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Abstract

Exact big integer arithmetic is a fundamental component of numerous
scientific fields, and therefore, required to be efficient. One way to
increase efficiency is by acceleration on GPGPU, calling for parallel
arithmetic algorithms. This thesis examines parallel algorithms for
addition, multiplication, and division, with the premise of fitting in a
CUDA block, and consequently, suited for medium-sized big integers.
The algorithms are implemented in the high-level languages C++ and
Futhark. The addition algorithm boils down to a prefix sum, which
runs efficiently in both implementations. The multiplication algorithm
is the classical quadratic method, parallelized by orchestrating the
convolutions in a way that balances the sequential work per thread
and minimizes synchronization. The C++ implementation exhibits
good performance, while the Futhark implementation leaves room for
improvement. The division algorithm is based on finding multiplicative
inverses without leaving the domain of big integers. To do so, a variety
of big integer operators and routines are defined, including shifts,
comparisons, and signed subtraction using the prefix sum approach
of addition. The algorithm parameterizes over the methods involved
for big integer arithmetic, and its efficiency directly mirrors the given
multiplication method. In addition to conveying the algorithm, as well
as adapting it to big integers, supplementary implementations have
been produced. This includes a validating and inefficient sequential
implementation in C, and a partially validating and semi-efficient
parallel implementation in Futhark.
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1 Introduction

Integers are commonly represented as either 32- or 64-bit in both hardware and software.
They are an essential part of computing and we expect most programs to utilize integer
arithmetic in accomplishing a diverse range of tasks. However, some applications require
numbers that are too big to fit a 64-bit integer. One solution is resorting to floating-point
arithmetic, but that is both imprecise and inefficient compared to integer arithmetic.

Exact arithmetic with big integers (also called multiple precision integers or big numbers) is
the very foundation of numerous fields in computer science, other formal sciences, natural
sciences, and industry. Evident examples includes cryptography and algebra. Big integers
can span hundreds, thousands, or even millions of bits, necessitating the exact arithmetic
to be efficient in the size of the integers. A widespread implementation for such arithmetic
is the GNU Multiple Precision Arithmetic Library (GMP) written in C and assembly [11].
One approach to further accelerate the performance is utilizing massively parallel hardware
such as General Purpose Graphics Processing Units (GPGPUs).

In order to efficiently use GPGPUs, the underlying algorithms have to be adapted and
parallelized. Addition has shown to be very efficiently computable by a scan operator [5, 7].
Multiplication classically runs in quadratic time [14]. The classical approach adapted to
GPGPU is found to be efficient for small- and medium-sized big integers [8, 19]. Fast
Fourier Transform (FFT) based multiplication algorithms are known to be asymptotically
faster [14]. Due to the overhead of FFT, such approaches are most efficient on GPGPU for
large-sized big integers in comparison to the classical approach [6, 8, 19].

Division is the hardest of the basic arithmetics. It traditionally involves a long division
algorithm that iteratively finds one correct digit [14]. With the number of iterations linear in
the input size, this algorithm is a poor fit for GPGPU. Another common division approach
is by multiplicative inverses. Watt has shown an algorithm to efficiently compute exact
division by finding such an inverse, without leaving the original domain [21]. Its complexity
mirrors that of its multiplication method, over which can be parameterized, and the number
of iterations is logarithmic in the input size, yielding a more suitable algorithm for GPGPU.

This thesis focuses on efficient parallel implementations of exact big integer arithmetic
for GPGPU. It presents the algorithms for an efficient addition, classical multiplication,
and Watt’s exact division by whole shifted inverse. Algorithmic, parallelization, and
optimization efforts are kept general, but the implementations are narrowed to the Compute
Unified Device Architecture (CUDA) platform through the programming languages C++ and
Futhark. Both are high-level languages, but operates vastly different. C++ allows low-level
command over primitives and fine-grained memory control, while interfacing directly with
the CUDA runtime API to produce GPGPU executable code [1, 20]. Futhark is a functional
array programming language that is designed around parallel basic blocks, making programs
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more elegant and less dependant on hardware specifications, in exchange for loosing some
of the fine-grained and low-level control [9, 12].

The arithmetics are implemented at CUDA block-level, and hence, aimed at medium-
sized big integers, ranging roughly from a few hundred to a few hundred thousand bits.
Each algorithm includes optimizations to further enhance the performance at block-level
– or performance in general. The results show that both the produced addition and
multiplication methods are competitive performance-wise, but the performance gap between
C++ and Futhark implementations grows with the complexity of the algorithms and applied
optimizations.

The produced implementations of division are not as highly optimized or efficient as for the
other arithmetics. However, this thesis is (to our knowledge) the first to recognise and use
Watt’s division algorithm (outside of Watt’s own work), and in turn, first to parallelize it.

The contributions of this thesis are:

• A description of efficient parallel big integer addition and classical multiplication
algorithms, on top of gradual degrees of optimizations over the shape of the inputs,
accompanied by implementations at CUDA block-level in C++ and Futhark.

• A benchmark driven performance evaluation of the produced addition and classical
multiplication implementations against a state of the art CUDA library.

• A presentation of the high-level intuition and specialization for big integers of Watt’s
algorithm for exact division by whole shifted inverse, including a revision that extends
the algorithm to an otherwise unconsidered cornercase.

• An inefficient sequential prototype of Watt’s algorithm in a low-level language (C).

• A parallelization effort of Watt’s algorithm that culminates in a partially valid and
semi-efficient Futhark implementation, entailing efficient parallel operators to shift,
compare, and subtract big integers.

The structure of this thesis is as follows: Section 2 presents other work related to the subject
of this thesis. Section 3 details the practicalities of the developed software suite. Section
4 provides the background information on GPGPU, CUDA C++, and Futhark, assumed
throughout this thesis. Section 5 regards the representation of big integers on a machine.
Section 6 outlines the overarching strategy of the implementations. Sections 7, 8, and 9
presents the algorithms, optimizations and implementations of addition, multiplication, and
division, respectively. Section 10 presents the methodology and results of validation testing.
Section 11 benchmarks and evaluates the performance of the addition and multiplication
implementations, while giving a detailed description of the methodology and performance
metrics. Section 12 concludes the work of this thesis and lists directions for future work.
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2 Related Work

Two works are particularly related to this. The first is “GPU Implementations for Midsize
Integer Addition and Multiplication” by Oancea and Watt [19]. It has been the developed
concurrently with this thesis and served as an initial inspiration (with some of their CUDA
C++ setup files as a starting point for our code basis1), but the two has been developed
independently. It shares a similar approach to addition and classical multiplication as this
thesis. However, where this thesis focus on division, their work focus on FTT multiplication.
They found that FFT multiplication becomes faster than classical multiplication for big
integers of size greater than 215 bits. Their approach to FFT involves finding a finite prime-
field that allows the Discrete Fourier Transform (DFT) to stay in the domain of integers,
while simultaneously use bases that almost maps to a machine word size one-to-one.

The other particularly related work is the state of the art CUDA library called “Cooperative
Groups Big Numbers” (CGBN), published by NVlabs [18]. CGBN is aimed at integers in
the range of 25 bits to 215 bits (i.e. small- to medium-sized integers), where each integer
is processed in a cooperative group of either 4, 8, 16, or 32 threads. Cooperative groups
are collections of threads assigned with special intra-communication properties [1]. As
evident by the group sizes, CGBN optimizes their arithmetics for warp-level processing.
In comparison to the approach of this thesis (i.e. block-level processing of arithmetics),
their approach minimizes latency by storing intermediate results in local memory – rather
than shared memory – and advocates the usage of fast warp-level instructions. In turn,
this allows consecutive arithmetics to fuse seamlessly, and to run very fast for smaller-sized
integers. However, their approach impose constraints such as being hardware-dependent
(i.e. the fast warp-level instructions are specific to the proprietary CUDA platform), offer
no scalability to integers above 215 bits (e.g. large-sized integers will exhaust local memory
and registers), and requiring the size of integers to be evenly divisible by 32.

Other related work includes a classical and FFT multiplication by Dieguez et al. [8], where
the classical multiplication takes a divide-and-conquer approach s.t. convolutions are tiled
over CUDA blocks. This has the benefit of increasing the amount of parallelism within a
block, but at the cost of blocks having to integrate partial convolution results and carries
using atomic operations.

To propagate the carries, Dieguez et al. use the hierarchical carry look-ahead scheme
that Emmart and Weems use in their big integer addition [10]. This addition scheme
is structured around propagating at block-level in a bottom-top-bottom fashion: First the
digits are added. Then carries are propagated in threads, then warps, then block, afterwards
to be distributed back in warps, followed by threads. The blocks can then overflow to the
following chunk of digits, which would then repeat the process. In comparison to their
work, we recognize the carry propagation as a scan.

1https://github.com/coancea/midint-arithmetic
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A more distant related work is Cuda Multiple Precision Arithmetic Library (CAMPARY)
by Joldes et al. [13]. It aims at small-sized integers up to a few hundred bits of precision,
and use unevaluated sums of floating-points numbers to represent the integers internally.
Hence, it relies on floating-point arithmetic, rather than exact arithmetic. The idea behind
the number representation is to compute the exact error of a floating-point, and then
store the rounded floating-point and the exact error in two different floating-points. This
decomposes their big integer arithmetic operators to a series of hardware-supported floating-
point arithmetic operations, while checking the errors. They also support division, based on
a similar Newton-Raphson approach as the division algorithm we use [21]. The algorithms
regarding errors are computationally demanding and the limiting factor for integer sizes.

3 Software Structure

Various big integer arithmetic implementations have been developed as part of this thesis,
publicly available at the GitHub repository https://github.com/tossenxD/big-int.

The repository is structured as follows: The directories cuda, futhark, and prototypes
contains CUDA C++, Futhark, and C code, respectively. Each directory includes a README
with detailed explanations of the setup and a Makefile to replicate the results of this thesis.

CUDA C++ The files ker-add.cu.h and ker-mul.cu.h contains the kernels for addition
and multiplication. The arithmetics are gradually optimized over three and five versions,
respectively, kept in the files for the sake of comparison. The kernels are called from the
main file main.cu, which serves to generate inputs, check for errors, test the arithmetics,
and run benchmarks. The heading of the main file defines numerous parameters specifying
integer base, kernel version, what to run, etc., which can manually be adjusted – along with
a detailed explanation of each parameter and kernel version.

The Makefile offers two ways to run the main file – with either a normal or small amount
of total work. They are invoked by $ make and $ make small, respectively. The main file
prints benchmark results in the form of metrics defined in section 11.2 (, and possibly prints
the results of validation tests too, if validation is enabled).

Files to run CGBN is in subdirectory cgbn, and have a similar setup to the primary files.

Futhark The files add.fut, sub.fut, mul.fut, and div.fut contains Futhark programs
with big integer addition, subtraction, multiplication, and division. The addition and
multiplication has four and three versions, respectively, similarly to the CUDA kernels. The
big integer base type can be configured in the file helper.fut. While the implementations
compile for all base types, the division program is nonsensical for bases other than u16 due
to the base restrictions explained in section 9.2.
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The subdirectories test and bench contains the Futhark test and benchmark programs.
Benchmarks are straightforward, and can be run by $ make add-uX or $ make mul-uX,
where X is the bits of the specified base type (64 is default and 16 is not supported). The
tests includes a C file that is tricky to call – using the Makefile is recommended. They
can be run with $ make test-uX, where X is the bits of the base type (64 is default). The
benchmarks prints runtimes and input size, and the tests prints the count of valid testcases.

Sequential C Prototype The file div.c contains a sequential prototype for big integer
division, that may be of interest to run experiments on. It can be called either with
random inputs ($ make random) or a fixed input ($ make fixed), which tests against
GMP. Both the number of random inputs and the given fixed input can be adjusted in
the Makefile. The default number of random inputs to test with is 1000, and the README
contains information on how they are generated. The random tests will print the inputs,
output, and correct output of failed tests, and report the number of valid tests.

4 Preliminaries

Common processors in a computer includes a Central Processing Unit (CPU) and a Graphics
Processing Unit (GPU). The CPU typically executes general purpose routines, while the
GPU is specialized in massive parallel processing of the numerous vectors that constitutes
computer graphics. However, the GPU is not confined to processing graphics and can act
as a General Purpose GPU (GPGPU) to execute general parallel routines.

Compared to the CPU, GPGPU has the benefits of higher instruction throughput and
higher bandwidth (achieved by various design differences such as increased core count), but
has the main drawback of requiring substantially more effort to properly utilize. For our
purposes, GPGPU provides a significant performance speedup and scalability in exchange
for parallel algorithms and programs of greater complexity.

This section is structured as follows: In 4.1 we introduce the GPGPU architecture and
parallel execution model. In 4.2 we give an overview of the CUDA C++ environment, which
allows interfacing with low-level GPU primitives in the high-level language C++. In 4.3 we
give an overview of the high-level programming language Futhark that can compile to GPU
executable code without the need to manually manage low-level primitives.

4.1 GPGPU Architecture

There are two main interfaces for a GPU: OpenCL and CUDA, the former being an API
for an open set of standards and instructions, and the latter a proprietary platform for
NVIDIA GPUs consisting of specialized instructions. This thesis focus on CUDA, yet the
algorithmic aspects are kept general and allows for OpenCL operability, along with the
software developed in Futhark compiling to both models.
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Consecutive threads reads pairwise elements
from global memory

Consecutive threads 1. reads consecutive from
global memory, 2. writes consecutive to shared
memory, 3. read pairwise from shared memory.

Gid g0 g1 g2 g3 g4 g5 g6 g7 g0 g1 g2 g3 g4 g5 g6 g7
�r � �r � �r � �r � �r �r �r �r �r �r �r �r

Tid t0 t1 t2 t3 t0 t1 t2 t3 t0 t1 t2 t3
�w �w �w �w �w �w �w �w

Sid s0 s1 s2 s3 s4 s5 s6 s7
�r � �r � �r � �r �

Tid t0 t1 t2 t3

Figure 1: Example of coalesced global memory access using a shared memory buffer – G denotes global
memory cells, S shared memory cells, T the threads, and r-w indicates read-write transactions. Left-hand-
side shows uncoalesced global memory access, while right-hand-side shows coalesced access in 3 steps.

GPGPU is parallel by design and consists of up to thousands of multithreaded cores. The
architecture, according to NVIDIA’s own CUDA C++ programming guide [1], is as follows:
Threads are grouped in 32, where groups are called warps. A warp executes one instruction
at a time in lockstep, called Single Instruction, Multiple Threads (SIMT). A program,
called a kernel, is executed on a grid of blocks (also called a thread block) with a specified
amount of threads per block. The number of threads in a block (block size) and the number
of blocks in a grid (block count) must be statically known prior to kernel execution, with
a maximum block size of 1024 threads. Each warp, block, and grid has its own memory
called local, shared, and global memory, respectively, with the former being the smallest and
fastest, and the latter the largest and slowest.

SIMT allows writing parallel programs of minimal overhead w.r.t. synchronization and
memory latency. It urges to keep procedures closest to warp-level, utilizing faster memory,
lockstep execution, and optimizing for locality of reference within a warp. This introduce
the idea of coalesced memory accesses, where consecutive threads access consecutive memory
locations, resulting in as few memory transactions as possible, and necessary for maintaining
high bandwidth while accessing global memory. However, consecutive threads may not be
supposed to access consecutive elements. In such case, it is faster to use shared memory as
a buffer s.t. transactions between shared and global memory are coalesced, and the original
uncoalesced transactions are between shared and local memory. Figure 1 illustrates this
approach with an example. While we may not gain much speed in the shown example, it
becomes a significant latency reduction with many more threads and elements per threads.

An important side-effect of SIMT is no divergent control flow (branching) within warps.
I.e. suppose only 1 thread in a warp choose an if-branch; then, the remaining 31 threads
cannot proceed execution before the first thread has finished, and instead, executes the
if-branch instructions on dummy data.

Thus, in order to construct efficient programs for GPGPU that exhibit high throughput
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and bandwidth, they must be inherently parallel, contain minimal amount of branching,
use fast memory, run as close to warp-level as possible, and access global memory coalesced.

4.2 The CUDA C++ Programming Interface

In this thesis, we interface with CUDA by means of a C++ language extension that compiles
a program to both a CPU and GPU executable portion using C and the CUDA driver API,
as described in the CUDA C++ guide [1]. The CPU running the initial program is called
the host and the target GPU is called the device. The extension exports functions in the
alloc-family, that allows the host to preallocate, read, and write memory of the device.
Device functions (i.e. kernels) are called from the host, and take parameters in the form of
pointers to memory pre-transferred to the device.

The extension exports some function execution- and variable memory- space specifiers.
These infer to the compiler how to treat functions and memory (e.g. host, kernel, or device
function, shared or local memory, etc.). The extension also exports some device functions,
notably the function __syncthreads(). It creates a barrier preventing threads from further
code execution until all threads within the block has reached that barrier.

In order to write parametric kernels in e.g. the type or size of big integers, we can use C++
templates. They provide generic programming over type and value parameters that are
concretized at compile time, as written by Stroustrup in [20]. Templates especially prove to
be a strong tool when combined with other high-level C++ constructs, such as classes. (On
a side note, the CUDA design has no explicit error handling on the device. Instead, CUDA
API calls returns error codes, which the host must then explicitly check and handle.)

Lastly, threads are implicit: Kernels launch with an execution configuration of the form
“ker <<< grid, block >>> (params)”, where grid and block specifies the grid and block
dimensions, respectively, and are of type dim3, denoting the specifications in 3D. The
spawned kernel has access to a set of special objects, notably threadIdx, blockIdx, and
blockDim containing the index of the currently executing thread, the index of the block
that it belongs to, and block size, respectively. Thus, the executable kernel code is run on
each of the specified threads, and spatial awareness within a thread is achieved explicitly
through the special objects – as demonstrated in Example 1.

From now on, we denote a CUDA C++ program simply as a CUDA program and assume:

– Kernel dimensions to be 1D (as they are in Example 1 above).

– The existence of sensible host functions to execute and error-check kernels.

– A small library of common subroutines such as accessing global memory coalesced.

These assumptions allow us to focus on the implementation of algorithms.
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Example 1 (a simple CUDA C++ program). The following program is a simple example of
the general routines involved with parallel programming through the CUDA C++ extension.

1 • Kernel function that increments m integers of the input array by one.
2 template <int m> __global__ void incrKernel(int* input , int* output) {
3 // find the global thread ID of the currently executing thread
4 const unsigned int global_id = blockDim.x*blockIdx.x + threadIdx.x;
5 // if its ID does not exceed the input size , it executes the operation
6 if (global_id < m)
7 output[global_id] = input[global_id] + 1;
8 }
9 • Host function to execute the above kernel assuming array h_mem contains m integers.

10 ...
11 // allocate and transfer memory to device
12 int *d_mem_in , *d_mem_out;
13 cudaMalloc ((void **) &d_mem , m * sizeof(int));
14 cudaMemcpy(d_mem_in , h_mem , m * sizeof(int), cudaMemcpyHostToDevice);
15 // execute the kernel below with ⌈m/512⌉ blocks of 512 threads each
16 dim3 block (512, 1, 1);
17 dim3 grid (1 + ((m - 1) /512), 1, 1);
18 incrKernel <m><<< block , grid >>>(d_mem_in , d_mem_out);
19 // fetch results
20 cudaMemcpy(h_mem , d_mem_out , m * sizeof(int), cudaMemcpyDeviceToHost);
21 ...

4.3 The Futhark Programming Language

Futhark is a high-level pure functional language with emphasis on data parallel array
programming [9, 12]. It is hardware-agnostic and can compile to both sequential or parallel
C, OpenCL, and CUDA code [3]. The fundamental design of Futhark revolves around
Second-Order Array Combinators (SOACs). They are array-functions that are easy to
reason about and define in terms sequential semantics, while still being able to compile to
(efficient) parallel code.

Asymptotic analysis of parallel programs is separated into work and depth. Work refers to
the total amount of computations in the program – known as the traditional basis of time
complexity analysis. However, in the parallel domain, work is distributed amongst threads,
and so it may not be an accurate representation of runtimes. The depth (also called span)
is the amount of sequential work within a thread, given infinitely many threads.

We now present the most fundamental SOACs, which we use throughout this thesis to
analyse parallelism.2 We assume their function inputs are O(Fw(n)) and O(Fd(n)).

First we have the combinator map of work O(n ·Fw(n)) and depth O(Fd(n)). It distributes
2Other combinators exists, but these are the most crucial to this thesis. An overview of the array

combinators and functions can be found in the Futhark standard library [2].
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a function over an array (known from other functional languages such as Haskell [15]) and
can inherently be executed in parallel. The type signature and semantics is:

map : (τ → τ ′) → [τ ] → [τ ′] (1)
map f [a0, a1, . . . , an−1] := [f a0, f a1, . . . , f an−1] (2)

Next we have the combinator reduce of work O(n ·Fw(n)) and depth O(log n ·Fw(n)). The
semantics is akin to a fold from other functional languages, but with one big difference:
The operator must be associative and have a left-associative neutral element, allowing the
array to be accumulated in O(log n) steps. The type signature and semantics is:

reduce : (τ → τ → τ) → τ → [τ ] → τ (3)
reduce⊘ e [a0, a1, . . . , an−1] := e⊘ a0 ⊘ a1 ⊘ . . .⊘ an−1 (4)

Similarly, we have the combinator scan with work O(n ·Fw(n)) and depth O(log n ·Fw(n)).
The semantics corresponds to an accumulated reduction over the input array (also called a
prefix sum), and so the associativity and neutral element restrictions of the operator applies
as well. The type signature and semantics is:

scan : (τ → τ → τ) → τ → [τ ] → [τ ] (5)
scan⊘ e [a0, a1, . . . , an−1] := [e⊘ a0, e⊘ a0 ⊘ a1, . . . , e⊘ a0 ⊘ a1 ⊘ . . .⊘ an−1] (6)

Lastly we have the combinator scatter with work O(n) and depth O(1). It takes a
destination, index, and value array, and performs an in-place distribution of the values
over the destination array according to the indices. The indices and values must have same
shape. Values are ignored for indices that are out-of-bound. The type signature is:

scatter : [τ ] → [i64] → [τ ] → [τ ] (7)

One of the strengths of the Futhark compiler is its ability to fuse chains of map-reduce
compositions. This allow us to write nice and clean code, straightforwardly model parallel
algorithms, and let the compiler generate more complex and optimized GPGPU code that
use less intermediate values and instructions.

While Futhark is more clean and succinct than CUDA, it contains compromises that allows
Futhark to compile to GPGPU code, making it restricted in comparison to other high-level
functional languages such as Haskell. E.g. Futhark allows nested arrays as data structure,
but all data must be flat on a GPGPU. Hence, the nested arrays must be regular in order
for the compiler to know how to flatten them for execution. The shape of arrays must be
statically inferred to the compiler too – primarily part of the type signature of functions, but
can be manually inferred. Example 2 shows the difference in CUDA and Futhark clearly.

Overall, Futhark is meant to balance usability, power of abstractions, and parallel efficiency.
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Example 2 (a simply Futhark program). The following program is a Futhark translation
of the CUDA program of Example 1 that increments the integers in a given array by one:

1 def incrFut [m] (input: [m]i32) : [m]i32 = map (+ 1) input

5 Representation of Big Integers

Big integers, also known as big numbers or multiple-precision integers, are integers that
exceeds the word size on a machine. A common system for reasoning about them, e.g. used
by Knuth in [14], is the positional number system:

Definition 1 (positional number system). An integer u ∈ N can be expressed in base
B ∈ N > 1 with m digits ui∈{0,1,...,m−1} ∈ {0, 1, . . . , B − 1} by the sum:

u =
m−1∑
i=0

ui ·Bi (8)

By choosing the size of a machine word as the base B (also called the radix), the positional
system maps directly to an array data structure of unsigned words. I.e. for an unsigned
word type uint of b bits, we get that a big integer u of m digits (also called limbs) in
base 2b is represented by an array of type uint and size m in little endian s.t. u[0] = u0,
u[1] = u1, etc. Furthermore, in this representation, u can be viewed as binary with b ·m
bits; suppose a word is 64-bits and the size of the array is 4 – then u is a 256-bit integer
where, say, the 67th bit of u is the third least significant bit of the second digit u[1].

We have to make an important choice between arbitrary precision and exact precision
integer representation. Arbitrary precision, like the name suggests, means that the precision
is not bounded by software, and so we never loose precision from arithmetic operations (as
long as we have enough memory to house the result). This is e.g. implemented in Haskell
and in GMP [15, 11]. It provides a great deal of abstraction, as there can occur no overflows.
In other words, it allows the programmer to work without worrying about the sufficiency
of the underlying data structure.

However, the cost of this abstraction is the requirement for dynamic memory allocation
to handle overflows. This may be a slight inefficiency on a CPU architecture and be well
worth the level of abstraction, but dynamic memory management is problematic on a GPU
because of the memory hierarchy discussed in section 4.1. Hence, arbitrary precision is an
unsuitable representation for parallel computing.

Exact precision integers are bounded by a specified size, making them more suitable for a
GPU architecture. The size can still be arbitrarily specified and changed during runtime
(by means of allocating and copying to a new big integer), but the exact size remains known.
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Thus, the chosen representation for big integers is exact precision arrays. In turn, our
arithmetic preservers the dimensions between input and output, and require that the input
dimension matches. This setup allows us to fully utilize GPGPU capabilities.

So far, we have only considered unsigned integers. There exists multiple representations
of signed integers on a binary machine, the most common being two’s complement. This
representation does not work well with multiple precision, as extracting a negative number
requires a bitwise negation. Instead, we can use sign-magnitude representation, where a
signed integer is represented by an absolute value (magnitude) along with an indicator
(sign). The downside of this representation is that 0 and −0 are two different numbers.
This representation is also used in other high-efficiency libraries, such as GMP [11].

We use unsigned integers as the internal representation, as this is more efficient. In cases
where signs are required, we extent by sign-magnitude. Furthermore, we only consider
unsigned arithmetic (with wrap-around on overflow), as signed arithmetic is trivial to define
using their unsigned counterpart.

Lastly, by fixing the representation of big integers to a data structure of arrays of unsigned
machine words, we lay a foundation that allows us to efficiently compute arithmetics on
GPGPU (and a CPU for that matter). However, also fixing the type of machine word (i.e.
the base) does not increase performance or efficiency – instead, the arithmetics becomes
more strict, hardware dependent, and nonextensible.

As a mechanism to keep the arithmetics generic over the base type in implementation, we
utilize templates, classes, and type declarations to create an abstract big integer interface.3

The interface is as follows:

Name Description Type Example
uint_t The base unsigned integer uint32_t
ubig_t Double the base unsigned integer uint64_t
qint_t Quadruple the base unsigned integer unsigned __int128
carry_t Type of carries unsigned integer uint32_t
bits Number of bits in base integer 32

HIGHEST Max number in base unsigned integer 4294967295

Note that ubig_t and qint_t may not exist. Hence, implementations that depend on
those types are only correct for some choices of base type. Overall, we assume the base is
either 32- or 64-bit words, as these are the two most common word sizes, and, unless stated
otherwise, the implementations type checks for both bases.

3Futhark has an extensive module system that supports generic programming in the same manner as
C++ templates. However, it requires a lot of effort to wrap the whole implementation inside a module with
generic base type. As a simple means to generality we use type declarations – allowing us to focus on the
performance aspects rather than the intricacies of functional programming.
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t0 t1 t2 · · · t510 t511
� � � � �
w0 w1 w2 · · · w510 w511

t0 t1 · · · t255
� � � � � �
w0 w1 w2 · · · w510 w511

Figure 2: Example of sequentialization within parallel threads to reduce CUDA block size.

6 Overview of Implementation Strategy

For the arithmetics to be efficient, they must be implemented at a CUDA block-level,
thus, minimizing the communication overhead by utilizing the faster block-level shared
memory for intermediate results. In CUDA programs, this is a manual process achieved
by the execution configuration and the methods deployed to index over kernel parameters.
However, for Futhark, the compiler ultimately determines how to map it. Hence, we use the
compiler attribute #[only_intra] when batch processing arithmetics in Futhark, telling
the compiler to only map the arithmetics at block-level (intra-block).

In principle, any arithmetic function only requires global memory access to read the inputs
and write the output. In Futhark, this can be a bit involved, discussed further in section
7.3. In CUDA however, we always assume the following kernel structure: Fetch inputs
from global memory coalesced; execute the function body; write results to global memory
coalesced. From now on, we refer to the function body when discussing kernels.

Given we optimize for block-level, the arithmetic operators are confined to run on at most
1024 threads. Hence, the implementation is aimed at medium-sized big integers, as when
the input length creates block-sizes exceeding 1024, the operators are not able to run. This
is an artificial barrier, as we can introduce sequentialization within each thread to allow
bigger integer sizes. E.g. consider the example given in Figure 2. In the left illustration,
each of the 512 digits of the big integer is handled by a separate thread, giving a block size
of 512. In the right illustration, each thread handles two digits sequentially, giving a block
size of 256 instead.

However, when the sequentialization factor within parallel threads increases, the amount of
parallelism within the program decreases. Furthermore, sequentially handling many digits
per thread may exhaust the local memory. Thus, the bigger the integers are, the less
efficient the implementation becomes (for sizes that otherwise would exceed CUDA block
limits). This only holds up to a certain input size, because the block-level shared memory
also grows with the integer size, resulting in an out-of-memory error for integers too big.

Likewise, we can also have big integer sizes that are too small to efficiently compute in
parallel. Suppose that each thread process a digit of the input, and the input consists of 16
digits – then we have 16 threads processing and 16 threads idling. This is not a problem
when we only compute arithmetics on a single big integer, but effectively halves throughput
when batch processing enough integers to consume the whole device.
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Again, this is an artificial barrier, as we can combine (flatten) big integers and handle them
segmented within a block. E.g. combining two integers per block in the example above is
enough to fulfill a warp. This is not necessarily double the performance, since flattening,
unflattening, and segmented operations comes with a cost, but the cost is overshadowed by
the benefits (no idling threads) when processing many instances over smaller integers.

To summarize, the arithmetics are implemented at CUDA block-level aimed at medium-
sized integers. They must increase the sequentialization factor within threads to allow bigger
input integers (up to a limit). The throughput may improve from integrating segmented
operations, processing multiple instances of integers per CUDA block.

We take inspiration from the strategy behind the GMP library: They write multiple
parameterized versions of each arithmetic function (including multiple algorithms), and
dynamically (or by tuning) choose the one performing best based on the input size [11].
While we do not implement multiple algorithms, we implement multiple versions of the
same algorithm with a gradual degree of optimization – e.g. with and without the ability
to process multiple instances per block.

We expect the most optimized version to consistently perform best, but run experiments and
benchmarks over the size of integers on all versions. It reveals the performance gain of each
optimization and possibly find versions most suited for specific inputs. Since performance is
the main concern, we assume that the size and number of integers per block exactly divides
the block dimensions for kernels exhibiting sequentialization and segmentation.4

7 Addition

Addition is the simplest of the basic arithmetic operators. It is a cornerstone that can be
used to define all other operations - an essential part of big integer arithmetic.

Former work has been carried out for a parallel addition operator in Futhark, which will
serve as a stepping stone for the algorithm and implementation of our addition [5]. In
essence, big integer addition formalizes to a map-scan composition, where the scan handles
carry propagation, making it run efficiently on a GPGPU [7].

This section is structured as follows: In 7.1 we present a parallel algorithm to compute big
integer addition. In 7.2 and 7.3 we discuss how to efficiently implement the algorithm in
CUDA and Futhark, respectively. Lastly, in 7.4 we show how to define subtraction from
the addition algorithm.

4Assumption does not restrict the usefulness of the implementations since inputs can be padded to fit.
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Input: u and v of size m base B
Output: w of size m in base B

1 c = 0
2 for i in (0..m-1)
3 w[i] = u[i] + v[i] + c
4 c = if overflow then 1 else 0

u0 u1 u2 · · · um−1

+ + + +

v0 v1 v2 · · · vm−1

+ + + +
0 c0 c1 · · · cm−2

� � � �= = = =

w0 w1 w2 · · · wm−1

Figure 3: Pseudo-code and illustration of sequential addition algorithm.

7.1 Algorithm

From the Definition 1 we derive the following addition definition.

Definition 2 (big integer addition). The addition of two big integers u and v of size m
and base B is the sum of their added digits:

u+ v =
m−1∑
i=0

(ui + vi)B
i (9)

I.e. we compute each digit of the result simply by adding the corresponding two input digits.
However, these inner additions may overflow the base, resulting in a carry being added to
the following digit. In turn, this digit may now overflow, and so we need to add yet another
carry, and so forth. E.g. consider the addition 199 + 1 of decimal base; first we add 1 to 9
giving 0 and a carry, then we add 0 and the carry to 9 giving 0 and another carry, which

we then add to 1, resulting in the number 200:
1 1
0 0 1

+ 1 9 9
2 0 0

A sequential algorithm, and illustration thereof, is given in Figure 3. It is immediate
from the figure that the sum of digits can be independently computed, and thus, trivially
parallelizable. However, the carries are truly dependent on all sums and carries before it,
as illustrated in the figure, but we know they can be computed using a scan [7].

Each addition may overflow once at most, and so we need to figure out the conditions for
an overflow. In the former work by Olesen, Topalovic and Restelli-Nielsen, they found that
this happens when I) the addition already overflowed, or II) it results in the maximum
representable integer, and the addition just before it overflowed [5]. They found that these
conditions can efficiently be checked in parallel as a prefix sum.5

Thus, the big integer addition parallelizes to a map-scan function composition. Figure 4
lists and illustrates a generalized parallel addition algorithm. The algorithm has three steps:

5Specifically an exclusive prefix-sum, which is easy to see on the arrows in Figure 3.
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Input: u and v of size m base B
Output: w of size m in base B
Use: f to extract carry from augmented carry

1 (r, a) = map2 ⊕ u v
2 c = scan_exc ⊗ e a
3 w = map2 (λ x y → x + f y) r c

u0 u1 u2 · · · um−1

⊕ ⊕ ⊕ ⊕
v0 v1 v2 · · · vm−1

= = = =

r0 r1 r2 · · · rm−1

a0 a1 a2 · · · am−1

a0 a1 a2 · · · am−1

e� ⊗ � ⊗ � ⊗ � ⊗ � ⊗� � � � �
c0 c1 c2 · · · cm−1

r0 r1 r2 · · · rm−1

λ λ λ λ

c0 c1 c2 · · · cm−1

= = = =

w0 w1 w2 · · · wm−1

Figure 4: Pseudo-code and illustration of parallel addition algorithm.

1. Compute the inner sums (r) and the augmented carries (a) by mapping operator
⊕ : τ � τ � (τ, τ ′) over the inputs. The augmented carries corresponds to the two
conditions from [5].

2. Propagate the carries by computing the exclusive prefix sum over the augmented
carries (c) using operator ⊗ : τ ′ � τ ′ � τ ′ with left-associative neutral element e : τ ′.

3. Compress the propagated augmented carries using f : τ ′ � τ and distribute them
over the inner sums.

Now, we must figure out what ⊕, ⊗, e and f is. Olesen et al. found ⊕ to augment the
carries as a pair of boolean values, encoding the two conditions straightforward. I.e. for
digits x and y of type uint in base B with wrap-around semantics on overflow, we have:

x⊕ y := (x+ y, (x+ y < x, x+ y == B − 1)) (10)

The first element of the tuple encodes the actual overflows (condition I), and the second
element is the augmented data needed for scanning (condition II). Hence, the compression
function f : (bool, bool) � uint is the projection π1 followed by a type conversion.

The operator ⊗ then computes the prefix sum on the augmented carries s.t. if both the sum
itself and the one just before it, is the maximum integer, then they remain the maximum
integer combined.6 Overflows are determined by the aforementioned conditions. I.e. for
some pairs of booleans x = (ovx , mxx ) and y = (ovy , mxy), we define:

x⊗ y := (ovx ∧mxy ∨ ovy , mxx ∧mxy) (11)

Olesen et al. has proven in [5] that ⊗ is associative with neutral element e:

e := (False, True) (12)
6E.g. in decimal base, 9 is maximum of one digit and 99 remains maximum of two digits.

18



Thorbjørn Bülow Bringgaard Efficient Big Integer Arithmetic Using GPGPU

While this approach is intuitive and straightforward to implement in Futhark, hardware
does not support boolean values natively - they are syntactic sugar for zero-and-nonzero
integers. Thus, a low-level implementation will have to use integers, and so we might as
well use bitwise operations over logical ones, as these are faster.

In turn, instead of using pairs of integers, with each pair using one indicator bit as boolean
value, we combine them to one integer with two indicator bits. Not only does it halve the
memory usage w.r.t. the prefix sum, it also increases memory utilization of threads, as each
thread only have to fetch and write once. The formal definition of the optimizations is:

Definition 3 (bitwise-optimized parallel add ition algorithm (badd)). The bitwise-optimized
operators of the algorithm in Figure 4, where the least and second least significant bit
indicates integer overflow and maximum, respectively, are:

x⊕ y := (r, uint(r < x) | (uint(r == B − 1) ≪ 1)), where r = x+ y (13)
x⊗ y := (((x & (y ≫ 1)) | y) & 1) | (x & y & 2) (14)

e := 2 (15)
f := (λ x � x & 1) (16)

Equation (13) is a straightforward conversion of equation (10), with the pair being replaced
by the shift- and bitwise or-operator, and Equation (16) extracts the first indicator bit.

Equation (14) is a conversion of equation (11), where I) the pair is replaced with bitwise
or-operator, II) the first clause is checked in the least significant bit and zeroes out the
second bit with “& 1”, and III) the second clause is checked in the second least significant
bit and zeroes out the first bit with “& 2”. Associativity naturally still holds. Likewise,
the neutral element e of Equation (15) is the corresponding indicator bits of Equation (12),
and so e remains a left-associative neutral element of ⊗ after the optimizations.

For good measure, proof of associativity and neutral element are in Appendix A.

Thus, when using the badd algorithm presented in Definition 3, we get that both ⊕, ⊗ and
f are O(1). Therefore, the maps exhibit work O(m) and depth O(1), and the scan work
O(m) and depth O(logm). Hence, the total work is O(m) and the depth O(logm).

As a final note, we can stay in the lane of bitwise optimizations when it comes to handling
multiple instances per CUDA block. Extending the algorithm to work on a set of flattened
instances is trivial using a segmented scan [7]. It is a scan with a flag array (indicating
where the flattened segments begins) s.t. if we are at the beginning of a segment, the neutral
element is used as the first operand rather than the left sum. We can implement it as a
normal scan, but with an extended operator that checks for segment beginnings [9].
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However, just like we combined the overflow and maximum indicator, we can also combine
them with the flag indicator. Thus, we use the third least significant bit to indicate segment
beginnings. Setting the flags as part of the augmented carries is a trivial extension to
operator ⊕, and we get the segmented scan operator ⊗ (with neutral element remaining 2):

x⊗ y := xf | yf |

{
yv if yf ̸= 0

(((xv & (yv ≫ 1)) | yv) & 1) | (xv & yv & 2) otherwise
(17)

where xf := (x & 4), xv := (x & 3), yf := (y & 4), yv := (y & 3)

7.2 CUDA Implementation

In this section we introduce three versions of addition in CUDA. The first version (V1) is
the fundamental implementation that follows the algorithm presented in Figure 4 closely.

The second version (V2) attempts to efficiently sequentialize the parallelism in excess: Since
the operation runs in sub-linear depth (with two of the three steps being a constant depth),
we expect the threads to have an excess amount of parallelism spent on communication
(waiting for memory and synchronizations). Increasing the sequentialization factor decrease
the amount of communication, and in this case, increase the performance. This optimization
comes with the added benefit of handling integers of size greater than a CUDA block.

The third version (V3) can handle multiple instances per block, giving better performance
for many arithmetic instances with small integer sizes, as mentioned in section 6.

We keep the sequentialization factor (q) and number of instances per block (ipb) parametric
using C++ templates. First of all, this allows us to handle all input sizes generically
rather than relying on multiple hand-written versions, but more importantly, it allows
us to experiment with optimal parameters. A purpose of the CUDA implementation is to
determine how much performance is possible to achieve using our designated algorithms.
Hence, experimentation in CUDA directly influence how we approach the implementations
in Futhark.

Generic ipb is trivial, because it only serves to determine segment beginnings of segmented
algorithms. A generic sequentialization factor can impedes performance, as we achieve this
by introducing loop-constructs invariant to q. However, a benefit of high-level languages
like C++ is compiler directives, allowing us to unroll loops as if they were hand-written [1].

Overall, we determine q, ipb, and kernel dimensions with the code of Listing 1 below. The
sequentialization factor of V2 and V3 is by default q = 4, but if the size of the inputs still
exceeds a CUDA block, we use the rule (a + b − 1)/b = ⌈a/b⌉ to round up to nearest
sequentialization factor that fits. Likewise, for V3 we write ipb = ⌈256/(m/q)⌉, which
rounds the number of threads per block up to 256.7

7Experimentally, we found a minimum of 256 threads per block and a sequentialization factor of 4 to be
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Figure 5: Illustration of a warp-level inclusive scan with warp-size 4 and 16 threads

Listing 1: CUDA addition parameters and kernel dimensions for version v with size m and num_instances.

1 const uint32_t q = (v == 1) ? 1 : (m/4 <= 1024) ? 4 : (m+1024 -1) / 1024;
2 const uint32_t ipb = (v == 3) ? (256 + m/q - 1) / (m/q) : 1;
3 dim3 block(ipb*(m/q), 1, 1);
4 dim3 grid (num_instances/ipb , 1, 1);

Steps 1. and 3. of badd are implemented straightforward in all three versions (because the
maps are implicit in CUDA). Step 2. on the other hand, requires more thought:

For the scan function, we use a work-efficient warp-level inclusive scan [16]. The idea is to
minimize communication by exploiting that warps execute in lockstep. Figure 5 contains
an illustration of this algorithm. It works in three steps with synchronization in-between:

I Each warp scans its elements in logwarpsize iterations.

II The end-of-warp results are put in the first warp, synchronized, and then scanned.

III The results of II are fetched, synchronized, and distributed over the results I.

To convert an inclusive to an exclusive scan, we shift the result to the right by 1 and insert
the neutral element at the left-most position. Step 2. of badd use this warp-level exclusive
scan with the operator ⊗ and neutral element e defined in Equations (14), (15), and (17).

What we have so far is enough to write V1, but V2 and V3 requires some extra attention.
We cannot directly use the warp-level scan, because this works for one element per thread
and we have q. Instead, let us reuse the scan � end-of-result � scan � distribute idea from
the warp-level scan algorithm on a register-level basis:

the most efficient kernel parameters for addition.
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Let each thread compute the inclusive prefix sum of its q elements sequentially, and place
only the last sum in shared memory. Then, run a warp-level exclusive scan over the end-of-
register-level sums in shared memory. Lastly, each thread sequentially distribute the results
of the warp-level scan over the result of the register-level scan.

Using this idea, we are now able to write all three versions. For brevity, we only show the
main kernel body of V3, but both V1 and V2 are principally implemented the same way.
Listing 2 contains this kernel, where the input/output elements of each thread are read
coalesced beforehand and written coalesced afterwards to/from global memory.

Listing 2: CUDA badd V3 implementation body from file ker-add.cu.h (slightly edited), where registers
ass, bss, and rss contains q input/output digits, respectively, of type uint_t with base class Base,
segmented scan operator class SegCarryProp over carry type carry_t, and shared memory buffer shmem.

212 const bool new_segm = threadIdx.x % (m/q) == 0;
213
214 // 1. compute result , carry , register -level scan , and segment flags
215 uint_t css[q];
216 carry_t acc =
217 new_segm ? SegCarryProp <Base >:: setFlag(SegCarryProp <Base >:: identity ())
218 : SegCarryProp <Base >:: identity ();
219 #pragma unroll
220 for(int i=0; i<q; i++) {
221 rss[i] = ass[i] + bss[i];
222 css[i] = (( carry_t) (rss[i] < ass[i]))
223 | ((( carry_t) (rss[i] == Base:: HIGHEST)) << 1);
224 acc = SegCarryProp <Base >:: apply(acc , css[i]);
225 }
226 shmem[threadIdx.x] = acc;
227 __syncthreads ();
228
229 // 2. propagate carries
230 acc = scanExcBlock < SegCarryProp <Base > >(shmem , threadIdx.x);
231 acc = new_segm ? SegCarryProp <Base >:: identity () : acc;
232
233 // 3. add carries to results
234 #pragma unroll
235 for(int i=0; i<q; i++) {
236 rss[i] += (acc & 1);
237 acc = SegCarryProp <Base >:: apply(acc , css[i]);
238 }

To reflect on the implementation; C++ is verbose by design (as a C-like language), and
modelling the badd algorithm requires care and thought. Due to the nature of the CUDA
extension, we furthermore have to reason about the semantics in parallel, e.g. in the way we
compute segment beginnings. However, structuring the implementation around the high-
level C++ features of classes and templates, not only makes it generic and readable, but
also extensible in terms of optimizations. Once the fundamental version is designed with
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proper usage of C++ constructs, the optimizations comes as natural extensions, while still
allowing fine-grained control over the important aspects, such as memory usage.

7.3 Futhark Implementation

In this section, we introduce four versions of addition in Futhark. The first version (V0) is
the original version formulated by Olesen et al. [5], included for completeness. The second
version (V1) is the straightforward badd algorithm.

The third version (V2) introduces a fixed sequentialization factor of 4, which we found
to be the optimal factor from experimenting with the CUDA implementation (see section
7.2). In CUDA, it is arbitrary to make this factor generic using C++ templates and compiler
directives, without loss of performance. In Futhark however, while we have type parameters
and loop unroll attributes, we do not have the fine-grained control of C++ that allows us
to e.g. decide when and how to store intermediate results in shared memory. We found
that parameterizing the sequentialization factor is significantly slower than fixing it. In
turn, integers with size m > 4096 does not fit in a CUDA block, and requires manually
increasing the factor. Another approach could be to write a parameterized version for
integers with m > 4096, and search for tricks that optimizes the compilers generated
output. For simplicity, we fix the factor at 4.

The fourth version (V3) introduces a parameterized number of instances per block (ipb) and
the segmented badd. This factor is fine to vary, since it is only used to determine boolean
values of the segmented semantics.

Version V0 and V1 are defined straightforward, and due to Futharks high-level design based
on parallelism, they look almost identical to the pseudocode of Figure 4. E.g. Listing 3
contains the implementation of V1:

Listing 3: Futhark badd V1 using base ui and carry type ct (from file add.fut slightly edited).

1 def carryProp (c1: ct) (c2: ct) : ct =
2 (c1 & c2 & 2) | (((c1 & (c2 >> 1)) | c2) & 1)
3
4 def carryPropE : ct = 2
5
6 def carryAug (r : ui) (a : ui) : ct =
7 (boolToCt (r < a)) | (( boolToCt (r == HIGHEST)) << 1)
8
9 def baddV1 [m] (us: [m]ui) (vs: [m]ui) : [m]ui =

10 -- 1. compute sums and carries
11 let (ws, cs) = map2 (\ u v -> let w = u+v in (w, carryAug w u)) us vs
12 |> unzip
13 -- 2. propagate carries
14 let pcs = scanExc carryProp carryPropE cs
15 -- 3. add carries to sums
16 in map2 (\ w c -> w + fromCt (c & 1)) ws pcs
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While versions V0 and V1 feeds into the strengths of Futhark (simple abstract functions
that run comparatively well), versions V2 and V3 reveals the weaknesses. As mentioned,
they include a fixed sequentialization factor of 4, so we want to compute four sums for
each thread. It is therefore crucial that we pre-fetch the inputs to either shared or register
memory, greatly reducing the amount of reads from global memory (if fetched coalesced).
However, while easily done in our CUDA implementation, we are at the mercy of the
Futhark compiler to perform this optimization, and as of writing this thesis, it does not.

Instead, we may exploit that the compiler stores intermediate arrays in shared memory
to e.g. read input u into w in a coalesced fashion. Normally, we avoid such redundant
computations because the compiler constructs and copies to a new arrays when resolving
array operations (, since data is immutable as per usual for functional languages). However,
the Futhark compiler use a memory optimization strategy called array short-circuiting,
where it performs a short-circuit analysis that reveals whether it can skip constructing
intermediate arrays and execute the operation in-place instead [17].

Thus, when we construct the read operation in a particular way, the compiler will pre-
allocate the inputs in shared memory when fused with the surrounding functions, and in
turn, generate the read operation with no-ops. We use the code of Listing 4 below, which
utilizes short-circuiting to read the inputs into shared memory coalesced and with minimum
overhead. I.e. the zips, unzips and concatenations of the code becomes no-ops, and ush
and vsh is in-place read from us and vs (occupying the same memory region).

Listing 4: Futhark code snippet reading us and vs of size ipb · m from global to shared memory coalesced
utilizing array short-circuiting (from file add.fut slightly edited).

1 let cp2sh (i : i32) = #[ unsafe]
2 let str = i32.i64 (ipb*m)
3 in ((us[i], us[str + i], us[2* str + i], us[3* str + i])
4 ,(vs[i], vs[str + i], vs[2*str + i], vs[3*str + i]))
5
6 let (uss , vss) = (0..<ipb*m) |> map i32.i64 |> map cp2sh |> unzip
7 let (u1s , u2s , u3s , u4s) = unzip4 uss
8 let (v1s , v2s , v3s , v4s) = unzip4 vss
9 let ush = u1s ++ u2s ++ u3s ++ u4s

10 let vsh = v1s ++ v2s ++ v3s ++ v4s

The compiler attribute #[unsafe] tells the compiler not to perform any memory bound
checks or optimizations. We generally add this attribute when a sequentialization factor is
involved, just to be certain that the compiler takes our array indexing at face value.

Now, let us discuss the implementation of V2 and V3. Their type signature includes the
shape parameters, enforcing the memory layout of the inputs to be aligned:
def baddV2 [m] (us: [4*m]ui) (vs: [4*m]ui) : [4*m]ui
def baddV3 [ipb][m] (us: [ipb *(4*m)]ui) (vs: [ipb *(4*m)]ui) : [ipb *(4*m)]ui
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The functions are defined s.t. they first copy from global to shared memory (as described
above), and then run the function body (corresponding to the badd algorithm). For brevity,
we focus on V3 since they are principally identical. The function body sequentializes the
excess parallelism using tuples of four elements as a manually unrolled loop. It exhibit the
same sequentialized register-level prefix sum approach as the CUDA V3 implementation of
Listing 2. The function body is in Listing 5 below.

Listing 5: Futhark badd V3 main function body using base ui and carry type ct from file add.fut.

131 let baddV3Run (us: []ui) (vs: []ui) : []ui = #[ unsafe]
132 -- 1. compute sums , carries , flags , and register -level prefix sum
133 let (ws, cs, accs) = unzip3 <| imap (0..<ipb*m)
134 (\ i -> let (u1, u2, u3 , u4) = (us[i*4],us[i*4+1],us[i*4+2] ,us[i*4+3])
135 let (v1, v2, v3 , v4) = (vs[i*4],vs[i*4+1] ,vs[i*4+2],vs[i*4+3])
136 let (w1, w2, w3 , w4) = (u1 + v1, u2 + v2 , u3 + v3, u4 + v4)
137 let (c1, c2, c3 , c4) = (carryAug w1 u1, carryAug w2 u2,
138 carryAug w3 u3, carryAug w4 u4)
139 let c1 = (boolToCt (i % m == 0)) << 2 | c1
140 let acc = carryProp c1 <| carryProp c2 <| carryProp c3 c4
141 in ((w1, w2 , w3 , w4), (c1 , c2 , c3, c4), acc))
142
143 -- 2. propagate carries
144 let pcs = scanExc carryPropSeg carryPropE accs
145
146 -- 3. distribute carries over register -level prefix sum , and add to sum
147 let (wi1s , wi2s , wi3s , wi4s) = unzip4 <| imap4 ws cs pcs (0..<ipb*m)
148 (\ (w1, w2 , w3 , w4) (c1 , c2 , c3, _) acc1 i ->
149 let acc1 = if i % m == 0 then carryPropE else acc1
150 let acc2 = carryProp acc1 c1
151 let acc3 = carryProp acc2 c2
152 let acc4 = carryProp acc3 c3
153 in ((w1 + fromCt (acc1 & 1), i*4), (w2 + fromCt (acc2 & 1),i*4+1),
154 (w3 + fromCt (acc3 & 1), i*4+2) ,(w4 + fromCt (acc4 & 1),i*4+3)))
155 let (ws, inds) = unzip <| wi1s ++ wi2s ++ wi3s ++ wi4s
156 in scatter (replicate (ipb *(4*m)) 0) inds ws

While V2 and V3 are still somewhat succinct, it is clear that manipulating the compiler for
certain optimizations introduces a lot more code compared to the fundamentals of V1. This
can especially become cumbersome given the hand-written nature of the sequentialization
factor. On the other side, most of the Futhark code is still modelled closely to the algorithm,
and thus, making it easy to follow, reason about the semantics, and spot potential errors.

7.4 Subtraction

Subtraction is also a basic of arithmetic. While we do not use signs in our underlying
representation, we can define subtraction using the addition. In fact, it is easy to see that
the complement of each subroutine of the addition gives us subtraction:
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Definition 4 (big integer subtraction). Subtraction of two big integers can be obtained
from the generic algorithm of Figure 4, where line 3 subtracts rather than adding the carry,
and operators ⊗, e, and f remains the same as in badd. The operator ⊕ then becomes:

x⊕ y := (x− y > x) | ((x− y = 0) ≪ 1) (18)

This definition has the usual unsigned integer wrap-around semantics. If we are interested
in the difference, we can check which input is the largest (by a map-reduce composition),
and then subtract and return the sign accordingly.

Since it is the same algorithm as addition, we does not benchmark or discuss it further.

8 Classical Multiplication

Multiplication is next of the basic arithmetic operators. It is more complex than addition
and subtraction, classically requiring each digit of the multiplicand to be multiplied by all
digits of the multiplier, which leading to asymptotically quadratic work. Other well known
algorithms of sub-quadratic work exists, namely Karatsuba, Toom-Cook, and FFT-based
multiplication, all mentioned by Knuth and part of GMP [11, 14]. Karatsuba and Toom-
Cook are viewed as practical algorithms, but are usually modelled by recursion making them
less straightforward for GPGPU. FFT multiplication is an involved process consisting of
multiple data structure conversions (and possibly leaving the domain of integers), but has
shown to run fast on GPGPU [6, 19]. While classical multiplication has quadratic work,
it is expected to run faster for smaller-sized integers due to the complexities involved with
the sub-quadratic algorithms. This thesis focus on the classical approach.

This section is structured as follows: In 8.1 we present a classical quadratic multiplication
algorithm that convolutes the digits of the operands, and we discuss how to parallelize it.
In 8.2 and 8.3 we present our CUDA and Futhark implementations, respectively, and any
further optimizations related to the implementations. Lastly, in 8.4 we cover the special
case of multiplication by a single precision factor, and present an algorithm that shares the
behaviour and efficiency of an addition operation.

8.1 Algorithm

The classical multiplication algorithm handles one digit of the multiplier at a time. E.g. in
decimal, 42 · 21 becomes 1 · 42 · 100 + 2 · 42 · 101. For our big integers, we have:

Definition 5 (classical multiplication). Multiplying integer u ∈ N by v ∈ N in the
positional number system, with base B and m digits, is classically decomposed to:

u · v =

m−1∑
i=0

ui

m−1∑
j=0

vj ·Bj

Bi (19)
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w0 w1 w2 . . . wm−1 . . .
= = = =� � � �
0 c0 c1 . . . cm−2

+ + + +
u0v0 u0v1 u0v2 . . . u0vm−1

+ + +
u1v0 u1v1 . . . u1vm−2 . . .

+ +
u2v0 . . . u2vm−3 . . .

. . .
...

um−1v0 . . .

Figure 6: Visualization of classical multiplication as stated in Definition 5 with the outer sum as rows.

The definition is illustrated in Figure 6. We make two observations:

– The multiplicand v appears inside the outer sum of the definition in (19).

– Only the first m sums of the illustration contributes to the result in our setting.8

The former tells us that we cannot compute the outer sum using register arithmetic.
However, from the latter, we can redefine the terms of the outer sum by exploiting the
tiling of digits that is apparent in the illustration. We refer to the columns as convolutions,
e.g. the convolution of w1 is the sum c0+u0v1+u1v0, and each arithmetic of a convolution
fits in register. Hence, we arrive at the following definition:

Definition 6 (tiling of classical multiplication by convolutions preserving input shape).
Assuming the product of Definition 5 is truncated to m digits, it can be redefined to:

u · v =

m−1∑
k=0

 ∑
0≤i,j<m
i+j=k

ui · vj

Bk (20)

A sequential algorithm is straightforward to construct from this definition. In contrast, we
make three new observations to parallelize it:

– The products across all convolution are unique, i.e. the O(m2) products of the inner
sum in Equation (20) have to be computed.

– The number of terms constituting a convolution (i.e. the work) is linear in k.

– The overflows can be propagated as a separate step after computing the convolutions
(e.g. using badd).

8The result of multiplication is up to twice the size of the inputs. In order to not loose precision in our
setting, a memory region of double size should be preallocated before the multiplication function call.
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For simplicity, let us assume we have m threads available.9 The first observation tells us
that each thread must compute O(m) inner products with no parallelism. It would seem
natural to let thread tl∈{0,..,m−1} compute convolution l, but from the second observation,
this gives an unbalanced amount of sequential work amongst threads. However, we also
derive from the second observation that the combined work of convolution 0 and convolution
m− 1 is m+1, and is equal to that of convolution 1 and m− 2, and to that of 2 and m− 3,
etc.10 Thus, by introducing a fixed sequentialization factor of 2, we can balance the work
amongst threads, s.t. thread tl∈0,..,(m/2)−1 computes convolution l and convolution m−1−l.

Regarding the third observation; in order to propagate the overflows in a separate sweep, we
must keep track of them while computing the convolutions. It is a known rule that; given
any two factors, their product fit in their combined size. E.g. in decimal, 9 (size 1) times
99 (size 2) is 891 (size 3). By this rule, each product of a convolution fits in two machine
words. We denote the least significant word as the low part and the most significant as the
high part. Now, each convolution is the sum of O(m) low and high parts. Adding the low
parts overflows to the high part, and adding the high part overflows to the carry part – yet
another machine word (assuming the base is big enough to hold the carry part). Hence, we
need three words to keep track of each convolution.

Thus, we derive the following parallel algorithm with work O(m2) and depth O(m):

Definition 7 (work balanced parallel algorithm for classical multiplication by convolution
(convmul)). We parallelize Definition 5 according to the pseudocode in Figure 7. Lines 1-18
describes the main function that, given a thread index t ∈ {0, .., (m/2)− 1}, computes a
low, high, and carry part of both convolution t and convolution m−1− t. Lines 20-25 calls
the main function on each thread and adds the convolution parts according to following
memory layout, where color and superscript denotes the thread that has computed the part,
and subscript denotes the convolution that the part originates from:

l00 l11 l22 l33 . . . l3m−4 l2m−3 l1m−2 l0m−1
+ + + + + + + +
0 h0

0 h1
1 h2

2 . . . h4
m−5 h3

m−4 h2
m−3 h1

m−2
+ + + + + + + +
0 0 c00 c11 . . . c5m−6 c4m−5 c3m−4 c2m−3

While we cannot optimize the algorithm asymptotically, we can eliminate one of the
additions, decreasing the amount of communication. The intuition is to compute two
lower and two upper convolutions per thread – four in total. This allows to prematurely
compute half of the additions before the parts leave register memory (i.e. in the function
CONV of Figure 7), and thus, necessitating only one addition after running the convolutions.
The optimization not only reduces the communication, but also reduces shared memory

9Since we parallelize at block-level, we have m/q ≤ 1024 threads, where q is the sequentialization factor.
10Easy to see on the pattern visualized in Figure 6
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1 fun CONV t = -- Parameter ‘t‘ represents current index of the m/2 threads
2 k1 = t
3 k2 = m - 1 - k1 -- The indices ‘k1‘ and ‘k2 ‘ represents the
4 l1 , l2 , h1, h2, c1 , c2 = 0 -- upper and lower ‘k‘ handled by thread ‘t‘
5
6 for i in (0..k1) -- The indices ‘i‘ and ‘j‘ are computed
7 j = k1 - i -- straightforward w.r.t. Equation (20)
8 l1 += u[i] *low v[j]
9 h1 += u[i] *high v[j] + overflowl1

10 c1 += overflowh1

11
12 for i in (0..k2)
13 j = k2 - i
14 l2 += u[i] *low v[j]
15 h2 += u[i] *high v[j] + overflowl2

16 c2 += overflowh2

17
18 return (l1 , l2 , h1, h2, c1 , c2)
19
20 (l1 , l2 , h1, h2, c1 , c2) = map CONV (0..(m/2) -1)
21 l = concat l1 (reverse l2) -- The second half of the
22 h = shift 1 (concat h1 (reverse h2)) -- convolutions are computed in
23 c = shift 2 (concat c1 (reverse c2)) -- reverse order due to work balancing
24 r = ADD l h
25 w = ADD r c

Figure 7: Pseudocode of work balanced parallel algorithm for classical multiplication by convolution of
big integers. Input: u and v of size m. Output: w of size m. Use: Big integer addition function ADD.

t0 )

t1 )

l0 h0 c0
l1 h1 c1

l2 h2 c2
l3 h3 c3

combines to−−−−−−−→

carry−−−→ carry−−−→
l0 h0 + l1 c0 + h1 c1

l2 h2 + l3 c2 + h3 c3
−−−→
carry

−−−→
carry

...
. . . . . .

Figure 8: Illustration of optimized memory layout of convmul with sequentialization factor of 4, where the
left-hand-side shows the low, high, and carry parts of the first four convolutions, and the right-hand-side
shows how to combine six parts to four on a thread-level.
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usage by better utilizing registers. The downside is that it further increase the amount of
sequential work within a thread by a factor of 2. Hence, whether the optimization will pay
off depends on the batch size and number of available threads – or if the inputs are too big
to fit a CUDA block with sequentialization factor of 2.

Figure 8 contains an illustration of the tiled convolution layout of this optimization w.r.t.
threads. Now, compared to the pseudocode of Figure 7, a thread computes a total of twelve
parts in the convolution function conv, but combines them to eight parts before returning –
four for the lower convolution and four for the upper. In turn, the memory layout is trickier
to construct, requiring threads to alternate in writing pairs of their parts to the additive
arrays. E.g. with four threads we get that the final parallel addition of the convolution-
results corresponds to the following memory layout, where color and superscript denotes
the thread that has computed the part, and subscript denotes the part number:

t000 t001 t100 t101 t200 t201 t300 t301 t310 t311 t210 t211 t110 t111 t010 t011
+ + + + + + + + + + + + + + + +

0 0 t002 t003 t102 t103 t202 t203 t302 t303 t312 t313 t212 t213 t112 t113

The optimized memory layout perfectly partitions into a parallel addition operator with
sequentialization factor of 4, and thus, yielding both the aforementioned upsides and a
faster addition.11 With a sequentialization factor of q = 4 rather than q = 2, it can also
process integers at CUDA block-level of up to double the size. To go beyond q = 4, it
is speculated wiser to stack this optimizations rather than combining all the consecutive
sequential parts, as more combinations reduce the effectiveness of the final parallel addition.

8.2 CUDA Implementation

In this section, we introduce five CUDA versions. The first version (V1) implement the
convmul algorithm straightforward, with a sequentialization factor of 2. The second version
(V2) introduces a data type optimization w.r.t. doubling the word-size for keeping track of
convolutions inside loops. This optimization effectively minimizes the amount of work in
loops, by delaying the propagation of overflows until after the loop has run.

The third version (V3) introduces multiple instances per block to the approach of V2. The
fourth version (V4) implements a sequentialization factor of 4 according to the optimization
that combines consecutive convolutions, and the fifth version (V5) expands V4 with multiple
instances per block.

We decide the CUDA kernel dimensions and parameters with the code in Listing 6. Akin
to Listing 1 regarding addition, but with the block size rounded up to 128 rather than 256
(which we experimentally found to be faster). The sequentialization factor does not grow

11Experimentally, we found addition with sequentialization factor of 4 to be the fastest (see section 7).
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beyond 4, but, as mentioned at the end of section 8.1, one could implement a version with
a sequentialization factor that is a multiple of 4. Hence the CUDA implementations are
limited to integers of size m ≤ 4096.

Listing 6: CUDA multiplication parameters and dimensions for version v with size m and num_instances.

1 const uint32_t q = (v >= 1 && v <= 3) ? 2 : 4;
2 const uint32_t ipb = (v == 3 || v == 5) ? (128 + (m/q) - 1) / (m/q) : 1;
3 dim3 block(ipb*(m/q), 1, 1);
4 dim3 grid (num_instances/ipb , 1, 1);

This section is structured into three paragraphs that describes the implementation of
convolutions, memory layouts, and multiple instances per block, respectively. Combined,
they establish how the five CUDA kernels are implemented.

Convolutions. The implementations use the type ubig_t of the generic base class – a
type that use twice as many bits as the base uint_t. We use the type to compute the
inner products of the convolutions, but it also allows the optimization of V2: The idea is
to postpone the combining of the low and high parts of products until after the sequential
loop. Then, the carries can be propagated once, rather than i times for convolution ki. The
first two convolutions of Listings 7 and 8 shows the difference in storing intermediate values
of the convolution in type uint_t (by a low, high, and carry part) and in type ubig_t (by
a low and high part only).

The third convolution of Listing 8 shows how to compute and combine two consecutive
convolutions, used in the optimized version with sequentialization factor of 4. The CUDA
listing also reveals another upside of this optimization; by combining the two consecutive
convolutions into one loop-construct, we can reuse a digit of the multiplier u, and thus,
reduce memory usage further.

The three presented convolutions are used to define V1, V2, and V4, respectively.

Listing 7: The three convolutions used in the CUDA multiplication kernels of file ker-mul.cu.h. The
listing continues in Listing 8 on the next page.

1 • Convolution over index k as described in Definition 7
2 for (int i=0; i<=k; i++) {
3 // compute high and low part of product
4 int j = k - i;
5 ubig_t uv = (( ubig_t) u[i]) * (( ubig_t) v[j]);
6 uint_t l = (uint_t) uv;
7 uint_t h = (uint_t) (uv >> Base::bits);
8 // update lows , highs , and carries
9 ls += l;

10 hs += h + (ls < l);
11 cs += hs < (h + (ls < l));
12 }
13 Continued in Listing 8 on next page . . .
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Listing 8: The three convolutions used in the CUDA multiplication kernels of file ker-mul.cu.h.
Continuation of Listing 7 on the previous page.

14 . . . Continuation of Listing 7 from previous page.
15
16 • Convolution over index k optimized for data type ubig_t
17 ubig_t l = 0;
18 ubig_t h = 0;
19 for (int i=0; i<=k; i++) {
20 // compute high and low part of product
21 int j = k - i;
22 ubig_t uv = (( ubig_t) u[i]) * (( ubig_t) v[j]);
23 l += uv & (( ubig_t) Base:: HIGHEST);
24 h += uv >> Base::bits;
25 }
26 // update lows , highs , and carries
27 ls = (uint_t) l;
28 hs = (( uint_t) h) + (( uint_t) (l >> Base::bits));
29 cs = (( uint_t) (h >> Base::bits)) + (hs < (( uint_t) h));
30
31 • Convolution over index k and k+1 optimized for ubig_t and sequentialization factor of 4
32 ubig_t l1 = 0; ubig_t h1 = 0;
33 ubig_t l2 = 0; ubig_t h2 = 0;
34 for (int i=0; i<=k; i++) {
35 // compute high and low part of product
36 int j = k - i;
37 ubig_t uv1 = (( ubig_t) u[i]) * (( ubig_t) v[j]);
38 ubig_t uv2 = (( ubig_t) u[i]) * (( ubig_t) v[j+1]);
39 l1 += uv1 & (( ubig_t) Base:: HIGHEST);
40 h1 += uv1 >> Base::bits;
41 l2 += uv2 & (( ubig_t) Base:: HIGHEST);
42 h2 += uv2 >> Base::bits;
43 }
44 // remaining computation where i = k+1
45 ubig_t uv = (( ubig_t) u[k+1]) * (( ubig_t) v[0]);
46 l2 += uv & (( ubig_t) Base:: HIGHEST);
47 h2 += uv >> Base::bits;
48 // update lows , highs , and carries
49 ls1 = (uint_t) l1;
50 hs1 = (( uint_t) h1) + (( uint_t) (l1 >> Base::bits));
51 cs1 = (( uint_t) (h1 >> Base::bits)) + (hs1 < (( uint_t) h1));
52 ls2 = (uint_t) l2;
53 hs2 = (( uint_t) h2) + (( uint_t) (l2 >> Base::bits));
54 cs2 = (( uint_t) (h2 >> Base::bits)) + (hs2 < (( uint_t) h2));
55 // combine the lows , highs and carries
56 ls = ls1;
57 hsls = hs1 + ls2;
58 cshs = cs1 + hs2 + (hsls < hs1);
59 cscs = cs2 + (cshs < hs2);
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Memory layout. Constructing the memory layout of convmul with sequentialization
factor of q = 2 (Definition 7) is straightforward; the shared memory is partitioned in three,
and each thread write their two convolution parts to each of the three memory partitions.
The writes are coalesced by design. E.g. for eight digits and four threads, where color and
superscript denotes thread, and subscript denotes convolution, the writes are:

l00 l10 l20 l30 l31 l21 l11 l01 h0
0 h1

0 h2
0 h3

0 h3
1 h2

1 h1
1 h0

1 c00 c10 c20 c30 c31 c21 c11 c01︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
ls hs cs

Now, reading and adding the three sub-arrays in memory is trivial using badd with q = 2.

On the contrary, we get a complicated memory layout (in order to read and write coalesced)
when optimizing convmul for q = 4. Since we compute four parts per convolution, we
partition the shared memory in four and write the convolution results to the partitions,
coalesced. Reading from the first two partitions is straightforward, but reading from the
last two partitions is offset by −1 s.t. if the index is out-of-bound of the partition (i.e. the
first thread is reading), the constant 0 is read instead.

E.g. for eight digits and two threads, we get a shared memory buffer of size 16 and partition
it to the four buffers ls, hls, chs, and ccs. Now, in order to add the convolution parts and
access memory coalesced, the reading and writing of shared memory follows this pattern,
where color and superscript denotes thread and subscript denotes convolution (register):

t000 t100 t110 t010 t001 t101 t111 t011 t002 t102 t112 t012 t003 t103 t113 t013
�w �w �w �w �w �w �w �w �w �w �w �w �w �w �w �w
l0 l2 l3 l4 lh0 lh1 lh2 lh3 hc0 hc1 hc2 hc3 cc0 cc1 cc2 cc3
�r �r �r �r �r �r �r �r 0r �

r

�

r

�

r 0r �

r

�

r

�

r

t000 t012 t100 t112 t001 t013 t101 t113 t010 t002 t110 t102 t011 t003 t111 t103︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
ls hls chs ccs

Afterwards, the registers of threads contains four pairs of elements to be added, and thus,
can straightforward use badd with sequentialization factor of 4 and values pre-fetched to
registers – corresponding to the addition at the end of section 8.1. Listing 20 in Appendix
B contains the CUDA code for reading and writing in this pattern.

The two memory layouts are used to define V1 & V2 and V4, respectively.

Multiple instances per block. When handling multiple arithmetic instances in a CUDA
block at the same time, the symmetrical pattern remains w.r.t. the work of convolutions.
E.g. for four big integer instances that each consists of four digits, where each instance is
denoted by a color, we have the following convolution pattern:
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Hence, the work-balancing pattern still applies (i.e. indexing from both ends in a thread).

Thus, we use the same convolution pattern to define V3 and V5 as we use to define V2
and V4, respectively. In turn, the memory layouts from V2 and V4 applies to V3 and V5 as
well. However, we have to be careful when reading from the memory buffer of the second
additive array, as shifting the layout is no longer sufficient to get the correct tiling. Instead,
we compute the thread index w.r.t. segments s.t. the first thread of a segment fetch 0 rather
than indexing to the previous segment. The aforementioned CUDA code for the memory
layout of V4 (Appendix B Listing 20) includes this segment-beginning check.

8.3 Futhark Implementation

The implementation of convmul in Futhark has one significant change from CUDA: Futhark
does not support 128-bit integers, thus, there may not be a double-size type for the base
type, and hence, we cannot apply the optimization of postponing the carry propagation. In
turn, we have three degrees of optimization in Futhark: The first version (V1) implements
the algorithm with sequentialization factor of 2, the second (V2) with a factor of 4, and
the third (V3) allows segmented multiplication. The type signature of the three versions
guarantees that the input memory layout matches the algorithm:
def convMulV1 [m] (us: [2*m]ui) (vs: [2*m]ui) : [2*m]ui
def convMulV2 [m] (us: [4*m]ui) (vs: [4*m]ui) : [4*m]ui
def convMulV3 [ipb][m] (us:[ipb *(4*m)]ui) (vs:[ipb *(4*m)]ui): [ipb *(4*m)]ui

First we present how to compute a convolution iteration. Since there may not be a double
type, we instead use the function mul_hi to compute the high part of a multiplication.
Listing 9 defines this, where the low, high, and carry parts are represented as a triple:

Listing 9: Futhark function to compute a convolution iteration from file mul.fut.

16 def iterate (l: ui , h: ui, c: ui) (u: ui) (v: ui) : (ui , ui, ui) =
17 -- compute the low and high part of result
18 let lr = u * v
19 let hr = mulHigh u v
20 -- update l, h and c
21 let ln = l + lr
22 let hn = h + hr + (fromBool (ln < l))
23 let cn = c + (fromBool (hn < h))
24 in (ln, hn , cn)
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It is now straightforward to define V1 with iterate and the loop-construct of Futhark. It
looks almost identical to the pseudocode of convmul (Figure 7), except that it copies to
shared memory beforehand using the technique explained in Listing 4 of section 7.3. Hence,
V1 is not listed. Note; our Futhark implementations of badd does not include a version with
sequentialization factor of 2. The general version is applied (i.e. V1), and thus, it is in the
hand of the Futhark compiler to efficiently map it to a CUDA block.

To define the two remaining versions, we introduce the helper combine of Listing 10. It
combines six consecutive parts so they become four (illustrated in Figure 8 of section 8.1):

Listing 10: Futhark function to combine the parts of two consecutive convolutions from file mul.fut.

26 def combine (l0:ui , h0:ui, c0:ui) (l1:ui, h1:ui , c1:ui) : (ui ,ui ,ui ,ui) =
27 let h0l1 = h0 + l1
28 let h1c0c = h1 + c0 + (fromBool (h0l1 < h0))
29 let c1c = c1 + (fromBool (h1c0c < h1))
30 in (l0, h0l1 , h1c0c , c1c)

For brevity, we only show V3 since V2 is practically identical. The convolution body – shown
in Listing 11 – is a straightforward adaptation of the CUDA convolution body:

Listing 11: Futhark convmul V3 convolution function on thread-basis in from file mul.fut (slightly edited).

154 let CONV (us: []ui) (vs: []ui) (tid: i64)
155 : ( (ui, ui, ui , ui), (ui, ui , ui , ui) ) = #[ unsafe]
156 -- iterate over the lower two convolutions
157 let k1 = tid * 2
158 let k1_start = (k1 / (4*m)) * (4*m)
159 let (lhc1 , lhc2) : ( (ui, ui , ui), (ui, ui , ui) ) =
160 loop (lhc1 ,lhc2) = ((0, 0, 0), (0, 0, 0)) for i<(k1 + 1 - k1_start) do
161 let j = k1 - i
162 let u = us[i + k1_start]
163 let lhc1 = iterate lhc1 u vs[j]
164 let lhc2 = iterate lhc2 u vs[j+1]
165 in (lhc1 , lhc2)
166 let lhc2 = iterate lhc2 us[k1+1] vs[k1_start]
167 -- iterate over the upper two convolutions
168 let k2 = ipb*4*m - 1 - k1
169 let k2_start = (k2 / (4*m)) * (4*m)
170 let (lhc3 , lhc4) : ( (ui, ui , ui), (ui, ui , ui) ) = ... -- as above
171 -- combine to eight parts (four lower , four upper)
172 in (combine lhc1 lhc2 , combine lhc3 lhc4)

Now, preparing the convolution parts in shared memory for addition is not a trivial task.
Our solution shown in Listing 12 is sub-optimal, but illustrates the process. It consists of
five steps, where step 4. is the nontrivial portion. Step 3. writes the four kinds of parts to
four partitions of shared memory, alike to the CUDA implementation. Unlike the CUDA
implementation, the additive arrays must now be constructed with a scatter, requiring
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to compute indices corresponding to the pattern at the end of section 8.1. The indices
are computed in lines 166-174, and is the reason that our implementation is sub-optimal.
Firstly, we implement with ipb ·m threads in mind, but we map over double that amount
of threads. Secondly, the function that is mapped branches on the thread-ID being odd
or even.12 The optimal solution entails fusing the computation of indices with the CONV
function, s.t. each convolution part gets tagged with a corresponding index to its place in
the additive arrays.

Listing 12: Futhark convmul V3 adding the convolution parts from file mul.fut (slightly edited).

186 -- 1. copy to shared memory coalesced
187 ...
188 -- 2. find the upper and lower four parts for each thread
189 let (lhcs1 , lhcs2) = map (CONV ush vsh) (0..<ipb*m) |> unzip
190 let lhcs = lhcs1 ++ (reverse lhcs2)
191
192 -- 3. map the convolution result to memory
193 let (ls, hls , chs , ccs) = unzip4 lhcs
194 let lhcss = ls ++ hls ++ chs ++ ccs :> [8* ipb*m]ui
195
196 -- 4. compute indices and retrieve convolution result from memory
197 let (inds1 , inds2) = unzip <| imap (0.. <2* ipb*m)
198 (\ i -> let off = i * 2
199 let isOdd = bool.i64 (i % 2)
200 let inds = if isOdd && ((off + 2) % (4*m) == 0)
201 then (off , off+1, -1, -1)
202 else (off , off+1, off+2, off+3)
203 let disc = (-1, -1, -1, -1)
204 in if isOdd
205 then ( inds , disc )
206 else ( disc , inds ))
207
208 let (inds11 , inds12 , inds13 , inds14) = unzip4 inds1
209 let indss1 = inds11 ++ inds12 ++ inds13 ++ inds14 :> [8*ipb*m]i64
210
211 let (inds21 , inds22 , inds23 , inds24) = unzip4 inds2
212 let indss2 = inds21 ++ inds22 ++ inds23 ++ inds24 :> [8*ipb*m]i64
213
214 let lhcss1 = scatter (replicate (ipb *(4*m)) 0) indss1 lhcss
215 let lhcss2 = scatter (replicate (ipb *(4*m)) 0) indss2 lhcss
216
217 -- 5. add the convolution parts
218 in baddV3 lhcss1 lhcss2

The Futhark implementation manages to stay close to the pseudocode of convmul. It is
less optimized than the CUDA implementation, due to insufficient 128-bit integer support.

12Thirdly, the reverse of line 158 is unnecessary since the purpose of the array is to be scattered.
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Input: u of size m base B and digit d
Output: w of size m in base B
Use: Function ADD for adding big ints

1 l = map (*low d) u
2 h = map (*high d) u
3 h = shift 1 h
4 w = ADD l h

u0 u1 u2 · · · um−1

· · · ·
d d d · · · d
= = = =

h0 h1 h2 · · · hm−1

�
+

�
+

�
+

�
+

l0 l1 l2 · · · lm−1

= = = =

w0 w1 w2 · · · wm−1

Figure 9: Pseudocode and illustration of parallel algorithm for multiplication by single precision factor.

Constructing the memory layout for the final addition, requires contemplating the indexing
of the scheme while computing convolutions – neglected in the presented implementation.

8.4 Single Precision Factor

Integer multiplication has some special cases; we have multiplication by 0, by 1 and by the
radix. Respectively, this is equivalent to 0, identity and right-shift (e.g. 4 · 101 in decimal
is equivalent to 4 ≪ 1, and 4 · 102 to 4 ≪ 2, etc.). Multiplication with big integers has
another special case; multiplication by a single precision factor.

This case can be computed in parallel in three steps, using parallel addition:

I Multiply each digit of the big integer by the single precision factor, resulting in two
arrays – one with the low parts and one with the high parts of the multiplication.

II Shift the array with the high parts by 1.

III Add the two arrays using parallel addition (e.g. badd).

Figure 9 contains an illustration and the pseudocode of this algorithm.

We could integrate this special case (along with the other special cases) into the classical
multiplication implementation. However, such an integration raises two concerns: First,
we expect multiple precision factors to have the dominant occurrence over single precision
(because we are in the domain of big integers), and therefore it is not worth the cost of
the extra computational steps required to check for special cases. Second, it introduces
branching into the multiplication, which is especially inefficient for batch processing with
multiple instances per block (as diverging branches within a block gives unbalanced work
amongst threads).

Moreover, it is essentially a parallel addition, so we do not benchmark or discuss it further.
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9 Division

The last of the basic arithmetics is division, and it is far more complicated than the others.
We say that the division is exact when the divisor precisely divides the dividend. When the
division is not exact, the result is ordinarily represented by a fraction – yet we do not desire
to leave the domain of integrals. Instead, we use the notion of quotient and remainder
commonly present in integer semantics:

u quo v := ⌊u/v⌋ (21)
u rem v := u− (u quo v) · v (22)

Usually, the quotient is associated with the division operator, and the remainder with the
modulus operator. Our division computes both values and returns them as a pair.

A common way to reason about division is to multiply the dividend with the inverse of the
divisor, also called the reciprocal. GMP use reciprocals for division by single precision, but
since reciprocals are expensive to compute, their basecase division use Knuth’s algorithm
for long division, also known as grade-school division [11, 14]. This algorithm is inherently
sequential: It iteratively produces the result by finding one correct digit per iteration, and
thus, hints at a linear depth unfit for GPGPU. As a result, we focus on algorithms using
the inverse of the divisor.

A well-known algorithm to find reciprocals is the Newton-Raphson method. It takes an
initial approximation, and through a series of iterative steps (also called Newton iterations),
refines the precision of the approximation. While it runs a number of inherently sequential
iterations too, the precision of the approximation roughly doubles at each iteration, hinting
at a logarithmic depth and making it more suitable for GPGPU than long division.

However, it presents a new hurdle w.r.t. the internal representation of both the inverse
and the intermediate approximations in iteration steps. One solution is to use fractions
internally and convert back to integers before returning the output. The downsides to this
solution is the potential loss of precision when using floating points (i.e. it will no longer
be an exact arithmetic) and the overhead of converting between representations.

Instead, we use Watt’s efficient and exact arithmetic algorithm for computing quotients,
presented in [21]. The prerequisite of the algorithm is the existence of a shift operation for
the chosen data type – which is an efficient operation for integers – and a multiplication
method given as an argument. The intuition is to utilize the shift operation in order to
avoid the domain change associated with computing the inverse, by instead computing what
is referred to as the whole shifted inverse.

This section is structured as follows: In 9.1 we give a detailed introduction to the algorithm
formulated by Watt in [21]. We also present a revision to the algorithm regarding an
unconsidered corner case, and specialize it to the domain of big integers. In 9.2 we
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further discuss its adaptability w.r.t. big integers, and raise concerns and solutions based
on a sequential prototype of the algorithm written in C. It serves to fully understand the
complexities involved in adapting the algorithm to big integers. Lastly, in 9.3 we give an
overview on how to parallelize the algorithm based on Futhark.

9.1 Algorithm

Before discussing the exact division algorithm, we introduce a new notation: The precision
of a big integer (denoted by p) refers to the number of digits without leading zeroes. E.g.
the integer [1, 2, 0] has size m = 3 and precision p = 2.

We now give the intuition behind the algorithm defined by Watt in [21], and refer to the
original paper for proofs and a generic version. The foundation of the algorithm is a whole
shift operator and a whole shifted inverse operator:

Definition 8 (whole shift and whole shifted inverse of big integers). We define a n ∈ Z
whole shift and n′ ∈ N whole shifted inverse of big integers u ∈ N and v ∈ N+ in base B as:

shiftn u := ⌊u ·Bn⌋ shinvn′ v := ⌊Bn′
/v⌋ (23)

A shift in our array-oriented representation behaves similarly to a binary system arithmetic
shift, e.g. shift1 [1, 2, 3] = [0, 1, 2] and shift−1 [1, 2, 3] = [2, 3, 0]. The shifted inverse
behaves as an inverse that has been shifted, which follows from the its definition:

shinvn′ v = ⌊Bn′
/v⌋ = ⌊1

v
·Bn′⌋ = shiftn′

1

v
(24)

Now, suppose the fractional part of v consists of m′ digits – then, given it is shifted by some
n′ > m′, the shifted inverse essentially behaves as a fractional representation that has been
shifted into our domain. E.g. decimal system, the inverse of the number 4 is 0.25, which has
a fractional part of precision 2, and so picking n′ = 2 gives us shinv2 4 = shift2 0.25 = 25,
which does not require fractions to represent.

Picking such a n′ is not trivial, as is evident from recurring digits (e.g. 1/3). However, for
division, it is good enough to pick n′ = h where h is the precision of the dividend, proven
by Watt in [21]. E.g. the decimal division 10 quo 3, the dividend has precision 2 and so we
find the shifted inverse shinv2 3 = shift2 1/3 = 33. Then we multiply 33 · 10 = 330. Now,
since the inverse was shifted by 2, we must shift it by −2 (i.e. it was multiplied with B2,
so we multiply it by B−2), and get shift−2 330 = 3.

Before we define how to compute the shifted inverse, let us consider Example 3, showing
the intuition behind the above process for big integer.
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Example 3 (big integer division by whole shifted inverse). Suppose we have the integer
u = [1, 2, 3] in base B = 232 and wish to divide it by the integer v = [1, 1, 0] in base B.
Since u is of precision p = 3, we shift the inverse of v by 3 (using a calculator for now):

shinv3 [1, 1, 0] = [0, 4294967295, 0] (25)

We can then multiply u with the shifted inverse (expanding the result size), and get:

[1, 2, 3] · [0, 4294967295, 0] = [0, 4294967295, 4294967294, 4294967294, 2] (26)

Now, since the fractional part of the inverse was "shifted into our domain" by 3, we shift
the result by −3 (and compress it to the original size):

shift−3 [0, 4294967295, 4294967294, 4294967294, 2] = [4294967294, 2, 0] (27)

The correct answer is [4294967295, 2, 0], so the method is off by one.

In the given example, the result is not precise – which is an accommodated byproduct of
using the whole shifted inverse: The method approximates the result by a difference of one
at most, allowing us to mechanically adjust the result. The formal definition given by Watt
in Theorem 1 of his paper [21] is as follows:

Definition 9 (quotient of big integers by whole shifted inverse). For the base B big integers
u and v and some h ∈ N s.t. u ≤ Bh, the quotient of u by v is:

u quo v = shift−h (u · shinvh v) + δ, where δ ∈ {0, 1} (28)

The challenge now lies in computing shinv. The remaining of this section is partitioned in
two parts. Part 9.1.1 details the algorithm to compute the whole shifted inverse (shinv) of
a big integer, and part 9.1.2 defines a division algorithm using the whole shifted inverse.

9.1.1 Computing the whole shifted inverse

The algorithm given by Watt (Algorithm 1 in [21]) computes the whole shifted inverse of an
integer, by using a Newton iteration over integers and specialized to the base, s.t. it can use
shifts rather than fractions. We adapt this algorithm to our big integer representation, and
make a revision to it. The complete algorithm is listed in Figures 10 and 11. It computes
shinvh v for v in base B, under the assumption that Bk ≤ v < Bk+1. We contribute to the
algorithm with the extra assumption that k ̸= 1. We show how to find and enforce these
assumptions in part 9.1.2. We now present each function step by step.
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1 • Computes shinvh v, i.e. ⌊Bh/v⌋ (Definition 8), where v is a base B big integer s.t.
Bk ≤ v < Bk+1 and k ̸= 1, and quodigit and *digit denotes a single precision operand.

2 fun SHINV h k v =
3 -- I Handle special cases
4 if v < B then return Bh quodigit v[0]
5 if v > Bh then return 0
6 if (v *digit 2) > Bh then return 1
7 if v == Bk then return Bh−k

8 -- II Find a two digit initial approximation w for the shifted inverse
9 V = v[k-2] + (v[k-1] * B) + (v[k] * B2)

10 w = ((B4 - V) / V) + 1
11 -- III Refine until sufficient (see below), which it may already be
12 if h - k <= 2 then return shift (h - k - 2) w
13 return REFINE v w h k 2
14
15 • Refines the approximation w of the h-shifted inverse of v, currently consisting of l

correct leading digits, where the total computational work is reduced by using shorter
iterates and divisor prefixes. In the function, g denotes the amount of guard digits
to account for the inexactness of using shorter iterates and divisor prefixes. n is
number of digits to grow the correct part of the approximation in each iteration,
w.r.t. shorter iterates. s is the amount of digits to scale v with w.r.t. divisor
prefixes, in order to obtain a prefix that has at most g digits of error. The Newton
step is then, for all but the last iteration:

w = w ·Bl + ⌊w · (Bl −B−k+s−g · ⌊v ·B−s⌋ · w)⌋

In the last iteration, it is instead:

w = w ·Bh−k+1−l + ⌊w · (Bh−k+1−l −Bh−2k+1−2l+s−g · ⌊v ·B−s⌋ · w)⌋

16 fun REFINE v w h k l =
17 -- guard digits to account for the inexactness of using shorter iterates

and divisor prefixes (at most B from being correct , so 2 guard digits)
18 g = 2
19 w = shift g w
20 while h - k > l do
21 -- n is amount to grow the correct part of the approximation in this

iteration (w.r.t. shorter iterates). For the last iteration we get
n = h−k+1−l, but for all others we get n = l (doubling the precision).

22 n = min l (h - k + 1 - l)
23 -- s is amount to scale v with (w.r.t. divisor prefixes)
24 s = max 0 (k - 2*l + 1 - g)
25 -- take a Newton step (see below)
26 w = shift (-1) (STEP (k + l + n - s + g) (shift (-s) v) w n l g)
27 -- l is amount of correct leading digits after the step (i.e. one short

for doubling , except for the last iteration)
28 l += n - 1
29 return shift (-g) w
30
31 Continued in Figure 11 on next page . . .

Figure 10: Algorithm to compute shinvh v, where v is a base B big integer s.t. Bk ≤ v < Bk+1 and
k ̸= 1, adapted to big integers from Algorithm 1 by Watt in [21], continued on the next page in Figure 11.
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32 . . . Continuation of Figure 10 from previous page.
33
34 • Takes a Newton step for big integers v and w, defined as

step(h, v, w, n) := w ·Bn + ⌊w · (Bh−n − v · w) ·B2n−h⌋

Here, h is the parameter to shift the inverse, and n the number of extra digits to
refine in this step (since the last iteration does not double the correct precision).
l is the number of leading digits currently correct, and g is the amount of guard
digits added by the refinement method – both of which are passed down to POWDIFF to
enable optimizations (see below). MUL is a big integer multiplication method, SUBabs
an absolute subtraction method, and ADD an addition method.

35 fun STEP h v w n l g =
36 -- 1. Compute Bh−n − v · w
37 (pwd , sign) = POWDIFF v w (h-n) (l-g)
38 -- 2. Compute and return w · Bn + ⌊w · (Bh−n − v · w) · B2n−h⌋
39 if sign
40 then return SUBabs (shift n w) (shift (2*n - h) (MUL w pwd))
41 else return ADD (shift n w) (shift (2*n - h) (MUL w pwd))
42
43 • Computes the following function efficiently using close products (i.e. we may sometimes

truncate the length of the multiplication computing v · w):

powdiff (v ,w , h) := Bh − v · w

l is number of correct leading digits in w, MUL is a big integer multiplication
method, SUB is a signed big integer subtraction method (with false representing
unsigned and true representing signed), and MULMOD and PREC is as defined below.

44 fun POWDIFF v w h l =
45 L = (PREC v) + (PREC w) - l + 1
46 -- Best case where v · w = 0, so the result is Bh

47 if (v == 0) || (w == 0) then return (Bh, false)
48 -- Worst case where the multiplication v · w is in full size
49 if L >= h then return SUB Bh (MUL v w)
50 -- Close product case where only the lower L digits of v · w is needed
51 P = MULMOD v w L
52 if P == 0 then return (P, false)
53 if P[L-1] == 0 then return (P, true)
54 return SUB BL P
55
56 • Finds the precision p of big integer v, i.e. v < Bp.
57 fun PREC v =
58 p = (sizeof v) - 1
59 while v[p] == 0 do
60 p -= 1
61 return p + 1
62
63 • Finds the first L digits of the multiplication between big integers v and w, i.e.

(v · w) rem BL, using some big integer multiplication method MUL.
64 fun MULMOD v w L =
65 return take L (MUL v w)

Figure 11: Continuation of Figure 10 from last page.
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SHINV (lines 1-13) The algorithm can roughly be divided into three steps:

I Handle the special cases (lines 4-7).

II Find an initial approximation (lines 9-10).

III Refine the initial approximation iteratively until it is sufficient (lines 12-13).

In step I we have four special cases. The first three cases guarantee that B < v ≤ Bh/2,
which is proven a prerequisite for the initial approximation method developed by Watt
in [21], that picks an initial approximation guaranteed to converge fast in the refinement
process. The first of these cases, is when v only consists of a single digit, and we use a
division by single precision method instead. The next two cases is if v > Bh or 2v > Bh

and so the inverse is 0 and 1, respectively.

The fourth special case guarantees that v ̸= Bk. This is important because we then know
that ⌊Bh/v⌋ is a big integer of h − k digits. E.g. consider the example h = 2 in decimal
system (so B2 = 100): If v is 10 (so k = 1), the result is 100/10 = 10 (2 digits). However,
if v < 10 (i.e. k = 0), then 10 < 100/v (i.e. h − k = 2 digits), and likewise, if 10 < v (i.e.
k = 1), then 100/v < 10 (i.e. of h− k = 1 digit).

To rephrase: This case ensures that the refinement is sufficient once it has produced h− k
correct digits. It is handled trivially by the rule xa/xb = xa−b.

Step II computes the initial approximation using the last three digits of v, e.g. for v of
size m we get V = [v[m − 3], v[m − 2], v[m − 1]] in a positional notation.13 It then finds
the initial approximation as ((B4 − V )/V ) + 1. Since V is three digits, we have that
B4 − V is four digits, where the most significant digit is the maximum digit. (E.g. in
decimal, V is at most 999, and so 104 − 999 = 9001.) Then, a four digit number divided
by a three digit number, where the fourth digit of the dividend is the maximum digit,
and the result is then incremented by one, gives us 2 digit number. (E.g. consider again
(9001/999) + 1 = 9 + 1 = 10). As proven by Watt in [21], this two digit approximation is
a good initial approximation, guaranteed to converge fast in the refinement method.

Step III checks whether the initial approximation is sufficient, i.e. if the shifted inverse (of
h− k digits) is a one or two digits result. If more correct digits is needed (i.e. h− k > 2),
it starts the refinement process using the specialized Newton iteration.

REFIINE (lines 16-29) Watt presents three refinement methods with a varying degree of
optimizations. The method we use is the optimal (refine3 of Algorithm 1 in [21]), with
no alterations to its original formulation. This refinement method expands the specialized
Newton iteration with two concepts; shorter iterates and divisor prefixes. Shorter iterates is

13Given our assumption k ̸= 1, and the first special case in the previous step, where k = 0, it is guaranteed
that v is of sufficient size to compute such a V (i.e. v is at this point at least three digits).
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the idea that not all digits matter in the intermediate results between iterations: Since the
precision roughly doubles, only the leading l digits of the intermediate results contributes
to the refinement at each iteration, where l denotes the current number of correct leading
digits. It effectively allows us to truncate the size of the big integer multiplication in each
Newton step (the STEP function discussed below), rather than doing each step in the full size
of the dividend. The size of the multiplication roughly doubles with the iteration number.
In turn, this introduces the need for guard digits (line 18), because the truncated-sized steps
may differ from the full-sized steps, but only in the two least significant digits.

However, this is where our contributed assumption k ̸= 1 is important. Shorter iterates have
the side effect of each iteration being exactly one digit short from doubling the precision at
each iteration. This means that the number of correct leading digits, l, must be ≥ 2. Thus,
if k = 1 and we are in the case h − k > 2, then we start refining on l = 1. In turn, one
digit short of doubling l = 1 is l = 1, and hence, the refinement process never increases the
precision and runs forever.

Lastly, divisor prefixes is the idea that, when the divisor v is large in relation to the shifted
inverse approximated at each iteration, some of the leading digits of v does not contribute
to the result of the iteration step. Instead, we use a prefix of v to further shorten the size
of the multiplications in each step. This process is imprecise too, but is defined s.t. the 2
guard digits accounts for the imprecision. The factor to shift v in order to obtain a prefix,
is determined at line 24.

STEP (lines 35-41) This function is where most of the computational work lies, since it
contains two multiplications. The function computes w ·Bn + ⌊w · (Bh−n − v ·w) ·B2n−h⌋
for a given h, n, and big integers v and w in base B, as given by Watt in [21]. It computes
straightforward, except it uses the function POWDIFF to handle Bh−n−v ·w more efficiently,
as given by Watt. We have made no alterations to the original function formulation, except
for explicitly introducing a sign-magnitude representation of the term of Bh−n − v · w.

POWDIFF (lines 44-54) Lastly is the function POWDIFF. The term Bh−v·w appears in each
iteration step, and while it can be computed straightforward, Watt increases the efficiency
by using close products [21]. The idea is that, if the product v ·w is close to Bh by a factor
of |Bh − v · w| ≤ BL, L < h, then only the lower L digits of the product v · w are needed,
since the remaining are predetermined. Hence, we can use a truncated multiplication of
size L rather than the size of v and w. This case is handled in lines 51-54. Formally, the
multiplication for integers v and w corresponds to (v ·w) rem BL, and is computed by the
function MULMOD in lines 64-65. In order to find such a L, POWDIFF use the precision of its
inputs (line 45), which is computed straightforward by the function PREC in lines 57-61.
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9.1.2 Computing the big integer division

We now present an algorithm for finding quotient and remainder of big integers using
Definition 9 and SHINV of Figure 10 – including how to enforce the assumption k ̸= 1
of SHINV using shifts (the necessity is discussed in part 9.1.1). The Pseudocode for this
algorithm is in Figure 12 and contains four steps:

1. Lines 3-4 compute the assumptions of the precision of the inputs straightforward using
the functions FINDK (line 19-23) and FINDH (line 26-30).

2. Lines 6-9 handle the case k = 1 by shifting both u and v by one. A shift is equivalent
to a multiplication by definition, so the quotient is unaffected. Furthermore, the
relative difference of h and k is unchanged, so no further iterations are introduced.

3. Lines 11-12 find the quotient and remainder using Equation (28) with δ = 0, some big
integer multiplication method MUL, and some absolute subtraction method SUBabs.

4. Lines 14-16 check the value of δ = {0, 1} based on the nonsensicality of the remainder,
and adjust the quotient and remainder accordingly.

Thus, the function DIV defined in Figure 12 gives us an exact division operator for big
integers. It relies on the function SHINV of Figures 10 and 11 (sub-functions thereof), and
on arithmetic operators for addition, subtraction, and multiplication of big integers (such
as badd, bsub, and convmul), which, it can be parameterized over. Hence, it is possible to
e.g. use different operators for different input sizes.

The division is asymptotically dominated by the choice of multiplication operator (given
that the addition and subtraction is efficiently implemented). The iterative refinement
process takes ⌈log(h− k)⌉ iterations, where h depends on the precision of the dividend and
k on the precision of the divisor. This number comes from the fact that the refinement
method produces a shifted inverse of h − k digits (as discussed in 9.1.1), and it roughly
doubles the number of correct digits in the approximation at each iteration.

Each iteration step runs at most two multiplications (one in STEP and either one or zero in
POWDIFF). While this gives us at most 2 · ⌈log(h− k)⌉ multiplications, the size of the inputs
to the multiplications is doubling at each iteration, due to the shorter iterates method.
From the analysis by Watt in [21], the total amount of digits multiplied from this method,
gives us O(M(m)) work, where M(m) is the work of the chosen multiplication operator
and m is the size of the input integers for the division.
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1 fun DIV u v =
2 -- 1. Find a h and k that satisfies u ≤ Bh and Bk ≤ v < Bk+1

3 h = FINDH u
4 k = FINDK v
5 -- 2. Enforce assumption k ̸= 1 of SHINV by shifting
6 if k == 1 then u = shift 1 u
7 v = shift 1 v
8 h += 1
9 k += 1

10 -- 3. Find quotient and remainder approximation according to Definition 9
11 q = shift (-h) (MUL u (SHINV h k v))
12 r = SUBabs u (MUL q v)
13 -- 4. Adjust the approximation for δ
14 if (r >= v) then q = ADD q 1
15 r = SUBabs r v
16 return (q, r)
17
18 -- finds k s.t. Bk ≤ v < Bk+1

19 fun FINDK v =
20 k = (sizeof v) - 1
21 while v[k] == 0 do
22 k -= 1
23 return k
24
25 -- finds h s.t. u ≤ Bh (by picking the smallest h)
26 fun FINDH u =
27 h = FINDK u
28 if u[h] == 1
29 then return u
30 else return u + 1

Figure 12: Pseudocode for a big integer division algorithm, computing u quo v and u rem v using
Definition 9 and function SHINV of Figure 10, where MUL is a big integer multiplication method, SUBabs a
absolute subtraction method, and ADD an addition method.
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9.2 General Reflections and Prototyping

This section discusses some concerns and solutions about the presented algorithm. We wrote
a sequential low-level prototype of the algorithm in C to better understand its adaptation
of our big integer representation. In its creation, we discovered multiple interesting subject
matters – some which are directly included in the pseudocode given in section 9.1, and
some which we now present.

Initial Approximation The initial approximation is found in step II of Listing 10. It
gathers the three leading digits of v in V and then finds B4−V , giving a result of four digits.
It then divides those four digits by V , giving a result of either one or two digits. Hence, the
quadruple base type qint_t is necessary to efficiently compute the initial approximation
with register arithmetic. This restricts a CUDA implementation to base uint32_t and
Futhark to u16. In C, this process corresponds to Listing 13:

Listing 13: C code to efficiently form the initial approximation of SHINV in base uint_t of bits bits and
quad type quint_t of 4·bits bits.

1 quint_t V = (quint_t) v[k-2]; // V = v[k-2]
2 V += (( quint_t) v[k-1]) << bits; // V += v[k-1] · B1

3 V += (( quint_t) v[k]) << (2* bits); // V += v[k] · B2

4
5 quint_t r = ((( quint_t) 0) - V) / V + (( quint_t) 1); // r = (B4 - V) / V + 1
6
7 w[0] = (uint_t) r; // w = r
8 w[1] = (uint_t) (r >> bits); // (assuming w was 0)

Base Powers These are prominent throughout the algorithm, and comes in a multitude of
usecases. When multiplied, they take the shape of a shift operator, as already incorporated
into the pseudocode. In the POWDIFF function, they are returned or otherwise used directly,
and hence, require construction in a new memory space.

Remaining is the special cases of step I in the SHINV function. The base powers are operands
to comparisons that express something structural about the divisor v. Hence, they can be
integrated in said comparisons, avoiding their construction. E.g. consider the second case
v > Bh. This optimizes to the check: ∃i ∈ N. (h < i < m∧v[i] ̸= 0)∨(h = i < m∧v[i] > 1).

(On a similar note, the multiplication by single precision of the third special case 2v > Bh

should be treated as v > Bh/2 and integrated in the comparison as well.)

Preallocating Memory Throughout this thesis, the big integer arithmetic has been
considered to preserve the input shape on output. The efficiency of this algorithm requires
fine control over the size of operands at each iteration, and hence, we need to adjust the
size parameter of inputs and outputs, according to the iteration number. Furthermore, it
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is ideal to preallocate a memory region large enough to hold the biggest intermediate value
of the refinement, rather than periodically doubling the memory regions of the operands.
From the analysis in Watt’s paper [21], the size of the operands at iteration i is at most 2i.
Since we have ⌈log(h− k)⌉ iterations, we get the maximum operand size 2⌈log(h−k)⌉.

Guard Digits In order to get our prototype to validate, we adjusted the amount of guard
digits in the refinement method from 2 to m, with m being the size of the inputs. Currently,
we are not aware whether this is related to the algorithm or an error in the prototype.

9.3 Parallelization and Futhark Implementation

While section 9.2 focused on general reflections, this section focuses on concerns and
solutions regarding parallelization and Futhark implementation. Our implementation is
not efficient and only partially validates, but it illustrates some of the complexities involved
in a parallel adaptation of the algorithm – which we now present.

Multiple Instances per Block and Load Balancing In our other arithmetic operators,
we incorporate multiple big integer instances per CUDA block, which are then handled
by segmented operations. It allows to maintain the efficiency of the arithmetics when
processing small integers. However, Watt’s algorithm for computing SHINV (Figure 10)
contains branching invariant to the precision of the inputs. The most apparent branching
is the special cases of SHINV, directly returning from the function. Then we have the
close product optimization in POWDIFF, which will either do no multiplication, a full size
multiplication, or a multiplication with truncated inputs. Lastly, the number of sequential
Newton iterations in the refinement process directly depends on the precision of the inputs.
Hence, the division algorithm is not suitable to process multiple instances per block.

Furthermore, due to the shorter iterates, the number of digits being multiplied at each
refinement step roughly doubles. In turn, mapping this division at block-level must be
carefully considered. The simplest solution is to run all operations in full-sized inputs
– however, as Watt analyze for the method he calls refine1 in [21] (a method without
shorter iterates), this solution increases the work by a factor logarithmic in the precision of
its inputs. Another solution is to spawn a kernel with the exact number of threads needed
to efficiently run the arithmetic of greatest input length. However, this results in threads
idling for arithmetics of shorter length. Likewise, if the kernel spawns with an inadequate
number of threads, the sequentialization factor of the arithmetic of the greatest length input
may exhaust registers and local memory, overall decreasing efficiency.14

14The current Futhark implementation (and C prototype) runs the arithmetics at padded full-size length.
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Shift Operator Shifting a big integer in parallel is very efficient and equivalent to a map,
as seen on the Futhark code in Listing 14. We can transform the operator to be in-place in
CUDA by splitting the map: Fetch the designated digit � synchronize � write the digit.

Listing 14: Shift operator (Definition 8) in Futhark from file helper.fut.

96 def shift [m] (n: i64) (u: [m]ui) : [m]ui =
97 map (\ i -> let off = i - n -- positive for right , negative for left
98 in if off >= 0 && off < m then u[off] else 0) (iota m)

Division by Single Precision The first special case of SHINV where v < B requires
quotient by a single precision integer (digit). The intuition follows from Definition 1 and
states that the quotient of a size m integer u by digit d in base B can be computed as:

qi =

∑m−1
j=i uj ·Bj−i

d
rem B (29)

E.g. consider the decimal number 300 divided by 4: We have q0 = (300/4) rem 10 = 5,
q1 = (30/4) rem 10 = 7 and q2 = (3/4) rem 10 = 0, giving the number 75. This approach
includes the big integer u and does not fit in a word. However, Equation 29 can be rephrased
in terms of the standard long division (grade-school) method. The method formalizes to
computing the partial quotient qi∈{0,..,m−1} using the partial remainder ri∈{0,..,m} as follows:

qi = (ri+1 ·B + ui) quo d (30)

ri =

{
(ri+1 ·B + ui) rem d if i < m

0 otherwise
(31)

The intermediate results of this approach fits in a double word. This algorithm is a simple
solution (opposed to e.g. GMP’s) and the one occupying our sequential prototype. However,
it is inherently right-to-left sequential and unsuitable for parallel computation.

We recognise three approaches:

1. Parallelize the long division algorithm (possibly over a scan similarly to addition).

2. Computing an inverse (e.g. a whole shifted inverse by a method similar to SHINV),
but this approach requires a multiplication afterwards.

3. Shifting both u and v by two when k = 0 (similarly to the shift by one when k = 1).

The potentialities of approach 1 and 2 are unknown to us and beyond the scope of this
thesis. Hence, we use approach 3 for our parallel Futhark implementation.
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Assumptions, Comparisons, and Signed Subtraction The algorithm has various
comparisons of big integers, all of which parallelizes to map-reduce compositions. First,
consider the special cases of SHINV. As mentioned in section 9.2, they can be optimized to
a unary comparison over the big integer. Following the example of that section, the second
special case v > Bh parallelizes to Listing 15:

Listing 15: Futhark function to check u > Bi in parallel for big integer u in base B from file div.fut.

29 def gtBpow [m] (u: [m]ui) (i: i64) : bool =
30 map2 (\ x j -> (x > 1 && j == i) || (x > 0 && j > i) ) u (iota m)
31 |> reduce (||) false

Next, we have the equalities involved with the POWDIFF function. Equality of big integers
corresponds to equality between digits, which parallelizes straightforward. Then there are
the structural assumptions of big integers, written sequentially as the helpers FINDK, FINDH,
and PREC of Figures 11 and 12. They parallelize to a map-reduce composition that finds
the greatest nonzero index. E.g. Listing 16 shows a parallel FINDK, where the map-reduce
is equivalent to the max function over the indices of nonzero digits in the input:

Listing 16: Futhark function to find i for big integer u in base B s.t. Bi ≤ u < Bi+1 from file div.fut.

39 def findk [m] (u: [m]ui) : i64 =
40 map2 (\ x i -> if x != 0 then i else 0 ) u (iota m)
41 |> reduce (\ acc i -> if i != 0 then i else acc ) 0

Penultimately, the subtraction presented in section 7.4 is unsigned, yet POWDIFF requires
signed subtraction. Extending the subtraction to signs is trivial, achieved by determining
the relation between the operands. For this purpose, we use the general big integer ‘<‘
comparison of Listing 17. The map in line 84 encodes whether the pairwise digits of the
inputs are either ‘<‘ or ‘=‘. Line 85 then reduce with the following operator:

(l1 , e1 )⊙ (l2 , e2 ) := (l2 ∨ (e2 ∧ l1 ), e1 ∧ e2 ) (32)

The rationale is: If the first operand is less than the second operand in the most significant
digits, then the whole integer is less than – if it is equal in the most significant digits,
then it is decided in the least significant digits. The left-associative neutral element of ⊙ is
(False, True). Proof of associativity and neutral element are included in Appendix C.

Listing 17: Futhark function to check u < v in parallel for big integers u and v from file helper.fut.

83 def lt [m] (u: [m]ui) (v: [m]ui) : bool =
84 map2 (\ x y -> (x < y, x == y) ) u v
85 |> reduce (\(l1,e1) (l2 ,e2) -> (l2 || (e2 && l1), e1 && e2)) (false ,true)
86 |> fst -- ‘fst ‘ extracts the first tuple field

Lastly, we have the ‘≥‘ associated with finding δ (line 14 of Listing 12). This can be done
efficiently by negating the result of the ‘<‘ operator of Listing 17 above.
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10 Correctness

Our big integer arithmetic operators are defined to be exact and efficient. The former
property collapses under incorrectness and more, the latter loose its meaning. Performance
benchmarks of invalid implementations are not trustworthy, as the underlying algorithms
may not be fully represented, and therefore, correctness is a prerequisite of measuring the
efficiency of our implementations. Additionally, we have build a tower of arithmetics, and
so the properties of the whole tower collapses under an invalid operator.

While proofs are given by the authors of the algorithms, this section focuses on testing the
correctness of the implementations. It is not plausible to exhaustively test the correctness
on all big integers, and we might leave out important input patterns by writing manual
test cases. Hence, we test on randomly generated big integers and compare the result of
running our implementations against GMP’s, assuming that GMP gives the valid answer.

Testing Methodology Testing the results of our CUDA implementations against GMP’s
is straightforward, because GMP can be linked to C++ and called directly in from our host
function. We generate some random big integers on which we call both ours and GMP’s
arithmetic functions on and compare the results. To generate a random big integer u of
size m and nz non-zero digits, we use the code in Listing 18:

Listing 18: Random big integer generator in C++ with u of size m and nz non-zero digits.

1 for(int i = 0; i < m; i++) {
2 uint32_t x = 0;
3 if(i < nz) {
4 uint32_t low = rand()*2;
5 uint32_t high = rand()*2;
6 x = (high << 16) + low;
7 }
8 u[i] = x;
9 }

Regarding Futhark, the compiler has a builtin test functionality called futhark-test [3].
It allows us to write test-specifications in Futhark programs that the compiler can generate
and run. A specification consist of a set of inputs and their the expected outputs. The
inputs can be either randomly generated or fixed, and the outputs can be either fixed or
automatically determined (by assuming C as backend gives the correct result).

It is not possible to directly test our Futhark implementations against GMP’s through
futhark-test, but it is possible indirectly by constructing the tests in a peculiar way: We
write a small Futhark library, called gmp-validation-lib.fut, which exports exactly one
of each arithmetic function. Each function takes exactly two inputs arrays and produce
exactly one output array, while being agnostic to the shape of the input. I.e. for the
underlying arithmetics that requires the input to be a specific shape (read; convmul), the

51



Thorbjørn Bülow Bringgaard Efficient Big Integer Arithmetic Using GPGPU

library function adds padding to ensure that the shapes matches. Now, we compile this
library to a C API using the Futhark library feature [3].

This produces a C header file that exports the functions and data types of the compiled
library. In turn, we write a C-program that incorporates GMP as described above, and
tests the Futhark arithmetic functions from the C-program through the API.

Hence, we obtain a GMP validated black box Futhark library. We can therefore substitute
GMP function calls in Futhark test programs with function calls to this library, effectively
giving us access to GMP inside the futhark-test environment.

The test specifications assign randomly generated 2D arrays of different sizes as inputs
and then expects the output to be true. The test function that compares our addition
functions against GMP is shown in Listing 19 below – an identical test function is defined
for multiplication. Here, test_add refers to the GMP-validated addition and oneAddVX to
version X of our addition implementations. Line 24 defines a validation function, lines 25-30
run our addition implementations, and line 31 checks that all results validate.

Listing 19: Futhark testing-functions for addition with 64-bit base from fut-validation.fut.

22 let (N, M) = (n/4, m/4)
23 let validP = (\ws -> map2 eq (map2 test_add us vs) ws |>reduce (&&) true)
24 let ws0 = oneAddV0 us vs
25 let ws1 = oneAddV1 us vs
26 let ws2 = oneAddV2 M (us :> [n][4*M]ui) (vs :> [n][4*M]ui) :>[n][m]ui
27 let usV3 = unflatten (us :> [N*4][4*M]ui) :> [N][4][4*M]ui
28 let vsV3 = unflatten (vs :> [N*4][4*M]ui) :> [N][4][4*M]ui
29 let ws3 = (oneAddV3 M usV3 vsV3 |> flatten) :> [n][m]ui
30 in validP ws0 && validP ws1 && validP ws2 && validP ws3

Similarly to the definition of validation tests, we also define property-based tests over the
usual arithmetic properties, such as commutativity for addition. They are included for
the purpose of completeness (and a potential source for debugging information), but are
redundant w.r.t. the GMP validation, assuming GMP gives the correct result.

(A final note on validating division in C; the divisor has a randomly generated nz value to
avoid hitting the same special cases repeatedly, providing more meaningful tests.)

Test Results We run the Futhark tests using futhark-test on base u16, u32, and u64
integers in the size range 4 ≤ m ≤ 512 and num_instances = 2048, with ipb = 4 where
relevant. We run all tests twice with different backends, once on the CPU with C as
backend, and once on the GPU with OpenCL as backend. The tests includes properties
and validation against GMP, and they run on all four versions of badd (addition) and all
three versions of convmul (multiplication). All tests validates.
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Next is the Futhark-GMP validation in C. We test addition, subtraction, multiplication,
and division. We run the tests of base uint16_t, uint32_t, and uint64_t, with division
only ran on uint16_t. They run on two different integer size patterns: 350 tests with m =
{2, 4, 8, 16, 32, 64, 128}, 50 tests for each size, and 2500 tests with 50 randomly generated
sizes in the range 1 ≤ m ≤ 512, 50 tests for each size. The tests are run twice using the
Futhark functions compiled to C and OpenCL, respectively. Tests for addition, subtraction,
and multiplication validates – tests for division does not validate.

Lastly, we have the CUDA-GMP validations tests. We test all three versions of badd and
all five versions of convmul with base uint32_t and uint64_t. The test setup is fused with
the performance benchmark setup (i.e. after a benchmark has been run, the result gets
valid), so further details about the test-configuration are in section 11.1. All tests validate.

11 Performance

To assess the efficiency of our implementations, we measure their relative performance of
running a benchmark suite. We expect that the CUDA implementations yields the best
performance given the underlying algorithms and optimizations, and in turn, reveals the
overhead and inefficiencies of the Futhark implementations. We also run the benchmarks
using the CGBN library described in section 2. It enlights the relative performance of
our implementations against state of the art, in addition to the strong and weak points of
the underlying algorithms and overarching implementations strategy (e.g. pros and cons of
block-level versus warp-level processing of big integers).

The runtimes of benchmarks can be tedious to directly compare. Instead, we define some
performance metrics based on the runtime, total number of bits, and arithmetic operation,
allowing us to directly compare results. We keep the total number of bits fixed, but vary
the size of integers and number of integer instances across runs.

The structure is as follows: Section 11.1 describes the setup of our benchmarks, section
11.2 introduces the performance metrics, and section 11.3 presents benchmark results.

11.1 Benchmark Setup

We have two benchmark types: The first type runs the arithmetic operators straightforward,
serving as the basis for evaluating performance. The second type runs multiple consecutive
applications of the operators, providing insight on how well the arithmetics scales. The
consecutive calls in CUDA are collected in a single kernel to reduce memory overhead by
keeping intermediate results in shared memory. In Futhark we have consecutive intra-
block calls, benchmarking the compilers ability to fuse the arithmetics compared to CUDA.
The consecutive calls of the second type corresponds to computing 10(u+ v) and (u · v)5.
Therefore, it is ten additions and six multiplications.
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While we want to vary the size and number of big integers, the benchmark results are only
directly comparable if we keep the total amount of work fixed. E.g. consider a fixed work
size of 256 bits; the benchmarks can be run with n = 1 instance of base 32-bit big integers
of size m = 8, or, run with n = 1, m = 4, and base 64-bit, or, run with n = 2, m = 2, and
base 64-bit, etc. – which all uses the same number of bits in total. We choose the fixed total
amount of work to be 232-bits, i.e. 227 u32-words or 226 u64-words. We measure across the
sizes of {29, 210, . . . , 218}-bits big integers, and adjust the number of instances accordingly.

Runtimes are averaged over multiple runs to improve stability and accuracy. In CUDA
we average across 300 runs for addition and 100 runs for multiplication, with one dry-run
before starting the timer. We transfer memory to the device beforehand and stop the timer
as soon as the kernel has completed its runs. In Futhark we use the futhark-bench utility,
that allows us to write benchmark-specifications, similarly to futhark-test [3]. This utility
also handles memory and do a dry-run before starting the timer. It runs until the confidence
level has reached 95% (with at least 10 runs) and reports both the average runtimes and
the confidence interval.

11.2 Performance Metrics

Metrics are defined on an operator basis and derived from the complexities, inner workings,
and benchmark setup of the operators. Runtimes are measured in microseconds.

Addition In section 7.1 we analyze the complexity of addition to work O(m) and depth
O(logm). It is computationally efficient, and only require communication w.r.t. the prefix
sum. Hence, we expect addition to be bandwidth bound rather than operation bound.

For n instances of addition of big integers with size m, we calculate the bandwidth (measured
in GB/s) using the following formula:

bandwidth = 3 · n ·m · (bits/8)
1000000000

· 1000000
runtime

(33)

The first fraction represents how many gigabytes are in an array of big integers, where the
term bits/8 is the number of bytes in a word, n ·m is the total amount of words, and the
denominator converts from bytes to gigabytes. The second fraction is the runtime converted
to seconds. The constant 3 is because addition must access global memory thrice – twice
for reading the inputs and once for writing the output – regardless of performing one or
ten consecutive additions, since intermediate results can remain in shared memory. Thus,
we use the same formula for both benchmark setups.

Multiplication In section 8.1 we analyze the complexity of classical multiplication to
work O(m2) and depth O(m). It is a computationally demanding operation, and hence, we
expect multiplication to be operation bound.
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While we could center the metric around the number of uint_t operations, it leads to
circuitous comparisons of benchmarks results across bases. Instead, we normalize the results
by choosing the number of uint32_t operations as the operational core for our metric. We
then define the metric as the number of gigaoperations per second (Gu32ops).

The metric us not as clear-cut as the bandwidth, but we can estimate it. For classical
multiplication, the number of operations can be estimated by the squared number of 32-bit
words times the number of instances:

n · (m · (bits/32))2 (34)

However, classical multiplication is not asymptotically optimal. Instead, we base our metric
upon FFT multiplication, on the ground that it should reflect the optimal scenario. We
use the one proposed by Oancea and Watt in [19]:

Gu32ops =
n · 300 · (m · (bits/32)) · log(m · (bits/32))

1000000000
· 1000000
runtime

(35)

When we compute six consecutive multiplications, we execute six times the number of
operations, and thus, we multiple the metric by 6 in these benchmarks.

11.3 Benchmark Results

We report and discuss the benchmark results for addition and multiplication in sections
11.3.1 and 11.3.2. Section 11.3.3 summarize the discussions. Regarding the structure of
the benchmark results tables: Legends starting with C- refers to CUDA implementations,
and F- refers to Futhark implementations. The legend CGBN shows the result of running
the benchmark with CGBN, and Bits and Instances contains the batch and integer size
for the benchmarks. Entries denoted as ‘ – ‘ refuse to run (e.g. exceeds block-level). The
benchmarks are run on a NVIDIA GTX 1650 SUPER – a GPU with 1280 CUDA cores,
4GB memory, 192.0 GB/s memory bandwidth, and 4.416 TFLOPS compute power [4].

11.3.1 Addition Results

Tables 1 and 2 shows benchmarks for one addition in 64-bit and 32-bit base, respectively,
while Tables 3 and 4 shows for ten additions. Here is what we can gather from the tables:

– Implementation versions agrees that V3 has best performance (which is also the
most optimized version). The only outliers are that for 10 additions, the segmented
scan has a slight cost at around 215-bits, with biggest difference in bandwidth being
73% and 65% peak bandwidth in Table 3 for 216-bit integers of base u64. We only
consider V3 in the following observations.
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Bits Instances CGBN C-V1 C-V2 C-V3 F-V0 F-V1 F-V2 F-V3
218 214 62 – 147 161 – – – –
217 215 67 – 161 163 – – – –
216 216 19 168 166 166 116 155 158 146
215 217 19 168 167 166 146 168 168 168
214 218 84 168 168 166 150 168 168 168
213 219 164 168 168 165 158 168 168 168
212 220 165 168 168 166 157 168 142 168
211 221 164 169 162 166 134 165 75 168
210 222 156 107 92 166 72 91 38 168
29 223 118 55 47 167 36 47 20 168

Table 1: Performance of one addition in base u64 measured in GB/s (higher is better, 192 is peak).

– Choice of base for one addition in CUDA is inconsequential until the inputs are
of 218-bits. This is where base u32 results in sequentialization factor q = 8, while u64
remains at q = 4. In Futhark, the difference is more noticeable, where u64 is around
88% of the peak bandwidth, and u32 around 82%. As in the CUDA case, u64 is more
suitable for higher bit count.

– Choice of base for ten addition in CUDA is impactful, where u32 runs at roughly
40% peak bandwidth, and u64 at roughly 64%. For Futhark, the difference is still
there, but more subtle at 13% and 15%.

– Choice of language (Futhark or CUDA) is inconsequential for one addition of
base u64, but CUDA has a slight advantage in base u32 and are able to maintain
88% peak bandwidth, whereas Futhark drops to 82% peak bandwidth. However,
the difference in the two languages are much more noticeable for ten additions. The
biggest difference is that of Table 3, where CUDA runs at 65% peak bandwidth and
Futhark at 15%.

– Compared to CGBN we see that our implementations run faster for all benchmark
sizes when computing one addition, except for 211 to 213 bits. In this interval,
CGBN peaks and all implementations utilize roughly the same amount of bandwidth.
However, when moving to ten additions, CGBN is able to maintain its bandwidth
utilization, whereas our implementations (especially Futhark) shows a big performance
drop. As discussed in section 2, this is due to CGBN working at warp-level rather
than block-level, reducing the latency overhead of running consecutive arithmetics.
However, our CUDA addition is still faster than CGBN for sizes 214-bits and up.
Another noticeable different is the consistency of bandwidth utilization in our best
implementations compared to CGBN.
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Bits Instances CGBN C-V1 C-V2 C-V3 F-V0 F-V1 F-V2 F-V3
218 214 62 – 104 100 – – – –
217 215 67 – 168 168 – – – –
216 216 19 – 168 168 – – 124 115
215 217 19 136 168 168 61 83 165 153
214 218 84 163 168 168 76 112 169 157
213 219 164 169 168 168 79 115 169 158
212 220 165 169 168 168 84 122 145 157
211 221 164 155 159 168 83 121 77 157
210 222 156 105 92 168 72 91 39 158
29 223 118 54 47 168 37 47 20 158

Table 2: Performance of one addition in base u32 measured in GB/s (higher is better, 192 is peak).

Bits Instances CGBN C-V1 C-V2 C-V3 F-V0 F-V1 F-V2 F-V3
218 214 25 – 108 92 – – – –
217 215 60 – 120 109 – – – –
216 216 73 40 142 124 – – 27 24
215 217 45 47 137 124 15 24 34 29
214 218 97 50 113 124 19 27 32 29
213 219 162 45 82 123 19 31 30 29
212 220 164 35 44 123 17 29 20 29
211 221 161 24 23 124 15 25 11 29
210 222 152 12 12 124 8 13 5 29
29 223 113 6 6 124 4 7 3 29

Table 3: Performance of ten additions in base u64 measured in GB/s (higher is better, 192 is peak).

Bits Instances CGBN C-V1 C-V2 C-V3 F-V0 F-V1 F-V2 F-V3
218 214 25 – 75 76 – – – –
217 215 60 – 66 55 – – – –
216 216 73 – 81 68 – – 23 21
215 217 45 21 88 77 9 14 25 23
214 218 97 24 79 77 9 17 26 24
213 219 162 25 62 77 10 18 23 24
212 220 164 23 44 77 10 17 20 24
211 221 161 17 23 77 9 16 11 24
210 222 152 12 11 77 8 13 6 24
29 223 113 6 6 77 4 7 3 24

Table 4: Performance of ten additions in base u32 measured in GB/s (higher is better, 192 is peak).
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11.3.2 Multiplication Results

Tables 5 and 6 shows the results for one multiplication in 64-bit and 32-bit base, respectively,
while Tables 7 and 8 shows for six multiplications. We can gather from the tables:

– Implementation versions in CUDA agree that V5 is best, both for one and six
multiplications, as expected. The importance of processing multiple instances per
block for sizes 29 to 211 bits is very noticeable on the two versions supporting this
(V3 and V5). W.r.t. Futhark, the inefficiencies of V2 and V3 described in section 8.3
has a huge impact on the performance. E.g. in Table 6 with 212-bit integers, V1 gives
roughly 4× more Gu32ops than V3. However, we still see the pattern that handling
multiple instances per block is important for efficiency at sizes 29 to 211 bits.

– Choice of base for one multiplication strongly favors running in 64-bit base. The
average increase in Gu32ops of using u64 compared to u32 is in CUDA V5 1.4× and in
Futhark V1 1.9×. This is expected, since halving the base size will double the number
of digits, and the classical multiplication is quadratic in the number of digits.

– Choice of base for six multiplications also favors u64, but with a smaller factor
of Gu32ops than for one multiplication, e.g. comparing base u64 to u32 for CUDA V5
is 1.2× and for Futhark V1 it is 1.7× on average.

– Choice of language (Futhark or CUDA) has a big performance impact. Futhark
does not have 128-bit integer support, which is a suspect for the gap between the
two languages. Even if we compare V1 in CUDA and Futhark (i.e. with no extra
optimizations added to convmul), we still see and average increase of Gu32ops for
CUDA compared to Futhark of: 1.6× in Table 5, 2.2× in Table 6, 1.7× in Table
7, and 2.7× in Table 8. However, the implementations of both languages seems to
roughly follow the same pattern w.r.t. the number of bits and instances, which could
indicate that if the gap can be closed (e.g. if Futhark gets 128-bit integers), the
Futhark implementation will become competitive as well.

– Compared to CGBN, both our best CUDA and Futhark implementation is much
faster for one multiplication. However, for six multiplications, CGBN is more efficient
than ours up to 216 bit integers. For smaller integers (i.e. of 29 to 211 bits), CGBN
is much faster than our implementations when running six multiplications – while
for 214 and 215 bits integers, the performance gap between our implementations and
CGBN is less significant.

11.3.3 Summary of Results

Overall, the implementations we have produced are generally competitive in the integer size
range of 214 to 216 bits. When only calling one arithmetic at a time, our implementations
are consistently faster than CGBN. However, CGBN scales much better over the number of
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Bits Instances CGBN C-V1 C-V2 C-V3 C-V4 C-V5 F-V1 F-V2 F-V3
218 214 – – – – – – – – –
217 215 1 836 1131 829 1167 1150 – – –
216 216 35 1491 1997 1542 2055 2039 974 – –
215 217 116 2578 3367 2719 3512 3471 1674 469 482
214 218 217 4239 5326 4476 5640 5515 2671 652 693
213 219 340 6425 7530 6722 7968 8082 3880 1035 984
212 220 526 8159 8343 9180 6981 10475 4931 1448 1281
211 221 793 6059 5575 10749 5572 15745 3836 1551 1899
210 222 822 3700 3238 12990 3909 16554 2352 1130 2492
29 223 496 1787 1722 13740 2225 16888 1122 704 2798

Table 5: Performance of one multiplication in base u64 measured in Gu32ops (higher is better).

Bits Instances CGBN C-V1 C-V2 C-V3 C-V4 C-V5 F-V1 F-V2 F-V3
218 214 – – – – – – – – –
217 215 1 – – – 699 699 – – –
216 216 35 893 1195 797 1258 1258 – – –
215 217 116 1564 2074 1408 2229 2226 647 – –
214 218 217 2619 3342 2378 3774 3773 1090 242 247
213 219 340 4203 4889 3767 5961 6061 1683 352 395
212 220 526 5975 6117 5412 8350 8815 2300 513 553
211 221 793 6270 6041 6728 7305 11363 2781 738 675
210 222 822 3704 3355 7238 4342 11448 2069 803 930
29 223 496 1731 1585 8112 2138 12979 1117 580 1107

Table 6: Performance of one multiplication in base u32 measured in Gu32ops (higher is better).

Bits Instances CGBN C-V1 C-V2 C-V3 C-V4 C-V5 F-V1 F-V2 F-V3
218 214 – – – – – – – – –
217 215 11 – – – – – – – –
216 216 888 1337 1775 1259 1718 1747 921 – –
215 217 2832 2414 2081 2569 2229 2602 1595 357 350
214 218 4960 3730 1746 4162 2682 2696 1656 528 513
213 219 8625 4205 4630 6293 5094 4961 1872 806 778
212 220 13924 7557 6537 8609 4374 8981 3307 1217 1029
211 221 23424 4889 4482 10084 3721 13717 3028 979 1505
210 222 37500 3140 2741 12848 3026 17513 2180 899 1946
29 223 70093 1641 1522 14243 2024 17079 1225 728 2156

Table 7: Performance of six multiplications in base u64 measured in Gu32ops (higher is better).
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Bits Instances CGBN C-V1 C-V2 C-V3 C-V4 C-V5 F-V1 F-V2 F-V3
218 214 – – – – – – – – –
217 215 11 – – – – – – – –
216 216 888 878 1192 771 1275 1268 – – –
215 217 2832 1539 2086 1376 2236 2235 626 – –
214 218 4960 2622 3379 2348 3337 3082 1056 192 190
213 219 8625 4024 4023 3342 4948 3841 1217 288 307
212 220 13924 4789 5417 4719 7723 6522 1068 422 441
211 221 23424 5407 6220 5575 6737 10481 1874 544 555
210 222 37500 3517 3393 6524 4467 12414 2123 496 816
29 223 70093 1771 1640 7528 2396 15135 1224 477 1062

Table 8: Performance of six multiplications in base u32 measured in Gu32ops (higher is better).

consecutive calls, and consistently has better performance than ours for sizes in the range
29 to 213 w.r.t. ten additions and six multiplications. Comparing Futhark and CUDA, we
see that CUDA scales better in the number of arithmetic calls – especially noticeable when
going from one to ten additions.

In regard to multiplication: The Futhark implementation suffers from the sub-optimal
implementation described in 8.3, but also from not supporting 128-bit integer arithmetics.
The CUDA implementation generally has good performance, and in line with the expected
outcome of the optimizations (i.e. versions).

In regard to the addition: Both CUDA and Futhark have roughly the same performance
for one addition – and it is a good performance, reaching 85% of peak device bandwidth.
However, Futhark suffers a significant performance loss when scaling to ten additions, while
the CUDA versions sees a less significant performance loss. The optimal versions in both
languages have very consistently performance across integer sizes and number of instances.

12 Conclusion

This thesis has shown how to implement exact and efficient big integer arithmetic on a
GPU. The focus has been on addition, multiplication, and division, using the high-level
programming languages Futhark and C++. The arithmetic operators have been implemented
at CUDA block-level, albeit algorithmic efforts have been kept general and can be fitted
for other architectures. The arithmetic operators are aimed at medium-sized big integers.
We have shown how to represent such integers in a GPGPU friendly way and more, what
optimization strategies give consistent performance over the shape of the integers.
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Regarding the addition operator, we found that carry propagation in parallel can be
expressed using a scan, making it efficiently run on GPGPU. Our multiplication operator is
based on the classical multiplication algorithm. The algorithm displays a quadratic amount
of sequential work, yet we have shown a scheme that balances the work amongst threads
and maximize performance at CUDA block-level. The scheme contains a nontrivial memory
layout as a byproduct of the way multiplication convolutions are arranged. We have shown
how to efficiently construct the layout, both on paper and in implementation.

The approach for the division operator is based on multiplication by the inverse divisor.
We leverage the existence of a shift operator to stay in the domain of big integers, such that
it becomes multiplication by a shifted inverse. The approach is grounded in another work
detailing an algorithm to find such a shifted inverse. We have adapted the algorithm to big
integers, while also expanding on it in the form of handling an otherwise unconsidered
cornercase. We have shown how to use this algorithm in order to efficiently find the
exact remainder and quotient of two big integers. The division is parameterized over a big
integer multiplication, addition, and subtraction method, and its complexity mirrors that
of its multiplication method. While we were not able to produce a correct and efficient
implementation of the algorithm for GPGPU, the necessary steps to do so have been
outlined. Some of the steps have been implemented, including a sign-extended parallel
subtraction operator based on our addition operator. Moreover, a correct but inefficient
sequential C implementation has been produced, serving as proof of concept for the division
algorithm.

Our addition and multiplication operator have been tested against a state of the art
CUDA library for big integers. We found that the block-level approach overall exhibit
good performance at the target size. Both operators have better performance than the
state of the art library when run once, but consecutively applying the operators scales
worse and comes with a performance cost. For addition, our C++ implementation is still
competitive given this performance cost, while our Futhark implementation becomes slow.
For multiplication, our Futhark implementation suffers from an inefficient subroutine, along
with not supporting all of the low-level data types that C++ supports, and thus, cannot be
as optimized. Our C++ implementation is still competitive at the target integer size, given
the performance cost that comes with scaling the number of arithmetic operators applied.

Future work This thesis leaves future work regarding the division implementation. First
and foremost, the parallel implementation should be validated. In relation to that, it
should be considered whether the increased number of guard digits is a true revision to
the algorithm, or due to an error in the sequential prototype. After it validates, the
remaining inefficient subroutines should be reworked, mainly ensuring proper growth of
the multiplication input lengths over refinement iterations. The last step is to evaluate
its performance over big integer sizes, divisor precision, and the underlying multiplication
methods, such as FFT and classical.
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Appendix

A

Proof of associativity for operator ⊗ of Equation (14).

We want to show:
x⊗ (y ⊗ z) = (x⊗ y)⊗ z (36)

From right-to-left we have:

(x⊗ y)⊗ z = ( (((x & (y ≫ 1)) | y) & 1) | (x & y & 2)︸ ︷︷ ︸
α

)⊗ z (37)

= (((α & (z ≫ 1)) | z) & 1) | (α & z & 2) (38)
= (((α & 1) & (z ≫ 1)) | (z & 1)) | ((α & 2) & z) (39)

From left-to-right we have:

x⊗ (y ⊗ z) = x⊗ ( ((y & (z ≫ 1)) | z) & 1) | (y & z & 2)︸ ︷︷ ︸
β

) (40)

= (((x & (β ≫ 1)) | β) & 1) | (x & β & 2) (41)
= ((x & (β ≫ 1) & 1) | (β & 1)) | (x & (β & 2)) (42)

We must now show that Equation (39) is equal to (42). Consider the second clause. Since
(1 & 2) is 0, so is the first clause of both (α & 2) and (β & 2). Furthermore, we have that
2 & 2 is the same as 2. Thus, we have:

(α & 2) & z = (x & y & 2) & z (43)
= x & (y & z & 2) (44)
= x & (β & 2) (45)

Consider the first clause. Again, (2 & 1) is 0, so the second clause of (α & 1) is 0:

((α & 1) & (z ≫ 1)) | (z & 1) (46)
= ((((x & (y ≫ 1)) | y) & 1) & (z ≫ 1)) | (z & 1) (47)
= (((x & (y ≫ 1) & 1) | (y & 1)) & (z ≫ 1)) | (z & 1) (48)
= ((x & (y ≫ 1) & (z ≫ 1) & 1) | (y & (z ≫ 1) & 1)) | (z & 1) (49)

We have ((y ≫ 1) & (z ≫ 1)) = (y & z ≫ 1) = (y & z & 2 ≫ 1) and get:

= (x & ((y & z & 2) ≫ 1) & 1) | (y & (z ≫ 1) & 1) | (z & 1)) (50)
= (x & ((y & z & 2) ≫ 1) & 1) | ((y & (z ≫ 1)) | z) & 1) (51)
= (x & (β ≫ 1) & 1) | (β & 1) (52)

Thus, Equations (39) and (42) are equal, and hence, (36) holds and ⊗ is associative.
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Proof that (15) is left-associative neutral element for (14).

By exhaustive evaluation we have:

2⊗ 0 = (((2 & (0 ≫ 1)) | 0) & 1) | (2 & 0 & 2) = 0 (53)
2⊗ 1 = (((2 & (1 ≫ 1)) | 1) & 1) | (2 & 1 & 2) = 1 (54)
2⊗ 2 = (((2 & (2 ≫ 1)) | 2) & 1) | (2 & 2 & 2) = 2 (55)
2⊗ 3 = (((2 & (3 ≫ 1)) | 3) & 1) | (2 & 3 & 2) = 3 (56)

B

Listing 20: CUDA convolution memory transactions of convmul with sequentialization factor of 4 to
prepare calling badd on the four pairs of parts in registers, from file ker-mul.cu.h (slightly edited), with
base class Base, big integer size m, and ipb instances per block.

106 cp4Regs2Shm(typename Base:: uint_t* lhc0 , typename Base:: uint_t* lhc1 ,
107 typename Base:: uint_t* shmem){
108 uint32_t off = threadIdx.x;
109 uint32_t str = ipb * m/2;
110 shmem[off] = lhc0 [0];
111 shmem[off+str] = lhc0 [1];
112 shmem[off +2* str] = lhc0 [2];
113 shmem[off +3* str] = lhc0 [3];
114
115 shmem[str -1-off] = lhc1 [0];
116 shmem [2*str -1-off] = lhc1 [1];
117 shmem [3*str -1-off] = lhc1 [2];
118 shmem [4*str -1-off] = lhc1 [3];
119 }
120
121 cpShm24Regs(typename Base:: uint_t* shmem , typename Base:: uint_t* lhc0 ,
122 typename Base:: uint_t* lhc1){
123 uint32_t off = threadIdx.x*2;
124 uint32_t off_inst = 2*off % m;
125 uint32_t str = ipb * m/2;
126 lhc0 [0] = shmem[off];
127 lhc0 [1] = shmem[off+str];
128 lhc0 [2] = shmem[off +2*str];
129 lhc0 [3] = shmem[off +3*str];
130
131 lhc1 [2] = shmem[off +1];
132 lhc1 [3] = shmem[off+str +1];
133 lhc1 [0] = (off_inst) ? shmem[off +2*str -1] : 0;
134 lhc1 [1] = (off_inst) ? shmem[off +3*str -1] : 0;
135 }
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C

Proof of associativity for operator ⊙ of Equation (32).

We want to show:

(l1 , e1 )⊙ ((l2 , e2 )⊙ (l3 , e3 )) = ((l1 , e1 )⊙ (l2 , e2 ))⊙ (l3 , e3 ) (57)

By definition we get from left-to-right:

(l1 , e1 )⊙ ((l2 , e2 )⊙ (l3 , e3 )) (58)
= (l1 , e1 )⊙ (l3 ∨ (e3 ∧ l2 ), e2 ∧ e3 ) (59)
= ((l3 ∨ (e3 ∧ l2 )) ∨ ((e2 ∧ e3 ) ∧ l1 ), e1 ∧ (e2 ∧ e3 )) (60)
= ((l3 ∨ (e3 ∧ (l2 ∨ (e2 ∧ l1 ))), (e1 ∧ e2 ) ∧ e3 ) (61)
= (l2 ∨ (e2 ∧ l1 ), e1 ∧ e2 )⊙ (l3 , e3 ) (62)
= ((l1 , e1 )⊙ (l2 , e2 ))⊙ (l3 , e3 ) (63)

Equation (63) is equal to the right-hand-side of (57), and thus, operator ⊙ is associative.

Proof that (F, T) is left-associative neutral element for ⊙ of (32).

By exhaustive evaluation we have:

(F, T)⊙ (F, F) = (F ∨ (F ∧ F), F ∧ F) = (F, F) (64)
(F, T)⊙ (F, T) = (F ∨ (T ∧ F), T ∧ T) = (F, T) (65)
(F, T)⊙ (T, F) = (T ∨ (F ∧ F), T ∧ F) = (T, F) (66)
(F, T)⊙ (T, T) = (T ∨ (T ∧ F), T ∧ T) = (T, T) (67)
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