FACULTY OF SCIENCE
UNIVERSITY OF COPENHAGEN

DEPARTMENT OF COMPUTER SCIENCE

Project outside course scope

Accelerating Ocean Modelling

Adressing performance bottlenecks of the ocean modelling
framework Veros

Till Grenzdorffer vmt184QRalumni.ku.dk

Supervisor
Cosmin Eugen Oancea cosmin.oancea@di.ku.dk

1 Introduction

Currently, many scientists are using purely sequential software for ocean mod-
elling, leading to long simulation times and inefficient use of modern hard-
ware. The aim of this project is to tackle this problem by introducing and
optimizing highly parallel code that uses the potential of modern GPUs to
accelerate the modelling process.

The ocean modelling framework this project is based on is Veros [1]. It is
written in Python and uses Jax [2] to parallelize large parts of the computa-
tions. However, there is reason to believe that the parallel code generated by
Jax (specifically on GPUs) is not optimal and warrants the implementation of
specific bottlenecks in a language like CUDA, possibly generated by Futhark
[5].

In this project I investigated two algorithms and one longer routine based
on the Jax implementations from the Veros frameworks in order to find a per-
formant solution. Another contribution of this project is the integration of
the resulting CUDA implementations into the Jax framework through XLA
custom calls. This allows an easy use of the parallel code through a python
interface.

In the first part I discuss different algorithms for solving tridiagonal sys-
tems. This solver is heavily used throughout Veros, for example in the turbu-
lent kinetic energy routine. I show different implementations for it and how
the choice of algorithm depends on the problem at hand. Afterwards, I in-
vestigate the turbulent kinetic energy routine from the Veros framework for
further bottlenecks. The most important part of this routine is the Superbee
scheme, on which I demonstrate the concept of overlapping tiles for stencil com-
putations. The last part of this report focuses on the integration of CUDA code
into Jax through XLA calls and shows how the different components interact
with each other.

The CUDA implemenations generated during this project outperform the
Jax implementation which is currently used by a large margin, speeding up
the turbulent kinetic energy routine by a factor of 1.7. The Futhark implemen-
tation performs even better, increasing the performance by a factor of 4.6.

Code and experiments from this project can by found in the github repos-
itory https://github.com/Sefrin/ocean_modelling.

2 Tridiagonal Solver

In this project I first investigated the implementation of a tridiagonal solver
that is used throughout Veros.

A tridiagonal system of size n is shown in eq. 1, where a, b and c are
vectors of size n and ag = ¢, = 0. The diagonals a, b and c, as well as d are

https://github.com/Sefrin/ocean_modelling

given and the task of the solver is to find z.

b1 C1 0 0 0 0 0 0 T d1
a9 b2 C2 0 0 0 0 0 I d2
0 as b3 C3 0 0 0 0 I3 d3
0 0 a4 b4 Cq 0 0 0 T4 _ d4 (1)
0 0 0 as b3 0 0 ‘e
o o0 o0 0 0
O 0 o0 O 0 cpo1]|---
(00 0 0 0 0 a, by | |ze] |dn]

The requirement for the solver in Veros is that it solves many (ca. 50000)
tridiagonal systems of comparably small size (ca. 100) as fast as possible.

I considered two algorithms for solving tridiagonal systems for this task
and experimented with different performance optimizations for both.

Thomas Algorithm

One simple algorithm for solving a tridiagonal system is the Thomas Algo-
rithm. Pythonlike pseudocode for it is shown in fig. 1, where a, b, ¢, d and
x refer to the respective vectors shown in eq.1. We can see that in both for-
loops there are true RAW-dependencies across iterations, which means that
the algorithm itself is not trivially parallelizable. However, in our case we
want to solve many small tridiagonal systems, so we can parallelize over the
different systems and leave the Thomas Algorithm in its sequential form. As
long as we have enough systems to fully utilize the GPU it is running on, this
implementation seems like a good approach.

Figure 1: Thomas algorithm in pythonlike pseudocode

for i in range(l, n):
w = ali]l / b[i - 1]
b[i] += —w * c[1 - 1]
d[i] += -w x d[1i - 1]

x[-1] = d[-1] / b[-1]
for i in range(n - 2, -1, -1):
x[1] = (d[i] - c[i] = out[i + 11) / Db[i]

Thomas Algorithm - Coalesced

In the trivial algorithm, successive iterations of the recurrent loop access neigh-
boring data in memory. Since we assign one tridiagonal system to each thread,
neighboring threads access data with the stride of the size of the tridiagonal
system. This means that the accesses are uncoalesced and we can improve
the performance significantly by changing the underlying data layout. In this
case the change is trivial - we just need to transpose the input matrix, which

can be done efficiently using shared-memory tiling and tranpose the result
back afterwards.

Of course this is only beneficial if we save more time in the main kernel
due to coalesced access than we spend tranposing the inputs and results.

Thomas Algorithm - Loop unrolling

Since in our use case the size of the tridiagonal systems is relatively small, it
might make sense to unroll the recurrent loops. However, this is only possible
if we know the size of the systems at compile time, or compile the CUDA ker-
nel at runtime (for example using CuPy [4]). Knowing the size at compile time
would also allow us to store intermediate results in register memory instead
of modifying global memory.

However, I expect the benefit of this to be too small to warrant the signifi-
cant overhead of JIT compilation.

Flat version

The flat version of the tridiagonal solver is based on the observation, that all
recurrences in the Thomas algorithm can be replaced with a scan with an ap-
propriate operator. For example, after inlining the computation of w and re-
placing the +=, we get the following line:

bli] = b[i] - al[i] * c[i - 11 / b[i - 1]

As explained in [5] in more detail, this statement matches the pattern b; = a; +
¢i/bi—1, which can be replaced with a scan that uses 2x2 matrix multiplication
as its operator. Similarly, the other recurrences can be replaced by a scan with
linear function composition. Fig. 2 shows the flattened futhark code for the
first recurrence. The other two recurrences are also composed of two map
and one scan operation each, though with 2-tuples instead of 4-tuples and a
different operator for the scan. Thus for the full algorithm 6 map and 3 scan
operations are needed.

I implemented this flat algorithm in CUDA using the thrust library, which
provides a scan implementation with custom operators on the GPU. For com-
parison, I also included the Futhark implementation of the authors of [5] from
the futhark benchmarks repository.

Compared to the Thomas algorithm, this algorithm is more computation-
ally expensive, however if the size of the tridiagonal systems is large enough
or we have sufficiently parallel hardware, the benefits of parallelization should
outweigh the additional computational load.

Flat version - shared memory

Since my initial implementation of the flat algorithm used thrust scans, the
computation involved the launch of 9 kernels in total. This means that there
are a lot of redundant accesses to global memory.

In order to evaluate the effect of this, I also implemented a version of the
flat algorithm that is computed completely within shared memory.

https://github.com/diku-dk/futhark-benchmarks/blob/bf5112d0841866dc7370586f2e2a7b48467d2d97/finpar/LocVolCalib.fut

Figure 2: First recurrence of the flattened tridiagonal solver in Futhark, taken
from [5]

let b0 = b[O0]

let mats map (\i: —->
if 0 < 1
then (b[i], 0.0-a[i]*c[i-1], 1.0, 0.0)
else (1.0, 0.0, 0.0, 1.0))
(iota n)

let scmt = scan (\(a0,al,a2,a3) (b0,bl,b2,b3) —->
let value = 1.0/ (a0%b0)
in ((bOxa0 + bl=*a2)*value,
(bOxal + bl=*a3)*value,
(b2xa0 + b3%a2)*value,
(b2*al + b3*a3)*value))
(.0, 0.0, 0.0, 1.0) mats

let b = map (\(t0,tl,t2,t3) ->
(t0xb0 + tl) / (t2+«b0 + t3))
scmt

Here a CUDA block is assigned to each tridiagonal system (given that the
system is not too large to fit shared memory), and the flat algorithm is com-
puted using intra block scans. For this I used parts of the code handouts from
the PMPH course.

Precision

In order to be useful, all of the implementations of course need to produce
results that match a reference implementation. However, due to the nature of
floating point computation, this will almost never be exact.

Interestingly, the error margin varied a lot between the algorithms. The
flat implementations suffered far greater imprecision, probably at least partly
due to the increased parallelism and thereby more indeterminstic order of
execution, but also just due to the higher number of floating point calculations.

However, in Veros the tridiagonal systems this solver is supposed to work
on are guaranteed to be diagonally dominant (meaning Vi : b; >> a; A b; >>
¢;). Testing the algorithms on systems with this property showed that all al-
gorithms produce meaningful results.

Futhark

In addition to the CUDA implementations, I also included a sequential and
a flat implementation (from futhark benchmarks) in the benchmarks in order
to see how close the high level description of the algorithms compiled by the
futhark compiler will come to CUDA implementations that were optimized
by hand.

https://github.com/diku-dk/futhark-benchmarks/blob/bf5112d0841866dc7370586f2e2a7b48467d2d97/finpar/LocVolCalib.fut

Benchmarks

Benchmarks of algorithms with systems of size 15

Benchmarks of algorithms with systems of size 115

—— Naive Thomas 50 1 —— Naive Thomas
61 Naive Thomas const size Naive Thomas const size
—— Thomas coalesced —— Thomas coalesced
51— Thomas coalesced const size 40 { —— Thomas coalesced const size
—— Flattened algorithm —— Flattened algorithm
9 —— Flattened algorithm intra block 9 —— Flattened algorithm intra block
% 4 Flattened algorithm - Futhark % 30 4 Flattened algorithm - Futhark
£ —— Thomas - Futhark £ —— Thomas - Futhark
=l Cl
£ £
5 5 20
é § 20
o 2 o
10 4
14
0 04
(I) 20600 40600 60(‘!00 HD&DO 100‘000 (‘l 20600 40600 60600 HD(‘!OO lD(JIOOD
Number of systems Number of systems

(a) Tridiagonal systems of size 15

Benchmarks of algorithms with systems of size 1000

(b) Tridiagonal systems of size 115

Benchmarks of algorithms with systems of size 10000

1 — nNaive Thomas
Naive Thomas const size

—— Naive Thomas
200 4 Naive Thomas const size

—— Thomas coalesced 12 1 —— Thomas coalesced
—— Thomas coalesced const size —— Thomas coalesced const size
—— Flattened algorithm 10— Flattened algorithm

H
@
=)

Flattened algorithm intra block
Flattened algorithm - Futhark
—— Thomas - Futhark

execution time (ms)
=
S
(=]

execution time (ms)

50

R

T T T T T T
0 10000 20000 30000 40000 50000 o 20 40 60
Number of systems Number of systems

(c) Tridiagonal systems of size 1000

The performance of the different algorithms are shown in figs. 3a-3d. All
benchmarks were executed on a RTX 2070 Super GPU. The algorithms were
tested on a different number of systems, and on systems of sizes 15, 115, 1000
and 10000. In our target application the size 115 is the most relevant and the
algorithms should perform well on ca. 50000 systems.

In fig. 3a we can see that for small systems the flat algorithms are not per-
forming very well. Because of the small size of the systems, the overhead for
parallelizing the recurrences outweighs the benefits of the parallelization.

The sequential algorithms perform similarly well, though it is noteworthy
that the performance of the uncoalesced Thomas algorithm with compile-time
known size of the systems performs almost on par with the coalesced ver-
sions. The small stride of 15 still leads to decent locality of reference and the
transpositions needed for the coalesced versions could make up the rest of the
difference.

For our target system size of 115 we can see that the naive Thomas imple-
mentation performs by far the worst. The flattened versions now achieve a
similar performance as the trivial Thomas algorithm with compile-time know

80

T
100

(d) Tridiagonal systems of size 10000

size. The best performance is shown by the coalesced versions, independant
of whether the size of the systems is known at compile time. However, the
futhark implementation follows right behind. It is important to mention here
that the futhark implementation does not contain any special instructions that
would result in coalesced access. The futhark compiler deduced the need of
transpositions itself and came up with a solution that almost matches hand-
optimized CUDA code.

With systems of size 1000 we see the same pattern as for size 115. Ap-
paranetly the systems are still not large enough to reap the benefits of the
increased parallelism (at least on the machine used). However, we can see a
noticable improvement in performance by the intra block flat version as com-
pared to the implementation that uses thrust. The use of shared memory to
avoid global memory accesses starts to pay off.

Lastly, I tested the algorithms on smaller batches of large systems of size
10000. Here the best implementation is indeed the flat version. The sequential
version are all similarly slow. The sharp bend in the performance of the coa-
lesced versions is due to the transposition being a no-op for a single system.
The futhark and intra block implementations are not included here, since the
systems were too large to fit into shared memory. This might be fixed in newer
versions of Futhark that allow reuse of shared memory.

Conclusion

For this particular application (and the hardware I tested the algorithms on)
we can see that due to the small size of the tridiagonal systems it makes most
sense to have an algorithm that works sequentially on each of the systems
and optimizes the memory layout such that this algorithm can be executed on
many systems in parallel.

The flattened algorithm make sense in other cases though. If there are few
or even only a single large tridiagonal system to solve, they outperform the
sequential approach. If the system is small enough to fit into shared memory
we can compute the solution within a single kernel call.

We can see that there are lots of parameters that influence which solution
is the most optimal. Thus we can use apply incremental flattening [6] here
to compile different versions of the algorithm and choose dynamically, which
version is going to be executed, depending on system capabilities and the size
of the problem.

3 Turbulent kinetic energy

After integrating the tridiagonal solver into Jax (see section 4), I decided to
look at one example context in which the solver would be used.

The turbulent kinetic energy benchmark is a larger routine that uses dif-
ferent components like the tridiagonal solver. It acts on a three dimensional
grid and contains a lot of stencil computations.

This routine is responsible for qunatifying the effect of small-scale water
turbulence on the overall state of the simulation. Since we work on a discrete
grid with a fixed resolution, effects that occur within one grid cell will not be
taken into account. Thus it is important to use the quantifcation of this effect,

offered by the turbulent kinetic energy routine, such that these turbulence do
not need to be calculated in detail.

Components
The turbulent kinetic energy routine mainly consists of the following parts:
1. Initializing a lot of tridiagonal systems
2. Solving these systems
3. Multiple 2D stencil operations
4. The Superbee scheme

After integrating my tridiagonal solver and profiling the benchmark using
tensorboard, which is well supported by Jax, I found that the Superbee scheme
was the largest bottleneck.

Superbee scheme

The superbee scheme is part of a stencil calculation that also works on a 3D
grid. Its purpose is to calculate the influence of advection of tracers within
the water and will result in three values for each of the grid cell. One value
corresponding to flux along the first dimension of the grid (named flux_east),
one along the second dimension (named flux_north) and one along the third
dimension (named flux_top).

Since I do not have sufficient knowledge of the physics and mathematics
behind this operation, I looked at this problem purely from a coding perspec-
tive. More specificly I tried to understand the pattern of memory accesses and
tried to map the computation efficiently to CUDA code.

The indexing pattern of the stencil is shown in fig. 4 and a 2D projection of
it is visualized in fig. 5.

A very straightforward observation about this pattern is, that there is an
overlap of the three computations. This means that when implementing this
scheme in CUDA it makes sense to fuse the computations together, such that
the value grid [z, vy, 2] only has to be read once from global memory and can
be stored in registers.

Tiled stencil computation

In order to save more accesses to global memory, we can observe that suc-
cessive iterations of this stencil computation will also read almost the same
data. For example, in the iteration # = 0;y = 0;z = 2 we read g¢rid[0, 0, 0],
grid|0, 0, 1],97id[0, 0, 2] and grid[0, 0, 3] and in iteration x = 0;y = 0;z = 3 we
read grid[0, 0, 1], grid[0, 0, 2],g7id[0, 0, 3] and grid[0, 0, 4]. We can see that 75%
of the memory locations are shared between the iterations.

In order to use this to our advantage, we need to make use of shared mem-
ory. By tiling the loops and loading 3D blocks of the data into shared memory,
we can avoid a lot of global memory accesses. This overlapped tiling approach
is described in [7]. Pseudocode for the tiled approach is shown in fig. 6.

Figure 4: Superbee stencil access pattern

for x in range (width) :
for v in range (height):
for z in range (depth) :
flux_east([x,vy,z] = f(grid[x-2,vy,z]
grid[x-1,vy,z],
grid[x]
grid[]

flux_north[x,y,z] = f(grid

flux_toplx,y,z] = f(grid(x,y,z-2]
grid(x,vy,z-11,
grid(x,v,z]
grid[x,y,z+1]

¥ eastl top
)

north

X

Figure 5: 2D projection of the stencil shape. The green dot symbolizes the flux
in "top" direction, going along the z axis.

We can see that there are still some redundant loads on the border of the
tiles, however if the tile is large enough these are negligible.

Loading the grid data to shared memory in coalesced fashion is not ex-
actly trivial, since there is a mismatch between the number of threads that are
loading the data (TILE_SIZE?) and the number of entries to be loaded from
global memory: (TILE_SIZE + 3)3.

Turbulent Kinetic Energy in Futhark

After further profiling of the turbulent kinetic energy Jax implementation with
custom operations for the tridiagonal solver and the superbee scheme, it be-

Figure 6: Tiled Superbee stencil

10

for xx in range (0, width, TILE_SIZE):
for yy in range (0, height, TILE_SIZE):
for zz in range (0, depth, TILE_SIZE):
load block grid[xx-2:xx+TILE_SIZE+1,

yy—2:yy+TILE_SIZE+1,
22-2:2z+TILE_SIZE+1]
to shared memory in coalesced fashion
shared_memory([...] = grid[...]

for x in range(TILE_SIZE) :
for y in range (TILE_SIZE) :
for z in range(TILE_SIZE):
wrong indentation so code fits the page
all below this is inside all loops

flux_east([x,y,z] = f(grid[x-2,v,z],
grid[x-1, y, z],

grid[x z]

[z]

grid x+1 y,)

flux_north[x,y,z] = f(grid

flux_toplx,vy,z] = f(grid(x,y,z-2]
grid[x,y,z-1],
grid[x,y,z 1]
grid[x,y,z+1]

came apparent that most of time is not spent on computation. A lot of gather
operations were performed, each in a seperate kernel, which led to the as-
sumption that a lot of arrays are created for intermediate results. Most of these
operations seemed to correspond to array slicing which was used extensively

in the Jax code.

To check this hypothesis I implemented the full routine in Futhark. Inter-
estingly, the futhark code (compiled to opencl) ran only slightly faster than the
Jax code with GPU backend. However, after using Futhark’s autotune feature
the program sped up by a factor of more than 2, outperforming Jax by a huge
margin. This again shows the importance of the use of incremental flattening

to match the problem proportions and the available hardware resources.

Benchmarks

The benchmarks are executed, as before, on an RTX 2070 Super GPU.

11

Benchmarks of Superbee implementations

- . I 10
12 91 — simple fused stencil === Speedup vs. Jax
Overlapping tiles stencil I/ 9
—— Jax stencil ’ i
10 4 J ’
-8
o
8 |
E 5
= &
=
g L5
5 4
-4
24
-3
0 .
T T T T
323x323x82 323x323x41 100x100x41 32x32x41
Figure 7: Execution times of Superbee implementations
Superbee

In fig. 7 I show the execution time of the Jax Superbee implementation used
in Veros, the simple fused stencil, and the stencil using overlapping tiling de-
scribed in 3.

It is clearly visible that there is a significant speedup gained by the CUDA
implementation over the Jax implementation, which warrants the integration
of the CUDA code into Veros via XLA calls. Unfortunately though, the modifi-
cation that uses shared memory shows no performance improvement at all in
practise. This might be due the computation being compute-bound instead of
memory-bound or because of efficient caching strategies that already gather
nearby elements in a performant fashion.

Turbulent kinetic energy routine

Table 8 shows the impact of integrating the previously optimized bottlenecks
into the turbulent kinetic energy routine, as well as the performance of the
Futhark implementation.

We can see that the tridiagonal solver was actually not as big of a bot-
tleneck as was suggested. On the other hand, the superbee implementation
achieves a good speedup of the routine. However, it still did not account for
much more than a third of the runtime.

Integrating both the tridiagonal solver and the superbee results in an ex-
ecution time of 41ms, which corresponds to a speedup of around 1.7. Since
these two bottlenecks were the biggest components of the routine, it suggests
that there is a more general problem in the Jax implementation.

12

| Bottlenecks integrated || execution time (ms) |

None 69
Tridiagonal solver 63
Superbee 46
Superbee + Tridiag. 41
Futhark 32
Futhark (autotuned) 15

Figure 8: Impact of integrating custom implementations of bottlenecks into
the turbulent kinetic energy routine via XLA

This shows in the Futhark performance: It runs in 32ms, using the sequen-
tial Futhark implementation of the Thomas algorithm and a superbee imple-
mentation where no explicit fusion is coded (though the Futhark compiler
might produce a simple untiled fusion from the code). This already confirms
that the Jax framework does not seem to be ideal for these kinds of compu-
tations. Furthermore the performance of the same Futhark code more than
doubles when using the autotune feature, resulting in a runtime of 15ms - a
speedup of 4.6 over the Jax implementation.

At this point it is notewhorthy that this application is no edge case in which
Futhark delivers surprising results - in fact Futhark has proven itself in real-
world applications across many fields. Other examples include remote sens-
ing algorithms aimed at detecting environmental changes [8], approximate
nearest-neighbors fields for computing image similarity [9], and financial ap-
plications such as option pricing [10].

Conclusion

In these benchmarks the numbers clearly speak for themselves. Though the
hand-crafted CUDA implementations outperform the baseline Jax implemen-
tations by a decent margin, the whole premise of factoring out bottlenecks
in a language like CUDA or Futhark falls apart when looking at the runtime
Futhark achieves without any handmade low-level optimizations. It seems
that Jax is simply not suited for these kinds of computation, where heavy use
of slicing operations in the numpy fashion are encouraged.

4 Interfacing with Jax

In order to use the optimized CUDA code within the Veros framework, I de-
cided to use the wrappers around Tensorflow’s [11] XLA Custom Calls that
are provided by the Jax library. The custom calls are used to encapsulate na-
tive code and directly pass pointers to device memory, which can then be read
and written by the CUDA kernels. The whole pipeline is shown in fig. 9 in the
appendix.

The CUDA kernels for the two bottlenecks are dispatched by the CUDA
host code which takes care of choosing the right number of CUDA blocks and
blocksize for the descriptors passed by the XLA call. This host code has to be

13

compiled with nvcc, which means that the standard python setuptools have
to modified to use nvcc instead of a C/C++ compiler. I compiled this code to
a native object file so that it can be linked by the Cython compiler.

In order to call this host code from python, I used Cython to create wrapper
functions for the CUDA host code.

The resulting python function can then be registered as a so called custom
call target for the XLA custom call. This XLA call provides pointers to de-
vice memory to the CUDA code and creates descriptors for the given problem
instance which define for example the size of the tridiagonal systems or the
three grid dimensions of the superbee grid.

An interesting feature of the XLA custom call API is the option to define a
memory layout for the data passed to the native code. We can use this for the
implementation of the tridiagonal solver. In the python routines that use the
tridiagonal solver the systems are stored in such a way that consecutive ele-
ments of one diagonal are stored consecutively in memory and all n systems
are stored one after the other. However with the custom calls we can decide
to store consecutive elements with a stride of n, effectively transposing the in-
put and allowing for coalesced access with the implementation of the Thomas
algorithm shown in section 2.

This custom call is then registered as a Jax primitive, which can be called
in a very straightforward manner from a user-defined Jax routine.

5 Conclusion

Though it was interesting and very educative to look at ways to optimize the
two bottlenecks, the time spent on these low level optimizations was voided
by a simple Futhark implementation of the routine. Of course some of the
knowledge from work on these bottlenecks was needed for Futhark to reach
that performance, for example the preference of a tridiagonal solver that leaves
the last axis sequential.

Another very useful learning from this project was the work I spent on in-
tegrating the CUDA code into Jax. I had to get familiar with a few frameworks
in between the two languages and will surely be able to apply this in practice.
Since python is used a lot in scientific programming, it is invaluable to be able
to integrate the speed of performance-focused language into the user-friendly
python environment.

6 Appendix

native J

CUDA kernels E

- Tridiagonal solver
- Superbee

dispatch

CUDA host code E

- Takes pointers to device memaory
- Takes descriptor of the computation W

[

- Launches CUDA kernels

TridiagDescriptor

compiled +num_systems: intG4

with nvce + system_size: int64

MNative object file

SuperbeeDescriptor
A

\ +dim1: int64
Cython s calls

+dim2: intG4
Cython interface E

+dim3: intG4

- Python function that calls CUDA host code

PythoniJax] calls

XLA CustomCall $:|

- Prepares pointers to device memaory
- Decides memory layout -
- Creates descriptors
- Calls native code through Cython
- Registered as Jax primitive

A

user-defined Jax routine $:|

- Calls Jax primitive

Figure 9: Interaction between Jax, Cython and CUDA.

Bibliography

[1]

(2]

3]

[4]

[5]

[6]

[7]

8]

[9]

D. Hifner, R. L. Jacobsen, C. Eden, M. R. B. Kristensen, M. Jochum,
R. Nuterman, and B. Vinter, “Veros v0.1 — a fast and versatile ocean sim-
ulator in pure python,” Geoscientific Model Development, vol. 11, no. §,
pp. 3299-3312, 2018.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin,
G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang,
“JAX: composable transformations of Python+NumPy programs,” 2018.

T. Henriksen, N. G. W. Serup, M. Elsman, F. Henglein, and C. E. Oancea,
“Futhark: Purely functional gpu-programming with nested parallelism
and in-place array updates,” in Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2017, (New York, NY, USA), pp. 556-571, ACM, 2017.

R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, “Cupy: A
numpy-compatible library for nvidia gpu calculations,” in Proceedings
of Workshop on Machine Learning Systems (LearningSys) in The Thirty-first
Annual Conference on Neural Information Processing Systems (NIPS), 2017.

C. Andreetta, V. Bégot, J. Berthold, M. Elsman, F. Henglein, T. Henriksen,
M.-B. Nordfang, and C. E. Oancea, “Finpar: A parallel financial bench-
mark,” ACM Transactions on Architecture and Code Optimization (TACO),
vol. 13, no. 2, pp. 1-27, 2016.

T. Henriksen, F. Thorege, M. Elsman, and C. Oancea, “Incremental flatten-
ing for nested data parallelism,” in Proceedings of the 24th Symposium on
Principles and Practice of Parallel Programming, PPoPP '19, (New York, NY,
USA), pp. 53-67, ACM, 2019.

B. Hagedorn, L. Stoltzfus, M. Steuwer, S. Gorlatch, and C. Dubach, “High
performance stencil code generation with lift,” in Proceedings of the 2018
International Symposium on Code Generation and Optimization, pp. 100-112,
2018.

F. Gieseke, S. Rosca, T. Henriksen, J. Verbesselt, and C. E. Oancea,
“Massively-parallel change detection for satellite time series data with
missing values,” in 2020 IEEE 36th International Conference on Data Engi-
neering (ICDE), pp. 385-396, 2020.

C. E. Oancea, R. Ties, and F. Gieseke, “Approximate nearest-neighbour
fields via massively-parallel propagation-assisted k-d trees,” in Proceed-
ings of the IEEE International Conference on Big Data, MLBD 12, 2020.

15

BIBLIOGRAPHY 16

[10]

[11]

C. E. Oancea, C. Andreetta, J. Berthold, A. Frisch, and F. Henglein, “Fi-
nancial software on gpus: Between haskell and fortran,” in Proceedings of
the 1st ACM SIGPLAN Workshop on Functional High-performance Comput-
ing, FHPC 12, (New York, NY, USA), pp. 61-72, ACM, 2012.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} symposium on operating sys-
tems design and implementation ({OSDI} 16), pp. 265-283, 2016.

	Introduction
	Tridiagonal Solver
	Turbulent kinetic energy
	Interfacing with Jax
	Conclusion
	Appendix
	Bibliography

