
Master’s Thesis
Multi-GPU Futhark Using Parallel Streams

Steffen Holst Larsen

Supervisors: Cosmin Eugen Oancea & Troels Henriksen

September 19, 2019

Abstract
In this thesis we describe the design and implementation of a new inter-

nal streaming operator in the Futhark compiler called the husk operator.
The intention of the husk operator is to express the distribution of an oper-
ation, ultimately allowing compiled programs to utilize multiple graphics
processing units (GPUs) in the system they are executed on. Since the
husk operator is internal to the compiler, the usage of it is automatically
generated through transformations of select existing second-order array
combinators in the Futhark programming language.

We start out by introducing the type and semantics of the husk oper-
ator, which are then used to introduce transformations for the map and
reduce SOACs of Futhark, relating their semantics to that of the husk
operator.

We then discuss, at a high level, the stages of the compiler that is
adjusted to accommodate the husk operator, introducing the transforma-
tion between the intermediate representations of the husk operator. For
the backend of the compiler, we focus on changes made to the CUDA C
backend, introducing a worker-thread runtime environment for isolated
execution of the individual execution of the operations contained in the
husk operators. Since the husk operator is agnostic to the number of
GPUs being used, it is also present when only a single GPU is to be
used, so following the changes to the CUDA C backend of Futhark we
discuss the aspects of the husk operator implementation that may affect
the performance of Futhark programs using a single GPU and how these
are mitigated.

Finally we evaluate the performance of the husk operator in two parts.
First we focus on Futhark programs that are executed using only a single
GPU, comparing the performance when using the husk operator to the
performance of the same program not using the husk operator, analyzing
examples on both ends of the spectrum of relative performance. Secondly
we compare select established benchmark programs when running with
one and two GPUs, analyzing cases in which the husk operator introduces
good scaling with large data set, as well as cases where the inter-GPU data
transfer overhead becomes too expensive relative to the computations,
giving undesirable performance.

i

CONTENTS

Contents
1 Introduction 1

1.1 Thesis Overview . 3

I Bird’s-Eye View

2 Background 5
2.1 GPGPU Architecture . 5
2.2 Futhark Programming Language 7

3 Husks - An Internal Streaming Operator 10
3.1 SOAC Transformations . 10
3.2 Implementation Strategy . 15

II Husk Operator Implementation

4 Futhark Compiler Optimizer 17
4.1 Kernel Extraction . 20
4.2 Simplification . 27
4.3 Explicit Allocation . 30
4.4 Imperative Code Generation . 36

5 Multi-GPU CUDA Backend 44
5.1 Multiple CUDA Contexts . 45
5.2 Generating Husk Functions . 47
5.3 Worker-thread Runtime Environment 55
5.4 Launching Husks . 59

6 Matching Single-GPU Performance 62
6.1 Peer-to-peer Memory Copying . 62
6.2 Inter-thread Communication . 63
6.3 Forced Direct Index Function . 64
6.4 Reduction on the Host . 65

III Evaluation and Final Remarks

7 Performance Comparison and Benchmarking 68
7.1 Comparing Single-GPU Performance 68
7.2 Multi-GPU Performance . 71

8 Related Work 76
8.1 Automatic Parallelization and Data Distribution 76
8.2 Futhark . 78

ii

CONTENTS

9 Conclusion 79
9.1 Future Work . 79

References 83

Appendices

Appendix A Source Code Repository 88

Appendix B Benchmarking Results 89
B.1 Single GPU without the Husk Operator 89
B.2 Single GPU with the Husk Operator 98
B.3 Multiple GPUs with the Husk Operator 107

Appendix C Profiling Results 108
C.1 Single GPU without the Husk Operator 108
C.2 Single GPU with the Husk Operator 109
C.3 Multiple GPUs with the Husk Operator 111

iii

1 INTRODUCTION

1 Introduction
In modern computer systems the graphics processing unit (GPU) has expanded
its capabilities outside the processing of graphics tasks and has become an in-
valuable tool for data-heavy computations. With its many cores and dedicated
architecture, the GPU can exploit the parallelism of a problem to gain large
performance increases relative to the same problem on a CPU, depending on
the problem at hand. In order to do the computations the GPU acts as a
co-processor to the CPU, which means that the CPU is in control of the com-
putations to be done on the GPU and therefore has to make sure that the
relevant data is present on the GPU before launching kernels on the GPU, the
result of which may then be returned to the CPU to be used by the program
for further execution.

Though modern computer systems generally have a single GPU to utilize,
some systems need more resources than even a single state-of-the-art GPU may
offer and may therefore incorporate multiple. By having multiple GPUs, the
CPU gains additional co-processors, which in turn adds more opportunity for
higher performance by exploitation of the additional resources. However, more
GPUs also complicates the execution of a program as it must be distributed
both in parallel tasks and in memory, to account for the individual memory
spaces introduced by each of the GPUs. Since a problem may also require
intercommunication and synchronization between the individual parallel tasks of
the corresponding program, the difficulty and added overhead of such operations
between GPUs may simply be unfeasible, thus not all problems that are efficient
on a single GPU are suitable for multiple GPUs.

In order to allow programmers to write programs that can utilize the com-
pute capabilities of the GPUs in a host system, a number of compute APIs allows
the interfacing between the CPU and the GPUs through API calls done in high-
level programming languages such as C and Python. Examples of such compute
APIs are the OpenCL API and the CUDA API. However, not only is the ad-
ditional groundwork and book keeping needed to do the interfacing tedious, it
often also requires specialized knowledge about compiler analysis and the ar-
chitecture of the GPUs in use. To alleviate the programmers, the Futhark pro-
gramming language enables the writing of high-level, hardware-agnostic, data-
parallel programs which are compiled to host programs that efficiently handles
the interfacing between the CPU and GPU, greatly improving productivity and
maintainability, all the while allowing the programmer to stay oblivious to the
intricacies of the underlying hardware. However, leaving the compiler to create
the use of the compute APIs also leaves the programmer at the mercy of the
abilities and limitations of the compiler they use. For the Futhark language,
one such limitation is that the compiled programs can only use a single GPU
on the host system.

Some programs in Futhark may however be suitable for distribution amongst
multiple devices. Assuming arrays inds:[M]i32, xss, zss:[M][N]f32 and
ys:[N]f32, consider the Futhark expression in Listing 1 using the map array
combinator. Since the individual applications of the lambda functions to the

1

1 INTRODUCTION

Listing 1 A Futhark expression suitable for distribution between devices.

1 map (\ xs ind −>
2 l e t s1 = reduce (+) 0 z s s [ind]
3 l e t s2 = map (∗) xs ys |> reduce (+) 0
4 in (s1 + s2)
5) xss inds

outer level of array xss are independent of each other, it could be distributed be-
tween multiple GPUs. However, since GPUs have their own memory spaces, the
data of the arrays must also be transferred to all devices. A naive solution would
be to broadcast all arrays used by the operation to all devices, but since such
memory operations can be very expensive, minimizing the intercommunication
could prove crucial to actually have multiple GPUs increase the performance of
a Futhark program. For the Futhark expression in Listing 1, the data would be
optimally distributed as:

(a) The entire array ys is accessed by each GPU, hence it must be broadcast.

(b) Each GPU would access non-overlapping slices/rows of xss, hence the
compiler can optimize communication by copying to each GPU precisely
those slices; this pattern is simple to exploit given that the xss array is
directly mapped, hence we do not have to look at the body of the lambda
function.

(c) Each GPU accesses various slices/rows of zss, but based on an indirect
array inds; this can be optimized in the same way as xss, but more
analysis is necessary: Since zss in not directly mapped, the compiler
would need to analyze the body of the lambda function to determine the
slice of zss which is accessed by each GPU. This information can be
extracted by an inspector, i.e. a piece of code that is executed before the
map operation and computes the to-be-communicated chunks at runtime.

The focus and main contribution of this thesis is a streaming operator in the
Futhark compiler which allows for the distribution of a program and the cor-
responding data amongst multiple GPUs. To keep focus on the automated
transformations of existing operators inside the Futhark compiler to semanti-
cally equivalent streams to be distributed between devices, this streaming op-
erator is only made internal to the compiler, thus not allowing explicit use in
the Futhark language for now, though it could be added to the language in
the future. Throughout the stages of the compiler, this streaming operator is
transformed and optimized before finally reaching the backend. With respect
to minimizing transference of data, we will focus on cases (a) and (b) as they
can be determined at compile-time, leaving case (c) for future work.

Following the introduction of the changes to the compiler stages with the ad-
dition of the intermediate representations of the streaming operator, we discuss

2

1 INTRODUCTION

the changes to the CUDA C backend of the Futhark compiler needed in order
to be able to use multiple GPUs. We then introduce a worker-thread runtime
environment, which utilizes the multi-thread capabilities of modern CPUs to
minimize the host-based overhead of the additional operations required when
working with multiple GPUs. The worker-thread runtime environment can be
seen as a secondary contribution of the thesis, as it can be generalized for other
multi-core purposes in the future.

We then compare the single-GPU performance with the streaming operator
to the single-GPU performance of the same programs compiled using the original
Futhark compiler, in order to make sure that the ability to use multiple GPUs
does not come at the cost of worse performance on the much more common single
GPU case. We then compare the single-GPU performance with the multi-GPU
performance of select programs, illustrating both Futhark programs that are
suitable and unsuitable for execution on multiple GPUs, analyzing the causes
of the suitability using profiling tools.

1.1 Thesis Overview
To give a high-level overview of the primary aspects of this thesis, we summarize
the most important points:

• We focus on the distribution of map and reduce array combinators across
multiple GPUs by applying transformations to the corresponding oper-
ations in Futhark programs, creating a new internal streaming operator
that express the distribution of the operation and their input data.

• We use a centralized execution model with a master GPU, also referred to
as GPU 0, that must contain all device-side data outside the execution of
the new streaming operator. Upon execution of the streaming operator,
all relevant data is transferred to the other GPUs, whereas the results are
either concatenated on the master GPU or combined on the host using a
reduce operation.

• We implement the streaming operator for the backend of the Futhark
compiler that generates C code utilizing the CUDA API and attempt
to hide the overhead of working with multiple GPUs by use of a multi-
threaded runtime environment using message passing to communicate.

• We discuss and implement a number of optimizations for the new stream-
ing operator for cases where only a single GPU is used, reducing the
introduced overhead.

3

Part I

Bird’s-Eye View

4

2 BACKGROUND

Figure 1: General GPGPU architecture. Each square marked with P represents
a processor of the encapsulating multiprocessor.

2 Background
The focus of this section is to give the reader the necessary background infor-
mation required to understand the details in the rest of the paper. We start out
by exploring, at a high level, the GPGPU architecture and discuss the effects of
having multiple GPUs working in tandem on the same system. We then intro-
duce the Futhark programming language, focusing on the most relevant features
with respect to the thesis itself.

2.1 GPGPU Architecture
Though the exact architecture of the compute section of modern GPUs can vary
greatly between different generations and manufacturers, a general architecture
of GPGPUs can be summarized in Figure 1 [28]. Inside the device we find N
multiprocessors, which in turn contains M processors. Note that, though it is
not illustrated, each processor has its own registers. The architecture also infers
a memory hierarchy consisting of 3 levels:

1. Registers are exclusive to their corresponding processor. This is the fastest
memory space.

2. Shared memory is exclusive to each multiprocessor, but is shared between
its processors. Likewise, the multiprocessors have a varying number of
cache levels, some of which are also shared between the processors.

3. Global memory is accessible by all processors on all multiprocessors. This
is the slowest memory space, but also typically largest memory space. In

5

2 BACKGROUND

some cases there may also be global caches shared between all processors
on all multiprocessors.

Built upon this, the multiprocessors each have an instruction unit, allowing a
sub-grouping of their processors to execute in lockstep through the use of SIMD
instructions. For example, these sub-groups are known as warps on modern
NVIDIA GPUs, which typically consists of 32 processors.

To gain a better understanding of modern GPUs we draw concrete exam-
ple from the NVIDIA GeForce RTX 2080, which is built upon the state of the
art NVIDIA Turing architecture. With respect to the GPGPU architecture,
this discrete GPU, much like other modern NVIDIA GPUs, follows the CUDA
model. The RTX 2080 model has a total of 46 streaming multiprocessors, each
with 64 cores, and boasts 8 GB of global memory. Each streaming multiproces-
sor has a 256 KB register file, from which threads allocate their registers from,
as well as 96 KB of combined L1 cache and shared memory, allowing the cache
to grow when the full capacity of the shared memory is not being utilized.

2.1.1 Multi-GPU Systems

In most modern general-purpose computer systems the GPU comes in many
shapes, be it as part of an APU such as the AMD Ryzen 5 2400G or be it
a discrete GPU such as the aforementioned NVIDIA GeForce RTX 2080, but
most commonly they act as a co-processor to the CPU. From here we will at
times refer to the CPU and the systems memory as the host, whereas the GPUs
of a system will be referred to as the devices.

To execute a program on a GPU the host is typically required to transfer a
program to the GPU, often referred to as a kernel. Additionally the host must
transfer any data required for the computation ahead of launching the kernel.

Likewise, some general-purpose computer systems may incorporate multiple
GPUs, which mostly require the same procedure in executing a kernel as with
a single GPU. However, compared to only using a single GPU, the challenge
when introducing n GPUs into the GPU computational model is distributing
the problem and the data between the devices. In the optimal cases this can
give a factor n speedup and potentially a factor n reduction of memory usage
on each device. For some problems this may introduce expensive memory trans-
fers or even inter-device synchronizations, which cannot be distributed without
extremely expensive host-device synchronization, rendering such approaches in-
feasible.

Since GPUs in multi-GPU systems have individual memory spaces, there
can be cases where some of the data residing on a GPU G1 is needed on a GPU
G2, requiring an inter-GPU memory copy operation to transfer the data from
G1 to G2. Such situations could for example arrive when a kernel to be executed
on G2 needs a part of the result of a previously executed kernel that resides on
G1. The simple approach for accomplishing inter-GPU memory copies is to
first copy the data from G1 to the host memory and then to G2, but due to the
relatively low bandwidth of the interconnect between the GPUs and the CPU,

6

2 BACKGROUND

this is often a bottleneck for such operations. To alleviate this, other high-speed
interconnects have been developed specifically to allow direct transfer between
GPUs in a system.

As an example of a direct high-speed interconnect, we consider the NVIDIA
NVLink bridge for NVIDIA GeForce RTX 2080 and 2080ti GPUs, which is a
physical extension bridge for systems that incorporate two of these GPUs. To
understand the importance of this bridge, consider two NVIDIA GeForce RTX
2080 GPUs, the specifications of which were mentioned previously. These GPUs
support up to 16 lanes on a PCIe 3.0 bus which in turn offers about 1 GB/s
bandwidth per lane, whereas the NVLink instead offers a bandwidth of 25 GB/s
in each direction. This means that using an NVLink bridge between two GPUs
offers ∼ 56% higher bandwidth while preventing congestion on the PCIe bus.
This assumes that each GPU uses 16 PCIe lanes, which may not be the case due
to limitation on the number of PCIe lanes of the host CPU, so the bandwidth
difference may be even higher on some systems. Notice however that these
bandwidths are still magnitudes slower than the internal memory bandwidth of
the GPU, e.g. 448 GB/s on the NVIDIA GeForce RTX 2080.

2.2 Futhark Programming Language
Futhark is a monomorphic, statically typed, strictly evaluated, purely functional
data-parallel programming language exposing a selection of parallel bulk array
operators. Though Futhark can target similar platforms as more established
programming languages, such as Haskell or C, its strength lies in its ability to
allow for the utilization of massively parallel hardware, such as modern GPUs,
through the use of compute APIs such as CUDA and OpenCL, all the while al-
lowing the programmer to be oblivious to the intricacies of the underlying hard-
ware [17] and supporting integration with mainstream productivity-oriented en-
vironment such as Python [15].

In this section we will give the reader a very basic understanding of the
Futhark programming language, giving a brief introduction to the syntax of a
Futhark program, specifying some of the relevant features of the language, and
introducing the operators that are the most important for this thesis. This
section is based on [17, 9, 14].

2.2.1 Futhark Programs

Syntactically, Futhark is similar to popular functional programming languages,
such as SML and Haskell. A simple example of a Futhark program for computing
the dot product of two vectors x and y , i.e.

∑
i xi · yi, is shown in Listing

2. In this example a function main is defined with a number of parameters,
representing the two vectors by the corresponding names. Notice that these
vectors use the size parameter m, denoted as [m] before the type, with the same
specified similar to parameters outside type notations. Inside the main function
we use two of the built-in operators of the Futhark language, namely reduce
and map2, which are both examples of array combinators in Futhark.

7

2 BACKGROUND

Listing 2 A simple Futhark program.

1 l e t main [m] (x : [m] i 32) (y : [m] i 32) : i 32 =
2 l e t z = map2 (∗) x y
3 in reduce (+) 0 z

Futhark accomplishes parallelism through a concept called explicit data-
parallelism, that is the parallelism of the program is specified through the built-
in operators, such as reduce and map. Consider again the program in Listing
2, where the operator map2 on line 2 specifies that the multiplication operation
between the elements of the vectors can be done in parallel, whereas the reduce
operator specifies a reduction, which can also be done in parallel. The compiler
chooses how to handle the parallelism given and may optimize and combine
parallel operations as it sees fit. This exposes one of the primary strengths
of the Futhark programming language, specifically that the user can use high-
level operators for specifying the parallelism of a problem, whereas the compiler
optimizes the parallelism and handles the low-level representation of the problem
for the hardware at hand.

2.2.2 Array Operations

The key to good performance in Futhark is the use of the built-in array bulk
transformation operators. These operators are categorized in two groups, namely
first- and second-order array combinators. The first-order array combinators are
operations on or resulting in arrays that always perform the same operation on
the parameters. Examples of first-order array combinators are shown in Table
1 where [m]α for any integer m and Futhark type α denotes the array of m
elements from α. Likewise for any Futhark types α and β, (α, β) denotes the
composite type of 2-tuples. Notice that zip and unzip have variants that pro-
duce or takes lists with d-tuples for d > 2, where the operator name is suffixed
with d, e.g. unzip4 for 4-tuples.

In contrast to first-order array combinators, second-order array combina-
tors (SOACs) takes a functional argument specifying the operation to be per-
formed. The SOACs are the fundamental building blocks for writing programs
in Futhark. Table 2 shows a selection of SOACs. As with zip and unzip, the
map SOAC has variants suffixed by a number denoting the number of arguments
of the functional argument, an example of which was shown through the use of
map2 in Listing 2.

Both map and reduce have special streaming variants, namely stream_map
and stream_reduce, that applies the operations to sub-arrays of the input array,
rather that the individual elements. The chunking may vary, but the size of the
corresponding chunk is given as a parameter in the functional argument.

8

2 BACKGROUND

zip : ∀mαβ . [m]α→ [m]β → [m](α, β)
zipx y ≡ [(x0, y0), (x1, y1), . . . , (xm−1, ym−1)]
The zip operator takes two arrays of equal size and produces
an array of the same size containing pairs of the values of the
input arrays in order.

unzip : ∀mαβ . [m](α, β)→ ([m]α, [m]β)
unzipx ≡ ([x0.1, x1.1, . . . , xm−1.1], [x0.2, x1.2, . . . , xm−1.2])
The unzip operator is the inverse of the zip operator, taking
an array of pairs and separating them into two equally sized
arrays containing the first and second elements of the pairs
respectively.

iota : (m : int)→ [m]int
iotam ≡ [0, 1, . . . ,m− 1]
The iota operator takes a single integer parameter m and
produces an array of length m with values ranging from 0 to
m− 1.

Table 1: Types, semantics, and descriptions of a subset of the first-order array
combinators in the Futhark programming language.

map : ∀mαβ . (α→ β)→ [m]α→ [m]β
map f x ≡ [f x0, f x1, . . . , f xm−1]
The map SOAC takes a univariate function and applies it to
each element of the given array.

reduce : ∀mα . (α→ α→ α)→ α→ [m]α→ α
reduce ⊕ ε x ≡ ε⊕ x0 ⊕ x1 ⊕ · · · ⊕ xm−1
The reduce SOAC combines, or reduces, the values of x using
the monoid (⊕, ε).

scan : ∀mα . (α→ α→ α)→ α→ [m]α→ [m]α
scan ⊕ ε x ≡ [ε⊕ x0, ε⊕ x0⊕ x1, . . . , ε⊕ x0⊕ x1⊕ · · · ⊕ xm−1]
The scan SOAC computes the generalized prefix sum of the
input array x with the monoid (⊕, ε). That is, each element at
a given index i is the reduction of the slice x[0 : i+ 1] using the
monoid (⊕, ε).

Table 2: Types, semantics, and descriptions of a subset of the second-order
array combinators in the Futhark programming language.

9

3 HUSKS - AN INTERNAL STREAMING OPERATOR

Listing 3 Futhark-like pseudo code definition of the semantics of the husk
operator where mi for i ∈ [1, 2, . . . , p] is the end index of a given partition of a.

1 husk (�) e f a ≡
2 l e t (xs , ys) =
3 unzip <| map f [m1 , m2 , . . . , mp]
4 [m1 , m2 − m1 , . . . , mp − mp−1]
5 [a [0 :m1] , a [m1 :m2] , . . . , a [mp−1 :mp]])
6 in (reduce (�) e xs , f l a t t e n ys)

3 Husks - An Internal Streaming Operator
In this section we introduce the bread and butter of this thesis, namely the
internal streaming operator we will refer to as a husk. Let [σ]φ denote the set of
all arrays of size σ consisting of elements from the set φ. A husk is an operator
with type

husk : ∀mαβ γ . (α→ α→ α)→ α→ ((m′ : i32)→ i32→ [m′]β → (α, [m′]γ))
→ [m]β → (α, [m]γ)

where i32 denotes the 32-bit integer type in Futhark. Consider an input array
a ∈ [m]β, a function f : i32→ i32→ [m′]β → (α, [m′]γ), and a monoid (�, e),
that is � : α → α → α is an associative operator and e ∈ α is the neutral
element of � over α. Using a Futhark-like pseudo code, the semantics of the
husk operator can be expressed as in Listing 3 where mi for i ∈ [1, 2, . . . , p]
is the end index of a given partition of a, where mi < mi+1 and mp ≡ m.
These semantics illustrates that the husk operator essentially is a map-reduce
composition, where a map with f is first applied to partitions of the input
data, with one part of the results reduced using the monoid (�, e) and the other
concatenated. The first two parameters of the body lambda function of the husk
are the element offset and the size of the array given respectively. Typically,
the function f will either return a value in the first part of the tuple, leaving
the second element of the result tuple as the empty list, or it will return a list
in the second part of the tuple, leaving the first element of the result tuple as
some unit value that will not be used. However, this generalization of the husk
operator will make the necessary distinction between concatenated results and
reduced results, since their types are different though they are similar. As a
small but important detail we allow the Futhark-like pseudo language used for
these semantics to use irregular arrays, as to allow partitions to be varying in
size.

3.1 SOAC Transformations
Though the husk operator could in time be implemented as an explicit operator
in the Futhark language, our focus is on introducing the husk operator as a

10

3 HUSKS - AN INTERNAL STREAMING OPERATOR

Listing 4 A map operation using an array a ∈ [m]β and a function g : β → α.

1 map g a

Listing 5 Rewriting of the map operation in Listing 4.

1 map g a ≡ [g a [0] , g a [1] , . . . , g a [m−1]]
2 ≡ [g a [0] , g a [1] , . . . , g a [m1 −1]] ++
3 [g a [m1] , g a [m1+1] , . . . , g a [m2 −1]] ++
4 . . . ++
5 [g a [mp−1] , g a [mp−1+1] , . . . , g a [mp −1]]

construction only inside the Futhark compiler. Thus, to be able to actually
utilize the husk operator they must be generated by the compiler, which is in
turn done through the transformation of select existing SOACs, specifically map
and reduce. We again use the Futhark-like pseudo language to rewrite the
semantics of these SOACs, which stays unchanged as specified in Table 2.

Notice that both map and reduce SOACs have streamed variants, allowing
for the corresponding operation over partitions of the input arrays, parameter-
ized by the size of each chunk. These are not discussed here, but are handled
very similar to their non-stream counterpart.

3.1.1 Map

Assume again an array a ∈ [m]β and a function g : β → α, we now consider the
use of map with a and g, as shown in the expression in Listing 4. Recalling the
semantics of the map SOAC in Table 2 and using the independence between ap-
plications of g, the expression can be rewritten as shown in Listing 5 where mi

for i ∈ [1, 2, . . . , p] is the end index of a given partition of the input data, with
mi < mi+1 and mp ≡ m, and ++ denotes the binary concatenation operator.
Notice that the concatenation of these partitions can be expressed using the
flatten operator, giving way to further rewriting as shown in Listing 6 where
we can easily realize that each list to be concatenated are in turn semantically
equivalent to a map operation. This leaves us with a final rewriting shown in
Listing 7 that in turn makes transformations based on the following observa-
tions, to bring the map operator equivalence to the same form as the semantics
of the husk operator:

• A univariate function in a map operation can be rewritten to a multivariate
function in a map on multiple arrays, where all parameters other than the
original input are ignored. Consequently the transformation of a map
operation does not explicitly use the offset or the size of the array inside
a husk.

• Since the first value of the tuple is discarded, and assuming no side effects

11

3 HUSKS - AN INTERNAL STREAMING OPERATOR

Listing 6 Further rewriting of a map operation based on Listing 5.

1 map g a ≡ f l a t t e n [[g a [0] , g a [1] , . . . , g a [m1 −1]] ,
2 [g a [m1] , g a [m1+1] , . . . , g a [m2 −1]] ,
3 . . . ,
4 [g a [mp−1] , g a [mp−1+1] , . . . , g a [mp −1]]]

Listing 7 Final rewriting of a map operator semantics, relating it to the husk
operator.

1 map g a ≡ f l a t t e n [map g a [0 :m1] ,
2 map g a [m1 :m2] ,
3 . . . ,
4 map g a [mp−1 :mp]]
5 ≡ f l a t t e n (map (map g)
6 [a [0 :m1] , a [m1 :m2] , . . . , a [mp−1 :mp]])
7 ≡ l e t ys = map (map g)
8 [a [0 :m1] , a [m1 :m2] , . . . , a [mp−1 :mp]])
9 in f l a t t e n ys
10 ≡ l e t (xs , ys) =
11 unzip <| map (λ_ _ a ’ → (0 , map g a ’))
12 [m1 , m2 , . . . , mp]
13 [m1 , m2 − m1 , . . . , mp − mp−1]
14 [a [0 :m1] , a [m1 :m2] , . . . , a [mp−1 :mp]])
15 in (reduce (λ_ _ → 0) 0 xs , f l a t t e n ys) . 2
16 ≡ (husk (λ_ _ → 0) 0
17 (λ_ _ a ’ → (0 , map g a ’)) a) . 2

12

3 HUSKS - AN INTERNAL STREAMING OPERATOR

Listing 8 A reduce operation using an array b ∈ [m]α and a monoid (⊕, ε)
where ⊕ : α→ α→ α is an associative operator and ε ∈ α.

1 reduce (⊕) ε b

Listing 9 Rewriting of the reduce operation in Listing 8.

1 reduce (⊕) ε b ≡ ε ⊕ b [0] ⊕ b [1] ⊕ . . . ⊕ b [m−1]
2 ≡ ε ⊕ (b [0] ⊕ b [1] ⊕ . . . ⊕ b [m1−1]) ⊕
3 (b [m1] ⊕ b [m1+1] ⊕ . . . ⊕ b [m2−1]) ⊕
4 . . . ⊕
5 (b [mp−1] ⊕ b [mp−1+1] ⊕ . . . ⊕ b [mp−1])

in the pseudo code language, the value of the first part of the tuple re-
sulting from the map as well as the result of the reduction are never used
so an arbitrary monoid can be used to make the transformation to a husk
operation. Notice that in this case we simply use a monoid (λ__→ 0, 0)
over the set {0}, but it could in principle be any monoid as the value will
be discarded.

By this we have that a map operation can be transformed to a semantically
equivalent husk by partitioning the input array, applying the map operation to
the partitions, and lastly concatenating the results.

3.1.2 Reduce

The specified semantics of the husk operator builds upon the reduce SOAC,
however the means to introduce a valid transformation from a reduction to a
husk requires some realizations. Consider an array b ∈ [m]α and a monoid
(⊕, ε) where ⊕ : α→ α→ α is an associative operator and ε ∈ α is the neutral
element of ⊕ over α, we can make a reduction on b using the monoid as shown
in Listing 8. Recalling the semantics of the reduce SOAC in Table 2 and by
the definition of a monoid we can equivalently rewrite the expression as shown
in Listing 9 where mi for i ∈ [1, 2, . . . , p] is the end index of a given partition
of the input data, with mi < mi+1 and mp ≡ m. Notice, that since ε is the
neutral element of ⊕ over α, i.e. for any x ∈ α we have ε � x = x � ε = x,
we can insert it anywhere in the expression. We can again rewrite as shown in
Listing 10, illustrating that a reduction is semantically equivalent to a reduction
over reductions of an arbitrary number of partitions of the input data. Again
we use that a map with a univariate function can be rewritten as a map using
trivariate function with two of the parameters unused in a map, to match the
defined semantics of the husk operator. Also, as with the transformation of the
map SOAC, we discard one of the values of the husk result, however this time
we are interested in the reduced result so we discard the concatenated result.

13

3 HUSKS - AN INTERNAL STREAMING OPERATOR

Listing 10 Final rewriting of the reduce operation, relating it to the husk
operator.

1 reduce (⊕) ε b
2 ≡ ε ⊕ reduce (⊕) ε b [0 :m1] ⊕
3 reduce (⊕) ε b [m1 :m2] ⊕
4 . . . ⊕
5 reduce (⊕) ε b [mp−1 :mp]
6 ≡ reduce (⊕) ε [reduce (⊕) ε b [0 :m1] ,
7 reduce (⊕) ε b [m1 :m2] ,
8 . . . ,
9 reduce (⊕) ε b [mp−1 :mp]]
10 ≡ reduce (⊕) ε (map (reduce (⊕) ε)
11 [b [0 :m1] , b [m1 :m2] , . . . , b [mp−1 :mp]])
12 ≡ l e t xs = map (reduce (⊕) ε)
13 [b [0 :m1] , b [m1 :m2] , . . . , b [mp−1 :mp]]
14 in reduce (⊕) ε xs
15 ≡ l e t (xs , ys) =
16 unzip <| map (λm’ _ b ’ → (reduce (⊕) ε b ’ ,
17 r e p l i c a t e m’ 0))
18 [m1 , m2 , . . . , mp]
19 [m1 , m2 − m1 , . . . , mp − mp−1]
20 [b [0 :m1] , b [m1 :m2] , . . . , b [mp−1 :mp]]
21 in (reduce (⊕) ε xs , f l a t t e n ys) . 1
22 ≡ (husk (⊕) ε (λm’ _ b ’ → (reduce (⊕) ε b ’ ,
23 r e p l i c a t e m’ 0)) b) . 1

14

3 HUSKS - AN INTERNAL STREAMING OPERATOR

Likewise, the part of the intermediate result to be concatenated is simply a list
of 0 with m’ elements, as to adhere to the required function type signature.

Notice that neither of the transformations use the offset and size parameters
in their body lambda function. However, these parameters are used by some of
the optimizations on husk operators potentially applied throughout the compi-
lation process and may potentially become useful to users if the husk operator
becomes an operator in the Futhark language.

3.2 Implementation Strategy
We have now been introduced to the husk operator, but we have yet to see
why it is useful. The primary purpose of the husk operator is to express the
distribution of a problem through a lambda function applied to partitions of
the input array, known as the husk body, the results of which are then either
concatenated or reduced using a given monoid. This means that through the
use of the husk operator the compiler could potentially distribute a problem
between multiple GPUs by isolating executions of the husk body on each, e.g.
for n GPUs the input array is split into n partitions and the body of the husk is
then executed n times, each execution using different GPUs for any GPU-related
operations.

A benefit of the isolated execution of the husk body for different GPUs is that
the compiler does not need to discern between the different memory spaces of
the GPUs as each execution is associated with a specific GPU. This essentially
means that the notion of a GPU memory space inside the Futhark compiler
may refer to different memory spaces depending on the context in which it is
in. Therefore, the Futhark compiler can stay mostly oblivious to its new ability
to use multiple GPUs.

However, in order to actually make the programs utilize multiple GPUs the
backends of the Futhark compiler must be altered to reflect the abilities of this
new operator. Since GPU operations are not limited to the body of husks, we
introduce the notion of a main device, which refers to the GPU that will be used
for any GPU-related operations outside the body of a husk. This introduces a
centralized execution model where outside the husk all GPU memory blocks
with relevant information must reside on the main device. This in turn means
that when a husk is executed, each GPU must get the relevant data from the
main device before execution and likewise the results must either be transferred
to the main device or must be placed into host memory.

Though the concatenation of results is left for the backend to handle as it
sees fit, the reduction is done on the host exclusively. This is primarily done to
avoid the need to potentially have additional kernels that need to be launched
specifically for the reduction, which is likely inefficient in most cases as not only
will the results have to be transferred to the main device from each other device,
the reduction is often over scalars so with the typically few GPUs in a modern
computer system the GPU doing the reduction over the result would very likely
be under-utilized.

15

Part II

Husk Operator Implementation

16

4 FUTHARK COMPILER OPTIMIZER

4 Futhark Compiler Optimizer
To be able to identify the parts of the Futhark compiler that the husk operator
will affect, we first need to gain an understanding of the stages in the compiler.
The Futhark compiler can be separated into three stages, namely a frontend,
an optimizer, and a backend, each producing the input for the next stage in the
given order. The frontend is given the raw Futhark code of the program to be
compiled and first lexes and parses it, the result of which is then type-checked
and converted into an internal core representation of SOACs. The optimizer
then takes the representation of the program generated by the frontend and
applies various transformations to it. To allow for different transformations,
multiple different optimizers exist in the Futhark compiler, known as pipelines.
In the current state of the compiler there are two primarily used pipelines; the
sequential CPU pipeline and the GPU pipeline, where both have overlapping
transformations known as the common pipeline. As the names suggest, the
sequential CPU pipeline is intended to run sequentially on a single thread of
the CPU, whereas the GPU pipeline transforms the program to utilize the par-
allelism it offers, as to best use the resources supplied by a GPU. The result
of passing the representation of the program from the frontend through the
pipeline is then further transformed into an imperative representation of the
program, known as ImpCode, which is then in turn passed to the correspond-
ing backend. Backends can vary in how they work, but at the time of writing
all backends transform the ImpCode representation into a program in another
programming language, which is then compiled using a compiler for that partic-
ular language. ImpCode is currently the only intermediate representation used
between the optimizer and the backends as all current backends use imperative
languages. Notice that, in order to ensure that the transformations applied in
the optimizer do not introduce type errors into the program, each result of a
transformation inside the optimizer is type-checked.

Since the intention of husks are to utilize the resource of multiple GPUs, we
will focus on the GPU pipeline. Figure 2 illustrates the operation of the Futhark
compiler using the GPU pipeline with the frontend, optimizer, and backend,
each with their corresponding steps. Notice that, since the simplification pass
and the common sub-expression pass is applied often they have been replaced
by a symbol and are applied in the order they are shown between other steps of
the optimizer, whereas the type-checking between each step is assumed implicit
and therefore omitted for simplicity.

In relation to the compiler passes shown in Figure 2, since the husk operator
is internal to the compiler there is no need to make changes to the frontend.
Instead, husks are generated in the kernel extraction step of the optimizer stage
and is therefore first represented in the core language using kernels. In this
section we explore the creation and transformations of husks in the Futhark
compiler ahead of reaching the backend, which is in turn the focus of Section 5.

However, in order to express the transformations from SOACs to the husk
operator, as described in Section 3.1, we first need to introduce some of the
constructs of the intermediate SOAC representation passed to the kernel extrac-

17

4 FUTHARK COMPILER OPTIMIZER

Figure 2: The compilation of a program using the GPU pipeline of the Futhark
compiler. The primary stages of the compilation is separated into three steps;
the frontend, the optimizer, and the backend. The stippled round-corned boxes
specify the representation of the program after any of the steps it encapsulates.
Notice that the type-checking between transformations in the optimizer has
been omitted.

18

4 FUTHARK COMPILER OPTIMIZER

Listing 11 A high-level representation of the internal map SOAC.

1 soac_map
2 sm_m_lam
3 [sm_m] sm_arr

Listing 12 A Futhark program with a simple map operation.

1 l e t main [xs_m] (xs : [xs_m] i32) : [xs_m] i32 =
2 map (+1) xs

tion step. Let LSOAC be the set of all expressions in the intermediate SOAC
representation language. Of particular interest are the map and redomap rep-
resentations.

The first of these, the map SOAC representation is very similar to the cor-
responding Futhark operator. We introduce a high-level representation of the
map SOAC as shown in Listing 11 where the attributes are as follows:

sm_m_lam A lambda function to apply to each element of the input array, where
the body is in LSOAC .

sm_arr The name of the input array.

sm_m The outer size of the input array.

Likewise, the semantics of a soac_map construct is simply applying the map
lambda function to each element of the input array. A soac_map is generated
through the use of the Futhark map SOAC, so a simple example of it is the
Futhark program in Listing 12 which adds 1 to each element of the input array
xs. When compiling this program, just before reaching the kernel extraction
pass, the map operation is represented as shown in Listing 13 .

Whereas the internal map SOAC is very similar to the map operator of the
Futhark language, the internal redomap SOAC is not directly related to an
operation. At high-level we can represent the internal redomap SOAC as shown
in Listing 14 where the attributes are as follows:

sr_m_lam A lambda function to apply to each element of the input array, where
the body is in LSOAC .

sr_r_lam A lambda function for the reduction of the results of applying sr_m_lam
to each element of the input array, where the body is in LSOAC .

sr_r_ne The neutral element of sr_r_lam.

sr_arr The name of the input array.

sr_m The outer size of the input array.

19

4 FUTHARK COMPILER OPTIMIZER

Listing 13 Internal map SOAC representation of the map operation in the
program in Listing 12.

1 soac_map (λx → x + 1) [xs_m] xs

Listing 14 A high-level representation of the internal redomap SOAC.

1 soac_redomap
2 sr_m_lam
3 (sr_r_lam , sr_r_ne)
4 [sr_m] sr_arr

The internal redomap SOAC represents a map-reduce composition with the map
lambda function applied to each element of the input array, the result of which
is then reduced using the (sr_r_lam, sr_r_ne) monoid. The internal redomap
SOAC representation is also slightly more diverse than the internal map SOAC
represenation as it is used to represent both reductions and map-reduce com-
positions. Consider the Futhark program shown in Listing 15 which, using a
single reduce operation, sums all elements in the input array ys. Compiling
this program results in the SOAC representation shown in Listing 16 before
reaching the kernel extraction pass. Notice that, since there is no map operation
involved, the map lambda function is the identity function, i.e. the input and
the output are the same. Now consider the program in Listing 17 where we see
a map-reduce composition with a map operation first adding 1 to each element
of the input array zs, like the program in Listing 13, the output of which is then
summed using a reduce operation, like in the program in Listing 15. Compiling
this program results in the SOAC representation shown in Listing 18.

4.1 Kernel Extraction
In order to perform the SOAC transformations described in Section 3.1 we need
an internal representation of the husk operator in the internal kernel representa-
tion language of the Futhark compiler. Let Lkernel be the set of all expressions
representable in the intermediate kernel representation language, wherein the
kernel husk representation is defined by the construct kernel_husk shown in
Listing 19 where the internal parts are as follows:

k_src The name of the source array to be partitioned between nodes.

k_m The number of elements in the source array.

k_p_arr A name for the partition array.

k_p_o A name for a variable that represents the outer-dimension offset of
the partition in the source array.

20

4 FUTHARK COMPILER OPTIMIZER

Listing 15 A Futhark program with a simple reduce operation.

1 l e t main [ys_m] (ys : [ys_m] i32) : i 32 =
2 reduce (+) 0 ys

Listing 16 Internal redomap SOAC representation of the reduce operation in
the program in Listing 15.

1 soac_redomap (λy → y) (λy1 y2 → y1 + y2 , 0) [ys_m] ys

Listing 17 A Futhark program containing a map-reduce composition.

1 l e t main [zs_m] (zs : [zs_m] i32) : i 32 =
2 reduce (+) 0 <| map (+1) zs

Listing 18 Internal redomap SOAC representation of the map-reduce compo-
sition in the Futhark program shown in Listing 17.

1 soac_redomap (λy → z + 1) (λz1 z2 → z1 + z2 , 0) [zs_m] zs

Listing 19 A high-level representation of a husk in the intermediate represen-
tation language of kernels.

1 kernel_husk
2 [k_m] k_src
3 (k_p_arr , k_p_o , k_p_m)
4 {k_b_exp}
5 (k_r_lam , k_r_ne)

21

4 FUTHARK COMPILER OPTIMIZER

k_p_m A name for a variable that represents the outer size of the partition.

k_b_exp An expression in Lkernel. This will be referred to as the body of a
kernel husk.

k_r_lam A lambda function for the reduction of the husk body results, where
the body is in Lkernel. This will be referred to as the kernel husk
reduction.

k_r_ne The neutral element of the reduction lambda function k_r_lam.

As a generalization we allow the reduction lambda function to be a nil-function,
i.e. a function with no input and no output, and correspondingly we allow
the absence of its neutral element, in which case the results are concatenated.
Throughout this section we will use NilFn and Nil to represent the nil-function
and non-existing attribute value respectively. Notice that this is a restriction of
this representation compared to the semantics of the husk operator in Listing
3 which is made in order to simplify the transformations. However, though
the actual representation inside the compiler uses a very similar approach for
distinguishing between a reduced result and a concatenated result, it is actually
more permissive as it allows any number of reduced results and any number of
combined results for a single husk operator.

The semantics of the kernel husk are illustrated in Figure 3 which shows
that if we have d nodes, which are in our case d GPUs, the source array k_src
is separated into d partitions each with a partition of size mi at offset oi for i ∈
[1, . . . , d] which are all under the name of k_p_arr on the nodes. The variables
representing the offset and the partition size, k_p_o and k_p_m respectively,
are initialized before running the husk body on each device. The result of
running the husk body on each device are then combined by use of the husk
reduction lambda or concatenated if the reduction function is absent. Notice
that in this illustration the results are stored in the array node_res which is
not actually a part of the kernel husk representation but is introduced here for
illustration purposes. The actual handling of the body results is left to the
backend. Likewise, the partition sizes and offsets are to be specified by the
compiler backend being used by the end of the compilation of the program, so
we do not necessarily have that oi+1 is oi + mi. However, the operator for the
husk reduction may not be commutative, so the husk reduction must know the
order of the partitions to infer the order of the results as to compute the husk
reduction correctly.

With the kernel husk representation we can generalize the SOACs transfor-
mations as the following steps:

1. Create a name for the partition of the input array and variable names
for the partition’s element offset into the input array and the number of
elements in the partition.

2. Let the input array be the source array of the husk.

22

4 FUTHARK COMPILER OPTIMIZER

Figure 3: Illustration of the semantics of a kernel husk inside the Futhark com-
piler.

23

4 FUTHARK COMPILER OPTIMIZER

Listing 20 The transformation of an internal map SOAC to a kernel husk.

1 E(soac_map sm_m_lam [sm_m] sm_arr) ≡
2 kernel_husk
3 [sm_m] sm_arr
4 (arr ’ , o ’ , m’)
5 {E′(soac_map sm_m_lam [m’] arr ’)}
6 (NilFn , Ni l)

Listing 21 A kernel husk transformed from the internal map SOAC shown in
Listing 13.

1 kernel_husk
2 [xs_m] xs
3 (arr ’ , o ’ , m’)
4 {E′(soac_map (λx → x + 1) [m’] arr ’)}
5 (NilFn , Ni l)

3. Generate a monoid for the reduction of the intermediate node results. For
redomaps this is simply the corresponding reduction operator and neutral
element, whereas maps have a nil-function.

4. Transform the SOAC as normal, but on the partition of the input array
instead of the input array.

In order to express the transformations in terms of the intermediate SOAC rep-
resentations and the intermediate kernel representations, we need to introduce
the transformation functions E : LSOAC → Lkernel and E′ : LSOAC → Lkernel.
Let E(s) be the kernel representation of the internal SOAC representation s
outside of husk bodies and let E′(s) be the kernel representation of the internal
SOAC representation s inside the body of a husk. Likewise, we have a variant
of E′, named E′lam that transforms a lambda function with a body in LSOAC to
a lambda with a body in Lkernel. With these we can describe the kernel extrac-
tions of a kernel husk from an internal map SOAC as shown in Listing 20 where
we use the same name for the internal attributes as in the definition in Listing
11, but let arr’, o’, and m’ be generated names. As described in Section 3.1,
this illustrates how a map is converted to a husk with a map applied to each
partition. As an example, consider the internal map SOAC in Listing 13, which
would result in the kernel husk representation shown in Listing 21 where again
arr’, o’, and m’ are generated names. Notice that the transformation of the
map SOAC representation uses the special case of the kernel husk representa-
tion where the nil-function as the husk reduction lambda function results in the
intermediate map results being concatenated, as required by the transformation
of map.

Likewise, the redomap SOAC representation is transformed as shown in List-

24

4 FUTHARK COMPILER OPTIMIZER

Listing 22 The transformation of an internal redomap SOAC to a kernel husk.

1 E(soac_redomap sr_m_lam (sr_r_lam , sr_r_ne)
2 [sr_m] sr_arr) =
3 kernel_husk
4 [sr_m] sr_arr
5 (arr ’ , mem’ , o ’ , m’)
6 {E′(soac_redomap sr_m_lam (sr_r_lam , sr_r_ne)
7 [m’] arr ’)}
8 (E′lam(λz1 z2 → z1 + z2) , 0)

Listing 23 A kernel husk transformed from the internal redomap SOAC shown
in Listing 18.

1 kernel_husk
2 ys [ys_m]
3 (arr ’ , o ’ , m’)
4 {E′(soac_redomap (λy → y) (λy1 y2 → y1 + y2 , 0)
5 arr ’ [m’])}
6 (E′lam(λy1 y2 → y1 + y2) , 0)

ing 22 where we use the same name for the internal parts as in the definition
in Listing 14, but let arr’, o’, and m’ be generated names. This means that
transforming the intermediate SOAC representation in Listing 16 results in the
kernel husk shown in Listing 23 whereas the intermediate SOAC representation
in Listing 18 is transformed into the kernel husk shown in Listing 24 .

Notice the subtle difference between E and E′, namely that the first is the
transformation of an expression in the SOAC representation outside a husk
body, whereas the latter is a transformation of an expression in the SOAC
representation within the body of a husk. Since we are only going to need a
single level of partitioning in order to distribute kernels between multiple GPUs,
additional husk levels would only complicate further compilation. Additionally,
even if multiple nested husks were allowed, using E would result in an infinite
nesting of husks which would stall compilation. Given the generality of the husk
construct (see Section 9.1.1), only allowing a single level of husks should also
be enough to allow hierarchical multi-node systems as well. This single level of
husks does however assume that the outer parallelism of the contained operation
is sufficient to utilize all resources available. If this assumption does not hold,
further distribution of the inner parallelism may be beneficial, but would require
additional analysis at runtime.

Some generated redomap SOACs may also return the result of the map part
of its computation together with the reduction result. Take for example the
Futhark program in Listing 25 where the result xs’ of the map, which is in turn
part of the indirect map-reduce composition resulting in xs”, is used outside

25

4 FUTHARK COMPILER OPTIMIZER

Listing 24 A kernel husk transformed from the internal map SOAC shown in
Listing 18.

1 kernel_husk
2 [zs_m] zs
3 (arr ’ , o ’ , m’)
4 {E′(soac_redomap (λz → z + 1) (λz1 z2 → z1 + z2 , 0)
5 [m’] arr ’)}
6 (E′lam(λz1 z2 → z1 + z2) , 0)

Listing 25 A Futhark program that produces a redomap composite kernel in
the GPU pipeline of the Futhark compiler, but where the result of the map is
used afterwards.

1 l e t main (xs : [] i 32) : ([] i32 , i 32) =
2 l e t xs ’ = map (+1) xs
3 l e t xs ’ ’ = reduce (+) 0 xs ’
4 in (xs ’ , xs ’ ’)

the map-reduce composition, specifically as the part of the composite result
of the program. As given, our definition of the intermediate redomap SOAC
representation does not allow this as it uses only a single source array and a
single output. However, this is just an implementation detail of the Futhark
compiler as the program could in principle be represented as an internal map
SOAC with the result xs’, followed by an internal redomap SOAC with the
result xs”. As another implementation detail of the Futhark compiler, both
SOAC representations may actually have multiple input arrays and multiple
outputs, though this is not representable in the language we established here
for exposition purposes. In general such SOAC representations will still have a
single map lambda function and a single reduce lambda function, each with the
number of arguments corresponding to the number of input arrays. Likewise
the neutral element becomes a list of neutral elements, in effect acting as a
composite neutral element of the combined reduce lambda function. The husk
representation introduced here is in the actual implementation adjusted to take a
number of source arrays, have the same number of partitions, and have multiple
outputs. In order to handle the special case where parts of the output may be
a map result, the reduction lambda function will only have a number of input
arguments corresponding to the number of output values of the map lambda
function that should not just be concatenated, and likewise the neutral elements
list will only have the corresponding number of neutral elements. Notice that
a restriction of both the internal map and redomap SOACs in these cases are
that all input arrays must have the same number of elements, thus a husk needs
only a single variable representing partition offsets and the number of elements
in the partitions. Consequently, the concatenated outputs of the SOACs will

26

4 FUTHARK COMPILER OPTIMIZER

also have the same number of elements in the output arrays.

4.2 Simplification
The simplification pass of the Futhark compiler attempts to apply a set of
simplification rules to the intermediate representation of the program being
compiled until convergence is reached. These rules are various, but of note is
that expressions nested inside the body of another expression, for example inside
the body of a loop, may be moved outside of it, which may in turn allow for
more simplifications. Since husks have variables that are defined only in the
body of the husk itself, namely the partition, its offset into the source array,
and the number of elements in the partition, these must be blocked from leaving
the body of the husk.

Throughout the transformations and simplifications of a program some vari-
ables may become obsolete, e.g. if all the expressions using them have been
transformed to an expression that does not use them. In the case that a vari-
able is no longer used the simplifier will remove it. In general this will be
carried out on the husk body and reduction operator simply by use of the ex-
isting simplification rules on bodies. However, since the source arrays of husks
are implicitly used by the corresponding husk in order to create partitions, it
must specify that the source arrays are used by the husk in order prevent the
simplifier from wrongfully removing them.

Though the husk reduction and body are simplified using the normal rules
for their respective representations, making sure the specified simplification re-
strictions are upheld, the husk carries additional information, namely the source
array, the partition, and information about the partition, which must also be
reachable by a simplification pass in order to allow change to propagate to them,
such as for example changing the name of the source array if it was an alias for
another array.

4.2.1 Husk-specific Simplification Rules

Though there are the general simplification rules for removing dead variables
and hoisting expressions, a subset of the applied simplification rules are more
specialized, targeting specific constructs inside the representation. In line with
this, a number of husk-specific rules have been defined primarily for use on husks
in the intermediate kernel representation. Though more have been introduced
we will focus on two as to not get to far into minor implementation details.

The first simplification rule we introduce is the removal of unused partitions.
This simplification rule checks that the partition of the source array is used
inside the body of the husk. Since partitions are only defined inside the husk
body the absence of it means that the partition is completely unused and can
therefore be omitted in its entirety. By removing the unused partitions we can
prevent expensive inter-GPU copying of unused data. For example, consider
the Futhark program in Listing 26 in which the simplifier will remove the use
of the parameter x inside the lambda function. The husk representation of this

27

4 FUTHARK COMPILER OPTIMIZER

Listing 26 A Futhark program where the simplifier will remove any uses of x
inside the application of map.

1 l e t main [m] (xs : [m] i 32) : [m] i 32 =
2 map (\x −> x ∗ 0) xs

Listing 27 The husk representation in Listing 29 with its partition having been
inserted into the body and removed from the construct itself.

1 kernel_husk
2 [m] xs (Nil , o ’ , m’)
3 {
4 . . .
5 }
6 (NilFn , Ni l)

program would be as shown in Listing 27 where the partition would no longer
be used inside the body of the husk as it would be unused by the map and
will therefore have been removed by the simplifier. Notice that this does in
principle require our definition of husks in the internal kernel representation to
be changed in order to allow the absence of a partition, but in order to keep
it simple we will keep it in the construct. However, as with having multiple
partitions in a husk, having no partitions is a simple generalization that can
fairly easily be applied to the husk representations.

The other simplification rule of interest is the internalization of partitions,
i.e. moving the partition inside the body of the husk as a slice of the source
array if the source array is itself used inside the body of the husk. For example,
consider the Futhark program in Listing 28 which will result in a kernel repre-
sentation of the program containing the husk as shown in Listing 29. Since one
of the key ideas of having partitions is to reduce the amount of memory that
need to be transferred to the devices, having the source array in the body of the
husk would mean that the source array would have to be broadcast to all de-
vices and therefore the partitioning of the source array would be redundant and
unnecessarily expensive. Therefore, if the source array of the partition appears
inside the body of the corresponding husk the partition can simply be defined as
a slice of the array inside the body. With this the husk representation in Listing
29 is transformed into the kernel representation of a husk shown in Listing 30
where the partition has been inserted into the body of the husk as a slice on
line 4 and has in turn been removed as a partition of the husk construct itself
on line 2. Notice that, like with the previous simplification rule, we assume that
the partition is allowed to be absent from the construct which we will only allow
in this section for the purpose of explaining the simplifications but will not be
reflected in the following sections.

In both cases we cannot remove the offset o’ and number of elements m’ of

28

4 FUTHARK COMPILER OPTIMIZER

Listing 28 A Futhark program that will result in a husk where the source of
the husks partition, i.e. xs, is used inside the husk body.

1 l e t main [m] (xs : [m] i 32) : [m] i 32 =
2 map (\x −> x + unsafe xs [x]) xs

Listing 29 A husk in the internal kernel representation of the Futhark program
in Listing 28.

1 kernel_husk
2 [m] xs (arr ’ , o ’ , m’)
3 {
4 . . .
5 l e t y = xs [x]
6 . . .
7 }
8 (NilFn , Ni l)

Listing 30 The husk representation in Listing 29 with its partition having been
inserted into the body and removed from the construct itself.

1 kernel_husk
2 [m] xs (Nil , o ’ , m’)
3 {
4 l e t arr ’ = xs [o ’ : o ’+m’]
5 . . .
6 l e t y = xs [x]
7 . . .
8 }
9 (NilFn , Ni l)

29

4 FUTHARK COMPILER OPTIMIZER

Listing 31 A high-level representation of the husk construct in the intermediate
explicit memory representation.

1 expmem_husk
2 [em_m] em_src
3 (em_p_arr , em_p_mem, em_p_o, em_p_m)
4 {em_b_exp}
5 (em_r_lam , em_r_ne)

the partition as the body of the husk may still depend on the partitioning logic
determining the offset and size of the slice into the source array. Likewise, we
could in principle remove the source array from the husk construct but since
the size of it is likely to be used when determining o’ and m’ it is kept.

4.3 Explicit Allocation
The explicit allocation pass of the Futhark compiler analyses the intermediate
kernel representation in order to find all needed memory allocations, trans-
forming the representation to explicitly express these memory allocations. This
introduces a new representation known as the intermediate explicit memory
representation. Let Lexpmem be the set of all expressions in the explicit mem-
ory representation language. With the addition of husks in the compiler we
introduce a new construct in the intermediate explicit memory representation,
namely the expmem_husk, as defined in Listing 31 where the attributes are as
follows:

em_src The name of the source array to be partitioned.

em_m The number of elements in the source array.

em_p_arr A name for the partition array.

em_p_mem A name for the memory block for the partition array.

em_p_o A name for a variable that represents the outer-dimension offset of
the partition in the source array.

em_p_m A name for a variable that represents the outer size of the partition
array.

em_b_exp An expression in Lexpmem representing the husk body.

em_r_lam A lambda function for the reduction of the husk body results. The
body of this lambda function is in Lexpmem.

em_r_ne The neutral element of the reduction lambda function em_r_lam.

30

4 FUTHARK COMPILER OPTIMIZER

From this representation the avid reader will have noticed that it is almost
identical to the representation of the husk in the intermediate representation
language of kernels but with the the expression of em_b_exp and em_r_lam being
in the intermediate explicit memory representation language and the addition
of the name for the memory block of the partition array em_p_mem. Likewise,
the semantics of the of this construct is equivalent to that of the kernel husk
representation with the addition of the access of partitions being done by use
of the new memory block.

With the introduction of memory blocks we also have the introduction of
index functions which represent the mapping from an index of the array to the
corresponding element’s location in the array’s memory block. The simplest
variant of an index function is the direct index function, which represents a
row-major ordering of the elements of an array in the corresponding memory,
meaning that the rows of the array is contiguous in memory. In contrast to
a direct index function is its transpose, namely a column-major ordered array,
where the columns of the array are contiguous in memory. Though index func-
tions can be much more complex than these two examples they are enough to
illustrate one of the key difficulties of the implementation of the husk operator,
specifically that some source arrays are unsuitable for partitioning due to how
they are represented in memory. As an example, consider the two-dimensional
arrays xss and yss both with outer size of 4 and inner size of 3 but whereas
xss is row-major ordered in memory, yss is column-major ordered. Consider
now we partition these equally, which would mean the arrays are sliced in the
outer dimension resulting in the partitions xss’ and xss” of xss, as well as
yss’ and yss” of yss, all having an outer size of 2 and inner size of 3. An
illustration of the memory layout of xss, yss, and their respective partitions,
is shown in Figure 4 . We see how partitioning of the row-major array xss can
be done by a single copy for each partition given the rows of the partition is
contiguous in the memory of xss, thus requiring a total of 2 memory copies.
However, for yss that has column-major ordering in memory we see that the
rows of its partitions are not contiguous in its memory and thus needs 3 copies
for each partition resulting in a total of 6 memory copies. Let p be the number
of partitions and let a be a d-dimensional array with the dimension sizes di for
i ∈ [1, 2, . . . , d]. Notice that the the ordering is preserved with the illustrated
partitioning. We can write the number of copies needed if the memory of a is
row-major ordered as

min(p, d1)

whereas if the memory of a is column-major ordered the number of copies needed
are

min(p, d1)
d∑

j=2
j

thus the number of copies needed for a column-major ordered array is a magni-
tude of the sum of the inner dimensions larger than a row-major ordered array

31

4 FUTHARK COMPILER OPTIMIZER

Figure 4: Illustration of the memory layout of the arrays xss and yss, with
row-major ordering and column-major ordering respectively. The arrays xss’
and xss” are even partitions of xss and the arrays yss’ and yss” are even
partitions of yss.

of the same size. Notice that an array cannot be split into more partitions than
the outer size of the array, therefore giving the use of the minimum operator.
Notice also that with more complex index functions the copy pattern needed to
be able to partition correctly also generally becomes more complex.

Though the total amount memory that must be copied in order to perform
the partitions stays the same no matter what index function is in use, the over-
head from the intercommunication introduced by doing large amounts of small
copies, e.g. as a column-major ordered array may require in order to be parti-
tioned, may prove expensive. Instead of employing this complex and potentially
expensive strategy for partitioning we only allow arrays with direct index func-
tions to be partitions for which two alternative strategy were considered:

1. Check the index function of the source array and if it is not direct then
restructure the memory of the array into a new memory block and a new
array which will in turn have a direct index function. If the source array
is restructured through this the resulting array becomes the new source
array. For example, if the array is column-major ordered the array is
be transposed. This strategy may require additional memory operations
but these will be in the memory of the same device rather than between
devices.

2. If the index function of the source array is not direct then the partition is
inserted into the body of the husk as a slice of the source array and is not
included as an explicit part of the husk construct. This will not require
restructuring of the source array but will require the entire source array

32

4 FUTHARK COMPILER OPTIMIZER

to be copied to the other devices, increasing the amount of memory to be
copied.

The performance of these strategies depend on multiple factors such as the
bandwidth of the interconnect between devices and the bandwidth and speed of
the memory on the main device. However, the second alternative strategy has
a significant benefit, namely that it does not introduce additional overhead if
there is only a single device which will be explored further in Section 6. In order
to support this in the introduced construct expmem_husk we allow the source
array [em_m]em_src and the partition tuple (em_p_arr, em_p_mem, em_p_o,
em_p_m) to be the special Nil value representing the absence of a partition.

A similar problem occurs when the intermediate result of a husk to be con-
catenated do not have a direct index function. In principle this problem is also
illustrated by Figure 4 but in this case we are copying smaller memory blocks
into a larger memory block representing the result. Like when the source arrays
of the partition do not have direct index functions we force the intermediate
results to have direct functions but in this case we cannot employ a strategy
similar the one chosen for partitions. Instead we employ a strategy similar to
the first strategy considered for the partitions, namely that we ensure that the
intermediate result arrays have a direct index function by restructuring them,
thus the combined result of these results will also have a direct index function.
Notice that this restructuring is done on each device and therefore on smaller
memory blocks than it would have been if the same strategy was employed for
partition, thus also potentially making it more viable for results than for parti-
tions but still potentially introducing an overhead in case only a single device
is used.

With the background established we can express the transformation from
the intermediate kernel representation to the explicit memory representation by
the transformation function A : Lkernel → Lexpmem, whereas we have the addi-
tional transformation function variant Alam for the transformation for lambda
functions. Additionally, let the trivariate function S be defined as

S(a, x, y) =
{
x The index function of a is direct.
y Otherwise

for an array a, any x, and any y. The transformation of the kernel_husk
construct of the intermediate kernel representation can be expressed as shown
in Listing 32 where the names from the definition of the kernel_husk construct
is reused and mem’ is a generated unique name. The source array and partition
tuple is only included as an attribute in the construct if the source array has a
direct index function as ensured by the use of S in lines 7 and 8. However, lines
10-12 show that if the source array does not have a direct index function the
partition array is inserted into the body as the slice of the source array. Notice
that we use a Futhark-like notation for the expressions inside the body of the
husk with skip representing a special no-operation expression that has no effect
on the semantics of the program. We let these expressions be in Lkernel and

33

4 FUTHARK COMPILER OPTIMIZER

Listing 32 The transformation of a husk in the intermediate kernel represen-
tation to a husk in the intermediate explicit memory representation.

1 A(kernel_husk
2 [k_m] k_src
3 (k_p_arr , k_p_o , k_p_m)
4 {k_b_exp}
5 (k_r_lam , k_r_ne)) ≡
6 expmem_husk
7 S(k_src, [k_m] k_src, Ni l)
8 S(k_src, (k_p_arr , mem’ , k_p_o , k_p_m) , Ni l)
9 {
10 (A ◦ S)(k_src,
11 sk ip ,
12 l e t k_p_arr = k_src [k_p_o : k_p_o+k_p_m])
13 A(k_b_exp)
14 }
15 (Alam(r_lam) , k_r_ne)

transform using the transformation function A. Notice also that for simplicity
the expression between the curly brackets, i.e. in lines 9-14, are combined in
the order they occur.

As an example of this transformation, consider again the kernel represen-
tation in Listing 24 of the Futhark program in Listing 17. To illustrate the
partitioning strategy we first consider the case where the source array zs has a
direct index function which results in the explicit memory representation shown
in Listing 33 . Notice the partition tuple and source array is represented as part
of the constructs attributes in lines 1 and 2 as the source array index function
is direct. For the same reason, at line 5 we have the additional skip operation
which in principle can be omitted as it has no effect on the program and likewise
the transformation of it has no effect either. Now consider the case where zs
is not direct with which the transformation is instead as shown in Listing 34
where we notice that only the source array, the partition tuple, and the start of
the body are different from the transformation result when the index function
of zs is direct. Notice that unlike with the transformation in Listing 33 we
cannot in this case omit the expression on line 5, i.e. the slice of zs. None
of the transformation examples takes into account that there may have been
made optimizations to the representation of their reduction function or their
husk bodies. This is generally not the case but is done to allow for running
examples through the optimizer transformations.

The need to keep the partition array and its memory block out of the body,
making it implicitly declared and allocated, is atypical compared to other con-
structs in the explicit memory representation language. However, it is done
in order to keep the generated representation oblivious to the fact that husks

34

4 FUTHARK COMPILER OPTIMIZER

Listing 33 The resulting explicit memory representation of the kernel husk
shown in Listing 24 when applying the transformation function A, if zs has a
direct index function.

1 expmem_husk
2 [zs_m] zs
3 (arr ’ , mem’ , o ’ , m’)
4 {
5 A(sk ip)
6 (A ◦ E′)(soac_redomap (λz → z + 1)
7 (λz1 z2 → z1 + z2 , 0)
8 [m’] arr ’)
9 }
10 ((Alam ◦ E′lam)(λz1 z2 → z1 + z2) , 0)

Listing 34 The resulting explicit memory representation of the kernel husk
shown in Listing 24 when applying the transformation function A, if zs does
not have a direct index function.

1 expmem_husk
2 Ni l
3 Ni l
4 {
5 A(l e t arr ’ = zs [o ’ : o ’+m])
6 (A ◦ E′)(soac_redomap (λy → z + 1)
7 (λz1 z2 → z1 + z2 , 0)
8 [m’] arr ’)
9 }
10 ((Alam ◦ E′lam)(λz1 z2 → z1 + z2) , 0)

35

4 FUTHARK COMPILER OPTIMIZER

Listing 35 A high-level representation of a husk function in the ImpCode lan-
guage.

1 imp_husk_function
2 hf_name
3 (hf_src , hf_part , hf_pbo , hf_pbs)
4 (hf_map_hres , hf_map_res , hf_mrbo , hf_mrbs)
5 hf_repl
6 hf_params
7 hf_o
8 hf_m
9 hf_src_m
10 hf_node_id
11 {hf_body_code}

introduces memory spaces on different devices that in turn need special opera-
tions to allow intercommunication. If we were to declare and allocate a partition
inside the body of the husk then the copy from the memory block of the source
array into the memory block for the partition, which is between devices and is
therefore possibly different from the usual device memory copying, must also be
inserted into the body but is currently not expressible in the representation lan-
guage. Notice that any arrays and corresponding memory used, but not defined,
inside the body of the husk must also be copied to the device that is running
the given instance of the husk body, but since these are not partitioned they are
simply a full copy and does not need to be identified until the imperative code
representation.

4.4 Imperative Code Generation
With the GPU pipeline having done its transformations on the program repre-
sentation the compiler has all the needed information to be able to continue to
the backend. However, before reaching the backend the representation of the
program is transformed into an intermediate representation that is closer to the
imperative code that the backends will generate, which we will refer to as the
ImpCode. With the introduction of the husk operator we need to introduce a
transformation from its explicit memory representation to ImpCode, however
in order to do so we first introduce a new construction we will refer to as a husk
function. We define the husk function representation as shown in Listing 35
where the attributes are:

hf_name A unique name for the husk function.

hf_src A name for the source memory block.

hf_part A name for the memory block containing the partition of the source
memory.

36

4 FUTHARK COMPILER OPTIMIZER

hf_pbo An ImpCode expression representing the byte offset of the partition
into the source array.

hf_pbs An ImpCode expression representing the byte size of the partition.

hf_map_hres The name of the memory block containing the concatenated result
of the husk function.

hf_map_res The name of the memory block for the concatenated results of the
entire husk.

hf_mrbo An ImpCode expression representing the byte offset into the con-
catenated result where the result of the husk function is to reside.

hf_mrbs An ImpCode expression representing the byte size of the result of
the husk function.

hf_repl A list of memory blocks that are used inside the body of the husk
function.

hf_params A list of parameters for the husk function.

hf_node_id A name for the special parameter representing the unique identifier
of the GPU that the husk function will use.

hf_o A name for the variable to contain the element-based offset of the
partition into the source array.

hf_m A name for the variable to contain the outer size of the partition
array.

hf_src_m An ImpCode expression specifying the number of elements in the
source memory block.

hf_body_code An ImpCode representation of the body of the husk function.
Notice that we allow the case where there is no concatenated results which is rep-
resented by the concatenated result tuple containing hf_map_hres, hf_map_res,
hf_mrbo, and hf_mrbs, being the special Nil value. Likewise, the partition tuple
containing hf_src, hf_part, hf_pbo, and hf_pbs is also allowed to be Nil.

The execution of a husk function is the execution of the body hf_body_code
with the partition hf_part having been copied from the source memory hf_src
at the byte offset hf_pbo with a byte size of hf_bps. When the execution of
the body is done, the map result hf_map_hres, with the byte size hf_mrbs, is
copied to the concatenated result memory block of the entire husk hf_map_res
at the byte offset hf_mrbo if they exist. In order to ensure correct execution of
the body and of the partitioning the variables hf_o and hf_m, the parameters
hf_params, and the special parameter hf_node_id must be in scope.

A husk function corresponds to a single execution of the distributed part of
a husk and thus it is not a direct part of ImpCode but is instead a part of a
husk construct in ImpCode. The ImpCode husk representation is specified as
shown in Listing 36 where the attributes are:

37

4 FUTHARK COMPILER OPTIMIZER

Listing 36 A high-level representation of a husk in the ImpCode representation
language.

1 imp_husk
2 ih_num_nodes
3 ih_hfunc
4 { ih_rres }
5 { ih_r}

ih_num_nodes A name for a variable to contain the number of GPUs to use for
the husk.

ih_hfunc The husk function representing the distributed execution of the husk.

ih_rres An ImpCode representation of the allocation of a memory block on
the host.

ih_r An ImpCode representation of the reduction of the reduction results
of the husk function executions.

The execution of an ImpCode husk is done by execution of the husk function
ih_hfunc with each GPU where the number of GPUs specified through the
variable ih_num_nodes. The results are then reduced using ih_r which is done
on the host. Notice that in order to do a reduction on the host, a memory
block for the results from the body to be reduced is allocated on the host before
executing the husk function and is given as the ImpCode piece ih_rres. Since
there are a result for each GPU the amount of memory to allocate is equal
to the number of GPUs, i.e. ih_num_nodes, times the size of the result type.
Additionally, as the results may just need to be concatenated, which is in turn
done directly to the main device, the allocation on host as well as the reduction
ImpCode may be empty. Notice that since the husk function is executed for each
GPU the host memory block for the results to be reduced cannot be allocated
as part of the husk function and is therefore a separate attribute. Notice also
that the allocations cannot be done outside the husk representation either as we
must ensure that the allocation stays and is accessed as being on host, which
is atypical for a construct generated through the GPU pipeline as discussed in
Section 4.4.1.

Like with the previous transformations we again introduce a transformation
function I : Lexpmem → Limpcode where Limpcode is the language of ImpCode
expressions. In addition to the transformation function we need to define a
number of auxiliary functions:

mem(a) A function that takes an array a and returns the associated memory
block.

isize(m) A function that takes a memory block m and returns the total inner
byte size of the corresponding array, i.e. the product of all other

38

4 FUTHARK COMPILER OPTIMIZER

dimensions than the first multiplied by the byte size of the element
type.

ismem(v) A logical function that returns > if the variable v refers to a memory
block on the GPU and ⊥ otherwise.

free(e) A function that takes an expression e in Lexpmem and returns the
set of all free variables in the expression, i.e. all variables used but
not defined inside the expression.

lambda(l, x, y) A function that takes a bivariate lambda function l with a body
in Lexpmem and two expressions x and y in Limpcode, and returns an
expression in Limpcode representing l applied to x and y.

rest(c, x, y) A function that takes arbitrary values c, x, and y, and returns x if
c is the special Nil value and y otherwise.

Since ImpCode is an imperative representation we will use C-like pseudo code
for any statically generated expressions of the transformation which is a better
match to the structure of ImpCode than the Futhark-like pseudo code used in
the previous representations. With this we can define the transformation of a
husk in the explicit memory representation to an ImpCode expression as shown
in Listing 37 where name is a unique name for the husk function and num_nodes,
node_id, and red_res are unique variable names. Here we use t to denote the
result type of the husk function and we use res to refer to the final result of
the husk operation. As previously we use skip to represent an operation with
no effect on the execution of the program.

The transformation introduced in Listing 37 may appear fairly involved so
let us go through the different attributes of the resulting transformation:

Line 7 We introduce a unique name num_nodes for the auxiliary variable rep-
resenting the number of executions of the husk function to be done and
thereby also how many devices to use.

Lines 8-25 The husk function is generated in tandem with the creation of the
husk construct. The attributes of the husk function are generated as:

Line 9 A unique name is created for the husk function. The exact name
is not important and can in principle be generated arbitrarily as long
as the uniqueness is ensured.

Lines 10-12 The partition tuple contains the memory corresponding to
the source array, i.e. em_src, the name for the memory block of the
partition em_p_mem, and the byte offset and size of the partition into
the source respectively. Notice that the offset em_p_o and the size of
the partition em_p_m are over the outer dimension of the source array
and thus are have a byte-stride equal to the product of the inner size
of the source array.

39

4 FUTHARK COMPILER OPTIMIZER

Listing 37 The transformation of a husk in the explicit memory representation
to a husk in the ImpCode representation.

1 I(expmem_husk
2 [em_m] em_src
3 (em_p_arr , em_p_mem, em_p_o, em_p_m)
4 {em_b_exp}
5 (em_r_lam , em_r_ne)) ≡
6 imp_husk
7 num_nodes
8 (imp_husk_function
9 name
10 (mem(em_src) , em_p_mem,
11 isize(em_p_mem) ∗ em_p_o,
12 isize(em_p_mem) ∗ em_p_m)
13 rest(em_r_ne,
14 (res , b_res ,
15 isize(b_res) ∗ em_p_o,
16 isize(b_res) ∗ em_p_m) ,
17 Ni l)
18 ({v ∈ free(em_b_exp) | ismem(v)} \ {em_p_mem})
19 (free(em_b_exp) \ {node_id, em_p_o, em_p_m, em_p_mem})
20 em_p_o em_p_m em_m
21 node_id
22 {
23 t b_res = I(em_b_exp)
24 rest(em_r_ne, sk ip , red_res [node_id] = b_res ;)
25 })
26 {
27 rest(em_r_ne, sk ip ,
28 t ∗ red_res = mal loc (s i z e o f (t)∗num_nodes) ;)
29 }
30 {
31 rest(em_r_ne, sk ip ,
32 {
33 t z = em_r_ne ;
34 f o r (i n t i = 0 ; i < num_nodes ; ++i){
35 z = lambda(em_r_lam, z, red_res [i])
36 }
37 r e s = z ;
38 })
39 }

40

4 FUTHARK COMPILER OPTIMIZER

Lines 13-17 Since the husk function only contains the concatenated re-
sult tuple if there is no reduction associated with it, it is replaced
by Nil if there is a neutral element specified. Notice that we could
also have checked whether or not the reduction lambda function was
the nil-function. The first element of the concatenated result tuple,
if it is present, is the variable res representing the final result of the
husk operation, since in this case it will be the concatenation of all
intermediate results. The second element of the tuple is the variable
b_res, i.e. the result of the body, whereas the last two elements
are the byte offset and size respectively. Notice that if this tuple is
present, the type t must be a memory block.

Line 18 The memory that must be broadcast to all devices is given as
all free variables inside the body of the husk that refer to memory
blocks on the GPU, except the partition memory block which is made
specifically as to prevent the source array from being copied in full.

Line 19 Likewise, the parameters of the husk function are all the free
variables in the body of the husk, except all variables declared im-
plicitly by the husk, i.e. the auxiliary variables node_id, em_p_o,
and em_p_m, as well as the partition memory block em_p_mem.

Line 20 The variable names representing the offset and size of the parti-
tion are propagated as they will be defined by the backend. Likewise
we keep the outer size of the source array as it is likely to be relevant
when declaring the partition offset and size.

Line 21 A unique name node_id is given to the special parameter that
allows for the identification of the execution of the husk function
ranging from 0 to num_nodes− 1 which can in turn also be used to
identify the corresponding device to be used by the husk function.

Lines 22-25 The body of the husk function corresponds to the transfor-
mation of the husk body in the explicit memory representation with
its result written to some result variable b_res. If the results of the
husk function calls are to be reduced then the result is written to the
element of the array red_res corresponding to the execution of the
husk function which can be identified by the husk function parameter
node_id. Notice that since red_res is allocated on the host, as is
done on lines 26-29, we assume an implicit device-to-host copy in the
writing of the corresponding element in red_res.

Lines 26-29 If the results of the husk function calls are to be reduced then
we must allocate a buffer for the individual results on the host which
we do under a unique variable name red_res with a number of elements
corresponding to the number of devices in use, which is identifiable through
the variable num_nodes.

Lines 30-39 If the results of the husk function calls are to be reduced it accom-
plished by iterating over the results stored in red_res in order and apply

41

4 FUTHARK COMPILER OPTIMIZER

the transformed reduction lambda function to it with the final results
written to res, i.e. being the final result of the entire husk operation.

An interesting note to this transformation is that, whereas the reduction is
created here, the concatenation of results are left to the the backend. This is
again to keep the optimizer oblivious to the multiple device memory spaces that
the husk operator essentially introduces as otherwise the results would have to
be expressed in terms of an inter-device memory copying operation from the
results of each device to the main device which is what the backend will instead
be in charge of carrying out by using the concatenated result tuple in lines 13-
17. Notice that as it is written, this transformation does not take into account
the case where the partition of the explicit memory representation of a husk
is missing as is allowed due to the partitioning strategy discussed in Section
4.2.1. This was intentionally omitted as to prevent the transformation from
becoming unnecessarily bloated but is as simple as having the partition tuple
of the ImpCode husk be Nil if the partition is Nil in the explicit memory
representation of the transformed husk.

Though the transformation shown in Listing 37 may appear confusing at first
glance, much of it disappears once we can determine whether the husk function
call results are to be reduced or concatenated. Consider as an example explicit
memory representation of a husk in Lisiting 33 which would be transformed
into a husk construct in ImpCode as shown in Listing 38 where node_id’ and
num_nodes’ are unique variable names and name’ is a unique husk function
name. Additionally, for brevity we let free′ be the free variables in the body of
the husk representation in Listing 33. We see here that since the results of the
husk function calls are to be reduced there is no concatenation tuple in line 4
and the buffer allocation and reduction can be determined to be present.

4.4.1 Default Space

Within the GPU pipeline of the Futhark compiler whenever the program has
been converted to ImpCode all memory blocks that are set to use the default
space are changed to be device memory blocks. However, the husk representa-
tion needs the intermediate reduction result memory blocks to stay on the host
which is normally denoted by the default space. Therefore, the tree-traversal
function for setting the default spaces was changed to allow the exclusion of
specific names from having their default space changed, keeping all access, al-
location, and freeing in host memory. When setting the default space of a husk
the list of intermediate reduction result memory blocks are then added to the
exclusion list ensuring that they correctly stay on the host and is likewise cor-
rectly accessed both inside the husk function and when doing the reduction on
the host.

42

4 FUTHARK COMPILER OPTIMIZER

Listing 38 The resulting ImpCode representation of the explicit memory husk
representation shown in Listing 33 when applying the transformation function
I.

1 imp_husk num_nodes ’
2 (imp_husk_function name ’
3 (mem(zs) , mem’ , isize(mem’) ∗ o ’ , isize(mem’) ∗ m’)
4 Ni l
5 ({v ∈ free′ | ismem(v)} \ {mem’ })
6 (free′ \ {node_id ’ , o ’ , m’ , mem’ })
7 o ’ m’ zs_m node_id ’
8 {
9 t b_res = (I ◦A ◦ E′)(
10 soac_redomap (λz → z + 1)
11 (λz1 z2 → z1 + z2 , 0)
12 arr ’ [m’])
13 red_res [node_id] = b_res ;
14 })
15 { t ∗ red_res = mal loc (s i z e o f (t)∗num_nodes) ; }
16 {
17 t z = em_r_ne ;
18 f o r (i n t i = 0 ; i < num_nodes ; ++i){
19 z = lambda((Alam ◦ E′lam)(λz1 z2 → z1 + z2), z, red_res [i])
20 }
21 r e s = x ;
22 }

43

5 MULTI-GPU CUDA BACKEND

5 Multi-GPU CUDA Backend
The Futhark compiler contains a number of GPU-centered backends primarily
identified by the language of the generated code and the GPU compute API.
Originally the only GPU compute API with a backend in the Futhark compiler
was OpenCL using C for the host code whereas variants using Python and C#
as the host language were introduced later on. Following this, the CUDA driver
API and the Vulkan API have been used to make new backends both using C
as the host language.

The introduced husk operator changes the structure of the generated inter-
mediate representation of a Futhark program in the GPU pipeline thus requiring
all Futhark backends utilizing the GPU pipeline to handle the case where husks
are encountered. Due to the structure of husks, a simple implementation can
be done by inserting the allocation, body, and reduction inline after setting the
corresponding node identifier and number of nodes which in this case would be
the constants 0 and 1 respectively. Such a backend is hardly interesting as it
allows only for the execution of the husk on a single GPU, defeating the pur-
pose of implementing the husk operator. However, as to prevent repetitive work
for now we will leave most backends with this implementation and focus on a
multi-GPU adjustment to a single one of the backends. Notice however that
most decisions discussed in this section should be directly translatable to the
other relevant backends.

For the remainder of this section we will focus on the CUDA C backend,
which was chosen primarily because of the explicit nature of memory handling in
the CUDA driver API. In contrast, the OpenCL API has more complex memory
handling for multi-device systems, inferring device location implicitly, which can
at times prove beneficial, but could potentially be inconvenient when attempting
to adjust the backend from single-device to multi-device. The Vulkan API is
possibly more explicit than the CUDA driver API in general but since the
Vulkan backend for Futhark is still in development it was quickly excluded from
this decision, lest it require debugging unrelated to the husk implementation.
Notice however a drawback of focusing on the CUDA backend is that the results
are limited to NVIDIA devices only.

In this section we introduce the changes needed to the existing structure of
a C program generated through the Futhark CUDA C backend. To do this we
first need to introduce the needed changes to the contexts of an execution of the
program, that is the collection of information that is generally needed for the
program to run such as a reference to the device and the memory management
system. We then introduce the approach to generating C code from a husk func-
tion representation from ImpCode. In order to use a generated husk function we
then introduce a worker-thread strategy for execution of a husk which utilizes
the multi-threaded nature of modern CPUs to execute the host operations of a
husk. Lastly we introduce the generating of C code that binds all the previous
together, namely the launching of a husk.

For the rest of this section we let C denote a function from ImpCode to C
code. Additionally, whenever we make an example for the generated C code any

44

5 MULTI-GPU CUDA BACKEND

Listing 39 The CUDA node context structure containing information on each
node in the multi-node setting of the Futhark CUDA C backend.

1 struct cuda_node_context {
2 CUdevice dev ;
3 CUcontext cu_ctx ;
4 CUmodule module ;
5
6 struct f r e e_ l i s t f r e e_ l i s t ;
7 } ;

irrelevant information may be omitted and externally defined functions, such as
C, may be used inline, thus any such examples should be seen as being written
in a C-like pseudo language.

5.1 Multiple CUDA Contexts
In order for the CUDA driver API to be able to identify the device to be ad-
dressed by operations it exposes, a CUDA device context must be created.
Likewise, if a program is to use multiple devices it must also create at least one
context for each of these device. Though these contexts are the corner stone of
most operations they are, more often than not, excluded from the parameters
of the CUDA driver API operations. For these operations to identify the con-
text to operate on, and thereby the device, the CUDA driver API maintains a
thread-local context stack where the active context is at the top of the stack.
Whenever a context is explicitly created, the created context is pushed onto the
top of the stack.

Akin to the contexts, to be able to run a CUDA program on a GPU in a
CUDA context a module must be created. Modules are collections of launchable
CUDA kernels loaded from PTX programs which are in turn referenced by
querying the API for the kernels by name. As each device needs the CUDA
kernels of the program in order to be able to launch them, a module must be
loaded through each device context that may use it.

In order for the Futhark CUDA backend to reflect this we introduce a new
structure to the boilerplate C code, namely the node contexts, defined as shown
in Listing 39 where we notice that the node contexts contains both a device
reference in line 2, a CUDA device context in line 3, and a CUDA module in
line 4. Notice that since each device has individual memory spaces the structure
also has a free-list, i.e. the memory management construction of the generated
runtime, on line 6 which is exclusive to the context specified. All allocation and
freeing for the CUDA device context must be done using this free list, as they
will be device specific. This new structure replaces the same variables in the
CUDA context structure as an array with n elements where n is the number of
GPUs to use upon execution.

45

5 MULTI-GPU CUDA BACKEND

To create node contexts the Futhark CUDA backend must find n suitable
devices which are selected using the follow two filtering rules:

1. First find all GPUs with the highest CUDA API version amongst all of
them, which generally are the newest GPUs in the system. This is done by
sorting by the API version and truncating after the last with the highest
API version.

2. Then enforce that these devices are symmetric which is determined by
them having the same name. This is not strictly necessary but will make
partitioning simpler, as we will discuss later.

This is a heuristic for finding the most suitable devices but highest API version
does not necessarily mean that it is a better device. The first of the filter rules
can be overridden using the Futhark CUDA backend command line parameter
for specifying a preferred device, selecting only devices matching the name given.
The rule of symmetry in devices is always enforced however.

When devices are determined we first generate the necessary PTX repre-
sentation of the program, which is the intermediate representation of CUDA
programs either compiled from a CUDA C representation of the program or
read from a file. For each device we then create a new CUDA device context
which combined with the PTX program is used to create a module. Notice that
given the symmetry of the selected devices, and therefore also the same API
version, the PTX program need only be generated once and can thus be used
for all devices when loading a module, whereas with different API versions there
may be different optimizations done to the programs and thus may benefit from
different PTX programs.

When the module has been loaded the program extracts references to all the
kernels. Since this reference are unique to each device we again need to define
a new structure, namely the Futhark node context. However, the content of
this structure is dynamic as the kernels involved depends on the program being
compiled. Like with the CUDA node context the program needs to initialize
one Futhark node context for each node to be executed on.

The number of GPUs to use, and thereby also the number of node contexts
to create, is specified through the nodes command line argument of a Futhark
program compiled using the CUDA C backend. As an example, for a Futhark
program compiled to a file prog using the CUDA C backend, that can execute
it with 2 GPUs using the command

1 > ./ prog −−nodes=2

where the number of nodes to use defaults to 1 if unspecified, whereas specifying
the number of nodes to use as 0 will cause the runtime to use as many devices
as possible fitting the specified criteria. This sets the num_nodes variable of the
configuration inside the CUDA context to the value specified.

Introducing additional device memory spaces also introduces the need to be
able to identify the correct node context in order to allocate and free not only
as to have the correct free list but also to make sure that we are in the correct

46

5 MULTI-GPU CUDA BACKEND

Listing 40 An example of a husk function of a husk in ImpCode.

1 imp_husk_function
2 name
3 (src , part , pbo , pbs)
4 (hres , res , mrbo , mrbs)
5 [x]
6 [(src , memblock_device) , (res , memblock_device) ,
7 (x , memblock_device) , (y , t)]
8 po
9 pm
10 sm
11 node_id
12 {body_code}

CUDA device context when the allocation or freeing is done. To make the C
code generator context aware we introduce a new element to the state structure,
namely the local node identifier. The local node identifier is an expression
containing the index of the currently relevant node contexts, i.e. the node
identifier. This local node context is by default 0 as to specify the first node as
the main node, whereas whenever the body of a husk is compiled the local node
identifier is set to the expression identifying the relevant node for each iteration
of the body and reduction operator. The local node identifier is then returned
to the previous value upon completion of the husk compilation.

5.2 Generating Husk Functions
With the compilation of a husk inside the CUDA C backend we first generate the
code for the corresponding husk function. To illustrate this code generation step,
consider the husk function from an ImpCode husk shown in Listing 40 where we
denote a list by a comma-separated elements between square-brackets, as shown
for the memory blocks that need to be copied in line 5 and the parameters in
lines 6-7. Additionally, we represent the parameters as a list of tuples where
the first element is the name of the variable to bring into scope and the second
variable is the type. Notice that memblock_device is a structure with properties
mem and size representing a memory block on a device and its size respectively.
The type t is an arbitrary C type.

By a design choice that will become apparent in the following sections, a
husk function is compiled from ImpCode by generating a C function for it. The
name of this function is the name of the husk function whereas the parameters
are:

1. The full Futhark context of the execution of the program.

2. The node identifier, the name of which will be the variable name specified
by the husk function. This is used to find the CUDA node context with the

47

5 MULTI-GPU CUDA BACKEND

Listing 41 The parameter structure husk_context generated from the husk
function in Listing 40.

1 struct husk_context {
2 memblock_device s r c ;
3 memblock_device r e s ;
4 memblock_device x ;
5 t y ;
6 } ;

Listing 42 The parameter structure husk_context generated from the husk
function in Listing 40.

1 int name(void ∗vctx ,
2 int32_t node_id ,
3 void ∗husk_params_p) {
4 futhark_context ∗ ctx = (futhark_context ∗) vctx ;
5 husk_context husk_params =
6 ∗(husk_context ∗) husk_params_p ;
7
8 . . .
9
10 return 0 ;
11 }

device corresponding to the execution of this husk function, e.g. through
by use in the local node identifier.

3. A collection of values corresponding to the variables specified in the pa-
rameter list.

Notice that in order to generalize the signature of the generated function we com-
bine all the parameters specified by the husk function into a collective structure.
This will allow the backend to pass the parameters around without having to
make special cases for each husk function in the program, the importance of
which will become more apparent when the husk functions are to be used. This
means that in addition to declaring a function for the husk function we also
must generate a structure to contain all the parameters of the husk function.
For the example of a husk function in Listing 40, the backend generates a pa-
rameter structure husk_context as shown in Listing 41 . With this structure
the C function for the husk function is defined as shown in Listing 42 where we
see further generalization of the Futhark context and the husk function param-
eters by use of the void pointer type that is in turn cast to the Futhark context
structure and the generated parameter structure immediately inside the body
of the function. This is again to generalize the type signature of the generated

48

5 MULTI-GPU CUDA BACKEND

Listing 43 The declaration of variables from the parameter structure inside the
body of the function generated from the husk function in Listing 40.

1 memblock_device s r c = husk_params . s r c ;
2 memblock_device r e s = husk_params . r e s ;
3 memblock_device x ;
4 t y = husk_params . y ;

Listing 44 The copying of x from the main device to the corresponding device
inside the function generated from the husk function in Listing 40.

1 memblock_alloc_device (ctx , node_id , &x , husk_params . x .
s i z e) ;

2 cuMemcpyPeer (x .mem, ctx−>cuda . nodes [node_id] . cu_ctx ,
3 husk_params . x .mem,
4 ctx−>cuda . nodes [0] . cu_ctx ,
5 husk_params . x . s i z e) ;

function, the need for which also becomes apparent in the following sections.
Though the parameter structure has been brought into the scope of the

generated function we must also ensure that the actual parameters are brought
into scope under their original name. For example for the husk function in
Listing 40 the C code shown in Listing 43 will be early in the generated function.
Notice that the declaration of the variable x on line 3 is not assigned to the
corresponding item in the parameter structure. This is due to x being part of the
list of memory blocks to move to the device in full, thus any reference to x inside
the generated function must refer to a copy of x that is on the corresponding
device. However, since the item inside the parameter structure must refer to a
memory block on the main device we must ensure that its content is transferred
to the corresponding device. This is done for x as shown in Listing 44 where line
1 shows an allocation of a memory block on the device corresponding to the node
identifier with a size equal to that of x on the main device, mutating the locally
declared variable x to the allocated memory block reference. We then copy the
content of the husk parameter x to the newly allocated memory block by using
the CUDA device-to-device memory copy operation cuMemcpyPeer where the
CUDA device contexts of the source and destination must explicitly be specified.
Notice that not all the parameters that reference memory blocks on the main
device must be copied to the device corresponding to the node identifier as is
illustrated by src and res not being copied to the device in a whole. These are
special as src is to be partitioned to prevent a full copy thus doing a full copy
defeats the purpose of it, whereas res represent the memory block on the main
device that will contain the results of all husk to be combined. Likewise, neither
of these can occur in body_code where for the case of src this is ensured by
the fully-copied partitions simplification rule described in Section 4.2.1, whereas

49

5 MULTI-GPU CUDA BACKEND

Listing 45 Initialization of the auxiliary partition variables po and pm inside
the function generated from the husk function in Listing 40.

1 int32_t max_pm = 1 + sdiv32 (C(sm) − 1 ,
2 ctx−>cuda . c f g . num_nodes) ;
3 int32_t po = node_id ∗ max_pm;
4 int32_t pm = smin32 (max_pm, C(sm) − po) ;

res is the result of the husk and should therefore not occur inside its body.
With the required part of the caller’s scope reestablished inside the body

of the generated function we can declare and initialize the auxiliary variables,
specifically the partition element-based offset po and the number of elements in
the partition pm. By design choice the CUDA C backend uses a even-partitioning
strategy, i.e. the source array is to be split equally between the devices. How-
ever, since the number of elements in the source memory block, specified through
the expression in sm, may not be a multiple of the number of devices this must
be taken into consideration when specifying the auxiliary variables. Therefore
we let o be the element-wise offset of the partition in the source, let m be the
number of elements in the source, let m′ be the number of elements in the par-
tition, let i be the node identifier of the corresponding device, and let n be the
number of devices. For the even-partitioning strategy we have that

o = idm
n
e

and

m′ = min(dm
n
e,m− o)

where we note that dm
n e is the maximum number of elements of in any partition.

With this definition we also note that all but the last partitioning of the source
memory block will have the maximum number of partition elements, whereas
the last may have up to n− 1 fewer elements. With this we can instantiate the
auxiliary variables, e.g. for the husk function in Listing 40 this results in the
C code in Listing 45. Here we use another auxiliary variable, namely max_pm,
representing the maximum number of elements in a partition of the husk, as
well as the number of nodes being used as specified in the configuration of the
given execution of the program. Notice that since C truncates integer division
towards zero we utilize an alternative way of doing rounded-up integer division
where sdiv32 is an integer division that rounds towards −∞ as to ensure correct
result when the number of elements in the source array is 0. Notice also that
even if there is no partition in the husk function, the offset and size may still be
relevant to the body of the husk function or to the concatenation of the results
so they must still be defined.

With the variables specifying the partitioning initialized the partitioning can
finally commence. This is done in a similar fashion to the full copying of memory

50

5 MULTI-GPU CUDA BACKEND

Listing 46 The partitioning of src from the main device to part on the corre-
sponding device inside the function generated from the husk function in Listing
40.

1 memblock_device part ;
2 memblock_alloc_device (ctx , node_id , &part , C(pbs)) ;
3 cuMemcpyPeer (part .mem, ctx−>cuda . nodes [node_id] . cu_ctx ,
4 s r c .mem + C(pbo) , ctx−>cuda . nodes [0] . cu_ctx ,
5 C(pbs)) ;

Listing 47 The copying of the result of the husk function hres to be combined
with the results of other husk function executions in res inside the function
generated from the husk function in Listing 40.

1 cuMemcpyPeer (r e s .mem + C(mrbo) ,
2 ctx−>cuda . nodes [0] . cu_ctx ,
3 hres .mem,
4 ctx−>cuda . nodes [node_id] . cu_ctx ,
5 C(mrbs)) ;

blocks from the main device done earlier, but with a new memory block, namely
the partition memory block. Thus, for the exemplary husk function in Listing
40 the partitioning of the source memory block src on the main device into
a new memory block part on the device corresponding to the node identifier
node_id is shown in Listing 46 where we see the declaration of the partition
on line 1, the allocation of it on line 2, and lastly the actual partitioning on
lines 3-5. Notice that the byte offset of the partitioning and the byte size of the
partition is compiled from the expressions pbo and pbs respectively which are
in turn dependent on the partition variables defined previously.

With the entire needed scope established body_code is compiled into the
body of the generated function. After this the result to be combined with the
results of other calls to the generated function resides in hres and must be
copied into the combined result res. Again, this is done using the CUDA peer-
to-peer memory copy operation but whereas the previous operations have been
from the main device to the device corresponding to the node identifier of a call
to the generated function, the combination of the results is done in the reversed
direction. For our running example in Listing 40 this is done as shown in Listing
47 where mrbo and mrbs are expressions representing the byte offset and byte
size for the result of the husk function inside the combined result. Notice that
there may not be a result to be combined, e.g. if the result is to be reduced
over, in which case the results are copied to the host inside body_code.

By the end of the generated function all new memory blocks used for the
partitions and for memory blocks copied in full from the main device must be
freed, i.e. for Listing 40 this results in the C code shown in Listing 48 .

51

5 MULTI-GPU CUDA BACKEND

Listing 48 The freeing of all memory blocks containing data copied from the
main device inside the function generated from the husk function in Listing 40.

1 memblock_unref_device (ctx , node_id , &x) ;
2 memblock_unref_device (ctx , node_id , &part) ;

To summarize, consider once again the running example of a husk function
given in Listing 40 for which the CUDA C backend will generate the C function
shown in Listing 49 where the parameter context structure is defined in List-
ing 41. That is, at lines 8-11 the parameters are brought into the local scope
by their corresponding names with lines 13-18 copying the content from the
memory block x from the main device to the device that the husk function is
to execute with. Then on lines 20-30 the partitioning is done by first initial-
izing the auxiliary partition variables po and pm with which the partitioning
is done by copying from the source memory block src to the newly allocated
partition memory block part. With this the body of the husk function, namely
body_code, is compiled and the result of the husk function execution hres is
copied into the combined result on the main device. Lastly all memory blocks
allocated explicitly by these steps are freed and the generated function termi-
nates.

5.2.1 Over-partitioning

As equally sized partitions may potentially be significantly different in the time
they take to be processed we entertain the idea of over-partitioning as an al-
ternative strategy to the even-partitioning strategy currently deployed by the
CUDA C backend.

Consider a program with a husk h. Let the function Tn(a) be the time it takes
for h to execute with a as input if given n symmetrical devices, using an over-
partitioning strategy, and assuming all partitions exhaust device resources. For
an arbitrary array a that exhausts given resources the perfect case would have
Tn(a) = 1

nT1(a) as the problem would be evenly divided between all devices.
Now let b be an array with valid input for h and let b1, b2, b3, and b4 be
element-wise perfectly even partitions of b where their union comprises all of b.
Let T1(b) = t, T1(b2) = 1

2 t, and T1(b1) = T1(b3) = T1(b4) = 1
6 t. As illustrated

by Figure 5 this is not a perfect case with even-partitioning as

T2(b) = max(T1(b1) + T1(b2), T1(b3) + T1(b4)) = 2
3 t.

Over-partitioning splits the array into k partitions where k > n and uses
dynamic scheduling to assign them to the devices as they are available. Again,
consider the husk h and the array b with its partitions. Let T ′n(a) be the
time it takes for h to execute with a if given n symmetrical devices, using an
over-partitioning strategy, and assuming all partitions exhaust device resources.
Notice that for any array a we have that T ′1(a) = T1(a) as a single device

52

5 MULTI-GPU CUDA BACKEND

Listing 49 The function generated from the husk function in Listing 40.

1 int name(void ∗vctx ,
2 int32_t node_id ,
3 void ∗husk_params_p) {
4 futhark_context ∗ ctx = (futhark_context ∗) vctx ;
5 husk_context husk_params =
6 ∗(husk_context ∗) husk_params_p ;
7
8 memblock_device s r c = husk_params . s r c ;
9 memblock_device r e s = husk_params . r e s ;
10 memblock_device x ;
11 t y = husk_params . y ;
12
13 memblock_alloc_device (ctx , node_id , &x ,
14 husk_params . x . s i z e) ;
15 cuMemcpyPeer (x .mem, ctx−>cuda . nodes [node_id] . cu_ctx ,
16 husk_params . x .mem,
17 ctx−>cuda . nodes [0] . cu_ctx ,
18 husk_params . x . s i z e) ;
19
20 int32_t max_pm = 1 + sdiv32 (C(sm) − 1 ,
21 ctx−>cuda . c f g . num_nodes) ;
22 int32_t po = node_id ∗ max_pm;
23 int32_t pm = smin32 (max_pm, C(sm) − po) ;
24
25 memblock_device part ;
26 memblock_alloc_device (ctx , node_id , &part , C(pbs)) ;
27 cuMemcpyPeer (part .mem, ctx−>cuda . nodes [node_id] . cu_ctx ,
28 s r c .mem + C(pbo) ,
29 ctx−>cuda . nodes [0] . cu_ctx ,
30 C(pbs)) ;
31
32 C(body_code)
33
34 cuMemcpyPeer (r e s .mem + C(mrbo) ,
35 ctx−>cuda . nodes [0] . cu_ctx ,
36 hres .mem, ctx−>cuda . nodes [node_id] . cu_ctx ,
37 C(mrbs)) ;
38
39 memblock_unref_device (ctx , node_id , &x) ;
40 memblock_unref_device (ctx , node_id , &part) ;
41
42 return 0 ;
43 }

53

5 MULTI-GPU CUDA BACKEND

Figure 5: Execution time Tn, where n is the number of devices, of a husk h
using the even-partitioning strategy, of partitionsb1, b2, b3, and b4 of an array
b.

Figure 6: Execution time T ′n, where n is the number of devices, of a husk h
using the over-partitioning strategy with m = 4, of partitionsb1, b2, b3, and b4
of an array b.

will still have to take the partitions sequentially. As illustrated by Figure 6
this accomplishes the optimal execution time of T ′2(b) = 1

2 t. However, consider
an array c with perfectly even partitions c1, c2, c3, and c4, where T ′1(c) = t,
T1(c3) = 1

2 t, and T1(c1) = T1(c2) = T1(c4) = 1
6 t. With c we again reach an

execution time of T ′2(c) = T2(c) = 2
3 t where over-partitioning is no better than

the even-partitioning as the expensive partition is selected late in the execution
of h which is illustrated in Figure 7. Notice that this problem can be somewhat
mitigated by increasing k at the risk of the partitions not exhausting device
resources leaving precious compute units idle.

Though over-partitioning in theory has equivalent or better execution time
than the even-partitioning strategy implementing it would introduce additional
overhead. The most obvious added overhead is the increased communication
between host and device. For the even-partitioning strategy the host only has
to issue all needed operations, such as memory copying and kernel launching, n
times whereas over-partitioning must do this k times, where k is likely magni-
tudes larger than n. The overhead of copying partitions by need could poten-

54

5 MULTI-GPU CUDA BACKEND

Figure 7: Execution time T ′n and Tn, where n is the number of devices, of a
husk h using the even-partitioning strategy and the over-partitioning strategy
with m = 4, respectively, of partitionsc1, c2, c3, and c4 of an array c. Notice
that for all arrays a we have that T ′1(a) = T1(a).

tially be mitigated by instead copying the entire memory block to all devices,
but this will however increase the amount of memory needed to be transferred
for partitions by a factor n and would defeat the primary purpose of the parti-
tions in general. In addition to this whereas for even-partitioning the host can
issue device operations and continue executing the host code while the devices
executes the commands given, in the case of over-partitioning the host would
have to wait for the execution to finish on each partition before continuing with
the next, introducing idle time for the device between each partition.

5.3 Worker-thread Runtime Environment
Originally the implementation strategy of husks inside the CUDA C backend
used a loop iterating over the number of GPUs to use and running the husk
function for each. Since the launching of CUDA kernels does not synchronize
the execution of the kernel with the host, i.e. the calling host thread is allowed
to continue executing the host program while the GPU executes the kernel, this
did in theory allow for parallel execution of kernels. However since the results of
the husk function may be copied to the host inside the husk function, which will
in turn synchronize the host with the device, the loop-based implementation
could introduce sequential execution of the kernels defeating the purpose of
using multiple devices. In principle knowing that this is only a problem for
the results of the husk function to be reduced the device-to-host copies could be
deferred to after all kernels have been launched but this introduces an unwanted
restriction on the body of a husk, specifically that it must not contain any CUDA

55

5 MULTI-GPU CUDA BACKEND

Figure 8: The execution of a Futhark program compiled using the CUDA C
backend with the worker-thread implementation using n GPUs.

operations that synchronizes the host and the device which is likely to prove
problematic when the capabilities of husks are expanded in the future.

The restriction that the loop-based implementation of multi-GPU husks
would introduce leads us to the alternate implementation, namely a worker-
thread implementation. The worker-thread implementation is a change to the
runtime environment used by the generated program and is based on the realiza-
tion that the CUDA device context stack is thread-specific, i.e. each executing
thread in the host process has its own CUDA device context stack and can
therefore issue CUDA commands through different contexts without interfering
with each other [1, p. 73].

The worker-thread implementation introduces a number of threads into the
generated CUDA C runtime environment equal to the number of nodes. Each of
these threads are in charge of setting up their corresponding node context and
by association also its CUDA device context. Upon executing a husk the main
thread will send a message to each worker thread with the needed information
to be able to run the husk function, including any arrays that will contain the
results. Upon completing the execution of a husk function the worker threads
synchronize and the main thread proceeds by applying the reduction to the
results. By the end of the programs execution the worker threads cleans up
their corresponding node context and shut down.

Consider a Futhark program that when compiled using the GPU pipeline
of the Futhark compiler contains a single husks h being executed in succession.
Figure 8 illustrates the execution of this program compiled with the Futhark
CUDA C backend using the worker-thead implementation and n GPUs. No-
tice that having more husks in the program would introduce similar execution
snippet as that of h between the setup and the shutdown of the worker threads.
However, between execution of husks the worker threads will run idle as the main
node is awoken, executes the reduction, and potentially begins the execution of
following husks.

In the Futhark CUDA C backend we will be using the pthreads library
in the GNU library collection primarily because the backend already uses the

56

5 MULTI-GPU CUDA BACKEND

GNU C compiler to compile the generated C program so the acquisition of the
pthreads library should not be difficult on most machines using the backend.
The pthreads library supplies an implementation of POSIX threads, commonly
known as a pthread, which are implementations of the standardized execution
model for parallel C threads as specified in the IEEE POSIX 1003.1c standard
[6]. Unlike the fork system call on Linux machines that spawn a new identical
process at the point of entry, a pthread starts its execution as a call to a specified
function with a single void pointer parameter. Therefore in order to be able to
spawn worker threads we must define a function as an entry point for the worker
thread and a structure with all the information needed, which are; the node
identifier of the worker thread, the Futhark context, and the compiled PTX
program with all kernels to be executed. Notice that with the node identifier,
the Futhark context, and through it the CUDA context, each worker thread is
able to access its corresponding node context.

With this structure we spawn each worker thread through their own instan-
tiation of the main worker thread function with the relevant info. The worker
thread must then first setup the CUDA device context, load the CUDA mod-
ule, and initialize the free-list. In addition to these the worker thread must
setup a semaphore that the main node will use in order to send messages to the
worker thread after setup which we will refer to as the message signal. Then,
like previously, all kernels are gathered from the module and all static arrays
are allocated and initialized on each worker thread. After this has been done
all the worker nodes synchronize with the main thread through what we will
denote as the synchronization point. The synchronization point is a pthread
barrier that blocks all waiting threads until the specified number of threads are
actively waiting which for the synchronization point is the number of worker
threads and the main thread.

When synchronicity has been reached the worker threads will wait for the
message signal to be set whereas the main node sets the top of its CUDA driver
context stack to the context corresponding to that of worker thread 0 in order to
allow for kernels to be launched outside of husks through the main thread. Then
the main node enables any interconnects between the CUDA device context 0
and all other worker thread CUDA device contexts as to allow for the fastest
peer-to-peer memory copies possible. Notice that any inter-GPU memory copy
operation in husks are done either to or from the device of worker thread 0,
i.e. the same that is used by the main thread. With this done the main thread
starts the execution of the program as usual.

With the worker threads up and running a number of messages are defined
for when they are awoken by their respective message signals, namely:

• A synchronization message calling for an explicit device-to-host synchro-
nization.

• A husk message sent when the worker thread must execute a husk function.

• An exit message to be sent when the program is done and the nodes must
clean up after themselves.

57

5 MULTI-GPU CUDA BACKEND

Listing 50 The definition of a common type for the functions generated from
husk functions.

1 typedef int32_t (∗ husk_function_t) (void ∗ , int32_t , void ∗) ;

Whenever a worker thread is awoken by the message signal it checks the message
identifier and executes accordingly.

The first of the messages, namely the synchronization message, instructs all
worker threads to do an explicit host-device synchronization before returning to
the main thread. Thus when the main thread continues execution all device con-
texts have finished all queued operations. This is simply implemented by having
each worker thread call the CUDA driver API function cuCtxSynchronize be-
fore synchronizing with the main thread followed by it once again awaiting new
messages.

When the exit message is sent the worker threads begin their cleanup phase
which involves clearing out the respective free-list, unloading the CUDA mod-
ule, destroying the CUDA device context, and destroying the message signal
semaphore. When this is done the worker thread interrupts its own message
loop and dies. After this point any messages sent from the main thread to the
worker threads has undefined behavior.

Unlike the previous two messages the husk message is more dynamic and
therefore also needs additional information to execute which we will refer to
as the content of the message. For the case of a husk message, the message
content contains the parameters of the corresponding husk function as speci-
fied directly by the husk function, as well as a function pointer to the function
generated from the corresponding husk function. This is the primary reason as
to why the type signature of the functions generated from husk functions must
be generalized as it allows the definition of a common type of this function,
namely husk_function_t as shown in Listing 50 where the first parameter is
the Futhark context structure, the second parameter is the node identifier for
the execution of the husk function, and the last parameter is the husk param-
eter structure corresponding to the husk function. The last parameter is a
void pointer as different husk functions have different parameter structures thus
representing them as a void pointer allows the function to convert it appropri-
ately. The reason why the Futhark context is passed by a void pointer is due
to this type definition being inserted earlier than the definition of the Futhark
context structure and therefore the type definition cannot reference it. When
a husk message is received the worker thread calls the specified function with
the Futhark context, the node identifier of the calling node, and the specified
parameters. Upon completion of the corresponding call the result of the call is
written to a result variable in the Futhark node context which indicates whether
or not the husk body finished successfully. If the result is not 0, which would
otherwise signify a successful execution of the corresponding husk, the main
thread cleans up and signals the error. Notice that in order to not free on top

58

5 MULTI-GPU CUDA BACKEND

Listing 51 An example of an ImpCode representation of a husk.

1 imp_husk
2 n_nodes
3 (imp_husk_function
4 husk_f
5 (src , part , pbo , pbs)
6 Ni l []
7 [(src , memblock_device) ,
8 (res , memblock_device) ,
9 (y , t)]
10 po pm sm node_id
11 {body_code })
12 { r r e s }
13 { red }

Listing 52 The initialization of the auxiliary variable for the number of GPUs
to use in the execution of the husk in Listing 51.

1 int32_t n_nodes = ctx−>cuda . c f g . num_nodes ;

of each other and to keep all husks in line, the main thread is responsible for
freeing all memory from outside the corresponding husk. Since all husks that
has safely failed will have freed their own memory before returning a failure and
all successful husks will have done the same before ending their execution we
can be sure that all memory blocks are correctly freed.

5.4 Launching Husks
With the framework established for the execution of a husk function on multiple
GPUs we can finally consider the compilation of an husk in the ImpCode. To
make examples of the generated code we consider the ImpCode representation
of a husk shown in Listing 51 with a husk function inline.

Inside the backend the occurrence of an ImpCode husk signifies the launching
of a husk. However before generating the ground work needed to launch a husk
the husk function is used to generate a function representing it, as specified in
Section 5.2.

First the auxiliary variable specifying the number of GPUs to use is initial-
ized which is done by assigning it the value of the num_nodes in the configuration
of the executing Futhark program. As an example of the initialization of the
variable representing the number of nodes, consider the ImpCode husk shown
in Listing 51 which sets the number of GPUs to use, i.e. variable n_nodes, to
the value of the configuration variable as shown in Listing 52. Notice that this
variable does not generally need to be passed to the function generated from the

59

5 MULTI-GPU CUDA BACKEND

Listing 53 The initialization of the parameters used to call the function gen-
erated from the husk function of the husk in Listing 51.

1 husk_context husk_params ;
2 husk_params . s r c = s r c ;
3 husk_params . r e s = r e s ;
4 husk_params . y = y ;

husk function even though the generation of the function uses it to determine
partition sizes unless an expression in the husk function uses it. This is due to
the variable being accessible through the Futhark context for any generated code
that explicitly need to know the number of GPUs to use whereas the auxiliary
variable acts as a mediator for the body of the husk function.

Then the C code for the allocation of the host memory blocks for the interme-
diate results to be reduced is inserted. Since this is done through the ImpCode
representation inside an ImpCode husk this is simply done by compiling the
attribute.

With this all necessary variables are initialized and the corresponding husk
function can be called. However to do such a call the parameters must be in-
serted into the husk parameter structure corresponding to the generated func-
tion for the husk function. Consider again the ImpCode husk in Listing 51.
This will create an instance of the parameter structure of the husk function and
sets items of it as shown in Listing 53.

Using the message system established in the worker-thread runtime environ-
ment we can now call the function generated from the husk function through
each worker node by sending a husk message with a pointer to the generated
function and the created instance of the parameter structure. When control is
returned to the host code, i.e. when the worker threads are done executing the
specified function, the reduction red is compiled inline to be done by the host.

To summarize, for the ImpCode husk in our running example shown in
Listing 51 the execution of a husk is done as shown in Listing 54. In line 1 we
see the initialization of the variable representing the number of GPUs whereas
the allocation of the memory blocks to contain the results of the husk function
to be reduced through red is on line 3. Lines 4-7 have the initialization of the
husk function parameter structure which is then passed, together with a pointer
to the function generated from the husk function, to the worker nodes through
the worker-thread runtime environment interface on line 10. Lastly with the
worker threads done with the execution of the husk functions the results are
then reduced through the reduction resulting from compiling red on line 12.
Notice that the generation of its husk function is described in Section 5.2 and
has therefore been omitted from this example.

As an interesting implementation detail consider the case where an assertion
fails inside the function generated from a husk function. In that case, all memory
blocks allocated must be freed which is exactly what is done when the assertion

60

5 MULTI-GPU CUDA BACKEND

Listing 54 The C code generated by the CUDA C backend for the ImpCode
husk in Listing 51.

1 int32_t n_nodes = ctx−>cuda . c f g . num_nodes ;
2
3 C(r r e s)
4
5 husk_context husk_params ;
6 husk_params . s r c = s r c ;
7 husk_params . r e s = r e s ;
8 husk_params . y = y ;
9
10 send_node_husk (ctx , &husk_f , &husk_params) ;
11
12 C(red)

fails on the main thread. However with multiple threads in flight we cannot have
each thread free all memory as they would potentially attempt to free memory
that does not exist on their corresponding device or even attempt to do the same
freeing of memory simultaneously. Instead when compiling the body of a husk
function a failing assertion only frees the memory that has been allocated inside
the generated function. By checking the results of the launched husk message,
the launching code can then determine if any worker thread failed the call can
then free the remaining memory blocks accordingly. Notice that no matter if a
failure happens or not, the husk functions will have freed all new memory blocks
thus having the main thread free the rest upon failure is enough to ensure all
memory is freed.

61

6 MATCHING SINGLE-GPU PERFORMANCE

6 Matching Single-GPU Performance
It is important to realize that the husk operator is agnostic on the number
of devices it uses, allowing the number of devices to use to be dynamically
determined at runtime. However this introduces the problem of potentially in-
troducing an overhead in the single-GPU case relative to the original backends.
Even if the husks introduce decent multi-GPU performance it may not be worth
it if the single-GPU case suffers for it so in this section we will discuss some
of the overhead introduced by the implementation of husks in the CUDA back-
end, described in Section 5, and then try to introduce mitigation strategies to
minimize or remove it. In Section 7 we measure the remaining overhead.

6.1 Peer-to-peer Memory Copying
In the CUDA C backend all memory blocks used inside the husk functions are
copied from the main device to each device to be used for the computation of
the husk. Though this is needed in order to actually be able to access the needed
data to in turn be able to do their share of the computation, the generalization
of this means that the main device also has its partition of the memory copied
into its own memory space even though the source array is already there. Notice
that though an inter-GPU copy operation is also used to do this copy the API
is smart enough to detect that both the specified CUDA device contexts refer
to the same device and therefore simply does a device-internal memory copy.
Though this is generally faster than a peer-to-peer copy it is still potentially
expensive for no gained benefit. To prevent this we can in the case of fully copied
memory blocks simply reuse the memory block by having the new memory block
reference it directly which is easily implemented by checking if the device in use
is the main device.

The copying of partitions can be done in the same way due to the observation
that the main node has been given device identifier 0. This not only ensures that
the main device can be easily identified through a static check of the identifier
but also means that due to the partitioning strategy selected for the CUDA
backend, as specified in Section 5.2, the offset of its partition is 0 which allows
the partition memory block to be the same as the source memory block. Notice
that though an offset larger than 0 would not in theory introduce a problem as
the memory pointer used by the partition could just point at the corresponding
offset into the source memory block, this would require changes to the internal
representation of memory blocks in the generated C code in order to allow offsets
into other memory blocks instead of the current reference-counting approach.

Similar to partitions, when the intermediate results of the husk are to be
concatenated the device 0 case could also just write the result directly to the
memory block of the final concatenated result instead of writing to a newly
allocated memory block and doing an internal device memory copy operation.
With respect to the implementation this is slightly more difficult than for par-
titions as the allocation happens inside the body of the husk. Though it should
be a general optimization for now, changing the allocation should be kept as an

62

6 MATCHING SINGLE-GPU PERFORMANCE

optimization in the CUDA C backend as we do not want to make assumptions
about main device optimizations for future backend implementations of husks.

To make the main device optimization for concatenated results we traverse
the body of the husk function backwards and if the allocation is found it is
replaced by an if-statement that preserves the allocation when not on the main
device, exchanging it for an assignment to the concatenated memory block if
not. In some cases the intermediate results to be concatenated are not allo-
cated explicitly but are assigned to another memory block. In that case we
continue the traversal but looking for the allocation of the memory block that
the intermediate result was set to, replacing it with an assignment to the final
concatenated result memory block or looking for its original memory block if
it is in turn just an alias for another memory block. There are however some
rare cases where this optimization may become more complex, such as if the
allocation happens in a conditional body, i.e. in a branch of an if-statement or
inside the body of a for-loop, in which case the results may be less predictable
as previous allocations for the memory block may not have any relation to the
memory block in use at the time of a kernel inside a husk. Notice that the
current implementation is naive and simply drops any attempt at changing the
allocation whenever it is encountered inside a conditional. Improvements to this
optimization is left for future work.

The ability to set the partition and otherwise copied memory to their source
in the case of device 0 is not limited to the single-GPU case and can poten-
tially offer increased performance when using multiple GPUs. However since
the worker threads are synchronized by the end of the husk operation the per-
formance of the entire husk is limited by the slowest of the worker threads, so
having a general performance increase on one GPU may not benefit the perfor-
mance of the entire husk operation. Notice also that the thread using device 0
was already predisposed to have better performance than the other threads as
the now removed peer-to-peer memory copies were previously changed to less
expensive device-internal memory copies.

6.2 Inter-thread Communication
Through the introduction of additional threads in the runtime environment gen-
erated by the CUDA C backend we also introduce a communications overhead
with the main thread sending messages to the worker threads which will in turn
wake them up. Though this overhead is generally small compared to the runtime
of the husk function it is still an additional overhead relative to the originally
generated code that can in fact be mitigated.

In order to accomplish a reduced overhead of the inter-thread communica-
tion we first make the realization that the main thread enters a waiting state just
after dispatching a message to all worker threads, only continuing upon synchro-
nization with the worker threads when they have finished the corresponding job.
Therefore if we relax the notion of worker threads to have the main thread act
as a worker thread upon sending a message we gain the benefit of lower commu-
nication overhead for that execution. This can be accomplished by generalizing

63

6 MATCHING SINGLE-GPU PERFORMANCE

the handling of messages and decreasing the number of threads by one. With
this the main thread then sends messages to all the worker threads, starting
with identifier 1, thus reserving identifier 0 for itself. When the messages are
dispatched the main thread continues on to handle the message itself for device
0 and synchronizes with the other worker threads once done. This means that
when there is only a single device to use the main thread will not spawn nor
outsource work to worker threads and will neither need to synchronize upon the
completion of handling a message.

Notice that like with the optimization of memory reference setting on device
0 as discussed earlier this optimization does also have performance increase on
one of the threads. However this is again on the device with identifier 0 and we
again have that the performance gain in the multi-GPU case may be limited by
the other threads.

6.3 Forced Direct Index Function
In Section 4.3 we discussed the problem of memory layout through index func-
tions when doing partitions, specifically that the memory copying for parti-
tions may become increasingly complicated with complex index functions for
the source arrays. We then introduced two slightly aggressive strategies for en-
suring direct index function on the source array, heavily simplifying the memory
copying of partitions, but at the cost of either having to restructure the memory
of the source arrays or internalizing the partitioning to the body of the husk, in-
creasing the amount of memory to copy. Of these two strategies the second was
selected which may have appeared unreasonable at the time but was strongly
motivated by the prevention of the overhead on the single-GPU case that the
first of the strategies would introduce.

Consider a column-major ordered array a which is the source array of the
partition in a husk h. When using the first strategy introduced in Section 4.3 a
transposition of a would be done, resulting in a new memory block with an array
a′ which would in turn have a direct index function. The array a′ would then be
the new source array of h. Since the partitioning of a source array in the single-
GPU case is generally a full copy of the array, no matter the index function, the
transposition of a introduces an unnecessary overhead to the single-GPU case.
Unlike the previous single-GPU optimizations this cannot be mitigated by a
special case for device 0 setting the memory of a′ to reference to the memory of
a as all access to the memory of a′ assume row-major ordering of the array given
that was the index function of a′. Likewise it is not possible to make a special
case in the explicit allocations step of the compiler to give a′ a conditional index
function, i.e. having its memory layout remain column-major in the single GPU
case and have it row-major otherwise. Technically, in the explicit allocation
step when the strategy is employed the husk could be split into two branches
of an if-statement; one branch for the multi-GPU case with a′ being introduced
inside it and having it as the source array of the contained husk, and the other
branch for the single-GPU case which would simply be a husk that retains a as
the source of the partition. Notice however that this approach would introduce

64

6 MATCHING SINGLE-GPU PERFORMANCE

redundant work for the compiler as well as clutter the generated intermediate
representation of the encapsulating program. Notice also that this would require
the number of GPUs to be defined outside of husk operations in order to allow
the branching.

In contrast by employing the second strategy introduced in 4.3 we have that
the source array is fully copied if it does not have a direct index function. In the
single GPU case this introduces no additional overhead as the partitions would
already have been full copies which in turn becomes a reference assignment
instead through the optimizations introduced in Section 6.1.

6.4 Reduction on the Host
As mentioned in Section 3.2 the reduction of a husks intermediate results is done
on the host. This means that the results to be reduced must be transferred to
the host upon completion of the individual husk function executions. Previously
the results of reduction operations were allowed to stay on the GPU if it was
not used on the host but with the host-level reduction introduced on these
reduction operations by the husk transformation of the reduce SOAC introduced
in Section 3.1.2 it will be copied to the host no matter the future use of it. This
is generally the effect of the design choice made of the host-level reduction and
since reduction results are often scalars this transfer itself is mostly inexpensive.

However to understand why this deviation can become expensive, consider
a program that computes a reduction r the result of which is needed on the
GPU in an adjacent operation o but will never be used on the host. Previously
r would be a standalone operation and the execution could be summarized as:

1. The host launches the kernel that computes r and let the result stay on the
device, potentially by dispatching a memory copy internal to the memory
of the GPU.

2. The host launches the kernel that computes o with the result of r that is
already on the GPU.

However with the husk operator r will be in the body of a husk, so the execution
is:

1. The host distributes r over the GPUs to use.

2. The results of each distribution of r is copied into a buffer on the host.

3. The buffer with the results are reduced using the reduction monoid of the
husk.

4. The result of the husk reduction is copied to the main GPU.

5. The host launches the kernel that computes o with the result of the husk
that was recently copied to the main GPU.

65

6 MATCHING SINGLE-GPU PERFORMANCE

For the GPUs the copy to and from the host is negligible assuming the result
is a small array or a scalar. However, on the host the first of these executions
would not require any host-device synchronization between the computation of
r and the computation of o so the host is free to launch the kernel for o right
after launching r, but for the the execution where r is inside a husk the host
copies the data from the GPUs which introduces a host-device synchronization
as the host has to both wait for r to finish and for the results of r to be copied
to its memory. In the case where multiple GPUs are used to compute r this is
necessary as the reduction changes the final results. However, for the case where
r is computed on a single GPU and therefore is not distributed we have that the
husk reduction leaves the intermediate result unchanged due to the definition of
monoids. Therefore in the single-GPU case the reduction on the host becomes
unnecessary and the result could be allowed to stay on the host.

The optimization for the single-GPU case for results of reductions that can
remain on the main GPU is more difficult than the other optimization how-
ever as it effects the usage of the result outside the husk operator which would
in turn be dependent on the number of GPUs in use. This could in principle
be accomplished in a similar way to how reduction results are allowed to stay
on the GPU that is by letting the memory space of the result be the memory
space of the main device. This would mean that for the single GPU case we
could simply let the result stay on the main GPU but for multiple GPUs the
intermediate results would be copied to the host, reduced, and the final result
being transferred back to the device. The primary problem with this optimiza-
tion would be that, if the result is only used on the host the result would be
transferred back to the host which would be redundant work in the multi-GPU
case. Since this should optimize the single-GPU case it should be considered
for future work.

66

Part III

Evaluation and Final Remarks

67

7 PERFORMANCE COMPARISON AND BENCHMARKING

7 Performance Comparison and Benchmarking
The point of the husk operator is to be able to efficiently distribute a problem in
a Futhark program between multiple GPUs, taking advantage of the additional
resource that the additional devices offer. In this section we will evaluate the
performance of a selection of Futhark programs, compiled using the CUDA C
backend, using multiple GPUs, and comparing it to the performance of the
same programs using a single GPU. However before doing this comparison we
first compare the single-GPU performance of Futhark program compiled using
the CUDA C backend with the husk operator implemented to the currently
released Futhark compiler CUDA C backend, investigating select performance
differences introduced by the husk operator implementation.

Throughout this section we will be using a selection of the established
Futhark benchmark programs1. All benchmarking is conducted on a machine
with the following specifications:

OS Microsoft Windows 10 Pro - Version 10.0.18362 Build 18362.

CPU AMD Ryzen 2700X with 8 cores and 16 threads each running at a
base clock of 3.7 GHz and a max turbo clock of 4.3 GHz.

RAM 32 GB of DDR4 RAM running at 3200MHz.

GPU Two NVIDIA GeForce RTX 2080 each with 8 GB memory, a memory
bandwidth of 448 GB/s, and 2944 CUDA cores running at a max
core clock of 1710 MHz. The two discrete GPUs are connected to
the PCIe bus through 8 lanes each and are interconnected using an
NVLink bridge with at 50 GB/s bidirectional bandwidth making it
25 GB/s in each direction [20].

7.1 Comparing Single-GPU Performance
To assess the effect that the addition of the husk operator has on the single-
GPU execution of compiled Futhark programs we want to take a general look at
the performance difference between the compiler with and without the husk op-
erator. To accomplish this we use the Futhark benchmarking utility to run
the benchmarks in the Futhark benchmark collection, excluding the micro-
benchmarks as they currently fail on Windows. We do this for both the currently
released version of the Futhark compiler and the new Futhark compiler that gen-
erates husks, both using the CUDA C backend. Appendices B.1 and B.2 show
the results of these benchmarks, displaying the average runtime of 100 runs for
each of the data sets of each of the benchmark programs. For each benchmark
program let rn1 and rorig be the average runtime over the respective data sets of
the program compiled with and without husks respectively, with which we de-
fine the average slowdown as rorig/rn1 and the average speedup as rn1/rorig. To

1The Futhark benchmark programs can be found at https://github.com/diku-dk/futhark-
benchmarks.

68

https://github.com/diku-dk/futhark-benchmarks
https://github.com/diku-dk/futhark-benchmarks

7 PERFORMANCE COMPARISON AND BENCHMARKING

summarize the performance difference of the benchmark programs, the average
slowdown and average speedup greater than 1 is shown in Figure 9. With the
addition of the husk operator we would expect that the comparatively restric-
tive structure of the program it introduces would be cause for overhead in some
programs but we would not expect increased performance. However though
Figure 9 shows that the difference in performance of most of the programs is
negligible we actually see cases for both slowdown and speedup with programs
such as NN and LUD in the Rodinia benchmark set being respectively ∼ 2.5×
and ∼ 1.9× slower than without the husk operator and programs such as CFD
also in the Rodinia benchmark set gaining a ∼ 1.7× performance increase. To
gain a better understanding of this we investigate the most glaring examples of
both speedup and slowdown.

7.1.1 Rodinia NN

Of the performance decreases shown in Figure 9 the largest is that of the NN
Futhark implementation based on the implementation of the k-nearest neighbor
data analysis algorithm from the Rodinia application suite [2]. This benchmark
program becomes ∼ 2.5× slower with the addition of the husk operator, which
is a product of the reduction of the husk being done on the host.

Consider Appendices C.1.1 and C.2.4 where we see a summary of the CUDA
API calls and GPU activities done while running the NN benchmark program
with the supplied medium.in data both with and without the husk operator
being used by the compiler. We see that the number of calls to the kernels as
well as their execution time stay the same between the executions but where
the program compiled without husk operators have 200 memory copies inside
GPU memory, the husk operator replaces these with 100 device-to-host and
200 host-to-device memory copies. This is in fact the product of the overhead
introduced by the husk reduction done on the host that remains unmitigated
in the single-GPU case as discussed in Section 6.4. As mentioned the actual
difference in time spent on the GPU between the internal GPU memory copy
and the device-to-host-to-device copy is negligible but the cost comes from the
the unnecessary synchronization done on the device-to-host synchronization that
halts the execution of the active CPU thread until the reduction kernel finishes
and the data has been transferred to the host. Notice that the reason for the
number of device-to-host copies only increasing by 100 is due to one of the two
results of the reduction being copied to the host in the version without husks as
well but since it also exists on the GPU it is not transferred back for the next
execution of the reduction.

7.1.2 Rodinia CFD

In the opposite side of the scale we have the CFD benchmark program, also
based on one of the applications in the Rodinia suite, that actually gains a
∼ 1.7× speedup in performance with the husk operator. Again we turn to the
NVIDIA profiling tool to gain a better understanding of difference the husk

69

7 PERFORMANCE COMPARISON AND BENCHMARKING

Figure 9: Average slowdown and speedup magnitude of the benchmark results
in Appendix B.2 relative to the results in Appendix B.1.

70

7 PERFORMANCE COMPARISON AND BENCHMARKING

operator makes to the generated program. Appendix C.1.2 and C.2.5 show
a summary of profiling the CFD benchmark program using the data set fv-
corr.domn.193K.toa.gz supplied with the benchmarks. From the profiling results
we note three interesting differences:

1. The program with husks have 12000 fewer transposes as the program with-
out husks.

2. The program with husks launches a large number of copy kernels which
the other program has none of.

3. The segmap kernels of the program with husks are faster than the corre-
sponding kernels in the program without husks.

The additional copy kernels are caused by the internalization of partitions, ei-
ther through the second simplification rule described in Section 4.2.1 or by
the partitioning strategy described in Section 4.3. Since this changes the in-
dex function of some of the arrays in the program, i.e. with a different offset
and a size, the compiler determines that select transposes of 3-dimensional ar-
rays, corresponding to the 12000 missing transposes comprising 6000 transpose
compositions, can be written as copy kernels which are in turn faster than the
transpose compositions.

In addition to combining transpose compositions into combined copy ker-
nels, the compiler changes the layout of the resulting memory block slightly.
The result of this slight restructuring becomes very apparent by the third ob-
servation made from the profiling results as it changes the access pattern made
to these memory blocks to be coalesced, improving the performance of some of
the memory accesses in the significantly faster segmap kernels.

Notice that improved performance of the CFD benchmark program is a
byproduct of the husk operator as it is primarily caused by a slight index func-
tion change of select arrays causing the compiler to select an alternative way
of restructuring the arrays. Therefore the performance improvement could po-
tentially be made an optimization in the compiler separate from the use of the
husk operator.

7.2 Multi-GPU Performance
Though good single-GPU performance is important, the goal of the husk opera-
tor is to allow for the utilization of multiple GPUs. However we do not expect all
programs to actually benefit equally from the husk operator and some may take
a performance hit due to the expensive inter-GPU memory copies potentially
outweighing the decreased execution time of husk body.

Since we do not need nor expect the performance of multi-GPU execution
of Futhark programs to be as consistently close to the single-GPU execution we
will only consider select benchmark programs, discussing programs that increase
and decrease in performance from the husk operator on two GPUs compared to
just one.

71

7 PERFORMANCE COMPARISON AND BENCHMARKING

Data set Avg. Runtime (ms) Rel. Perf.One GPU Two GPUs
small.in 86721.180 88224.219 98.296%
medium.in 66455.344 51178.730 129.849%
large.in 745787.188 399335.906 186.757%

Table 3: Performance comparison between using a single and two GPUs when
running the benchmark data sets for the LocVolCalib benchmark program,
based on the results shown in Appendix B.2 and B.3.

7.2.1 Finpar LocVolCalib

The first of the benchmark programs we consider is the LocVolCalib program
in the collection of parallel financial benchmarks. A performance comparison
of LocVolCalib using two GPUs and a single GPU is shown in Table 3 based
on the benchmarking results shown in Appendix B.2 and B.3. We see from the
relative performance that nothing is gained from using two GPUs for the data
set small.in but for medium.in the performance increases by ∼ 30%, whereas
the performance increases ∼ 87% with the large.in dataset. This illustrates a
fundamental limitation of the husk operator, specifically that if the distributed
problem does not exhaust the resources of a single GPU, using more symmet-
ric GPUs comes with no benefit as is the case for small.in and to some extent
medium.in. However notice that relative to a single GPU the maximum perfor-
mance increase of using more symmetric GPUs is proportional to the number
of GPUs used, which the relative performance in Table 3 for the large.in data
set gets close to.

To understand why LocVolCalib performs so well with two GPUs, consider
the NVIDIA CUDA profiling results for running LocVolCalib with the large.in
data set and using one GPU and two GPUs as shown in Appendix C.2.1 and
C.3.1 repectively. From this we see how the kernels are almost perfectly dis-
tributed between the two GPUs, i.e. the runtime of the kernels takes about half
the time to execute on each GPU relative to the corresponding kernels when on
a single GPU. As illustrated by the relative performance shown in Table 3 we
do not gain a perfect doubling of performance, but given that the inter-GPU
memory copy for this program is inexpensive it is likely that performance may
increase further with even larger data sets.

7.2.2 Accelerate Tunnel

Another example of a well behaving benchmark program with respect to multi-
ple GPUs is the Tunnel benchmark program in the Accelerate benchmark collec-
tion. Table 4 shows the relative performance of the Tunnel benchmark program
between executing it with one GPU and two GPUs. The relative performance
tells us that by increasing the second and third parameter to the program while
keeping the first parameter at 10 the performance increase is allowed to grow
up to a ∼ 50% increase in performance. However it also shows that additional

72

7 PERFORMANCE COMPARISON AND BENCHMARKING

Data set Avg. Runtime (ms) Rel. Perf.One GPU Two GPUs
#1 (“10f32 800 600”) 350.270 342.460 102.280%
#2 (“10f32 1000 1000”) 592.560 585.670 101.176%
#3 (“10f32 2000 2000”) 2352.390 1725.940 136.296%
#4 (“10f32 4000 4000”) 7873.750 5357.360 146.971%
#5 (“10f32 8000 8000”) 31266.711 20770.920 150.531%
#6 (“10f32 16000 16000”) 124773.000 83034.828 150.266%
#7 (“10f32 32000 16000”) 249784.484 166037.625 150.438%
#8 (“10f32 16000 32000”) 249938.047 166310.328 150.284%
#9 (“100f32 16000 16000”) 511468.820 277573.240 184.264%

Table 4: Performance comparison between using a single and two GPUs when
running the benchmark data sets for the Tunnel benchmark program, based on
the results shown in Appendix B.2 and B.3.

performance can be gained by increasing the first parameter.
To understand why the parameters affect the performance increase we con-

sider profiling results of the last two data sets shown in Table 4 as shown in
Appendix C.2.2 and C.2.2. We see how, with the second and third parameters
being large, the inter-GPU memory copies correspond to ∼ 24% of time spent
on the device where the remaining time is spent on the only kernel of the pro-
gram, which in turn appears to be well distributed as each GPU uses around
half the time of the corresponding kernel when using a single GPU. In fact it
appears that the amount of memory used by the program is based on the last
two parameters and as they increase the time needed for executing the kernel
and the time required for the inter-GPU memory copy both increase, explain-
ing the ∼ 50% ceiling when only increasing the last two parameters. However
increasing the first parameter only increases the execution time of the kernel,
allowing the performance to increase further. This benchmark program illus-
trate that husks may work better for some data sets than others as a product
of husks being primarily limited by data transfers.

7.2.3 Accelerate Mandelbrot

With the Tunnel benchmark program we saw how the performance gain result-
ing from the increase of the last two parameters of the program was limited
whereas additional performance gain was reachable when the first parameter
increased. The benchmarking data sets used were fortunate as the limit on the
performance was actually above the performance when using a single GPU, but
this is not the case for all programs and all data sets. An example of this is
the benchmark program Mandelbrot in the Accelerate benchmark collection of
which the relative performance between the use of one and two GPUs based
on the benchmarking results shown in Appendix B.2 and B.3 is shown in Table
5. Here we again see how an increase in two of the parameters reaches a limit

73

7 PERFORMANCE COMPARISON AND BENCHMARKING

Data set Avg. Runtime (ms) Rel. Perf.One GPU Two GPUs
#1 (“800 600 ... 100 16f32”) 205.920 332.640 61.905%
#2 (“1000 1000 ... 100 16f32”) 255.020 356.430 75.548%
#3 (“2000 2000 ... 100 16f32”) 753.950 865.870 87.074%
#4 (“4000 4000 ... 100 16f32”) 2403.320 2687.040 89.441%
#5 (“8000 8000 ... 100 16f32”) 7746.360 9235.570 83.875%
#6 (“16000 16000 ... 100 16f32”) 30183.510 35808.031 84.293%
#7 (“16000 16000 ... 1000 16f32”) 144998.562 92670.070 157.468%
#8 (“16000 16000 ... 10000 16f32”) 1278715.500 661512.750 193.302%
#9 (“32000 32000 ... 100 16f32”) 118524.531 142400.938 83.233%

Table 5: Performance comparison between using a single and two GPUs when
running the benchmark data sets for the Mandelbrot benchmark program, based
on the results shown in Appendix B.2 and B.3.

but this time the limit is actually around 15% below the program using a single
GPU meaning that utilizing more resources actually comes with a cost rather
than a benefit. However we also see that increasing the second-to-last parameter
allows the performance to increase to almost the theoretical limit of double the
performance, further reinforcing the idea that the benefit from multiple GPUs
with the husk operator is dependent on the input data in some programs, but
also introduces the notion of lost performance for some input data.

Inspecting the profiling results for the last two data sets used in Table 5 as
shown in Appendix C.2.3 and C.3.3 we see that for the best case, i.e. the data
set with the second-to-last parameter being large, the inter-GPU copy operation
takes up only ∼ 3% of the total execution time on the GPU. However we also
see that for the data set where the first two parameters are large the inter-GPU
memory copy becomes the dominant operation on the main GPU by taking up
∼ 60% of the execution time which together with the kernel amounts to more
execution time than for the single GPU case.

7.2.4 Rodinia CFD

As we have seen, the transfer of data between GPUs can limit the performance
of husks but whereas the Mandelbrot benchmark program was able to gain
performance with the right data, some programs rely on computations with so
much data that the overhead of the transfer becomes consistently dominant.
For an extreme example of this, consider again the CFD benchmark program
which we saw gain increased performance on a single GPU when using the husk
operator, as discussed in Section 7.1.2. The relative performance between the
use of one and two GPUs for running the CFD benchmark program based on
the benchmarking results shown in Appendix B.2 and B.3 is shown in Table
6 which illustrates that the program using two GPUs takes ∼ 5× the time
to execute compared to when using only one GPU. As the profiling results in

74

7 PERFORMANCE COMPARISON AND BENCHMARKING

Data set Avg. Runtime (ms) Rel. Perf.One GPU Two GPUs
fvcorr.domn.097K.toa 1187663.875 5471266.000 21.707%
fvcorr.domn.193K.toa 1774197.750 7837625.000 22.637%

Table 6: Performance comparison between using a single and two GPUs when
running the benchmark data sets for the CFD benchmark program, based on
the results shown in Appendix B.2 and B.3.

Appendix C.3.4 shows, the culprits of the poor performance are the 36002 inter-
GPU memory copy operations taking up ∼ 88% of the execution time on the
main GPU. This is primarily caused by the heavy use of memory inside map
operations but is made worse by the need to internalize the partitions due to
indirect index functions increasing the amount of memory to copy.

75

8 RELATED WORK

8 Related Work
In this section we take a look at select existing work, comparing it to related
aspects of the husk operator implementation.

8.1 Automatic Parallelization and Data Distribution
A large body of work has been dedicated to automatic parallelization of code,
using approaches ranging in a spectrum from fully dynamic analysis to fully
static analysis.

The husk operator accomplished distributed parallelism through the trans-
formation of the map and reduce SOACs in Futhark, which in turn are explicit
in their parallelism. This arguably makes the extraction of the husk operator a
static analysis of the program which in turn results in a potentially higher level
of parallelism exploitable by the program through distribution of the operation.

On the other end of the spectrum we have various dynamic analyses, a large
section of which focusing on loop-level parallelization, i.e. attempting to discern
independent loop iterations that can in turn be done in parallel. An example of
such analysis is the inspector-executor model, in which the inspector determines,
at runtime, the groups of iterations in a loop that can be executed in parallel
which is then exploited by the executor [30]. Building on this, the inspector-
executor model can be used to reorder both the data and iteration space in
a way that optimizes communication overhead or locality of reference [8, 34].
Another example of dynamic analysis for the purpose of loop-level parallelization
is software thread-level speculation (TLS) which executes the loop iterations in
parallel and out of order, not considering any data dependencies between the
iterations but fixing any faulty executions of iterations upon detection using
strategies resembling an extended cache coherence protocol [32, 29, 35, 18].
To reduce the speculative memory footprint and cache layout of TLS, various
optimization can be applied [22] which has in turn been used in a distributed
setting in order to optimize communication overhead [21].

Though such fully dynamic analyses are very general and capable of extract-
ing partial loop parallelism, they exhibit significant runtime overhead and may
require expensive intercommunication between the nodes in distributed systems,
such as when a speculation in TLS fails. To alleviate this overhead, subsequent
approaches have been aimed at creating hybrid approaches, combining static
and dynamic analyses, typically under the form in which the static aspect of the
analysis is responsible for extracting the predicates that the dynamic part of the
analysis then verifies cheaply at runtime. In relation to this, a number of stud-
ies have been conducted on various techniques for summarizing the set of array
indices accessed inside loops, in turn motivated by the fact that point-to-point
dependence analysis is impractical for analyzing large loops containing complex
control flow, multi-nested inner loops, and function calls. The primary idea for
this stems from the fact that array references are aggregated in some abstract-set
representation up to the level of the target loop with which the independence be-
tween iterations is modeled. For example SUIF [10] supports inter-procedural

76

8 RELATED WORK

analysis and uses a polyhedral representation which is relaxed by extracting
sufficient conditions for independence from branch conditions that are in turn
tested at runtime [19]. Due to the typically restrictive nature of the polyhedral
representations, other work introduces alternative representations such as the
integer-set framework proposed by Adve & Mellor-Crummey as implemented in
the Rice dHPF compiler [3]. Likewise Rus, Hoeflinger, & Rauchwerger [33] has
proposed a language to accurately represent array summaries by introducing
symbolic nodes, such as union, intersection, gates, function calls, whenever the
set operations would fall outside the baseline abstraction for representing array
slices. While loop parallelism could in principle be decided on this representa-
tion, e.g. by inspectors that evaluate the set expression, a more efficient and
scalable approach has been to translate the set equation to a parallel-predicate
language [24] which encodes the sufficient conditions under which the equation
holds. For example such techniques can prove loop parallelism by exploiting the
monotonicity of indirect-array indices [23] which is unknown at compile-time.

Though the mentioned work offers approaches for automatic parallelization,
some can also infer a partitioning of data for the nodes in a distributed setting,
minimizing the overhead of the communication between the nodes. This is
related directly to the partitioning of data for the husk operator on multi-GPU
systems which is inferred statically through the transformations of the map and
reduce SOACs as discussed through the SOAC transformations in Section 3.1.
Additionally the husk operator uses a pessimistic strategy for used memory
blocks that are not partitioned by broadcasting them to all GPUs being used.

An alternative static strategy for identifying the data to transfer between
nodes in a system is through symbolic range analysis [5, 11] which can be used
for determining the range of values a variable can contain at a given point in
a program. A symbolic range analysis can prove useful for a plethora of static
analysis, such as static branch prediction as described by Patterson [26] and
compile-time verification of program properties to prevent runtime errors, such
as index bound errors as used in the Whiley programming language [27]. With
respect to partitioning specifically, symbolic range analysis can be used to deter-
mine the memory regions to potentially be accessed by a program as described
by Rugina & Rinard [31], by Yong & Horwitz [36], as well as by Paisante et.
al. [25], and has been used for sectioning of data specifically for automatic
parallelization on distributed memory spaces as is done in the Rice Parallel For-
tran Converter [12] combining it with regular section analysis as proposed by
Callahan [7]. As the SOACs of Futhark allow for direct identification of some
partitions, using symbolic range analysis to determine these would only com-
plicate transformations but could potentially work in tandem with the current
transformations to determine not only other unidentified partitions but also
limit the amount of data to transfer between devices by restricting it to only
the memory regions that the analysis deems to potentially be accessed.

77

8 RELATED WORK

8.2 Futhark
Similar to the introduction of the internal husk operator, Futhark has seen an
increasing body of work focusing on optimizing the parallel performance of the
language. The most recent work at the time of writing is the addition of a
compiler-driven analysis called incremental flattening that at runtime deter-
mines the optimal parallelism of the different levels of hardware exposed by
the system it is executed on [13]. Relating incremental flattening to the husk
operator we might argue that the distributed setting that the husk operator
introduces is in fact an additional level of hardware, but due to the isolated
nature of the operation inside the husk body, the Futhark compiler will instead
apply incremental flattening at the same level as previously which would in turn
be optimized for each device in the system. Additionally this may benefit incre-
mental flattening in the future as it gives a distinction between the devices used
through the isolated execution of husk functions. Notice however that with the
current restriction of symmetric devices in the CUDA C backend the decisions
made at runtime by the auto-tuner should not be different between the different
calls to the husk function but could become with more relaxed device selection
rules.

Another example of optimizations done in the Futhark compiler is the re-
domap construct [16] which has been shortly discussed in Section 4.1. The
redomap construct is an internal operator, similar to the husk operator, which
represents map-reduce compositions produced through fusion of select patterns
in programs. The redomap construct is used to optimize the reduction over
an array produced by a map operation by combining the kernels and storing
intermediate results in fast memory.

78

9 CONCLUSION

9 Conclusion
We have presented the internal husk operator to the Futhark compiler, allowing
the intermediate representation of a Futhark program to express distributable
operations and data. This has in turn allowed the extension of the existing
CUDA C backend of the Futhark compiler, enabling the use of multiple GPUs
through isolated execution of the body of the husk in a newly introduced worker-
thread runtime environment, combining the results either through distributed
concatenation or through reduction after synchronization. In order to minimize
the overhead introduced to the single-GPU case for husks, we have discussed
and implemented optimizations bringing the generated program closer to the
programs without the husk operator when only using a single GPU.

Through the use of the established Futhark benchmark suite, we have seen
examples of close to perfectly linear performance scaling of select programs
using large data sets, seeing up to 1.93× performance when using two GPUs
compared to when using only one. Likewise, we have shown programs where the
performance only increases little and in some cases decreases when introducing
more GPUs, primarily due to a dependence on large amounts of data being
transferred between the GPUs. Using the same benchmark programs we have
also compared the performance of the single-GPU case with and without the
husk operator, which showed that the performance generally stays the same
except for a few outliers displaying both significant speedups of up to ∼ 1.7×
and severe slowdowns of up to 2.5×. Though the slowdowns may make the
current state of husks a hard sell, we have discussed mitigation strategies that
may in turn bridge the gap further.

9.1 Future Work
Though this implementation of the husk operator arguably shows potential, it
is still in its infancy and there are still many optimization and use cases left
unexplored. In this section we introduce a select subset of potential future
work.

9.1.1 Generality of Husks

Though we have only explored the use of husk operators for multi-GPU systems
in this thesis, husks are not specifically catered towards only that purpose. In
fact, the actually purpose of the husks are determined by the Futhark backend
receiving them as long as the semantics are retained.

An example of an alternative use for the husk operator is distributed com-
puting, i.e. not a single machine but a network of machines with each their own
hardware. This is not far from the notion of multi-GPU systems as they also
act as co-processors with each their own memory space. However, in the setting
of distributed computing the focus is not always upon performance, but may
also be restricted by the space available on each machine, especially given the
relatively narrow bandwidth on the interconnect between machines. Since the

79

9 CONCLUSION

machines in such a network may have varying resources, such an implementation
may require a different partitioning strategy than just splitting equally between
machines and may additionally benefit from a decentralized execution model
rather than the centralized execution model currently employed by husks, as to
not require a main node to have enough storage space for all the data relevant
for the execution of a program.

9.1.2 Worker-thread Implementation Adaptation

As a byproduct of the introduction of the husk operator, a worker-thread run-
time environment has been added to the C code generated when using the
CUDA C backend of the Futhark compiler. Though the messages in this run-
time environment has been primarily catered towards the use of husks, the im-
plementation could in principle be easily altered for alternate multi-thread use
cases. An example of such alteration would be the addition of a mutli-threaded
C backend to complement the sequential C backend, allowing for utilization of
the parallelism exposed by the GPU pipeline of Futhark without having to use
GPUs.

9.1.3 Further Optimization of the Single-GPU Case

As discussed in Section 6 there are still optimizations left to be done for the
single-GPU case. One such optimization is allowing the reduction result to
remain on the device when only a single GPU is used, as described in detail
in Section 6.4. Another optimization builds upon the current optimization de-
scribed in Section 6.1 that attempts to use the final concatenated result memory
block for the result of the intermediate result to be concatenated from the main
GPU. The current version of this optimization tries to track the memory block
for the intermediate result back to the allocation of it, but fails if any assign-
ments or allocations in the chain are in conditionals. This naive approach may
be improvable through more analysis of the conditionals or through an alterna-
tive approach.

9.1.4 Inter-husk Data Reusage

As illustrated by the benchmarking results in Section 7.2, the primary culprit of
poor performance when using multiple GPUs is the memory being transferred
between GPUs. Though this is necessary to be able to execute kernels correctly,
there can be cases where the data has already been copy to the GPU for the
execution of a previous husk. Therefore, partitions and broadcasted arrays that
we can be sure have not been altered since the last time it was copied can
potentially be reused. Likewise, the results of husks to be concatenated may in
turn be used as partitions by other husks, giving way for yet more reusable data
already on the GPUs.

One way of determining what data can be reused is to do it dynamically
at runtime. An example of an approach, that was in fact shortly attempted,

80

9 CONCLUSION

Listing 55 An example of a Futhark program with a map operation where only
sections of the arrays xs and ys are used inside the lambda function.

1 l e t main [m] (xs : [m] i 32) (ys : [m] i 32)
2 (inds : [m] i 32) : [m] i 32 =
3 l e t j = inds [0] % 32
4 in map (\ i −> xs [j] + ys [i]) inds

is the use of a memory block cache in the backend that each GPU places any
broadcasted arrays, partitions, and results to be concatenated into. Whenever
a husk is the going to broadcast or partition memory, the cache is checked and
if the data is in it the husk function executions continue with that data instead
of copying from the main GPU. However, as memory blocks may be written to
on the main GPU the cache lines for each device must be invalidated whenever
this happens, as their content may become inconsistent with the actual data.
In general such caching needs little knowledge about the program at hand and
can thus be generalized, but it also comes with flaws, specifically that it adds
an overhead at runtime for lookup, pushing, and invalidation of the cache lines.

An alternative way of determining the reusable memory blocks is through
static compile-time analysis. As an example this could be accomplished by
use of a data-flow analysis, e.g. by use of flow graph algorithm similar to the
one described by Allen and Cocke [4]. Such analysis should not introduce any
overhead at runtime but there may still be cases where the compiler must assume
that data cannot be reused, such as when a write to an array appears inside
a conditional even if the write does not happen at runtime. Such analysis
could be coupled with some runtime analysis, making decisions at runtime that
was indeterminable at compile-time. Notice however that compile-time analysis
may require changes to the intermediate representation of Futhark, potentially
introducing the notion of the multiple device memory spaces that the husk
operator kept the rest of the compiler oblivious to.

9.1.5 Minimizing Inter-GPU Memory Copying

We have seen that the presented implementation of the husk operator bases all
partitioning on the transformed SOACs and handles all outside memory blocks
used inside the body of the husk pessimistically by making a full copy from the
main GPU to the other GPUs, which contributes to the primary culprit of bad
multi-GPU performance. There may however be cases where the husk body
only uses a select section of the arrays that are not partitioned. An example
of this is shown in Listing 55 where we have established that a husk operator
would be the map over a partition of inds, whereas xs and ys is fully copied to
each GPU. We notice that only a single element of xs is ever used, no matter
the size of it, whereas depending on inds the number of relevant elements in ys
may vary, which leads us back to some of the analyses discussed in Section 8.1.

For example in Listing 55 the variable j can only be in the integer range

81

9 CONCLUSION

[0, 31] which can be determined statically through the use of symbolic range
analysis, thus it is enough to only copy the 32 first elements of xs, but since the
values of inds are only known at runtime the section of ys to copy cannot be
limited at compile-time. Alternatively using variants of the hybrid approaches
mentioned, the exact elements used from xs and ys should be determinable at
runtime by determining the value of j through the value of the first element of
inds, as well as all the values of i for each partition of inds, before execution
of the husk functions and thus allowing selective transfer of the corresponding
elements. Notice however that the examples are simple and there are more
useful, but also more complex, cases, e.g. if the indices to determine the data
to be used may be dependent on an operation inside the body of the husk.

82

REFERENCES

References
[1] CUDA DRIVER API - API Reference Manual. https://docs.nvidia.

com/cuda/pdf/CUDA_Driver_API.pdf, trm-06703-003 _vrelease version
edition, July.

[2] Rodinia: Accelerating Compute-Intensive Applications with Accelerators.
http://rodinia.cs.virginia.edu.

[3] Vikram Adve and John Mellor-Crummey. Using integer sets for data-
parallel program analysis and optimization. ACM SIGPLAN Notices,
33(5):186–198, may 1998.

[4] F. E. Allen and J. Cocke. A Program Data Flow Analysis Procedure.
Communications of the ACM, 19(3):137, March 1976.

[5] Hansang Bae and Rudolf Eigenmann. Interprocedural Symbolic Range
Propagation for Optimizing Compilers. In Languages and Compil-
ers for Parallel Computing, pages 413–424. Springer Berlin Heidel-
berg, 2006. https://engineering.purdue.edu/paramnt/publications/
LCPC05.pdf.

[6] Blaise Barney. POSIX Threads Programming. https: // computing.
llnl. gov/ tutorials/ pthreads/ , 2017.

[7] Charles David Callahan. A Global Approach to Detection of Parallelism.
PhD thesis, Rice University, 1987. https://hdl.handle.net/1911/16039.

[8] Chen Ding and Ken Kennedy. Improving cache performance in dynamic
applications through data and computation reorganization at run time.
In Proceedings of the ACM SIGPLAN 1999 Conference on Programming
Language Design and Implementation, PLDI ’99, pages 229–241, New York,
NY, USA, 1999. ACM.

[9] Martin Elsman, Troels Henriksen, and Cosmin E. Oancea. Parallel Pro-
gramming in Futhark. https://buildmedia.readthedocs.org/media/
pdf/futhark-book/latest/futhark-book.pdf, June 2019.

[10] Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao,
and Monica S. Lam. Interprocedural Parallelization Analysis in SUIF.
Trans. on Prog. Lang. and Sys. (TOPLAS), 27(4):662–731, 2005.

[11] William H. Harrison. Compiler Analysis of the Value Ranges for Variables.
IEEE Transactions on Software Engineering, SE-3(3):243–250, May 1977.

[12] P. Havlak and K. Kennedy. An implementation of interprocedural bounded
regular section analysis. IEEE Transactions on Parallel and Distributed
Systems, 2(3):350–360, July 1991.

83

https://docs.nvidia.com/cuda/pdf/CUDA_Driver_API.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_Driver_API.pdf
http://rodinia.cs.virginia.edu
https://engineering.purdue.edu/paramnt/publications/LCPC05.pdf
https://engineering.purdue.edu/paramnt/publications/LCPC05.pdf
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
https://hdl.handle.net/1911/16039
https://buildmedia.readthedocs.org/media/pdf/futhark-book/latest/futhark-book.pdf
https://buildmedia.readthedocs.org/media/pdf/futhark-book/latest/futhark-book.pdf

REFERENCES

[13] T. Henriksen, F. Thorøe, M. Elsman, and C. Oancea. Incremental flattening
for nested data parallelism. In Procs. Symposium on Principles and Practice
of Parallel Programming, PPoPP ’19, pages 53–67. ACM, 2019.

[14] Troels Henriksen. Design and Implementation of the Futhark Programming
Language (Revised). PhD thesis, University of Copenhagen, 2017.

[15] Troels Henriksen, Martin Dybdal, Henrik Urms, Anna Sofie Kiehn, Daniel
Gavin, Hjalte Abelskov, Martin Elsman, and Cosmin Oancea. APL on
GPUs: A TAIL from the Past, Scribbled in Futhark. In Procs. of the
5th Int. Workshop on Functional High-Performance Computing, FHPC’16,
pages 38–43, New York, NY, USA, 2016. ACM.

[16] Troels Henriksen, Ken Friis Larsen, and Cosmin E. Oancea. Design and
GPGPU performance of futhark’s redomap construct. In Proceedings of the
3rd ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming, ARRAY 2016, pages 17–24, New York,
NY, USA, 2016. ACM.

[17] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and
Cosmin E. Oancea. Futhark: Purely Functional GPU-Programming with
Nested Parallelism and In-Place Array Updates. PLDI 2017, 2017.

[18] Nick P. Johnson, Hanjun Kim, Prakash Prabhu, Ayal Zaks, and David I.
August. Speculative separation for privatization and reductions. In Pro-
ceedings of the 33rd ACM SIGPLAN conference on Programming Language
Design and Implementation - PLDI '12. ACM Press, 2012.

[19] Sungdo Moon and Mary W. Hall. Evaluation of Predicated Array Data-
Flow Analysis for Automatic Parallelization. In Int. Symp. Princ. and
Practice of Par. Prog. (PPoPP), pages 84–95, 1999.

[20] Nvidia Corporation, https://www.nvidia.com/content/dam/
en-zz/Solutions/design-visualization/technologies/
turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.
pdf. NVIDIA Turing GPU Architecture - Graphics Reinvented.

[21] C. E. Oancea, J. W. A. Selby, M. Giesbrecht, and S. M. Watt. Distributed
Models of Thread-Level Speculation. In Proceedings of the PDPTA’05,
pages 920–927, 2005.

[22] Cosmin E. Oancea and Alan Mycroft. Set-Congruence Dynamic Analysis
for Software Thread-Level Speculation (TLS). In Procs. Langs. Comp.
Parallel Computing, pages 156–171, 2008.

[23] Cosmin E. Oancea and Lawrence Rauchwerger. A Hybrid Approach to
Proving Memory Reference Monotonicity. In Procs. International Work-
shop on Languages and Compilers for Parallel Computing (LCPC), pages
61–75, 2011.

84

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

REFERENCES

[24] Cosmin E. Oancea and Lawrence Rauchwerger. Logical Inference Tech-
niques for Loop Parallelization. In Proceedings of the 33rd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
’12, pages 509–520, New York, NY, USA, 2012. ACM.

[25] Vitor Paisante, Maroua Maalej, Leonardo Barbosa, Laure Gonnord, and
Fernando Magno Quintão Pereira. Symbolic range analysis of pointers. In
Proceedings of the 2016 International Symposium on Code Generation and
Optimization - CGO 2016. ACM Press, 2016. https://homepages.dcc.
ufmg.br/~fernando/publications/papers/CGO16_paisante.pdf.

[26] Jason R. C. Patterson. Accurate static branch prediction by value range
propagation. ACM SIGPLAN Notices, 30(6):67–78, June 1995.

[27] David J. Pearce. Integer Range Analysis for Whiley on Embedded Systems.
In 2015 IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops. IEEE, April 2015.
http://homepages.ecs.vuw.ac.nz/~djp/files/SEUS15.pdf.

[28] Marcin Pietron, Aleksander Byrski, and Marek Kisiel-Dorohinicki. Gpgpu
for difficult black-box problems. In Procedia Computer Science, volume 51,
pages 1023–1032, 2015.

[29] L. Rauchwerger and D. Padua. The LRPD Test: Speculative Run-Time
Parallelization of Loops with Privatization and Reduction Parallelization.
IEEE Trans. Parallel Distrib. System, 10(2):160–199, 1999.

[30] Lawrence Rauchwerger, Nancy Amato, and David Padua. A Scalable
Method for Run Time Loop Parallelization. Int. Journal of Par. Prog,
26:26–6, 1995.

[31] Radu Rugina and Martin Rinard. Symbolic bounds analysis of pointers,
array indices, and accessed memory regions. In Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and imple-
mentation - PLDI '00. ACM Press, 2000. https://people.csail.mit.
edu/rinard/paper/toplas05SymbolicBoundsAnalysis.pdf.

[32] P. Rundberg and P. Stenström. An All-Software Thread-Level Data De-
pendence Speculation System for Multiprocs. Journal of Instruction-Level
Parallelism, 1999.

[33] Silvius Rus, Jay Hoeflinger, and Lawrence Rauchwerger. Hybrid Analysis:
Static & Dynamic Memory Reference Analysis. Int. Journal of Par. Prog,
31(3):251–283, 2003.

[34] M. M. Strout, L. Carter, and J. Ferrante. Compile-time composition of run-
time data and iteration reorderings. In Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation,
PLDI ’03, pages 91–102, New York, NY, USA, 2003. ACM.

85

https://homepages.dcc.ufmg.br/~fernando/publications/papers/CGO16_paisante.pdf
https://homepages.dcc.ufmg.br/~fernando/publications/papers/CGO16_paisante.pdf
http://homepages.ecs.vuw.ac.nz/~djp/files/SEUS15.pdf
https://people.csail.mit.edu/rinard/paper/toplas05SymbolicBoundsAnalysis.pdf
https://people.csail.mit.edu/rinard/paper/toplas05SymbolicBoundsAnalysis.pdf

REFERENCES

[35] Paraskevas Yiapanis, Gavin Brown, and Mikel Luján. Compiler-Driven
Software Speculation for Thread-Level Parallelism. ACM Transactions on
Programming Languages and Systems, 38(2):1–45, December 2015.

[36] Suan Hsi Yong and Susan Horwitz. Pointer-Range Analysis. In Static Anal-
ysis, pages 133–148. Springer Berlin Heidelberg, 2004. https://research.
cs.wisc.edu/wpis/papers/sas04.suan.pdf.

86

https://research.cs.wisc.edu/wpis/papers/sas04.suan.pdf
https://research.cs.wisc.edu/wpis/papers/sas04.suan.pdf

Appendices

87

A SOURCE CODE REPOSITORY

Appendix A Source Code Repository
The source code of the Futhark compiler can be found on GitHub at
https://github.com/diku-dk/futhark where the variant with the husk operator
can be found in the mgpu-husks branch at
https://github.com/diku-dk/futhark/tree/mgpu-husks.

88

https://github.com/diku-dk/futhark
https://github.com/diku-dk/futhark/tree/mgpu-husks

B BENCHMARKING RESULTS

Appendix B Benchmarking Results
In this appendix we show the results of running subsets of the established
Futhark benchmark programs, displaying the average of 100 runs of each data
set. Notice that not all benchmark results show the exact data sets in use, but
whenever it is relevant the actual data set will be specified.

B.1 Single GPU without the Husk Operator
The following table shows the benchmarking results for the established Futhark
benchmark programs using a version of the Futhark compiler without the husk
operator.

Data Avg. Runtime (µs) RSD

ac
ce
le
ra
te
/h

as
hc

at

rockyou.dataset 1272.190 0.300

ac
ce
le
ra
te
/fl

ui
d

medium.in 1008.270 0.111

ac
ce
le
ra
te
/ff

t 256x256.in 846.240 0.304
128x512.in 848.960 0.278
64x256.in 716.530 0.316
512x512.in 1587.000 0.203
1024x1024.in 7702.700 0.066
128x128.in 738.770 0.539

ac
ce
le
ra
te
/c
ry
st
al

#1 84.450 0.432
#5 3091.870 0.229
#6 125013.148 0.009
#7 10032.950 0.074
#8 39996.289 0.020
#9 199435.484 0.004
#10 159648.734 0.006
#11 249876.141 0.004

89

B BENCHMARKING RESULTS

Data Avg. Runtime (µs) RSD
ac
ce
le
ra
te
/c
an

ny

lena256.in 174.000 0.294
lena512.in 194.710 0.259

ac
ce
le
ra
te
/t
un

ne
l

#1 439.290 0.257
#2 785.450 0.274
#3 2613.220 0.236
#4 8540.320 0.102
#5 33946.078 0.011
#6 135567.750 0.007
#7 271321.375 0.003
#8 272307.969 0.006
#9 513393.460 0.006

ac
ce
le
ra
te
/s
m
oo

th
lif
e

#1 22776.449 0.025
#2 28097.939 0.042
#3 51820.078 0.011
#4 308055.125 0.005
#5 1284583.875 0.002
#6 5482393.500 0.010

ac
ce
le
ra
te
/t
ra
ce

#1 746.800 0.230
#2 50641.441 0.014

ac
ce
le
ra
te
/p

ag
er
an

k

small.in 2029.770 0.161
random_medium.in 5010.450 0.090

90

B BENCHMARKING RESULTS

Data Avg. Runtime (µs) RSD
ac
ce
le
ra
te
/n

bo
dy

1000-bodies.in 161.840 0.132
10000-bodies.in 1152.500 0.139
100000-bodies.in 57318.430 0.022
1000000-bodies.in 5278690.000 0.002

ac
ce
le
ra
te
/m

an
de

lb
ro
t #1 207.430 0.175

#2 254.020 0.153
#3 815.060 0.253
#4 2764.910 0.196
#5 8312.910 0.081
#6 32678.131 0.010
#7 156756.469 0.008
#8 1382882.375 0.001
#9 128055.938 0.006

ac
ce
le
ra
te
/k

m
ea
ns

trivial.in 643.770 0.144
k5_n50000.in 8095.810 0.069
k5_n200000.in 13911.890 0.029

m
isc

/b
fa
st

sahara.in 13416.120 0.066

m
isc

/b
fa
st
-c
lo
ud

y

sahara-cloudy.in 21794.900 0.036
peru.in 19329.039 0.027

jg
f/
se
rie

s

10000.in 18045.070 0.041
100000.in 166292.203 0.016
1000000.in 1581907.000 0.005

jg
f/
ke
ys

userkey0.txt 7801.740 0.063

91

B BENCHMARKING RESULTS

Data Avg. Runtime (µs) RSD
jg
f/
cr
yp

t

medium.in 512.970 0.264

fin
pa

r/
Lo

cV
ol
C
al
ib

small.in 88350.398 0.025
medium.in 67918.797 0.003
large.in 764953.062 0.001

fin
pa

r/
O
pt
io
nP

ric
in
g

small.in 760.820 0.199
medium.in 3540.940 0.156
large.in 54695.781 0.017

m
isc

/h
es
to
n6

4

1062_quotes.in 59326.039 0.048
10000_quotes.in 332948.156 0.021
100000_quotes.in 3381069.000 0.020

m
isc

/h
es
to
n3

2

1062_quotes.in 22730.010 0.044
10000_quotes.in 33686.199 0.041
100000_quotes.in 210871.594 0.008

ro
di
ni
a/
bf
s_

ite
r_

w
or
k_

ok

4096nodes.in 2133.330 0.133
512nodes_high_edge_variance.in 912.960 0.230
graph1MW_6.in 6356.030 0.083
64kn_32e-var-1-256-skew.in 2773.310 0.102

92

B BENCHMARKING RESULTS

Data Avg. Runtime (µs) RSD
ro
di
ni
a/
bf
s_

he
ur
ist

ic

4096nodes.in 1571.920 0.229
512nodes_high_edge_variance.in 668.030 0.288
graph1MW_6.in 5058.470 0.094
64kn_32e-var-1-256-skew.in 2358.440 0.128

ro
di
ni
a/
bf
s_

fil
t_

pa
dd

ed
_
fu
se
d

4096nodes.in 1374.670 0.176
512nodes_high_edge_variance.in 576.570 0.239
graph1MW_6.in 5028.380 0.094
64kn_32e-var-1-256-skew.in 7228.770 0.093

ro
di
ni
a/
bf
s_

as
ym

pt
_
ok

_
bu

t_
slo

w

4096nodes.in 2338.350 0.179
512nodes_high_edge_variance.in 935.830 0.186
graph1MW_6.in 7980.530 0.040
64kn_32e-var-1-256-skew.in 4707.000 0.108

ro
di
ni
a/
ba

ck
pr
op

small.in 293.730 0.230
medium.in 2960.520 0.182
large.in 41306.012 0.019

93

B BENCHMARKING RESULTS

Data Avg. Runtime (µs) RSD
pa

rb
oi
l/
tp
ac
f

small.in 4852.700 0.170
medium.in 241980.734 0.004
large.in 1303118.500 0.002

pa
rb
oi
l/
st
en
ci
l

small.in 1873.030 0.084
default.in 49928.219 0.019

pa
rb
oi
l/
sg
em

m

tiny.in 51.240 0.393
small.in 60.040 0.292
medium.in 2176.230 0.421

pa
rb
oi
l/
m
ri-

q

small.in 1161.500 0.219
large.in 5752.860 0.240

pa
rb
oi
l/
hi
st
o

default.in 280.930 0.245
large.in 360.410 0.430

m
isc

/r
ad

ix
_
so
rt
_
la
rg
e

radix_sort_10K.in 3321.020 0.183
radix_sort_100K.in 3936.090 0.261
radix_sort_1M.in 11722.110 0.052

94

B BENCHMARKING RESULTS

Data Avg. Runtime (µs) RSD
m
isc

/r
ad

ix
_
so
rt
_
bl
el
lo
ch
_
be

nc
hm

ar
k

radix_sort_10K.in 1097.300 0.195
radix_sort_100K.in 1525.850 0.185
radix_sort_1M.in 8914.580 0.102

Su
ne

-I
m
ag
eP

ro
c/
in
te
rp
_
co
s_

pl
ay

s

fake.in 11024.310 0.076

Su
ne

-I
m
ag
eP

ro
c/
in
te
rp

fake.in 42240.410 0.022

95

B BENCHMARKING RESULTS

Data Avg. Runtime (µs) RSD
ro
di
ni
a/
sr
ad

image.in 16420.721 0.031

ro
di
ni
a/
pa

th
fin

de
r

medium.in 1020.730 0.191

ro
di
ni
a/
pa

rt
ic
le
fil
te
r

128_128_10_image_10000_particles.in 7203.310 0.103
128_128_10_image_400000_particles.in 140951.422 0.007

ro
di
ni
a/
nw

large.in 104635.398 0.011

ro
di
ni
a/
nn

medium.in 9184.760 0.062

ro
di
ni
a/
m
yo

cy
te

small.in 152230.031 0.015
medium.in 147303.484 0.010

ro
di
ni
a/
lu
d 16by16.in 278.050 0.212

64.in 464.590 0.252
256.in 2152.820 0.182
512.in 4198.790 0.143
2048.in 25906.850 0.058

96

B BENCHMARKING RESULTS

Data Avg. Runtime (µs) RSD
ro
di
ni
a/
lu
d-
cl
ea
n

16by16.in 197.340 0.361
64.in 570.510 0.272
256.in 2184.140 0.176
512.in 4445.350 0.117
2048.in 62874.289 0.035

ro
di
ni
a/
la
va
M
D

3_boxes.in 324.040 0.132
10_boxes.in 2322.590 0.344

ro
di
ni
a/
km

ea
ns

100.in 1707.970 0.104
204800.in 77386.578 0.022
kdd_cup.in 99789.820 0.010

ro
di
ni
a/
ho

ts
po

t

64.in 1538.440 0.180
512.in 4662.350 0.119
1024.in 17711.689 0.041

ro
di
ni
a/
cf
d

fvcorr.domn.097K.toa 1759428.375 0.004
fvcorr.domn.193K.toa 3142535.750 0.010

97

B BENCHMARKING RESULTS

B.2 Single GPU with the Husk Operator
The following table shows the benchmarking results for the established Futhark
benchmark programs using a version of the Futhark compiler with the husk
operator and using a single GPU.

Data Avg. Runtime (µs) RSD

ac
ce
le
ra
te
/h

as
hc

at

rockyou.dataset 1133.070 0.101

ac
ce
le
ra
te
/fl

ui
d

medium.in 1014.830 0.039

ac
ce
le
ra
te
/ff

t 256x256.in 903.760 0.006
128x512.in 916.370 0.115
64x256.in 691.120 0.026
512x512.in 1785.930 0.015
1024x1024.in 8087.530 0.027
128x128.in 680.730 0.061

ac
ce
le
ra
te
/c
ry
st
al

#1 68.050 0.066
#5 2703.510 0.104
#6 114757.742 0.008
#7 9188.990 0.021
#8 36698.941 0.012
#9 183454.719 0.005
#10 146697.328 0.006
#11 229705.234 0.005

ac
ce
le
ra
te
/c
an

ny

lena256.in 152.780 0.029
lena512.in 184.980 0.036

98

B BENCHMARKING RESULTS

Data Avg. Runtime (µs) RSD
ac
ce
le
ra
te
/t
un

ne
l

#1 350.270 0.049
#2 592.560 0.015
#3 2352.390 0.117
#4 7873.750 0.025
#5 31266.711 0.012
#6 124773.000 0.006
#7 249784.484 0.005
#8 249938.047 0.006
#9 511468.820 0.005

ac
ce
le
ra
te
/s
m
oo

th
lif
e

#1 22958.029 0.029
#2 29951.520 0.043
#3 57858.980 0.025
#4 312850.750 0.007
#5 1262049.875 0.002
#6 5578220.000 0.001

ac
ce
le
ra
te
/t
ra
ce

#1 754.370 0.030
#2 45904.160 0.039

ac
ce
le
ra
te
/p

ag
er
an

k

small.in 1919.970 0.015
random_medium.in 4938.440 0.039

ac
ce
le
ra
te
/n

bo
dy

1000-bodies.in 204.770 0.018
10000-bodies.in 1619.690 0.043
100000-bodies.in 58912.551 0.012
1000000-bodies.in 5326605.500 0.004

99

B BENCHMARKING RESULTS

Data Avg. Runtime (µs) RSD
ac
ce
le
ra
te
/m

an
de

lb
ro
t #1 205.920 0.041

#2 255.020 0.145
#3 753.950 0.012
#4 2403.320 0.077
#5 7746.360 0.011
#6 30183.510 0.011
#7 144998.562 0.009
#8 1278715.500 0.002
#9 118524.531 0.008

ac
ce
le
ra
te
/k

m
ea
ns

trivial.in 674.560 0.032
k5_n50000.in 7953.420 0.020
k5_n200000.in 13695.700 0.064

m
isc

/b
fa
st

sahara.in 10682.250 0.062

m
isc

/b
fa
st
-c
lo
ud

y

sahara-cloudy.in 18514.670 0.044
peru.in 17099.670 0.019

jg
f/
se
rie

s

10000.in 16833.510 0.008
100000.in 149116.953 0.007
1000000.in 1406243.250 0.001

jg
f/
ke
ys

userkey0.txt 7808.500 0.017

jg
f/
cr
yp

t

medium.in 525.410 0.023

100

B BENCHMARKING RESULTS

Data Avg. Runtime (µs) RSD
fin

pa
r/
Lo

cV
ol
C
al
ib

small.in 86721.180 0.020
medium.in 66455.344 0.015
large.in 745787.188 0.003

fin
pa

r/
O
pt
io
nP

ric
in
g

small.in 1172.000 0.012
medium.in 4139.080 0.032
large.in 57923.012 0.007

m
isc

/h
es
to
n6

4

1062_quotes.in 58225.520 0.025
10000_quotes.in 278777.031 0.006
100000_quotes.in 2786435.500 0.001

m
isc

/h
es
to
n3

2

1062_quotes.in 23026.990 0.022
10000_quotes.in 38519.949 0.013
100000_quotes.in 196144.422 0.008

ro
di
ni
a/
bf
s_

ite
r_

w
or
k_

ok

4096nodes.in 2119.220 0.039
512nodes_high_edge_variance.in 860.550 0.072
graph1MW_6.in 6312.770 0.037
64kn_32e-var-1-256-skew.in 2759.940 0.040

101

B BENCHMARKING RESULTS

Data Avg. Runtime (µs) RSD
ro
di
ni
a/
bf
s_

he
ur
ist

ic

4096nodes.in 1371.290 0.024
512nodes_high_edge_variance.in 628.580 0.017
graph1MW_6.in 4876.480 0.038
64kn_32e-var-1-256-skew.in 2295.130 0.021

ro
di
ni
a/
bf
s_

fil
t_

pa
dd

ed
_
fu
se
d

4096nodes.in 1398.450 0.337
512nodes_high_edge_variance.in 572.180 0.061
graph1MW_6.in 4837.880 0.065
64kn_32e-var-1-256-skew.in 6790.400 0.019

ro
di
ni
a/
bf
s_

as
ym

pt
_
ok

_
bu

t_
slo

w

4096nodes.in 2096.170 0.018
512nodes_high_edge_variance.in 890.920 0.014
graph1MW_6.in 7568.340 0.056
64kn_32e-var-1-256-skew.in 4446.520 0.027

ro
di
ni
a/
ba

ck
pr
op

small.in 298.400 0.036
medium.in 4944.030 0.019
large.in 73698.711 0.011

102

B BENCHMARKING RESULTS

Data Avg. Runtime (µs) RSD
pa

rb
oi
l/
tp
ac
f

small.in 4411.640 0.102
medium.in 223328.484 0.007
large.in 1181783.000 0.003

pa
rb
oi
l/
st
en
ci
l

small.in 2866.890 0.011
default.in 48325.621 0.026

pa
rb
oi
l/
sg
em

m

tiny.in 49.020 0.038
small.in 53.380 0.123
medium.in 2656.450 0.104

pa
rb
oi
l/
m
ri-

q

small.in 1270.930 0.005
large.in 5991.630 0.101

pa
rb
oi
l/
hi
st
o

default.in 255.270 0.014
large.in 306.250 0.020

m
isc

/r
ad

ix
_
so
rt
_
la
rg
e

radix_sort_10K.in 3096.150 0.037
radix_sort_100K.in 3606.610 0.034
radix_sort_1M.in 11392.220 0.086

103

B BENCHMARKING RESULTS

Data Avg. Runtime (µs) RSD
m
isc

/r
ad

ix
_
so
rt
_
bl
el
lo
ch
_
be

nc
hm

ar
k

radix_sort_10K.in 1046.700 0.020
radix_sort_100K.in 1455.820 0.054
radix_sort_1M.in 8313.680 0.064

Su
ne

-I
m
ag
eP

ro
c/
in
te
rp
_
co
s_

pl
ay

s

fake.in 10149.240 0.015

Su
ne

-I
m
ag
eP

ro
c/
in
te
rp

fake.in 38082.051 0.009

104

B BENCHMARKING RESULTS

Data Avg. Runtime (µs) RSD
ro
di
ni
a/
sr
ad

image.in 17083.039 0.040

ro
di
ni
a/
pa

th
fin

de
r

medium.in 959.920 0.013

ro
di
ni
a/
pa

rt
ic
le
fil
te
r

128_128_10_image_10000_particles.in 7362.870 0.081
128_128_10_image_400000_particles.in 133587.047 0.010

ro
di
ni
a/
nw

large.in 99654.422 0.021

ro
di
ni
a/
nn

medium.in 20672.711 0.067

ro
di
ni
a/
m
yo

cy
te

small.in 139555.875 0.013
medium.in 148814.297 0.006

ro
di
ni
a/
lu
d 16by16.in 374.270 0.041

64.in 731.020 0.016
256.in 3030.900 0.025
512.in 6660.230 0.088
2048.in 89245.406 0.025

105

B BENCHMARKING RESULTS

Data Avg. Runtime (µs) RSD
ro
di
ni
a/
lu
d-
cl
ea
n

16by16.in 233.430 0.046
64.in 804.370 0.053
256.in 3078.090 0.051
512.in 6008.160 0.019
2048.in 31894.730 0.036

ro
di
ni
a/
la
va
M
D

3_boxes.in 278.090 0.010
10_boxes.in 1569.590 0.030

ro
di
ni
a/
km

ea
ns

100.in 1890.900 0.011
204800.in 78111.000 0.023
kdd_cup.in 104191.930 0.010

ro
di
ni
a/
ho

ts
po

t

64.in 1445.090 0.028
512.in 4507.450 0.111
1024.in 17198.881 0.053

ro
di
ni
a/
cf
d

fvcorr.domn.097K.toa 1187663.875 0.010
fvcorr.domn.193K.toa 1774197.750 0.004

106

B BENCHMARKING RESULTS

B.3 Multiple GPUs with the Husk Operator
The following table shows the benchmarking results for the established Futhark
benchmark programs using a version of the Futhark compiler with the husk
operator and using a two GPUs.

Data Avg. Runtime (µs) RSD

fin
pa

r/
Lo

cV
ol
C
al
ib

small.in 88224.219 0.094
medium.in 51178.730 0.109
large.in 399335.906 0.139

ac
ce
le
ra
te
/t
un

ne
l

#1 342.460 0.029
#2 585.670 0.024
#3 1725.940 0.049
#4 5357.360 0.016
#5 20770.920 0.011
#6 83034.828 0.004
#7 166037.625 0.003
#8 166310.328 0.003
#9 277573.240 0.007

ac
ce
le
ra
te
/m

an
de

lb
ro
t #1 332.640 0.148

#2 356.430 0.036
#3 865.870 0.026
#4 2687.040 0.028
#5 9235.570 0.008
#6 35808.031 0.006
#7 92670.070 0.004
#8 661512.750 0.002
#9 142400.938 0.003

ro
di
ni
a/
cf
d

fvcorr.domn.097K.toa 5471266.000 0.022
fvcorr.domn.193K.toa 7837625.000 0.003

107

C PROFILING RESULTS

Appendix C Profiling Results
All the following appendices are summarized results from running the corre-
sponding Futhark programs monitored by the NVIDIA CUDA profiling tool.

C.1 Single GPU without the Husk Operator
The profiling results in this appendix are from Futhark programs compiled with
the current release of the Futhark compiler using the CUDA C backend.

C.1.1 Rodinia NN

Table 9 shows a summary of the results of using the NVIDIA CUDA profil-
ing tool to run the Rodinia-based NN benchmark program from the Futhark
benchmark collection, using the supplied medium.in data set.

Time (%) Time (ms) Calls Avg (ms) Name
57.691 1.648 103 0.016 [CUDA memcpy HtoD]
31.612 0.892 100 0.009 segred_nonseg_5121
7.711 0.217 200 0.001 [CUDA memcpy DtoD]
1.994 0.056 101 0.001 [CUDA memcpy DtoH]
0.899 0.025 1 0.025 segmap_5087
0.048 0.001 1 0.001 replicate_5167
0.044 0.001 1 0.001 replicate_5172

Table 9: NVIDIA CUDA profiler results for the NN benchmark program without
the husk operator, run on the medium.in data set.

C.1.2 Rodinia CFD

Table 10shows a summary of the results of using the NVIDIA CUDA profil-
ing tool to run the Rodinia-based CFD benchmark program from the Futhark
benchmark collection, using the supplied fvcorr.domn.193K.toa.gz data set.

Time (%) Time (ms) Calls Avg (ms) Name
32.667 726.577 12000 0.061 map_transpose_f32_low_width
30.564 679.809 12000 0.057 map_transpose_f32
25.038 556.886 4000 0.139 segmap_22193
11.578 257.522 2000 0.129 segmap_21938
0.127 5.666 7 0.809 [CUDA memcpy HtoD]
0.025 1.116 1 1.116 [CUDA memcpy DtoH]
0.001 0.011 1 0.011 segmap_21927
0.000 0.002 1 0.002 [CUDA memcpy DtoD]

Table 10: NVIDIA CUDA profiler results for the CFD benchmark program
without the husk operator, run on the fvcorr.domn.193K.toa.gz data set.

108

C PROFILING RESULTS

C.2 Single GPU with the Husk Operator
The profiling results in this appendix are from Futhark programs compiled with
the new Futhark compiler with the husk operator, using the CUDA C backend.
These results are for running the benchmark programs using a singe GPU.

C.2.1 Finpar LocVolCalib

Table 11 shows a summary of the results of using the NVIDIA CUDA profiling
tool to run the local volatility calibration benchmark program from the parallel
financial part of the Futhark benchmark collection, using the supplied large.in
data set.

Time (%) Time (ms) Calls Avg (ms) Name
34.325 260.845 694 0.376 map_transpose_f32
21.472 163.172 63 2.590 segmap_45887
16.246 123.461 63 1.960 segmap_45746
7.461 56.697 63 0.900 segmap_45810
6.724 51.100 63 0.811 copy_46746
5.775 43.883 63 0.697 segmap_46046
4.872 37.022 63 0.588 segmap_45952
3.076 23.379 63 0.371 copy_46763
0.025 0.192 1 0.192 segmap_46133
0.022 0.168 63 0.003 segmap_45855
0.000 0.003 2 0.001 map_transpose_f32_low_height
0.000 0.002 1 0.002 segmap_45562
0.000 0.002 1 0.002 segmap_45600
0.000 0.002 1 0.002 segmap_45652
0.000 0.002 1 0.002 segmap_46155
0.000 0.002 1 0.002 copy_46768
0.000 0.001 1 0.001 segmap_45581
0.000 0.001 1 0.002 [CUDA memcpy DtoH]

Table 11: NVIDIA CUDA profiler results for the LocVolCalib benchmark pro-
gram with the husk operator, run on the large.in data set using a single GPU.

C.2.2 Accelerate Tunnel

Table 12 and 13 shows summaries of the results of using the NVIDIA CUDA pro-
filing tool to run the Tunnel benchmark program from the Futhark benchmark
collection, using the input “10f32 16000 32000” and “100f32 16000 16000”
respectively.

109

C PROFILING RESULTS

Time (%) Time (ms) Calls Avg (ms) Name
99.999 250.920 1 250.920 segmap_12705
0.001 0.002 2 0.001 [CUDA memcpy DtoH]

Table 12: NVIDIA CUDA profiler results for the Tunnel benchmark program
with the husk operator, run with the input “10f32 16000 32000” using a single
GPU.

Time (%) Time (ms) Calls Avg (ms) Name
99.999 521.285 1 521.285 segmap_12705
0.001 0.003 2 0.002 [CUDA memcpy DtoH]

Table 13: NVIDIA CUDA profiler results for the Tunnel benchmark program
with the husk operator, run with the input “100f32 16000 16000” using a
single GPU.

C.2.3 Accelerate Mandelbrot

Table 14 and 15 show summaries of the results of using the NVIDIA CUDA
profiling tool to run the Mandelbrot benchmark program from the Futhark
benchmark collection, using the input “16000 16000 -0.7f32 0f32 3.067f32
10000 16f32” and “32000 32000 -0.7f32 0f32 3.067f32 100 16f32” respec-
tively.

Time (%) Time (ms) Calls Avg (ms) Name
100.000 1288.013 1 1288.013 segmap_26026
0.000 0.003 2 0.001 [CUDA memcpy DtoH]

Table 14: NVIDIA CUDA profiler results for the Mandelbrot benchmark pro-
gram with the husk operator, run with the input “16000 16000 -0.7f32 0f32
3.067f32 10000 16f32” using a single GPU.

Time (%) Time (ms) Calls Avg (ms) Name
99.998 238.457 1 238.457 segmap_26026
0.002 0.003 2 0.001 [CUDA memcpy DtoH]

Table 15: NVIDIA CUDA profiler results for the Mandelbrot benchmark pro-
gram with the husk operator, run with the input “32000 32000 -0.7f32 0f32
3.067f32 100 16f32” using a single GPU.

C.2.4 Rodinia NN

Table 16 shows a summary of the results of using the NVIDIA CUDA profil-
ing tool to run the Rodinia-based NN benchmark program from the Futhark
benchmark collection, using the supplied medium.in data set.

110

C PROFILING RESULTS

Time (%) Time (ms) Calls Avg (ms) Name
62.676 1.767 303 0.003 [CUDA memcpy HtoD]
32.395 0.913 100 0.009 segred_nonseg_5152
3.978 0.112 201 0.001 [CUDA memcpy DtoH]
0.856 0.024 1 0.024 segmap_5095
0.051 0.001 1 0.001 replicate_5204
0.044 0.001 1 0.001 replicate_5209

Table 16: NVIDIA CUDA profiler results for the NN benchmark program with
the husk operator, run on the medium.in data set using a single GPU.

C.2.5 Rodinia CFD

Table 17 shows a summary of the results of using the NVIDIA CUDA profil-
ing tool to run the Rodinia-based CFD benchmark program from the Futhark
benchmark collection, using the supplied fvcorr.domn.193K.toa.gz data set.

Time (%) Time (ms) Calls Avg (ms) Name
28.588 392.628 4000 0.098 segmap_22235
14.066 193.189 2000 0.097 segmap_21962
12.441 170.861 6000 0.028 map_transpose_f32_low_height
12.114 166.381 6000 0.028 map_transpose_f32_low_width
5.802 79.686 4000 0.020 copy_22692
5.475 75.192 4000 0.019 copy_22707
5.363 73.654 4000 0.018 copy_22702
5.260 72.238 4000 0.018 copy_22697
2.801 38.465 2000 0.019 copy_22666
2.727 37.457 2000 0.019 copy_22656
2.690 36.945 2000 0.018 copy_22661
2.419 33.222 2000 0.017 copy_22651
0.210 5.781 7 0.826 [CUDA memcpy HtoD]
0.041 1.168 1 1.168 [CUDA memcpy DtoH]
0.001 0.011 1 0.011 segmap_21933
0.001 0.002 1 0.002 [CUDA memcpy DtoD]

Table 17: NVIDIA CUDA profiler results for the CFD benchmark program
with the husk operator, run on the fvcorr.domn.193K.toa.gz data set using
a single GPU.

C.3 Multiple GPUs with the Husk Operator
The profiling results in this appendix are from Futhark programs compiled with
the new Futhark compiler with the husk operator, using the CUDA C backend.
These results are for running the benchmark programs using two GPUs.

111

C PROFILING RESULTS

C.3.1 Finpar LocVolCalib

Table 18 shows a summary of the results of using the NVIDIA CUDA profiling
tool to run the local volatility calibration benchmark program from the parallel
financial part of the Futhark benchmark collection, using the supplied large.in
data set and two GPUs.

112

C PROFILING RESULTS

Time (%) Time (ms) Calls Avg (ms) Name
G
PU

0
35.411 134.074 694 0.193 map_transpose_f32
20.439 77.386 63 1.228 segmap_45887
15.897 60.190 63 0.955 segmap_45746
7.449 28.205 63 0.448 segmap_45810
6.973 26.403 63 0.419 copy_46746
5.680 21.505 63 0.341 segmap_46046
5.044 19.096 63 0.303 segmap_45952
3.034 11.489 63 0.182 copy_46763
0.038 0.142 63 0.002 segmap_45855
0.027 0.102 1 0.102 segmap_46133
0.003 0.013 9 0.001 [CUDA memcpy PtoP]
0.001 0.003 2 0.002 map_transpose_f32_low_height
0.001 0.002 1 0.002 segmap_45600
0.001 0.002 1 0.002 segmap_45652
0.001 0.002 1 0.002 segmap_46155
0.000 0.002 1 0.002 segmap_45562
0.000 0.002 1 0.002 copy_46768
0.000 0.002 1 0.002 [CUDA memcpy DtoH]
0.000 0.001 1 0.001 segmap_45581

G
PU

1

35.193 132.362 694 0.191 map_transpose_f32
20.640 77.629 63 1.232 segmap_45887
15.973 60.075 63 0.954 segmap_45746
7.547 28.386 63 0.451 segmap_45810
6.825 25.668 63 0.407 copy_46746
5.592 21.030 63 0.334 segmap_46046
5.208 19.588 63 0.311 segmap_45952
2.952 11.104 63 0.176 copy_46763
0.037 0.191 63 0.002 segmap_45855
0.027 0.102 1 0.102 segmap_46133
0.001 0.006 2 0.002 map_transpose_f32_low_height
0.001 0.002 1 0.002 segmap_45600
0.001 0.002 1 0.002 segmap_46155
0.001 0.002 1 0.002 segmap_45652
0.000 0.002 1 0.002 copy_46768
0.000 0.002 1 0.002 segmap_45562
0.000 0.001 1 0.001 segmap_45581

Table 18: NVIDIA CUDA profiler results for the LocVolCalib benchmark pro-
gram with the husk operator, run on the large.in data set using two GPUs.

C.3.2 Accelerate Tunnel

Table 19 and 20 show summaries of the results of using the NVIDIA CUDA pro-
filing tool to run the Tunnel benchmark program from the Futhark benchmark
collection, using the input “10f32 16000 32000” and “100f32 16000 16000”

113

C PROFILING RESULTS

respectively, both using two GPUs.

Time (%) Time (ms) Calls Avg (ms) Name
G
PU

0 76.429 136.848 1 136.848 segmap_12705
23.570 42.203 1 42.203 [CUDA memcpy PtoP]
0.002 0.002 2 0.001 [CUDA memcpy DtoH]

G
PU

1

100.000 143.781 1 143.781 segmap_12705

Table 19: NVIDIA CUDA profiler results for the Tunnel benchmark program
with the husk operator, run with the input “10f32 16000 32000” using two
GPUs.

Time (%) Time (ms) Calls Avg (ms) Name

G
PU

0 92.344 254.574 1 254.574 segmap_12705
7.655 21.103 1 21.103 [CUDA memcpy PtoP]
0.001 0.003 2 0.002 [CUDA memcpy DtoH]

G
PU

1

100.000 270.330 1 270.330 segmap_12705

Table 20: NVIDIA CUDA profiler results for the Tunnel benchmark program
with the husk operator, run with the input “10f32 16000 32000” using two
GPUs.

C.3.3 Accelerate Mandelbrot

Table 21 and 22 show summaries of the results of using the NVIDIA CUDA
profiling tool to run the Mandelbrot benchmark program from the Futhark
benchmark collection, using the input “16000 16000 -0.7f32 0f32 3.067f32
10000 16f32” and “32000 32000 -0.7f32 0f32 3.067f32 100 16f32” respec-
tively, both using two GPUs.

Time (%) Time (ms) Calls Avg (ms) Name

G
PU

0 96.950 670.821 1 670.821 segmap_26026
3.050 21.103 1 21.103 [CUDA memcpy PtoP]
0.000 0.003 2 0.002 [CUDA memcpy DtoH]

G
PU

1

100.000 648.760 1 648.760 segmap_26026

Table 21: NVIDIA CUDA profiler results for the Mandelbrot benchmark pro-
gram with the husk operator, run with the input “16000 16000 -0.7f32 0f32
3.067f32 10000 16f32” using two GPUs.

114

C PROFILING RESULTS

Time (%) Time (ms) Calls Avg (ms) Name
G
PU

0 59.319 84.590 1 84.590 [CUDA memcpy PtoP]
40.679 58.008 1 58.008 segmap_26026
0.002 0.002 2 0.001 [CUDA memcpy DtoH]

G
PU

1

100.000 62.562 1 62.562 segmap_26026

Table 22: NVIDIA CUDA profiler results for the Mandelbrot benchmark pro-
gram with the husk operator, run with the input “32000 32000 -0.7f32 0f32
3.067f32 100 16f32” using two GPUs.

C.3.4 Rodinia CFD

Table 23 shows a summary of the results of using the NVIDIA CUDA profil-
ing tool to run the Rodinia-based CFD benchmark program from the Futhark
benchmark collection, using the supplied fvcorr.domn.193K.toa.gz data set and
two GPUs.

115

C PROFILING RESULTS

Time (%) Time (ms) Calls Avg (ms) Name
G
PU

0
88.226 5303.487 36002 0.147 [CUDA memcpy PtoP]
3.129 188.121 4000 0.047 segmap_22235
2.323 139.635 6000 0.023 map_transpose_f32_low_width
1.460 87.746 2000 0.044 segmap_21962
1.205 72.415 6000 0.012 map_transpose_f32_low_height
0.665 39.985 4000 0.010 copy_22692
0.612 36.772 4000 0.009 copy_22707
0.595 35.791 4000 0.009 copy_22697
0.564 33.925 4000 0.008 copy_22702
0.314 18.872 2000 0.009 copy_22666
0.308 18.504 2000 0.009 copy_22656
0.283 16.987 2000 0.008 copy_22661
0.255 15.342 2000 0.008 copy_22651
0.050 6.013 7 0.859 [CUDA memcpy HtoD]
0.011 1.271 1 1.271 [CUDA memcpy DtoH]
0.000 0.006 1 0.006 segmap_21933
0.000 0.002 1 0.002 [CUDA memcpy DtoD]

G
PU

1

32.990 209.572 4000 0.052 segmap_22235
15.454 98.169 2000 0.049 segmap_21962
13.991 88.880 6000 0.015 map_transpose_f32_low_height
6.350 40.337 4000 0.010 copy_22692
6.281 39.897 4000 0.010 copy_22697
6.240 39.642 4000 0.010 copy_22702
6.187 39.303 4000 0.010 copy_22707
3.168 20.122 2000 0.010 copy_22651
3.141 19.955 2000 0.010 copy_22661
3.137 19.924 2000 0.010 copy_22666
3.060 19.441 2000 0.010 copy_22656

Table 23: NVIDIA CUDA profiler results for the CFD benchmark program
with the husk operator, run on the fvcorr.domn.193K.toa.gz data set using two
GPUs.

116

	Introduction
	Thesis Overview

	I Bird's-Eye View
	Background
	GPGPU Architecture
	Futhark Programming Language

	Husks - An Internal Streaming Operator
	SOAC Transformations
	Implementation Strategy

	II Husk Operator Implementation
	Futhark Compiler Optimizer
	Kernel Extraction
	Simplification
	Explicit Allocation
	Imperative Code Generation

	Multi-GPU CUDA Backend
	Multiple CUDA Contexts
	Generating Husk Functions
	Worker-thread Runtime Environment
	Launching Husks

	Matching Single-GPU Performance
	Peer-to-peer Memory Copying
	Inter-thread Communication
	Forced Direct Index Function
	Reduction on the Host

	III Evaluation and Final Remarks
	Performance Comparison and Benchmarking
	Comparing Single-GPU Performance
	Multi-GPU Performance

	Related Work
	Automatic Parallelization and Data Distribution
	Futhark

	Conclusion
	Future Work

	References

	Appendices
	Appendix Source Code Repository
	Appendix Benchmarking Results
	Single GPU without the Husk Operator
	Single GPU with the Husk Operator
	Multiple GPUs with the Husk Operator

	Appendix Profiling Results
	Single GPU without the Husk Operator
	Single GPU with the Husk Operator
	Multiple GPUs with the Husk Operator

