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Abstract

This thesis details an automatic tuning strategy for threshold values in Futhark’s incremental
flattening compilation scheme. Incremental flattening is a compiler technique in which mul-
tiple semantically equivalent code versions representing differing code optimisation strategies
are combined into one program. This allows individual input datasets to choose the optimi-
sation strategy that best suits its characteristics given a particular hardware configuration.
This flexible choice can be very useful in practice, but requires the tuning of a set of thresh-
old values before the code is used in production.

The thesis at hand considers two cases of tuning strategies. The first one yields optimal
threshold assignments with solid guarantees in a simplified setting. For the second one, four
different optimisation strategies are employed and evaluated, including binary search, evo-
lutionary strategies, active learning, and an experimental program instrumentation tuner.
Each option provides its own benefits and problems, but they all show that tuning thresholds
to improve the runtime performance is possible, with the best tuner yielding a 3.07x-speed-
up over the standard Futhark compilation into OpenCL code.

Keywords: Auto-parallelisation, hyperparameter tuning, functional GPU programming,
code optimisation.
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CHAPTER 1

INTRODUCTION

General purpose computing on graphics processing units (GPGPU) is particularly interest-
ing in the 21st century, as the growth of CPU single-core frequencies has stagnated, brought
on by increasing thermal challenges of following Moore’s law [1, 2, 3]. This, in addition
to the growing interest in computing on Big Data, has allowed massively-parallel hardware
such as GPUs to flourish [4]. They deliver a massive increase in core count with a reduced
frequency, supported by a hardware architecture focused on executing a large number of
smaller computations in parallel to produce results. On tasks that rely on a large amount of
parallel computations, such as matrix matrix multiplication used in many computationally
intensive algorithms, a GPU can massively outperform a CPU [5]. Due to the significant
difference in hardware architecture, however, coding for GPUs has long been a very difficult
prospect for programmers [6, 7, 1].

One modern approach for programming efficient GPU code is to rely on specialised pro-
gramming languages and compilers [6, 8, 7], such as Futhark developed at the Department
of Computer Science at the University of Copenhagen. Futhark is a statically typed, data-
parallel, and purely functional array language with a heavily optimising ahead-of-time com-
piler for generating CUDA or OpenCL code [9, 1]. A core goal of Futhark is to combat the
difficulty of coding on GPUs by hiding the challenges that comes with the GPU architec-
ture behind its compiler. This in turn shifts the burden of knowing the intricacies of GPU
development away from the programmer, and onto the compiler.

As part of ongoing research into programming languages, one technique for improving the
generated code has been dubbed incremental flattening [10]. This compiler technique pro-
duces multiple semantically equivalent code versions, each corresponding to the application
of different code-optimisation strategies driven by exploiting different amounts of application
parallelism on hardware. Choices for code optimisation range from performing full flattening
to register and block tiling [11, 12], but depending on the hardware and input dataset the
improvement of each varies [10]. These code versions are then combined into one complete
program by separating them with predicates, in the style of nested if-statements. These
predicates compare the degree of parallelism that is mapped to the hardware in the current
version to a threshold, allowing for the code version best suited for each dataset to be picked
at runtime. Incremental flattening thus enables a flexible choice for each input dataset under
the same compiled program.
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The compiler code to generate these incremental flattening programs has been developed,
whereas the subject of properly mapping dataset and hardware characteristics to code ver-
sions via the thresholds, is the main objective of this thesis. This will be achieved by tuning
the thresholds guarding the code versions based on benchmarking information. The goal
is to be able to perform this tuning automatically, such that given a target program and
some supplied training datasets, the tuner will produce an assignment of threshold values,
which yield optimal performance for each dataset on the given hardware, including unknown
datasets.

This thesis will describe the process of solving this problem, starting with defining the incre-
mental flattening setting. From there, multiple tuners using various optimisation strategies
are implemented and evaluated on well known GPGPU benchmarks. This will be done
incrementally, starting with the simplest case, and working up to a more difficult class of
problems where data science techniques and fundamentals are necessary.

1.1 Introduction to Futhark and Flattening
While the goal of this thesis is to show that it is possible to map dataset characteristics to
different code optimisations under specific hardware in general, the experimental work fo-
cuses on Futhark’s incremental flattening compiler. The tag-line that the creators of Futhark
most closely associate with their language is "Why Futhark? Because it’s nicer than writing
CUDA or OpenCL by hand!" [1].

As mentioned in the introduction, Futhark is a statically typed, data-parallel, and purely
functional array language, with a heavily optimising ahead-of-time compiler. It is also strictly
evaluated and supports in-place updates due to a uniqueness type-system ensuring race-free
updates. In essence, Futhark follows most of the standards of a purely functional data-
parallel language in the spirit of Guy Blelloch’s NESL [13], with an emphasis on nested
parallelism and parallel constructs.

While NESL was created before GPGPUs became mainstream, Futhark embraces it fully
to make GPUs available to programmers. In order to grasp the motivation for making
GPU programming easier, the following section will give a brief introduction to the GPU
programming model. After that, we will showcase how Futhark code looks and how it is op-
timised, along with a proper explanation of how incremental flattening works in the context
of Futhark.

1.1.1 GPU Programming

Two primary frameworks for GPGPU exists in OpenCL and CUDA. CUDA was first re-
leased in 2007, and is different from its OpenCL counterpart released in 2008 in that CUDA
is vendor-specific to NVIDIA GPUs, which OpenCL is not. While they differ slightly in cer-
tain specifics, such as memory management [14], the two frameworks are extremely similar
except for their nomenclature.

Both work on the same style of physical GPU layout, and have their programming mod-
els structured accordingly. Coding for GPUs is a matter of having the host (usually the
CPU) offload certain computations onto a separate computing device (usually the GPU),
and reading their results. In practice, this boils down to the following steps:

Page 3 of 67



1. Memory is allocated on both host and device for input and output.

2. The input data for the computation to be offloaded is transferred from the host to the
device.

3. The device performs the computation, under its massively parallel architecture.

4. The output from the device is transferred back to the host from the device.

For a programmer to implement this, he or she has to be conscious of the data transfers, and
to both write orchestration code for the host, and the parallel code for the devices. Memory
is slow in terms of performance, and for GPU programming this is especially important. In
the small abstraction above, for example, transferring data between host and device is costly,
and if the speedup is not greater than the overhead, then the computation should be kept
on the host device.

Figure 1.1: NVIDIA GPU memory layout illustrated. In the figure, SMX stands for
Streaming Multiprocessor. Source: Richard Vuduc [4]

Figure 1.1 illustrates the typical memory layout of an NVIDIA GPU, but the structure is
much the same for other vendors. The idea is that a GPU at the lowest level contains
hundreds to thousands of functional units, called Stream Cores for AMD hardware and
CUDA Cores for NVIDIA hardware. These processors are split into groups called compute
units, which for AMD is called SIMD engines and Streaming Multiprocessors for NVIDIA.
Comparing hardware between the two vendors can be problematic, but in essence they are
structured in the same way [4, 14].

In terms of memory, there are three main levels in the hierarchy. Every compute unit
has access to the same global memory, seen in Figure 1.1 as GDDR5 SDRAM, which is a com-
mon example of the type and protocol for data transfers used. Inside each compute unit, all
functional units have access to the same shared local memory, and each functional unit also
has private registers. Additionally, the GPU hardware contains caches between the different
levels. Of these memory levels, host-memory, shared and global memory are left to the pro-
grammer, with the intermediate caches and registers being handled by the compilers [4].
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Setting aside the memory aspects, the second difference comes in the programming model
required to match the hardware architecture outlined above. The typical GPU architecture
requires computations to be performed in a lockstep SIMD fashion, with SIMD meaning
single instruction multiple data in Flynn’s Taxonomy [15, 16]. SIMD execution refers to
each of the functional units being given the same instructions to perform, but on separate
data, with units executing completely in parallel.

As an example using OpenCL, each functional unit executes part of a kernel on its own
data. These kernels are defined over the entire data to be processed, which is partitioned
into separate work group grids, consisting of individual work items. Every functional unit
executes one work item at a time from its work group concurrently alongside all other
functional units inside that compute unit, meaning they can also be viewed as traditional
multiprogramming threads. On simple 2D data such as a matrix, Figure 1.2 illustrates this,
and it should be noted that communication between work items is only possible in their re-
spective work groups. When a kernel is launched, all functional units across all workgroups
are launched at the same time, executing the exact same function. Multiple work groups
are thus run concurrently between the compute units available, meaning multiple levels of
concurrency are used to orchestrate the compute power available in the GPU [14].

Figure 1.2: Illustration of work items and work groups in an OpenCL kernel. Source:
Tompson & Schlachter [14]

The difficulty of programming for a GPU thus comes both from managing memory, and from
working under a programming model very different from the traditional sequential one used
by CPUs. This is particularly true since improperly managing memory transfers from global
memory on GPUs is extremely costly, and mitigating this can require extensive rewrites of
the code. Two such techniques, which can improve performance through proper memory
management, are tiling and coalesced accesses to optimise locality of reference [12, 11].

Coalesced accesses of memory refer to the situation where functional units in a GPU ac-
cess consecutive global memory locations in their SIMD load or store instructions [12]. The
benefit of this is that the memory controller on the GPU can complete all 16 requests in a
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single load transaction, which if not coalesced could result in up to 16 separate ones. This
is essential to good GPU code, as memory becomes the limiting factor in many common use
cases. Optimising spatial and temporal locality of reference using tiling to achieve coalesced
accesses along with cutting down on accesses is one transformation worth understanding.

Tiling is a specific transformation in which memory accesses are reduced, by optimising
for specific reuses of data patterns. This can be done both on block level with stripmining,
and with registers by doing stripmining followed by loop unrolling and jamming [12, 11].
Loop-stripmining is a safe transformation in which a loop is turned into a perfect loop nest,
one with a stride of T and one of stride 1. Stripmining is always safe, since it executes the
same loop iterations in the same order as before. Block Tiling is a transformation where
multiple loops are stripmined, and then having the loops of stride 1 interchanged inward
to optimise locality, typically to achieve coalesced accesses. Another type of tiling named
Register Tiling is achieved by first doing loop stripmining, followed by completely unrolling
the inner loop. Unrolling is a transformation in which a loop is replaced by all the explicit
iterations of the loop, cutting down on the control logic of the loop. While doing this un-
rolling, if any variable in the iterations of the original loop were invariant to that loop, their
memory accesses will have been considerably reduced. Thus, register and block tiling are
good optimisations to improve performance given recognisable data patterns, but which a
novice GPU programmer might not know about, or find difficult to write.

While it is possible to get into the uses of GPGPU with the material available today for
programmers, writing efficient code is still a major challenge. Additional challenges exist,
such as taking into account the synchronisation of the many threads involved. All of these
challenges underlines the necessity of automated tools for efficient GPU programming.

1.1.2 The Futhark Programming Language

As mentioned earlier, one of Futhark’s design goals is to make GPU programming more
available to the general programmer, by having efficient compiler techniques to achieve good
code performance. In order to achieve this goal, the programming model adopted by Futhark
is that of a purely functional data-parallel language. In order to illustrate this, consider the
code example of matrix matrix multiplication shown in Listing 1.1.

1 let matmult [N][M][P] (x : [N][M] i32) (y : [M][P] i32) : [N][P] i32 =
2 map (\xr ->
3 map (\yc ->
4 reduce (+) 0 (map2 (*) xr yc)
5 ) (transpose y)
6 ) x

Listing 1.1: Matrix matrix multiplication in Futhark

The example starts with a type definition of the function, which takes as input two 32-bit
integer arrays x and y of sizes N × M and M × P respectively, and outputs an N × P
32-bit integer array. The body of the function contains two outer maps, with an inner body
containing a reduction of a pair-wise map. All of these operations are part of what Futhark
calls second order array combinators (SOAC), which are operators on arrays that take as
input a function to specify the operation of the SOAC.

The simplest example of this is map, which takes an array x and a function f , and ap-
plies f to every element of x independently. Likewise, map2 is an extension of map, where
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Figure 1.3: Parallel execution of reduce to compute the sum on an array of eight
integers. Source: Oancea [12]

two arrays of the same sizes x and y are evaluated with the function f as a pair, yielding
f(x, y). Considering the layout of GPUs described in the previous section, a map is very in-
tuitive to convert efficiently, as it can be seen as a single instruction applied to multiple data.

The other SOAC involved is reduce, which computes the aggregation of the input array
according to the given function. The reduce function requires an array of type []t, mean-
ing an array whose elements are all of type t. It also requires an associative function f of
type t -> t -> t, indicating a function taking two inputs both of type t to produce an
output also of type t. Finally, reduce also requires the neutral element of the function f ,
which is the element n which satisfies the equation f(n, x) = f(x, n) = x. The evaluation of
reduce combines all elements of the array using f, starting from the neutral element. The
most basic example of reduce is to sum an array of integers, as it is shown in the code in
Listing 1.2.

1 let main (x : []i32) : i32 =
2 reduce (+) 0 x

Listing 1.2: Computing the sum of an array in Futhark

The reason the function f has to be associative is to allow for efficient parallel execution.
While map is intuitive to map to a work item in OpenCL, reduce requires coordination
between work items in a work group to compute. Figure 1.3 shows a parallel execution of
reduce, in which it is illustrated that log(n) parallel steps are executed in order to implement
a reduction operation inside of a workgroup. While map is trivial to map to GPUs, reduce
incurs a bit of overhead in comparison, as it is a more complex operation.

Returning to the code in Listing 1.1, the two outer maps extract the row of matrix x as xr,
and the corresponding columns of y as yc by transposing y before the second map. The
inner reduce then computes the sum over the array of pair-wise products of xr and yc.
This version of matrix matrix multiplication is very easy to write with basic knowledge of
programming in a functional language, and with the data-parallel nature is also easy for the
compiler to convert into OpenCL or CUDA code.

The matrix matrix multiplication example was easy to write, and it has been explained
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how the constructs involved translate to parallel GPU operations, but the goal of Futhark
is to make this code efficient. Optimising the source code is done using a technique called
moderate flattening, which serves as the base for incremental flattening.

Flattening Transformations

Flattening is a program transformation that eliminates nested parallel constructs, result-
ing in flat parallel data structure retaining all information about the nested structure. This
transformation is important, since nested parallelism can not be directly mapped to the GPU
architecture. Blelloch and Sabot [17] presented the transformation with a structure called a
field, in which nested parallelism is expressed as a tuple of information describing the nest,
and a flat array of values in said nest. The following example in Listing 1.3 exemplifies this
notion in terms of nested irregular arrays, meaning arrays of arrays with differing row lengths.

1 [ [1,2], [3], [4,5,6] ] ==> ([2,1,3], [1,2,3,4,5,6])

Listing 1.3: Example of the flat parallel representation of an irregular array.

All the information about the original nested arrays is expressed in the new structure. The
first part denotes the lengths of each segment in the original array, and the second part of
the structure has the values of the original array presented as a flat array. Flattening extends
to arbitrary depth, as storing multiple shape arrays corresponding to further nested data,
while still keeping the data’s values itself as a flat array.

In order to express programs on this changed data structure, the flattening transforma-
tion also applies to code itself. A set of rules for transforming nested parallel operators into
flat parallel ones exist, which uses the above principles to expose more parallelism. One of
the most intuitive of these rules is to transform nested maps, as seen in Listing 1.4 where A
is composed as (A_shp, A_val) when flattened.

1 A = [[1,3], [2,4,6]] ==> A = ([2,3], [1,3,2,4,6])
2 map( \row -> map f row) A) ==> (A_shp , map f A_val)

Listing 1.4: Left hand side represents the normal nested-parallel code, applying some
function f to every row of A. The right hand side represents the same code, but using
the flattening transformation.

How does a transformation like the one in Listing 1.4 help improve parallelism in arbitrary
code? The transformed code does the same amount of work, using one single map on the
flattened data rather than one map per row in A. We say that the flattening has uncovered
additional opportunities for parallel execution, in that this transformed code is more easily
mapped to the GPU.

A second example of a flattening rule is that of a scan inside of a map. A scan is a
parallel operation to compute the prefix sum of an array, though being a SOAC it takes as
input a function to compute said prefix sum with. Whereas a nested map was simple, a scan
on the flattened value array requires a notion of when segments start and end. For this, the
notion of a flag array is introduced, which is an array of the same length as the flat value
array, with boolean values indicating the start of segments. With this flag array, a nested
scan can be converted as shown in Listing 1.5
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1 A = [[1,3], [2,4,6]] ==> A = ([2,3], [1,3,2,4,6])
2 map( \row -> scan f e row) A) ==> (A_shp , sgmScan f e A_flg A_val)

Listing 1.5: Left hand side represents the normal nested-parallel code, scanning every
row of A using f and it’s neutral element e. The right hand side represents the same
code, but using the flattening transformation.

Computing the flag array is also possible to do in parallel as a combination of other parallel
operators, and allows for segmented operations such as that for scan. Segmented operations
are operations which uses the flag array to do work on segments in parallel, such as com-
puting the prefix sum across all rows in the same execution, rather than having the scan
mapped across multiple kernels.

The flattening transformations thus allow for multiple compositions of parallel operators
to be modified to work on flat data instead. Flat data is very useful in terms of parallelism,
as it allows better utilisation of the hardware in a given kernel. Futhark incorporates these
ideas into it’s code generation through a technique named moderate flattening.

Moderate Flattening

Blelloch showed in 1995 with the development of NESL that flattening transformations could
be built into a programming language, to allow for efficient data-parallel computations to
be expressed [13]. This style of languages became known as data-parallel languages, which
roughly follows the same programming model as NESL. Since this development, the idea of
flattening data to fit onto massively parallel hardware, such as vector machines or GPUs,
has been adapted into Futhark with moderate flattening.

The main drawback of doing full flattening, in which all nested parallelism is flattened
completely, is that GPUs has a capacity for how much parallelism can efficiently be utilised.
While full flattening on a theoretical machine has nice properties, it does not translate well
to the real world where communication and memory costs are central to good GPU code
performance. Using full flattening on GPUs is complicated further by it not being able to
exploit locality of reference, which can considerably improve performance in many programs.

The question then becomes how to partially flatten a program to a point in which it
completely saturates the GPU hardware available, but stops short of oversaturating it. In
Futhark, this is implemented with moderate flattening. Moderate flattening works by match-
ing compositions of parallel constructs against a number of flattening rules in order to convert
nested parallel operations into sequences of parallel operations [9].

This algorithm results in a modified program, which has been restructured to allow for
better utilisation of the parallel operations, since nested parallelism can not be directly
mapped to the GPU architecture. More specifically, it reorganises the imperfectly nested
parallelism into perfect SOAC nests, in which the outer levels correspond to map operators,
while the innermost one is some arbitrary SOAC or scalar code. This reorganisation allows
easier mapping to GPU architectures, as the map operator is easily representable on the
GPU. This is done primarily using loop interchange and map distribution, while also trying
to avoid more computationally expensive operations such as optimising parallelism inside
if-statements, which would require filter operations.

As an example, consider the program distribution example in Figure 1.4. The code in 1.4
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(a) contains multiple instances of nested parallelism, both inside maps and inside sequential
loops. After distribution the code in 1.4 (b) only ever has maps on the outer level of nested
parallelism, resulting in multiple examples of perfect nests capable of being mapped to GPUs.

Figure 1.4: Example of the ideas behind the flattening engine in Futhark. The code is not
quite Futhark code, but the parallel constructs and their distribution is the same.

This reorganisation into perfect SOAC nests is done using a set of flattening rules conceptu-
ally reminiscent of Blelloch’s work, with the major distinction being the goal of exploiting
top-level parallelism rather than fully flattening from the bottom up. From said perfect
nests, GPU code kernels can be extracted and form an optimised program.

While moderate flattening does improve the degree of statically exploitable parallelism, it
still has one shortcoming. It only produces one optimised program for all its input datasets
and hardware, depending on a chosen heuristic [9].

Having a single program designed for multiple input datasets is an example of one-size-
fits-all optimisations, in which one choice of optimisation is chosen for all inputs. Most
datasets vary in the amount of parallelism they offer however, meaning the degree of par-
allelism utilised by the hardware for any given optimisation varies greatly between datasets
[10].

Consider the matrix matrix multiplication code from Listing 1.1 discussed earlier as the
function applied to some input dataset. For a large input dataset, it is possible that only
exploiting the outermost level of parallelism best saturates the hardware, while for a small
dataset it might be possible to saturate the program using full flattening. If one were to
only choose one of those two strategies, then the other dataset will suffer. Since input is by
definition known only at runtime, this choice can not be accomplished by the static heuris-
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tic. Inaccuracies from these heuristics can lead to severe underutilisation of the hardware
available, again hurting performance [9, 10].

A modification of moderate flattening named incremental flattening aims to solve the above
problem, by adding additional flattening rules and modifying some of the existing ones from
moderate flattening. The general idea being that instead of making a single choice of heuris-
tic, incrementally flatten parts of the code to produce multiple options for optimisation
strategies, and choose from them at runtime.

Figure 1.5: Inference rules for the incremental flattening implementation in Futhark, as
described by Henriksen, Thorøe, Elsman & Oancea [10]

1.1.3 Incremental Flattening

The full inference rules for incremental flattening seen in Figure 1.5 aim to guide the existing
moderate flattening algorithm to generate multiple code versions, each corresponding to dif-
ferent levels of flattening. Incremental flattening is a recursive flattening algorithm, with the
first three rules (G0 - G2) representing the base cases, and the remaining rules constituting
part of the original moderate flattening rules for how to perform flattening.

Rule G3 is the primary driver behind the multi code versioning. For each map in the
target program that contains nested recurrences, G3 produces three code versions separated
by predicates. etop parallelises the map along with the earlier nested parallelism up till this
point, and sequentialises the body. emiddle parallelises the map and recursively also the body,
to utilise the inner parallelism as well using a different hardware level. In this explanation,
hardware levels refer to the structure of the GPU, with optimisations happening at grid level
(level 1) or work group level (level 0). The last version, eflat attempts to continue flattening
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on the same hardware level.

The remaining rules, G4 - G9, represent the different rewrites used during moderate flatten-
ing that are kept for incremental flattening. These specify the prerequisite patterns in the
code with which specific rules apply to reorganise the code. One such example is rule G4
taken directly from moderate flattening. It represents map-reduce interchange, in which a
reduce nested in a map in a specific way can be rewritten more efficiently. Taken together,
all the rules from Figure 1.5 describe the code version generation.

Applying incremental flattening results in a combined program where each of the generated
code versions is guarded by a predicate also generated in Rule G3. This predicate compares
a free variable threshold against an expression for the maximum degree of parallelism avail-
able to be utilised in that version, seen in Figure 1.5 as "Par(x)". These predicates allow
the combined program to choose different levels of optimisations dynamically, effectively
bridging the gap between one-size-fits-all optimisations and different hardware and dataset
characteristics.

Incremental Flattening Example

Returning to the matrix matrix multiplication example shown in Listing 1.1, when compiled
using incremental flattening, five code versions will be produced, each utilising a different
amount of GPU parallelism. First, the outer map is encountered which contains nested par-
allelism inside, being both the inner map and the reduce. This generates three code versions,
two of which will reach the base case and finish. The third one will try to continue flatten-
ing further inwards, which encounters the inner map with a nested reduce. This one also
produces three code versions, yielding a total of five. These five code versions are separated
by predicates, which is shown alongside the matrix matrix code in Figure 1.6.

In order of when they are considered in the combined program, each version launches a
different number of threads to handle different workloads. Version one (V1) will execute the
body of the map sequentially, meaning every GPU work item will work on a single row in the
array, launching N work items. Version two (V2) will try to partially parallelise the body,
assigning one workgroup per row, launching N×B work items where B is the workgroup size.

Version three (V3) parallelises the second map as well as the first, but keeps the dot product
sequentialised, launching N × P work items, each computing the dot product for one result
element in the output. Version four (V4) again attempts to partially parallelise the dot
product, assigning one work group per element, resulting in a total of N ×P ×B work items
launched. Finally, version five has fully flattened the code, in which N ×P ×M work items
are launched, each computing one multiplication in the dot products.

These five code versions are then separated by predicates as in Figure 1.6, which will compare
the degree of parallelism against the free variable thresholds. In addition to these predicates,
additional hardware-constraining predicates are also introduced in order for specific code ver-
sions to run. One such example is emiddle that tries to assign one workgroup, which will only
run if this assignment is possible with the given hardware constraints.

After deciding on these code versions, the incremental flattening compiler performs addi-
tional simplification, kernel extraction and access pattern optimisations. This includes code
to achieve coalesced accesses, or to use tiling to improve locality, as mentioned earlier. It
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Figure 1.6: (a) Futhark code example of matrix-matrix multiplication from Listing 1.1.
(b) Pseudo code for combined predicate guards. (c) Tree structure for the predicate guards.
All five code versions are semantically equivalent.

also looks for other patterns which leads to speedups, such as the redomap construct used
in many benchmarks [18].

Incremental Flattening’s Tree Structures

Through incremental flattening, the code versions can be chosen at runtime based on the
predicates using threshold values. For the tuning processes later, this combined program
can be represented using a tree structure, since the predicates are ordered such that there
are inter-version dependencies. For this tree, nodes represent a predicate guard of the form
Threshold ≤ Epar(Input), where Epar(Input) is an expression of the maximum parallelism
used by an optimisation on the given input dataset for this code version, and leaf nodes
represent a single chosen code-version. Due to the structure generated by Rule G3 of incre-
mental flattening, most of these predicates are nested, and thus have dependencies between
them. In the tree, this is represented by every node being dependent on the evaluation of
all previous nodes. Figure 1.6 (c) shows the earlier matrix-matrix multiplication’s five code
versions decided by the nested predicates.

This predicate structure is complicated by two specific situations. First, it is possible for
multiple nodes to be dependent on the same parent node, resulting in a non-binary tree
structure. In the program, this represents optimisations of the same depth in nested par-
allelism. An example is the code from the LocVolCalib benchmark, which in simplified
form can be seen in Figure 1.7 along with a tree structure. It has a map containing two
nested map each calling the "TriDag" function with two different inputs. Since these are
on the same depth of the nested parallelism, their optimisations rely on earlier choices for
the outer map, but both can be optimised in different ways due to their Epar(Input) differing.
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Figure 1.7: (a) Simplified Futhark code of the structure in the LocVolCalib benchmark.
Source: PPoPP19 [10]. (b) Resulting incremental flattening tree structure, following the
legend present in Figure 1.8

The second more challenging situation comes into play when Epar(Input) has input which
changes size multiple times during execution. This happens when executing nested paral-
lelism code inside a sequential loop, and the size of the input array of the nest changes
sizes with each iteration of the loop. This is a difficult situation, since only one threshold
value is now compared against multiple different Epar(Input), as opposed to having only one
comparison against it made. This does not influence the tree itself, but proves a challenge
on figuring out a proper value for the thresholds.

As an illustration of when this case happens, Listing 1.6 contains the code of one instance of
the problem. The code in Listing 1.6 performs matrix matrix multiplications of two matrices,
but in each iteration of the loop the shapes are changed by log(n) according to the loop.
Having this specific pattern results in code versions having multiple values of Epar(Input)
to choose from. Since this code essentially performs matrix matrix multiplication inside of a
sequential loop, the tree structure is identical to that of the earlier matrix matrix multipli-
cation code seen in Figure 1.6 (c), though with all four thresholds affected by the sequential
loop problem. While it is not solely the presence of a sequential loop that creates this class of
problem, in the rest of this thesis this difficult situation is dubbed that of the loop based trees.
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Figure 1.8: Legend for future branching trees.

1 let main [n] (A : [n][n]f32) (B : [n][n]f32) =
2 let ks = map (\i -> 1<<i) (iota (1i32 + (lg n)))
3 let M = []
4 let (res , _) =
5 loop (M,A) for k in ks do -- k = 1, 2, 4, 8, 16, 32, 64, 128
6 let A’ = unflatten (n/k) (n*k) <| flatten A -- size of A’ is n/k_

{i-1} x n/k_{i-1}
7 let B’ = unflatten (n*k) (n/k) <| flatten B
8 let M = matmul A’ B’ -- n/k x n/k
9 let A’’= map2(\Arow Mrow ->

10 map(\j ->
11 if j < n/k
12 then Arow[j] + unsafe Mrow[j]
13 else Arow[j]
14 ) (iota (n*k))
15 ) A’ M
16 in (M, A’’)
17 in res

Listing 1.6: Futhark code of a sequential loop with variant sizes

This tree structure will prove useful for any non-black box tuning technique, either to im-
plement caching of results, or to otherwise navigate control flow of the combined program.
In the future, tree-graphs will use the legend in Figure 1.8 to incorporate the above com-
plications in their representations. The split-operator hexagon denotes the first situation,
where a sequence of logical OpenCL kernels happen at the same depth of nested parallelism.
Lastly, the box indicates parts of the tree executed in a sequential loop, where the degree of
parallelism in the input is influenced by the loop, resulting in a threshold having multiple
values of Epar(Input) compared against it.
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CHAPTER 2

FUTHARK AUTOTUNER IMPLEMENTATIONS

Futhark’s Incremental Flattening produces a program with optimisations exploiting varying
degrees of available hardware parallelism. The goal of the autotuner is to choose threshold
values, such that each training dataset executes the code version best suited for it [10]. This
has to be achieved without prior knowledge of which datasets prefer which code version, and
without knowledge of future datasets being introduced. From these training datasets, the
thresholds chosen should generalise such as to accurately cluster future unknown datasets
to good code versions.

In terms of an optimisation problem, the objective function to be minimised reflects the run-
time of each dataset and the inputs are the tuple of chosen threshold values (T1, T2, · · · , TN)
along with the target program. Additionally, while solving this problem, an efficient solution
minimises the number of benchmarks to run, since that is the primary way of getting infor-
mation about the thresholds’ optimal values, but takes the most time of the tuning process.

All the tuners’ primary source of information is Futhark’s native benchmarking tool, which
makes it possible to run a program with all its given datasets under a supplied threshold
configuration. The information gained per run is each dataset’s runtimes, and the values of
Epar(Input) that thresholds were compared against for that dataset [1]. In particular this
last part is useful, as it contains a lot of information about how the threshold values will
alter the control flow from one code version to another, following the program’s tree structure.

As an example, if a threshold is set to 400 then all Epar(Input) < 400 will choose the
same version, meaning any two values in that range are essentially identical in terms of
performance for that dataset. Similarly any two values chosen greater than 400 would both
choose the other available code version in that comparison. Any autotuner implementation
will have to exploit this to efficiently find the optimal thresholds without repeating experi-
ments that yield no new information.

The following sections will cover concrete implementation strategies for solving the tun-
ing problem. Section 2.1 will cover the simplest case of tuning, whereas Section 2.2 will
introduce the more difficult situation, in which advanced optimisation techniques have to be
applied. Those more advanced solutions are presented in Chapter 3.

In terms of the tree structure from earlier, the simple case covers all trees except those
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containing sequential loops in which the degree of parallelism inside of the loop varies within
the loop. These are considered "simple" since it will be shown that a recursive algorithm can
efficiently solve the problem and provide decent guarantees that do not hold for the difficult
case.

2.1 Base Futhark Autotuner
For the simple case, programs will never contain a sequential loop, and only ever have one
value of Epar(Input) per threshold for each dataset. This is a major simplification in terms
of how well we can produce good values of thresholds. Having this simplification results in
a lot of certainty about the control flow of the program produced by Incremental Flattening
when examining the predicate guards. In terms of the tree structures, the first two trees in
Figure 2.1 (a) and (b) would fall under this simplification, while the last one in (c) will be
dealt with later in Section 2.2 and Chapter 3.

Figure 2.1: Three types of trees: (a) has no complications involved. (b) has two branches
of optimisations at the same depth. (c) has parts executed in a sequential loop.

We start by defining the useful concept of a threshold range. As mentioned earlier, for thresh-
old comparisons against a single value of Epar(Input), any threshold choice below that value
will yield the same code version due to the predicate’s form of Threshold ≤ Epar(Input).

To return to the earlier example with Epar(Input) = 400, if a dataset were to prefer the
predicate evaluating to true, then the range of threshold values that would satisfy that con-
straint would be (1, · · · , 400), and if it preferred the predicate being false then it would be
(401, · · · ,∞). This range represents all the optimal values for a single threshold under a sin-
gle dataset, depending on which version was preferred. The goal of finding the best threshold
values can now be reformulated as finding the threshold ranges satisfying all datasets.

The simple algorithm for finding these ranges is shown as pseudocode in Algorithms 1 and
2 with most of the work done in the latter. The former simply calls OptimiseSimpleTree
from Algorithm 2 on every tree in the program, tuning each tree independently.

Algorithm 2 works by looping over all thresholds in the given tree T in depth first traver-
sal. For each threshold T , every dataset has it’s Epar(Input) for that threshold comparison
extracted in the function GetValueOfE, and using that information two benchmarks are run
in BenchmarkChoices. The BenchmarkChoices function runs a benchmark with T set to 1,
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and one set to ∞, resulting in both options in the threshold comparison node being tested
for this dataset. The function then returns the threshold range for T with which the dataset
would pick their preferred code version.

Once these threshold ranges are computed for every dataset, they are all intersected. If
this intersection is not the empty set, that means a range satisfying all datasets is found,
and the largest value in that range is chosen as the final optimal threshold. When the depth-
first traversal has finished, the tree has been entirely tuned, and Algorithm 1 can tune the
next tree in the program.

Algorithm 1 OptimiseProgram
Input: Program P with trees T 1, · · · , T K , and Datasets D1, · · ·DM .
Output: Optimal threshold assignments (T i

1)
∗, · · · (T i

Ni
)∗ for each tree T i.

1: Trees = { }
2:
3: for all trees T i do
4: Trees[i] = OptimiseSimpleTree(T i, (D1, · · · , DM))
5: end for
6:
7: Return: Trees

Algorithm 2 OptimiseSimpleTree
Input: One tree T with threshold names T1, · · · , TN , and Datasets D1, · · ·DM .
Output: Threshold assignments T ∗1 , · · · , T ∗N for the N thresholds in T
1: opt_thresholds = { }
2:
3: for all thresholds Ti in DFS(T ) do
4: ranges = [ ]
5:
6: for all datasets Dj in D1, · · · , DM do
7: E = GetValueOfE(Dj, Ti)
8: [Tlower, Tupper] = BenchmarkChoices(T , Ti, E, Dj)
9: ranges.append( [Tlower, Tupper] )

10: end for
11:
12: [(T ∗i )lower, (T ∗i )upper] =intersect(ranges)
13: opt_thresholds[i] = (T ∗i )upper
14: end for
15:
16: Return: opt_thresholds

Pseudocode Discussion

The pseudocode represents a depth-first recursive algorithm, where in each iteration each
node’s two choices are already "optimal", since the algorithm starts tuning from the deep-
est most level of the tree. If that comparison node can be made optimal, then the level
above can also choose its optimal choice, and so on recursively. This pseudocode produces
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a threshold configuration in which every threshold is set to the maximal empirical degree of
parallelism, with which every training dataset chooses its optimal version. This works under
the assumption that Epar(Input) accurately depicts the degree of parallelism achieved by
each code version, and that the code versions actually can be mapped to each dataset under
specific hardware.

To show how the pseudocode intersections would work, consider the deepest comparison
node in the Futhark Matrix Matrix multiplication code whose tree was shown in Figure 1.6.
That node chooses between two code versions decided by a single threshold T4. With an ex-
ample dataset A, the predicate deciding between the versions was found to be T4 ≤ 400, and
A preferred the version where the predicate evaluated to False. We now know any value of T4
in the range [401, · · · ,∞] would result in A choosing the correct version. If another dataset
B for the same node then had the predicate T4 ≤ 800, and we learned that B’s optimal code
version was the one achieved by the predicate evaluating to True, then we know any value of
T4 in the range [1, · · · , 800] would work for B. With this information it is possible to inter-
sect those two ranges, such that both datasets A and B choose correctly, which in this case
would result in the range [401, · · · , 800]. This would be the optimal result, as A’s predicate
would evaluate to False, and B’s predicate would evaluate to True, under the same threshold.

The example makes it clear that the final ranges will produce an optimal threshold con-
figuration for all training datasets. If the intersection of all the separate threshold ranges is
not the empty set, that means that new range has to also be a subset of all the individual
ranges, and thus optimal for all datasets.

As for an actual implementation of the pseudo-code, it has to be considered that the optimal
intersected range can be empty. This can happen either because Ej doesn’t accurately re-
flect the degree of parallelism, or because variances in benchmarking calls could incorrectly
identify a near-optimal code version as optimal. To break this stalemate, one approach is to
leverage the information that has previously been recorded while constructing the ranges.

The intersection algorithm can be reworded as finding the the minimum Tupper value, and
likewise finding the maximum for the "lower" values, as in Equation 2.1 where N is the
number of datasets.

T ∗ = [T ∗lower, T
∗
upper] = [max(T 1

lower, · · · , TN
lower), min(T 1

upper, · · · , TN
upper)] (2.1)

This intersection is empty if T ∗lower > T ∗upper, but if it is empty we still know the values of the
lower and upper T ∗. The heuristic we chose to break these stalemates uses these two values
to retry the benchmarks with the threshold set to either of those two values merged values,
and picking the best one. This works particularly well when the majority of datasets prefer
one of the two, and only a few datasets caused the intersection to not be empty. It does
have the downside of favouring long-running datasets if the function for choosing between
the two is accumulative runtime.

Accumulative runtime is a decent measure of overall performance, with the one flaw that it
favours longer running datasets. Problems arise with this if all datasets, regardless of size,
are of equal importance. In such instances, it can be remedied by implementing a weighted
sum. One way of implementing this is to record a baseline performance of all datasets, and
then have the weighted sum reflect the percentile improvement. However, this potentially
favours shorter running datasets, in which noise can have a large percentage influence.
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As for some other smaller details of the algorithm, they require explanation as well. Al-
gorithm 1 loops over multiple trees T in the program, which refers to a program having
multiple separate instances of nested parallelism in its code. Looping over them sequentially
is done in order to keep all thresholds not relevant to a specific tree T 〉 fixed, in order to
isolate one threshold’s impact at a time and thus reduce overall tuning time considerably.

Secondly for the inner workings of the function BenchmarkChoices in Algorithm 2, it is
assumed that all thresholds above Ti in the tree T are set to ∞, and all thresholds below
Ti set to their optimal value found earlier. This ensures that only the current threshold Ti
influences the result, and that it chooses between two potentially optimal choices. Having
all thresholds be false to start is in line with base incremental flattening without tuning,
where every threshold is set to 215 [10].

Finally, when fixing a single threshold value from the final range in Lines 12-13 in Algo-
rithm 2, it is chosen as the maximum allowed value, (T ∗i )upper. It is possible to return the
computed ranges to choose from, but to actually run the program with the thresholds a sin-
gular value has to be chosen, and T j

upper reflects the maximal empirical degree of parallelism
the code version in that comparison can effectively use. Choosing the final value like this
also helps generalise better to unknown datasets.

Because the T j
upper was computed from experiences, given a future dataset with an Epar(Input)

greater than T j
upper, we know that we earlier had a training dataset whose Epar(Input) was

also greater than T j
upper and preferred the predicate evaluate to False. Due to this, the un-

known dataset should ideally follow the same pattern, and thus choose the correct version
as in our earlier experience.

Incremental Flattening’s shortcoming

With the pseudocode described and discussed, there is one relevant shortcoming of Incremen-
tal Flattening regarding empty intersections. Below in Figure 2.2 is pseudo code with two
sample datasets, which under a specific optimal optimisation strategy will never be solved
by Algorithm 1 for both datasets. The code has a map over some inner parallelism, with
the map working on a variable of size N and the inner parallelism working on a size of M.

Figure 2.2: Pseudocode example of an unsolvable case, with it’s simple tree structure.

From the definition of Incremental Flattening the program compiles into three code versions,
one for sequentialising the inner parallelism, one for mapping the inner parallelism at work-
group level, and a fully flattened version. With the code above, it is impossible to choose
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thresholds to implement the following strategy of optimal code versions:

If the size of the inner parallelism fits the max workgroup size, then always execute the
work group version, otherwise execute the outer map in parallel and sequentialise the rest.

If we produce two datasets with varying N and M values as listed above, and assume
Epar(Input) is simply the values N and M for the two comparisons, we will have a con-
flict with the strategy. The crux of the problem is that the choice for best version in the
strategy is decided by M which is compared after N due to rule G3’s ordering of compar-
isons from Figure 1.5. First the comparison to N is made, which will decide whether to
sequentialise the inner parallelism, without having yet compared M to know if we in fact
have sequentialised it or not.

Fixing this is not in the scope of this project, and would require some revisions of the
Incremental Flattening algorithm itself, with either a rework such that the first comparison
also takes M into account, or to switch the two code versions priority in Rule G3 which pro-
duces the ordering. What this means for this project is that tie-breaking will be a possibility
in practice, in that some programs might not have an optimal assignment.

Guarantees

Due to the simplification of having a certainty about the control flow in the combined in-
cremental flattening program, certain guarantees can be shown. In particular the following
guarantee is essential:

"If an assignment of thresholds exists which satisfies all datasets, Algorithm 2 will produce
said optimal assignment using one benchmark run per code version in the program."

As it states, it only holds in the case where there is in fact a solution for all datasets,
which as just covered is not entirely guaranteed. In those cases where no such solution
exists, it does require only two additional benchmarks to be run in order to find a near-
optimal assignment per conflict, using the heuristic described earlier. In order to achieve the
guarantee above in practice, caching has to be employed to save the results of previous nodes.

Consider a tree with two comparison nodes separating three code versions, like the one
in Figure 2.2. To solve the bottom most comparison node, the two benchmarks run in
BenchmarkChoices makes it possible to compute the resulting runtimes of every possible
threshold assignment, for every single datasets. This comes again from the certainty of con-
trol flow, and will be referenced as complete information.

Returning to the idea about caching, consider Algorithm 2 when it tries to solve some
comparison node which isn’t the bottom most node. First, it benchmarks the new unseen
code version, and then it benchmarks the false predicate choice. Using the reasoning above,
the false predicate choice’s runtime can be computed without running any additional bench-
marks, as 2 already has complete information about the nodes below. With this, the number
of benchmarks run is reduced from two per comparison node down to one per code version,
which gives us the guarantee.

Both the complete information aspect and the argument for it’s output being optimal comes
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from the threshold range concept. Attaining complete information in the simple setting is
not difficult, but as we will soon move on to loop based trees the property is much more
difficult to attain.

To wrap up Algorithm 1 for the simple case, if all the threshold ranges are easily inter-
sectable, this tuning strategy will find the correct result in X attempts, where X is the
number of code versions in the incremental flattening program. If this is not the case, or
the program contains a sequential loop with varying parallelism inside as described in the
Futhark introduction section, then additional work has to be done.

While Algorithm 1 is unable to solve the more difficult loop based trees, it will still serve
as a base for algorithms solving those trees, since not all nodes in the difficult trees are
difficult, as for example the third tree shown in Figure 2.1 (c). The simple case algorithm
shows that elegant solutions to the tuning problem can be found in the case of Futhark, and
the following sections aim to extend this to the last type of trees.

2.2 Loop Based Trees
As opposed to the simple case, having multiple values of Epar(Input) per kernel and dataset
pair necessitates a different approach to the tuning problem. Previously it was possible to
gain all the necessary information in a few benchmarks, while having arguments about the
correctness of each threshold assignment. Under the loop-based trees, the same code version
is run multiple times on different inputs, with different parallel sizes, but still decided by a
single threshold value. If this piece of code is run once pr. iteration of the sequential loop,
the number of Epar(Input) values equals the number of iterations of the loop, which varies
greatly from program to program. The role of the threshold thus shifts in comparison to
the simple case, in which a singular code version had to be chosen as optimal based on the
threshold. Its new role is to distinguish between two code versions, and to choose the best in
each iteration of the sequential loop, all with a singular threshold value. The main difficulty
of this case comes from not having the runtimes pr. sequential loop iteration, but having
the runtime as the summation of all iterations.

One way to look at this more difficult problem is as an optimisation problem, in which
we aim to find the minimum value of the function f(T̄ ) where f is the accumulative run-
times of datasets in a benchmark run using T̄ , and T̄ is the threshold configuration supplied.
From this point of view, a varied range of options become available for tackling the problem.
To distinguish between them some background is necessary.

First, the general description of an optimisation problem is to find the best solution in
terms of some criterion from a set of possible solutions. One of the simplest examples of this
is to find the global maximum or minimum of some mathematical function f : R → R. In
that situation, a solution would be any real number, the solution space is R, and the optimal
solution is the input x for which f(x) is the maximal (or minimum) value of f(x).

Finding this optimal solution can be done through multiple approaches. One option is
to treat the problem as a search for the optimal solution, with the solution space as the
search space. With this approach, an option is to try every possible solution in the search
space, and thereby ultimately finding the optimal one. This is called an exhaustive search,
and relies on the fact that the search space is small enough to be searched in its entirety. If
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Figure 2.3: Runtimes of the dataset Train-D2 from the SRAD benchmark, accompanied
by a tree with threshold comparisons. Code version 0 is not included, due to having a
runtime greater than 1 second.

the simple case algorithm from earlier was described in this setting, it would amount to a
smart exhaustive search strategy across all code versions.

An alternative is to employ some heuristic or other search algorithm, such as Gradient
Descent [19]. In this algorithm, the idea is to pick a random start point for the search, and
after each attempt at a solution compute the gradient with respect to the objective function
to be optimised. The gradient will then influence the changes made for the next iteration,
such that the gradient is followed towards a locally optimal solution. This method relies on
the problem having a computable gradient, but also risks finding a local extremum and not
the global extremum if the objective function is not convex. Gradient Descent is a widely
studied topic, with multiple enhancements and modifications available, such as introducing
a momentum term to help speed up the process [19].

Regardless of the choice of technique, it has to be applicable to the actual scenario. In
the tuning setting, the only known information is the different values of Epar(Input) for
every dataset. From this, the same logic of small changes resulting in the same code ver-
sions used in the simple case still applies. For example, if a threshold is compared against
Epar(Input) values of [10, 100, 1000], then any threshold value between [1 − 10], [11 − 100],
[101 − 1000], and [1001,∞] will all result in the same code path execution as any other in
the same range. The difference from earlier is we only had a single range, now replaced by
an arbitrary number of ranges to choose from depending on the number of iterations of the
loop. Since this number can be large, getting all the information is also not feasible in most
cases, meaning any algorithm also has to take into account the cost of information retrieval.

The problem space also has the additional challenge of having an objective function which
isn’t continuous, but rather that of a step-function due to the intervals mentioned earlier.
That means that in one case, a small change to a threshold can either not change the result
at all in the case that the same execution path is chosen as before, but a similarly small
change might radically influence the runtime, if a better path is chosen.

Since the objective function isn’t continuous it does not have a computable gradient. This is
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Figure 2.4: Runtimes of a fully exhaustive run of all values of Epar(Input) in LUD, using
all datasets.

relevant to a great many optimisation techniques, including most notably gradient descent
which relies entirely on this kind of information [19]. This is also a challenge for gradient-
free optimisation techniques which try to emulate a gradient, since changes in the input has
inconsistent effects on the output.

To illustrate this, Figure 2.3 shows the runtime of each code version for one dataset in
the SRAD rodinia benchmark belonging to the simple case. This graph also annotates the
T ≤ E(Par) used to choose datasets. This shows how, if one first attempts a benchmark
with T4 = 20, and then changes that slightly to T4 = 25, then no change happens in the
result, since the same version was chosen. However, if we had changed to T4 = 15, we would
have seen a radical change as we would have gone from version 4 to version 3, which was the
optimal one. This concept extends to multiple datasets, and in turn an objective function
like total runtime. While the program in Figure 2.3 belongs to the simple case, the same
applies in the loop based case but with more plateaus in the function.

That is not to say that some information about the underlying objective function denoting
runtimes can not be gleaned from the theoretical aspects of Incremental Flattening. Using
the values of Epar(Input) as accurate expressions of the degree of parallelism used in an
optimisation, it stands to reason that only one value will be optimal. The more you then
deviate from that optimal value in either direction, the runtime will be negatively influenced,
as either too little or too much parallelism in the hardware is being used. From this, it could
be assumed that the negative impact of deviating further and further from the optimal will
increase monotonically.

Under this assumption it is possible that the objective function can be roughly modelled
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as a second degree polynomial. In practice this reasoning seems to hold, but the experi-
ments do not result in proper polynomials due to the added noise and irregularities between
benchmark runs. To illustrate this idea of it being close to a polynomial, Figure 2.4 shows
the runtimes of every single value in the largest sequential loop program that was investi-
gated, Lower-Upper Decomposition (LUD). The figure is created by exhaustively attempting
every single uncovered value of Epar(Input) in each loop based threshold, using all datasets
available and reporting the cumulative sum of runtimes.

The figure lends credence to the idea that the underlying functions can behave much like
a second degree polynomial. The exception would seem to be the first loop based node
encountered, starting from the top, which has multiple values around the same runtime,
along with two spikes. While this could be taken to show how this assumption doesn’t fully
hold, as it is still an assumption, it could simply be due to the small amount of values for
Epar(Input) in that threshold comparison, meaning what we see is simply noise due to how
little the parallel size changes.

Looking at the four figures combined, it shows that for LUD the optimal value for most
nodes is to simply have all thresholds be false in all iterations, except for the fourth and
deepest node, which should always evaluate to true. That assignment produces the global
minimum across the entire tree, and it does seem to follow the idea that the further away
from the global minimum, the worse the performance gets, and that performance penalty
increases monotonically. All of the above background will be relevant to all attempts to
solve this problem.

Multiple approaches can have different qualities which might make them preferential in
comparison to others. The following chapter will cover a few different approaches that have
been attempted. All will have their algorithm explained in detail, along with theoretical
reasoning as to why each could solve the problem, and experimental results for each will be
presented in Chapter 4. Each of them only deal with the thresholds contained in sequential
loops, and use the earlier strategy in Algorithm 2 for any simple case comparison nodes.

In order to merge them with the simple case tuner, OptimiseProgram from Algorithm 1
is changed with the following pseudocode from Algorithm 3.

Essentially, a quick scan of the values of Epar(Input) each threshold T in a tree T are com-
pared against is made. If all the thresholds are compared only against a singular value in ev-
ery dataset, it falls under the simple case and the tree is optimised using OptimiseSimpleTree
from Algorithm 2. If that is not the case for any threshold, one of the variants for dealing
with the loop based case is used.

It should be noted that in practice trees containing difficult nodes also contain some sim-
ple case nodes. Instead of re-inventing a solution to these nodes, they are all solved by
OptimiseSimpleTrees. For the loop based tuners, their pseudo code work on the assump-
tion that all nodes in the trees are complicated, to avoid unnecessary clutter.<
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Algorithm 3 Change to Algorithm 1 to handle loop-based trees.
Input: Program P with trees T 1, · · · , T K , and Datasets D1, · · ·DM .
Output: Optimal threshold assignments (T i

1)
∗, · · · (T i

Ni
)∗ for each tree T i.

1: Trees = { }
2:
3: for all trees T i do
4: Loop = False
5: for all thresholds T j in T do
6: Ē = GetAllValuesOfE((D1, · · · , DM), T )
7: if |Ē| > 1 then
8: Loop = True
9: end if

10: end for
11:
12: if Loop then
13: Trees[i] = Execute loop-based strategy (Algorithms 4, 5, 6 or 8)
14: else
15: Trees[i] = OptimiseSimpleTree(T , (D1, · · · , DM)) (Algorithm 2)
16: end if
17: end for
18:
19: Return: Trees
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CHAPTER 3

LOOP-BASED TUNING STRATEGIES

This chapter is split into five segments, each corresponding to a different tuning strategy.
They are presented in the order of when they were developed during the process of writing
the thesis, and will cover the reasoning for trying them, pseudocode of the strategy, and
discussions of their pros and cons. They are as follows:

1. Exhaustive search, in which the idea of getting complete information is examined in
the new setting.

2. Binary search, a relaxation on exhaustive search, in which less benchmark runs need
to be attempted under the assumption of a polynomial and monotonicity.

3. Evolutionary strategies, a class of black box optimisers for solving continuous optimi-
sation problems, illustrating the performance of an algorithm with no domain specific
knowledge [20].

4. Active learning, a technique in machine learning whose uses fit very well into the setting
of the tuner, focused on maximising the benefit of labeling unknown datapoints [21].

5. Program instrumentation, a completely separate concept in which the data accessible
to the tuner is examined and optimised by modifying the target program.

For all of these tuners, they will have been tested on the dummy matrix matrix multiplication
program from Listing 1.6 in Chapter 1. To recap, it is standard matrix matrix multiplication
performed inside of a sequential loop, in which the sizes of the square input matrices are
reduced by half in each iteration. Because of this, the parallel size involved are changed
between iterations, meaning it belongs in the difficult case.

To underline the difficulty involved, for the largest testing dataset in the program, each
of the four thresholds are compared against 12 distinct values of Epar(Input). This is rel-
atively few values since the code reduces the matrices size by half each iteration. In other
cases, such as the LUD benchmark, this number reaches 255 separate distinct values.

Due to being a relatively easy instance of the difficult problem, this dummy example was
used to develop the different tuners on. In the following segments, when practical results are
mentioned it refers to results gained on this case, with the more difficult LUD benchmark
saved for Chapter 4.
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3.1 Exhaustive Search
The simplest possible solution to this problem is to try every possible value of Epar(Input),
and to choose the optimal through those experiments. This is in essence a continuation of
the simple algorithm, in which all information possible is gathered, and a judgement is made
based on that complete information. In terms of an optimisation technique, this is exhaustive
search, since the search space of all possible values for a threshold is searched exhaustively.
In practice, this choice of strategy has the benefit of always producing optimal results, but it
has the major downside of being infeasible for larger programs to be tuned in a set amount
of time. It can be implemented plainly by the following pseudo code in Algorithm 4, inserted
into Algorithm 3 to finalise a tuner.

Algorithm 4 The exhaustive search optimisation strategy
Input: One tree T with threshold names T1, · · · , TN and Datasets D1, · · · , DM

Output: Threshold assignments T ∗1 , · · · , T ∗N for the N thresholds in T
1: opt_thresholds = { }
2:
3: for all thresholds Ti in DFS(T ) do
4: Ē = GetAllValuesOfE((D1, · · · , DM), T ) ∪ ∞
5: B̄ = [ ]
6:
7: for all Ej ∈ Ē do
8: B̄[j] = BenchmarkSingleChoice(T , Ti, Ej, (D1, · · · , DM))
9: end for

10:
11: kbest = argmin(B̄)
12: opt_thresholds[i] = Ē[kbest]
13: end for
14:
15: Return: opt_thresholds

It’s implementation is by far the simplest, shown in Algorithm 4. It simply loops over the
values of Epar(Input), attempts a benchmark per value, and chooses the one which per-
formed the best. The resulting value is however produced from all datasets at once, instead
of on a per dataset basis. Changing this is due to how ranges don’t scale well into this more
difficult class, since the chances of two ranges intersecting is very small. In the simple case,
it was either [1, E] or [E,∞] per dataset, but here the number of choices again scale with
the number of values of Epar(Input). While this change can make the individual smaller
datasets perform slightly worse, as accumulative runtime prioritises larger datasets, this was
left as is in the implementation.

As for the strategy’s downside of long tuning time, it does turn out to be noticeable in
practice. The results gathered in experiments perform very well, but the time it takes to fin-
ish tuning in some cases become fairly extreme. It is also compounded in the future as more
features has to be tuned, since the search space gets exponentially bigger. For instance, some
programs might require register and block tiling to get the best result, which would then
require adding a tile size parameter to be tuned as well in order to get optimal performance.
The choice of tile size by itself is an unsolved problem, and is mostly done by testing a few
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different values chosen by heuristics. If the autotuner is to stick to the exhaustive search
strategy entirely, it would in the worst case have to also redo all the work done up till that
point, but with a different tile size for every possible tile size. As more tuning parameters
might be added, such as workgroup sizes, the search space will continue to explode, which
in turn makes an exhaustive tuner impractical to use on larger programs with additional
parameters.

As it stands in the current version of what was implemented, the tile size tuning is done in
only one pass through a few possible values at the end, which does not explode the search
space, but makes the solution only near-optimal. Properly tuning for tile sizes is left for
future work. Doing the tile size tuning in a single pass is kept for all following strategies
too.

3.2 Binary Search
A variation of the exhaustive search employs a search strategy in order to not perform useless
benchmarks, using some of the background knowledge. Binary search is done by taking the
list of elements we search through, and splitting it at the middle into two segments at each
iteration. If the benchmark using the midpoint is better than the previous best benchmark,
the search continues using the midpoint of the segment in the direction of the best bench-
mark, discarding the other segment. The algorithm finishes once the segment consists of a
single element. With this strategy, we gain the following guarantee:

Applying binary search always requires exactly log2(N) benchmark runs, with N being the
number of possible Epar(Input) values to search.

This strategy has the benefit of being much faster than exhaustive search. It’s results are
however not guaranteed to be optimal, as some objective functions such as the fourth ex-
ample in Figure 2.4 can have an unexpected shape. From an optimisation strategy point of
view, it relies entirely on the assumption of monotonicity in the objective function covered
earlier with Figure 2.4, since the binary search algorithm finds a local minimum only, and
would potentially get stuck if there are multiple such local minima.

A pseudocode algorithm for this strategy can be found in Algorithm 5. This algorithm was
attempted as a natural extension of exhaustive search, and also due to how it behaves much
like a gradient descent algorithm, in that it follows a quasi-gradient of change to find a local
minimum. Gradient descent as covered earlier can not be applied easily, as the problem isn’t
differentiable, but lead to the examination of binary search. Binary search as opposed to
gradient descent also has a nice provable number of runs to find a local minima, whereas
gradient descent does not. Ultimately, binary search shows that the concept of following
a quasi-gradient can work in this setting, and that tuners can be built on the assumptions
presented in Section 2.2.

Together, inserting Algorithm 5 into Algorithm 3 produces a tuner which handles all the
different types of programs known, with optimal results in the simple case and near-optimal
in this difficult case while maintaining reasonable tuning time
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Algorithm 5 The loop-based case using a Binary Search strategy
Input: One tree T with threshold names T1, · · · , TN and Datasets D1, · · · , DM

Output: Threshold assignments T ∗1 , · · · , T ∗N for the N thresholds in T
1: opt_thresholds = { }
2:
3: for all thresholds Ti in DFS(T ) do
4: Ē = GetAllValuesOfE((D1, · · · , DM), T ) ∪ ∞
5:
6: Lower = 0
7: Upper = |Ē| − 1
8:
9: Timebest = BenchmarkSingleChoice(T , Ti, Ē[Upper], (D1, · · · , DM))

10: Indexbest = Upper
11:
12: while Upper − Lower > 0 do
13: Midpoint = d(Upper + Lower)/2e
14: Timenew = BenchmarkSingleChoice(T , Ti, Ē[Midpoint], (D1, · · · , DM))
15:
16: if Timenew < Timebest then
17: Timebest = Timenew
18: Indexbest = Midpoint
19: Lower = Midpoint+ 1
20: else
21: Upper = Midpoint− 1
22: end if
23: end while
24:
25: opt_thresholds[i] = Ē[Indexbest]
26: end for
27:
28: Return: opt_thresholds

3.3 Evolution Strategies
One candidate black box optimisation algorithm which has been investigated is the contin-
uous optimisers in the evolutionary strategies (ES) family. Black box optimisers make no
assumptions on the problem at hand, with ES being inspired by Darwin’s theory of evolution
to guide the search for good solutions [22]. In this section a popular implementation of ES
called CMA-ES will be applied to our tuning problem.

Theory of Evolution Strategies

ES are useful optimisation strategies in situations where a large solution space has to be
searched efficiently, with multiple dimensions in the input. A basic instance of an ES works
by creating a population of candidate solutions at random, called individuals, and by eval-
uating them on the problem. Each individual’s fitness is measured to gauge how well it
solves the problem. From that fitness only the fittest individuals survive through a selection
process, such as an elitist one where only the most fit survive. These surviving individuals
then spawn offspring, which are imperfect copies of their parent, meaning they have mutated
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slightly. These changes can either be from crossover, which is the mixing of two parents
genomes together, or some other random mutation. These offspring and parents are then
reentered into a tournament for new survivors generating new offspring, until the problem
is solved. This structure is illustrated in Figure 3.1.

The core idea of ES optimisation is that of a random process, with a probability distri-
bution generating offspring guided by the objective function. This has the advantage of not
needing a gradient, but with the drawback in cases such as step functions where the quasi-
gradient guiding the evolution might mislead it. This can be alleviated depending on the
implementation of the mutations of the individuals. For instance, an example of a mutation
in our setting could change an individual from one code version to another, since the cutoff
points are known in advance. Another mutation could set a random threshold to entirely
true or false, since that helps give information about removing the influence of a specific
threshold.

Figure 3.1: Typical steps of a genetic algorithm. Mating selection, recombination and
mutation generates a pool of new candidates, which are tested and only the best survive for
the next iteration. Source: Igel [23]

As mentioned, we will specifically apply CMA-ES to the tuning problem. The CMA in
CMA-ES stands for covariance matrix adaptation, which was introduced in the context of
ES in order to formulate the notion that recent successively selected mutations continues to
be beneficial, thereby improving convergence of ESs [24]. More specifically, the mutations of
an ES are drawn from a distribution which is typically initialised as a normal distribution.
This distribution is then adapted to the environment in the form of the specific problem
instance. This adaptation is done using the covariance matrix, and the CMA algorithm
updates the matrix such that the probability of recently beneficial steps in the evolution
are more likely in the near future. CMA ensures that this adaptation to the environment is
efficient, and converges faster, as described in [24] and [25].

Converting Tuning to an ES problem

As mentioned before, ES are black box optimisation algorithms which work well for a wide
range of problems with large search spaces. They require very little knowledge of the problem,
except how solutions are expressed, and how they are individuals are evaluated. Applying
the CMA-ES implementation used [26] to our problem only requires a sample solution en-
coded as a vector of real numbers, and a fitness function for evaluating solutions of the given
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form, leaving the mutations and adaptation to the algorithm itself.

In the case of tuning, the simplest formulation would then be to plainly supply a valid
threshold configuration randomly sampled from a normal distribution, and have the fitness
function simply be accumulated runtime across all datasets. This threshold configuration
could then either correspond to tuning a single threshold, or alternatively all thresholds in
a single tree. While the other tuners that were and will be presented have all focused on a
singular threshold at a time, ES in general are efficient at problems with multiple dimensions
and large search spaces. Tuning the entire tree in one application of the algorithm is part of
the reason this style of tuner has been investigated.

Besides the initial solution and fitness function, a few additional hyperparameters for a
CMA-ES application can be tuned separately, with the two most significant being the initial
variance σ and population size. Variance refers to the spread of possible solutions in the
search space of solutions, with the default value suggested by a popular python package
implementation of CMA at 1/4th of the search space width [26]. For instance, if we know
an optimal threshold lies between 0 and 100, we could provide a sample solution of 50 with
a σ of 25. As the CMA-ES begins newer iterations, this σ is changed to better adapt to the
problem environment.

Population size is not an initial size, instead denoting the number of solutions to attempt
in each iteration, before moving onto the next generation of solutions. The same package as
mentioned earlier suggests a default value of 4 + 3 · log(N) where N is the number of dimen-
sions in the search space [26]. For the tuning problem, this is the number of thresholds in a
tree.

The major reason σ and population size are of interest to tune is they allow for specifying
the amount of exploration the ES does of the search space. Increasing the variance allows
for a larger initial spread of solutions, while a larger population size increases the chances
of that exploration finding a better solution to select for future iterations. Increasing either
comes at the cost of increased tuning time, which again is relevant to our problem.

Practical Problems

The major problem that was encountered during development of this tuner has been the
effect of step functions on CMA-ES. As mentioned previously in Figure 2.3, the objective
function is in fact a step function, meaning CMA-ES is not entirely suitable for this project
as it is for continuous optimisation. With caching implemented using the naïve initial solu-
tion from earlier, each new generation with ten iterations could have only two of them find
an unexplored plateau in the step function, and the rest would have the same execution path
as an earlier attempt, but with a slightly different configuration. When this happens for the
majority of a population in a generation, the algorithm might falsely assume convergence,
and thus terminate without finding the correct minimum.

While this is not ideal, one way of dealing with this is to increase the σ beyond the de-
fault value, yielding a greater probability of individual solutions reaching different plateaus,
and likewise for population size. Ideally this problem is handled by a reformulation of the
problem conversion, specifically the type of solutions produced by the ES. As mentioned
before, these are based on the initial solution we supply, but the naïve conversion shown
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above leaves open the problem of multiple different solutions being equivalent.

One way of solving this is to count the number of unique threshold configurations possi-
ble in the tree, and have CMA-ES choose one of these. For the ES to properly choose from
them, it still has to retain the same information about how changing one threshold influences
the runtimes.

In the tuner implementation this is done by finding a list of all Epar(Input) values pr.
threshold in the tree, and having CMA-ES find indices in that list. The change means that
the solution space to be searched becomes much smaller, but at the cost of some informa-
tion of the scale between the ranges. As an example, if a threshold encounters the values
(1, 5, 10, 1000) for Epar(Input), the ES would generate an integer solution corresponding to
an index into said list, which means it can choose between (0, 1, 2, 3). The search space has
been shrunk from 1000 possible values to just four, retaining most of the relevant information.

Using this strategy was efficient in reducing individual solutions being repeats of earlier
ones. Experimenting with the LUD benchmark introduced earlier, the naïve encoding would
have a repeat percentage of 95%, meaning very few meaningful experiments were attempted.
Alternatively, encoding with indices brought said percentage down to 53%. For later exper-
imental comparisons, the index encoding will be used.

As an additional enhancement, the initial solution supplied was also changed to being a
solution where every threshold is false. Recalling the earlier tuners, they all used the fully
flattened version as a good starting point, and this should extend to CMA-ES. In CMA-ES,
this should help avoid a node near the root being set to true, thus invalidating any changes
to thresholds deeper in the tree.

Downsides and Conclusion

Being a random process should take its toll on tuning time for the difficult case. Unlike the
binary search tuner, no guarantee for the number of benchmarking runs can be made, but
it is possible for it to randomly find the optimal early on.

As for the quality of the results, the tuner should produce decent results comparable in
quality to that of the binary search, but with the caveat of it taking longer, and in some
instances finding bad solutions. In practice this tuner is impractical, but was explored as
an example of applying a black box optimiser to the problem. It shows that while black
box optimisers can provide powerful tools, it is not every problem which can be solved using
them.

3.4 Active Learning
While CMA-ES and black box techniques were attempted to little success, other aspects
of machine learning are still relevant to investigate. Active learning is a general technique
in machine learning where the model being trained is an active participant in its learning
process, meaning it is not an algorithm by itself, but rather a technique used to augment
training in a specific setting. This technique applies in settings with a set of unlabeled dat-
apoints, but where the process of labeling these is expensive and left to the model being
trained. The goal of active learning is to optimise the value of each labeling, such as to
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maximise the information gained about the unknown objective function, and thereby the
learning of our model. This is opposed to standardised batch learning, in which all data is
present to start.

Considering the setting of the tuning problem, incorporating active learning makes sense,
since we have a set of unlabeled data points we want to predict in the form of possible thresh-
old configurations, but to benchmark them is the most costly expense in the process. Active
learning aims to accurately predict the objective function, while minimizing the number of
benchmarks needed to model it well enough to find the minimum. It is also fitting, since
we do have some assumptions about how to model the underlying function, using a second
degree polynomial as in the binary tuner.

To illustrate the general idea, Burr Settles [21] created a toy example shown in Figure 3.2
underlining the benefit of active learning. In his example, 400 samples were drawn from two
normal distributions with associated label for the distribution which generated the sample.
If these 400 samples were given as unlabeled data, with the goal of accurately labeling all
400 in only 30 samples, the figure shows the difference between learning the same logistic
regression model on 30 randomly chosen samples versus 30 samples chosen by active learn-
ing. In his example, the difference in accuracy was 0.7 for the random samples, and 0.9 for
the active learning samples.

Figure 3.2: (a) 400 instances sampled from two different normal distributions.
(b) Decision boundary of a logistic regression trained on 30 randomly sampled points.
(c) Decision boundary of a logsitic regression trained on 30 samples chosen by active
learning
Source: Burr [21]

In the same way that evolutionary strategy applications differed from each other in their
mutations, so does active learning in its information metric for choosing the most optimal
unlabeled datapoint to query. Multiple approaches exist, such as choosing the points which
the model is most uncertain about, the points which we expect might most change our model,
or any other situation specific heuristic. While most of these metrics focus on classification
rather than regression [21], the primary information metric we have experimented with is
to use the assumption of a polynomial objective function to query the predicted minimum
value in the unlabeled data.

To illustrate that specific implementation, pseudocode for it is provided in Algorithm 6, with
convergence being determined when the optimal choice doesn’t change between iterations.
For every threshold Ti in tree T , three initial randomly sampled guesses for Epar(Input) val-
ues are benchmarked. A second degree polynomial model is then fitted using those labeled
datapoints, and all unlabeled datasets are predicted using that model. In every iteration of
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Algorithm 6 The loop-based case using an active learning strategy
Input: One tree T with threshold names T1, · · · , TN and Datasets D1, · · · , DM

Output: Threshold assignments T ∗1 , · · · , T ∗N for the N thresholds in T
1: opt_thresholds = { }
2:
3: for all thresholds Ti in DFS(T ) do
4: Ē = GetAllValuesOfE((D1, · · · , DM), T ) ∪ ∞
5:
6: Guesses = Randomly sample 3 values from Ē
7: Ēunlabeled = Ē ∩ Guesses
8: Ēlabeled = ∅
9:

10: for all eguess ∈ Guesses do
11: Timeguess = BenchmarkSingleChoice(T , Ti, eguess, (D1, · · · , DM))
12: Ēlabeled = Ēlabeled ∪ (eguess, Timeguess)
13: end for
14:
15: Converged = False
16: while Not Converged do
17: Model = Second Degree Polynomial Linear Regression of Ēlabeled

18:
19: Epredicted = Model(e) for e ∈ Eunlabeled

20: eguess = argmin(Epredicted)
21:
22: Timeguess = BenchmarkSingleChoice(T , Ti, eguess, (D1, · · · , DM))
23: Ēlabeled = Ēlabeled ∪ (eguess, Timeguess)
24:
25: Converged = True if same "predicted guess" twice, i.e. no change in model.
26: end while
27:
28: Indexbest = argmin(Ēlabeled)
29: opt_thresholds[i] = Ē[Indexbest]
30: end for
31: Return: opt_thresholds

a while loop until convergence, the best predicted unlabeled datapoint is labeled, and the
second degree model trained again on the updated labeled datapoints. When convergence
is reached, the optimal threshold is chosen amongst the labeled datapoints. The overall
structure of the pseudocode remains the same for any other choice of information metric and
convergence condition.

Different parameter choices, implementation variations, and additional improvements have
been experimented with. The pseudocode above prioritises fast prediction, as opposed to
certainty about the quality of its result, but serves as a base for expansion. Like the binary
tuner, it works solely on the assumption of the objective function being reflected by a second
degree polynomial, as roughly illustrated by Figure 2.4. Here the assumption serves as the
base for predictions, as seen in Lines 17 - 20.
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The simplest parameter to tune would be the number of initial guesses, which was kept
as three samples. We observed that when this was increased to ten, the quality of solutions
did not increase on average across five runs. Usually, the added random guesses did not
provide enough information to the model to outperform the guesses that instead would be
generated by the information heuristic. Instead of adding more initial guesses to get better
quality results, changing convergence condition helped improve accuracy.

To underline why changing convergence is necessary, consider the list of datapoints [5,4,6,7,8]
where we want to find the minimum value, but they start as unlabeled. If we were to follow
Algorithm 6 and sample three points, we could end up with [_,_6, 7, 8], with _ denoting
unlabeled points. The second degree polynomial fitted to the three known points would
indicate a clear minimum at index 0, and attempt that value giving [5,_, 6, 7, 8]. Training
the model again would not indicate in any way that the final unlabeled datapoint would
be better, and thus not try it. This is an example of the naïve convergence condition in
Algorithm 6 being inadequate.

Endpoint Sampling

The alternative convergence condition we decided on using to correct this behaviour and
ensure more confidence in the result, was to do endpoint sampling. The idea is that the
guess produced by the above algorithm is at least close to the optimal, but sampling points
in the vicinity of that guess should either confirm or deny whether the predicted optimal
is indeed correct. If no point in the vicinity beats the time of the optimal, then it should
ideally be the optimal. Noise in the benchmark runs might negatively influence this, but
overall this should add more confidence in the final choice.

In order to augment the code in Algorithm 6 with endpoint sampling, a few modifications are
made. First, Line 23 is changed to keep track of any change to the best runtime in Ēlabeled,
rather than in the predicted optimal. This is done since we no longer trust the prediction
as being correct. In addition, after the check for convergence in the old algorithm, endpoint
sampling is introduced, testing the neighbouring values of the predicted best value. If either
neighbour beat the previous best experimental result, we reattempt the loop, and if neither
beat it then we have converged. This can be seen in algorithm 7, which is to replace Lines
16 - 26 in algorithm 6.

Adding this change provides an active tuner prioritising good results, rather than speed, as
the convergence only stops when a proper minimum is found. This can be further improved
by correcting for noise, by also trying the neighbours even further away, but in essence it is
the same as the above. Using this strategy we found that three initial guesses still worked
the best, as the primary driver for finding the minimum becomes the convergence criteria,
with the initial guesses simply pointing to the local area in which the optimum is believed
to be.

In experimentation this style of tuner performs better than the evolutionary strategy tuner
in quality and speed, but performing only about as well in both speed and quality as the
binary tuner. The specific experimentation results are kept for the following chapter, but in
general this tuner shows some promise when looking for fast near-optimal results, but with
the option of tuning parameters to allow for higher confidence at the sacrifice of speed.
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Algorithm 7 Endpoint sampling augmentation of the Active Tuner
1: while Not Converged do
2: ebest = min(Ēlabeled)
3:
4: Model = Second Degree Polynomial Regression of Ēlabeled

5:
6: Epredicted = Model(e) for e ∈ Eunlabeled

7: eguess = argmin(Epredicted)
8:
9: Timeguess = BenchmarkSingleChoice(T , Ti, eguess, (D1, · · · , DM))

10: Ēlabeled = Ēlabeled ∪ (eguess, Timeguess)
11:
12: if (ebest, T imebest) == min(Ēlabeled) then
13: Indexbest = argmin(Ēlabeled)
14: for all eendpoint ∈ [ Ē[Indexbest + 1], Ē[Indexbest − 1] ] do
15: Timeendpoint = BenchmarkSingleChoice(T , Ti, eendpoint, (D1, · · · , DM))
16:
17: if Timeendpoint < Timebest then
18: Converged = False
19: break
20: else
21: Converged = True
22: end if
23: end for
24: end if
25: end while

3.5 Instrumentation Tuner
During the process of developing the previous loop-based solutions, a more efficient theo-
retical solution was discussed, but which required more compiler-level implementation to
achieve. The earlier methods for the loop-based case all uses the Futhark benchmark tool
post compilation, and work solely on the data available in the runtime of an entire program
execution. In terms of loop iterations, this data contains the summation of all loop iterations,
which so far has not been sufficient to provide fast estimation of the underlying objective
function for unknown labels for any of the earlier algorithms.

This inefficiency led to investigating how to obtain data that was more indicative of the
underlying characteristics of the code versions. Program instrumentation is a technique of
modifying existing programs, such as inserting additional code at specific points in the con-
trol flow. Using this technique, the idea is to substitute the data from a summation of loop
iteration runtimes to a list of individual loop iteration runtimes. This new data will be shown
to be much more useful at gaining information about the system, leading to an algorithm
which in theory produces optimal results, requiring only one benchmarks per code version
in the combined program.
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(a) (b)

Figure 3.3: (a) Illustration of the relationship between input dataset’s parallelism
requirements and the amount available in hardware under a single optimisation.
(b) Visualisation of the contribution of each choice of code version optimisations in a
comparison node, with a chosen threshold value T.

Change of Data

In order to frame the importance of the change of data, recall the abstracted goal of the
tuner. The goal as stated previously is to find the thresholds for which the correct of two
optimisations are chosen, depending on dataset and hardware characteristics. The behaviour
of a single such optimisation when plotting the degree of parallelism of the input dataset
against the runtimes was in the case of Binary Search and Active Tuning assumed to be
polynomial in nature, as per Figure 2.4. The minimum of that plot would be the point in
which the degree of parallelism supplied by the dataset fits perfectly onto the GPU hard-
ware. Any dataset with a lower degree of parallelism would underutilise the hardware, and
conversely if it was greater it would require more of the hardware than it can deliver, both of
which leading to significantly worse performance for that optimisation [12]. One example of
the latter is for Block Tiling to optimise spatial and temporal locality using shared memory.
Implementing block tiling to take advantage of fast shared memory is very efficient, but if
the data would require more shared memory than is available the optimisation’s performance
suffers. This behaviour is sketched in Figure 3.3 (a).

Returning to the goal of the tuner, the goal is to choose the threshold closely representing
the degree of parallelism for which switching from the false optimisation to the true optimi-
sation minimises the total runtime over all the iterations. Thus, the goal is not to find the
degree of parallelism minimising the runtime of one optimisation, but rather optimising the
cumulative runtime when combining two such curves.

Consider the situation in Figure 3.3 (b), in which the degree of parallelism steadily increases
with each iteration. The two curves correspond to the two code versions chosen between in
a comparison node with a chosen threshold value T . As long as the value of E is less than
T , the predicate T ≤ E evaluates to false, and only the red curve contributes to the overall
runtime. When the values of E are large enough that the predicate becomes true, the only
contribution to runtime comes from the blue curve.
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This way of looking at the relationship between the optimisation graphs and runtime be-
comes what will be called the combined area under the curves. Finding the optimal threshold
with these two curves now become the task of finding the threshold which closely matches
the degree of parallelism for which the combined area under the curves is minimised. This
corresponds to the following formula:

Optimal Threshold = argminT

(
T∑
i=0

OptFalse[i] +
∞∑
i=T

OptTrue[i]

)
(3.1)

In formula 3.1, OptTrue and OptFalse refers to a list of runtime per iteration using that
threshold in their respective curve, sorted by degree of parallelism. While this might be
difficult to grasp to start, the following graph in Figure 3.4 from a Futhark example should
show how this concept looks visually in a real example, with two optimisation curves over-
lapping in the same plot. In the figure, a single threshold is examined for which two code
versions are being distinguished between as in Figure 3.3 (b). Looking at the graph should
make it clear how at Epar(Input) = [256, 1024] there comes a point at which switching from
one code version to the other becomes beneficial, and continues to do so from that point on.

Figure 3.4: Example of two optimisation’s overlapping curves, illustrating the intuition of
using the combined area under the curves as a metric for finding optimal thresholds. The
two optimisations occur in a real tuning run of a futhark example, with a loop-based tree.

Instrumentation Algorithm

With the underlying metric explained, we will present the tuning algorithm itself. Like all
the other tuners, this one is recursive in nature, tuning the tree using depth first traversal,
with pseudocode in Algorithm 8. One thing to note is that in the algorithm it is shown that
one benchmark run is enough to give information about one optimisation curve, which will
be explained afterwards when discussing the data. For the pseudocode, Benchmarkinstrumented

returns a list of loop iteration runtimes with corresponding Epar(Input) values. In terms of
the earlier motivation, the algorithm simply computes the two optimisations’ curves as in
Figure 3.4, and then uses Formula 3.1 to compute the optimal threshold to choose.
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In terms of tuning time, the algorithm would require one benchmark run for each code
version, since no other type of run would give more information about the system. The
reason the two benchmarks uses the threshold set to 1 and ∞ is to isolate the run to
only choose one code version, meaning we get that code version’s performance in each loop
iteration, allowing us to compute the graph. An essential enhancement to the tuner is to
have caching of results, since the benchmark with T set to ∞ is a combination of the two
prior benchmarks of the tuning process for the node one level deeper in the tree, which is how
the tuner achieves one benchmark per code version. This tuner has some striking similarities
with the original simple case tuner in Algorithm 2, being that they both require the same
number of benchmark runs, uses the same way of testing each code version separately, both
use caching in the same way, and they both exploit complete information about the system
to choose the threshold.

Algorithm 8 Instrumentation Tuner for Loop-based Trees
Input: One tree T with threshold names T1, · · · , TN and Datasets D1, · · · , DM

Output: Threshold assignments T ∗1 , · · · , T ∗N for the N thresholds in T
1: opt_thresholds = { }
2:
3: for all thresholds Ti in DFS(T ) do
4: (Ē, T imesT ) = Benchmarkinstrumented(T , Ti, 1, (D1, · · · , DM))
5: (Ē, T imesF ) = Benchmarkinstrumented(T , Ti, ∞, (D1, · · · , DM))
6:
7: Runtimes = [ ]
8: for all j in (1, · · · , |Ē|) do
9: Runtimes[j] =

(∑j
k=0 TimesT [k] +

∑∞
k=T TimesF [k]

)
10: end for
11:
12: Breakpoint = argmin(Runtimes)
13:
14: opt_thresholds[i] = Ē[Breakpoint]
15: end for
16: Return: opt_thresholds

Complete Information of the System

The greatest strength of this tuner lies in the previous statement that this tuner gains
complete information about the system it tries to model. Knowing the runtime of each
optimisation at any given iteration of the loop means there is no more information any
benchmark run can give us. As an example, if after performing the two benchmark runs
specified in Algorithm 8 one would like to execute a benchmark run with some value of T
between 1 and∞. The total runtime of that execution could be computed entirely from the
information already gained by running with T set to 1 and ∞, using the formula for the
combined area under the curve in Equation 3.1. This is in essence also what is being done in
line 7 of the algorithm, in which all total runtimes for all possible thresholds are computed
using simple sums, after which the best one is chosen. Having the property of complete
information means the resulting thresholds can be guaranteed to be optimal, assuming the
runtimes of each iteration are not too noisy, much like for the original simple case algorithm.
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This is in contrast to the previous loop-based tuners who all estimated the thresholds fairly
well, but where the quality of the data they could extract from the system never allowed
complete information to be a viable option. In order for the earlier tuners to gain complete
information, they would have to perform a benchmark run for each value of Epar(Input), for
each threshold comparison in the tree, which when discussing the exhaustive search strategy
was deemed infeasible.

From a data science perspective, this difference in quality of data is what it means for
data to be representative of what the algorithms are trying to model. What all these tuners
aim to model is the behaviour of the underlying optimisations, and not just the total run-
time of the program. Since thresholds themselves are supposed to correspond to a degree of
parallelism, having data only represent total runtimes was not sufficient, while data about
the relation between total runtimes and degree of parallelism proves extremely valuable.

Prerequisites and Implementation Details

As mentioned earlier, this type of tuning requires a bit more work done, especially on the
compiler level. The minimum information necessary for Algorithm 8 to work is for the bench-
marking tool to report the Epar(Input) for each iteration, alongside the accurate runtimes
of that iteration. The simplest way to achieve this is to modify the compiler generating
the Incremental Flattening code to also include timing code at the start and end of each
code version, alongside the Epar(Input). In terms of the Incremental Flattening inference
rules [10] also shown earlier in Figure 1.5, this would mean a slight modification to rule G3.
While this should be fairly easy to do, it was not done entirely for this thesis, meaning an
alternative was used.

The plots seen in figure 3.4 were generated for runtimes in each iteration correctly, but
not using proper implementation of the above strategy. Instead, the Futhark Incremental
Flattening code generated includes optional debugging information which can be saved to a
JSON file as plain text from stderr describing the execution flow of the program, by passing
the program the flag ’-D’ [27]. Reading this debug information reveals memory allocation,
individual OpenCL kernel runtimes, threshold comparisons and other information as a log
of events during program execution. To work with this, a simple regex parser was made to
identify relevant events in the log, those being kernel runtimes and threshold comparisons.
Sequential loop iterations were inferred as having a repeat threshold comparison in the log,
since after a threshold comparison no other comparisons against the same threshold is made
until the next loop iteration.

While this debugging information was not specifically created to allow for this type of tun-
ing, it does include the two vital pieces of information necessary. It does come with a slight
caveat, since the debugging code modifies the code slightly in order to perform proper timing
of individual kernels by introducing barriers. Barriers in GPU code block thread execution
past the barrier, until all threads reach the same point in the code [28]. This is introduced
in order to properly time the individual kernels, but it has the side effect of slowing down
the execution of the entire program arbitrarily [27]. As a consequence, code versions with
multiple kernels will be slowed down slightly, as some threads will be blocked from exe-
cuting. This slowdown might not be consistent, meaning there is some added noise to the
results, making the tuning implementation presented here a proof of concept rather than a
full implementation.
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Benefits and problems

In theory this type of tuner produces optimal results consistently, with a provable number
of benchmarks required. Those qualities alone are exceptional in the loop-based case, but
it also allows for additional flexibility in the way tuning is performed since everything could
potentially be moved over to compiler level tuning. To elaborate, consider the only notice-
able flaw in the current proof of concept implementation.

That downside of the implemented tuner is that to gain complete information, the tuner
does have to run very sub-optimal benchmark runs as well. From experimentation, the
optimal choice of optimisation is normally found relatively early on in the tuning process,
meaning at a deep node in the tree. After finding this, the following experiments tuning
closer to the root of the tree usually require running an extremely slow code version. While
this hasn’t been a major concern for the test programs I’ve used for experimentation, it
could be a serious issue for tuning time of larger programs with many datasets.

One way of dealing with this is to further explore the possibilities of doing program in-
strumentation, in order to for instance package tuning inside of the compiled program. The
idea would be at compilation to generate a standalone program to do the autotuning, and
then produce a program with the thresholds already coded for the comparisons. Doing this
could allow more radical modifications to the execution flow during tuning, such as having
more accurate timeouts to cut off benchmarks that run longer than the current best, and to
detect that the optimal has been found and cut off before running too many costly and un-
necessary experiments. Instrumentation allows for more flexibility, such as running specific
pieces of the incremental flattening code in any order, but it would also require expertise in
compiler development to incorporate properly, and as such is left as future work.

As it stands, this tuner serves as the main contribution of this thesis, providing nice guaran-
tees in all types of problems presented in tuning Futhark incremental flattening programs.
The following chapter will explore the benefit of all tuners together, discussing whether the
theoretical benefits of this tuner translates to experimental results.
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CHAPTER 4

BENCHMARKS

In order to verify the effectiveness of the autotuning solutions, different benchmarks com-
monly used for parallel program performance benchmarking have been prepared to test on,
to show the real world usecases of tuned incremental flattening. This chapter will first discuss
the general methodology for estimating the efficiency of the tuners, including a description
of the benchmark programs used, and how they are used in the context of tuner validation.
This is then first applied to the benchmarks which belong to the simple case solved by Al-
gorithm 2, followed by the difficult case using Algorithms 5, 6, 8 and CMA-ES. Discussion
of the results is saved for the final chapter, with this being focused on the methodology and
experiments themselves.

4.1 Tuner validation methodology
The methodology for testing both the simple and difficult case is identical, with different
target benchmark programs. First, benchmarks are split into two groups, with one being the
training programs used during development, and the other being kept for validation. Each of
these benchmarks also needs input dataset representative of different degrees of parallelism,
and finally verification of their results. This section covers all of these parts, starting with
a focus on the simple case. In total we have examined 11 different real-world benchmarks,
along with one dummy example crafted for the difficult case.

4.1.1 Simple Case Benchmark Programs

To refresh, the simple case refers to programs whose incremental flattening predicates only
ever compare a threshold against a singular value of Epar(Input). Most programs tend to fall
under this situation, and this will also be expressed in the experimental benchmark programs.

For the first set of benchmark programs used in development, three benchmarks have been
chosen in the simple case. SRAD from Rodinia was chosen as an example of the simplest case,
with no complications to it’s tree structure. LocVolCalib, which is taken from real-world
stochastic volatility calibration in financial transactions was chosen due to having a struc-
ture with multiple optimisations on the same depth of nested parallelism. Finally we chose
BFast, which is an algorithm for detecting changes in satelite images such as deforestation
of the rainforests, since it is a large program with many separate kernels with a reference
handtuned threshold configuration available.

43



For the validation benchmarks, a collection of five other rodinia benchmarks and two Fin-
Par benchmarks for which Futhark implementations already exist as part of the language’s
benchmarking suite is chosen. Rodinia is a benchmark suite for heterogeneous computing in
which each benchmark exhibits a different kind of parallelisation strategy on multi-core sys-
tems [29]. FinPar on the other hand is developed in part by the Futhark team, and contains
three benchmarks which by design lends themselves to incremental flattening, as FinPar
focuses on the trade-offs involved in exploiting different degrees of parallelism in datasets,
which other benchmarking suites such as Rodinia usually do not consider. Here these will
be presented, along with a brief description of each:

1. Backprop, parallelised back propagation used to train neural networks from machine
learning. Neural networks contains a large amount of weights that need to be adjusted
during training to minimise an error with respect to some objective function. Back
propagation is the method used for computing each individual weights contribution to
the overall error. This contribution relies on other weights contribution, meaning there
is dependencies between each step of the algorithm [29].

2. LavaMD, a physics simulation in which multiple particles in a large 3D space exert forces
on each other, with the simulation computing particle potential and relocation due to
these forces. The parallel nature of the simulation comes from splitting the 3D space
into smaller cubes, which are each delegated to a workgroup in OpenCL, but requiring
communication between particles from across workgroups.

3. NN, the k-nearest neighbour algorithm, again from machine learning. Given a dataset
of points with associated label, NN can be both a regression or classification algorithm,
in which a new datapoint’s value is determined by it’s k nearest labeled datapoints.
Since this value is chosen based on distance, it lends itself well to parallelisation as the
distance to each datapoint can be computed independently [29].

4. NW, Needleman-Wunsch optimisation algorithm for DNA sequence alignment. The goal
is to score a series of different parings of DNA sequences, and finding the most optimal
based on said scores. Part of these pairings do depend on each other, but a specific
parallel dependency pattern can be found [29].

5. Pathfinder, an algorithm relying on dynamic programming to efficiently find a min-
imum cost path through a maze, represented by arrays of costs. Starting from the
bottom most row of a matrix, the goal is to reach the top most row, with a move being
either straight ahead or diagonal. Dynamic programming involves storing solutions to
subproblems, which has to be exploited in a parallelised version.

6. Heston, a financial sector application from the FinPar benchmark suite [30]. The He-
ston model is used to calibrate volatile prices of options, with the goal of appraising
future options’ payoff. FinPar is a benchmark suite created to illustrate GPGPU effec-
tiveness for parallelising financial applications, with Heston being one such benchmark
comprised of parallel constructs using different levels of hardware parallelism.

7. OptionPricing also from the FinPar suite, this algorithm appraises "option contracts"
which is a common form of contracts used by financial actors. The value of such
contracts lies in the future, but the OptionPricing algorithm for pricing them is
formulated in terms of data-parallel functional constructs, much like Heston [30].
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All the benchmarks are compiled using the latest version of Futhark as of the time of writ-
ing, being Futhark 0.12.0. There is one exception which is in the case of bfast, which is
compiled using Futhark 0.10.1. The reason for this exception is that it was used during
development of the simple tuner when the latest version was 0.10.1, but the newer version
of Futhark’s incremental flattening does not produce the same code as back then. This is
a problem, as the newer version has a few code versions for which the program will crash,
before getting the information necessary to properly tune. In order to properly compare to
the handwritten solution, the bfast program was compiled this way. Having this exception
should not impact results, as the older version simply represents a more stable version of
bfast, which uses a lot of intrinsic functions to guide code generation.

Returning to the benchmarks themselves, OptionPricing has the most complicated tree
structure of the benchmarks, shown in Figure 4.1. This is the only benchmark where a
threshold comparison evaluating to true doesn’t immediately result in a chosen code version,
and it is also the only one with horizontal optimisations nested inside another layer of hor-
izontal optimisations. In terms of the simple case tree structures, this represents the most
complicated situation.

As for hardware, three hardware configurations are going to be experimented on. These
being an Nvidia GTX 780 Ti, an Nvidia RTX 2080 Ti, and finally an Nvidia Tesla K40c.
The goal of the tuners is to be able to accurately tune datasets to hardware, thus different
hardware types should be used for testing different hardware characteristics. Each GPU rep-
resents a different segment of the GPU market, with the GTX representing an older consumer
GPU, the RTX representing state-of-the-art in consumer GPUs as of the time of writing,
while the K40c represents a compute-focused GPU of the same hardware generation as the
GTX card. Comparing the GTX and RTX shows a considerable increase in performance in
the 6 year gap of their release dates, with the RTX boasting double the core frequency, cuda
cores, and almost four times the VRAM compared to the GTX. The Tesla K40c is not as
comparable to either of the two earlier ones, as its primary use is for GPGPU centered data
servers, being meant for industrial rather than consumer use [31].

4.1.2 Training Process

No matter the benchmark, in order to tune the rodinia and FinPar programs, a dataset
suite have to be supplied for each individually. These datasets are like the benchmark pro-
grams also split in two groups, with one dedicated to training, and the other for validation.
Validation datasets are unused during training of the tuners, representing future unknown
datasets that might arise in real world applications. Doing this helps measure whether the
autotuning process is able to tune the thresholds such that they also give good performance
on unknown datasets.

The goal of the training datasets is to be representative of the degrees of parallelism that
can best utilise the different code versions, and of the datasets that will be used during
deployment of the program. In order to fabricate these training datasets, program-specific
knowledge has to be applied, but in some cases artificial datasets can work fairly well based
on the type signature of the input. Luckily Futhark’s type system makes it easy to find the
types of the input to any given function, and Futhark also has a handy tool for generating
datasets, according to their type along with bounds on the values themselves.
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Figure 4.1: Tree structure of OptionPricing.fut using the legend of Figure 1.8

To get the best training results, having multiple datasets utilising different degrees of hard-
ware parallelism is ideal. The more varied the datasets, the more nuanced the information
that a tuner can extract becomes, and more precise thresholds can be found. This is exempli-
fied by the simple case tuner, whose resulting threshold configuration is entirely derived from
values that it has obtained from empirical experiments using the training datasets, meaning
it does not try to extrapolate to unknown datasets at all. For example, if a program has 2
training datasets, which both prefer the same code version in the program, then the simple
tuner will only ever be able to conclude the degree of parallelism for which that version is
good, but nothing about other code versions in the tree. If a new dataset is introduced
which is similar to the earlier two, but with a slightly larger Epar(Input) value, then the
tuner will have no basis for deciding which code version best fits that Epar(Input), as it has
no experience with that high a value.

Thus, a few training datasets have been supplied for each benchmark to better guide the
training process following the above concepts. Each benchmark will have at least two
datasets, one being a small dataset, and another being a large one, ideally representing
a minimum and maximum degree of parallelism expected. For example, consider SRAD
whose main function’s type signature is as follows:

1 let main [num_images ][rows][cols]
2 (images: [num_images ][rows][cols]u8) :
3 [num_images ][rows][cols]f32 =

This is a main function which takes in a three-dimensional array named images of unsigned
8-bit integers, and produces a three-dimensional array of 32-bit floats with the same size.
In this situation, a few datasets can easily be created following the above criterias. A small
dataset might consist of one image of 16x16 pixels, while a large dataset might consist of one
image of large resolution such as 1024x1024. Additional datasets could then be added to also
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get information about the importance of the number of images processed. The following calls
to futhark-dataset show how such artificial datasets can easily be generated in Futhark:

futhark dataset --generate=[1][16][16]u8 > srad-D1.in
futhark dataset --generate=[1][1024][1024]u8 > srad-D2.in

While creating artificial datasets is a good way of getting a set of input, it can be useful to
have a guarantee that the output produced by a GPU program on this new input is correct.
This has been accounted for in the training process, by recording the output of running the
sequential program for each dummy training dataset, and storing that output for comparison.
Futhark contains not only an OpenCL compiler, but also one for sequential execution, which
is less prone to error and imprecision as the OpenCL generated code. Commands for doing
this is shown below for our SRAD example.

futhark c srad.fut
./srad < srad-D1.in > srad-D1.out
./srad < srad-D2.in > srad-D2.out

Using the futhark benchmark tool, it can be requested that the output of running a program
be compared against one of the output files generated, in order to verify the correct execution
of the program. This is done by adding the following lines to the top of the futhark source
code, specifying test datasets and their expected output:

1 -- ==
2 -- tune compiled input @ srad -D1.in
3 -- output @ srad -D1.out
4 --
5 -- tune compiled input @ srad -D2.in
6 -- output @ srad -D2.out

The word "tune" is a simple tag used to signify a training dataset, while "compiled input"
tells the futhark benchmarking tool that the data is in a binary format saved in an external
file, which should be used as input for a benchmarking run. The third line then tells the
benchmarking tool that whatever result is computed in the second line should be compared
against the file srad-D1.out. If any value does not match, this will be reported and consid-
ered an unusable threshold configuration.

Incremental flattening’s code-versions are supposed to be semantically equivalent, but bugs
can occur, so having a guarantee of proper execution is good for the artificial datasets. Some-
times this verification process can not be used, since some programs vary in their floating
point precision. As an example, some programs might consider a result to be ±0.5 the se-
quential value and still be considered correct. If that is the case, a correct result is flagged
as incorrect due to imprecision, in which case this check should not have been made. Some
benchmarks did have this issue, with their incrementally flattened code versions producing
different results than their sequential counter parts, and as such is skipped for some of the
training datasets, but is kept for all validation datasets. After all, the only purpose of the
training datasets is to provide sample data to run the programs, with their outputs being
irrelevant, whereas the validation results have to be correct.

After tuning on the training datasets following the above protocols, the found thresholds
are used on the unknown validation datasets. Validation datasets are denoted by the tag
"notune" in the Futhark file. Their performance increase is the estimator of real world effi-
ciency of the tuners, and in turn of the usefulness of incremental flattening’s "one size does
not fit all" optimisation approach.
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Figure 4.2: Result of the untuned (Blue) and autotuned (Orange) Incremental Flattening
in percentage comparison with moderate flattening (higher is better). The first and fourth
row has the GTX results, the second and fifth row has the RTX results and the third and
sixth rows are Tesla results. They are split in this order to allow easier comparison of
benchmarks across hardware platforms.
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4.2 Results of the Simple Exhaustive Tuner
The simple tuner implementing the pseudocode of Algorithm 2 has been run on all the bench-
marks and hardware configurations described in the sections above, with results presented in
Figure 4.2. The figure shows the results of untuned and tuned incremental flattening on each
dataset as percentage speedup over moderate flattening in Futhark on all three hardware
platforms. For each dataset, the benchmark has been run 10 times, and the average runtime
reported.

One thing to note is that all of these benchmarks require program specific knowledge to
create additional datasets. While it is possible to craft more dummy datasets, in all cases
except for LocVolCalib this was not done as the datasets provided in the futhark implemen-
tations sufficed for both training and validation, though with a few outliers in the form of
bfast, heston and optionpricing. For LocVolCalib, all training sets were manufactured,
as input for this benchmark consists of tuning a few different integer parameters with a few
restrictions, making data generation easy.

As for the outliers, bfast has 6 training datasets and 2 validation sets which were al-
ready provided, with no additional datasets artificially crafted. Of those 8 datasets, the
dataset denoted as D1 in Figure 4.2 was the largest of them, potentially running into the
same issue as earlier described with the simple tuner not extrapolating to unknown datasets.
The heston32 benchmark likewise had two training sets supplied with three validation sets,
where both D2 and D3 are larger than both available training datasets. This particular
benchmark’s input is structured in a specific way, making artificial dataset generation dif-
ficult. Finally, OptionPricing falls under the same scenario as heston32 in that artificial
datasets are difficult to manufacture, but where the supplied training and validation datasets
are of roughly the same sizes.

A proper discussion of what the results mean in the context of incremental flattening will
be had after also presenting the loop based tuner results. The main difference between the
simple case results and the loop based ones is that only two benchmarks exist for the latter,
with one being an artificially created program. For full reports of runtimes, consult Table 1.

4.3 Results of the Loop-Based Tuners
Most of the above training strategy is the same for the loop-based tuners, with the exception
of the benchmark programs used. Standard benchmarking programs using nested parallelism
inside of sequential loops are more rare than the earlier cases, and as such the only major
program used for validating this tuner is Lower-Upper Decomposition (LUD) also from
Rodinia. LUD is an algorithm used to factorise a square matrix into two matrices consisting
of the factorisation of the original one, following equation 4.1 and 4.2 :

A = LU (4.1)a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

l11 0 0
l21 l22 0
l31 l32 l33

u11 u12 u13
0 u22 u23
0 0 u33

 (4.2)

Where A is the matrix we want to factorise, and L and U are triangular matrices, which
represent the factorisation of A. The algorithm for computing this decomposition contains a
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sequential loop over the size of the square matrix, with each subsequent iteration working on
a smaller sized sub-matrix of A. From this, a parallel implementation involves some form of
nested parallelism whose size is tied to a sequential loop, resulting in the difficult structure
of trees. Specifically, the structure can be seen in Figure 4.3.

Figure 4.3: Tree structure of the LUD benchmark. The squares encompassing some parts
correspond to those relying on a parallel size changed by a sequential loop, as described in
Figure 1.8

The structure itself is very simple, consisting of a chain with no horizontal optimisations,
but with some regular comparisons not dependent on a variant parallel size interspersed.
Due to the recursive structure of the tuners described earlier, the simple cases will be tuned
exhaustively according to Algorithm 1, while the remaining 5 thresholds will be tuned by
the loop-based strategies. For each of the strategies benchmarked, the number of executions
run and the total time taken for tuning will be reported. Since no objectively optimal algo-
rithm has been developed, these characteristics will be used to judge which style of strategy
performs the best.

As for the datasets used for LUD, nine separate datasets are used, with most being ar-
tificially generated. Each one is a square matrix of 32-bit floats, but with varying sizes.
Their sizes ranges from 16 by 16 as the smallest, to 4096 by 4096 as the largest. Listing 4.1
shows how these are specified in the futhark LUD file as tests to be benchmarked.
This follows the overall structure of having training datasets representative of the validation
datasets, since for every validation datasets two training datasets have slightly higher and
lower values of Epar(Input). Each one has had it’s output verified by the sequential ver-
sion, as described for the simple cases, except for 256.in, 1024.in and 4096.in which had
problems with numerical imprecision for which moderate flattening’s baseline did not verify
correctly either.

As before, the results are presented in the box plot of Figure 4.4, along with specific run-
times in table 2. The box plot includes specific runtimes from three separate tuning runs
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across all three types of hardware. The reason for having a box plot as opposed to a bar
plot is to highlight variances in results across independent tuning runs. As opposed to the
earlier bar plot for the simple case, the goal here is to first compare the performance of the
five algorithms, and then afterwards compare against moderate flattening and untuned in-
cremental flattening in a separate figure. Tuning times for each is also reported in Figure 4.5.

1 -- ==
2 -- tune input @ data/LUD -data /16.in
3 -- output @ data/LUD -data /16. out
4 -- notune compiled input @ data/LUD -data /32.in
5 -- output @ data/LUD -data /32. out
6 -- tune compiled input @ data/LUD -data /64.in
7 -- output @ data/LUD -data /64. out
8 -- notune compiled input @ data/LUD -data /128.in
9 -- tune compiled input @ data/LUD -data /256. in

10 -- output @ data/LUD -data /256. out
11 -- notune compiled input @ data/LUD -data /512.in
12 -- output @ data/LUD -data /512. out
13 -- tune compiled input @ data/LUD -data /1024. in
14 -- notune compiled input @ data/LUD -data /2048. in
15 -- output @ data/LUD -data /2048. out
16 -- tune compiled input @ data/LUD -data /4096. in

Listing 4.1: In-file test specification for LUD

Comparisons of the different algorithms will be kept for the following chapter, as the results
doesn’t quite follow the expected results. In order to gauge the overall quality, the same
benchmark has to be run with moderate and untuned incremental flattening. Figure 4.6
shows this, as a bar plot of percentage increases compared with moderate flattening, using
the median runtime of each algorithm in Figure 4.4. For specific median runtimes, average
tuning time and average number tuning benchmarks run consult Table 6.2 in Appendix B.

The following chapter will discuss what the results from Figures 4.4, 4.5 and 4.6 tell us about
the efficiency of the tuners, and whether they live up to the expectations that was set out
in Chapter 3.
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Figure 4.4: Box plot showing the runtime results of three separate incremental flattening
tuning runs, in order to compare all five algorithms. Binary refers to algorithm 5, Active
refers to algorithm 6, CMA refers to the naïve CMA-ES implementation with CMAINDEX
being the changed one where it searches for indexes instead of threshold values. Finally,
instr refers to the instrumentation implementation. The orange line is the median.

Figure 4.5: Tuning times for results shown in Figure 4.4 as a boxplot of the three separate
tuning runs.
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Figure 4.6: Percentage speedup of each of the five algorithms from Figure 4.4, along with
untuned incremental flattening. The percentage is in comparison to Futhark’s moderate
flattening.
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CHAPTER 5

DISCUSSION

This thesis has covered a few different solution strategies to the autotuning problem, and in
this section we will cover each once again on the basis of their actual performance as seen
in Figures 4.2 and 4.4.

5.1 Simple case discussion
Algorithm 2 was the first algorithm discussed in this thesis, and serves as the baseline for the
remaining ones via Algorithm 3. In terms of the results seen in Figure 4.2, it does seem that
given proper training datasets reflecting different degrees of parallelism, tuned incremental
flattening provides substantial performance increases, as seen particularly in all benchmarks
except bfast and heston32. The average percentage speedup compared against Moderate
Flattening across all datasets (excluding SRAD’s massive outlier) and across all hardware is
a 3.07x speedup.

In terms of the guarantees discussed when Algorithm 2, they do seem to translate into the
experiments from Chapter 4. Most of the problems had some instances where the threshold
ranges’ intersection were the empty set, but it seemed even in those cases that most of these
conflicts could be solved by efficient use of the cached experiments, almost adhering to the
guarantee of running only one benchmark pr. code version.

The major drawback that these experiments have uncovered in regards to Algorithm 2 is
that relying only on user supplied training datasets leads to problems. Looking at heston32,
the algorithm’s input datasets only differ in the number of quotes that it uses to calibrate
it’s model, which for the five datasets given is shown in Table 5.1.

NumQuotes MaxGlobal NumPoints np today
1062_quotes (D1) 1062 2000 20 40 2017-01-26
train-1162_quotes 1162 2000 20 40 2017-01-26
train-9000_quotes 9000 2000 20 40 2017-01-26
10000_quotes (D2) 10000 2000 20 40 2017-01-26
100000_quotes (D3) 108979 2000 20 40 2017-01-26

Table 5.1: Input sizes for the five datasets supplied for the heston32 benchmark.
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It is clear that they are created such that only the number of quotes to do work on is changed,
and as such we can see a few issues with only having the training sets have 1162 and 9000
quotes respectively. Looking back at the results for heston32, it is oddly enough D1 and less
so D2 being off though they at first glance have most in common with the training datasets,
with D3 being on par with moderate flattening. Explaining why D3 is doing well is possible,
as all values of Epar(Input) for D3 could be high enough such as to completely ignore the
thresholds set during tuning, meaning it defaults back to the untuned result which happens
to be the same optimisation as moderate flattening. D1 and D2 are more complicated to
explain.

One option is for bad results to simply be benchmark noise, and this is possible since it
seems to be isolated to the RTX hardware. In order to examine this problem more closely,
we uncovered the specific values of Epar(Input) used by the different datasets, and it seems
that all five datasets has the same values. As an example, both dataset D1 and D3 has
all the thresholds compared against the same two values, being either 5 or 40. Looking at
table 5.1 seems to indicate that intuitively they should prefer different code versions, and
should have different values of Epar(Input), but looking at the actual values generated by
incremental flattening seems to go against this.

The two repeating values used in threshold comparisons does not reflect the sizes of the
input, and we are curious as to how the incremental flattening code generation has reached
this situation. Knowing this, what happens in Algorithm 2 to produce the results seen in
Figure 4.2 seems to be that the longest running training dataset chooses whichever code ver-
sion it prefers, and upon having an empty intersecting threshold range that longest running
dataset wins out. Since all datasets will always choose the same path due to having the
same values of Epar(Input), no real training is actually done as all past and future datasets
will simply fall into this one code version, which for varied datasets is not ideal.

While it is not uncommon for multiple datasets to have the same values, it is a problem when
it happens across all thresholds. As an example of normal behaviour, backprop has three
thresholds and four datasets. For two of the three thresholds, all datasets use the same value,
but for the final one every dataset has a different value, being [16385, 20481, 839681, 1048577]
respectively. This allows for accurate clustering of datasets to code versions, and we see very
good performance increases in tuned backprop.

Finally, the second observation that is of interest in Figure 4.2 is the effect of the differ-
ent hardware platforms. As described in the methodology, the three GPUs represent vastly
different characteristics, and the problem statement of incremental flattening was in part
that different hardware might better support varying dataset characteristics [10]. This is in
part present in the figure, though not as plainly as was expected.

The benchmark showing this most clearly is backprop, in which the untuned and tuned
incremental flattening behave much differently between hardware configurations. In general
it does seem like the same code versions are preferred across hardware, being the clear case
for most, with the only exception being backprop. All other benchmarks’ percentage in-
creases are roughly the same, with the RTX card consistently having half the percentage
increase compared to GTX and the K40c. Considering that the RTX has roughly double
the core count and frequencies, it might be explained as the RTX simply being a faster GPU.
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Overall, the results for the simple case tuner based on Algorithm 2 are very promising, with
the one considerable outlier being explained as a shortcoming of incremental flattening itself.
In normal cases, tuned incremental flattening tends to perform at least as well as moderate
flattening, but with the possibility of exploiting separate optimisations for different datasets
to much better utilise hardware characteristics. While these hardware characteristics do not
seem to be as prominent as we expected, the backprop benchmark does show that different
hardware can prefer different optimisations.

5.2 Loop case discussion
Whereas Algorithm 2 solved the simple case alone, the loop based case is solved by five
separate algorithms, each with their own qualities and drawbacks. This discussion is based
both on the theoretical expectations of each algorithm based on their presentation in Chapter
3, and how well they compare to the experimental results presented in Figure 4.4, 4.5 and
4.6.

Theoretical expectations of algorithms

The primary focus will be on producing good results consistently, followed by the secondary
goal of having a likewise consistently fast tuning time. To reiterate the expectations of each
algorithm from before the experimental results, the following will recap each of them.

1. Binary search was expected to have a very reliable tuning time, always requiring
log2(N) executions as per its guarantee . The results expected from this tuner should
also be a good consistent baseline for what can be achieved, as it seemed the assumption
of a second degree polynomial held for the validation dataset of LUD. This particular
tuner could potentially fall into and get stuck in local minima, but if it does so, it
should at least consistently do so across multiple benchmark runs.

2. Evolution strategies, with CMA and CMAIndex being the naïve and more domain-
specific implementations respectively. CMA was expected to perform very inconsistent
from run to run, with very little options for getting off of individual plateaus in the
step function. The tuning time however was expected to be faster in general, due to
getting stuck fast and therefore terminating.

CMAIndex was the extension of CMA to find indexes into the list of possible unique
plateaus, in order to give it more meaningful benchmark attempts. As a consequence,
the results were expected to be better on average than CMA, at the cost of longer
tuning time. Due to being random in nature, it would however not be a consistent
tuning time, as it still has the option of randomly finding the optimum in a few random
attempts.

3. Active learning was another randomised optimisation strategy, in which the random
guesses were chosen based on the notion of an information metric. During development
and experimentation, this tuner seemed to be fast at identifying good thresholds,
though with the possibility of being quite inaccurate at times due to noise in the
benchmarks. As such, while this is expected to have a consistently fast tuning time,
the results are not expected to be as consistent due to noise and bad initial sampling.
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4. Instrumentation was in Chapter 3 described as the one tuner providing nice guarantees
of quality, much like Algorithm 2 does for the simple case. The first of these guarantees
was that it required one benchmark execution per code version to get complete infor-
mation, meaning it should have a very consistent tuning time. Secondly, the results
were also expected to be very accurate, with the caveat that the current implemen-
tation does not represent the ideal version of this strategy. By this we refer to the
inserted GPU barriers and other problems involved in getting the accurate timings,
making it extra susceptible to noise.

Expectations compared to experiments

Looking at the results shown in Figure 4.4 seem to indicate that some of the above expecta-
tions held, while others did not. Starting at the smallest validation dataset, 32.in, results
across the board were very similar, as the small dataset did not seem to allow for large
improvements. This did not stop the CMAIndex and binary search algorithm on the k40
from finding two terrible threshold configurations regardless.

The medium dataset 128.in on the other hand had very different results, across all three
hardware configurations. Binary search was surprisingly inconsistent, being the slowest on
the GTX, and having results varying by quite a bit on the GTX and K40 platforms. CMA
did still seem the most inconsistent, with active learning also being surprisingly consistent.
Finally, the instrumentation tuner performed the most consistently of all.

The second largest dataset, 512.in, has figures dominated by the three outliers reported
by the two CMA-ES, underlying how inconsistent they can be. For the remaining algo-
rithms for this particular benchmark, all three of them are very consistently good. Overall
this particular datasets follows the expectations very well, except for binary search’s one
outlier on the k40.

Moving on to the final large dataset in 2048.in, few things are unchanged. Binary and
active learning are both very consistent, much like before, except for two outliers on the
K40c. CMA and CMAIndex are again highly inconsistent in their results, which has been
the case across all datasets. Finally, the instrumentation tuner provides the best results in
this dataset, while also being the most consistent. Particularly on the RTX platform does
this show, as the instrumentation tuner finds the best code version in all three tuning runs,
a code version which is not found by any other algorithm. It should be noted that the 2048
dataset has output verification, meaning it a valid threshold assignment.

With the primary goal of actual results discussed, Figure 4.5 show the tuning time required
for each of the runs for the three platforms. While the runtime results themselves did not
always follow expectations, tuning time is more or less as expected. The three algorithms
which are less stochastic, being binary search, active learning and the instrumentation tuner
all follow the same pattern consistently. Binary search and active learning are roughly equal,
with both being beaten slightly by instrumentation. The CMA-ES based tuners both vary
more in their tuning times, with very different tuning times across the three platforms. Both
do follow expectations somewhat, with the more involved indexed version getting less stuck,
leading to longer tuning. This is especially true on the K40c, in which it reaches its’ timeout
value of 2 hours tuned.
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Comparing these results with those of moderate flattening and not doing any tuning of
incremental flattening gives a bit of context to the results. For all datasets except the small-
est one in Figure 4.6, performance increases were found across all hardware. In particular,
the largest dataset had the most noticeable increase in performance, which makes sense as
it has the most chance of seeing benefits from switching between code versions between
loop iterations. Once again the best tuner on average was the instrumentation tuner, which
compared with moderate flattening experienced an average speedup of 1.2x.

Takeaways from the loop based case

Choosing a single tuner as the one to "solve" the tuning problem is difficult, as different
trade offs exist. If consistency is important, the active learning and instrumentation tuner
both provide very consistent tuning times, with near-optimal results. However, due to the
theoretical guarantees and the random nature of active learning, the instrumentation tuner
still seems to be the best choice both in theory and experiments.

In addition, instrumentation even allows for more enhancements, and the implementation
used for these experiments does leave room for improvement. Particularly the proper imple-
mentation of timing code for specific code versions individually, rather than for every kernel
as is done here, would ideally help make it less prone to errors in it’s results. Likewise, im-
plementing early stopping to stop running useless benchmarks once the best result is found
could also improve performance in terms of tuning time even further.

With both of these improvements left for future work, the results for the loop based case
still speaks in favour of the instrumentation tuner being the best all-round solution to the
tuning problem. That is not to say that the other tuners are not of interest, as most of them
also has plenty of opportunities for enhancements, though from the experiments we doubt
they will surpass the instrumentation tuner.

One major issue with the experiments for this loop based case is that of having only one
benchmark program in LUD from rodinia. It is a more rare case, but having a single vali-
dation program is not sufficient to draw any conclusive results. Experimentation was done
also on the manufactured dummy example from Listing 1.6 from Chapter 1, but as it was
used extensively during development of each algorithm, including results from said example
would run the risk of having each algorithm overfitted to that specific problem. For instance,
the active learning strategy chosen was decided entirely through experimentation on that
program, so it should not be included in validation of the tuners. For future work, it would
be ideal to introduce additional test examples to support the results from Figures 4.4, 4.5,
and 4.6.

5.3 Future Work
While this thesis provides a solid foundation for tuning Futhark’s incremental flattening
programs, it does still have multiple areas left for future work. These range from improving
specific parts of the tuners, but also about additional parameters to be tuned such as tile
sizes, and general changes that could be made. Here we will present a list of such areas that
is left for future work, that could improve upon this thesis.
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Improving the instrumentation tuner

Improvements on the instrumentation tuner seems the best avenue for further progress in
producing a stable tuner with good guarantees. The two major improvements would consist
of the following:

• Proper instrumentation to insert timing code around code versions.

• Early stopping when the optimum is detected.

With both of these, the results will be more stable, while also improving tuning time even
further. As the results from the loop based experiments showed, the tuning time of the
flawed instrumentation tuner was already the best, but in theory there is definitely still
room for improvement.

Detection of register and block tiling

Tuning for additional parameters such as tile or workgroup sizes is currently lacking, even
though it is a considerable part of tuning for specific code versions. Under all the tuners
implemented, the tuning of tile size has been done in a single pass over a few values, meaning
nothing substantial has really been tuned. The reason for this is, as mentioned earlier, that
it would explode the search space if done improperly, while only a few specific programs with
code versions using block or register tiling would actually benefit from proper tuning.

Detecting whether a code-version uses additional parameters outside of thresholds would
allow much more precise tuning. For example, every time a different tile size would be at-
tempted under the old implementation, every code version would have to be retried using
this new parameter, even if said code version doesn’t use it. If we knew specifically which
code versions would benefit from having said parameters, only relevant code version bench-
marks would be run.

Shrinking the search space like this is the first step towards being able to tune tile sizes.
Looking at the instrumentation tuner, it was shown that shrinking the search space was a
major part of reducing tuning time from the previous solutions. Implementing this has not
been done, as it is outside the scope of this project to modify the Futhark compiler.

New active learning strategy

While the active learning tuner was outperformed by the instrumentation tuner, it was def-
initely capable of solving the problem in an efficient way. The active learning tuner as was
implemented for the experiments could definitely be expanded upon, which is also an area
of future work.

One such idea could be to implement the use of gradient descent, along with its many
modifications available, to guide the search for good unlabeled datapoints. The simplest
way of doing this could be to apply gradient descent to the predicted second degree poly-
nomial model, to guide for predictions. Likewise, gradient descent could also be used as a
replacement for the binary search strategy.

This was not attempted, as the active tuner already was capable, but we believe it is possible
to further expand it, in ways such as just described.
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Step Function optimisation

The active learning and CMA-ES functions both work primarily on continuous functions,
even though the actual objective function is a step function. This has proved problem-
atic, especially for CMA-ES which has trouble finding proper correlation between changing
threshold values and where the plateaus change. Both use tricks to convert the solution
space into a smaller one, but not always successfully.

It would be interesting to try optimisation methods focused on discrete optimisation in-
stead of continuous, such as particle swarm optimisation. Swarm optimisation most closely
resembles an evolution strategy, but with one population of individuals each exploring the
discrete space separately, without selection and replacement of individuals in comparison to
CMA.

Besides trying an entirely new optimisation strategy, both active learning and CMA-ES
could benefit from changing their prediction model and fitness functions respectively to bet-
ter reflect the actual objective function. While this part of the future work doesn’t have a
clear value in terms of better performance, it is an area that is lacking in this thesis which
could have potential.

Rewrite of tuners to work in Haskell

Futhark’s tools are all written using Haskell, and the logical extension to employ the work
in this thesis would be to convert it to Haskell. The implementation whose experimental
results were presented in Chapter 4 are built in Python, and as such is not an ideal fit with
Futhark’s backend tools.

5.4 Conclusion
Incremental flattening provides flexible choices for individual datasets to pick from multiple
semantically equivalent optimisations. This thesis has shown both the considerable bene-
fit of exploiting the flexibility, and that threshold tuning is doable, even with few training
datasets to learn from.

Tuning thresholds to correctly cluster datasets to optimisations can be done in a multi-
tude of ways, each with different trade-offs in terms of tuning time and result quality. While
some tuners did not perform well in general in terms of solving the tuning problem, the
instrumentation tuner in particular provided solid theoretical properties that translated into
experimental results. Together with the tuner for the simple case, most benchmark pro-
grams yielded solid improvements, averaging 3.07x speedup in the simple case and 1.2x in
the difficult case for LUD.

Combining incremental flattening with a consistent tuner was shown to vastly improve per-
formance in commonly used benchmark programs. This allows for the Futhark programming
language to generate even faster code for programmers not familiar with GPU programming,
further bridging the difficulty gap that has so far hindered GPGPU programming.
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CHAPTER 6

APPENDIX

Appendix A - Learning Goals & Tasks

Learning Goals

The learning goals as they were expected from the onset of this thesis:

• Understand the concepts of auto-tuning in relation to parallel programming, and how
it is implemented in OpenTuner used by the current Futhark compiler.

• Improve upon the current Futhark auto-tuning approach, in order to further utilise the
parallelism in the different code-versions produced by Futhark. This could potentially
include proper integration of OpenTuner’s OpenCL parameters, which is not currently
done.

• Experiment with the benefit of applying concepts from Machine Learning to aid the
off-line learning tasks of estimating good threshold values.

• Measure the impact of the different experiments in terms of different cost-functions for
the auto-tuner benchmarks.

Tasks

In order to achieve the learning goals, I was expected to follow the following structure:

• Analyze and get familiar with the current auto-tuner for Futhark’s thresholding pa-
rameters, and in particular how OpenTuner is used.

• Extend the existing tuner, in particular trying to continue with the current approach
of estimating thresholds based on defining a search space and iterating through it.

• Implement an alternative tuner based on suitable Machine Learning for the setting,
with the goal of learning the underlying function describing the degree of parallelism
associated with the threshold values.

• Design concrete experiments to gauge the advantages and disadvantages of the two
strategies, using benchmarks based on code of varying degrees of complexity.
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Appendix B - Tables of benchmark results

SRAD LocVolCalib Bfast
D1 D2 D1 D2 D3 D1 D2

Nvidia Moderate 16.5s 29.9ms 130ms 165ms 2.33ms 37.3ms 31.4ms
GTX Untuned 16.5s 30.1ms 129ms 118ms 1.23s 57.1ms 63.1ms
780 Ti Tuned 12.2ms 14.8ms 99.7ms 110ms 1.23s 47.3ms 24.5ms
Nvidia Moderate 5.03s 16ms 69ms 43.5ms 590ms 11.7ms 11.2ms
RTX Untuned 5.03s 15ms 72.7ms 33.9ms 667ms 26.8ms 35.7ms
2080 Ti Tuned 8.3ms 7.4ms 72.5ms 29.3ms 382ms 23.1ms 7.68ms
Nvidia Moderate 26s 43ms 193ms 252ms 3.64s 51.8ms 46.8ms
Tesla Untuned 26s 43.6ms 194ms 179ms 1.84s 95.8ms 109ms
K40c Tuned 16.3ms 20.2ms 153ms 167ms 1.85s 81.2ms 32.6ms

Backprop LavaMD NN NW
D1 D2 D1 D2 D1 D2 D1 D2

Nvidia Moderate 1.89ms 148ms 2.48ms 0.37ms 4.54ms 18.3ms 234ms 106ms
GTX Untuned 0.32ms 12.9ms 2.47ms 0.37ms 4.55ms 18.3ms 232ms 109ms
780 Ti Tuned 0.31ms 12.9ms 2.46ms 0.37ms 4.25ms 1.25ms 75.7ms 13.5ms
Nvidia Moderate 0.45ms 28ms 0.51ms 0.19ms 2.96ms 5.28ms 210ms 112ms
RTX Untuned 0.45ms 28ms 0.51ms 0.18ms 3.16ms 5.25ms 240ms 111ms
2080 Ti Tuned 0.15ms 1.56ms 0.51ms 0.18ms 2.94ms 0.67ms 43.2ms 7.29ms
Nvidia Moderate 2.64ms 221ms 3.36ms 0.48ms 5.92ms 24.9ms 325ms 121ms
Tesla Untuned 2.61ms 221ms 3.42ms 0.49ms 6.06ms 24.8ms 326ms 121ms
K40c Tuned 0.41ms 17.7ms 3.37ms 0.49ms 5.95ms 1.75ms 114ms 19.4ms

Pathfinder Heston OptionPricing
D1 D2 D1 D2 D3 D1 D2

Nvidia Moderate 0.86ms 0.86ms 28.7ms 72.6ms 593ms 11.4ms 9.04ms
GTX Untuned 0.92ms 0.86ms 30.4ms 76.1ms 597ms 11.3ms 9.05ms
780 Ti Tuned 0.86ms 0.84ms 28.7ms 74.3ms 595ms 11.4ms 6.26ms
Nvidia Moderate 0.72ms 0.72ms 19.9ms 29.7ms 138ms 2.47ms 5.38ms
RTX Untuned 0.84ms 0.71ms 20ms 28.8ms 138ms 2.48ms 5.38ms
2080 Ti Tuned 0.71ms 0.74ms 27ms 32.2ms 139ms 3.69ms 2.5ms
Nvidia Moderate 1.2ms 1.22ms 31.3ms 103ms 917ms 15.5ms 12.4ms
Tesla Untuned 1.18ms 1.2ms 31.5ms 103ms 917ms 15.5ms 12.3ms
K40c Tuned 1.14ms 1.13ms 33.1ms 105ms 919ms 15.5ms 8.59ms

Table 6.1: Specific runtimes reported in Figure 4.2, measured in microseconds or seconds.
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LUD Dataset Runtimes Tuning
Time (s)

Tuning
Benchmarks32.in 128.in 512.in 2048.in

Nvidia
GTX
780 Ti

Moderate 0.37 1.49 7.46 98.6 0 0
Untuned 0.37 1.71 7.97 82.0 0 0
Binary 0.39 1.64 6.52 52.7 778 45
CMA 0.38 1.52 6.47 52.6 1807 131
CMAIndex 0.38 1.52 6.45 53.1 5548 233
Active 0.37 1.54 6.38 52.6 815 42
Instr 0.37 1.51 6.45 52.8 621 18

Nvidia
RTX
2080 Ti

Moderate 0.33 1.49 5.18 28.4 0 0
Untuned 0.36 1.74 5.72 28.0 0 0
Binary 0.34 1.38 5.36 23.3 493 45
CMA 0.32 1.37 5.3 23.5 158 9
CMAIndex 0.34 1.33 5.33 23.3 3275 173
Active 0.33 1.36 5.33 23.3 394 32
Instr 0.33 1.36 5.35 21.3 308 18

Nvidia
Tesla
K40c

Moderate 0.46 1.97 9.63 142 0 0
Untuned 0.48 2.23 10.3 120 0 0
Binary 0.54 2.22 9.02 88.8 980 45
CMA 0.46 1.99 8.77 78.1 2715 109
CMAIndex 0.46 1.93 8.57 78.1 5355 99
Active 0.46 1.94 8.8 77.9 1208 37
Instr 0.46 1.97 9.63 143 1011 18

Table 6.2: Specific median runtimes reported in Figures 4.4 and 4.6, measured in millisec-
onds. The average times from Figure 4.5 to tune each strategy is reported as well, along
with average number of benchmarks run during tuning.
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Appendix C - User Guide
The implementation of the tuners was done in Python, and can be found in the following
GitHub repository:

https://github.com/WizardWithoutHat/Futhark-Autotuner

It is structured in the following way:

• The root directory contains all the different tuners in separate Python files.

• The loop-benchmarks directory contains the loop-based benchmarks.

• The simple-benchmarks directory contains the simple-case benchmarks.

In each of the two latter directories, two makefiles exist to run experiments more easily. In
order to run the python code, the following packages are required, alongside the built-ins:

numpy, sklearn, opentuner, pycma

It is also a requirement to have Futhark installed, as it will be called in the python pro-
grams to run benchmarks. In order to tune a program using a tuner, the futhark file to
be tuned needs inline training and validation datasets specified using the tags "tune" and
"notune" respectively. To tune, run the following command:

FUTHARK_INCREMENTAL_FLATTENING=1 python ALG-tuner.py program1 program2

Where ALG is one of simple, binary, cma, cma-index, active, or instr. The tuners can
tune multiple programs in one program call, meaning it will first tune program1 followed by
program2. Be advised, if the tuners crash due to a problem with program1 then program2
will not be executed.

Alongside this thesis, a zip-file named tuners.zip containing the tuners has been submitted.
Validation benchmarks and corresponding datasets can be found on the github above, but
were too large to submit.
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