CPU implementation on our test datasets.

We implement an orthogonal framework that abstracts from the sparse
data representation and allows the implementation of various mixture mod-
els. We choose the interface for the data representation such, that it can ac-
commodate different sparse or dense data representations, while providing
operations necessary to fit different mixture models. Since k-means and also
Gaussian mixture models are semantically unsuitable for high-dimensional
data [1], this generalization is important. We show, that the implementation
of more suitable models like spherical k-means [6] and mixtures of von Mises-
Fisher distributions [1] is possible through our framework, without the need
to explicitly interact with the data representation of the input data.

Our implementation of the Gaussian mixture model1 compiles to efficient
GPU code and shows significant speedups of up to x1893 over a single-core
CPU implementation that does not provide support for sparse input data.

We also provide an intuition into the mathematical background of mixture
models and show how our framework is used to translate the mathematical
formulations into parallelizable code.

1.1 Related work

Since both k-means and mixture models are widely known algorithms, there
exist many implementations of them, both on CPU and on GPU. The well-
known python library scikit-learn [7] provides CPU implementations both for
k-means and Gaussian (as well as Bayesian) mixture models.

Another python library, cuML [8], provides GPU implementations for mul-
tiple clustering algorithms including k-means. Though cuML generally sup-
ports sparse inputs, its k-means implementation does not (with good reason).
It also does not support mixture models as of the time of writing this thesis.

1With the constraint that the covariance matrix is diagonal
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There are multiple implementations of mixture models that utilize the GPU
hardware to accelerate the computation with great success [9] [10], however,
they also do not take sparse input data into account.

Of these implementations, only the k-means implementation of scikit-learn
supports input in sparse format and to my knowledge, no library exists that
supports sparse data formats as input to GPU-accelerated k-means or mixture
models.

However, computing sparse linear algebra operations efficiently on the
GPU is not an unexplored topic. There have been numerous works concern-
ing sparse matrix-dense vector multiplication. For example, [11] [12] explore
the efficiency of different sparse formats, while [13] and [14] use autotuning
and load balancing strategies to further accelerate the operations.

In a more general approach, [15] proposes a GPU-accelerated semiring
primitive, which allows the efficient implementation of common distance mea-
sures for sparse data. This semiring primitive can be used for the main compu-
tation of the k-means algorithm, as well as for the evaluation of multivariate
Gaussian and von Mises-Fisher distributions, and likely many more.

A distinction has to be made for the term sparse k-means, which refers to a
modification of the k-means algorithm that selects a subset of the features (i.e.
dimensions) for each sample [16]. This approach has also been implemented
on the GPU [17]. In this thesis, however, sparsity refers to the input data
containing many redundant entries with value 0 and the representations in
which these kinds of data are typically stored.

1.2 Structure of the thesis

This thesis consists of three main parts corresponding to chapters 2-4, as well
as this introduction and a conclusive section.

Chapter 2 presents background material that the other chapters of the the-
sis refer to. First, the classical k-means algorithm is presented. Then, general
mixture models and the EM (EM) framework are introduced and a connection
to k-means is established. Afterwards, there is a section covering the topic of
high dimensional sparse data and its representations and finally, the Futhark
programming language is briefly introduced.

In the third chapter, explorations on the problem of handling sparse data
representations efficiently on the GPU are presented. These explorations focus
on the classical k-means algorithm and propose an efficient implementation
of this algorithm in Futhark. The different approaches are evaluated through
benchmarks.

The fourth chapter covers the generalization of k-means, i.e. mixture mod-
els. A framework is presented which utilizes the findings of chapter 3 to allow
efficient implementations of mixture models for sparse datasets.



Chapter 2

Background

This chapter presents concepts that are used throughout my thesis.

2.1 Futhark

Futhark is a purely functional programming language that compiles to highly
optimized parallel code. It enables its users to write high-level code through
array operations but still provides similar performance to low level imple-
mentations.

The language builds upon three basic building blocks: map , reduce
and scan . Each of them are applied to arrays and execute highly parallel
over the entries of the array.

map applies an arbitrary function to each element of an array. For exam-
ple, we can square the values of an array (named values ) with the following
code snippet:

let values_squared = map (\x -> x*x) values

The reduce function takes an associative operator and the correspond-
ing neutral element (i.e. a monoid) as arguments, as well as the array this
operator should be applied to. This function then reduces the array by apply-
ing the operator across its element. For example, computing the sum over an
array can be done in the following way:

let value_sum = reduce (+) 0 values

Here, (+) is the associative operator addition and 0 the corresponding neutral
element.

scan takes the same arguments as reduce , however, it computes the
inclusive scan (also known as prefix sum) [18] of the array. This building
block is commonly used in highly parallel implementations, for example in
the implementation of radix sort [19]. A simple example is shown below:

let values = [1,4,2,3,4]
in scan (+) 0 values

The result of this code snippet is the array [1, 5, 7, 10, 14].

7



CHAPTER 2. BACKGROUND 8

All of these operations can be arbitrarily nested and Futhark applies incre-
mental flattening [20] to produce multiple, semantically equivalent code ver-
sions, which incrementally utilize more and more levels of the application’s
nested parallelism. These semantically equivalent code versions are discrim-
inated by placing them inside branches whose conditions compare (static)
threshold values with the amount of parallelism exploited by that version.
The threshold values are found by autotuning the program on a set of repre-
sentative datasets [21], which has the potential to near-optimally map future
datasets to their most suitable code version. As an example, an implementa-
tion of the dense matrix vector product can be written as:

let mv_prod [m][n] (mat: [m][n]f32) (vec: [n]f32): [m]f32 =
map (\row ->

reduce (+) 0
(map2 (\a b -> a * b) row vec

) mat

The function mv_prod takes a 2d-array of 32 bit floats in the shape m x n
and an array of 32 bit floats of length n as input arguments and produces an
array of 32 bit floats of length m.

Applying incremental flattening can configure different levels of paral-
lelism depending on the input data and the hardware being used. For ex-
ample, it might be the case that the outer map already exhausts all available
parallelism, and it is preferable that the code inside it is sequentialized. This
configuration is tuned through the futhark autotune [21] feature.

Throughout this thesis another Futhark primitive, reduce_by_index ,
is used extensively. This function has the following signature:

val reduce_by_index ’a [m][n]:
(dest: *[m]a) ->
(f: a -> a -> a) ->
(ne: a) -> --the neutral element of f
(is: [n]i64) ->
(as: [n]a) ->

*[m]a

reduce_by_index implements the generalized histogram described in [22].
More specifically, this function modifies the array dest by updating all po-
sitions indicated by is with f applied to the current value of dest and
the value in as that corresponds to the position in is . This means, that all
values in as that have the same index in the corresponding is array are
reduced with f into the same "bin". For simple addition, this is visualized in
figure 2.1. In this figure, the colors indicate the index values in the is array,
i.e. as[0] = 2 and is[0] = 1 , and dest is assumed to be an array of
zeroes.

Futhark module system

Since we use the Futhark module system to achieve generality when imple-
menting the mixture framework, we briefly introduce the key concepts of this
system.
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Figure 2.1: Visualization of reduce_by_index .

A Futhark module is a collection of types, functions, other modules and
module types. It can be used to encapsulate functionality by providing type
definitions and operations that work on these definitions.

For example, we can define a type to encapsulate operations on complex
numbers as follows:

module complex = {
type t = (f32, f32)

let mk_complex (a: f32) (b: f32): t = (a, b)
let get_real (number: t): f32 = number.0
let get_imaginary (number: t): f32 = number.1
let add (a: t) (b: t) =

(a.0 + b.0, a.1 + b.1)
...

}

Here, we represent the complex number as a tuple of 32-bit floats. In
Futhark, we can access the first element of a tuple tup by writing tup.0 ,
the second element by writing tup.1 , and so on. In our code we can now
use this module as follows:

let test (x: f32)=
let a = complex.mk_complex x 6
let b = complex.mk_complex 3 5
let c = complex.add a b
in complex.get_real c

In this code snippet, we create two complex numbers and add them to-
gether through the complex module.

Now we might not always want to represent complex numbers through
32-bit floats. For example, when precision is an important factor, we might
want to use 64-bit representations instead. In order to provide this abstraction
without the need to manually replace all types in the complex modules, we
can use parametric modules.

A parametric module takes another module as an argument and can then
use the types defined therein. To parametrize our complex module with
respect to the float representation, we can change the definition slightly:
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module complex (R: real) = {
type t = (R.t, R.t)
let mk_complex (a: f32) (b: f32): t = (R.f32 a, R.f32 b)
...
let add (a: t) (b: t) =

(a.0 R.+ b.0, a.1 R.+ b.1)
}

This means, we take any module that implements the module type real 1

as input, and we can call functions that are defined in this module type, like
R.+ for addition and R.f32 for conversion from a 32-bit float representa-

tion.
We can then instantiate the complex module with the module f64 , which

implements real , and use it as follows:

module complex64 = complex f64
let test (x: f32) =

let a = complex64.mk_complex x 6
...

Now we might want to use this type in a function that is generic to the
type of number it uses. For example, we could have a module that defines
a function to add two numbers together, but does not specify whether they
are real or complex numbers. We call this module abstract_adder . For
this case, we can define a module type addable , that acts as an interface to
abstract from the specification of the number.

module type addable = {
type t
val add: t -> t -> t

}
module abstract_adder (A: addable) =
{

let add (a: A.t) (b: A.t) = A.add a b
}

addable requires the definition of a type t and a function add , which
takes two arguments of type t and returns the sum. Since the complex
module defines the necessary type and function, we can ascribe the module
type addable to it. Finally, we can use the abstract adder on complex num-
bers as follows:

module complex32 = complex f32 -- parametrize complex module
module complex_addable = complex32 : addable -- type ascription
module complex_adder = abstract_adder complex32 -- parametrize abstract_adder
let main (x: f32) =

let a = complex32.mk_complex x 6
let b = complex32.mk_complex 3 5
in complex_adder.add a b

1This module type is part of Futhark and provides typical mathematical operations on real
numbers (see the documentation).

https://futhark-lang.org/docs/prelude/doc/prelude/math.html#1373
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2.2 K-means

K-means is one of the simplest clustering methods in the machine learning
domain. It is also a fairly old method, with sources from the 1950s and 1960s
already describing the idea [23] [24] [25].

The objective of k-means is to group a set of n d-dimensional points into
k clusters such that the distances of the points within each cluster to their re-
spective cluster center are minimized. More formally, the objective of k-means
is to divide the points into k subsets Sh such that the intra-cluster distance

k∑
h=1

∑
x∈Sh

||x− µh||2

is minimized. The µh represent the cluster centers, i.e. the means of the points
assigned to each cluster.

Figure 2.2: Visualization of 2-means.

Figure 2.2 shows, schematically, the result of 2-means being applied to a 2-
dimensional dataset. The red dots indicate the position of cluster centers after
convergence and the color of the other dots indicates which of the clusters
they belong to.

The standard algorithm to solve this problem is often called Lloyd’s algo-
rithm, based on its formulation by Stuart Lloyd [26]. This algorithm is shown
in Algorithm 1. After converging, a local minimum for the cluster centers is
found. Because of this, running the algorithm several times with different
initializations can have an impact on the outcome. There are initialization
methods that can improve the results of k-means, like k-means++ [27]. This
initialization method uniformly picks one cluster center from the set of points,
calculates the distances of every point to this cluster center, and then samples
more cluster centers from the points such that points are more likely to be
sampled if their distance to the already picked cluster center(s) is large. This
process is repeated until k cluster centers are sampled. We did not implement
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this initialization method in our framework, still it is a simple but significant
improvement that should be implemented in the future.

Another strategy to improve the results is running the algorithm multiple
times with different random initializations and selecting the cluster centers
that result in the lowest intra-cluster distance. This means, that the perfor-
mance of the implementation also has an indirect impact on the quality of the
results.

Algorithm 1 K-means

Input: x ∈ Rn×d (a set of n d-dimensional points); k ∈ Z+ (the number of
clusters)

Output: µ ∈ Rk×d (the cluster centers)
1: for h = 0 . . . k do
2: µh ← init . Some initialization for cluster centers
3: end for
4: converged← false
5: while !converged do
6: for i = 0 . . . n do
7: for h = 0 . . . k do
8: dh ← ||xi − µh||2 . Compute distance to all cluster centers
9: end for

10: membershipi ← argminh(dh) . Assign new membership
11: end for
12: for h = 0 . . . k do
13: µh ← 0 . Initialize new cluster centers
14: member_counth ← 0
15: end for
16: for i = 0 . . . n do . Sum up values according to cluster
17: h← membershipi
18: µh ← µh + xi
19: member_counth ← member_counth + 1
20: end for
21: for h = 0 . . . k do
22: µh ← µh

member_counth
. Compute mean

23: end for
24: converged← ... . Any convergence criterion
25: end while

An interesting property of the classical k-means algorithm is that it is a
specialization of applying the EM framework to Gaussian mixture models (see
section 2.4), as shown in [28] and references therein. This enables us to include
k-means in the framework presented in chapter 4.

2.3 High-dimensional sparse data

The term sparse data refers to any type of data with highly redundant entries,
for example large matrices that contain mostly zeroes and only comparably
few nonzero entries. Of course, processing these data in a so-called dense
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representation (i.e. all entries of that matrix are stored, even the zeroes) takes
up a lot of unnecessary space and computations.

In order to avoid this problem, this type of data is often represented in
sparse formats that only store the nonzero entries and some additional infor-
mation about the position of these entries in the dense representation.

Sparse data representations

The following sections describe the formats investigated in this thesis. As an
example, matrix

A =


0 0 0 5 0 0
1 0 6 0 0 0
0 7 3 0 5 1
4 0 0 2 9 0
0 0 0 0 0 8


is used to demonstrate the conversion into the different formats.

CSR/CSC-format

The compressed sparse row format represents a dense n×m2 matrix with nnz
nonzero entries with three arrays:

1. V AL: All nonzero entries are stored here sequentially, ordered by row
(column in CSC).

2. INDICES: In the same order as V AL, the respective column-indices
(row-indices in CSC) are stored.

3. POINTERS: For each row (column in CSC), the first index of a nonzero
element of this row (column in CSC) in the V AL and INDICES array
is stored. Additionally, the total number of nonzero entries is appended
to this array.

Both V AL and INDICES thus have a length of nnz, while POINTERS
has length n+ 1 (m+ 1 in CSC).

The memory footprint of this format can be calculated as follows, with
each nonzero value using val memory and each index using ind memory:

total_memory = (n+ 1) · ind+ nnz · (ind+ val) (2.1)

The matrixA can be represented in this format in the following way:

1. V AL = {5, 1, 6, 7, 3, 5, 1, 4, 2, 9, 8}

2. INDICES = {3, 0, 2, 1, 2, 4, 5, 0, 3, 4, 5}

3. POINTERS = {0, 1, 3, 7, 10, 11}
2Since matrices, in the context of this thesis, represent a dataset where the number of samples,

or rows, is usually indicated by n, we use n to indicate the number of rows andm (or d) to indicate
the number of columns (or dimensions) of matrices.
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COO-format

The coordinate format (COO) represents a dense n×mmatrix with nnz nonzero
with three arrays:

1. V AL: Stores the values of all nonzero entries in arbitrary order.

2. ROW : Stores the row index of the nonzero entries in the V AL array in
the same order.

3. COL: Stores the column index of the nonzero entries in the V AL array
in the same order.

The memory footprint of this format can be calculated as follows, with
each nonzero value using val memory and each index using ind memory:

total_memory = 2 · nnz · ind+ nnz · val (2.2)

In this format,A is represented as:

1. V AL = {5, 1, 6, 7, 3, 5, 1, 4, 2, 9, 8}

2. ROW = {0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4}

3. COL = {3, 0, 2, 1, 2, 4, 5, 0, 3, 4, 5}

ELLPACK-format

The ELLPACK format stores a dense n ×m matrix with nnz nonzero entries
using two dense matrices. The size of these matrices depends on the row of
the matrix with the most nonzero entries nzmax.

1. V AL is an n × nzmax matrix. For each row of the original matrix, the
nonzero elements are stored sequentially in the respective row of V AL.
Since not all rows might have the same number of nonzero entries, the
rows of V AL are padded with zeros.

2. COL also is an n × nzmax matrix, however, instead of the values of
nonzero entries, it stores the respective column index. Instead of padding
with zeros, here we insert an indicator value that indicates whether this
element is valid or part of the padding.

The advantage of this format is, that we get a regular array layout that
we can map well to the GPU and apply techniques like tiling on. However,
this comes at the cost of a larger memory footprint due to the padding. The
memory footprint of this format is the following:

total_memory = n · nzmax · (val + ind)
The matrixA is represented as:

V AL =


5 0 0 0
1 6 0 0
7 3 5 1
4 2 9 0
8 0 0 0

 COL =


3 ∗ ∗ ∗
0 2 ∗ ∗
1 2 4 5
0 3 4 ∗
5 ∗ ∗ ∗


where ∗ is a value that indicates that this entry is part of the padding.
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Hybrid formats

In the ELLPACK format, a big problem is that the size of the compressed ma-
trices depends on the maximum number of nonzeros within one row. This
leads to a lot of space being wasted in cases where the number of nonzeros
differ greatly between rows. In the worst case, a single row is completely
dense, and we store twice as many values as in the original dense representa-
tion.

In order to mitigate this, hybrid representations are commonly used to
provide a trade-off between regularity of the data representation and com-
pression.

Here, we choose the size τ of the two matrices such that they are of size n×
τ . These matrices are filled with nonzero entries as in the ELLPACK format,
however, in all rows that have more than τ nonzero values, the remaining
ones are stored in any of the other sparse formats, for example CSR or COO.

2.4 Mixture models and the EM framework

The framework presented in chapter 4 aims to facilitate the implementation
of mixture models. These mixture models can be fitted to a given dataset
through use of the Expectation-Maximization (EM) framework [29], which is
based on the maximum likelihood approach. The next section describes the
maximum likelihood approach on the simple case of fitting a single Gaussian
distribution to data. Afterwards, it is demonstrated how the maximum likeli-
hood approach and EM can be used to fit mixtures of probability distributions
to a given dataset.

Fitting a single distribution to data

First, we look at the simple case in which we want to fit a single d-dimensional
Gaussian distribution in a way that it maximizes the probability of the n d-
dimensional data points (X ∈ Rn×d with X = {x0, x1, · · · , xn}) being sam-
ples of this distribution. This maximization approach is called maximum like-
lihood estimation.

Given µ ∈ Rd and Σ ∈ Rd×d where Σ is a symmetric and positive-definite
matrix, the probability for one data point can be calculated with this formula:

p(xi|µ,Σ) =
1√

(2π)d det(Σ)
e−

1
2
(xi−µ)T ·Σ−1(xi−µ)

The task now is to maximize the parameters µ and Σ given the data. In
order to fit the distribution to all the data, we need to consider the joint distri-
bution:

p(X|µ,Σ) =
n∏
i=0

1√
(2π)d det(Σ)

e−
1
2
(xi−µ)T ·Σ−1(xi−µ)

Instead of maximizing this quantity, we can maximize the logarithm of this
formula to turn the product into a sum, which is easier to handle:
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ln p(X|µ,Σ) =
n∑
i=0

ln

(
1√

(2π)d det(Σ)
e−

1
2
(xi−µ)T ·Σ−1(xi−µ)

)

=
n∑
i=0

ln

(
1√

(2π)d det(Σ)

)
− 1

2
(xi − µ)T ·Σ−1(xi − µ)

=
n∑
i=0

− ln
(√

(2π)d det(Σ)
)
− 1

2
(xi − µ)T ·Σ−1(xi − µ)

= −
n∑
i=0

1

2
ln(2π)d +

1

2
ln det(Σ) +

1

2
(xi − µ)T ·Σ−1(xi − µ)

= −n
2

(
ln(2π)d − ln det(Σ)

)
− 1

2

n∑
i=0

(xi − µ)T ·Σ−1(xi − µ)

In order to find the parameters µ and Σ that produce the best fit for the
data, we can take the gradient with respect to those parameters. For µ:

∂

∂µ
(ln p(X|µ,Σ)) =

∂

∂µ

(
−n

2

(
ln(2π)d − det(Σ)

)
− 1

2

n∑
i=0

(xi − µ)T ·Σ−1(xi − µ)

)

=
∂

∂µ

(
−1

2

n∑
i=0

(xi − µ)T ·Σ−1(xi − µ)

)
Now we can use the assumption that Σ is symmetric and apply the iden-

tity
∂

∂µ
(xi − µ)TΣ(xi − µ) = −2Σ(xi − µ) [30]:

= −1

2

n∑
i=0

−2Σ−1(xi − µ) =
n∑
i=0

Σ−1(xi − µ)

Since the negative log likelihood is convex, we can find the maximum by
setting this gradient to 0:

0 =
n∑
i=0

Σ−1(xi − µ)
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0 =
n∑
i=0

Σ−1xi −
n∑
i=0

Σ−1µ

nΣ−1µ =
n∑
i=0

Σ−1xi

µ =
1

n

n∑
i=0

ΣΣ−1xi =
1

n

n∑
i=0

xi

We can see, that µ is maximized by taking the mean of all data points.
In order to find the optimal covariance matrix Σ, we have to take the

derivative with respect to Σ:

∂

∂Σ
(ln p(X|µ,Σ)) =

∂

∂Σ

(
−n

2

(
ln(2π)d − det(Σ)

)
− 1

2

n∑
i=0

(xi − µ)T ·Σ−1(xi − µ)

)

=
∂

∂Σ

(
−n

2
det(Σ)

)
− ∂

∂Σ

(
1

2

n∑
i=0

(xi − µ)T ·Σ−1(xi − µ)

)

Using the following identity:
∂ ln det (Σ)

∂Σ
=
(
Σ−1

)T [30], omitting trans-
positions of Σ since it is symmetric.

= −n
2

Σ−1 − ∂

∂Σ

(
1

2

n∑
i=0

(xi − µ)T ·Σ−1(xi − µ)

)

Using the identity
∂aTΣ−1b

∂Σ
= −Σ−1abTΣ−1 [30]:

= −n
2

Σ−1 − 1

2

n∑
i=0

−Σ−1(xi − µ)(xi − µ)TΣ−1

Setting this to zero:

nΣ−1 =
n∑
i=0

Σ−1(xi − µ)(xi − µ)TΣ−1
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Multiply by ΣΣ

Σ =
1

n

n∑
i=0

(xi − µ)(xi − µ)T

In some cases (for example when solving the maximum likelihood estima-
tion for mixture models), it can be necessary to introduce a Lagrange multi-
plier in order to find a solution.

We can see that fitting a single distribution to some data is relatively straight-
forward. However, this does not help us with our actual goal, i.e. clustering
the data.

Fitting mixture models to data

Mixture models can be used to cluster a set of data points into a known num-
ber of clusters. A probability distribution that suits the application domain
is chosen, for example the Gaussian distribution. Each cluster is then repre-
sented by one distribution with an individual set of parameters, often called
components. In order to assign data points to clusters, the probability distribu-
tion is evaluated for this point and each of the k sets of parameters. The point
is then assigned to the cluster that yields the highest probability. Usually, each
of the k distributions is also assigned a weight α, which represents the global
likelihood of each of the distributions.

Figure 2.3: Visualization of a mixture model consisting of 2 Gaussian distri-
butions in 2 dimensions.

Figure 2.3 shows the result of fitting a Gaussian mixture model consisting
of two components in 2-dimensional space. This result is much more expres-
sive than that of simple k-means, since it captures the shape of the clusters.
For example, the blue dot between the two clusters is closer to the center of
the yellow cluster, however, it fits the shape of the data in the green cluster
better. The mixture model takes this into account, whereas k-means would
simply assign it to the nearest cluster.
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The rest of this section describes how the EM procedure can be used to fit
mixture to datasets and is based on the explanations in [1] and [31].

Given a probability distribution f(x, θ) and k sets of parameters θ1, θ2, · · · , θk,
as well as parameters α1, α2, · · · , αk with

∑k
h=1 αh = 1 and αh ≥ 0 (1 ≤ h ≤ k)

we can write the probability of our data being generated from this mixture as

p(x|Θ, A) =

k∑
h=1

αhf(x, θh) (2.3)

where Θ = {θ1, θ2, · · · , θk} and A = {α1, α2, · · · , αk}.
Intuitively, samples are generated from this distribution by first choosing

parameters θh with probability αh and then sampling from f(θh). This in turn
means, that we assume our data to be generated this way. Thus, every data
point xi has a hidden variable zi that denotes which of the distributions it was
sampled from.

Given valuesZ = {z1, z2, · · · , zn}where n is the number of samples in our
data, we could use the maximum likelihood approach described in the previ-
ous section to find the parameters θ for the distribution f(θ). However, since
we are looking at unsupervised clustering the true values of Z are unknown
and need to be deduced from the data. This is where the EM approach comes
into play.

The EM framework consists of two steps, i.e. the expectation step and the
maximization step, as the name suggests.

1. In the expectation step, we assume that we are given approximations for
the θ parameters of all k distributions and based on this we compute the
likelihood of a point belonging to a certain distribution as follows:

p(zi = h|xi,Θ) =
αhf(xi, θh)∑k
l=1 αlf(xi, θl)

(2.4)

2. The maximization step then estimates new parameters θ based on these
assignments. For this, we have to look at the expected value of our mix-
ture E [p(X|Θ, A)] and use the maximum likelihood approach to find
the parameters θ̂h and α̂h that maximize the expected value. For exam-
ple, for a mixture of multivariate Gaussians these can be computed as
follows:

α̂h =
1

n

n∑
i=1

p(zi = h|xi,Θ) (2.5)

µ̂h =

∑n
i=1 xip(zi = h|xi,Θ)∑n
i=1 p(zi = h|xi,Θ)

(2.6)

Σ̂h =

∑n
i=1(xi − µ̂h)(xi − µ̂h)T p(zi = h|xi,Θ)∑n

i=1 p(zi = h|xi,Θ)
(2.7)

with f(xi, θh) = 1√
(2π)d det(Σh)

e−
1
2 (xi−µh)T ·Σ−1

h (xi−µh)
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These steps are executed repeatedly until the joint probability of the mix-
ture over all data points changes less than a chosen amount between itera-
tions. Since in each iteration, this probability can not decrease [32], it is likely
(though not guaranteed) that we have found a local maximum after conver-
gence.

Note that in the expectation step we are not directly computing Z, since
it is discrete. Instead, for each data point we have k probabilities, one for
each of the distributions. For data point xi and distribution h, we compute
p(zi = h|θ,xi). We can then estimate the zi by assigning the cluster with the
highest probability: ẑi = argmaxh p(zi = h|θ,xi).

2.5 Soft assignment vs. hard assignment

In the following chapters of this thesis we use the distinction between hard
and soft cluster assignments. This refers to the method in which data points
are associated to clusters. In algorithms using hard cluster assignment, a data
point is always fully assigned to one cluster. For example in classical k-means,
we store a membership variable for each of the data points that indicates
which of the clusters they are closest to.

On the other hand, algorithms that use soft cluster assignments will store
k values for each data point (k being the number of clusters). These values
indicate how likely it is that a data point belongs to each of the clusters. In
mixture models, these values are the posterior probabilities of evaluating each
component of the mixture model for each of the data points.

The characteristics of the two strategies are analyzed in [33], however, this
thesis is only concerned with the implementation of the strategies and not
their semantic traits.



Chapter 3

Sparse k-means explorations

When implementing an algorithm with a focus on performance, it is critical to
focus on the biggest contributors to the runtime first. Since there is an inher-
ently sequential loop in the k-means algorithm, most time will be spent inside
this loop.

The operations within the loop can be split into two parts:

1. The distance computations (corresponding to the expectation step of the
EM scheme). Here, we compute the distances from each data point to
each of the cluster centers and assign a membership value to each point,
indicating which cluster is the closest.

2. The reduction step (corresponding to the maximization step of the EM
scheme). In this step the new cluster centers for the next iteration are
computed. This means, that for each cluster we need to add up all the
points assigned to this cluster and then divide the summed up vector by
the number of assigned points.

3.1 Distance computation and optimizations

The distance computation is the main part of the k-means algorithm when
it comes to computational complexity. In this step, n · k Euclidean distances
are computed. This computation is fairly simple in the dense case. However,
there are several ways in which we can transform this operation for sparse
data to achieve good performance. In this section, four approaches and their
suitability for the k-means algorithm are discussed.

To get an intuition for the problem, the distance computation for dense
data is shown in listing 3.1 (kindly taken from the Futhark benchmarks repos-
itory [34]):

21

https://github.com/diku-dk/futhark-benchmarks
https://github.com/diku-dk/futhark-benchmarks
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-- squared Euclidean distance: ||(p1 -p2)||^2
let euclidean_dist_sq p1 p2 =

sum (map (\x->x*x) (map2 (-) p1 p2))
let compute_distances [n][d][k]

(points: [n][d]f32)
(cluster_centers: [k][d]f32):

[n][k]f32 =
map (\p ->

map (\center ->
euclidean_dist_sq p center

) cluster_centers
) points

Listing 3.1: Distance computation for dense data.

This code simply maps the squared 1 Euclidean distance function over all
points and all clusters. This computation, however, is not as straightforward
on sparse data as it is for the dense case. Specifically the subtraction inside the
distance computation is troublesome, since for each dimension of the dense
cluster center, it is not directly possible to look up whether a data point has a
zero entry in this dimension, and if so, where in the sparse data representation
the respective value is located.

One solution to this problem is to formulate the computation in terms of
the semiring primitive presented in [15]. The next section describes this trans-
formation and provides intuitions on how sparse data affects the asymptotic
cost of the transformed metric.

Expansion of the Euclidean metric

As concluded in [15], it is beneficial for the performance to extend the squared
Euclidean metric when computing distances across sparse datasets. In or-
der to derive this form, we start with the squared Euclidean metric for d-
dimensional vectors x and y, written as

d(x,y) =

d∑
i=1

(xi − yi)2 (3.1)

We can extend this to

d(x,y) =

d∑
i=1

[
x2i − 2xiyi + y2i

]
(3.2)

=

d∑
i=1

x2i − 2

d∑
i=1

xiyi +

d∑
i=1

y2i (3.3)

We can observe, that now there is a dot product between x and y instead
of a subtraction. In the case of either x or y being sparse, we only have to

1For the k-means algorithm it suffices to compute the squared Euclidean metric. This is cor-
rect since we only compare distances with each other and square root is a monotone function.
This simplification is used throughout this chapter.
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compute values for the columns that are nonzero in x and in y, i.e. the union
of nonzero columns.

In the case of k-means, one of the vectors x,y represents a cluster center,
stored in a dense data representation. We can use this fact and the previous
observations to compute the order of operations necessary to compute the
distances of n sparse d-dimensional points with a total of nnz nonzero entries
to k dense d-dimensional cluster centers. In the computations xwill represent
a dense cluster center and y one data point.

The first term
∑d
i=1 x

2
i does not involve any sparse operations, so here

we have O(d) operations. Since we have k cluster centers, there are O(k ·
d) computations. This computation does not depend on the dataset, so this
quantity only needs to be computed once for each cluster center instead of
once for each combination of data point and cluster center.

In the second term −2
∑d
i=1 xiyi, we compute the sparse dot product of x

y. Since only the nonzero entries from y contribute to the sum, we only have
O(nnz) operations for the whole dataset for a single cluster center. Thus, in
total there are O(k · nnz) operations.

The third term
∑d
i=1 y

2
i , again, is only influenced by the nonzero entries of

y. Thus, there are O(nnz) operations.
In order to avoid unnecessary accesses to the sparse dataset, we can group

together the second and third term:

d∑
i=1

(yi − 2xi)yi (3.4)

The following code snippet shows how these observations can be used to
compute the distances for a sparse dataset in CSR format (given the val ,
indices and pointers arrays).
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let compute_distances [nnz][np1][k][d]
(values: [nnz]f32) --we assume CSR representation
(col_indices: [nnz]i64)
(pointers: [np1]i64) --pointers contains n+1 entries
(cluster_centers: [k][d]f32): --centers stored as dense 2d array

[n][k]f32 =
let cluster_squared_sum = map (\c ->

sum (map (\x -> x*x) c)
) cluster_centers

let sparse_terms =
map (\cluster ->

map (\i
let row_start = pointers[i]
let row_end = pointers[i+1]
let nnz = row_end - row_start
in reduce (+) 0

(map (\j ->
let value = values[j]
let col = col_indices[j]
let cluster_val = cluster[col]
in (value - 2 * cluster_value)*value

) (map (+row_start) (iota nnz)))
) (iota n)

) cluster_centers
-- combining the two terms:
in map2 (\sp cluster_term -> map (+cluster_term) sp)

sparse_term cluster_squared_sum

Listing 3.2: Irregular implementation of distance computation

This code only uses the basic building blocks map and reduce of the Futhark
language, which can be optimized automatically using the incremental flat-
tening feature through the futhark autotune command [21].

However, the inner reduce and map are irregular, meaning that they
operate on arrays of varying lengths for each value of i . Since Futhark
cannot exploit irregular parallelism like this, we have to either use a regu-
lar sparse representation of our data like the ELLPACK format, or manually
flatten the code if we wish to utilize the parallelism of the innermost map-
reduce construct. The advantages and disadvantages of these approaches are
discussed in the following sections.

Flat segmented scan

A common approach for solving the irregularity problem is flattening. By ap-
plying a set of flattening rules to a given program, we can get rid of nested par-
allelism and rewrite it with the help of segmented operations (i.e. segmented
scan and segmented reduce). This enables us to extract as much parallelism
as possible from the problem, as we are able to parallelize all the O(k · nnz)
operations.

In order to flatten the code in this manner, we need to create a flag array
that indicates the segments for the nonzero elements of each row from the CSR
representation. This is a relatively simple transformation and can be done
outside the main loop, thus the overhead is negligible.
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Given this flags array, as well as the col_indices and val ar-
rays from the CSR representation, we can flatten the distance computation
as shown in listing 3.3.

let compute_sparse_terms [nnz][k][d]
(values: [nnz]f32) --we assume CSR representation
(col_indices: [nnz]i64)
(flags: [nnz]bool)
(cluster_centers: [k][d]f32): --centers stored as dense 2d array

[n][k]f32 =
map (\cluster->

let dist_terms =
map (\element_index element_value ->

let cluster_value = cluster[element_index]
in (element_value - 2 * cluster_value)*element_value

) col_indices values
in segreduce (+) 0 flags dist_terms :> [n]f32

) cluster_centers

Listing 3.3: Flattened implementation of distance computation.

The function segreduce computes the segmented reduction for an ar-
ray. This means, that for every segment indicated by the flags array, the
reduce operation with the specified operator and neutral element is ap-

plied. The result is an array that has the number of segments as its length.
This is visualized in figure 3.1.

Figure 3.1: Visualization of the segmented reduction operation.

Note that we need to cast the result of the segmented reduction to the right
size, in order to let the Futhark compiler know that the result has the same
type across the outer map, i.e. there is no irregular nested parallelism. This
also assumes that there are no empty rows in the dataset, since this would
lead to empty segments and the size of the result of segreduce would be
less than n.

This approach has the big advantage that it uses all the available paral-
lelism for this operation. Since Futhark can flatten the outer map over the
cluster centers, we are able to use k × nnz parallel threads for the distance
computation. If the dataset is small enough or the GPU sufficiently power-
ful with enough physical threads to match this amount of parallelism, we can
expect good performance.

On the other hand, flattening often causes the memory requirements of the
algorithm to grow too much to be feasible (see this blog post [35]) and might
also lead to worse spatial locality, as the memory accesses are spread out over
more threads.

This approach is referred to as flat in the benchmark section.

https://futhark-lang.org/blog/2019-02-18-futhark-at-ppopp.html
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Sequential reduction of nonzeros in each row

An alternative approach to flattening the sparse distance computation is ex-
plicitly sequentializing the innermost map-reduce construct over the nonzero
entries of each row. This will, of course, not use all the available parallelism,
however, if we have enough rows and cluster centers to saturate all threads of
the hardware, this approach might yield a better performance than flattening.

Listing 3.4 shows the manually sequentialized version of the distance com-
putation. Futhark will generate similar code from the irregular formulation in
listing 3.2, however, explicitly sequentializing this code allows us to reason
about its performance more clearly.

let compute_sparse_terms [nnz][np1][k][d]
(values: [nnz]f32) --we assume CSR representation
(col_indices: [nnz]i64)
(pointers: [np1]i64) --pointers contains n+1 entries
(cluster_centers: [k][d]f32): --centers stored as dense 2d array

[n][k]f32 =
map (\cluster ->

map (\row ->
let index_start = pointers[row]
let nnz = pointers[row+1] - index_start
let row_dist = 0
let row_dist =
loop row_dist for j < nnz do

let value = values[index_start+j]
let column = col_indices[index_start+j]
let cluster_value = cluster[column]
let value = (value - 2 * cluster_value)*value
in row_dist+value

in row_dist
) (iota n)

) cluster_centers

Listing 3.4: Distance computation with sequentialized inner map-reduce.

We can observe, that in this implementation neighboring threads access
the val and col_indices arrays with an irregular stride of the nonzero
elements of each row. This uncoalesced access pattern2 is not optimal and
likely lowers the performance of this computation.

Furthermore, the loops in successive threads do not necessarily have the
same number of iterations, since the number of nonzero elements generally
varies between rows. This causes thread divergence, another culprit for sub-
optimal performance.

Luckily, a simple loop interchange of the two outermost maps alleviates
both of these issues. If the map over the cluster centers is inside the map over
the rows, k successive threads will access the same data in the same order,
hence benefiting from temporal locality. This improvement will be greatest
once k is higher than the number of threads within a warp, as thread diver-

2When a warp of threads accesses consecutive memory locations, this access will be serviced
by one memory transaction. However, if they do not access memory consecutively (i.e. in an
uncoalesced fashion), there can be as many transactions as there are threads in a warp in the worst
case.
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gence is eliminated and enough data is loaded from global memory, such that
no redundant memory transactions are necessary.

This approach is referred to as seq in the benchmark section.
Another way to treat the thread divergence for small k is to sort the data

rows by the number of nonzero entries. This makes sure that the loops in
neighboring threads (i.e. neighboring rows) run for a similar amount of itera-
tions.

In the benchmark section, the seq_sorted label indicates the combination
of the seq approach with this sorting procedure.

It is important to note that this approach only parallelizes over the data
points and clusters (i.e. we can use n × k parallel threads). If there are more
physical threads available on the hardware than n × k for the given dataset
and k, we are not using the hardware optimally and flat implementations will
likely perform better.

ELLPACK

Another way to tackle the irregularity of this problem is to introduce padding
in a way that the computations of all rows have the same number of opera-
tions. This allows Futhark to apply techniques that are useful for operations
with dense matrices like transpositions and tiling.

The problem with this approach, however, is that the amount of padding
necessary varies a lot between datasets and the benefits of the better data lay-
out might be neutralized by the added amount of calculations.

By transforming the input to the ELLPACK format we can theoretically im-
plement this approach, but in practice this representation takes a lot of mem-
ory which is scarce on GPUs, so this is only feasible for small datasets.

This approach is referred to as ellpack in the benchmark section.

Hybrid (ELLPACK + COO)

In order to address the regularity problem in a memory efficient manner, it
is possible to combine multiple of the previous approaches. Such a hybrid
approach is, for example, found to be a good solution to the sparse matrix-
vector multiplication problem, as shown in [14].

As described in section 2.3, the dataset is split into a regular part in the
ELLPACK format, which ideally should cover most of the necessary opera-
tions, and in an irregular representation like the COO format, which ideally
only contains comparably few elements.

The distance contributions of the regular section can be easily computed
by using a combination of regular map and reduce operations, as shown
in listing 3.5.
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let compute_sparse_terms [n][width][k][d]
(ellpack_mat: [n][width](f32,i64)) --we assume ELLPACK format
[n][k]f32 =
map (\row ->

map (\cluster->
reduce (+) 0

(map (\(v,i) ->
if i < 0 then 0 else -- check for padding

let cluster_value = cluster[i]
in (v - 2 * cluster_value)*v

) row)
) cluster_centers

) ellpack_mat

Listing 3.5: Computation of sparse terms from data in ELLPACK format.

In this thesis, we chose the irregular part of the representation to be in COO
format, with the additional assumption that successive nonzero values of a
row are stored successively. We tested two ways of computing the distance
contributions of the irregular part of the representation.

1. Atomic addition: Since most of the nonzero values are ideally covered
by the regular ELLPACK part of this representation, there should be rel-
atively few conflicts when adding the irregular distance contributions to
the previously computed regular contributions using atomic operations.

2. Segmented reduction: Since we need to sum over the values of each row,
and we stored the data in a way that these are also stored successively,
we also tested a segmented reduction over the irregular representation,
similar to the approach described in section 3.1.

These approaches are labeled hybrid and hybrid_flat in the benchmark
section.

3.2 Reduction step and optimizations

In the reduction step the data points belonging to each cluster need to be
summed up and divided by the number of data points in the respective cluster
to calculate the new cluster centers.

More specifically, for each cluster center ch (1 ≤ h ≤ k) and row i, where
ph d-dimensional data points are assigned to cluster center ch we need to cal-
culate

ch =
1

ph

∑
{i|zi=h}

xi (3.5)

Listing 3.6 shows the Futhark implementation from the Futhark bench-
marks repository of the reduction step of k-means. This implementation uses
the reduce_by_index function to sum up the points of each cluster. The
operator used in the reduction is the vectorized +. This operator takes two
vectors of the same length (in our case the data points) and adds them to-
gether component-wise.

https://github.com/diku-dk/futhark-benchmarks
https://github.com/diku-dk/futhark-benchmarks
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let reduce_cluster_centers [n][d]
(k: i64)
(points: [n][d]f32)
(membership: [n]i32):

[k][d]f32 =
-- we first use a histogram to count
-- how many data points are in each cluster
let points_in_clusters =

reduce_by_index (replicate k 0) (+) 0 membership (replicate n 1)

let cluster_sums =
reduce_by_index (replicate k (replicate d 0)) -- initialize k x d zeroes

(map2 (+)) -- the reduce operator is vectorized(!) +
(replicate d 0) -- neutral element is a vector of 0
membership -- membership used as keys
points

-- divide by number of data points
in map2 (\center count ->

map (\x -> x / count) center
) new_centers points_in_clusters

Listing 3.6: Futhark implementation of the reduction step for dense data

Unfortunately, we cannot use this operator in the case of sparse data. Sim-
ilarly to the subtraction inside the distance metric (see section 3.1), we have
no easy way of looking up the shared nonzero columns of two sparse vectors.
Instead, we can use the reduce_by_index function to sum over sparse
vectors. Figure 3.2 visualizes how this can be done on the example of three
5-dimensional vectors in sparse representation where each color indicates one
vector. Following the arrows from the location in which the values are stored
to the location in which they end up is not straightforward and shows how ir-
regular this problem is. We can observe, that the values processed in the same
operations are not necessarily close to each other in memory. This forces us to
either sort the data in a way that orders the nonzero elements accordingly, or
process the data in the random input order.

Figure 3.2: Visualization of adding 3 sparse vectors of dimensionality 5.

This is, however, only solving the summation of vectors and not the dis-
tribution of the vectors to the cluster centers they are assigned to. To achieve
this distribution, we can manually flatten this construct such that the cluster
centers are represented by a flat array of length k × d. Then, we need to add
an offset to the target columns such that only points that are assigned to the
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same cluster center are summed together. For this, nonzero values from a
vector assigned to cluster h have the offset h · d added to them.

To compute this offset efficiently, we need to associate a cluster assignment
to each nonzero value. With the COO format, it is possible to directly look up
the row index of a nonzero value, and by that we can also easily find the clus-
ter assignment. In contrast, finding the row index of a nonzero entry in the
CSR format is much more complex, as it requires either a linear or, more opti-
mized, a binary search into the pointers array. As this additional complexity
did not seem to be worth the smaller memory footprint, we decided to base
our implementations for the reduction step on the COO format.

Listing 3.7 shows this implementation for a sparse input in COO format.
let reduce_cluster_centers [nnz][n]

(k: i64)
(vals: [nnz]f32) -- nonzero values
(row_indices: [nnz]i64)
(col_indices: [nnz]i64)
(d: i64) -- number of columns in the dataset
(membership: [n]i64): cluster membership of each point

[k][d]f32 -- k d-dimensional cluster centers
-- we first use a histogram to count
-- how many data points are in each cluster
let points_in_clusters =

reduce_by_index (replicate k 0) (+) 0 membership (replicate n 1)

-- we interpret the k cluster centers as flat k x d array.
-- the indices have to be computed accordingly
-- by taking the membership of each point into account
let target_indices = map2 (\row col ->

d*membership[row] + col
) row_indices col_indices

-- the main reduction
let new_centers = reduce_by_index (replicate d 0)

(+) 0 target_indices vals

-- unflatten to return a k x d array
let new_centers = unflatten k d new_centers

-- divide by number of data points
in map2 (\center count ->

map (\x -> x / count) center
) new_centers points_in_clusters

Listing 3.7: Futhark implementation of the reduction step for data in COO
format

The implementation of reduce_by_index uses a multi-pass strategy [22].
This strategy performs multiple passes over the input and only updates a sub-
set of locations such that in each pass all updates fit into the L2 cache or the
fast shared memory space of the GPU. However, if we order the data in such
a way that successive items fall into a smaller range of target locations we can
reduce the number of passes without sacrificing performance. For example,
if we order all the data points by the cluster center they are assigned to, we
only need to keep at most d (the dimensionality of the data points) locations
in resident memory instead of k · d. This becomes increasingly important, as
we increase k.
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To further optimize this reduction, for example by applying ideas from [36],
we need access to atomic operations that are not directly accessible through
Futhark. Hence, we decided to implement and benchmark different approaches
in CUDA.

Atomic operations

The most trivial approach for the reduction step is to use atomic operations,
specifically the well-optimized atomicAdd CUDA function to sum the nonzero
elements of the data to the dense cluster centers. For this, we need to associate
the column, as well as the index of the assigned cluster to every nonzero value
of our data. If this data is given, a CUDA kernel for the reduction step can be
implemented as shown in listing 3.8

__global__ void reduce_atomic(
float* cluster_centers,
const int* membership,
const float* data,
const long long* row_indices,
const long long* column_indices,
int n,
int nnz,
int columns,

)
{

const int index = blockDim.x * blockIdx.x + threadIdx.x;
if (index >= nnz)
return;

const int row = row_indices[index];
const int col = column_indices[index];
float val = data[index];
const int m = membership[row];

const int target_pos = columns*m + col;
atomicAdd(&cluster_centers[target_pos], val);

}

Listing 3.8: Reduction step of sparse points in CUDA

The normalization in equation 3.5 can either be done after the sum in a
second kernel or by dividing each individual element before adding it to the
respective cluster center. The latter introduces more floating point rounding
errors. However, it can be beneficial to the performance for higher values of
k, since the operation of dividing k dense cluster centers by the counts is a
memory-bound operation. Dividing the values before adding them makes
sure, that we only do nnz divisions instead of k · d divisions.

These two code versions are referred to as atomic and atomic - divide
before in the benchmarks.

Sorting by cluster assignments

Previous work investigating the implementation of k-means for dense datasets
on the GPU [36] has found that sorting the data points by their assigned clus-
ter enables an irregular reduction operation to be used for the reduction step
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of k-means. The full irregular reduction is presented in section 3.2, but proved
to be inappropriate for the kinds of data investigated in this thesis due to their
high dimensionality.

The idea of sorting by cluster assignment is still useful for our cause, though.
Spatial and temporal locality of the atomic operations can be improved by
this idea. Since the cluster centers are dense and very high-dimensional, the
destinations of the atomic operations are scattered across a large memory
space. More specifically, for a d-dimensional dataset, there are k · d possi-
ble destinations for the atomic operations. For higher values of k and the
datasets investigated in this thesis, this space will not fit into the caches of the
GPU. Thus, arranging the data points according to cluster improves the like-
lihood of the atomic operations working on cached memory locations instead
of global memory.

Figure 3.3 visualizes this idea for the 1-dimensional case and k = 3, where
each color represents a cluster. We can see that after sorting, spatial locality
is highly improved as items that fall into the same cluster are stored consecu-
tively.

Figure 3.3: Advantage of sorting by cluster assignment visualized

For this approach to be successful, the overhead of sorting the dataset has
to be small enough that it does not mitigate its beneficial effect. In [36], the
counting sort algorithm is used to sort the data points by the cluster.

Counting sort is a sorting algorithm that is useful for sorting items into a
relatively small number of bins. It consists of three steps:

1. Count: The first step counts the number of elements that fall into each
of the bins ( cluster_counts in listing 3.9). Since we also want to
find a position for the elements inside the bins, we can use CUDA’s
atomicAdd function. It atomically adds a value to the specified loca-

tion and returns the previous value of that location. To count the number
of items in each bin, we can just atomicAdd the value 1 to a bin, for
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each item that falls into this bin. When we add the first item to a bin,
atomicAdd will return 0. For the second item added to this bin, it will

return 1. In the sorting step we can then safely put the items in these
positions of the respective bin without causing conflicts.

2. Scan: Since we are sorting a flat array into sections corresponding to the
bins, we need to know where each of the sections start. For this purpose,
we can perform an exclusive scan on the cluster_counts . For the
first cluster this will be 0, since we want to start filling the sorted array at
index 0. The second section will start at index cluster_count[0] ,
since we put all items that fall into cluster 0 before the second section
start, and so on.

3. Sort: For each item, we now know into which section it needs to be put,
based on its cluster assignment and the previously computed scan. We
also know, at which position inside this section it needs to be stored be-
cause of the return values of the atomicAdd , which were saved in the
counting step. By adding these two indices, we get the sorted position
of each item and can simply copy the items to this position.

Listing 3.9 shows the implementation of the first and third step of counting
sort in CUDA. Note that this implementation keeps the bins ( cluster_counts )
in global memory which is not optimal, as discussed in [36]. We also imple-
ment counting sort in a more optimized fashion, where the bins are modified
in shared memory such that only threads in the same CUDA block perform
atomic operations on the same memory location. This greatly reduces the
number of conflicts and thus improves the performance. This approach was
also used in [36] and the authors provide an analysis of the number of conflicts
in their work.

For the second step of counting sort, we used the exclusive_scan
function of the thrust [37] library.
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__global__ void count(
const long long* row_indices,
int* membership,
int* cluster_counts,
long long* sort_offsets,
int nnz,
int k)

{
const int index = blockDim.x * blockIdx.x + threadIdx.x;
if (index >= nnz)

return;
int m = membership[row_indices[index]];
int offset = atomicAdd(&cluster_counts[m], 1);
sort_offsets[index] = offset;

}
__global__ void sort(const long long* col_indices,

const float* data,
long long* col_indices_sorted,
float* data_sorted,
const long long* row_indices,
long long* row_indices_sorted,
int* membership,
int* cluster_count_scan,
long long* sort_offsets,
int nnz,
int k)

{
const int index = blockDim.x * blockIdx.x + threadIdx.x;
if (index >= nnz)

return;
int m = membership[row_indices[index]];
int cluster_offset = cluster_count_scan[m] + sort_offsets[index];
data_sorted[cluster_offset] = data[index];
col_indices_sorted[cluster_offset] = col_indices[index];
row_indices_sorted[cluster_offset] = row_indices[index];

}

Listing 3.9: Counting sort in CUDA

When sorting, in most cases there is a choice to be made about what ex-
actly is sorted in memory. One option is to move the actual data points in
memory such that they are sorted by the assigned cluster, the other is to just
sort the indices of the data into the desired order and later access the data in-
directly. The latter option does not improve the spatial locality of the data, but
still improves the temporal locality. However, the cost of moving the high-
dimensional data points might outweigh the benefit of spatial locality.

We benchmark both approaches, with indirect sort indicating the indirect
sort through indices in section 3.3. The combination with divide before is also
tested.

Sorting by cluster assignment and column

In an attempt to further improve the locality of the atomic operations, we eval-
uate a solution that sorts the nonzero values of the dataset by their assigned
cluster and by their column. Figure 3.4 shows the benefits this can provide
when dealing with sparse data. In this figure, three sparse vectors (indicated
by color) are summed up into the same cluster center. We can see, that sorting
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by the column of the nonzero entries helps the spatial locality. Note that in fig-
ure 3.4, the previous optimization is included, as the sparse vectors all belong
to the same cluster. In the case where this is not given, we can combine the
column indices with the respective cluster assignment to form a new index.
Sorting by this index will then sort the nonzero entries both by cluster assign-
ment and column, combining the previous optimization from section 3.2 with
this one.

Figure 3.4: Advantage of sorting by column visualized

Unfortunately, the counting sort technique used before cannot be applied
in this case, since counting the number of nonzeros for each of the k×d bins is
approximately as expensive as computing the whole reduction with the naive
atomic add approach. Hence, we used radix sort instead. In the benchmark
section this approach is labeled sort full atomic.

After sorting the data in this way we can also use a segmented sum oper-
ation instead of atomic add to compute the reduction, since now values that
will be summed up into the same memory location are laid out consecutively.
This approach is referred to as sort full segmented reduce.

3.3 Benchmarks

This section presents the results of our experiments concerning the perfor-
mance of our implementations. All benchmarks were performed on a system
with an NVIDIA GeForce RTX 2080 Ti graphics card and an Intel(R) Xeon(R)
CPU E5-2650 v2 @ 2.60GHz CPU. This CPU has 8 physical cores with 2-way
multithreading.



CHAPTER 3. SPARSE K-MEANS EXPLORATIONS 36

Dataset dimensions nonzero entries density
BBC 2 225 x 29 126 322 146 0.49%

Movielens 138 493 x 131 263 20 000 263 0.11%
NY Times 299 752 x 102 661 69 679 427 0.23%
SCRNA 65 662 x 26 485 126 510 394 7.27%

Table 3.1: Overview over datasets after removing empty rows

Datasets

For benchmarking purposes we use four datasets. The first and smallest,
dataset is the BBC dataset presented in [38], which contains 2225 news articles
from five different categories. As a preprocessing step the data is transformed
using TF-IDF, which is similar to the bag of words approach described in the
introduction and yields a highly sparse matrix of word frequencies.

The other three datasets are a subset of the datasets used in [15]: Movie-
lens dataset, NY Times dataset and single-cell RNA dataset. The Movielens
dataset consists of the ratings for movies given by many users. Since not every
user rates each movie, this dataset is also highly sparse. Similarly to the BBC
dataset, the NY Times dataset consists of news articles, however, this dataset
is considerably larger than the BBC dataset. The last dataset, single-cell RNA
contains gene expressions. It is the least sparse dataset in this comparison and
consists of the most nonzero entries. An overview over important metrics of
the datasets can be found in table 3.1. Note that the reported metrics were
extracted after removing all empty rows of the datasets.

Distance

For benchmarking the distance computations, we used the futhark bench
tool with CUDA backend. For each of the approaches, all preparations that
need to be done for the given implementation (like converting to a different
sparse format, sorting, etc.) are performed. The reported performances are
calculated by counting the number of bytes our sequential baseline imple-
mentation accesses and then dividing the result by the average runtimes of
the programs.

Unfortunately, some of our implementations were suboptimal in terms of
memory consumption and ran out of memory for some datasets. These cases
were excluded from the graphs to allow a better comparison of the more fea-
sible implementations.

For each experiment, the futhark autotune command [20] is used to
perform incremental flattening on the given algorithm and choose the version
that performs best for the respective inputs.

The performance of the different implementations is displayed in figure 3.5.
We can see that for every dataset except BBC, the flat approach performed

worst. Since it also does not seem to scale better than the other approaches
with increasing k, it seems that this approach is not very suitable for the im-
plementation of k-means. As expected, the flattening also caused the memory
footprint to increase drastically, preventing us from benchmarking this ap-
proach for higher k.
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Figure 3.5: Performance of distance computations.

The hybrid_flat approach has a similar problem, as it also flattens the com-
putations for the irregular part that does not fit into the regular ELLPACK
matrix. However, especially for the smallest dataset (BBC) it performs better
than the flat approach.

For smaller k the hybrid implementation that uses atomic operations for
the irregular part and the hybrid_flat version perform similarly. However, as
k increases, the locality of the atomic operations gets worse and the perfor-
mance and falls behind hybrid_flat.

For all datasets except BBC, the seq and seq_sorted implementations are
clearly the best approaches. It seems that sorting the dataset by nonzeros does
not yield a significant improvement, as the overhead of sorting is very visible
in the performance.

The last implementation that uses the ELLPACK format consumes most
memory of all the approaches. This is expected and also the reason for us-
ing the hybrid strategies. However, for the BBC dataset the whole ELLPACK
matrix fits into GPU memory, and the benchmark demonstrates how well the
regular layout performs. The performance is almost identical to the sequential
implementation for most k.
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An interesting observation for the sequential and ELLPACK format is, that
the performance significantly increases with higher k. This effect is probably
caused by better memory access patterns and less thread divergence, as de-
scribed in section 3.1.

Reduction

The benchmarking strategy for the reduction operation is slightly different
from the distance computations. Since the cluster assignments change in ev-
ery iteration, the preparations like sorting by cluster assignments also need
to be executed in every iteration. Hence, we benchmark 100 iterations of
the complete reduction step including sorting and report the average perfor-
mance in figures 3.6 and 3.7. The former shows the higher level optimizations,
while the latter focuses on the small optimizations like indirect and divide
before.

Figure 3.6: Performance of the reduce operation.

It is immediately visible that both approaches that use the full radix sort
(sort full...) are not performing very well. The overhead of sorting all nonzero
values by membership and column seems to outweigh all of its presumed
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benefits. Note that this implementation uses the radix sort implementation of
the thrust [37] library. The implementation of other libraries might improve
the overhead of this approach, however, we decided that such an investigation
is subject to future work.

On the other end, the naive baseline approach that simply uses CUDA’s
atomicAdd function seems to perform better than most approaches for small
k. However, it does not scale very well as k increases, which is explained by
the spatial locality getting worse as k increases. The futhark baseline imple-
mentation (see listing 3.7) shows similar performance characteristics, how-
ever, it performs consistently worse than the CUDA baseline.

When it comes to the implementations that sort the nonzero values by
their respective cluster memberships, we observe that sort atomic is signifi-
cantly slower than the other version (sort atomic shared mem). This is due
to the use of atomic operations on global memory in the Count step of count-
ing sort. Since the atomic operations for the sorting add nnz values into k
buckets, there are many conflicts. As described in [36] and section 3.2, using
shared memory greatly reduces the number of conflicts. This improves the
performance, as is visible in our benchmarks.

The smaller optimizations, divide before and indirect sort do not have
as much of an impact as the use of shared memory. However, divide before
seems to scale very well with k, as the division of the dense cluster centers by
the number of assigned points takes up a larger proportion of the operation.
Since divide before does not have a large impact for small k, it is important to
balance the performance benefits against the lower accuracy due to rounding
errors.

Sorting only the indices of the nonzero values instead of moving the ac-
tual values seems to also benefit the performance. For all datasets, the best
approach apart from the baseline implementation uses this optimization, in-
dependently of k.

There is a threshold value of k for each dataset, where the performance of
the naive implementation intersects the performance of the best sorting ap-
proach. This threshold is k = 64 for the BBC and SCRNA datasets, k = 32 for
the NY Times dataset and k = 128 for the Movielens dataset. This shows that
there is no fixed threshold at which it is beneficial to switch implementation
and either the threshold has to be tuned to match the given data, or further
research has to be done on the underlying factors that influence this threshold.

Speedup against scikit-learn

In this section we show the results of benchmarking our full Futhark imple-
mentation of sparse k-means against the scikit-learn [7] implementation. In
both cases, the input data is formatted in the CSR format.

The k-means implementation in scikit-learn uses all available CPU cores
by default. Since this is representative of regular use of the library, we decided
to show the speedup against this multicore version. In our case, the CPU has
8 physical cores.

Since our well-performing implementations of the reduce operation use
CUDA-specific operations for the sorting step, the Futhark implementation
benchmarked in this section does not include these implementations. Instead,
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Figure 3.7: Performance of the smaller optimizations for the reduce operation.

the reduce_by_index construct is used, which implements efficient gen-
eralized histograms [22] and in our use case uses CUDA’s atomicAdd inter-
nally. This implementation is not optimized for the case of sparse input data,
however, it still performs well enough to produce good speedups.

In figure 3.8 the speedups of our Futhark implementations over the multi-
core k-means implementation of scikit-learn are shown. For all datasets, our
best implementation always provides a speedup of at least factor 10 up to well
over 100 for large k on the BBC dataset. Interestingly, the reduction part im-
plementation that uses the hybrid formats seems to perform well on the BBC
dataset, however, we did not investigate these implementations further since
they consume too much memory to be practical. It might be possible to im-
prove that aspect and also switch between the approaches based on the given
dataset, however, that is subject to future work.
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Figure 3.8: Speedups against the scikit-learn implementation
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Summary of benchmarks

To summarize the results of the previous sections, we have compiled the most
noteworthy observations below.

1. For the distance computation in the k-means algorithm, our implemen-
tation that sequentializes the innermost map-reduce construct yielded
the best overall performance as can be seen in figure 3.5. This imple-
mentation makes use of the CSR matrix representation.

2. The best implementation for the reduction step heavily depends on the
value of k. For small k, the baseline CUDA implementation is best
suited, while for higher k it is beneficial to sort the data points by their
cluster assignments before the reduction (see figure 3.6). All of our im-
plementations for the reduction step favor the COO matrix representa-
tion.

3. Smaller optimizations like indirect sorting and spreading the division
by n in equation 3.5 over the nonzero values can help to improve the
performance slightly (see figure 3.7).

4. Our Futhark implementation achieves good speedups of at least factor
10 over the commonly used scikit-learn multicore implementation.



Chapter 4

Generalizing framework for
mixtures

Since k-means in its basic form is not a suitable algorithm for clustering high-
dimensional data, we investigated the possibility to transfer the learnings
from the k-means implementation to more powerful models. This section
presents a small framework in the Futhark language that enables the imple-
mentation of mixture models based on primitives found to be performant on
high-dimensional sparse datasets. Mixture models implemented through this
interface can be fitted using the EM approach.

4.1 Data representation

This framework is generic in the way it represents data. We only define cer-
tain operations on a dataset that are useful to implement mixtures, however,
the implementation depends on the data representation. For example, we
can implement these operations for a dense data representation, for a sparse
representation that is based on the CSR format or for a sparse representation
that uses any other format. The following sections specify this interface and
describe the operations we found to be important for the implementation of
mixtures. We also show how this interface is implemented for a sparse repre-
sentation that is based on a mix of the COO and CSR formats.

The mixture_dataset interface

We chose to define the interface of a dataset for our framework as shown in
listing 4.1.

43
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module type mixture_dataset = {
module V : real
module I : integral
-- the type of the nonzero values, for example f32
-- we assume they are real values
type val_t = V.t
-- the type of the indices, for example i64
type index_t = I.t

-- the actual data representation
type~ data_rep

-- functions to create this representation
-- from a dense representation or CSR format
val mk_from_dense [n][d]: [n][d]val_t -> data_rep
val mk_from_csr [nnz][np1]: (values: [nnz]val_t) ->

(col_indices: [nnz]index_t) ->
(pointers: [np1]index_t) ->
(columns: index_t)
-> data_rep

val apply_k_semirings ’t [k][d]: ... -- defined in the next sections
val map_index_reduce_by_key [n]: ... -- defined in the next sections
val map_index_reduce: ... -- defined in the next sections

-- normalize the rows of the dataset
val normalize: (X: data_rep)

-> data_rep

-- take the first k data points
-- and return them in dense representation
val take: (X: data_rep)

-> (k: i64)
-> [k][]val_t

-- getters for the dimensions of the dataset
val get_d: data_rep -> i64
val get_n: data_rep -> i64

-- helper function to convert the indices to i64
val ind_to_i64: index_t -> i64

}

Listing 4.1: Interface of mixture_dataset

With this interface, we are free to choose the type of the data representa-
tion, as long as we can implement the defined functions on it. Of course, in the
future this might have to be extended, but we show in later sections that these
three functions suffice to implement at least four kinds of mixture models.
These functions apply_k_semirings , map_index_reduce_by_key and
map_index_reduce are defined and described in the next sections.

Semiring operation

In the previous explorations on the k-means algorithm, we found that the
structure of our distance implementation resembles the semiring definition
in [15]. The authors define the semiring in the following way:
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A monoid is a semigroup consisting of an associative binary operator op
and an identity element idop. A semiring is a tuple containing a domain S,
as well as an additive (⊕) and a multiplicative (⊗) monoid. The additive
monoid has to be commutative, distributive and id⊕ = 0, and the multiplica-
tive monoid distributes over the additive monoid. Additionally, they define
an annihilator as an input to the multiplicative monoid that will evaluate to 0,
i.e. for all x ∈ S: ⊗(x, 0) = ⊗(0, x) = 0.

As an example, the standard dot product can be expressed as a semiring
with the additive monoid being (+, 0), and the multiplicative monoid being
(×, 1). In our implementation we do not make use of most properties of this
semiring definition. However, we make use of the assumption that the mul-
tiplicative operator has an annihilator of 0 for its first argument. This means,
that if the first argument of the function is 0, then the result of this operation
will be 0. We also assume that the additive monoid is associative, since it may
be passed to Futhark’s reduce construct.

Using this construct, we were able to implement the distance computation
for k-means, the expectation step of Gaussian mixture models, and the expec-
tation step of von Mises-Fisher mixture models. The authors of [15] show that
this construct can be used to express many common distance functions, and
so we hope that it is also general enough to allow for more types of mixture
models to be implemented.

The signature of the function in Futhark is:

val apply_k_semirings ’t [k][d]:
(X: data_rep)
-> (k_vectors: [k][d]t)
-> (mul: val_t -> t -> val_t)
-> (add_op: val_t -> val_t -> val_t)
-> (add_ne: val_t)
-> [][k]val_t

For each of the k d-dimensional dense vectors and each of the n data points
in X , this function applies the multiplicative operation mul to each nonzero
value and the corresponding element of the dense vectors. The results of this
operation are reduced with add_op for each data point, resulting in a dense
n x k matrix.

This operation is visualized in figure 4.1 for a single data point, k = 3 and
d = 4.

This visualization also demonstrates the use of the assumption about the
annihilator. Since the data point in the example has no nonzero entry for col-
umn 1 (marked in light blue), the values for this column in the dense cluster
centers are not used.

Reduce operation

The reduce operation also has potential for generalization. It comes into play
when summing across the rows of a dataset, for example when calculating
the mean of the data. Here, a distinction has to be made between hard and
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Figure 4.1: Visualization of the semiring operation.

soft clustering algorithms. In the case of hard clustering (like in the classical
k-means), each data point contributes to exactly one of the k cluster centers.
This means, that in the reduction step we have to take the assigned cluster
into account. In contrast, in soft clustering implementations every data point
contributes to each of the k cluster centers, which leads to k full reductions.

Based on this observation, our framework provides two functions with the
following signatures:

val map_index_reduce_by_key [n]:
(X: data_rep)
-> (keys: [n]index_t)
-> (n_distict_keys: i64) -- how many bins do we have for keys
-> (map_f: val_t -> index_t -> index_t -> val_t)
-> (red_op: val_t -> val_t -> val_t)
-> (ne: val_t)
-> [n_distict_keys][]val_t

val map_index_reduce:
(X: data_rep)
-> (map_f: val_t -> index_t -> index_t -> val_t)
-> (red_op: val_t -> val_t -> val_t)
-> (ne: val_t)
-> [d]val_t

The first function ( map_index_reduce_by_key ) first applies the passed
map function map_f to each nonzero value of the dataset and then reduces
the data points by the keys passed to the function. Thus, the result of this func-
tion will have n_distinct_keys rows and d columns for a d-dimensional
dataset. The initial map step provides the opportunity to associate the nonzero
values with other values based on their row and column indices. Thus, map_f
takes one value of type val_t that represents the nonzero value and two
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values of type index_t that represent the row and column indices of the
nonzero value. As map_index_reduce_by_key function distributes the
data points across the keys, it is useful in hard clustering algorithms.

The second function has similar semantics, except that it does not take any
keys into account. It always reduces all data points to one dense vector of
length d for a d-dimensional dataset, after applying the map_f as described
above. This means, that for soft clustering algorithms we have to apply this
function once for each of the k components to get a k× d matrix of results (see
section 4.4 for an example).

Implementation for sparse dataset

To implement the mixture_dataset interface for the case of a sparse dataset,
we first need to define the types of the interface. Listing 4.2 shows these types.

module sparse_dataset (R: real) (I: integral): (mixture_dataset
with val_t = R.t
with index_t = I.t

) = {
module V = R
module I = I
type val_t = R.t
type index_t = I.t
type~ data_rep =

{
n: index_t,
d: index_t,
coo: [](val_t, index_t, index_t),
pointers: []index_t

}

...

Listing 4.2: Types of the sparse dataset implementation

The first few lines of listing 4.2 express that a sparse dataset is generic
in terms of two other modules. One module R implementing the real

interface defined by Futhark, and the other, I , implementing the integral
interface. This allows us to generalize this implementation in terms of the
used precision for the values and indices stored in this dataset. For example,
we can pass the modules f32 and i64 in the instantiation of this type to
create a dataset that holds 32-bit float values and uses integral indices with
64-bit precision.

We also specify, that this module implements the module type (i.e. inter-
face) mixture_dataset . The notation with val_t = R.t denotes that
the type val_t is exactly the type t from the module R . Analogously, we
specify this relation between index_t and I .

To implement the semiring and reduce operations in a way we found to be
efficient in the previous chapter, we chose our data representation data_rep
to contain a mix of the CSR and COO format. This format simply extends
the CSR format by additionally providing row_indices . This informa-
tion is redundant, since it can be computed from the pointers array. But
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as we use this information in multiple places, we decided that computing
row_indices once and storing it is a better choice than computing this in-

formation multiple times.
This data representation is organized as a Futhark record, i.e. a named

tuple. We can, for example, extract n from a tuple X of type data_rep

by writing let n = X.n . We also grouped together the three arrays that
have length nnz, i.e. values , row_indices and col_indices to an
array of tuples. This adds the constraint to this type that the three arrays
actually have the same length. In Futhark, arrays of tuples are stored as tuple
of arrays internally, so we do not change the performance characteristics of
the implementation by doing so. This representation is stored in the coo

field of the data_rep record. We can thus extract the fifth nonzero value of
our dataset along its row and column index as follows:

-- X is a variable of type data_rep
let (value, row_index, col_index) = X.coo[5]

We can also turn the coo field back into the three values row_indices

and col_indices arrays with the following line of code that executes in
constant time:

-- X is a variable of type data_rep
let (values, row_indices, col_indices) = unzip3 X.coo

Now we can implement the semiring and reduce functions based on these
types. Listing 4.3 shows the implementation of the semiring function. It
highly resembles our sequentialized implementation of the k-means distance
computation (see listing 3.4), except for the introduction of the add_op and
pairwise_op functions that allow to generalize this construct to be used

by other kinds of mixtures, and the use of the data_rep type.

let apply_k_semirings ’t [k][d] (X: data_rep)
(mixture_vectors: [k][d]t)
(pairwise_op: val_t -> t -> val_t)
(add_op: val_t -> val_t -> val_t)
(add_ne: val_t) : [][k]val_t =

let (values, _, col_indices) = unzip3 X.coo
in map (\row ->

map (\vector->
let index_start = I.to_i64 X.pointers[row]
let nnz = (I.to_i64 X.pointers[row+1]) - index_start
let row_dist = add_ne
let row_dist =
loop row_dist for j < nnz do

let element_value = values[index_start+j]
let column = I.to_i64 col_indices[index_start+j]
let vector_value = vector[column]
let value = pairwise_op element_value vector_value
in add_op row_dist value

in row_dist
) mixture_vectors

) (iota (I.to_i64 X.n))

Listing 4.3: Implementation of semiring function for sparse_dataset
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The implementations of map_index_reduce_by_key and map_index_reduce
are presented in listings 4.4 and 4.5. The former corresponds to the reduction
step investigated in chapter 3 and uses Futhark’s reduce_by_index func-
tion in the same way as it is used in listing 3.7. The function map_index_reduce
is even simpler, as it simply passes the nonzero values and column indices to
reduce_by_index . Both implementations apply map_f to all nonzero

values of the dataset before the reduction.
These implementations are not very complex, however, they use the in-

trinsic data representation to perform the reduction. Since we want to ab-
stract from this representation, it is necessary to define these wrapper func-
tions. Additionally, we found in chapter 3 that there are several optimizations
for map_index_reduce_by_key , which we only implemented in CUDA
since they rely on CUDA specific functions. In later versions of Futhark there
might be a way to directly call CUDA kernels from Futhark, so eventually,
faster implementations in Futhark will be possible.

let map_index_reduce_by_key [n]
(X: data_rep)
(keys: [n]index_t)
(n_distinct_keys: i64)
(map_f: val_t -> index_t -> index_t -> val_t)
(red_op: val_t -> val_t -> val_t)
(ne: val_t) : [n_distinct_keys][]val_t =

let d = I.to_i64 X.d
let (values, row_indices, col_indices) = unzip3 X.coo
let map_vals = map3 map_f values row_indices col_indices
let flat_results = reduce_by_index (replicate (n_distinct_keys*d) ne)

red_op ne
(map2 (\row col -> X.d * keys[row] + col)

row_indices col_indices)) map_vals
in unflatten n_distinct_keys d flat_results

Listing 4.4: Implementation of the map_index_reduce_by_key function
for sparse_dataset

let map_index_reduce
(X: data_rep)
(map_f: val_t -> index_t -> index_t -> val_t)
(red_op: val_t -> val_t -> val_t)
(ne: val_t) : [d]val_t =

let d = I.to_i64 X.d
let (values, row_indices, col_indices) = unzip3 X.coo
let map_vals = map3 map_f values row_indices col_indices

in reduce_by_index (replicate d ne)
red_op ne
col_indices
map_vals

Listing 4.5: Implementation of the map_index_reduce function for
sparse_dataset
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4.2 The mixture interface

To accommodate different mixtures while providing a clean interface to the
end-user, we define a fairly general interface for the mixture implementations.

To define a mixture the following types and functions have to be specified:

module type mixture = {
-- type of the parameters of this distribution
type~ theta

-- type of the evaluation result of the distribution
type~ posteriors

-- type of the data representation
type~ data

-- evaluates the distribution with given data and parameters
-- corresponds to the expectation step of the EM framework
val eval: data -> theta -> posteriors

-- maximization step of the EM framework
val maximize: data -> theta -> posteriors -> theta

-- and a few more smaller functions for
-- initializing the parameters,
-- checking for convergence,
-- retrieving results, etc.
...

}

Mixtures that implement this interface can then be fitted through a simple
function that calls eval and maximize in a loop (see section 4.3), until
convergence is reached.

4.3 The em module

The final building block of our framework is the em module. It contains
the main EM loop and fits the mixture models to data through calls to the
mixture interface. This module only has one function, fit , and its imple-

mentation is shown in listing 4.6. Apart from iteratively calling the mixture’s
eval and maximize functions until convergence, it also keeps track of the

objective function value throughout the fitting process and reports the values
to the user.
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import "mixture"

-- we parametrize over modules of type mixture
module em (distribution: mixture) = {

let fit (threshold: distribution.conv_limit_t)
(k: i32)
(max_iterations: i32)
(X: distribution.data):
(distribution.theta, i32, distribution.posteriors, []f64) =

let k = i64.i32 k

-- we keep track of the objective function value through iterations
let objective_history = replicate (i64.i32 max_iterations) (f64.f32 0)

-- initial guess of parameters based on data and k
let params = distribution.init_theta X k

-- Initial assignment of posteriors.
let posterior = distribution.eval X params

let converged = false
let i = 0
let (posts,params,_,i,objective_history) =
loop (posterior, params, converged, i, objective_history)
while !converged && i < max_iterations do

let new_params = distribution.maximize X params posterior

let new_posterior = distribution.eval X new_params

let converged = distribution.check_converged
posterior new_posterior threshold

let objective_value = distribution.compute_objective_function
new_posterior

let objective_history[i] = objective_value

in (new_posterior, new_params, converged, i+1, objective_history)
in (params, i, posts, (take (i64.i32 i) objective_history))

}

Listing 4.6: Implementation of the em module

4.4 Implementations of mixtures

With the three functions ( apply_k_semirings , map_index_reduce_by_key
and map_index_reduce ) defined in section 4.1, it is possible to abstract
from the representation of the dataset while providing good performance in
the case of sparse datasets. The following sections demonstrate how the func-
tions can be used to implement various mixture algorithms.

K-means

Since k-means is a specialization of the Gaussian mixture, we can also express
it through this framework.
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The parameters theta for k-means are the k dense mean vectors. Since
k-means is a hard clustering algorithm, the evaluation step results in n la-
bels, indicating the cluster assignment for each point. Thus, posteriors
is an array of cluster indices. Finally, for the type of the data representation,
we can use Futhark’s parametric module system to generalize it for different
implementations. For example, a sparse dataset can have a different data rep-
resentation than a dense dataset.

In Futhark, we can thus define the types of our k-means mixture as follows:

module k_means_mixture (dataset: mixture_dataset): (mixture
with data = dataset.data_rep) = {

type~ theta = [][]f32 -- the cluster centers
type~ posteriors = []i64 -- the cluster assignments
type~ data = dataset.data_rep
...

}

The first line indicates that this module is parametric with respect to the
dataset (and thus, data representation) we use. We can instantiate the
k_means_mixture module with any module that implements the
mixture_dataset interface defined in section 4.1. We also specify that this

module implements the mixture interface. The statement
with data = dataset.data_rep specifies that the type data of the
k_means_mixture is exactly the same type as the type data_rep in the
dataset parameter.

Since the sizes of the types theta and posteriors are unknown at
compile time, we have to use Futhark’s size-lifted types (indicated by∼). This
restricts the usage of this type, such that we cannot create an array of elements
of this type. I.e. Futhark does not allow the type []data to be used. With-
out this restriction, there would be no guarantee that elements of an array of
data have the same size, and thus we could form an irregular array, which

is disallowed in Futhark.
The eval function of k-means computes the distances of each point to the

cluster centers and then takes the minimum over it. We can use the semiring-
like construct introduced above to compute these distances:
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let eval [k] (X: data) (params: theta_sized [k][]): posteriors =
-- sum mu^2
let cluster_squared_sum = map (\c -> sum (map (\x -> x*x) c)) params

-- sum x^2 - 2 * x * mu
let mul_op = \data_val cluster_val ->

(data_val - (2 * cluster_val)) * data_val
let distances = dataset.apply_k_semirings X params mul_op (+) 0

let distances = ... -- combine the two partial distances
-- argmin over distances
in map argmin distances

The implementation of maximize uses the map_index_reduce_by_key
function and is similarly short:

let maximize [k] (X: data) (_: theta_sized [k][]) (posts: posteriors): theta =
-- we do not need the map functionality
-- -> pass the identity function
let id = (\x _ _ -> x)
let cluster_sums =

dataset.map_index_reduce_by_key X posts k id (+) 0

-- count elements for each cluster
let ones = replicate n 1
let center_counts = reduce_by_index (replicate k 0) (+) 0 posts ones
-- divide cluster sum by number of elements
in map2 (\center count ->

map (\x -> x / count) center
) cluster_sums center_counts

We can see that for this implementation, there is no need to deal with the
intrinsics of the sparse data representation, and we can even generalize it such
that we can interchange sparse and dense datasets as parameter to this mod-
ule, as long as they implement the constructs defined before.

Spherical k-means

Spherical k-means [6] is a simple modification of k-means that aims to im-
prove the quality of the clustering for directional data. Since the document
clustering and gene expression datasets we used for benchmarking fall into
this category [1], spherical k-means is a modification of k-means that is rele-
vant for this project.

The implementation of spherical k-means is very straightforward. The
only differences to the classical k-means algorithm are

1. The input data has to be normalized.

2. The cluster centers have to be normalized in each iteration.
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The dataset interface of our framework provides a function for normaliz-
ing the data, which takes care of the first requirement.

The second requirement does not concern the sparse data representation
but rather the dense cluster centers. This normalization can be implemented
in a few lines of Futhark code:

let normalize_cluster_centers [k][d] (centers: [k][d]f32): [k][d]f32
let cluster_magnitudes = map (\c ->

let c_squared = map (\x -> x * x) c
in sqrt (sum c_squared)
) centers

let normalized_clusters = map2 (\center center_magnitude ->
map (\x -> x / center_magnitude) center

) centers cluster_magnitudes
in normalized_clusters

Gaussian mixture model

We also provide an implementation of the Gaussian mixture model in our
framework. For the sake of simplicity, our current implementation assumes
that the covariance matrix is diagonal. The limitation is motivated by the
need to invert the d × d covariance matrix, which is prohibitively expensive
(O(d3) when using Gaussian elimination [39]). Especially when applying this
algorithm to high-dimensional data, the simplification not only helps shorten
the runtime of the algorithm, but also reduce the space requirements. For
datasets with d ≈ 100000 and k = 5, storing these matrices in single precision
would consume around 200 gigabyte of memory, which is more than most
modern GPUs can hold. In contrast, diagonal matrices are cheap to invert
(O(d)) and only require the storage of the d diagonal entries. Storing these in
single precision for d ≈ 100000 and k = 5 consumes only 2 megabyte.

This simplification also improves the performance of the implementation
and is usually an option in implementations of the algorithm, for example in
scikit-learn [7].

Expectation

In the expectation step of the algorithm, which evaluates the probability dis-
tribution for all data points, often the logarithm of the likelihood is calculated.
This improves numerical stability and readability of the code, since multi-
plications turn into additions and the exponential of the Gaussian function
disappears.

We show the derivation of the log-likelihood for a d-dimensional multi-
variate Gaussian distribution with diagonal Σ starting from

log p(xi|µ,Σ) = log

(
1√

(2π)d det(Σ)
e−

1
2 (xi−µ)T Σ−1(xi−µ)

)
(4.1)
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Using log 1√
x

= − 1
2 log x

= −1

2
log
(
(2π)d det(Σ)

)
+ log

(
e−

1
2 (xi−µ)T Σ−1(xi−µ)

)
(4.2)

For the case of Σ being diagonal, a few simplifications can be made.
Let σ2

1 , . . . , σ
2
d be the diagonal entries of the d× d matrix Σ.

Then Σ−1 =


1
σ2
1

0 . . . 0

0 1
σ2
2

. . . 0

...
...

. . .
...

0 0 . . . 1
σ2
d

.

It holds that (xi − µ)TΣ−1(xi − µ) =
∑d
j=0

1
σ2
j
(xij − µj)2 and det (Σ) =∏d

j=1 σ
2
j . Thus, we get

log p(xi|µ,Σ) = −1

2

d log(2π) + log

 d∏
j=1

σ2
j

+

d∑
j=0

1

σ2
d

(xij − µj)2
 (4.3)

= −1

2

d log(2π) +

d∑
j=1

log(σ2
j ) +

d∑
j=0

1

σ2
j

(xij − µj)2
 (4.4)

The first term d log(2π) is a scalar that is trivially computed, the second
term

∑d
j=1 log(σ2

j ) is a simple map-reduce over the diagonals of the covari-
ance matrix and the third term (xi − µ)TΣ−1(xi − µ), sometimes referred to
as the squared Mahalanobis distance, can be implemented through our semi-
ring construct.

Analogously to the Euclidean distance, we can rewrite the computation
of
∑d
j=0

1
σ2
j
(xij − µj)2 as

∑d
j=0

1
σ2
j

(
x2ij − 2xijµj + µ2

j

)
and then distribute the

divisions by σ2
j over it:

d∑
j=0

x2ij
σ2
j

−
2xijµj

σ2
j

+
µ2
j

σ2
j

Now we can split the computations into two parts again. One part com-

putes
∑d
j=0

µ2
j

σ2
j

, which does not depend on the data, and the other computes∑d
j=0

x2
ij

σ2
j
− 2xij

µj

σ2
j

through the semiring construct.
The Futhark code implementing the squared Mahalanobis distance for di-

agonal Σ is presented in listing 4.7.
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let compute_mahalanobis_squared [n][d][k]
(X: data)
(mus: [k][d]f32)
(sigmas: [k][d]f32):

[n][k]f32
let mu_squared_scaled_sum = map2 (\mus sigs ->

sum (map2 (\m s -> m * m / s) mus sigs)
) mus sigmas

let mul_op = \data_val theta_tup ->
let mu = theta_tup.0
let sigma = theta_tup.1
in ((data_val - 2 * mu) * data_val) / sigma

-- zip mus and sigmas to allow access from semiring function
let mu_sigmas = map2 (\mus sigmas ->

zip mus sigmas
) mus sigmas

let mahalanobis_sq_partial =
dataset.apply_k_semirings X mu_sigmas mul_op (+) 0

-- combine the partial computations...
in map (\row

map2 (+) row mu_squared_scaled_sum
) mahalanobis_sq_partial

Listing 4.7: Futhark implementation of the squared Mahalanobis distance

Maximization

In the maximization step we use the result of the expectation step to estimate
the new parameters α̂h, µ̂h and Σ̂h. For this, we need to compute the quanti-
ties

p(zi = h|xi,Θ) =
αhf(xi, θh)∑k
l=1 αlf(xi, θl)

(see equation 2.4). Since we deal with logarithmic probabilities, the right-hand
side changes to

logαh + log f(xi, θh)− log

k∑
l=1

αlf(xi, θl)

We observe that theαlf(xi, θl) in the sum can be written as exp (logαl + log f(xi, θl))
and get

logαh + log f(xi, θh)− log

k∑
l=1

exp (logαl + log f(xi, θl))

Note that it is possible to reuse the terms logαh + log f(xi, θh) for the de-
nominator. Listing 4.8 shows the calculation of this quantity in Futhark. The
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logsumexp function used here first maps the exponential function over an
array, sums up the result and finally computes the logarithm of the sum, i.e.
logsumexp(x) = log

∑k
l=1 exp(xl)

1.
let maximize [k] (X: data) (_: theta)

(log_posts: posteriors): -- the results of the eval step
theta =

-- log_posts is an n x k array, containing the logarithmic
-- posterior probabilities for each data point and component
let log_post_scaled = map (\ps

map (\p alpha -> (log alpha) + p) ps alphas
) log_posts

let log_prob_sums = map logsumexp log_post_scaled

-- compute the normalization
let normalized_log_probs = map2 (\prob logprobsum ->

map (\x -> x - logprobsum) prob
) log_post_scaled log_prob_sums

...

Listing 4.8: Futhark implementation of the scaled, normalized posterior prob-
abilities in the maximize function of the Gaussian mixture.

Before finally using this quantity in the estimation of the new parameters,
we need to convert it back from the logarithmic scale by applying the expo-
nential function. We also need to compute the sum of these probabilities over
all data points:

...
let posteriors = map (\row ->

map (exp) row
) normalized_log_probs
let posterior_sum = map (\col ->

sum col
) (transpose posts)

...

Now we have calculated all required quantities to compute the new pa-
rameters:

α̂h =
1

n

n∑
i=1

p(zi = h|xi,Θ)

turns into

-- n is the number of data points
let new_alphas = map (\alpha -> alpha / n) posterior_sum

1 logsumexp is not only a convenience function, but also helps the numerical stability of
our implementation. Consider exp(100) ' 1.97× 10434. This value is already outside the limits
of a 64-bit float representation. However, we can use the identity log

∑k
l=1 exp(xl) = xmax +

log
∑k

l=1 exp(xl − xmax), where xmax = maxi xi to shift the arguments of the exponential to
be at most 0 and make overflows impossible.



CHAPTER 4. GENERALIZING FRAMEWORK FOR MIXTURES 58

The computation of µ̂h is a bit more complicated and requires the use of
map_index_reduce since we compute the sum over xi, i.e. all of our data

points:

µ̂h =

∑n
i=1 xip(zi = h|xi,Θ)∑n
i=1 p(zi = h|xi,Θ)

This quantity can be expressed through the map_index_reduce con-
struct as follows:

...
-- d is the number of columns of our data
let new_mus = map2 (\h post_sum ->

let mu_unscaled = dataset.map_index_reduce X d
(\v row _ -> v * posteriors[row, h]) (+) 0

in map (\x -> x / post_sum) mu_unscaled
) (iota k) posterior_sum

let new_sigmas = ... -- omitted
in (new_alphas, new_mus, new_sigmas)

Note that we use the map_f argument of map_index_reduce to access
the posterior probabilities based on the row index of each nonzero value in the
dataset.

The new Σ̂h also make use of the map_index_reduce construct. Since
our implementation for the computation of the new Σ̂h uses this construct
similarly as the computation of µ̂h above, the details are omitted for the sake
of brevity. One notable difference is, though, that for computing Σ̂h, map_f
uses both its row and column arguments to access the posterior probabilities
and the previously computed µ̂h depending on the indices of the nonzero
values:

...
let map_f = (\v row col ->

let post_fac = posteriors[(row), i]
in (v - 2 * new_mus[i, col]) * v * post_fac

)
...

Von Mises-Fisher mixture model

The von Mises-Fisher mixture model, as taken from [1], uses the multivariate
von Mises-Fisher distribution in a mixture model. The d-variate von Mises-
Fisher distribution is defined in [1] as:

f(x|µ, κ) =
κd/2−1

(2π)d/2−1 Id/2−1(κ)
eκµ

Tx
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Under the constraints that ||x|| = ||µ|| = 1, κ ≥ 0 and d ≥ 2.
Ir(κ) represents the modified Bessel function of the first kind and order r,
applied to κ.

As in the case of Gaussian mixture models, a von Mises-Fisher mixture
model consists of k distributions, each with their own αh,µh and κh.

Expectation

Similarly to evaluating the Gaussian mixture model, we have to compute
some normalizing scalar

(
κd/2−1

(2π)d/2−1Id/2−1(κ)

)
, as well as the expression inside

the exponential function
(
κµTx

)
. The normalizing scalar does not depend

on the dataset and is challenging to implement due to the computation of the
modified Bessel function. CUDA’s math library supplies this function, how-
ever, it is not (yet) accessible through Futhark. Therefore, the implementation
of this computation is incomplete at the time of writing this thesis.

The exponential part computes a simple dot product with a scaling factor
κ applied afterwards. Expressing this through the semiring construct is triv-
ial, as the dot product can be expressed as a semiring with (+, 0) as additive
monoid and (×, 1) as multiplicative monoid. Listing 4.9 shows this imple-
mentation in Futhark.
let compute_vmf_log_prob [n][d][k] (X: data)

(mus: [k][d]f32)
(kappas: [k]f32):

[n][k]f32
let unscaled_log_probs = dataset.apply_k_semirings X mus (*) + 0
let scaled_log_probs = map (\row_probs ->

map2 (\p k -> k * p ) row_probs kappas
) unscaled_log_probs

in scaled_log_probs

Listing 4.9: Evaluating the exponent of von Mises-Fisher distributions

Maximization

For the maximization, new µh need to be estimated. As shown in [1], this
calculation is almost identical to the computation of the new means in the
Gaussian case, except for a normalization that is applied afterwards to satisfy
the constraint that ||µ|| = 1.

In contrast, the estimation of the new κh is not straightforward. The au-
thors of [1] suggest an approximation to the updated κ:

κ̂h =
r̄hd− r̄3h
1− r̄2h

with r̄h = ||µh||/(nαh), n being the number of data points in the dataset and
||µh|| being calculated before the normalization of µh described before.

However, there exist numerous approximations to this problem as shown
in [40], and it is subject to future work to decide which approximation suits
our problem domain best, or provide implementations of multiple approxi-
mations to the user.



CHAPTER 4. GENERALIZING FRAMEWORK FOR MIXTURES 60

4.5 Instantiating a mixture model

For a user of our framework, it is important to know how they can apply
our library to their dataset. Listing 4.10 shows how a user can instantiate a
mixture model of their liking and fit it to their data. First, the dataset has
to be instantiated with the desired floating point precision. In our example,
the data are stored as 64-bit floats and 64-bit integers are used for indexing
the data. Then the desired mixture model is instantiated for the previously
defined dataset. Our example uses the Gaussian mixture model with diagonal
covariance matrix. Finally, the em module is instantiated with this mixture
and the resulting module can be used later in the code.

The function fit_gaussian assumes that the user inputs their data in
CSR format. However, it can be the case that they use a different precision
than the one specified for our mixture dataset. In our example, the data of the
user represents the nonzero values of the dataset as 32-bit floats instead of 64-
bit floats. Thus, the data needs to be converted to the right type. The code line
let values = map dataset.V.f32 values indicates, that all entries

in the array values are converted from f32 to the value type used in the
dataset.

Finally, a data representation that the mixture will be able to use is cre-
ated through the mk_from_csr function. This representation is passed to
gaussian_em.fit along the convergence threshold, the desired number of

components and the maximum number of iterations. Now the user can wait
(hopefully not too long) for their results and retrieve the converged means or
the assigned memberships for the points.
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k = 1 k = 5 k = 10 k = 16 k = 32 k = 64 k = 128
x2100 x1893 x1480 x1231 x664 x321 x152

Table 4.1: Speedups of mixture implementation over scikit-learn.

import "em"
import "sparse_dataset"
import "gaussian_diag"

-- specify precision for the dataset
module my_sparse_dataset = sparse_dataset f64 i64

-- instantiate the mixture with this type of dataset
module my_gaussian_mixture = gaussian_diag my_sparse_dataset

-- we want to use the em algorithm on this mixture
module my_gaussian_em = em my_gaussian_mixture

-- we assume the user stored their dataset in CSR format
entry fit_gaussian [nnz][np1] (values: [nnz]f32)

(col_indices: [nnz]i64)
(pointers: [np1]i64)
(columns: i64) --number of columns in the data

let values = map dataset.V.f32 values
let col_indices = map dataset.I.i64 col_indices
let pointers = map dataset.I.i64 pointers
let data = dataset.mk_from_csr values col_indices pointers columns
let (t, i, _ ,_) = my_gaussian_em.fit (mixture.C.f32 0.001f32) k 2 data

let means = mixture.get_means t
let weights = mixture.get_weights t
let membership = mixture.predict_labels data t

in (membership, means, weights, i)

Listing 4.10: Usage of our framework

4.6 Benchmark

To show the importance of providing an implementation of mixture models
that allows for sparse data representations and executes on the GPU, we com-
pared our implementation of the Gaussian mixture model to the implemen-
tation in scikit-learn2. For benchmarking purposes, we ran both implementa-
tions for 30 iterations, regardless of convergence. Table 4.1 shows the speedup
of our version on the BBC dataset.

Note that we disregard the speedup for k = 1 in our contributions, since
this case is of no practical relevance.

Since scikit-learn only supports input in dense representation, we con-
verted the BBC dataset to this representation for the benchmarks. The other
datasets were too big for this to be feasible, which shows the importance of
providing support for sparse representations. Of course, the speedups re-
ported are a result of both the smaller amount of computations necessary
when dealing with sparse data, and the highly parallel execution on the GPU.

2Since our implementation restricts the covariance matrix to be diagonal, we chose this option
for the scikit-learn implementation accordingly.
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In order to quantify the impact of each of these effects, further baseline imple-
mentations have to be considered.

We can see that the speedup diminishes for higher values of k. This might
be a result of us using the unoptimized Futhark implementation of the reduc-
tion step (see figure 3.6) and might be alleviated in the future by including the
optimizations discussed in chapter 3.



Chapter 5

Conclusion

In this thesis we have investigated the implementation of selected unsuper-
vised clustering methods in a way that handles large sparse datasets effi-
ciently on the GPU.

In chapter 3 we explore different ways of implementing computations that
work on sparse data representations, taking the classical k-means algorithm as
example. We focus on the two most costly computations inside the main loop:
the distance computations and the computation of the new cluster centers.

For the distance computation we found that extending the Euclidean met-
ric helps to avoid unnecessary computations in the case of sparse data, and
we explored the performance characteristics of different sparse representa-
tions. We conclude that for our datasets, sequentializing the inner reduction
of the computation is the best approach.

For the computation of new cluster centers, a reduction step is needed.
Since our ideas for optimizing this step relied on the semantics of the CUDA-
specific atomic functions, we investigated these ideas in CUDA. We found
that there is a certain threshold of k from which sorting the dataset by their
cluster membership improves the performance, however, we were unable to
identify any rules for choosing this threshold depending on the dataset.

We show that our best implementations on the GPU provide speedups of
at least factor 10 over a multicore CPU implementation for our datasets.

Chapter 4 builds on the learnings from chapter 3, by generalizing the op-
timized operations used in k-means such, that they can be used to implement
mixture models on sparse data efficiently. We present a framework in the
Futhark programming language and show how k-means, spherical k-means,
Gaussian mixture models and von Mises-Fisher mixture models can be im-
plemented through it. Unfortunately, we were not able to implement all of
our identified optimizations in this framework due to some limitations of the
Futhark language. However, as the language is still in ongoing development
we hope that in the future we will be able to access the necessary tools for our
optimizations through Futhark.
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Appendix A

Source code repositories

The library created and described as part of this thesis can be found in the
github repository https://github.com/Sefrin/futhark-mixtures. The reposi-
tory also contains a small example and instructions on how to run them.

The code for benchmarks and different code versions of the k-means explo-
rations are located in the repository https://github.com/Sefrin/master_thesis.
The Futhark code for the different distance computations can be found in the
folder code/skmeans/futhark and the experiments for the reduction in-
volving CUDA can be found in code/skmeans/cuda .

A python notebook used for preprocessing datasets and profiling the scikit-
learn implementation is located in code/skmeans/python .
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