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Abstract

This thesis presents a method of differentiating the parallel Futhark-construct
reduce_by_index by integrating a new rewrite rule into the pipeline of the compiler, trans-
forming the original code into a program that computes the adjoint of its input using reverse
mode automatic differentiation. This thesis provides the relevant background of automatic
differentiation and its forward- and reverse mode, along with the Futhark language itself.
It will cover the main rewrite rule for reverse mode, and how it is used to derive the reverse
mode rewrite rule for reduce_by_index. Lastly we cover an implementation of the derived
rule, and evaluate its correctness and performance.
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1 Introduction

Machine Learning (ML) is a constantly evolving field of research striving to create faster and
more accurate models. A driving force for smarter ML algorithms is automatic differentiation
(AD), which is used to compute the gradient of a function [BPR15]. In the field of deep learning,
AD is used to compute the weight each input to the network had on the output. These kinds of
networks often have many inputs, and few outputs, in which case reverse mode AD is preferable.

Neural networks implement a set of layers, each of which transforms a vector of inputs and
passes the resulting vector to the next layer. These transformations are often parallel in nature,
and are as such preferably run on a GPU.
Second-order array combinators (SOACs) are powerful parallel constructs that transform arrays
of data using functions given as input. Vectors are implemented as arrays, making SOACs de-
sireable for ML algorithms.
Mainstream ools such as PyTorch1 and Jax2 have been developed to increase accessibility of ML
models, all supporting various degrees of reverse mode AD. A shared shortcoming among these
tools is the lack of GPU support for running reverse mode AD on many SOACs.

Futhark is a data-parallel programming language that is centered around the usage of SOACs
for bulk parallel operations, compiled to run on GPU’s.
To support expression of ML algorithms in Futhark, progress has been made by [Sch+22] to
develop techniques for application of reverse mode AD on SOACs such as map, scan, reduce,
reduce_by_index and scatter as compiler transformations. [Sch+22] implemented the rewrite
rules for most of these SOACs, but for the case of reduce_by_index only the high-level reasoning
was developed.

Reduce_by_index is a SOAC that groups elements using a key, and then reduces each of
those groups using an associative and commutative operator such as (+). Say we have a group
of people and we want to know the sum of the age of the men and women in that group, we first
group them according to their gender, and then sum the ages of each respective group.

Reduce_by_index is a generalisation of this problem, and has a variable amount of groups,
or rather bins, to collect values to. Each element to be grouped has a corresponding key, imple-
mented as an integer, that dictates which bin a given element belongs to. The elements of each
group are then reduced with an associative and commutative operator, which could be (+) to
get the sum or (×) for the product. The resulting list of elements is referred to as a histogram.
The sequential implementation of reduce_by_index in Futhark is:

1 for i < n-1 do

2 (value , bin) = elements[i]

3 dest[bin] ⊙= value

Where dest is an array of the bins we collect values to, elements is an array of values with a
corresponding key, and ⊙ is the operator to perform reduction with.

Prior to this project I had very limited knowledge about ML in general, as well as AD. In
isolation AD has nothing to do with ML, but its is one of the driving forces for its development.
One of the main challenges was therefore to not only research and understand AD as a concept,
but also to understand its motivation through its connection to ML.

1https://pytorch.org/docs/stable/
2https://jax.readthedocs.io/en/latest/index.html
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Chapter 2 covers the most relevant background of AD, along with that of the source language
Futhark.

The contributions of this thesis is a fully developed rewrite rule for the context of reverse
mode AD for reduce_by_index, inspired by the high-level reasoning presented in [Sch+22]. It
also contributes with an extension of the Futhark compiler, implementing the rewrite rule as a
compiler transformation. Chapter 3 presents the application of a general rewrite rule to reduce,
and generalises it to reduce_by_index.

The implementation consists of three special cases that capture the more popular operators
(+, ∗,min/max), and a general case for an arbitrary associative and commutative operator.
The implementation also proved to be very challenging. The Futhark compiler uses its own
intermediate representation (IR) and spans several thousand lines of code. For the purposes of
this project only a subset of the IR was required to be understood.
The general case was written from scratch, but the three special cases were made from code sup-
plied by my supervisor, which came from an outdated branch. Fixing this outdated code served
as a warm-up to get an understanding of the intricacies of the compiler before implementing the
general approach. The supervisor of this project endorsed discussion of the general approach
with another student.
Chapter 4 covers the relevant constructs of the Futhark IR, and how the four different cases
were implemented.

The implemented methods were validated by comparing the results of reverse mode with
that of forward mode. Forward mode is a separate method that tackles the issue of computing
derivatives differently, so the odds of the same bug appearing in both methods is minimal.
All four cases are implemented by rigorous use of SOACs as to maximise parallelism. All SOACs
used have the same work-asymptotic of O(n), which reduce_by_index shares if the histogram is
large. This makes the overhead of applying reverse mode AD on the reduce_by_index-construct
a constant multiple.
The multiples measured for each of the four cases were:

• Addition: 2.5 times slower.

• Min/max: 13.6 times slower.

• Multiplication: 14.1 times slower.

• General approach: > 500 times slower.

The methods used for validation and benchmarks are discussed in chapter 5.

Finally chapter 6 discusses future work and holds a conclusion to the project.

Most of the implemented code has been added to the appendix, but the complete code
can be found on my GitHub3. The relevant files are in ”futhark/src/Futhark/AD/Rev” and
”futhark/tests/ad”.

3https://github.com/Cherosev/futhark/tree/Søren-AD
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2 Preliminaries

In this chapter i will highlight some of the most important pieces of background which lay
foundation to this thesis.
It will cover the parallel constructs of the Futhark language that are used and the key points of
AD that will be used to create rewrite rules for reduce_by_index in section 3.

2.1 The Futhark language

Futhark has been a continuous project at DIKU4 with many contributing parties such as
[Hen17] and [Sch+22]. A more complete list can be found at Futharks own publications list5.

While Futhark has sequential constructs such as loops, the general goal of programming in
Futhark is to program in terms of SOACs.
SOACs are powerful constructs that allow for bulk parallel operations that transform large col-
lections of data. Each SOAC has its own semantics, some of which we will soon cover, but they
are all parameterized by a function which is used to perform this transformation. The possibil-
ity of passing user-defined functions to SOACs gives the programmer the freedom to apply any
transformation desired.

2.1.1 Parallel constructs of the source language

This section presents the parallel constructs of Futhark used for the rewrite rule of reduce_by_index,
along with their semantics.

First off we have the basic SOACs map, reduce and scan with the following type signa-
tures[Hen17]:

map: (f: α → β) → (as: [n]α) → [n]β

map2: (f: α → α → β) → (as1 : [n]α) → (as2 : [n]α) → [n]β

reduce: (⊙ : α → α → α) → (e⊙ : α) → (as: [n]α) → α

scan: (⊙ : α → α → α) → (e⊙ : α) → (as: [n]α) → [n]α

replicate: (n: i64) → (x: α) → [n]α

scatter: (dest: [m]α) → (is: [n]i64) → (as: [n]α) → [m]α

Where α and β are types, and [n]α denotes an array with n elements of type α. Type names
in Futhark follow a syntax of a character defining the type followed by an integer describing the
number of bits. In the case of the argument is of scatter i64 is a signed integer of 64 bits.
Similarly, u64 is a 64-bit unsigned integer and f64 being a 64-bit floating-point number.

First we have map which is a function that simply takes some function f as an argument and
applies f to each element of its array argument as:

map f [a0, a1, ..., an−1] = [f a0, f a1, ..., f an−1]

4Datalogisk Institut Københavns Universitet
5https://futhark-lang.org/publications.html
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Map2 is much like map, but the function given now takes two parameters instead. Each value
in the two lists are paired, and the function is applied:

map2 f
�
a10 , a11 , ..., a1n−1

� �
a20 , a21 , ..., a2n−1

�
=

�
f a10a20 , f a11a21 , ..., f a1n−1a2n−1

�

Reduce takes an associative operator ⊙, the neutral element of that operator e⊙, and an
array of values as to reduce. All elements of its array argument as are then accumulated to one
value:

reduce ⊙ e⊙ [a0, a1, ..., an−1] = e⊙ ⊙ a0 ⊙ a2 ⊙ ...⊙ an−1

Scan is somewhat like reduce but instead returns an array of the same length as the input.
Each element of the resulting array is the sum of all elements up until that point.
scan can either be inclusive if the current element is included in the sum, or exclusive if not:

scaninc ⊙ e⊙ [a0, a1, ..., an−1] =[e⊙ ⊙ a0, e⊙ ⊙ a0 ⊙ a1, ..., e⊙ ⊙ a0 ⊙ a1 ⊙ ...⊙ an−1]

scanexc ⊙ e⊙ [a0, a1, ..., an−1] =[e⊙, e⊙ ⊙ a0, ..., e⊙ ⊙ a0 ⊙ a1 ⊙ ...⊙ an−2]

A scan can also be a segmented scan. A segmented scan also takes a flag array as input, with
non-zero elements indicating the start of a new segment, and zero indicating a continuation of a
segment. A normal scan is then performed, but at the start of a new segment the accumulation
is reset. The following is an example using (+) as the operator of an inclusive segmented scan:

1 Values = [1,1,1,1,1,1,1,1,1]

2 Flags = [1,0,0,1,0,0,0,0,1]

3 Result = [1,2,3,1,2,3,4,5,1]

Replicate is used to initialize arrays. It returns an array of length n where each element is
x:

1 replicate 4 3 = [3,3,3,3]

Scatter returns the destination array dest where for each index in is the value of dest at
that index, is overwritten to be the corresponding value in as. Indices in is that are out of
bounds of dest are ignored. Duplicate indices in is are allowed, but the result is undefined.
We present the semantics of scatter based on simple imperative code, using k as the size of
dest:

1 for i in 0 ... n-1:

2 index = is[i]

3 value = as[i]

4 if (0 <= index < k)

5 dest[bin] = value

As the name implies, reduce_by_index is a lifted form of the reduce-operator that instead
of reducing a list of values to a single value, reduces them to a number of bins. The resulting set
is what we call a histogram. The specific details of this function are described in [Hen+20].

Type signature of reduce_by_index:

reduce by index: (dest: [k]α) → (⊙ : α → α → α) → (e⊙ : α) → (inds: [n]i64) → (as: [n]α) → [k]α

Reduce_by_index returns dest where for each index in inds the value in dest is updated to
the application of ⊙ to dest and the corresponding value in as. Indices in inds that are out of
bounds of dest are ignored. Using k as the size of dest, its simple imperative code is:
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1 for i in 0 ... n-1:

2 bin = inds[i]

3 value = as[i]

4 if (0 <= index < k)

5 dest[bin] ⊙= value

Since inds can contain duplicates, ⊙ can be applied multiple times to the same value in dest.
⊙ must therefore be both associative and commutative.

The final construct i want to mention is loop and is the only sequential construct in this list.
Futharks loop works by looping over a set of parameters, with the loop body returning the same
type as its parameter. If we were to implement the pseudo-code above for reduce_by_index:

1 let histo =

2 loop dest ’ = copy dest for i < n do

3 let bin = inds[i]

4 let value = as[i]

5 let result = dest ’[bin] ⊙ value

6 in dest ’[bin] = result

At the loop entrance we set dest’ to be the loop parameter, initially set to be a copy of
dest. The body of the loop is then computed n times with i set to 0, ...n− 1. For each iteration
of the loop, the result of the body is bound to be the loop parameter of the next iteration. After
the final iteration the result is then bound to histo, which is our result.

2.2 Automatic differentiation

One of the goals of this thesis was to try and understand automatic differentiation (AD), so
my first task was to research the topic. This segment introduces the key parts of AD used in
this project.

AD is the concept of differentiation functions implemented as code in a systematic order.
Composite functions are decomposed to intermediate variables, using the chain rule to compute
the derivative of the composite function.
The chain rule states:

if f(x) = (g ◦ h)(x) = g(h(x)) then
∂f(x)

∂x
=

∂g(z)|z=h(x)

∂z
· ∂h(x)

∂x
(1)

The chain rule says that in order to compute the derivative of function f composed by g
and h, we first compute the derivative of the inner function. The result of the inner function
is then used to compute the the derivative of the outer function, and the two derivatives are
then multiplied. For the purposes of AD we introduce intermediate variables to store these
inner results. Naming of intermediate variables for a function f : Rn → Rm follows the naming
convention that is also used in [BPR15]:

• Variables wi−n = xi, i = 1, ..., n are input variables.

• Variables wi, i = 1, ..., l are intermediate values.

• Variables ym−i = wl−1, i = m− 1, ...,m are output variables.
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As a simple example we can decompose the function y = f(g(h(x))). Since this function has
the form f : R → R we simplify it slightly and focus on the naming of intermediate values:

w0 = x

w1 = h(w0)

w2 = g(w1)

w3 = f(w2)

y = w3

Using these intermediate values with the chain rule, we compute ∂y
∂x as:

∂y

∂x
=

∂w3

∂x
=

∂w3

∂w2
·
�
∂w2

∂w1
·
�
∂w1

∂w0
·
�
∂w0

∂x

���

Now suppose we have a function y = f(x1, ..., xn) of form f : Rn → R and want the tangent
of y for some x ∈ Rn, we will need to compute:

∇f(x) =
∂f(x)

∂x1
· (x1) +

∂f(x)

∂x2
· (x2) + ...+

∂f(x)

∂xn
· (xn)

In order to compute this, we will need the Jacobian vector of (∂f(x)∂x1
, . . . , ∂f(x)

∂xn
)

If the function f has several outputs this problem escalates to be a Jacobian matrix. Suppose
we have f : Rn → Rm with inputs (x1, ..., xn) and outputs (y1, ..., ym) we will need:




∂y1

∂x1
. . . ∂y1

∂xn

...
. . .

...
∂ym

∂x1
. . . ∂ym

∂xn




AD has two modes that handles the issue of computing the Jacobian matrix in different ways,
namely forward and reverse mode. The following two segments will further explain how each
mode works.

2.2.1 Forward mode

Forward mode computes the Jacobian matrix column-wise by forward-propagating deriva-
tives. For each intermediate value we associate a derivative [BPR15]:

ẇi =
∂wi

∂xi

For each statement on the left-hand side of Figure 1 we apply the chain rule to compute the
derivative.

Forward mode computes the derivatives using two traces, both shown in Figure 1. The first
trace computes the values of intermediate values (Primal Trace), and the second trace computes
the derivative of each intermediate value step-by-step using whatever rule of differentiation that
applies to that value (Tangent trace). Some of these rules needs the actual value, hence why we
perform the Forward Primal Trace.
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For the example of f(x1, x2) = (x1 + x2) · (ln x1) we initially assign the input variable we
want to differentiate with respect to a derivative of 1. All other inputs are assigned a derivative

of 0. For ∂f(x1,x2)
∂x1

we set ẋ1 = 1 and ẋ0 = 0. A running example can be seen in Figure 1.

Forward Primal Trace
w−1 = x1 = 4
w0 = x2 = 3
w1 = w−1 + w0 = 4 + 3
w2 = ln w−1 = ln 4
w3 = w1 · w2 = 7 · 1.38
y = w3 = 9.704

Forward Tangent (Derivative) Trace
ẇ−1 = ẋ1 = 1
ẇ0 = ẋ2 = 0
ẇ1 = ẇ−1 + ẇ0 = 1 + 0
ẇ2 = ẇ−1/w−1 = 1/4
ẇ3 = ẇ1 · w2 + ẇ2 · w1 = 1 · 1.38 + 0.25 · 7
ẏ = w3 = 3.13

Figure 1: Forward mode for f(x1, x2) = (x1 + x2) · (ln x1).

Since the tangent trace computes derivatives by forward propagating those of intermediate
values, the primal and tangent trace can be performed in step with one another. This can be
implemented by operator overloading

Forward mode is efficient for functions f : R → Rm since we only need a single pass of the
Forward Tangent to compute the derivative of each output variable. For functions f : Rn → Rm

a single forward pass will yield a single column of the Jacobian matrix, requiring n executions of
the forward pass instead.

2.2.2 Reverse mode

In reverse mode we compute the Jacobian matrix by back-propagating derivatives, starting
with our output. Each intermediate values is associated with an adjoint that measures the
changes in yj with respect to wi:

wi =
∂yj
∂wi

Much like forward mode, reverse mode consists of two traces of the code. Exactly like forward
mode we first perform a Forward Primal Trace to bring all variables into scope.

In the example shown in Figure 2 the forward trace shows that w−1 affects y through both
its contributions to w1 and w2. The total contribution therefore becomes:

∂y

∂w−1
=

y

∂w1

∂w1

w−1
+

∂y

∂w2

w2

∂w−1
= w1

∂w1

w−1
+ w2

w2

∂w−1
(2)

The different rules of differentiating each intermediate value depends on the function used,
but the rewrite rule used for the reverse sweep can be generalized.
For the assignment y = a⊙ b, the reverse sweep will compute:

a += ∂a⊙b
∂a · y

b += ∂a⊙b
∂b · y (3)

This is the main rewrite rule of reverse mode AD, and can be used to reason how more complex
operations such as SOACs can be differentiated.
We accumulate to a and b to facilitate the possibility that a or b are used multiple times as in
equation 2.
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The reverse trace can be generated by applying this generalized rule to the assignment of
each intermediate variable.

The reverse trace is initialized by assigning the output variable we want to differentiate with
respect to an adjoint of 1, and all others to 0. The computations are then performed bottom-up.
The reverse trace in Figure 2 is structured to fit with the forward trace, but should be read from
bottom to top.

Forward Primal Trace
w−1 = x1 = 4
w0 = x2 = 3
w1 = w−1 + w0 = 4 + 3

w2 = ln w−1 = ln 4
w3 = w1 · w2 = 7 · 1.38

y = w3 = 9.704

Reverse Adjoint (Derivative) Trace
x1 = w−1 = 3.13
x2 = w0 = 1.38

w0 += w1
∂w1

∂w0
= w1 · 1 = 1.38

w−1 += w1
∂w1

∂w−1
= w−1 + w1 · 1 = 3.13

w−1 += w2
∂w2

w−1
= w2/w−1 = 1.75

w1 += w3
∂w3

w1
= w3 · w2 = 1.38

w2 += w3
∂w3

∂w2
= w3 · w1 = 7

w3 = y = 1

Figure 2: Reverse mode for f(x1, x2) = (x1 + x2) · (ln x1).

Unlike the forward mode, the primal- and reverse trace cannot be performed in step with
each other. The first step of the reverse trace is to compute the adjoints of intermediate values
that contributed to the result, and they will often be the last statements of the primal trace.
This is not necessarily the case, but there is no assurance. As a result the primal trace must be
performed in its entirety, before performing the reverse trace.

A single pass of reverse mode computes the adjoint of all input variables w.r.t. one output
variable, effectively computing the Jacobian matrix row-wise. In my running examples of Figure
1 and 2, forward mode needed to be run twice, while reverse mode only needed to be run once.
This should demonstrate how reverse mode is more efficient for a function f : Rn → Rm when
n >> m.
This is often the case for machine learning algorithms, taking a large amount of input variables,
and returning a single value. This heavily favors the reverse mode as the go-to method of com-
puting derivatives for these types of machine learning algorithms.
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3 Rationale of the reverse-mode rewrite rules

This chapter presents the rewrite rules derived by applying a generalized rewrite rule to the
constructs reduce and reduce_by_index.

The core rule for rewriting statements in reverse mode is:

let x = f(a, b) =⇒

let x = f(a, b)
...

let a += ∂f(a,b)
∂a · x

let b += ∂f(a,b)
∂b · x

(4)

This rule was touched upon in the previous section in equation 3 but is entirely given by
[Sch+22] which describes how many of the other constructs in Futhark have been implemented
for reverse mode.

When a statement Stmti is rewritten, the original statement is first added as part of the
forward sweep. The reverse sweep is only added after all following statements have been rewritten,
indicated in the rule by vertical dots.

let x1 = f(a, b) =⇒
let x2 = f(c, d)

let x = f(a, b)
...

let a += ∂f(a,b)
∂a · x

let b += ∂f(a,b)
∂b · x

=⇒ let x1 = f(a, b)
let x2 = f(c, d) =⇒

let x = f(a, b)
let y = f(c, d)

let c += ∂f(c,d)
∂c · y

let d += ∂f(c,d)
∂d · y

let a += ∂f(a,b)
∂a · x

let b += ∂f(a,b)
∂b · x

(5)

Reverse sweep is organized in reverse. Forward sweeps are chronological but reverse is not.
For x2 its reverse sweep is exectued before that of x1.

Since the rewritten code is to be computed from the top down, the first statement in a body
to be rewritten must add its reverse sweep last, and vice versa for the last statement in the body.

3.1 How to differentiate Reduce

Differentiation of reduce_by_index is generalization of reduce, hence why this segment to
my thesis.

We recall the semantics of reduce for an arbitrary associative operator ⊙ with corresponding
neutral element e⊙:

reduce ⊙ e⊙ [a0, a1, ..., an−1] = a0 ⊙ a1 ⊙ ...⊙ an−1

In order to compute the adjoint of each input variable ai, we bind the result to y, which will
make the reasoning more simple. Using the associativity of the operator we group the elements
into three groups, isolating ai:

let y = (a0 ⊙ ...⊙ ai−1)⊙ ai ⊙ (ai+1 ⊙ ...⊙ an−1)
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We further simplify by reducing the elements preceding and following ai. All elements up
until ai are named li, and all following elements are named ri:

let li = a0 ⊙ ...⊙ ai−1

let ri = ai+1 ⊙ ...⊙ an−1

Using these two reductions, we simplify the computation of y to be:

let y = li ⊙ ai ⊙ ri

Using this simplified computation we apply the general rewrite rule from equation 4 to com-
pute the adjoint of ai:

ai +=
∂(li ⊙ ai ⊙ ri)

∂ai
· y (6)

Now, all we need is to apply this to each ai.
Since we need to compute li and ri for each ai, the most simple approach is to perform a scan.
li can easily be computed with a segmented exclusive scan. For ri we first need to reverse the list
of values, perform the segmented exclusive scan, and then reverse once more. We do an exclusive
scan as to exclude ai from the partial reduction in li and ri.
Now all we need is to implement equation 6 as a function that can be mapped across values of li,
ai and ri:

f :

�
λ li, ai, ri →

∂(li ⊙ ai ⊙ ri)

∂ai
· y

�

Since this is reverse mode, we are ensured that y is computed beforehand, effectively making it
a constant to us.

Now lets put it all together.
For the forward sweep we just need to perform the normal reduction to bring y into scope. For
the reverse sweep we need to compute li and ri, and then map f onto each li, ai and ri. The
rewrite-rule for reduce therefore becomes:

let y = reduce ⊙ e⊙ as =⇒

let y = reduce ⊙ e⊙ as
...
let lis = scanexc ⊙ e⊙ as
let ris = reverse as

▷ scanexc(λ x⊙ y → y ⊙ x) e⊙ ▷ reverse
let as += map3 f lis as ris

(7)

Where += is scalar addition.
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3.2 How to differentiate Reduce by index

We recall the semantics and pseudocode of reduce_by_index:

reduce by index: (dest: [k]α) → (⊙ : α → α → α) → (e⊙ : α) → (inds: [n]i64) → (as: [n]α) → [k]α

1 for i in 0 ... n-1:

2 bin = inds[i]

3 value = as[i]

4 dest[bin] ⊙= value

The basic reasoning for the rewrite rule is much like reduce, but we need to accommodate
the bins. li and ri must be computed with an irregular segmented scan, and to do that we will
need elements of the same bin to lie consecutively. The requires a sort to be performed.

The work-depth asymptotic of reduce_by_index is O(n), eg. linear in the input. To preserve
the asymptotics of the program we sort using Radix sort.
The work-depth asymptotic of Radix sort is O(k · n) where k is the size of the key and n is the
amount of values to sort.
We implement Radix sort to use the bits as the key, and because the indices given to reduce_by_index
are 64-bit integers, the key size can be considered a constant for us, giving us the asymptotic of
O(n).

We only want to update the values in as contribution to the result, but because the parameter
dest might contain values, we also need to consider its contribution to the result. If dest does
contain values, we also need to bring its adjoint into scope, since dest is consumed by the
operation. To solve these issues we first reduce elements into a fresh destination array with
neutral elements. We denote k as the length of the histogram and hist as the result:

1 let temp_dest = replicate k e⊙
2 let hist_temp = for i in 0 ... n-1:

3 let bin = inds[i]

4 let value = as[i]

5 temp_dest[bin] ⊙= value

6 let hist = map2 ⊙ dest hist_temp

We now need to compute the adjoint of both the histogram created from only the input values
(hist_temp), and the values of the original histogram (dest). We once again use the core rule
of equation 4 to compute the contribution each partial histogram has on the result.
We map the following function across the bins of both partial histograms, with orig denoting
the value of a bin in dest, and temp_val denoting the value of a bin in hist_temp:

f1 :

�
λ orig, temp val, bin → ∂ (orig⊙ temp val)

∂ orig
· hist[bin]

�

f2 :

�
λ orig, temp val, bin → ∂ (orig⊙ temp val)

∂ temp val
· hist[bin]

�

In two separate statements we map f1 and f2 onto dest, histtemp and (iota k) (where k is
the length of the histogram) to obtain dest and histtemp:

1 let dest = map f1 dest hist_temp (iota k)

2 let histtemp = map f2 dest hist_temp (iota k)
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The values in as only contributed to the partial result of hist_temp, and their adjoints must
therefore be computed from hist temp.
We now define a function to compute as with the adjoint of its corresponding bin:

f3 :

�
λ li, ai, ri, bin → ∂(li ⊙ ai ⊙ ri)

∂ai
· hist temp[bin]

�

Computing the adjoints requires us to compute histtemp which is the partial result of hist.
We could have a forward sweep where we perform the normal reduce_by_index and compute
histtemp in the reverse sweep, but then we would be reducing as twice. We therefore move the
computation of histtemp to the forward sweep instead. Similarly, histtemp can be computed
from lis and as by li ⊙ ai for each i that is the last value of a segment. Assuming we have a
function get_segment_sum, we get the rewrite rule:

let hist = reduce by index dest ⊙e⊙as =⇒

let assorted = radix sort as
let lis = segScanexc ⊙ e⊙ assorted
let ris = reverse assorted

▷ segScanexc(λ x⊙ y → y ⊙ x) e⊙ ▷ reverse
let histtemp = get segment sum lis assorted
let hist = map2 ⊙ dest histtemp

...

let dest = map f1 dest histtemp

let histtemp = map f2 dest histtemp

let as += map4 f3 lis as ris inds
(8)

How get_segment_sum and other functions are implemented, will be elaborated on in the
following chapter.

15



4 Implementation

This chapter will present the intermediate language (IR) of the compiler, and the implemen-
tation of the rewrite rule.

The objective of this thesis was to implement reverse-mode AD as a compiler-transformation,
so my implementation is an extension of the existing compiler.

The compiler IR is driven by expressions where each type of statement has its own rewrite-rule,
eg. scan, reduce, map have individual cases. The SOAC-type has a central function vjpSOAC

that generates the code necessary for reverse-AD of (ideally) any instance of the SOAC-type. Its
simplified function signature is:

vjpSOAC :: SOAC → ADM() → ADM()

The vjpSOAC function matches on the type of the input SOAC, and separate functions gen-
erate the code for reverse-AD of map and reduce respectively.

This projects contribution to the compiler is a new set of functions that produce the reverse-
AD code for SOACs of type Hist, which is the intermediate representation of reduce_by_index
inside the compiler, and the central function vjpSOAC is extended with a new case that enters
this new set of functions. The entry-point of the added set of functions is diffHist:

diffHist :: Hist → ADM() → ADM()

Before presenting the implementation, we present the most important parts of the intermedi-
ate language (IR) used in the Futhark compiler. The implementation does have some limitations,
the most important of which will be covered at the end of this chapter.

4.1 Intermediate language of Futhark

One of the biggest challenges of this project was to understand and work with this IR. The
compiler code contains a lot of different data types and helper functions, spanning several thou-
sand lines of code.
In the end, only a subset of these types and functions were needed to be understood and used.
Using a hand-full of features also helped make the code more readable, by having a repeated
pattern for generation of statements.

The IR presented in this paper has for simplification been slightly rewritten, and should
therefore not be interpreted as complete. Some constructors or arguments not used have been
omitted, and some have been simplified with new names.

4.1.1 ADM-monad

First we have the ADM-monad, which is a wrapper for reverse mode code generation functions.
The monad works as an environment that gives us three key features:

1. Holds information about existing variables and their types.

2. Captures generated statements. These statements are later used to produce the code itself.
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3. Allows us to generate the code of following statements between the forward of reverse
sweep. This makes it very easy to implement the behaviour of the rewrite rule presented
in equation 5 from section 3.1.

On a high level, the function diffHist this paper contributes with takes this monad as
input (along with the reduce_by_index statements), and returns a new monad with the added
statements from the rewrite rule (equation 8).

The monad also holds information about adjoints of variables, and exposes some helper
functions to interact with them. lookupAdjVal returns the adjoint of a variable when given its
name, and updateAdj accumulates to existing adjoints.

4.1.2 Data types and helper functions

This segment presents the most commonly used constructs and helper functions in the im-
plementation.
To start out softly we introduce the most basic data types used:

data VName : String

data PrimValue :

IntValue IntValue
FloatValue FloatValue
BoolValue Bool

data SubExp :

Constant PrimValue
Var VName

VName is used for variables names and is a unique string, such that no two variables have the
same name. Uniqueness of VNames is ensured by the ADM-monad. PrimValue is simply used for
constant values.
VNames and PrimValue have a union type in SubExp which is either a constant value, or a vari-
able name.

Parameters also have their own type Param which is a VName combined with a Type. Params
are constructed using the helper function newParam:

1 newParam :: String → Type → Param

2 i_param ← newParam "i" $ Int64

The arrow (←) indicates that we performing a monadic operation using the ADM-monad,
which in this instance means we get a Param with a unique VName. Param is primarily used by
lambda functions to specify their parameters.

We now move on to expressions:

data Exp :

BasicOp BacicOp
If SubExp Body Body
DoLoop [SubExp] LoopForm Body
Op SOAC

data SOAC :

Scatter SubExp [VName] Lambda [(Shape, Int, VName)]
Hist SubExp [VName] [HistOp] Lambda
Screma SubExp [VName] ScremaForm

Exp is used to generate all of our needed statements using the helper function letExp:

1 letExp :: String → Exp → VName
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In the ADM monad we can use letExp to bind the result of an Exp to a VName, which will be
captured by the monad and produced as code.

Similarly, runBodyBuilder is a helper function that lets us build a Body. A Body is a list of
statements resulting in a list of results of type [SubExp]:

Body =





Stm1 : let VName1 : Type1 = Exp1
Stm2 : let VName2 : Type2 = Exp2
...

Stmn : let VNamen : Typen = Expn
[Var VNamen, Constant 5]

This helper function is very complex and has a lot of monadic features that we will not go
into. For our purposes we are going to be using this in conjunction with localScope which lets
us define parameters available inside the Body. This is used to build the bodies of the lambda-
functions we are going to need throughout the implementation.

We will now take a look at the different constructors of Exp:

BasicOp BasicOp:
BasicOp has over 20 constructors, but to keep it simple will not list them. As the name implies
this is all the basic operators such as binary operations, logical operations, array indexing, iota,
replicate and SubExp. If we want to write let x = 5 · 3, the IR representation would be:

1 var_x <- letExp "x" $ BasicOp $ BinOp Mul 5 3

This line would generate the let x = 5 ∗ 3 statement in the produced code with a unique
variable name with prefix ”x”. The unique name generated is then bound to var_x so we can
reference it later inside the compiler.

If SubExp Body Body:
This is pretty straightforward and follows the semantics of most other programming languages.
The SubExp should evaluate to a Bool and the corresponding Body is then executed.
Example:

1 true_body <- runBodyBuilder $ do

2 x <- letExp "x" $ BasicOp $ SubExp $ Constant 5

3 eBody[Var x]

4

5 false_body <- runBodyBuilder $ do

6 y <- letExp "y" $ BasicOp $ SubExp $ Constant 10

7 eBody[Var x]

8

9 check <- letExp "check" $ BasicOp $ CmpOp CmpEq (Constant 1) (Constant 0)

10

11 result <- letExp "result" $ If

12 (Var check)

13 true_body

14 false_body

Here we define two bodies, true_body and false_body, returning 5 or 10 respectively. A
trivial check of equality for 1 and 0 is made, and the result of that comparison is bound to a
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VName which check refers to. result is then bound to 10 by evaluating the value of check to
false, and subsequently evaluating false_body to be 10.

DoLoop [SubExp] LoopForm Body:
For loops we recall that Futhark loops over an initial variable that is updated at the end of each
iteration along with a counter i:

1 loop acc = 0 for i < n

2 acc += i

This example computes the sum of all numbers 0...(n− 1).
The first argument [SubExp] are the variables to loop over, in the example above it would be
the initial value of acc. LoopForm holds some information about the bounds of i, and the Body

is the body of the loop to be executed each iteration.

We now move on to the SOACs:

Scatter SubExp [VName] Lambda [(Shape, Int, VName)]:
The first argument holds a SubExp that defines the length of the input arrays, and the second
arguement is the VNames of the input arrays.
The Lambda is for fusion with a map, and is applied to the variables of the input arrays before
scattering. The final argument is the destination-array defined by the shape (dimensions) of
the destination-array, its rank, and its corresponding VName. The following is an example of
translation from Futhark code to its corresponding representation in the IR:

1 let plusOne = map (+1) vs
2 in scatter dest is plusOne
3

(a) Futhark code

Scatter n [is, vs] (λv → v + 1) [(shape(dest), rank(dest), dest)]

(b) IR representation

Figure 3: IR representation of scatter

In this example we are adding 1 to every element in vs and scattering the result into dest

using the indices in is.

Hist SubExp [VName] [HistOp] Lambda:
Hist is the intermediate representation of reduce_by_index inside the compiler.
We first introduce the HistOp type, which specifies the operation to perform. A HistOp has the
form:

HistOp Shape [VName] [SubExp] Lambda

The first argument Shape holds the dimensions of the destination array. The second argu-
ment [VName] is a list of names of destination arrays. The third argument of [SubExp] is the
neutral element of the fourth argument, which is an operator implemented as a Lambda.

For the case of Hist it holds a SubExp defining the length of the input arrays, a list of VNames
of the input arrays and a list of HistOps to perform.
The list of HistOps are for fusion of histograms. If we want to get both the sum (+) and product
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(∗) of the input, we can define two different HistOps with those operators and destination arrays.

The final argument of a Lambda is applied to the input arrays before reduction. As with the
case of Scatter, the Lambda is for fusion with a map. Example of translation from Futhark code
to its representation in the IR:

1 let plusOne = map (+1) vs
2 in reduce_by_index
3 dest (*) (1) is plusOne
4

(a) Pseudo code

op: HistOp shape(dest) [dest] [1] (λx, y → x · y)
Hist len(vs) [is, vs] [op] (λx → x+ 1)

(b) IR representation of reduce by index

Screma SubExp [VName] ScremaForm:
Screma is a combination of scan, reduce and map. It has a SubExp defining the length of the
input arrays, a list of VNames for the input arrays, and finally a ScremaForm.
ScremaForm is used to fuse Scan, Reduce and maps. The given ScremaForm is then applied to
the input. Its type is:

ScremaForm [Scan] [Reduce] Lambda

In the simple case where we only want to map:

1 let plusOne = map (+1) vs
2

(a) Pseudo code

Screma len(vs) [vs] (ScremaForm [] [] (λx → x+ 1))

(b) IR representation of a single map

If, however, we want to reduce the result of a map:

1 let plusOne = map (+1) vs
2 in reduce (+) (0) plusOne
3

(a) Pseudo code

Screma len(vs) [vs]
(ScremaForm [] [(λx, y → x+ y))] (λx → x+ 1))

(b) IR representation of a single map

Lambda, Scan and Reduce are very much alike:

Lambda : [Param] Body ReturnType

Scan : Lambda [SubExp] Reduce : Commutativity Lambda [SubExp]

Lambda-functions takes a list of parameters, a Body to be evaluated, and a return-type of the of
the Lambda. The parameters given should be used inside the given Body and the return-type of
the Body should match the return-type of the Lambda.

Scan and Reduce are lifted types of Lambda. Scan consists of an operator Lambda and the
neural element of the Lambda given as a SubExp. Reduce is like Scan, but also holds some infor-
mation about the commutativity of the Lambda.
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For completeness we also introduce patterns of type Pat. When reverse mode AD is applied
to a statement, that statement is broken into two pieces: the pattern and the expression:

1 let hist = reduce_by_index dest (+) (0) is vs

In the above example the left-hand side of ”=” is the pattern, and the right-hand side is the
expression that is to be bound to the pattern. If we look at the type of diffHist:

1 diffHist :: VjpOps -> Pat Type -> StmAux () -> SOAC SOACS -> ADM () -> ADM ()

Here the pattern is the second parameter of the function, and is the element that the resulting
histogram should be bound to.

4.2 Code

With the IR presented we move on to the implementation itself.

Because reduce_by_index is a SOAC, its operator is given to it as an argument. The rewrite
rule presented back in section 3.2 assumes no prior knowledge of the operator used, and will
work for any associative and commutative operator given to it. If, however, we did know what
operator was used, we could optimize the rule for that given operator.

The implementation is therefore split into four cases, using prior helper functions of the
compiler to identify the operator of reduce_by_index statement to generate code for:

1. Addition

2. Multiplication

3. Min/max - Strictly speaking this is two different operators, but they can be handled in the
same way.

4. General case - Works for any operator.

Using Haskells guards, all four cases are implemented as the same function named diffHist,
and all follow the same style of unpacking the histogram given to it:

1 diffHist _vjops pat aux soac m

2 | (Hist n [inds , vs] hist_fun bucket_fun) <- soac ,

3 [HistOp shape rf [orig_dst] [ne] f] <- hist_fun ,

4 .

5 .

6 .

Where inds are the bins, vs are the values, n is the length of inds and vs, bucket_fun is a
transformation to apply to inds and vs before performing reduce_by_index. orig_dst is the
destination-array, shape is the length of the destination array, f is the operator and finally ne is
the neutral element of f.

As explained in section 4.1 the histogram may potentially be fused with a map, which in this
case is indicated by the variable bucket_fun. If no fusion is made, the bucket_fun will be the
identity-function λx → x, otherwise it is some unknown lambda.
If the histogram is fused with a map, the problem of differentiating the histogram becomes more
complex, since we need to consider the contributions of both the histogram and the map.
To keep things more simple we instead handle them individually, so that neither have to consider
the other.
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The case of the identity function is trivial since we don’t do anything, but otherwise we will need
to apply a rewrite rule on the bucket_fun as well. Luckily the compiler already has a function
for differentiating lambdas.

This is implemented in the central vjpSOAC function in three steps:

1. Generate statement mapStmt which maps bucket_fun onto the input.

2. Generate statement newHist identical to the original histogram, but where the input is the
output of mapStmt, and the bucket_fun is the identity function.

3. Apply rewrite rules to newHist, then mapStmt.

The extended cases of vjpSOAC becomes:

1 vjpSOAC :: VjpOps -> Pat Type -> StmAux () -> SOAC SOACS -> ADM () -> ADM ()

2 -- Histogram Case

3 vjpSOAC ops pat aux (Hist len args hist_op bucket_fun) m

4 | not $ isIdentityLambda bucket_fun = do

5 f’ <- mkIdentityLambda $ lambdaReturnType bucket_fun

6 (args ’, stmts) <- runBuilderT ’ . localScope (scopeOfLParams []) $ do

7 letTupExp "input" $ Op $ Screma len args (mapSOAC bucket_fun)

8 let mapStmt = head $ stmsToList stmts

9 let newHist = Let pat aux $ Op $ Hist len args ’ hist_op f’

10 vjpStm ops stmt $ vjpStm ops newHist m

11

12 vjpSOAC ops pat aux hist@(Hist _ _ _ bucket_fun) m

13 | isIdentityLambda bucket_fun = do

14 diffHist ops pat aux hist m

vjpStm used in line 10 works like vjpSOAC, but on any statement. When vjpStm is called on
newHist, it will case the statement until it reaches vjpSOAC again. Because the bucket_fun was
substituted with the identity-function, the guard on line 4 will no longer match. It will instead
match with the case beneath it at line 12, which subsequently applies the rewrite rule to the
statement.

Now that the bucket_fun is dealt with, we can ignore it inside of diffHist.

The following sections will explain how the different cases of operators were implemented.
Most intermediate steps of the pseudo code will be presented, along with its corresponding
compiler code.
The code produced by the compiler can be found in the appendix, but please do keep in mind that
part of the compiler pipeline optimizes the generated code. Code generating unused variables
are removed, and maps, reduce and lambdas are fused whenever possible.

4.2.1 Special case: Addition

In order to reason about the optimization for reduce_by_index with (+) as its operator, we
first reason about the more simple case of reduce. We recall that the semantics for reduce are
as follows:

y = reduce ⊙ e⊙ [v0, v1, ..., vn−1] = e⊙ ⊙ v0 ⊙ v2 ⊙ ...⊙ vn−1

For an unknown operator ⊙ we would compute the tangent of vi as vi =
∂(li⊙vi⊙ri)

∂vi
· y, but

when we insert addition as the operator, we can simplify as such:

vi +=
∂(li + vi + ri)

∂vi
· y = y
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Now all vi in vs are update with the same adjoint, being that of y.
This simplifies the rewrite rule by not requiring us to perform the scan to compute li and ri, and
generalises to reduce_by_index by updating vi with the adjoint of its corresponding bin:

vs[i] += histo[inds[i]]

The same logic applies to computing the adjoint of the original array, which is exactly identical
to the adjoint of the result:

dest[i] += histo[i]

Because dest is consumed by reduce_by_index, and its value might be needed later in the
reverse sweep, we start by copying it. Putting everything together we get the following psedocode:

1 - Original statement

2 let hist = reduce_by_index orig_dst (+) 0 inds vs

3

4 -- Forward sweep

5 let orig_dst_copy = copy orig_dst

6 let hist = reduce_by index orig_dst_copy (+) 0 inds vs

7 -- Reverse sweep

8 let hist_bar = lookupAdj hist

9 let dest_bar = hist_bar

10 let vs_bar += map (\bin -> if bin < len(dest) && bin > -1

11 then hist_bar[bin]

12 else 0) inds

Using the IR presented in section 4.1 we first construct a copy of orig_dst by a monadic
operation such that the statement is captured and produced as output:

1 let orig_dst_copy = copy orig_dst
2

(a) Pseudo code

1 orig_dst_cpy <-
2 letExp (baseString orig_dst ++ "_copy") $
3 BasicOp $ Copy orig_dst
4

(b) Compiler code

We now reassemble the same Hist that we got as input, but using orig_dst_copy instead
of orig_dst as the destination array. We use the monadic function addStm to bind the result to
the original pattern specified:

1 let hist = reduce_by index
orig_dst_copy (+) 0 inds vs

2

(a) Pseudo code

1 let histo ’ = Hist n [inds , vs]
2 [HistOp shape rf [orig_dst_cpy] [ne] add_lam]
3 bucket_fun
4 addStm $ Let pat aux $ Op histo ’
5

(b) Compiler code

Computation of vs_bar requires us to build a map that applies a lambda on inds. The
Lambda is constructed separately, and subsequently used to build the map.
To construct the Lambda needed we use newParm create the parameter for the bins, and use
runBodyBuilder to build the body of the Lambda with those parameters:
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1 (\bin -> if bin < len(dest) && bin >
-1

2 then hist_bar[bin]
3 else 0)
4

(a) Pseudo code

1 bin_param <- newParam "bin" $ Prim int64
2 vs_adj_lam_body <- runBodyBuilder . localScope (scopeOfLParams (bin_param)) $
3 eBody
4 [ eIf -- if ind > 0 then 0 else ...
5 (eCmpOp (CmpSlt Int64) (eParam ind_param) (eSubExp int64Zero) )
6 (eBody [eSubExp $ int64Zero ])
7 (eBody
8 [
9 eIf -- if histDim > ind then 0 else hist_bar[i]

10 (eCmpOp (CmpSlt Int64) (eSubExp histDim) (eParam ind_param) )
11 (eBody [eSubExp $ int64Zero ])
12 ( do
13 r <- letSubExp "res" $ BasicOp $ Index hist_bar $ Slice $ [DimFix

bin_param]
14 resultBodyM [r]
15 )
16 ]
17 let vs_adj_lam = Lambda [bin_param] vs_adj_lam_body [eltp]
18

(b) Compiler code

The constructs such as eIf eCmpOp, eParam ect. are monadic helper functions, of which there
are too many to explain. A helper function with the name e<Type> produces a <Type> from its
arguments, eg. eIf produces an If-statement.
The result of each path of the branch are defined on lines 6, 11 and 14 in the compiler code.
For the result of the final branch on lines 12-14 we need to define an expression that computes
hist_bar[bin], and resultBodyM is a monadic function that returns the result as a body.
The variable int64Zero used in the compiler code is a SubExp with a 64-bit integer type and
the value 0.

The needed lambda is now bound to vs_adj_lam which we can reference. Using vs_adj_lam

we construct the required map, and bind the result to a VName that we can insert as the adjoint
of vs:

1 let hist_bar = lookupAdj hist
2 let k = len(orig_dst)
3 let vs_bar +=
4 map (\bin -> if bin < k && bin > -1
5 then hist_bar[bin]
6 else 0) inds
7

(a) Pseudo code

1 pe_bar <- lookupAdjVal $ pe
2 vs_bar <- letExp (baseString vs ++ "_bar") $
3 Op $ Screma n [inds] $ ScremaForm [][] vs_adj_lam
4 void $ updateAdj vs vs_bar
5

(b) Compiler code

This concludes that case of (+) as the operator given to reduce_by_index. The complete
compiler- and produced code can be found in the appendix at section 7.2.1.

4.2.2 Special case: Min/max

Min and max behave similarly by taking two values as input and outputting the smaller (min)
or larger (max) value. We first reason for Reduce.

When reducing with either of these operators, you are essentially asking for the largest/s-
mallest element of a given list i.e. only a single element from the list is returned. Whatever
element was picked must therefore have contributed fully to the adjoint of the result, and should
therefore be assigned the adjoint of the result.

As a simple example we use the following reduction:

let y = reduce min ∞ vs

If the element at index ik was the smallest element, then vik += y, and for all other vi we do
nothing. The same logic applies to max.
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The most straightforward way to facilitate this, is to lift the min/max operator to take two
(value, index) tuples as input and pipe the index of the min/max element along. If the two
elements are the same we simply pick the one with the lowest index. The lifted operator is
designed as:

1 (\acc_v , acc_i , arg_v , arg_i -> if acc_v == arg_v

2 then (acc_v , min(acc_ind , arg_ind))

3 else let minmax = min/max(acc_v , arg_v)

4 if minmax == acc_v

5 then (acc_v , acc_ind)

6 else (arg_v , arg_ind))

The min/max operator on line 3 indicates that whichever of the the two is being used should
be inserted here.

The generalisation to reduce_by_index is to implement the same approach bin-wise, which
is easily achieved by using reduce_by_index with the lifted operator.

In order to do that we extend the neutral element to be a tuple with a negative index
(nemin/max,−1). We also extend the destination array to be a tuple of the original values, and
an index of (−1).
Since indices are always positive (0...n − 1), any resulting histogram with a negative index will
indicate that the value from the destination array was picked. This is needed for the reverse
sweep where we need to compute the adjoint of both the input values and the destination array.

Putting everything together we get the following pseudo code to implement using k as the
size of the histogram:

1 -- Original statement

2 let hist = reduce_by_index orig_dst min/max nemin/max vs

3

4 -- Forward sweep.

5 let orig_dst_copy = copy orig_dst

6 let minus_ones = replicate k -1

7 let iota_n = iota n

8

9 let maxind_lam =

10 (\acc_v , acc_i , arg_v , arg_i -> if acc_v == arg_v

11 then (acc_v , min(acc_ind , arg_ind) )

12 else let minmax = min/max(acc_v , arg_v)

13 if minmax == acc_v

14 then (acc_v , acc_ind)

15 else (arg_v , arg_ind))

16 let (hist , hist_inds) =

17 reduce_by_index (orig_dst_copy , minus_ones) maxind_lam (nemin/max, -1) (is,

vs , iota_n)

18

19 -- Reverse sweep

20 let hist_bar = lookupAdj hist

21 let dest_bar = map2 (\ind , adj -> if ind < 0 then adj else 0) hist_inds hist_bar

22

23 let vs_bar_temp = lookupadj vs

24 let vs_bar_p = map2 (\ind , adj -> if ind < 0 then 0 else (vs_bar_temp[ind] + adj))

hist_inds hist_bar

25 let vs_bar = scatter vs_bar_temp hist_inds vs_bar_p
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Now for the implementation. The header of the function is:

1 diffHist _vjops (Pat [pe]) aux soac m

2 | (Hist n [inds , vs] hist_max bucket_fun) <- soac ,

3 True <- isIdentityLambda bucket_fun ,

4 [HistOp shape rf [orig_dst] [ne] max_lam] <- hist_max ,

5 Just bop <- isMinMaxLam max_lam ,

This is much like the format presented in section 4.2, but where the operator given is named
max_lam. Even though it is named max_lam inside the compiler, the guard on line 5 allows min
to use this same rule for code generation.

For the forward sweep we start by initializing the three helper arrays:

1 let orig_dst_copy = copy orig_dst
2 let minus_ones = replicate k -1
3 let iota_n = iota n
4

(a) Pseudo code

1 orig_dst_copy <- letExp (baseString orig_dst ++ "_cpy") $
2 BasicOp $ Copy orig_dst
3 minus_ones <- letExp "minus_ones" $ BasicOp $
4 Replicate shape (intConst Int64 (-1))
5 iota_n <- letExp "iota_n" $
6 BasicOp $ Iota n (intConst Int64 0) (intConst Int64 1) Int64
7

(b) Compiler code

Now we need to construct the Hist needed to compute the histogram. We first define the
operator HistOp by giving it the destination of the operation, the neutral element, and the lifter
operator maxind_lam. Once we have the HistOp we can construct the histogram we want to
compute and bind it to the original pattern.

1 let (hist , hist_inds) =

2 reduce_by_index (orig_dst_copy ,

minus_ones)

3 maxind_lam

4 (nemin/max , -1)

5 (is , vs , iota_n)

6

(a) Pseudo code

1 let hist_op = HistOp shape rf [orig_dst_copy , minus_ones]
2 [ne , intConst Int64 (-1)]
3 maxind_lam
4
5 f’ <- mkIdentityLambda [Prim int64 , eltp , Prim int64]
6 auxing aux $ letBind hist_pat $ Op $
7 Hist n [inds , vs , iota_n] [hist_op] f’
8

(b) Compiler code

Now that the forward sweep is complete, we move on to the reverse sweep.

We construct the Lambda to compute dest_bar (lam_orig_bar), and map it across hist_inds
and hist_bar:

1 let hist_bar = lookupAdj hist
2 let dest_bar =
3 map (\ind , adj ->
4 if ind < 0
5 then adj
6 else 0
7 ) hist_inds hist_bar
8

(a) Pseudo code

1 hist_bar <- lookupAdjVal $ hist
2 dest_bar <-
3 letExp (baseString orig_dst ++ "_bar") $
4 Op $
5 Screma shapedim [inds , hist_bar]
6 (ScremaForm [] [] lam_orig_bar)
7 insAdj orig_dst hist_bar
8

(b) Compiler code

Now we want to increase the adjoint of the values in vs that made it into the resulting
histogram. We construct the needed lambda and name it lam_vs_bar, and apply it to hist_inds
and hist_bar. hist_inds still points to the min/max element of a given bin in the original array
vs, so we use that to scatter the values to the current adjoint of vs. If no element in vs was the
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min/max element it must have come from orig_dst. In that case the corresponding index in
hist_inds will be −1, which the scatter will ignore.

1 let vs_bar_temp = lookupadj vs

2 let vs_bar_p =

3 map (\ind , adj ->

4 if ind < 0

5 then 0

6 else (vs_bar_temp[ind] + adj)

7 ) hist_inds hist_bar

8 let vs_bar = scatter vs_bar_temp

9 hist_inds

10 vs_bar_p

11

(a) Pseudo code

1 vs_bar <- lookupAdjVal vs
2 vs_bar_p <-
3 letExp (baseString vs_bar ++ "_partial") $
4 Op $
5 Screma shapedim [hist_inds , hist_bar]
6 (ScremaForm [] [] lam_vs_bar)
7 f’’ <- mkIdentityLambda [Prim int64 , eltp]
8 let scatter_soac = Scatter shapedim [hist_inds , vs_bar_p]
9 f’’

10 [( Shape [n], 1, vs_bar)]
11 vs_bar ’ <- letExp (baseString vs ++ "_bar") $ Op scatter_soac
12 insAdj vs vs_bar ’
13

(b) Compiler code

This completes the compiler transformation for the special case of min/max as the operator to
reduce_by_index. Section 7.2.2 in the appendix contains more complete segments of compiler-
code along with the produced code.

4.2.3 Special case: Multiplication

As with the other special case we first reason about the case of reduce, and then generalise
the reasoning to reduce_by_index.
When ⊙ is multiplication, computation of vi becomes:

vi +=
∂(li · vi · ri)

∂vi
∗ y = li · ri · y

Assuming the product of all vs in the list of elements is y, and that all vs are non-zero, basic
math gives us li · ri = y/vi. The issue of zeroes gives us three cases:

1. All elements a non-zero. In this case we can update the tangent of each v as vi += y
vi

· y.

2. Only a single element is zero, we will call this vx. For all other vs li · ri = 0, so we update
vx with li · ri · y and all other vs with 0.

3. More than one element is zero. li · ri is zero for all vi so we update them with 0, effectively
doing nothing.

To facilitate case 1 and 2 we will need to compute the product of all the elements where 0’s
are replaced with the neutral element. For case 1 this will have no effect, but for case 2 this will
allow us to use the result directly because li · 1 · ri = li · ri.
In practice this means we will have to count the amount of zeroes encountered, so we can
distinguish between which of the three cases we are in.

The generalisation to reduce_by_index is to use the same approach, but now on the level of
the bins. For each bin we count the amount of zeroes that went into it, and replace them with
the neutral element instead to compute the non-zero product.
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This gives us the following pseudo code to implement:

1 -- Original statement
2 let hist = reduce_by_index orig_dst (*) 1 inds vs
3
4 -- Forward sweep
5 let nz_prd = replicate len(orig_dst) 1
6 let zr_cts = replicate len(orig_dst) 0
7
8
9 let nzel_zrct , nzel_zrct_flag = map (\v -> if v == 0 then (1, 1) else (v, 0)) vs

10
11 let non_zero_prod = reduce_by_index (nz_prod) (*) (1) (inds , nzel_zrct)
12 let zero_count = reduce_by_index (zr_cts) (+) (0) (inds , nzel_zrct_flag)
13
14 let hist_temp = map2 (\nz_prod , zeros -> if zeroes > 0 then 0 else nz_prod) non_zero_prod zero_count
15 let hist = map2 (*) orig_dst hist_temp
16
17 -- reverse
18 let hist_bar = lookupAdj hist
19 let hist_orig_bar = map2 (*) hist_temp hist_bar
20 let hist_temp_bar = map2 (*) hist_orig hist_bar
21
22
23 let as_bar = map2 (\i, v -> let zr_cts = zero_count[i]
24 let pr_bar = hist_temp_bar[i]
25 let nz_prd = non_zero_prod[i]
26 if zr_cts == 0
27 then (nz_prd / v) * pr_bar
28 else if zr_cts == 1 && v == 0
29 then nz_prd * pr_bar
30 else 0
31 ) inds vs

The following code is the functions header:

1 --special case *

2 diffHist _vjops (Pat [pe]) aux soac m

3 | (Hist n [inds , vs] hist_mul bucket_fun) <- soac ,

4 True <- isIdentityLambda bucket_fun ,

5 [HistOp shape rf [orig_dst] [ne] mul_lam] <- hist_mul ,

6 Just mulop <- isMulLam mul_lam ,

The values in Hist and HistOp are almost on the same format as the one explained in section 4.2,
except the operator is called mul_lam. The guards on line 4 and 6 check that the bucket_fun is
the identity function, and that the operator to use is multiplication.

We now move on to the forward sweep.
We start by initializing our three helper arrays:

1 let nz_prd = replicate len(orig_dst) 1

2 let zr_cts = replicate len(orig_dst) 0

3

(a) Pseudo code

1 nz_prods0 <- letExp "nz_prd" $ BasicOp $
2 Replicate shape ne
3 zr_counts0 <- letExp "zr_cts" $ BasicOp $
4 Replicate shape (intConst Int64 0)
5

(b) Compiler code

Next we need to transform our input values into a tuple of (0,1) when a zero is encountered,
and (value, 1) otherwise. We start by building the map:

1 (\v -> if v == 0 then (1, 1) else (v, 0))

2

(a) Pseudo code

1 v_param <- newParam "v" $ eltp
2 map_lam_bdy <-
3 runBodyBuilder . localScope (scopeOfLParams [v_param ]) $
4 eBody
5 [ eIf
6 (toExp $ CmpOpExp
7 (CmpEq eltp)
8 (LeafExp (paramName v_param) eltp)
9 (ValueExp (blankPrimValue eltp)))

10 (resultBodyM [Constant $ onePrimValue eltp , intConst Int64 1])
11 (resultBodyM [Var (paramName v_param), intConst Int64 0])
12 ]
13 let map_lam = Lambda [v_param] map_lam_bdy [eltp , Prim int64]
14

(b) Compiler code
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In the IR a list of tuples is actually a tuple of lists. We map over vs and unpack the results:

1 let nzel_zrct , nzel_zrct_flag =

2 map (\v -> if v == 0

3 then (1, 1)

4 else (v, 0)

5 ) vs

6

(a) Pseudo code

1 vs_lift <- letTupExp "nzel_zrct" $
2 Op $ Screma n [vs] (ScremaForm [] [] map_lam)
3 let [nzel_zrct , nzel_zrct_flag] = vs_lift
4

(b) Compiler code

Now we want to compute the two histograms and while the pseudo code states shows them
being computed separately, we can actually fuse them together. We define two HistOps, one
where we are multiplying the non-zero values, and one where we add the flags. The destination
of multiplication is the helper array nz_prd, and the destination of addition is zr_cts:

1 let hist_nzp = HistOp shape rf [nz_prods0] [ne] mul_lam
2 let hist_zrn = HistOp shape rf [zr_counts0] [intConst Int64 0] lam_add
3

(a) Compiler code

Now we can construct the fused histogram. The input was not defined for each of the two
HistOps, and must be defined on Hist. For a fused HistOp of [HistOp_1, HistOp_2] we must
align the input defined in Hist as [inds_1, inds_2, vs_1, vs_2]:

1 let non_zero_prod =

2 reduce_by_index (nz_prod)

3 (*)

4 (1)

5 (inds , nzel_zrct)

6
7 let zero_count =

8 reduce_by_index (zr_cts)

9 (+)

10 (0)

11 (inds , nzel_zrct_flag)

12

(a) Pseudo code

1 f’ <- mkIdentityLambda [Prim int64 , Prim int64 , eltp , Prim int64]
2 let soac_exp = Op $ Hist n
3 [inds , inds , nzel_zrct , nzel_zrct_flag]
4 [hist_nzp , hist_zrn]
5 f’
6 auxing aux $ letBind soac_pat soac_exp
7

(b) Compiler code

The remaining part of the forward sweep is to compute hist_temp which is the histogram
purely based on our input, and the resulting histogram hist obtained by mapping multiplication
over hist_temp and orig_dst.
hist_temp is computed from non_zero_prod by checking if the corresponding bin has a zero in
it. If there is no zeroes in that bin we can return the non-zero product. Otherwise, the non-zero
product is invalid, and we return 0 as the product of that bin. We construct the lambdas and
bind the results:

1 let hist_temp =

2 map2 (\nz_prod , zeros ->

3 if zeroes > 0

4 then 0

5 else nz_prod

6 ) non_zero_prod zero_count

7
8 let hist = map2 (*) orig_dst hist_temp

9

(a) Pseudo code

1 hist_temp <-
2 letExp "hist_temp" $
3 Op $ Screma shapedim
4 [nz_prods , zr_counts]
5 (ScremaForm [] [] (Lambda ps2 lam_bdy_2 [eltp]))
6 auxing aux $
7 letBind (Pat [pe]) $
8 Op $ Screma shapedim
9 [orig_dst , hist_temp]

10 (ScremaForm [] [] (Lambda ps3 lam_pe_bdy [eltp]))
11

(b) Compiler code
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For the reverse sweep we start by performing a lookup on the adjoint of the result, and using
that compute hist_orig_bar and hist_temp_bar:

1 let hist_bar = lookupAdj hist

2 let hist_orig_bar = map2 (*) hist_temp

hist_bar

3 let hist_temp_bar = map2 (*) hist_orig

hist_bar

4

(a) Pseudo code

1 hist_bar <- lookupAdjVal $ patElemName pe
2 orig_bar <-
3 letExp (baseString orig_dst ++ "_bar") $
4 Op $
5 Screma
6 shapedim
7 [hist_temp , hist_bar]
8 (ScremaForm [] [] mul_lam ’)
9

10 updateAdj orig_dst orig_bar
11
12 hist_temp_bar <-
13 letExp (baseString hist_temp ++ "_bar") $
14 Op $
15 Screma
16 shapedim
17 [orig_dst , hist_bar]
18 (ScremaForm [] [] mul_lam ’’)
19

(b) Compiler code

Now, all we need to do is to compute the adjoint of vs. We construct the lambda needed as
vs_bar_lam, and map over inds and vs:

1 let as_bar =

2 map2 (\i, v ->

3 let zr_cts = zero_count[i]

4 let pr_bar = hist_temp_bar[i]

5 let nz_prd = non_zero_prod[i]

6 if zr_cts == 0

7 then (nz_prd / v) * pr_bar

8 else if zr_cts == 1 && v == 0

9 then nz_prd * pr_bar

10 else 0

11 ) inds vs

12

(a) Pseudo code

1 vs_bar <-
2 letTupExp (baseString vs ++ "_bar") $
3 Op $ Screma
4 n
5 [inds , vs]
6 (ScremaForm [] [] (vs_bar_lam))
7 updateAdj vs vs_bar
8

(b) Compiler code

This concludes the implementation of multiplication as the operator to reduce_by_index.
The full implementation along with the produced code can be found in the appendix at section
7.2.3.

4.2.4 General approach

In this section the general approach will be presented. The general approach encompasses
any operator not caught by the special cases of addition, multiplication, or min/max. We
recall the rewrite rule from section 3.2:

let histo = reduce by index dest ⊙e⊙as =⇒

let assorted = radix sort as
let lis = segScanexc ⊙ e⊙ assorted
let ris = reverse assorted

▷ segScanexc(λ x⊙ y → y ⊙ x) e⊙ ▷ reverse
let histtemp = get segment sum lis assorted
let histo = map2 ⊙ dest histtemp

...

let dest = map f1 dest histtemp

let histtemp = map f2 dest histtemp

let as += map4 f3 lis as ris inds
(9)
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The pseudo code for the complete implementation can be found in the appendix at section
7.1. It has been omitted here since it is mostly covered by the rewrite rule in equation 9 with
the filter code prepended, but it does include some steps that will not be highlighted in this
section. Some of the functions in the rewrite rule, such as segmented scan, requires us to build
flag arrays. In this segment i will mainly present the steps of the rewrite rule.

Forward sweep When beginning implementation, another step was introduced due to prac-
tical reasons. The list of bins accepted by reduce_by_index are of type int64, giving the
possibility of passing negative values. Radix sort can be implemented to handle signed values,
but the most straightforward implementation does not. The Futhark-compiler does not have a
built-in method of sorting values, so radix sort needed to be implemented by hand. When you
consider that any negative value would be an invalid bin, and should be ignored anyway, the
solution to this problem was to initially filter our invalid bins.
This includes bins that are greater than the length of the histogram. I therefore filter out any
bin not in the range [0, ..., (k − 1)] where k is the length of the histogram.

In order to get an understanding of how flag arrays are used throughout the rest of the code,
we take a look at the implementation of the filter, which uses them a lot. The following is the
pseudo code:

1 let flags = map (\bin -> if 0 <= ind <= m then 1 else 0) inds
2 let flag_scanned = scan (+) 0 flags
3 let n’ = last flags_scanned
4 let new_inds = map (\(flag , flag_scan) -> if flag == 1 then flag_scan - 1 else -1) flags

flag_scanned
5 let new_indexes = scatter (Scratch int n’) new_inds (iota n)
6 let new_bins = map (\i -> bins[i]) new_indexes

The lines of code do the following:

1. A simple map of our predicate onto inds. Return 1 if we want to select the element, and
0 otherwise.

2. An inclusive scan of flags to get accumulative sum.

3. The last element of scan must be the number of elements we picked.

4. This list is needed for the following scatter. We map over flags and flag_scanned and
check if the flag is set. If it is, we can subtract 1 from the sum up to this point, to find the
position of that element in the filtered array. Otherwise we return −1 which will make the
following scatter ignore this element.

5. (iota n) gives us the original index of each element in the original list, and we scatter

those values into an empty array of size n′ to the positions defined in new_inds.

6. Now that we have the indices of all values that met the predicate, we collect the respective
bins of each of those elements.

Some of the code for filtering can be found in the appendix at section 7.2.4 figure 45.

After filtering we can go ahead with radix sorting.
Radix sort is implemented by looping over each bit from least significant to most significant.
Each iteration we partition the current state of values such that those with 0’s are followed by
values with a 1. This is achieved by first computing the flag-array bits by simply checking
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the current bit, and then using partition2 to compute the new indices used to collect the new
arrangement.

We need elements of the same bin to lie consecutively in a list so we sort with respect to the
bins, but we also need to keep track of their original positions in order to update the adjoints
later.
By sorting with respect to the bins we get a new arrangement of values, which can be applied to
both the bins and the original indices after each iteration. The sorted values can be generated
from the sorted indices afterwards, so we do not have to move them around multiple times as well:

1 -- Radix sort (new_bins , new_indexes) w.r.t. new_bins.
2 let (sorted_is , sorted_bins) =
3 loop (new_indexes , new_bins) for i < 63 do
4 let bits = map (\ ind_x -> (ind_x >> i) & 1) new_bins
5 let newidx = partition2 bits (iota n’)
6 in (map(\i -> new_indexes[i]) newidx , map(\i -> new_bins[i]) newidx)
7 let sorted_vals = map(\i -> vs[i]) sorted_issorted_vals = map(\i -> vs[i]) sorted_is

We start by defining the function computing bits. We shift i amount of times to the right
where i is the loop counter.

1 let bits =

2 map (\ ind_x -> (ind_x >> i) & 1) new_bins

3

(a) Pseudo code

1 ind_x <- newParam "ind_x" $ Prim int64
2 bits_map_bdy <- runBodyBuilder . localScope (scopeOfLParams [ind_x]) $
3 eBody
4 [
5 eBinOp (And Int64)
6 (eBinOp (LShr Int64) (eParam ind_x) (eSubExp $ Var i2))
7 (eSubExp $ int64One)
8 ]
9 let bits_map_lam = Lambda [ind_x] bits_map_bdy [Prim int64]

10 bits <- letExp "bits" $ Op $
11 Screma n’ [binsForLoop] (ScremaForm [] [] bits_map_lam)
12

(b) Compiler code

We then construct the iota and use partition2-function to get the new arrangement of
elements.

1 let newidx = partition2 bits (iota n’)

2

(a) Pseudo code

1 -- partion2Maker - Takes flag array and values and creates a scatter SOAC
2 -- which corresponds to the partition2 of the inputs
3 -- partition2Maker size flags values =
4 partition2Maker :: SubExp -> VName -> VName -> BuilderT SOACS ADM (SOAC SOACS)
5
6 temp_iota <- letExp "temp_iota" $ BasicOp $ Iota n’ int64Zero int64One Int64
7 scatter_soac <- partition2Maker n’ bits temp_iota
8 newidx <- letExp (baseString inds ++ "_scattered") $ Op $ scatter_soac
9

(b) Compiler code

I have omitted the code for partition2Maker which can be found in the appendix at section
7.3.1.
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At the end of each loop we collect the bins and original indices before ending the iteration:

1 let new_indexes =

2 map(\i -> filtered_indexes[i]) newidx)

3 let new_bins =

4 map(\i -> filtered_bins[i]) newidx)

5

(a) Pseudo code

1 inner_indx_idx <- newParam "inner_indexes_idx" $ Prim int64
2 inner_indx_bdy <- runBodyBuilder . localScope (scopeOfLParams [inner_indx_idx

]) $ do
3 tmp <- letSubExp "indexes_body" $
4 BasicOp $ Index (paramName paramIndexes)
5 (fullSlice (Prim int64)
6 [DimFix (Var (paramName inner_indx_idx))])
7 resultBodyM [tmp]
8 let inner_indx_lambda = Lambda [inner_indx_idx] inner_indx_bdy [Prim int64]
9 new_indexes <-

10 letSubExp "new_indexes" $
11 Op $ Screma n’ [newidx] $ ScremaForm [][] inner_indx_lambda
12 ...
13 --- Equivalent code for new_bins
14

(b) Compiler code

The upper-bound of i (number of loop iterations) is set to be 63 since any signed integer with
a 1 as it’s most significant bit is a negative number, and they have all been filtered out at this
point. A more elegant solution would be to set the upper-bound it be ⌈log2(histDim)⌉ where
histDim is the length of the histogram. Any bin larger that histDim has also been filtered out,
so sorting values beyond that is not optimal.

The complete code for radix sort can be found in the appendix at section 7.2.4 figure 46.

Now that our values are sorted, we can compute li and ri by performing both a forward
and reverse segmented exclusive scan on sorted_vals. Doing this requires us to compute the
required flag array, which can be computed from the sorted bins:

1 let final_flags =

2 map (\ index ->

3 let curr = sorted_bins[index]

4 let prev = sorted_bins[index -1]

5 if curr == prev

6 then 0

7 else 1) iota n’

8

(a) Pseudo code

1 iota_n ’ <- letExp "iota_n ’" $ BasicOp $
2 Iota n’ (intConst Int64 0) (intConst Int64 1) Int64
3 mk_flag_body <- runBodyBuilder . localScope (scopeOfLParams [bin , index]) $ do
4 .
5 -- Lambda code
6 .
7
8 let mk_flag_lambda = Lambda [bin , index] mk_flag_body [Prim $ IntType Int8]
9 final_flags <- letExp "final_flags" $ Op $

10 Screma n’ [sorted_bins , iota_n ’] $
11 ScremaForm [][] mk_flag_lambda
12

(b) Compiler code

Where n′ is the length of sorted_bins.

Furthermore we need to lift the operator to take a (value, flag) tuple and reset accumulation
when the start of a new segment is encountered. We first lift the operator to be used for an
inclusive segmented scan:

1 let lifted_op = (\(f1 ,v1) (f2 ,v2) ->

2 let f = f1 || f2

3 let v = if f2 then v2 else v1 ⊙ v2

4 in (f, v))

The operators now functions as a segmented inclusive scan, but we needed an exclusive
segmented scan. To fix this we shift each element to the right, padding with the neutral element:

1 let tmp = map (\(f,i) -> if f
2 then (f, ne)
3 else (f, sorted_vals[i-1])
4 ) final_flags (iota n)

We can now compute li by scanning with our lifted operator. The neutral element is set to
(false, e⊙) but in practise it does not matter what it is. The first element encountered is the
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start of a segment, so (v2, f2) is always picked here.

The code for lifting the operator is implemented as the helper function mkSegScanExc and
can be found in the appendix at section 7.3.2.

The lifted operator returns a tuple of flags and values, but we only unpack the values:

1 let lis = scan lifted_op (e⊙, false)

2 tmp

3 final_flags

4

(a) Pseudo code

1 -- Lift a lambda to produce an exlusive segmented scan operator.
2 -- mkSegScan operator neutral_elem size values flags
3 mkSegScanExc :: Lambda SOACS -> [SubExp] -> SubExp -> VName -> VName
4 -> ADM (SOAC SOACS)
5
6 -- mkSegScanExc also computes the map for tmp
7 seg_scan_exc <- mkSegScanExc f nes n’ sorted_vals final_flags
8 fwd_scan <- letTupExp "fwd_scan" $ Op seg_scan_exc
9 let [_, lis] = fwd_scan

10

(b) Compiler code

The full code for computation of lis can be found in the appendix figure 47.

In order to compute ri we need to reverse the list of elements, perform the scan, and then
reverse back again. The lifted_op can be reused for this purpose, but the final_flags need
to be fixed. As an example we reverse a set of flags:

1 Flags = [1,0,0,0,1,0.1,0,0]

2 Reversed = [0,0,1,0,1,0,0,0,1]

3 Correct = [1,0,0,1,0,1,0,0,0]

Where Flags is the array being reversed, Reversed is the result of directly reversing Flags,
and Correct being the correct state of the reversed flags that we wish.
The flags in Reversed are slightly off, and can be fixed by shifting each element to the right. We
pad with 1 since the first element should always be the start of a new segment:

1 let final_flags_rev = reverse final_flags

2 let rev_flags =

3 map (\i -> if i == 0

4 then 1

5 else final_flags_rev[i-1]

6 ) (iota n’)

7

(a) Pseudo code

1 -- eReverse: Reverses the order of the input -array
2 -- eReverse: VName
3 eReverse :: VName -> VName
4
5 final_flags_rev <- eReverse final_flags
6 i’ <- newParam "i" $ Prim int64
7 rev_flags_body <- runBodyBuilder . localScope (scopeOfLParams [i’]) $ do
8 -- Lambda body
9 let rev_flags_lambda = Lambda [i’] rev_flags_body [Prim int8]

10 rev_flags <- letExp "rev_flags" $ Op $
11 Screma n’ [iota_n ’] $
12 ScremaForm [][] rev_flags_lambda
13

(b) Compiler code

Where n′ is the length of final_flags_rev.
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We can now compute ri by reversing the shifted values tmp, scanning them with the reversed
flags, and then reversing back:

1 let rev_vals = reverse tmp

2 let ris_rev =

3 scan lifted_op (e⊙, false)

4 rev_vals

5 rev_flags

6 let ris = reverse ris_rev

7

(a) Pseudo code

1 -- eReverse: Reverses the order of the input -array
2 -- eReverse: VName
3 eReverse :: VName -> VName
4
5 -- Lift a lambda to produce an exlusive segmented scan operator.
6 -- mkSegScan operator neutral_elem size values flags
7 mkSegScanExc :: Lambda SOACS -> [SubExp] -> SubExp -> VName -> VName
8 -> ADM (SOAC SOACS)
9

10 -- Run segmented scan on reversed arrays.
11 rev_vals <- eReverse sorted_vals
12 rev_seg_scan_exc <- mkSegScanExc f nes n’ rev_vals rev_flags
13 rev_scan <- letTupExp "rev_scan" $ Op rev_seg_scan_exc
14 let [_, ris_rev] = rev_scan
15 ris <- eReverse ris_rev
16

(b) Compiler code

Once again the complete code for this step can be found in the appendix at section 7.2.4
figure 48.

Now that we have performed both the forward and reverse scan, the last part of the forward
sweep is to compute the resulting histogram. The rewrite rule states that the reverse sweep
needs to compute the adjoint of the original array orig_dst, and the histogram generated by
reducing our elements vs. We call our partial result hist_temp. Since we need both partial
results for the reverse sweep, we bring them into scope here and combine them to create the
resulting histogram:

1 let hist_temp = reduce_by_index (replicate k e⊙) ⊙ e⊙ inds vs

2 let hist = map ⊙ orig_dst hist_temp

Where k is the length of the histogram, and hist is the name of the result.

The computation of hist_temp in the code above states that we should use reduce_by_index,
but this is only meant to give an intuitive understanding of what hist_temp is. In reality we
are going to compute it from lis, which was the whole reason that computation was moved to
the forward sweep.

Since lis contains a segmented exclusive scan of all our elements, the last element of each
segment in lis will be the sum of that segment, only missing the last element (due to exclusive
scan). A short example to clarify using (+) as the operator:

1 Flags = [1,0, 0,1,0]

2 Values = [4,3, 7,2,4]

3 ExcScan = [0,4, 7,0,2]

4

5 LastElem = [0,0, 1,0,1]

6 Sum = [0,0,14,0,6]

In this example Values is the values we want to reduce, Flags are the flags used to compute
ExcScan, and LastElem is a flag array indicating the end of a segment. By taking the last ele-
ment of each segment from Values and adding them with the last element of each segment in
LastElem, we get a list containing the total sum of each segment in those positions.
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We implement this by using a scatter to get the values from Values and LastElem. Since
there is no assurance that all bins in the histogram will be populated, we start by allocating two
arrays with neutral elements for the last elements of both lis and our values:

1 let bin_last_lis_dst = replicate k e⊙
2 let bin_last_v_dst = replicate k e⊙
3

(a) Pseudo code

1 bin_last_lis_dst <- letExp "bin_last_lis_dst" $
2 BasicOp $ Replicate shape (head nes)
3 bin_last_v_dst <- letExp "bin_last_v_dst" $
4 BasicOp $ Replicate shape (head nes)
5

(b) Compiler code

Where k once again is the length of the histogram.

These arrays will be the destination of our scatter. Their sizes ensures that once we add them
together, the dimensions will fit that of the histogram.

Now we need the array of indices to scatter with. Both lis and sorted_vals have length
n′, and by mapping each index using (iota n′) we can check if the flag of the following element
is the start of a new segment. If it is, we want to take the value, and otherwise leave it. Since
scatter ignores values scattered to index −1, we can return that index for ignoring values. For
the ones that we want, we want to scatter the value to its corresponding bin. We therefore also
map over sorted_bins:

1 let scatter_arr =

2 map (\i, bin ->

3 if i == n’-1

4 then bin

5 else if final_flags[i+1] == 1

6 then bin

7 else -1

8 ) (iota n’) sorted_bins

9

(a) Pseudo code

1 i’’ <- newParam "i’’" $ Prim int64
2 current_bin <- newParam "current_bin" $ Prim int64
3 scatter_arr_body <-
4 runBodyBuilder . localScope (scopeOfLParams [i’’, current_bin ]) $ do
5 -- Lambda code
6 let scatter_arr_lam = Lambda [i’’, current_bin] scatter_arr_body [Prim int64]
7 scatter_arr <- letExp "scatter_arr" $
8 Op $ Screma n’ [iota_n ’, sorted_bins] $
9 ScremaForm [][] scatter_arr_lam

10

(b) Compiler code

Using scatter_arr we can scatter the last elements of each segment from sorted_vals

and lis to their destination arrays:

1 let bin_last_lis =

2 scatter bin_last_lis_dst

3 scatter_arr

4 lis

5 let bin_last_v =

6 scatter bin_last_v_dst

7 scatter_arr

8 sorted_vals

9

(a) Pseudo code

1 f’’’ <- mkIdentityLambda [Prim int64 , t]
2 bin_last_lis <- letExp "bin_last_lis" $ Op $
3 Scatter n’ [scatter_arr , lis]
4 f’’’
5 [(shape , 1, bin_last_lis_dst)]
6
7 f’’’’ <- mkIdentityLambda [Prim int64 , t]
8 bin_last_v <- letExp "bin_last_v" $ Op $
9 Scatter n’ [scatter_arr , sorted_vals]

10 f’’’’
11 [(shape , 1, bin_last_v_dst)]
12

(b) Compiler code

The full code for these computations can be found in section 7.2.4 figure 49.
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The last step of the forward sweep is to combine bin_last_lis and bin_last_v to create
hist_temp, and combine hist_temp with orig_dst to create hist_res:

1 let hist_temp = map2 ⊙ bin_last_lis

bin_last_v

2 let hist_res = map2 ⊙ hist_temp orig_dst

3

(a) Pseudo code

1 lis_param <- mapM (newParam "lis_param") [t]
2 v_param <- mapM (newParam "v_param") [t]
3
4 -- Update operator to use lis_param and v_param instead
5 op1_lam <- renameLambda f
6 op1 <- mkLambda (lis_param ++ v_param) $ do
7 eLambda op1_lam (map (eSubExp . Var . paramName) (lis_param ++ v_param))
8
9 hist_temp <- letExp "hist_temp" $

10 Op $ Screma histDim [bin_last_lis , bin_last_v] $ ScremaForm [][] op1
11
12 -- Equivalent code for hist_res
13
14 hist_res <- letExp "hist_res" $
15 Op $ Screma histDim [orig_dst , hist_temp] $ ScremaForm [][] op2
16
17 letBind pat $ BasicOp $ SubExp $ Var hist_res
18

(b) Compiler code

This last step bound the result to the original pattern and marks the end of the forward
sweep.

Reverse sweep For the reverse sweep we need to compute the adjoint of the input values
vs and the original histogram orig_dst. As stated in section 3.2, where the rewrite rule for
reduce_by_index was presented, the adjoint of hist_temp is needed to compute the adjoint of
vs. The adjoint of a single bin i in orig_dst and hist_temp can be computed as:

histtemp[i] =
∂(histtemp[i]⊙ origdst[i])

∂histtemp[i]
· histres[i]

origdst[i] =
∂(histtemp[i]⊙ origdst[i])

∂origdst[i]
· histres[i]

All the arrays used are of the same size, so we can compute all the adjoints by means of a

map. To keep it simple we do this in two steps, first computing
∂(histtemp[i]⊙origdst[i])

∂histtemp[i]
, and then

multiplying with histres[i]:

1 let hist_temp_op = (λx, y → ∂(x⊙y)
∂x

)

2 let orig_dst_op = (λx, y → ∂(x⊙y)
∂y

)

3

4 let hist_temp_bar_temp = map2 hist_temp_op hist_temp orig_dst

5 let hist_temp_bar = map2 * hist_temp_bar_temp hist_bar

6

7 let orig_dst_bar_temp = map2 orig_dst_op hist_temp orig_dst

8 let orig_dst_bar = map2 * orig_dst_bar_temp hist_bar

To create the lambdas hist_temp_op and orig_dst_op, an existing helper function mkScanAdjointLam
was used. It takes a lambda that is assumed to take two parameters, and returns a lambda that
differentiates with respect to one or the other. We use this to compute the temporary results,
before multiplying the adjoint of the result onto them:
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1 let hist_temp_bar_temp =

2 map2 hist_temp_op

3 hist_temp

4 orig_dst

5
6 let orig_dst_bar_temp =

7 map2 orig_dst_op

8 hist_temp

9 orig_dst

10

(a) Pseudo code

1 data FirstOrSecond = WrtFirst | WrtSecond
2
3 -- computes ‘d(x op y)/dx ‘ or d(x op y)/dy depending on FirstorSecond
4 -- mkScanAdjing: Operator FirstOrSecond
5 mkScanAdjointLam :: Lambda SOACS -> FirstOrSecond -> ADM (Lambda SOACS)
6
7 hist_orig_bar_temp_lambda <-
8 mkScanAdjointLam vjops hist_orig_lam WrtFirst
9 hist_temp_bar_temp_lambda <-

10 mkScanAdjointLam vjops hist_temp_lam WrtSecond
11
12 hist_orig_bar_temp <- letExp "hist_orig_bar_temp" $
13 Op $ Screma histDim [orig_dst , hist_temp] $
14 ScremaForm [][] hist_orig_bar_temp_lambda
15
16 hist_temp_bar_temp <- letExp "hist_temp_bar_temp" $
17 Op $ Screma histDim [orig_dst , hist_temp] $
18 ScremaForm [][] hist_temp_bar_temp_lambda
19

(b) Compiler code

We multiply the adjoint of the result onto each of them to obtain hist_temp_bar and
hist_orig_bar:

1 let hist_temp_bar =

2 map2 *

3 hist_temp_bar_temp

4 hist_bar

5
6 let orig_dst_bar =

7 map2 *

8 orig_dst_bar_temp

9 hist_bar

10

(a) Pseudo code

1 -- getMulOp returns an instance of the multiplication operator that works for
a given type.

2 getMulOp :: Type -> BinOp
3
4 let mulOp = getMulOp t
5
6 -- Takes name of two params , a binOp and the type of params and gives a lambda

of that application
7 -- mkSimleLambda: first_param , second_param , operator , type
8 mkSimpleLambda :: String -> String -> BinOp -> Type -> ADM (Lambda SOACS)
9

10 mul_hist_orig_res_adj <- mkSimpleLambda "orig_adj" "res_adj" mulOp t
11 mul_hist_temp_res_adj <- mkSimpleLambda "temp_adj" "res_adj" mulOp t
12
13 hist_orig_bar <- letExp "hist_orig_bar" $ Op $
14 Screma histDim [hist_orig_bar_temp , hist_res_bar] $
15 ScremaForm [][] mul_hist_orig_res_adj
16
17 hist_temp_bar <- letExp "hist_temp_bar" $ Op $
18 Screma histDim [hist_temp_bar_temp , hist_res_bar] $
19 ScremaForm [][] mul_hist_temp_res_adj
20

(b) Compiler code

The produced code for computation of hist_temp_bar and hist_orig_bar can be found in
the appendix at section 7.2.4 figure 50.

The final step is to compute the adjoint of vs by means of a map. From section 3.2 we recall
the function for computing the adjoint of vs:

f3 :

�
λ li, ai, ri, bin → ∂(li ⊙ ai ⊙ ri)

∂ai
· histo[bin]

�

The most easy way to get this behaviour is to use one of the other rewrite rules already
implemented, namely vjpMap:

1 vjpMap :: [Adj] -> SubExp -> Lambda -> [VName] -> ADM ()

[Adj] is a list of adjoints of the result of the map, SubExp is the length of the input, Lambda
is the lambda to be used on the input to obtain the result and [VName] is a list the names of
input arrays.

vjpMap will use the input and lambda given, and compute the adjoint of each input with
respect to the output. If we use the input of lis, vs and ris, then vjpMap will compute the
contribution from each of the three lists, although we will only be using that of vs.
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To use vjpMap we need to fix two problems:

1. The operator ⊙ needs to be lifted to take three arguments instead of two.

2. The adjoint of the result given to vjpMap also needs to be of the same dimensions of vs,
which it currently is not.

We first lift the operator ⊙ to a lambda that has three parameters: f2 : (λli, ai, ri →
li ⊙ ai ⊙ ri). Lifting of the operator is done by the helper function mkF.

To get the array of adjoints we simply map over the sorted_bins and extract the adjoint of
that bin:

1 let hist_temp_bar_repl =

2 map (\bin -> hist_temp_bar[bin])

3 sorted_bins

4

(a) Pseudo code

1 sorted_bin_param <- newParam "sorted_bin_p" $ Prim int64
2 hist_temp_bar_repl_body <-
3 runBodyBuilder . localScope (scopeOfLParams [sorted_bin_param ]) $ do
4 hist_temp_adj <- letSubExp "hist_temp_adj" $
5 BasicOp $ Index hist_temp_bar (fullSlice (Prim int64)
6 [DimFix (Var (paramName sorted_bin_param))])
7 resultBodyM [hist_temp_adj]
8
9 let hist_temp_bar_repl_lambda =

10 Lambda [sorted_bin_param] hist_temp_bar_repl_body [t]
11 hist_temp_bar_repl <- letExp "hist_temp_bar_repl" $
12 Op $ Screma n’ [sorted_bins] $
13 ScremaForm [][] hist_temp_bar_repl_lambda
14

(b) Compiler code

Now we can use hist_temp_bar_repl as the adjoint of the result for vjpMap, binding the
adjoint of vs into the ADM-monad, which we can then extract. The following is the compiler code
which computes the adjoint of vs.

1 vjpMap [AdjVal $ Var hist_temp_bar_repl]

2 n’

3 lam_adj

4 [lis , sorted_vals , ris]

5 vs_bar_contribs_reordered <- lookupAdjVal sorted_vals

Where lam_adj is the lifted operator.
The last step is to back-permute the adjoints to the correct pre-sorted version of vs. Some

values might have been filtered out at the start of the forward sweep so their adjoint should be
0. We initialize an array 0’s to be the destination of a scatter and then scatter the adjoints using
the sorted indexes sorted_is:

1 let vs_bar_dst = replicate n 0

2 let vs_bar =

3 scatter vs_bar_dst

4 sorted_is

5 vs_bar_contribs_reordered

6

(a) Pseudo code

1 vs_bar_contrib_dst <- letExp "vs_bar_contrib_dst" $
2 BasicOp $ Replicate (Shape [n]) (getBaseAdj t)
3
4 f’’’’’ <- mkIdentityLambda [Prim int64 , t]
5 vs_bar_contrib <- letExp "vs_bar_contrib" $
6 Op $ Scatter n’
7 [sorted_is , vs_bar_contrib_reordered]
8 f’’’’’
9 [( Shape [n], 1, vs_bar_contrib_dst)]

10
11 void $ updateAdj vs vs_bar_contrib
12

(b) Compiler code

This marks the end of the reverse sweep, and the rewrite rule itself. The complete code for
the computation of vs_bar and the corresponding produced code can be found in the appendix
at section 7.2.4 figure 51.
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4.2.5 Limitations

The implementation comes with some limitations that restricts its usage, of which i have iden-
tified two. The general idea is that any legal instance of the Hist type which reduce_by_index

accepts should be able to have reverse mode AD applied to it, but that is not the case currently.

The histogram type Hist takes a list of HistOps, and a list of destination arrays, such that
you can compute multiple histograms with different operators on the same input. My implemen-
tation would not accept this, as it has a guard that defines both of these lists to only contain
one element each.
The most straightforward way to handle this would be to handle them individually by recon-
structing each of the statements that were fused, and mapping diffHist across them.

Another issue is that the type of input-values accepted by the implementations is limited
to singletons. It could be a tuple, triplet etc. but that is not yet implemented. If each input
variable is a triple (x1, x2, x3), then for each bin in hist_temp we would have to compute the
adjoint of each element of the tuple.
For some xi where is[i] = j we can compute the result of bin j as:

y[j] = li ⊙ (x1
i , x

2
i , x

3
i )⊙ ri

In order to compute the adjoint of each value of the tuple, we would have to compute with
respect to each one of them. For the adjoint of x1

i we would have to compute:

x1
i +=

∂(li ⊙ (x1
i , x

2
i , x

3
i )⊙ ri)

∂x1
i

· y[j] (10)

The implemented method of computing derivatives of singleton values is mapped across each
element. To support tuples this map would need another map nested inside, which would apply
equation 10 to each element of the tuple instead.
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5 Evaluation

This section present the measures taken to verify that the implementations are working as
intended.
The first part concerns correctness of the output of the produced code by writing and generating
tests in the source language Futhark.
The second part presents the performance of the four different cases and shows that the work-
depth asymptotic of reduce_by_index is preserved when reverse mode AD is applied to it.

In order to validate and benchmark the four different cases, four different operators were
needed. The special cases should be self-explanatory, but given the implementations limitation
on usage of tuples, no associative and commutative operator not covered by the special cases
came to mind.
As a result, validation and benchmarks for the general case was performed by simply commenting
out the special case for multiplication, forcing the usage of the general case.

5.1 Validation

The source language of Futhark provides certain tools to help testing. The most simple
method of testing is by writing a program that performs the action you wish to test. Futhark

then lets you define tests as comments, which will be run when the program is given to its testing
tool at the command line.
To define tests you can specify the input, and the corresponding output:

1 -- Simple histogram with multiplication
2 -- ==
3 -- compiled input { [1i64 , 3i64 , 2i64 ,-1i64 , 2i64 , 1i64 , 1i64 , 2i64 , 3i64 , 2i64 ,-1i64 , 2i64 , 2i64]
4 -- [1f32 , 1f32 , 1f32 , 1f32 , 1f32 , 1f32 , 1f32 , 1f32 , 1f32 , 1f32 , 1f32 , 1f32 , 1f32]
5 -- [4f32 , 3f32 , 2f32 , 1f32]
6 -- [9f32 , 8f32 , 7f32 , 5f32]
7 -- }
8 -- output { [8f32 , 5f32 , 7f32 , 0f32 , 7f32 , 8f32 , 8f32 , 7f32 , 5f32 , 7f32 , 0f32 , 7f32 , 7f32]
9 -- [9f32 , 8f32 , 7f32 , 5f32]

10 -- }
11
12 let histo_plus [w][n] (is: [n]i64) (vs: [n]f32 , hist: [w]f32) : [w]f32 =
13 reduce_by_index (copy hist) (+) 0.0 f32 is vs
14
15 entry main [n][w] (is: [n]i64) (vs: [n]f32) (hist: *[w]f32) (hist_bar: [w]f32) =
16 vjp (histo_plus is) (vs,hist) hist_bar

The code above is a simple tests of reduce_by_index using addition.
With filename histo-plus.fut it is run from the command line as ”futhark test histo-plus.fut”.
The tool reads the input, passes it to the function, and compares the output with the one defined
in the test. All four cases were tested in this manner.

While one can calculate the expected result of a given input with pen and paper, expected
results can also be generated using the forward mode.
This does however make these tests dependant on the validity of forward mode. Considering
that forward mode has a much different approach to computing derivatives, and has been imple-
mented by someone else, the odds of the same bug existing in both modes is very low. Forward
mode is also documented with tests of its own.

A method of more thorough testing was to generate random data-sets, using forward mode to
compute their expected outcomes. Futhark provides a tool to easily generate random data-sets,
and even allows for bounds of values to be specified. When generating the indices, we would
ideally like most of them to be valid, with only some invalid. This way we can test a lot of values
having their adjoints being computed, with some invalid ones in-between to be ignored.
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The bounds of all indices generated were therefore set to be in the range [−1, k] where k is the
length of the histogram, which differs between data-sets.
The resulting data-sets contain randomly generated lists of indices, values, values of the desti-
nation array and the adjoint of the resulting histogram.

Through these approaches each of the cases has been tested in the following manner:

1. Addition:
Addition was tested using three data sets. The first one has 100 random values going into
5 bins, with the two latter having 1000 random values going into 15 bins.
In order not to overflow in the case where many values needed to be added together, the
values tested were bound to be floats in the range of [−10000, 10000].

2. Min/max:
Min and max implements the same solution, but for completeness they were tested indi-
vidually. Both were tested with two separate data sets of 10000 values going into 50 bins.
Because min/max does not include any values increasing/decreasing though additions or
multiplication (initial adjoint of all values is set to zero for these tests), in any part of the
code, no overflow should be possible. A bound on the values generated should therefore not
be required, however due to a bug in the forward mode it was. For very large values (over
10 digits) forward mode would select the wrong value, but the reverse mode would actually
select the correct one. The values were bound to be integers in the space of [−10000, 10000].

3. Multiplication:
Multiplication was tested by three sets of data. The first consists of 100 values going into
10 bins and the latter two having 1000 values going into 15 bins each.
This was the case that originally showed that bounds on the generated values were neces-
sary. When you multiply a lot of numbers, you tend to go towards zero or infinity. When
the product goes towards zero, so does the adjoints, in which case the test serves little
proof. In the case of infinity, the adjoints overflow and become useless.
The output of the forward mode was manually checked for different bounds of values until
a suitable one was found. The resulting bound was floats in the range [−5, 5].

4. General case:
The general case was simply tested by commenting out the special cases in the code, forcing
any operator to enter the general case. All the previous tests were then run once more.

These tests show that for each operator its corresponding special case, the forward mode
and the general approach all compute the same result on randomly generated inputs. All three
methods have different ways of computing the adjoint, further decreasing the odds of the same
bug being present in all three methods. The same can be said for the other operators, proving
a strong case for the validity of the implementations.

The tests performed can be found in the appendix at section 7.4.

5.2 GPU benchmarks

Reduce_by_index is parameterized by two factors: the amount of values to insert, and the
size of the histogram we are inserting the values in.
In order to get a better sense of how each methods run-time scales with regards to each of these
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parameters, we benchmark the impact each of them have individually.

Furthermore, in order to find the overhead generated by application of reverse mode, each
test is performed for both the reverse mode application and the equivalent reduce_by_index-
statement without application of reverse mode. The overhead of reverse mode can then be
computed as the factor of difference in run-time by computing AD overhead = AD run-time

Normal run-time .

We start by testing for a variable amount of input values. Testing of the values impact on
run-time was performed with a static histogram-size of 10. The amount of values were in the
range of [1 · 102, 1.4 · 108] for the special cases, but smaller for the general case.
Due to the filtering performed by the general case at the start of its forward sweep, testing
with random variables proved to be an issue. When using Futharks benchmark-tool, one can-
not specify the bounds of the randomly generated values used as input. This caused the tool
to generate out-of-bounds indices for almost all values. The result was that only the overhead
of the filtering was measured.To combat this, randomly generated data sets were needed since
they allow bounds. The data sets quickly grow in size, so only input-sizes in the interval of
[1.0 · 102, 3.0 · 106] were tested for the general case.

The graphs displaying the benchmarks use two y-scales. The left-hand side are used by the
solid lines to measure run-time, and the right-hand side is used by the dotted line to measure
the development of the AD overhead.
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(a) Special case: Addition

��� ��� ��� ��� ��� ��� ��� ���

���������������� ���

�

���

����

����

����

����

����

����

����

�
�
�
��
�
�
��
�
��
��
�
�
�
�
�
�
�
�

�������

�����������

����

����

����

����

����

����

�
�
�
��
�
�
�
��
�
�
��
�
��

�
��

�������������

(b) Special case: Min/max
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(c) Special case: Multiplication
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(d) General approach

Figure 38: Benchmarks using variable amount of input values
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The results show that all cases scale linearly with respect to the amount of inputs, but also
that the overhead caused by the general case scales linearly as well.
By looking at the profiling of the runtime, the large overhead of the general case can be attributed
to the required sorting. The usage of Radix sort limited this overhead to be linear, but is still
very significant.

For benchmarks of a variable histogram size, a static amount of 1.0 ·106 values were inserted.
The variable size of histogram was in the range [1.0 · 102, 1.4 · 108] for the special cases and
[1 · 102, 1 · 106] for the general case.

The layout used is the same as figure 38 above.
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(a) Special case: Addition
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(b) Special case: Min/max
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(c) Special case: Multiplication
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(d) General approach

Figure 39: Benchmarks using variable histogram size

The results once again show that the application of reverse mode AD scales linearly with the
size of the histogram. Given that they also scale linearly in the amount of values, we can deduct
that reverse mode AD scales linearly for all sizes of both inputs.

Once again we see a big overhead by using the general case, but does not vary as much as it
did for the size of the input.
This is another symptom of sorting being the biggest factor of run-time. For this test we used a
static amount of values and the sorting of those are such a large factor, that the runtime becomes
completely dominated by it.
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We now move on to measuring the overheads of applying reverse mode AD to each of the
different operators.

While the AD overheads are variable, their slopes flatten at large input sizes. Since the run-
time a low input sizes are short, the AD overhead at large sizes are the most interesting. The
flattening of their curves indicate that they become constants at these points. This is obviously
not the case for the general case, but might flatten if larger data-sets could be handled.

For the special case of addition we see that the size of the histogram has little effect on the
overhead, and should be expected. The forward sweep performs a regular reduce_by_index

and the reverse sweep performs only a map on the values. Given that the overhead caused by
histogram size trends towards 1, we pick the one measured by input size.

The special cases of both min/max and multiplication are affected by both the size of the
histogram and the input. For these we therefore multiply the overheads measured in both figures
together.

For the general case we do not see a flattening. Given that both benchmarks proved the sort-
ing of values to be the dominant factor in its run-time, we pick the highest overhead measured
for variable input-size and define that as a lower bound.

By these methods the AD overhead of each case measures to be:

• Addition: 2.5 times slower.

• Min/max: 13.6 times slower.

• Multiplication: 14.1 times slower.

• General approach: > 500 times slower.
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6 Conclusion and future work

This project presented a fully developed rewrite rule for reverse AD of the reduce_by_index
operator of Futhark. The rule was then implemented by four different cases, one of them working
for any operator using singleton values as input and validated by comparing results with that of
the forward mode.
The methods implemented failed to accommodate all legal instances of histogram-computation,
but did prove that the rewrite rule works in practice.

The special cases did require more work than if only the general case was implemented, but
the benchmarks presented in section 5.2 illustrated that the optimized special cases are war-
ranted by being much more efficient.

The most pressing future work on this topic would be to implement the missing features
outlined in section 4.2.5 and accommodate all instances of histograms.

There are also unexplored options regarding optimization of the general approach.
The filtering performed at the start of the forward sweep is not strictly necessary and was done to
make the following steps more easy to implement. Filtering could be removed by implementing
Radix sort to handle signed integers, but the results may vary.
This all boils down to a design decision. If many bins are invalid the filter can potentially save
a lot of time by reducing the number of elements. However, if no bins are invalid, the filtering
step effectively does nothing else by waste time.

If filtering is kept, then for a histogram of size k, any key h for which k ≤ h ≤ 0 does not hold
will be filtered out. This allows for an easy optimization of radix sort by bounding the amount
of loops to ⌈log2(k)⌉.
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7 Appendix

7.1 General case pseudo code

1 -- hist = reduce_by_index hist_orig op ne is vs
2 -- input:
3 -- hist_orig :[w]t
4 -- inds :[n]i64
5 -- vs :[n]t
6 -- ne : t
7 -- op : t -> t -> t
8 -- w is size of output
9 -- n is size of input

10
11 flags = map (\ind -> if 0 <= ind <= histDim then 1 else 0) inds
12 flag_scanned = scan (+) 0 flags
13 n’ = last flags_scanned
14 new_inds = map (\(flag , flag_scan) -> if flag == 1 then flag_scan - 1 else -1) flags flag_scanned
15 new_indexes = scatter (Scratch int n’) new_inds (iota n)
16 new_bins = map (\i -> inds[i]) new_indexes
17
18 -- 63 should be replaced with log2ceiling(hist_dim) (number of bins)
19 [sorted_is , sorted_bins] =
20 loop over [new_indexes , new_bins] for i < 63 do
21 bits = map (\ind_x -> (ind_x >> i) & 1) new_bins
22 newidx = partition2 bits (iota n’)
23 [map(\i -> new_indexes[i]) newidx , map(\i -> new_bins[i]) newidx]
24
25 sorted_vals = map(\i -> vs[i]) sorted_is
26
27 final_flags =
28 map (\( index) ->
29 if index == 0 then 1
30 else
31 if sorted_bins[index] == sorted_bins[index -1]
32 then 0
33 else 1
34 ) (iota n’)
35
36 fwd_scan = sgmScanExc op sorted_vals final_flags
37 [_, lis] = fwd_scan
38
39 rev_vals = reverse sorted_vals
40 rev_final_flags = reverse final_flags
41
42 rev_flags = map (\ind -> if ind == 0 then 1 else rev_final_flags[ind -1]) (iota n’)
43
44
45 rev_scan = sgmScanExc op rev_vals rev_flags
46 [_, ris] = rev_scan
47
48 seg_end_idx = map (\i -> if i == n’-1 then i
49 else if final_flags[i+1] == 1
50 then i
51 else -1
52 ) (iota n’)
53
54 bin_last_lis = scatter (replicate ne (len hist_orig)) seg_end_idx lis
55 bin_last_v = scatter (replicate ne (len hist_orig)) seg_end_idx sorted_vals
56
57 hist_temp = map2 op bin_lst_lis bin_lst_v_idx
58 hist = map2 op hist_orig hist_temp
59
60 m
61 -- Reverse sweep
62 hist_temp_bar: [w]t = lookupAdjVal y
63
64 hist_temp_bar_repl : [n]t = scatter (replicate ne (len hist_orig)) is hist_temp_bar
65 hist_temp_bar_repl = map (\ ind -> hist_tmp_bar[ind]) sorted_bins
66
67 lam_adj = (\li vi ri -> li op vi op ri) -- make this with mkF
68
69 vs_bar_reordered <- vjpMap ops [adjVal hist_temp_bar_repl] w lam_adj [lis , sorted_vals , ris]
70
71 vs_contrib = back_permute vs_bar_reordered
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7.2 Compiler- and produced code

7.2.1 Special case: Addition

1 diffHist :: VjpOps -> Pat Type -> StmAux () -> SOAC SOACS -> ADM () ->
ADM ()

2 diffHist _vjops pat aux soac m
3 | (Hist n [inds , vs] hist_add bucket_fun) <- soac ,
4 [HistOp shape rf [orig_dst] [ne] add_lam] <- hist_add ,
5 Just _ <- isAddTowLam add_lam ,
6 [pe] <- patNames pat = do
7 -- need to create a copy of the orig histo , because the reverse

trace might need
8 -- the values of the original histogram input!
9 dst_cpy <- letExp (baseString orig_dst ++ "_copy") $ BasicOp $ Copy

orig_dst
10 let histo ’ = Hist n [inds , vs] [HistOp shape rf [dst_cpy] [ne]

add_lam] bucket_fun
11 addStm $ Let pat aux $ Op histo ’
12 m
13 -- Reverse trace
14 let eltp = head $ lambdaReturnType add_lam
15 pe_bar <- lookupAdjVal $ pe
16 -- already update orig_dst bar
17 void $ updateAdj orig_dst pe_bar
18 -- update the vs bar; create a map nest with the branch innermost so

all
19 -- parallelism can be exploited.
20 pind <- newParam "index" $ Prim int64
21 map_bar_lam_bdy <- genIdxLamBdy pe_bar [(n, pind)] eltp
22 let map_bar_lam = Lambda [pind] map_bar_lam_bdy [eltp]
23 vs_bar <- letExp (baseString vs ++ "_bar") $ Op $ Screma n [inds] (

mapSOAC map_bar_lam)
24 void $ updateAdj vs vs_bar
25

(a) Compiler implementation

1 entry("main",
2 {is: direct , vs: direct , hist: *direct ,

hist_bar: direct},
3 {direct , direct })
4 entry_main (n_5094 : i64 , w_5095 : i64 , is_5096 :

[n_5094]i64 ,
5 vs_5097 : [n_5094]f32 , hist_5098 : *[

w_5095]f32 ,
6 hist_bar_5099 : [w_5095]f32)
7 : {[ n_5094]f32 , [w_5095]f32} = {
8 let {x_bar_5100 : [n_5094]f32} =
9 map(n_5094 ,

10 {is_5096},
11 \ {index_5101 : i64}
12 : {f32} ->
13 let {binop_x_5102 : bool} = slt64(

index_5101 , n_5094)
14 let {binop_y_5103 : bool} = slt64(-1i64 ,

index_5101)
15 let {cond_5104 : bool} = logand(

binop_x_5102 , binop_y_5103)
16 let {x_5105 : f32} =
17 if cond_5104
18 then {
19 let {res_5106 : f32} =
20 hist_bar_5099[index_5101]
21 in {res_5106}
22 } else {0.0 f32}
23 : {f32}
24 in {x_5105 })
25 in {x_bar_5100 , hist_bar_5099}
26 }
27

(b) Generated code

Figure 40: Compiler implementation and produced code for special case (+)
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7.2.2 Special case: Min/max

1 [eltp] <- lambdaReturnType max_lam ,
2 p <- patElemName pe ,
3 Prim ptp <- eltp ,
4 [shapedim] <- shapeDims shape = do
5
6 orig_dst_cpy <- letExp (baseString orig_dst ++ "_cpy") $ BasicOp

$ Copy orig_dst
7 f’ <- mkIdentityLambda [Prim int64 , eltp , Prim int64]
8 repl <- letExp "minus_ones" $ BasicOp $ Replicate shape (intConst

Int64 (-1))
9 iota_n <- letExp "iota_n" $ BasicOp $ Iota n (intConst Int64 0) (

intConst Int64 1) Int64
10 maxind_lam <- mkMinMaxIndLam ptp bop
11
12 let hist_op = HistOp shape rf [orig_dst_cpy , repl] [ne , intConst

Int64 (-1)] maxind_lam
13
14 hist_inds <- newVName "hist_inds"
15 let histo_pat = Pat [pe , PatElem hist_inds (mkI64ArrType shape)]
16 auxing aux $ letBind histo_pat $ Op $ Hist n [inds , vs , iota_n] [

hist_op] f’
17 m
18

(a) Compiler implementation

1 let {minus_ones_5917 : [w_5899]i64} =
2 replicate ([ w_5899], -1i64)
3 let {iota_n_5918 : [n_5898]i64} =
4 iota64(n_5898 , 0i64 , 1i64)
5 let {defunc_4_reduce_by_index_res_5919 : [w_5899]i32 ,
6 hist_inds_5920 : [w_5899]i64} =
7 hist(n_5898 ,
8 {is_5900 , vs_5901 , iota_n_5918},
9 {[ w_5899], 1i64 , {defunc_1_map_res_5913 ,

minus_ones_5917},
10 {0i32 , -1i64},
11 \ {acc_v_5921 : i32 , acc_ind_5922 : i64 ,

arg_v_5923 : i32 ,
12 arg_ind_5924 : i64}
13 : {i32 ,
14 i64} ->
15 let {cond_5925 : bool} = eq_i32(acc_v_5921 ,

arg_v_5923)
16 let {x_5926 : i32 ,
17 x_5927 : i64} =
18 if cond_5925
19 then {
20 let {minmax_5928 : i64} = smin64(

acc_ind_5922 , arg_ind_5924)
21 in {acc_v_5921 , minmax_5928}
22 } else {
23 let {cmpop_y_5929 : i32} = umax32(

acc_v_5921 , arg_v_5923)
24 let {cond_5930 : bool} = eq_i32(acc_v_5921 ,

cmpop_y_5929)
25 let {x_5931 : i32} =
26 if cond_5930
27 then {acc_v_5921} else {arg_v_5923}
28 : {i32}
29 let {x_5932 : i64} =
30 if cond_5930
31 then {acc_ind_5922} else {arg_ind_5924}
32 : {i64}
33 in {x_5931 , x_5932}
34 }
35 : {i32 , i64}
36 in {x_5926 , x_5927}},
37 \ {x_5933 : i64 , x_5934 : i32 , x_5935 : i64}
38 : {i64 ,
39 i32 ,
40 i64} ->
41 {x_5933 , x_5934 , x_5935 })
42

(b) Generated code

Figure 41: Compiler implementation and produced code for the forward sweep of special case
(min/max)
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1 pe_bar <- lookupAdjVal p
2 -- create the bar of ‘orig_dst ‘ by means of a map:
3 pis_h <- zipWithM newParam ["min_ind", "h_elem"] [Prim int64 ,

eltp]
4 let [min_ind_h , h_elem_h] = map paramName pis_h
5 lam_bdy_hist_bar <-
6 runBodyBuilder . localScope (scopeOfLParams pis_h) $
7 eBody
8 [ eIf
9 (toExp $ mind_eq_min1 min_ind_h)

10 (resultBodyM [Var h_elem_h ])
11 (resultBodyM [Constant $ blankPrimValue ptp])
12 ]
13 let lam_hist_bar = Lambda pis_h lam_bdy_hist_bar [eltp]
14 hist_bar <-
15 letExp (baseString orig_dst ++ "_bar") $
16 Op $
17 Screma shapedim [hist_inds , pe_bar] (ScremaForm [] []

lam_hist_bar)
18 insAdj orig_dst hist_bar
19 -- update vs_bar with a map and a scatter
20 vs_bar <- lookupAdjVal vs
21 pis_v <- zipWithM newParam ["min_ind", "h_elem"] [Prim int64 ,

eltp]
22 let [min_ind_v , h_elem_v] = map paramName pis_v
23 lam_bdy_vs_bar <-
24 runBodyBuilder . localScope (scopeOfLParams pis_v) $
25 eBody
26 [ eIf
27 (toExp $ mind_eq_min1 min_ind_v)
28 (resultBodyM [Constant $ blankPrimValue ptp])
29 ( do
30 vs_bar_i <-
31 letSubExp (baseString vs_bar ++ "_el") $
32 BasicOp $
33 Index vs_bar $ Slice $ [DimFix $ Var

min_ind_v]
34 let plus_op = getBinOpPlus ptp
35 r <- letSubExp "r" $ BasicOp $ BinOp plus_op

vs_bar_i $ Var h_elem_v
36 resultBodyM [r]
37 )
38 ]
39 let lam_vs_bar = Lambda pis_v lam_bdy_vs_bar [eltp]
40 vs_bar_p <-
41 letExp (baseString vs_bar ++ "_partial") $
42 Op $
43 Screma shapedim [hist_inds , pe_bar] (ScremaForm [] []

lam_vs_bar)
44 f’’ <- mkIdentityLambda [Prim int64 , eltp]
45 let scatter_soac = Scatter shapedim [hist_inds , vs_bar_p] f’’ [(

Shape [n], 1, vs_bar)]
46 vs_bar ’ <- letExp (baseString vs ++ "_bar") $ Op scatter_soac
47 insAdj vs vs_bar ’
48

(a) Compiler implementation

1 let {updated_adj_partial_5946 : [w_5899]i32} =
2 map(w_5899 ,
3 {hist_inds_5920 , map_adjs_5937},
4 \ {min_ind_5947 : i64 , h_elem_5948 : i32}
5 : {i32} ->
6 let {cond_5949 : bool} = eq_i64(min_ind_5947 , -1i64)
7 let {x_5950 : i32} =
8 if cond_5949
9 then {0i32} else {

10 let {updated_adj_el_5951 : i32} =
11 updated_adj_5945[min_ind_5947]
12 let {r_5952 : i32} = add_nw32(h_elem_5948 ,

updated_adj_el_5951)
13 in {r_5952}
14 }
15 : {i32}
16 in {x_5950 })
17 let {x_bar_5953 : [n_5898]i32} =
18 scatter(w_5899 ,
19 {hist_inds_5920 , updated_adj_partial_5946},
20 \ {x_5954 : i64 , x_5955 : i32}
21 : {i64 ,
22 i32} ->
23 {x_5954 , x_5955},
24 ([ n_5898], 1, updated_adj_5945))
25 let {x_adj_5956 : [w_5899]i32} =
26 map(w_5899 ,
27 {hist_inds_5920 , map_adjs_5937},
28 \ {min_ind_5957 : i64 , h_elem_5958 : i32}
29 : {i32} ->
30 let {cond_5960 : bool} = eq_i64(min_ind_5957 , -1i64)
31 let {x_5961 : i32} =
32 if cond_5960
33 then {h_elem_5958} else {0i32}
34 : {i32}
35 in {x_5961 })
36 in {x_bar_5953 , x_adj_5956}
37 }
38

(b) Generated code

Figure 42: Compiler implementation and produced code for the reverse sweep of special case
(min/max)
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7.2.3 Special case: Multiplication

1 [eltp] <- lambdaReturnType mul_lam ,
2 Prim ptp <- eltp ,
3 [shapedim] <- shapeDims shape = do
4 -- Forward sweep
5 let pe_tp = patElemDec pe
6 (map_lam , _) <- helperMulOp1 ptp mulop
7 vs_lift <- letTupExp "nzel_zrct" $ Op $ Screma n [vs] (ScremaForm

[] [] map_lam)
8 let [nz_vs , one_zrs] = vs_lift
9 zr_counts0 <- letExp "zr_cts" $ BasicOp $ Replicate shape (

intConst Int64 0)
10 nz_prods0 <- letExp "nz_prd" $ BasicOp $ Replicate shape ne
11 nz_prods <- newVName "non_zero_prod"
12 zr_counts <- newVName "zero_count"
13 lam_add <- mkLamAddI64
14 let hist_zrn = HistOp shape rf [zr_counts0] [intConst Int64 0]

lam_add
15 let hist_nzp = HistOp shape rf [nz_prods0] [ne] mul_lam
16 f’ <- mkIdentityLambda [Prim int64 , Prim int64 , eltp , Prim int64]
17 let soac_pat =
18 Pat
19 [ PatElem nz_prods pe_tp ,
20 PatElem zr_counts $
21 arrayOf (Prim int64) shape NoUniqueness
22 ]
23 let soac_exp = Op $ Hist n [inds , inds , nz_vs , one_zrs] [hist_nzp

, hist_zrn] f’
24 auxing aux $ letBind soac_pat soac_exp
25 -- construct the histo result:
26 res_part <- newVName "res_part"
27 ps2 <- zipWithM newParam ["nz_pr", "zr_ct"] [eltp , Prim int64]
28 let [nz_prod , zr_count] = map paramName ps2
29 if_stms <- helperMulOp2 ptp nz_prod zr_count res_part
30 lam_bdy_2 <- runBodyBuilder . localScope (scopeOfLParams ps2) $

do
31 addStms if_stms
32 resultBodyM [Var res_part]
33 h_part <-
34 letExp "hist_part" $
35 Op $
36 Screma
37 shapedim
38 [nz_prods , zr_counts]
39 (ScremaForm [] [] (Lambda ps2 lam_bdy_2 [eltp]))
40 ps3 <- zipWithM newParam ["h_orig", "h_part"] [eltp , eltp]
41 let [ph_orig , ph_part] = map paramName ps3
42 lam_pe_bdy <- runBodyBuilder . localScope (scopeOfLParams ps3) $

do
43 r <- letSubExp "res" $ BasicOp $ BinOp mulop (Var ph_orig) (Var

ph_part)
44 resultBodyM [r]
45 auxing aux $
46 letBind (Pat [pe]) $
47 Op $
48 Screma
49 shapedim
50 [orig_dst , h_part]
51 (ScremaForm [] [] (Lambda ps3 lam_pe_bdy [eltp]))
52 m
53

(a) Compiler implementation

1 entry("main",
2 {is: direct , vs: direct , hist: *direct , hist_bar: direct

},
3 {direct , direct })
4 entry_main (n_5491 : i64 , w_5492 : i64 , is_5493 : [n_5491]

i64 ,
5 vs_5494 : [n_5491]f32 , hist_5495 : *[ w_5492]f32 ,
6 hist_bar_5496 : [w_5492]f32)
7 : {[ n_5491]f32 , [w_5492]f32} = {
8 let {zr_cts_5497 : [w_5492]i64} =
9 replicate ([ w_5492], 0i64)

10 let {nz_prd_5498 : [w_5492]f32} =
11 replicate ([ w_5492], 1.0 f32)
12 let {non_zero_prod_5499 : [w_5492]f32 ,
13 zero_count_5500 : [w_5492]i64} =
14 hist(n_5491 ,
15 {vs_5494 , is_5493},
16 {[ w_5492], 1i64 , {nz_prd_5498},
17 {1.0 f32},
18 \ {x_5501 : f32 , x_5502 : f32}
19 : {f32} ->
20 let {defunc_1_f_res_5503 : f32} = fmul32(x_5501

, x_5502)
21 in {defunc_1_f_res_5503},
22 [w_5492], 1i64 , {zr_cts_5497},
23 {0i64},
24 \ {a_5504 : i64 , b_5505 : i64}
25 : {i64} ->
26 let {r_5506 : i64} = add_nw64(a_5504 , b_5505)
27 in {r_5506}},
28 \ {arg_5507 : f32 , x_5508 : i64}
29 : {i64 ,
30 i64 ,
31 f32 ,
32 i64} ->
33 let {cond_5509 : bool} = eq_f32(arg_5507 , 0.0 f32

)
34 let {x_5510 : f32} =
35 if cond_5509
36 then {1.0 f32} else {arg_5507}
37 : {f32}
38 let {x_5511 : i64} = btoi bool cond_5509 to i64
39 in {x_5508 , x_5508 , x_5510 , x_5511 })
40

(b) Generated code

Figure 43: Compiler implementation and produced code for the forward sweep of special case
(*)
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1 -- reverse trace
2 pe_bar <- lookupAdjVal $ patElemName pe
3 -- updates the orig_dst with its proper bar
4 mul_lam ’ <- renameLambda mul_lam
5 orig_bar <-
6 letTupExp (baseString orig_dst ++ "_bar") $
7 Op $
8 Screma
9 shapedim

10 [h_part , pe_bar]
11 (ScremaForm [] [] mul_lam ’)
12 zipWithM_ updateAdj [orig_dst] orig_bar
13 -- updates the partial histo result with its proper bar
14 mul_lam ’’ <- renameLambda mul_lam
15 part_bars <-
16 letTupExp (baseString h_part ++ "_bar") $
17 Op $
18 Screma
19 shapedim
20 [orig_dst , pe_bar]
21 (ScremaForm [] [] mul_lam ’’)
22 let [part_bar] = part_bars
23 -- add the contributions to each array element
24 pj <- newParam "j" (Prim int64)
25 pv <- newParam "v" eltp
26 let j = paramName pj
27 ((zr_cts , pr_bar , nz_prd), tmp_stms) <- runBuilderT ’ . localScope

(scopeOfLParams [pj, pv]) $ do
28 zr_cts <- letExp "zr_cts" $ BasicOp $ Index zr_counts $

fullSlice eltp [DimFix (Var j)]
29 pr_bar <- letExp "pr_bar" $ BasicOp $ Index part_bar $

fullSlice eltp [DimFix (Var j)]
30 nz_prd <- letExp "nz_prd" $ BasicOp $ Index nz_prods $ Slice [

DimFix (Var j)]
31 return (zr_cts , pr_bar , nz_prd)
32 bdy_tmp <- helperMulOp3 ptp mulop nz_prd zr_cts pv pr_bar
33 lam_bar <-
34 runBodyBuilder . localScope (scopeOfLParams [pj, pv]) $
35 eBody
36 [ eIf
37 (toExp $ withinBounds [(shapedim , j)])
38 ( do
39 addStms (tmp_stms <> bodyStms bdy_tmp)
40 resultBodyM (map resSubExp $ bodyResult bdy_tmp)
41 )
42 (resultBodyM [Constant $ blankPrimValue ptp])
43 ]
44 vs_bar <-
45 letTupExp (baseString vs ++ "_bar") $
46 Op $
47 Screma
48 n
49 [inds , vs]
50 (ScremaForm [] [] (Lambda [pj , pv] lam_bar [eltp]))
51 zipWithM_ updateAdj [vs] vs_bar
52

(a) Compiler implementation

1 let {hist_part_bar_5512 : [w_5492]f32} =
2 map(w_5492 ,
3 {hist_5495 , hist_bar_5496},
4 \ {x_5513 : f32 , x_5514 : f32}
5 : {f32} ->
6 let {defunc_1_f_res_5515 : f32} = fmul32(x_5513 ,

x_5513)
7 let {defunc_1_f_res_5516 : f32} = fmul32(x_5514 ,

defunc_1_f_res_5515)
8 in {defunc_1_f_res_5516 })
9 let {x_bar_5517 : [n_5491]f32} =

10 map(n_5491 ,
11 {is_5493 , vs_5494},
12 \ {j_5518 : i64 , v_5519 : f32}
13 : {f32} ->
14 let {binop_x_5520 : bool} = slt64(j_5518 , w_5492)
15 let {binop_y_5521 : bool} = slt64(-1i64 , j_5518)
16 let {cond_5522 : bool} = logand(binop_x_5520 ,

binop_y_5521)
17 let {x_5523 : f32} =
18 if cond_5522
19 then {
20 let {zr_cts_5524 : i64} =
21 zero_count_5500[j_5518]
22 let {pr_bar_5525 : f32} =
23 hist_part_bar_5512[j_5518]
24 let {nz_prd_5526 : f32} =
25 non_zero_prod_5499[j_5518]
26 let {cond_5527 : bool} = slt64(zr_cts_5524 , 1i64)
27 let {x_5528 : f32} =
28 if cond_5527
29 then {
30 let {div_res_5529 : f32} = fdiv32(nz_prd_5526

, v_5519)
31 let {res_ctrb_5530 : f32} = fmul32(

pr_bar_5525 , div_res_5529)
32 in {res_ctrb_5530}
33 } else {
34 let {binop_x_5531 : bool} = eq_f32(v_5519 ,

0.0 f32)
35 let {binop_y_5532 : bool} = eq_i64(

zr_cts_5524 , 1i64)
36 let {cond_5533 : bool} = logand(binop_x_5531 ,

binop_y_5532)
37 let {x_5534 : f32} =
38 if cond_5533
39 then {
40 let {res_ctrb_5535 : f32} =
41 fmul32(pr_bar_5525 , nz_prd_5526)
42 in {res_ctrb_5535}
43 } else {0.0 f32}
44 : {f32}
45 in {x_5534}
46 }
47 : {f32}
48 in {x_5528}
49 } else {0.0 f32}
50 : {f32}
51 in {x_5523 })
52 let {x_adj_5536 : [w_5492]f32} =
53 map(w_5492 ,
54 {non_zero_prod_5499 , zero_count_5500 , hist_bar_5496 ,

hist_5495},
55 \ {nz_pr_5537 : f32 , zr_ct_5538 : i64 , x_5539 : f32 ,

x_5540 : f32}
56 : {f32} ->
57 let {cond_5541 : bool} = slt64 (0i64 , zr_ct_5538)
58 let {tmp_if_res_5542 : f32} =
59 if cond_5541
60 then {0.0 f32} else {nz_pr_5537}
61 : {f32}
62 let {defunc_1_f_res_5543 : f32} = fmul32(x_5539 ,

tmp_if_res_5542)
63 let {binop_x_adj_5544 : f32} = fmul32(x_5540 ,

defunc_1_f_res_5543)
64 let {binlam_res_5545 : f32} =
65 fadd32(binop_x_adj_5544 , binop_x_adj_5544)
66 in {binlam_res_5545 })
67 in {x_bar_5517 , x_adj_5536}
68 }
69

(b) Generated code

Figure 44: Compiler implementation and produced code for the reverse sweep of special case (*)
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7.2.4 General approach

1 -- flags = map (\ind -> if 0 <= ind <= histDim then 1 else 0 inds
2 ind_param <- newParam "ind" $ Prim int64
3 pred_body <- runBodyBuilder . localScope (scopeOfLParams [ind_param ]) $
4 eBody
5 [ eIf -- if ind > 0 then 0 else ...
6 (eCmpOp (CmpSlt Int64) (eParam ind_param) (eSubExp int64Zero) )
7 (eBody [eSubExp $ int64Zero ])
8 (eBody
9 [

10 eIf -- if histDim > ind then 0 else 1
11 (eCmpOp (CmpSlt Int64) (eSubExp histDim) (eParam ind_param)

)
12 (eBody [eSubExp $ int64Zero ])
13 (eBody [eSubExp $ int64One ])
14 ])
15
16 ]
17 let pred_lambda = Lambda [ind_param] pred_body [Prim int64]
18 flags <- letExp "flags" $ Op $ Screma n [inds] $ ScremaForm [][]

pred_lambda
19 -- flag_scanned = scan (+) 0 flags
20 add_lambda_i64 <- addLambda (Prim int64)
21 scan_soac <- scanSOAC [Scan add_lambda_i64 [intConst Int64 0]]
22 flags_scanned <- letExp "flag_scanned" $ Op $ Screma n [flags] scan_soac
23

(a) Compiler code

1 let {flag_scanned_6399 : [n_6392]i64 ,
2 flags_6400 : [n_6392]i64} =
3 scanomap(n_6392 ,
4 {is_6394},
5 {\ {x_6401 : i64 , y_6402 : i64}
6 : {i64} ->
7 let {binlam_res_6403 : i64} = add64(

x_6401 , y_6402)
8 in {binlam_res_6403},
9 {0i64}},

10 \ {ind_6404 : i64}
11 : {i64 ,
12 i64} ->
13 let {cond_6405 : bool} = slt64(ind_6404 ,

0i64)
14 let {x_6406 : i64} =
15 if cond_6405
16 then {0i64} else {
17 let {cond_6407 : bool} = slt64(w_6393

, ind_6404)
18 let {cond_neg_6408 : bool} = not

cond_6407
19 let {x_6409 : i64} = btoi bool

cond_neg_6408 to i64
20 in {x_6409}
21 }
22 : {i64}
23 in {x_6406 , x_6406 })
24

(b) Produced code

Figure 45: Code implementing the first two statements of the filter
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1 i2 <- newVName "i2"
2 indexesForLoop <- newVName "new_indexes_rebound"
3 new_indexes_cpy <- letExp (baseString new_indexes ++ "_copyLoop") $

BasicOp $ Copy new_indexes
4 new_indexes_type <- lookupType new_indexes
5 let isDeclTypeInds = toDecl new_indexes_type Unique
6 let paramIndexes = Param mempty indexesForLoop isDeclTypeInds
7
8 binsForLoop <- newVName "new_bins_rebound"
9 new_bins_cpy <- letExp (baseString new_bins ++ "_copyLoop") $ BasicOp $

Copy new_bins
10 new_bins_type <- lookupType new_bins
11 let isDeclTypeBins = toDecl new_bins_type Unique
12 let paramBins = Param mempty binsForLoop isDeclTypeBins
13
14 let loop_vars = [( paramIndexes , Var new_indexes_cpy) ,(paramBins , Var

new_bins_cpy)]
15
16 -- bound = log2ceiling(w) (inner hist size aka number of bins)
17 let bound = Constant $ IntValue $ intValue Int64 (64:: Integer)
18
19 ((idxres , binsres), stms) <- runBuilderT ’ . localScope (scopeOfFParams [

paramIndexes , paramBins ]) $ do
20 -- bits = map (\ ind_x -> (ind_x >> digit_n) & 1) ind
21 ind_x <- newParam "ind_x" $ Prim int64
22 bits_map_bdy <- runBodyBuilder . localScope (scopeOfLParams [ind_x]) $
23 eBody
24 [
25 eBinOp (And Int64)
26 (eBinOp (LShr Int64) (eParam ind_x) (eSubExp $ Var i2))
27 (eSubExp $ int64One)
28 ]
29 let bits_map_lam = Lambda [ind_x] bits_map_bdy [Prim int64]
30 bits <- letExp "bits" $ Op $ Screma n’ [binsForLoop] (ScremaForm [] []

bits_map_lam)
31
32 -- Partition iota to get the new indices to scatter bins and inds by
33 temp_iota <- letExp "temp_iota" $ BasicOp $ Iota n’ int64Zero int64One

Int64
34 scatter_soac <- partition2Maker n’ bits temp_iota
35 partitionedidx <- letExp (baseString inds ++ "_scattered") $ Op $

scatter_soac
36
37 inner_indx_idx <- newParam "inner_indexes_idx" $ Prim int64
38 inner_indx_bdy <- runBodyBuilder . localScope (scopeOfLParams [

inner_indx_idx ]) $ do
39 tmp <- letSubExp "indexes_body" $ BasicOp $ Index (paramName

paramIndexes) (fullSlice (Prim int64) [DimFix (Var (paramName
inner_indx_idx))])

40 resultBodyM [tmp]
41 let inner_indx_lambda = Lambda [inner_indx_idx] inner_indx_bdy [Prim

int64]
42 inner_new_indexes <- letSubExp "new_indexes" $ Op $ Screma n’ [

partitionedidx] $ ScremaForm [][] inner_indx_lambda
43
44 inner_bins_idx <- newParam "inner_indexes_idx" $ Prim int64
45 inner_bins_bdy <- runBodyBuilder . localScope (scopeOfLParams [

inner_bins_idx ]) $ do
46 tmp <- letSubExp "indexes_body" $ BasicOp $ Index (paramName paramBins

) (fullSlice (Prim int64) [DimFix (Var (paramName inner_bins_idx)
)])

47 resultBodyM [tmp]
48 let inner_bins_lambda = Lambda [inner_bins_idx] inner_bins_bdy [Prim

int64]
49 inner_new_bins <- letSubExp "new_bins" $ Op $ Screma n’ [partitionedidx]

$ ScremaForm [][] inner_bins_lambda
50
51 return (inner_new_indexes , inner_new_bins)
52
53 loop_bdy <- mkBodyM stms [subExpRes idxres ,subExpRes binsres]
54 loop_res <- letTupExp "sorted_is_bins" $ DoLoop loop_vars (ForLoop i2

Int64 bound []) loop_bdy
55 let [sorted_is , sorted_bins] = loop_res
56

(a) Compiler code

1 let {sorted_is_bins_6435 : [new_length_6411]i64 ,
2 sorted_is_bins_6436 : [new_length_6411]i64} =
3 loop {new_indexes_rebound_6438 : *[ new_length_6411]

i64 ,
4 new_bins_rebound_6439 : *[ new_length_6411]i64}

= {new_indexes_6429 ,
5

new_bins_6432}
6 for i2_6437:i32 < 64i32 do {
7 let {i2_6440 : i64} = sext i32 i2_6437 to i64
8 let {bits_6441 : [new_length_6411]i64} =
9 map(new_length_6411 ,

10 {new_bins_rebound_6439},
11 \ {ind_x_6442 : i64}
12 : {i64} ->
13 let {x_6443 : i64} = lshr64(ind_x_6442 ,

i2_6440)
14 let {x_6444 : i64} = and64(1i64 , x_6443)
15 in {x_6444 })
16 let {ps0_6452 : [new_length_6411]i64 ,
17 ps1_6453 : [new_length_6411]i64 ,
18 ps0_offset_6454 : i64 ,
19 flags_inv_6455 : [new_length_6411]i64} =
20 screma(new_length_6411 ,
21 {bits_6441},
22 {\ {x_6456 : i64 , y_6457 : i64}
23 : {i64} ->
24 let {binlam_res_6458 : i64} = add_nw64

(x_6456 , y_6457)
25 in {binlam_res_6458},
26 {0i64},
27 \ {x_6459 : i64 , y_6460 : i64}
28 : {i64} ->
29 let {binlam_res_6461 : i64} = add_nw64

(x_6459 , y_6460)
30 in {binlam_res_6461},
31 {0i64}},
32 {commutative \ {x_6462 : i64 , y_6463 :

i64}
33 : {i64} ->
34 let {binlam_res_6464 : i64} = add_nw64

(x_6462 , y_6463)
35 in {binlam_res_6464},
36 {0i64}},
37 \ {flag_6465 : i64}
38 : {i64 ,
39 i64 ,
40 i64 ,
41 i64} ->
42 let {x_6466 : i64} = sub_nw64 (1i64 ,

flag_6465)
43 in {x_6466 , flag_6465 , x_6466 , x_6466 })
44 let {temp_iota_copy_6471 : [new_length_6411]i64} =
45 iota64(new_length_6411 , 0i64 , 1i64)
46 let {is_scattered_6472 : [new_length_6411]i64} =
47 scatter(new_length_6411 ,
48 {flags_inv_6455 , ps0_6452 , ps1_6453 ,

bits_6441 ,
49 temp_iota_6419},
50 \ {x_6473 : i64 , y_6474 : i64 ,

ps1_val_6475 : i64 ,
51 x_6476 : i64 , x_6477 : i64}
52 : {i64 ,
53 i64} ->
54 let {binlam_res_6478 : i64} = mul_nw64

(x_6473 , y_6474)
55 let {x_6479 : i64} =
56 add_nw64(ps0_offset_6454 ,

ps1_val_6475)
57 let {binlam_res_6480 : i64} = mul_nw64

(x_6476 , x_6479)
58 let {binlam_res_6481 : i64} =
59 add_nw64(binlam_res_6478 ,

binlam_res_6480)
60 let {x_6482 : i64} = sub_nw64(

binlam_res_6481 , 1i64)
61 in {x_6482 , x_6477},
62 ([ new_length_6411], 1,

temp_iota_copy_6471))
63 let {new_bins_6483 : [new_length_6411]i64 ,
64 new_indexes_6484 : [new_length_6411]i64} =
65 map(new_length_6411 ,
66 {is_scattered_6472},
67 \ {inner_indexes_idx_6485 : i64}
68 : {i64 ,
69 i64} ->
70 let {indexes_body_6486 : i64} =
71 new_indexes_rebound_6438[

inner_indexes_idx_6485]
72 let {indexes_body_6487 : i64} =
73 new_bins_rebound_6439[

inner_indexes_idx_6485]
74 in {indexes_body_6487 , indexes_body_6486 })
75 in {new_indexes_6484 , new_bins_6483}
76 }
77

(b) Produced code

Figure 46: Code implementing radix sort
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1 seg_scan_exc <- mkSegScanExc f nes n’ sorted_vals final_flags
2 fwd_scan <- letTupExp "fwd_scan" $ Op seg_scan_exc
3 let [_, lis] = fwd_scan
4

(a) Compiler code

1 let {fwd_scan_6491 : [new_length_6411]i8,
2 fwd_scan_6492 : [new_length_6411]f32 ,
3 final_flags_6493 : [new_length_6411]i8} =
4 scanomap(new_length_6411 ,
5 {sorted_is_bins_6436 , temp_iota_6419},
6 {\ {f1_6494 : i8 , v1_6495 : f32 , f2_6496 :

i8 ,
7 v2_6497 : f32}
8 : {i8,
9 f32} ->

10 let {f’_6498 : i8} = or8(f1_6494 ,
f2_6496)

11 let {f_check_6499 : bool} = eq_i8(
f2_6496 , 1i8)

12 let {v_6500 : f32} =
13 if f_check_6499
14 then {v2_6497} else {
15 let {defunc_1_f_res_6501 : f32} =
16 fmul32(v1_6495 , v2_6497)
17 in {defunc_1_f_res_6501}
18 }
19 : {f32}
20 in {f’_6498 , v_6500},
21 {0i8, 1.0f32}},
22 \ {bin_6502 : i64 , iot_n ’_6503 : i64}
23 : {i8,
24 f32 ,
25 i8} ->
26 let {idx_minus_one_6504 : i64} =
27 sub_nw64(iot_n ’_6503 , 1i64)
28 let {prev_elem_6505 : i64} =
29 sorted_is_bins_6436[idx_minus_one_6504]
30 let {cond_6506 : bool} = eq_i64(iot_n ’

_6503 , 0i64)
31 let {x_6507 : i8} =
32 if cond_6506
33 then {1i8} else {
34 let {cond_6508 : bool} =
35 eq_i64(prev_elem_6505 , bin_6502)
36 let {cond_neg_6509 : bool} = not

cond_6508
37 let {x_6510 : i8} = btoi bool

cond_neg_6509 to i8
38 in {x_6510}
39 }
40 : {i8}
41 let {prev_elem_6511 : f32} =
42 sorted_vals_6488[idx_minus_one_6504]
43 let {cond_6512 : bool} = eq_i8(x_6507 , 1

i8)
44 let {x_6513 : f32} =
45 if cond_6512
46 then {1.0 f32} else {prev_elem_6511}
47 : {f32}
48 in {x_6507 , x_6513 , x_6507 })
49

(b) Produced code

Figure 47: Code implementing computation of forward scan
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1 ---- Reverse segmented exculsive scan. Reverse flags and vals.
2 -- rev_vals = reverse sorted_vals
3 rev_vals <- eReverse sorted_vals
4 -- final_flags_rev = reverse final_flags
5 final_flags_rev <- eReverse final_flags
6
7 -- Need to fix flags after reversing
8 -- rev_flags = map (\ind -> if ind == 0 then 1 else rev[ind -1])
9 i’ <- newParam "i" $ Prim int64

10 rev_flags_body <- runBodyBuilder . localScope (scopeOfLParams [i’]) $ do
11 idx_minus_one <- letSubExp "idx_minus_one" $ BasicOp $ BinOp (Sub Int64

OverflowUndef) (Var $ paramName i’) (intConst Int64 1)
12 prev_elem <- letSubExp "prev_elem" $ BasicOp $ Index final_flags_rev (

fullSlice (Prim int64) [DimFix idx_minus_one ])
13
14 let firstElem =
15 eCmpOp
16 (CmpEq $ IntType Int64)
17 (eSubExp $ Var $ paramName i’)
18 (eSubExp $ intConst Int64 0)
19
20 eBody
21 [
22 eIf
23 firstElem
24 (resultBodyM [trueSE ])
25 (resultBodyM [prev_elem ])
26 ]
27 let rev_flags_lambda = Lambda [i’] rev_flags_body [Prim int8]
28 rev_flags <- letExp "rev_flags" $ Op $ Screma n’ [iota_n ’] $ ScremaForm

[][] rev_flags_lambda
29
30 -- Run segmented scan on reversed arrays.
31 rev_seg_scan_exc <- mkSegScanExc f nes n’ rev_vals rev_flags
32 rev_scan <- letTupExp "rev_scan" $ Op rev_seg_scan_exc
33 let [_, ris_rev] = rev_scan
34 ris <- eReverse ris_rev
35

(a) Compiler code

1 let {rev_scan_6514 : [new_length_6411]i8,
2 rev_scan_6515 : [new_length_6411]f32} =
3 scanomap(new_length_6411 ,
4 {temp_iota_6419},
5 {\ {f1_6516 : i8 , v1_6517 : f32 , f2_6518 :

i8 ,
6 v2_6519 : f32}
7 : {i8,
8 f32} ->
9 let {f’_6520 : i8} = or8(f1_6516 ,

f2_6518)
10 let {f_check_6521 : bool} = eq_i8(

f2_6518 , 1i8)
11 let {v_6522 : f32} =
12 if f_check_6521
13 then {v2_6519} else {
14 let {defunc_1_f_res_6523 : f32} =
15 fmul32(v1_6517 , v2_6519)
16 in {defunc_1_f_res_6523}
17 }
18 : {f32}
19 in {f’_6520 , v_6522},
20 {0i8, 1.0f32}},
21 \ {i_6524 : i64}
22 : {i8,
23 f32} ->
24 let {idx_minus_one_6525 : i64} = sub_nw64

(i_6524 , 1i64)
25 let {binop_y_6526 : i64} =
26 mul_nw64(-1i64 , idx_minus_one_6525)
27 let {slice_6527 : i64} =
28 add_nw64(rev_start_6420 , binop_y_6526)
29 let {prev_elem_6528 : i8} =
30 final_flags_6493[slice_6527]
31 let {cond_6529 : bool} = eq_i64(i_6524 , 0

i64)
32 let {x_6530 : i8} =
33 if cond_6529
34 then {1i8} else {prev_elem_6528}
35 : {i8}
36 let {prev_elem_6531 : f32} =
37 sorted_vals_6488[slice_6527]
38 let {eq_x_z_6532 : bool} = eq_i8 (1i8 ,

prev_elem_6528)
39 let {not_p_6533 : bool} = not cond_6529
40 let {p_and_eq_x_y_6534 : bool} =
41 logand(eq_x_z_6532 , not_p_6533)
42 let {cond_6535 : bool} =
43 logor(cond_6529 , p_and_eq_x_y_6534)
44 let {x_6536 : f32} =
45 if cond_6535
46 then {1.0 f32} else {prev_elem_6531}
47 : {f32}
48 in {x_6530 , x_6536 })
49

(b) Produced code

Figure 48: Code implementing computation of reverse scan

56



1 i’’ <- newParam "i’’" $ Prim int64
2 current_bin <- newParam "current_bin" $ Prim int64
3 scatter_arr_body <- runBodyBuilder . localScope (scopeOfLParams [i’’,

current_bin ]) $ do
4 idx_plus_one <- letSubExp "idx_plus_one" $ BasicOp $ BinOp (Add Int64

OverflowUndef) (Var $ paramName i’’) (intConst Int64 1)
5 lastElemIdx <- letExp "lastElemIdx" $ BasicOp $ BinOp (Sub Int64

OverflowUndef) (n’) (intConst Int64 1)
6
7 let isLastElem =
8 eCmpOp
9 (CmpEq $ IntType Int64)

10 (eSubExp $ Var $ paramName i’’)
11 (eSubExp $ Var $ lastElemIdx)
12
13 eBody
14 [
15 eIf
16 isLastElem
17 (resultBodyM $ [Var $ paramName current_bin ])
18 (eBody
19 [
20 eIf
21 ( do
22 next_elem <- letExp "next_elem" $ BasicOp $ Index final_flags

(fullSlice (Prim int64) [DimFix idx_plus_one ])
23 (eCmpOp
24 (CmpEq $ IntType Int8)
25 (eSubExp $ Var next_elem)
26 (eSubExp $ Constant $ IntValue $ Int8Value 1))
27 )
28 (resultBodyM [Var $ paramName current_bin ])
29 (resultBodyM [Constant $ IntValue $ Int64Value (-1)])
30 ]
31 )
32 ]
33
34 let scatter_arr_lam = Lambda [i’’, current_bin] scatter_arr_body [Prim

int64]
35 scatter_arr <- letExp "scatter_arr" $ Op $ Screma n’ [iota_n ’,

sorted_bins] $ ScremaForm [][] scatter_arr_lam
36 --bin_lst_lis = scatter (replicate (len hist_orig) ne) scatter_arr lis
37 bin_last_lis_dst <- letExp "bin_last_lis_dst" $ BasicOp $ Replicate

shape (head nes)
38 f’’’ <- mkIdentityLambda [Prim int64 , t]
39 bin_last_lis <- letExp "bin_last_lis" $ Op $ Scatter n’ [scatter_arr ,

lis] f’’’ [(shape , 1, bin_last_lis_dst)]
40
41 -- lis was exc -scan , so we need the last element aswell.
42 -- bin_last_v_dst = scatter (replicate (len hist_orig) ne) scatter_arr

sorted_vals
43 bin_last_v_dst <- letExp "bin_last_v_dst" $ BasicOp $ Replicate shape (

head nes)
44 f’’’’ <- mkIdentityLambda [Prim int64 , t]
45 bin_last_v <- letExp "bin_last_v" $ Op $ Scatter n’ [scatter_arr ,

sorted_vals] f’’’’ [(shape , 1, bin_last_v_dst)]
46

(a) Compiler code

1 let {bin_last_v_6287 : [w_6130]f32 ,
2 bin_last_lis_6288 : [w_6130]f32} =
3 scatter(new_length_6147 ,
4 {sorted_is_bins_6162 , fwd_scan_6229 ,

rev_scan_rev_6265 ,
5 sorted_is_bins_6161 , temp_iota_6160 ,

sorted_is_bins_6162 ,
6 sorted_vals_6215 , fwd_scan_6229},
7 \ {sorted_bin_p_6289 : i64 , x_6290 : f32 ,

x_6291 : f32 ,
8 x_6292 : i64 , i’’_6293 : i64 ,

current_bin_6294 : i64 ,
9 x_6295 : f32 , x_6296 : f32}

10 : {i64 ,
11 i64 ,
12 i64 ,
13 f32 ,
14 f32 ,
15 f32} ->
16 let {idx_plus_one_6297 : i64} = add_nw64 (1

i64 , i’’_6293)
17 let {cond_6298 : bool} = eq_i64(i’’_6293 ,

rev_start_6227)
18 let {x_6299 : i64} =
19 if cond_6298
20 then {current_bin_6294} else {
21 let {next_elem_6300 : i8} =
22 final_flags_6214[idx_plus_one_6297]
23 let {cond_6301 : bool} = eq_i8(

next_elem_6300 , 1i8)
24 let {x_6302 : i64} =
25 if cond_6301
26 then {current_bin_6294} else {-1i64}
27 : {i64}
28 in {x_6302}
29 }
30 : {i64}

(b) Produced code

Figure 49: Code for generation of bin last lis and bin last v
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1 -- Lookup adjoint of histogram
2 hist_res_bar <- lookupAdjVal $ patElemName pe
3
4 -- Rename original function
5 hist_temp_lam <- renameLambda f
6 hist_orig_lam <- renameLambda f
7
8 -- Lift lambda to compute differential wrt. first or second element.
9 hist_orig_bar_temp_lambda <- mkScanAdjointLam vjops hist_orig_lam

WrtFirst
10 hist_temp_bar_temp_lambda <- mkScanAdjointLam vjops hist_temp_lam

WrtSecond
11
12 -- Lambda for multiplying hist_res_bar onto result of differentiation
13 let mulOp = getMulOp t
14 mul_hist_orig_res_adj <- mkSimpleLambda "orig_adj" "res_adj" mulOp t
15 mul_hist_temp_res_adj <- mkSimpleLambda "temp_adj" "res_adj" mulOp t
16
17 -- Compute adjoint of each bin of each histogram (original and added

values).
18 hist_orig_bar_temp <- letExp "hist_orig_bar_temp" $ Op $ Screma histDim

[orig_dst , hist_temp] $ ScremaForm [][] hist_orig_bar_temp_lambda
19 hist_orig_bar <- letExp "hist_orig_bar" $ Op $ Screma histDim [

hist_orig_bar_temp , hist_res_bar] $ ScremaForm [][]
mul_hist_orig_res_adj

20
21 hist_temp_bar_temp <- letExp "hist_temp_bar_temp" $ Op $ Screma histDim

[orig_dst , hist_temp] $ ScremaForm [][] hist_temp_bar_temp_lambda
22 hist_temp_bar <- letExp "hist_temp_bar" $ Op $ Screma histDim [

hist_temp_bar_temp , hist_res_bar] $ ScremaForm [][]
mul_hist_temp_res_adj

23
24 -- Set adjoint of orig_dst for future use
25 void $ insAdj orig_dst hist_orig_bar
26

(a) Compiler code

1 let {hist_temp_bar_6280 : [w_6130]f32} =
2 map(w_6130 ,
3 {hist_6133 , hist_bar_6134},
4 \ {x_6281 : f32 , res_adj_6282 : f32}
5 : {f32} ->
6 let {defunc_1_f_res_6283 : f32} = fmul32(

x_6281 , x_6281)
7 let {x_6284 : f32} = fmul32(res_adj_6282 ,

defunc_1_f_res_6283)
8 in {x_6284 })
9 let {x_adj_6309 : [w_6130]f32} =

10 map(w_6130 ,
11 {bin_last_lis_6288 , bin_last_v_6287 ,

hist_bar_6134 , hist_6133},
12 \ {lis_param_6310 : f32 , v_param_6311 : f32 ,

res_adj_6312 : f32 ,
13 x_6313 : f32}
14 : {f32} ->
15 let {defunc_1_f_res_6314 : f32} = fmul32(

lis_param_6310 , v_param_6311)
16 let {x_6315 : f32} = fmul32(res_adj_6312 ,

defunc_1_f_res_6314)
17 let {binop_x_adj_6316 : f32} = fmul32(

x_6313 , x_6315)
18 let {binlam_res_6317 : f32} =
19 fadd32(binop_x_adj_6316 ,

binop_x_adj_6316)
20 in {binlam_res_6317 })
21

(b) Produced code

Figure 50: Code for computing the adjoint of hist temp and orig dst

1 -- For each bin in sorted_bins we fetch the adjoint of the corresponding
bucket in hist_temp_bar

2 -- hist_temp_bar_repl = map (\bin -> hist_temp_bar[bin]) sorted_bins
3 sorted_bin_param <- newParam "sorted_bin_p" $ Prim int64
4 hist_temp_bar_repl_body <- runBodyBuilder . localScope (scopeOfLParams [

sorted_bin_param ]) $ do
5 hist_temp_adj <- letSubExp "hist_temp_adj" $ BasicOp $ Index

hist_temp_bar (fullSlice (Prim int64) [DimFix (Var (paramName
sorted_bin_param))])

6 resultBodyM [hist_temp_adj]
7 let hist_temp_bar_repl_lambda = Lambda [sorted_bin_param]

hist_temp_bar_repl_body [t]
8 hist_temp_bar_repl <- letExp "hist_temp_bar_repl" $ Op $ Screma n’ [

sorted_bins] $ ScremaForm [][] hist_temp_bar_repl_lambda
9

10 -- We now use vjpMap to compute vs_bar
11 (_, lam_adj) <- mkF f
12 vjpMap vjops [AdjVal $ Var hist_temp_bar_repl] n’ lam_adj [lis ,

sorted_vals , ris] -- Doesn ’t support lists
13
14 -- We are only using values not sorted out. Need to add 0 for each value

that was sorted out.
15 -- Get adjoints of values with valid bins (computed by running vjpMap

before)
16 vs_bar_contrib_reordered <- lookupAdjVal sorted_vals
17 -- Replicate array of 0’s
18 vs_bar_contrib_dst <- letExp "vs_bar_contrib_dst" $ BasicOp $ Replicate

(Shape [n]) (getBaseAdj t)
19 -- Scatter adjoints to 0-array.
20 f’’’’’ <- mkIdentityLambda [Prim int64 , t]
21 vs_bar_contrib <- letExp "vs_bar_contrib" $ Op $ Scatter n’ [sorted_is ,

vs_bar_contrib_reordered] f’’’’’ [( Shape [n], 1,
vs_bar_contrib_dst)]

22 -- Update the adjoint of vs to be vs_bar_contrib
23 void $ updateAdj vs vs_bar_contrib
24

(a) Compiler code

1 let {vs_bar_contrib_6286 : [n_6129]f32 ,
2 bin_last_v_6287 : [w_6130]f32 ,
3 bin_last_lis_6288 : [w_6130]f32} =
4 scatter(new_length_6147 ,
5 {sorted_is_bins_6162 , fwd_scan_6229 ,

rev_scan_rev_6265 ,
6 sorted_is_bins_6161 , temp_iota_6160 ,

sorted_is_bins_6162 ,
7 sorted_vals_6215 , fwd_scan_6229},
8 \ {sorted_bin_p_6289 : i64 , x_6290 : f32 ,

x_6291 : f32 ,
9 x_6292 : i64 , i’’_6293 : i64 ,

current_bin_6294 : i64 ,
10 x_6295 : f32 , x_6296 : f32}
11 : {i64 ,
12 i64 ,
13 i64 ,
14 f32 ,
15 f32 ,
16 f32} ->
17 let {idx_plus_one_6297 : i64} = add_nw64 (1

i64 , i’’_6293)
18 let {cond_6298 : bool} = eq_i64(i’’_6293 ,

rev_start_6227)
19 let {x_6299 : i64} =
20 if cond_6298
21 then {current_bin_6294} else {
22 let {next_elem_6300 : i8} =
23 final_flags_6214[idx_plus_one_6297]
24 let {cond_6301 : bool} = eq_i8(

next_elem_6300 , 1i8)
25 let {x_6302 : i64} =
26 if cond_6301
27 then {current_bin_6294} else {-1i64}
28 : {i64}
29 in {x_6302}
30 }
31 : {i64}
32 let {hist_temp_adj_6303 : f32} =
33 hist_temp_bar_6280[sorted_bin_p_6289]
34 let {binop_x_adj_6304 : f32} = fmul32(

x_6291 , hist_temp_adj_6303)
35 let {binop_y_adj_6305 : f32} = fmul32(

x_6290 , binop_x_adj_6304)
36 in {x_6292 , x_6299 , x_6299 ,

binop_y_adj_6305 , x_6295 , x_6296},
37 ([ n_6129], 1, vs_bar_contrib_dst_6285), ([

w_6130], 1,
38

bin_last_v_dst_6267),
39 ([ w_6130], 1, bin_last_lis_dst_6266))
40

(b) Produced code

Figure 51: Code for computing the adjoint of vs
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7.3 Helper-functions

7.3.1 Partition2

1 -- Reorders a list of values according to a list of flags. Resulting list has 0’s

at the head and 1’s as its tail.

2 def partition2 flags values =

3 -- Inverse of flags.

4 let flags_inv = map (\f -> 1 - f) flags

5 -- Scan flags_inv.

6 let ps0 = scan (+) 0 (flags_inv)

7 -- Multiply ps0 with flags_inv to remove elements where flag was 1.

8 let ps0_clean = map2 (*) flags_inv ps0

9 -- Reduce inverted flags.

10 let ps0_offset = reduce (+) 0 flags_inv

11 -- Scan flags.

12 let ps1 = scan (+) 0 flags

13 -- Map offset of all the values where flag was 0.

14 let ps1 ’ = map (+ ps0_offset) ps1

15 -- Multiply ps1_clean with flags to remove elementes where flag was 0.

16 let ps1_clean = map2 (*) flags ps1 ’

17 -- Add the two list together. Because of cleaning we know for each index that

one of them will be 0, hence why we can just add.

18 let ps = map2 (+) ps0_clean ps1_clean

19 -- Accumulation started at 1. Subtract 1 from all to get valid indexes

20 let ps_actual = map (-1) ps

21 -- Scatter values to new indices.

22 in scatter values ps_actual values
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1 -- partion2Maker - Takes flag array and values and creates a scatter SOAC
2 -- which corresponds to the partition2 of the inputs
3 -- partition2Maker size flags values =
4 partition2Maker :: SubExp -> VName -> VName -> BuilderT SOACS ADM (SOAC SOACS)
5 partition2Maker n flags xs = do
6
7 let bitType = int64
8 let zeroSubExp = Constant $ IntValue $ intValue Int64 (0 :: Integer)
9 let oneSubExp = Constant $ IntValue $ intValue Int64 (1 :: Integer)

10
11 -- let bits_inv = map (\b -> 1 - b) bits
12 flag <- newParam "flag" $ Prim bitType
13 bits_inv_map_bdy <- runBodyBuilder . localScope (scopeOfLParams [flag]) $ do
14 eBody
15 [
16 eBinOp (Sub Int64 OverflowUndef)
17 (eSubExp $ oneSubExp)
18 (eParam flag)
19 ]
20 let bits_inv_map_lam = Lambda [flag] bits_inv_map_bdy [Prim bitType]
21 flags_inv <- letExp "flags_inv" $ Op $ Screma n [flags] (ScremaForm [] [] bits_inv_map_lam)
22
23 -- let ps0 = scan (+) 0 (flags_inv)
24 ps0_add_lam <- binOpLambda (Add Int64 OverflowUndef) bitType
25 let ps0_add_scan = Scan ps0_add_lam [zeroSubExp]
26 f’ <- mkIdentityLambda [Prim bitType]
27 ps0 <- letExp "ps0" $ Op $ Screma n [flags_inv] (ScremaForm [ps0_add_scan] [] f’)
28
29 -- let ps0_clean = map2 (*) flags_inv ps0
30 ps0clean_mul_lam <- binOpLambda (Mul Int64 OverflowUndef) bitType
31 ps0clean <- letExp "ps0_clean" $ Op $ Screma n [flags_inv , ps0] (ScremaForm [] [] ps0clean_mul_lam)
32
33 -- let ps0_offset = reduce (+) 0 flags_inv
34 ps0off_add_lam <- binOpLambda (Add Int64 OverflowUndef) bitType
35 ps0off_red <- reduceSOAC [Reduce Commutative ps0off_add_lam [intConst Int64 0]]
36 ps0off <- letExp "ps0_offset" $ Op $ Screma n [flags_inv] ps0off_red
37
38 -- let ps1 = scan (+) 0 flags
39 ps1_scanlam <- binOpLambda (Add Int64 OverflowUndef) bitType
40 let ps1_scan = Scan ps1_scanlam [zeroSubExp]
41 f’’ <- mkIdentityLambda [Prim bitType]
42 ps1 <- letExp "ps1" $ Op $ Screma n [flags] (ScremaForm [ps1_scan] [] f’’)
43
44 -- let ps1 ’ = map (+ ps0_offset) ps1
45 ps1_val <- newParam "ps1_val" $ Prim bitType
46 ps1clean_lam_bdy <- runBodyBuilder . localScope (scopeOfLParams [ps1_val ]) $ do
47 eBody
48 [
49 eBinOp (Add Int64 OverflowUndef)
50 (eParam ps1_val)
51 (eSubExp $ Var ps0off)
52 ]
53 let ps1clean_lam = Lambda [ps1_val] ps1clean_lam_bdy [Prim bitType]
54 ps1 ’ <- letExp "ps1 ’" $ Op $ Screma n [ps1] (ScremaForm [] [] ps1clean_lam)
55
56 -- let ps1_clean = map2 (*) flags ps1 ’
57 ps1cleanprim_mul_lam <- binOpLambda (Mul Int64 OverflowUndef) bitType
58 ps1_clean <- letExp "ps1_clean" $ Op $ Screma n [flags , ps1 ’] (ScremaForm [] [] ps1cleanprim_mul_lam)
59
60 -- let ps = map2 (+) ps0_clean ps1_clean
61 ps_add_lam <- binOpLambda (Add Int64 OverflowUndef) bitType
62 ps <- letExp "ps" $ Op $ Screma n [ps0clean , ps1_clean] (ScremaForm [] [] ps_add_lam)
63
64
65 -- let ps_actual = map (-1) ps
66 psactual_x <- newParam "psactual_x" $ Prim bitType
67 psactual_lam_bdy <- runBodyBuilder . localScope (scopeOfLParams [psactual_x ]) $ do
68 eBody
69 [
70 eBinOp (Sub Int64 OverflowUndef)
71 (eParam psactual_x)
72 (eSubExp $ oneSubExp)
73 ]
74 let psactual_lam = Lambda [psactual_x] psactual_lam_bdy [Prim bitType]
75 psactual <- letExp "psactual" $ Op $ Screma n [ps] (ScremaForm [] [] psactual_lam)
76
77 -- let scatter_inds = scatter inds ps_actual inds
78 -- return scatter_inds
79 f’’’ <- mkIdentityLambda [Prim int64 , Prim int64]
80 xs_cpy <- letExp (baseString xs ++ "_copy") $ BasicOp $ Copy xs
81 return $ Scatter n [psactual , xs] f’’’ [( Shape [n], 1, xs_cpy)]
82

Figure 52: Code implementing Partition2
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7.3.2 mkSegScanExc

1 -- tmp = map (\(i,f) -> if f then (ne, f) else (vals[i-1], f)) (iota n) (flags)
2 -- scan (\(v1 ,f1) (v2 ,f2) ->
3 -- let f = f1 || f2
4 -- let v = if f2 then v2 else op v1 v2
5 -- in (v, f)) tmp flags
6
7 -- Lift a lambda to produce an exlusive segmented scan operator.
8 mkSegScanExc :: Lambda SOACS -> [SubExp] -> SubExp -> VName -> VName -> ADM (SOAC SOACS)
9 mkSegScanExc lam ne n vals flags = do

10 -- Get lambda return type
11 let rt = lambdaReturnType lam
12 -- v <- mapM (newParam "v") rt
13 v1 <- mapM (newParam "v1") rt
14 v2 <- mapM (newParam "v2") rt
15 f <- newParam "f" $ Prim int8
16 f1 <- newParam "f1" $ Prim int8
17 f2 <- newParam "f2" $ Prim int8
18 let params = (f1 : v1) ++ (f2 : v2)
19
20 iota_n <- letExp "iota_n" $ BasicOp $ Iota n (intConst Int64 0) (intConst Int64 1) Int64
21 i <- newParam "i" $ Prim int64
22
23 -- (\(flag , i) -> if f then (f, ne) else (f, vals[i-1]))
24
25 tmp_lam_body <- runBodyBuilder . localScope (scopeOfLParams [f, i]) $ do
26 idx_minus_one <- letSubExp "idx_minus_one" $ BasicOp $ BinOp (Sub Int64 OverflowUndef) (Var $ paramName i) (intConst Int64 1)
27 prev_elem <- letTupExp "prev_elem" $ BasicOp $ Index vals (fullSlice (Prim int64) [DimFix idx_minus_one ])
28
29 let f_check =
30 eCmpOp
31 (CmpEq $ IntType Int8)
32 (eSubExp $ Var $ paramName f)
33 (eSubExp $ intConst Int8 1)
34
35 eBody
36 [
37 eIf
38 f_check
39 (resultBodyM $ (Var $ paramName f) : ne )
40 (resultBodyM $ ((Var . paramName) f) : (map Var prev_elem))
41 ]
42
43 let tmp_lam = Lambda [f, i] tmp_lam_body (Prim int8 : rt)
44 lam ’ <- renameLambda lam
45
46 scan_body <- runBodyBuilder . localScope (scopeOfLParams params) $ do
47 -- f = f1 || f2
48 f’ <- letSubExp "f’" $ BasicOp $ BinOp (Or Int8 ) (Var $ paramName f1) (Var $ paramName f2)
49 -- v = if f2 then v2 else (lam v1 v2)
50 op_body <- mkLambda (v1++v2) $ do
51 eLambda lam ’ (map (eSubExp . Var . paramName) (v1++v2))
52
53 v2_body <- eBody $ map (eSubExp . Var . paramName) v2
54
55 f_check <- letExp "f_check" $ BasicOp $ CmpOp (CmpEq $ IntType Int8) (Var $ paramName f2) (intConst Int8 1)
56
57 v <- letSubExp "v" $
58 If (Var f_check)
59 v2_body
60 (lambdaBody op_body)
61 (IfDec (staticShapes rt) IfNormal)
62
63 -- Put together
64 eBody $ map eSubExp ([f’, v])
65
66 let scan_lambda = Lambda params scan_body (Prim int8 : rt)
67
68 return $ Screma n [flags , iota_n] $ ScremaForm [Scan scan_lambda (( intConst Int8 0) : ne)] [] tmp_lam
69

Figure 53: Implementation of mkSegScanExc
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7.4 Validation tests

1 -- Validation of histogram with addition
2 -- ==
3 -- entry: rev fwd
4 -- compiled input @ histo -plus -data1.txt
5 -- output @ histo -plus -data1Res.txt
6 -- compiled input @ histo -plus -data2.txt
7 -- output @ histo -plus -data2Res.txt
8 -- compiled input @ histo -plus -data3.txt
9 -- output @ histo -plus -data3Res.txt

10
11 def singleadj (n: i64) (i: i64) (adj: f32) : [n]f32 =
12 map (\j -> if (i==j) then adj else 0.0 f32) (iota n)
13
14 let histo_plus [n][w](is: [n]i64) (dest: [w]f32) (vs: [n]f32) : [w]f32 =
15 reduce_by_index (copy dest) (+) 0f32 is vs
16
17 entry rev [n][w](is: [n]i64) (vs: [n]f32) (hist_orig: [w]f32) (hist_bar ’: [w]f32) =
18 map (\i -> vjp (histo_plus is hist_orig) vs (singleadj w i hist_bar ’[i])) (iota w)
19
20
21 entry fwd [n][w](is: [n]i64) (vs: [n]f32) (hist_orig: [w]f32) (hist_bar ’: [w]f32) =
22 map (jvp (histo_plus is (hist_orig: [w]f32)) vs)
23 (map (\ i -> let adj = if is[i] < 0i64 then 0f32 else hist_bar ’[is[i]]
24 in singleadj n i adj) (iota n))
25 |> transpose
26

Figure 54: Testing reduce by index with operator (+) running on three data sets

1 -- Simple histogram with i32.min operator
2 -- ==
3 -- entry: rev fwd
4 -- compiled input @ histo -min -data1.txt
5 -- output @ histo -min -data1Res.txt
6 -- compiled input @ histo -min -data2.txt
7 -- output @ histo -min -data2Res.txt
8
9 def singleadj (n: i64) (i: i64) (adj: i32) : [n]i32 =

10 map (\j -> if (i==j) then adj else 0i32) (iota n)
11
12 let histo_max [n][w](is: [n]i64) (dest: [w]i32) (vs: [n]i32) : [w]i32 =
13 reduce_by_index (copy dest) (i32.min) i32.highest is vs
14
15 entry rev [n][w](is: [n]i64) (vs: [n]i32) (hist_orig: [w]i32) (hist_bar ’: [w]i32) =
16 map (\i -> vjp (histo_max is hist_orig) vs (singleadj w i hist_bar ’[i])) (iota w)
17
18
19 entry fwd [n][w](is: [n]i64) (vs: [n]i32) (hist_orig: [w]i32) (hist_bar ’: [w]i32) =
20 map (jvp (histo_max is (hist_orig: [w]i32)) vs)
21 (map (\ i -> let adj = if is[i] < 0i64 then 0i32 else hist_bar ’[is[i]]
22 in singleadj n i adj) (iota n))
23 |> transpose
24

Figure 55: Testing reduce by index with operator ”min” running on three data sets

1 -- Simple histogram with u32.max operator
2 -- ==
3 -- entry: rev fwd
4 -- compiled input @ histo -max -data1.txt
5 -- output @ histo -max -data1Res.txt
6 -- compiled input @ histo -max -data2.txt
7 -- output @ histo -max -data2Res.txt
8
9 def singleadj (n: i64) (i: i64) (adj: u32) : [n]u32 =

10 map (\j -> if (i==j) then adj else 0u32) (iota n)
11
12 let histo_max [n][w](is: [n]i64) (dest: [w]u32) (vs: [n]u32) : [w]u32 =
13 reduce_by_index (copy dest) (u32.max) u32.lowest is vs
14
15 entry rev [n][w](is: [n]i64) (vs: [n]u32) (hist_orig: [w]u32) (hist_bar ’: [w]u32) =
16 map (\i -> vjp (histo_max is hist_orig) vs (singleadj w i hist_bar ’[i])) (iota w)
17
18
19 entry fwd [n][w](is: [n]i64) (vs: [n]u32) (hist_orig: [w]u32) (hist_bar ’: [w]u32) =
20 map (jvp (histo_max is (hist_orig: [w]u32)) vs)
21 (map (\ i -> let adj = if is[i] < 0i64 then 0u32 else hist_bar ’[is[i]]
22 in singleadj n i adj) (iota n))
23 |> transpose
24

Figure 56: Testing reduce by index with operator ”max” running on three data sets
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1 -- Validation of histogram with multiplication
2 -- ==
3 -- entry: rev fwd
4 -- compiled input @ histo -mul -data1.txt
5 -- output @ histo -mul -data1Res.txt
6 -- compiled input @ histo -mul -data2.txt
7 -- output @ histo -mul -data2Res.txt
8 -- compiled input @ histo -mul -data3.txt
9 -- output @ histo -mul -data3Res.txt

10
11 def singleadj (n: i64) (i: i64) (adj: f32) : [n]f32 =
12 map (\j -> if (i==j) then adj else 0.0 f32) (iota n)
13
14 let histo_mul [n][w](is: [n]i64) (dest: [w]f32) (vs: [n]f32) : [w]f32 =
15 reduce_by_index (copy dest) (*) 1f32 is vs
16
17 entry rev [n][w](is: [n]i64) (vs: [n]f32) (hist_orig: [w]f32) (hist_bar ’: [w]f32) =
18 map (\i -> vjp (histo_mul is hist_orig) vs (singleadj w i hist_bar ’[i])) (iota w)
19
20
21 entry fwd [n][w](is: [n]i64) (vs: [n]f32) (hist_orig: [w]f32) (hist_bar ’: [w]f32) =
22 map (jvp (histo_mul is (hist_orig: [w]f32)) vs)
23 (map (\ i -> let adj = if is[i] < 0i64 then 0f32 else hist_bar ’[is[i]]
24 in singleadj n i adj) (iota n))
25 |> transpose
26

Figure 57: Testing reduce by index with operator (*) running on three data sets
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