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Abstract

In this thesis project, we create a new backend for the Futhark compiler. Futhark is
a functional data-parallel array programming language whose optimizing compiler can
generate efficient GPGPU code. Our backend targets the WebGPU API, enabling Futhark
programs to be run in web browsers while still taking advantage of GPU compute capability.

As part of the backend, we implement code generation of shaders in the WebGPU
Shading Language (WGSL) from the Futhark compiler’s internal kernel representation as
well as an appropriate implementation of the host-side runtime system for the WebGPU
API. Additionally, we provide tooling to use Futhark’s built-in testing and benchmarking
tools with our backend by interacting with a browser to run the programs under test.

WebGPU and WGSL have many restrictions not present in the APIs used by Futhark’s
existing GPU backends. We devise and implement workarounds for many but not all of
them. As a result, our backend can successfully run some Futhark programs, but some
other valid programs are unsupported. We also investigate the remaining limitations and
discuss potential future solutions.
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1 Introduction

Futhark [11, 12] is a functional array programming language designed to handle compute-
intensive tasks as part of a larger program. Its optimizing compiler can generate code
using a variety of backends, such as multicore C code or OpenCL. Of particular interest
are the GPU backends — OpenCL, CUDA, and HIP — which make it possible to take
advantage of modern massively parallel GPU hardware while writing high-level functional
Futhark programs instead of low-level C. OpenCL, CUDA, and HIP are different APIs
that allow using the GPU. They are focused on general-purpose computation, as opposed
to APIs like DirectX or Vulkan that have a focus on using GPUs for their original graphics
rendering purpose. All of Futhark’s existing GPU backends generate native code, designed
to run directly on user’s operating systems.

WebGPU [16] is a new API being developed for the web platform to allow web sites to
make use of GPU capabilities in a portable manner. It can be used for graphics rendering,
but unlike its predecessor WebGL, it also explicitly supports general-purpose computation.

In this project, we implemented a new backend for the Futhark compiler targeting
WebGPU that allows embedding compiled Futhark programs in web pages. Running
efficiently in browsers opens up new use cases for Futhark outside of native programs.
There is an existing WebAssembly backend [14] that allows running Futhark programs in a
browser, but it only uses the CPU, similar to Futhark’s C backend. Our new backend uses
WebGPU to make use of the compute power of GPUs, similar to the OpenCL and CUDA
backends.

Another possible benefit of a WebGPU backend is increased portability, even for native
programs. WebGPU is designed to be portable and run on a wide variety of platforms
and underlying hardware, and it is possible to use it in native applications in addition
to the web. For example, recent macOS versions have deprecated OpenCL in favour of
Apple’s own Metal API, which Futhark does not currently support. Native WebGPU
implementations support running WebGPU applications on top of Metal however. In this
project we have focused on the web use case, leaving potential native WebGPU targets to
future work.

In chapter 2 we give an introduction to the relevant background about general-purpose
GPU programming in general, as well as Futhark and its compiler. Chapter 3 gives a
more detailed description of the relevant aspects of the WebGPU API and associated
WGSL programming language. With the important background established, we describe
the implementation of our backend in chapter 4. Chapter 5 contains a description of how
we implemented support for automatic testing and benchmarking of the backend. Finally,
we discuss current limitations of our backend, evaluate its usability as well as the suitability
of WebGPU as target, and describe a demonstration web page we built in chapter 6.
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2 Background

2.1 GPU Programming Model

We will start by giving an introduction to general-purpose GPU compute in general. The
Futhark compiler’s existing GPU backend is originally designed around the capabilities of
OpenCL [9], so we will focus on that. It also supports targeting CUDA [6] and has adopted
some of CUDA’s terminology, so we will also include it. OpenCL and CUDA provide very
similar basic functionality and the fundamentals are core to how modern GPUs work. Most
of it is also applicable to WebGPU’s compute support, though we will later see that there
are some differences. (Unlike CUDA and OpenCL, WebGPU also supports using GPUs’
graphics rendering pipelines, which do not exactly match this model, but we will focus
only on general purpose computing here.)

When using GPUs for compute, we refer to the normal CPU as the host, while the GPU
is often referred to as the device. The host controls the overall execution, interacting with
the rest of the system and setting up data for the GPU to use. In the general case, the host
and device have separate memory spaces not directly accessible to the other side. The host
can allocate memory on the device as well as initiate transfers in either direction using
functions provided by the compute API.

Many operations take the form of asynchronous operations submitted by the host to some
form of queue, to then be executed by the device. An explicit host-device synchronization
point can be introduced to ensure that queued operations have completed before continuing
on the host. In OpenCL and CUDA, control flow on the host is still simple sequential code,
with synchronization taking the form of a function that blocks until the device is finished.

To perform work on the GPU, the host can invoke code to be executed by the GPU,
called a kernel. The host passes all parameters required by the kernel to the compute API,
usually including references to memory it has previously allocated on the device. Typically,
a kernel runs for a relatively short duration and the overall program involves the host
queuing many kernels to be executed. These generally run in sequence on the device.

Kernels are typically supplied by the host code to the compute API in source code form.
Final compilation of kernels only happens during runtime of the program, with the API
runtime or device driver being responsible for compiling it for the device actually in use.
While there are models where kernels are first compiled to some intermediate representation
at program build time, all APIs considered here support supplying plain source code at
runtime, and this is the only model we will use here. OpenCL and CUDA kernels are given
in C or C++ with some language extensions.

A kernel running on the device is comprised of potentially many threads, organized in a
two-level grid. The total amount of threads and their structure is determined by the host
when launching the kernel and remains static while the kernel is executing. Individual
threads are are grouped into thread blocks and there is a grid of such blocks. Each thread
can access its own position in its block, as well as which block it is part of. OpenCL and
CUDA allow specifying the block and grid sizes in up to three dimensions as this is often a
convenient model, but this is purely an affordance for programmers and only affects how
the positions are expressed.

(This is one of the larger terminology differences between the APIs. In OpenCL and
WebGPU, thread blocks are referred to as workgroups. A single thread is a work-item in
OpenCL and an invocation in WebGPU. We will generally use the CUDA terminology
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2 Background
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Figure 2.1: GPU Memory Hierarchy. Individual threads are illustrated using a single arrow
and contain their own private memory and registers.

presented above as that is what the Futhark compiler uses internally, except when referring
to specific WebGPU functions or similar.)

Unlike the division into up to three dimensions, the division into blocks of threads and
the grid of blocks is very meaningful. Threads in the same block can communicate and
cooperate with the ability to access shared memory and synchronize with each other,
while threads from different blocks execute completely independently. A block is generally
scheduled on the device as a single unit and threads in it share certain resources. As a
result, the choice of block size can have effects on performance. It is also limited, with a
generic maximum block size for all kernels, but also a kernel-specific maximum depending
on how much of the shared resources each thread requires.

There are several different types of memory available on GPUs: global device memory
accessible to all threads, private memory for each thread, as well as some shared memory
(CUDA; local memory in OpenCL and workgroup memory in WebGPU) that is shared
among the threads in the same block. Private and shared memory are much more limited
in size than global memory, but also much faster. Memory transfers to and from the host
can only access global device memory, with the other two being only directly accessible
from within kernels. The thread hierarchy as well as the memory hierarchy is illustrated in
Figure 2.1.

Like for block size, OpenCL and CUDA allow the host to determine the size of shared
memory used when invoking the kernel. On CUDA, only a single dynamic shared memory
allocation is permissible, but it can be split up freely in the kernel using normal C pointer
arithmetic and casting.

In reality, there is also a level of thread grouping below the block level: Threads don’t
execute independently, but instead as part of a warp (CUDA; sub-group in OpenCL). The
size of a warp is fixed by the hardware, and all threads inside a warp execute in lockstep,
i.e. in a SIMT/SIMD fashion. This means that they always execute the same instruction
at the same time, allowing parts of hardware such as instruction decoding to be shared
between threads in a warp. This has certain performance implications, and CUDA and
OpenCL also provide some warp-level primitive operations, such as scans or reductions.
WebGPU does not currently specify the existence of warps, nor any warp-level operations,
though there is a proposal to add them in the future.1

1https://github.com/gpuweb/gpuweb/issues/4306
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2 Background

1 // Kernel :
2 extern "C" __global__ void plus2(int *input , int *output , int n) {
3 int idx = threadIdx .x + blockIdx .x * blockDim .x;
4 if (idx < n) {
5 output [idx] = input[idx] + 2;
6 }
7 }
8
9 // On the host:

10 void call_plus2 ( CUfunction kernel , int *input , int *output , int n) {
11 CUdeviceptr input_d , output_d ;
12 cuMemAlloc (& input_d , len * sizeof (int));
13 cuMemAlloc (& output_d , len * sizeof (int));
14 cuMemcpyHtoD (input_d , input , len * sizeof (int));
15
16 int block_size = 256;
17 int grid_size = (len + block_size - 1) / block_size ;
18 void ** args = malloc (3 * sizeof (void *));
19 args [0] = (void *)& input_d ;
20 args [1] = (void *)& output_d ;
21 args [2] = (void *)&len;
22 cuLaunchKernel (kernel ,
23 grid_size , 1, 1,
24 block_size , 1, 1,
25 0, 0,
26 (void *)args , NULL);
27
28 cuMemcpyDtoH (output , output_d , len * sizeof (int));
29
30 cuMemFree ( input_d );
31 cuMemFree ( output_d );
32 }

Listing 2.1: Simple CUDA kernel that adds 2 to each element of an array, as well as an
example of invoking it. Error handling is omitted.

In OpenCL and CUDA, a kernel is simply a function that is invoked in each thread on
the device. Arguments passed from the host to the device are declared as formal function
parameters. On the host side, arguments are simply set in order using a separate function
or passed as an array when dispatching the kernel. In WebGPU, the kernel interface is
somewhat more complicated, as we will see in the next chapter.

Listing 2.1 shows a simple example CUDA kernel that populates an output array by
adding two to every number in an input arrray. We can see that it is a relatively normal C
function, though it has access to the built-in values threadIdx, blockIdx, and blockDim,
describing the current thread’s location in the two-level grid introduced earlier. Since the
number of threads must be a multiple of the block size, there can be an access of threads at
the end which should not read from or write to the arrays, making the conditional necessary.
The example also contains some host code to invoke this kernel, though it assumes that
initialization, including compiling the kernel, has already been done. Note that in the
full program, the kernel source could would be embedded as a string and handed to the
CUDA API to be compiled, not just a function next to the host code like it is shown in
the example. We can see how the host allocates memory on the device to correspond to
the host-side input and output buffers and is responsible for copying data back and forth.
It also invokes the kernel, passing in the required arguments as well as the block and grid
sizes. In the next chapter, we will see a WebGPU program performing the same task to
compare.

2.2 Futhark

2.2.1 The Futhark Language

Futhark is a purely functional data-parallel array programming language [11, 12]. A major
design goal is the ability to compile it to efficient parallel code, including to run with high
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2 Background

1 -- Our running ’plus2 ’ example .
2 def plus2 (xs: [] i32) = map (+2) xs
3
4 -- We can also annotate arrays with size types. Here , we also could have
5 -- used ‘length xs ‘ in the body instead .
6 def average [n] (xs: [n]f32) = reduce (+) 0 xs / f32.i64 n
7
8 -- Here the size types enforce that both arrays are the same size. This
9 -- example also illustrates the support for nested parallelism , with

10 -- both maps having the potential to be run in parallel .
11 def mat_add [n] [m] (xss: [n][m]i32) (yss: [n][m]i32) =
12 map2 (\xs ys -> map2 (+) xs ys) xss yss
13
14 -- Size - dependent types are also supported , with the input parameter
15 -- appearing as the size in the output type. Functions can also be
16 -- generic over types.
17 def my_replicate ’t (n: i64) (v: t) : [n]t = replicate n v

Listing 2.2: Some simple Futhark programs.

performance on GPUs while being easier than manually writing CUDA or OpenCL code.
It comes with an optimising ahead-of-time compiler that supports various targets, such as
CUDA and OpenCL as well as sequential or multi-threaded C code. The language is in
the ML family and has a static type system.

Futhark is not intended to be a general-purpose language for writing whole program in.
Instead, it can be used to implement particularly compute-intensive parts of an application
that are amenable to parallel computation. These can then be used by the overall program
by integrating with the code that the Futhark compiler generates.

Notably, the Futhark compiler does not parallelize code written in a sequential style.
Instead, the language provides ways of expressing data-parallel algorithms, chiefly using
Second-Order Array Combinators (SOACs). These are functions such as map, filter,
reduce, and scan that allow operating on entire arrays in bulk. The language is designed
to allow these to be executed in parallel, including in advanced scenarios such as nested
parallel operators.

The focus on generating efficient parallel code imposes some restrictions on the language.
For example, multi-dimensional regular (rectangular) arrays are supported, but non-regular
arrays are not allowed. There is also no support for recursive calls in functions, although a
sequential loop construct can be used to effectively express tail-recursion.

See Listing 2.2 for some simple example Futhark programs. We will not describe the
entire language in-depth because, as we will see next, in this project we do not work much
with the surface language, other than for testing and evaluating what Futhark programs
we may not be able to support in our backend.

2.2.2 Futhark Compiler Overview

Like many other compilers, the Futhark compiler can be roughly divided into three major
parts: the frontend, the middle-end, and the backend. The frontend and middle-end
together consume Futhark programs, type-check and optimise them, while transforming
them into a variety of intermediate representations (IRs). At this stage there are already
multiple potential pipelines consisting of a sequence of compiler passes. Which is used
depends on which target the program is being compiled for, with different pipelines using
and ultimately producing different IR variants that for example express parallelism in
different manners.

For our purposes, there is a single GPU pipeline used for the existing GPU targets such
as CUDA and OpenCL. This pipeline produces an IR variant called GPUMem that contains
parallel flat segemented operations designed to match the semantics of GPU kernels and
explicit GPU memory information.

5



2 Background

The first step in the backend is compiling this IR futher to ImpCode which is a relatively
simple imperative language. It is parameterized for different use-cases that extend it with
different operations. The kernel code running on a GPU and the host code running on a
CPU and invoking the kernels are both expressed as ImpCode but with different extensions.
For example, kernel code can get the current thread and block indices and use atomic
operations while host code can launch kernels with a special operaton.

Most of the structure is identical to all ImpCode variants. There are for and while
loops, if statements, and function calls optionally returning values. Variables are split
into scalars and memory blocks. Scalars have a fixed primitive type, such as an integer of a
certain size or a boolean. Memory blocks are untyped, though they are annotated as being
located in a specific memory space, which is used to express for example the difference
between global and shared memory on GPUs.

The supported primitive types are integers (8-, 16-, 32-, and 64-bit), floating point
numbers (16-, 32-, and 64-bit) and booleans. There is also an informationless Unit type.
Integer types are not associated with a signedness, instead individual operations assume a
certain signedness when relevant. For example, addition is ultimately the same operation
for signed and unsigned integers and so no sign information is necessary. On the other
hand, comparison operators exist in both signed and unsigned variants.

As mentioned, memory blocks are untyped. Instead, each access to memory happens
at a specific type. ImpCode contains explicit Read and Write statements to interact with
memory that contain both a type and an index to access. Arbitrary expressions cannot
access memory buffers, requiring a Read into a scalar local first. There are also statements
for allocating and freeing memory blocks, though there are restrictions on these depending
on the context. For example, host code can allocate and free global device memory, while
kernel code can allocate shared memory but not futher global memory. Memory variables
are effectively treated as pointers, with a SetMem statement that can change which memory
block a name refers to. A Copy statement exists specifically to copy entire blocks of memory
from one buffer to another.

Lastly, there are some additional miscellaneous statements for debugging and tracing as
well as an Assert for error checking. This will be discussed in more detail later.

2.2.3 The GPU Backends

The translation from GPUMem to the intial GPU ImpCode variant, which we will call ImpGPU
for short, is largely identical for all GPU backends with only small differences for different
ultimate targets, and we were able to use the existing setup without further modification.

The final step is compiling the ImpGPU program to an output program invoking the
corresponding APIs. For the CUDA and OpenCL backends, the kernels are compiled to the
respective C variant used by the API while the host code is typically also compiled to C,
calling into the API, though there is also support for generating Python host code instead.
Implementing these two steps, compiling ImpGPU to output kernel code and corresponding
host code targeting WGSL and the WebGPU API respectively, is the main contribution of
this thesis.

An ImpGPU program is initially comprised of a set of functions and constants for the
host side. Embedded in function bodies, in the context where they are to be invoked, the
are kernels to be run on the GPU. The conceptual model is that the kernels have access
to values from the surrounding host code, both scalar values such as local variables and
arrays allocated in device memory. In addition to the kernel body itself, expressed itself in
ImpCode, the ImpGPU kernel also contains metadata about which values are used, as well
as other information such as expressions to compute the correct block and grid sizes. All
free variables in the kernel body, i.e. those used but not declared in it, come from the
surrounding host code and are turned into kernel parameters. The backend is responsible

6



2 Background

both for compiling the kernel body and for generating the code required to pass all these
values to the kernel and/or compute API.

Compiling from this form to the final output happens in two steps. First, one pass
compiles the kernels to their final output source code, while assembling various information
required to generate the final host code. This pass has some backend-specific parts, but
there is only one for all the existing GPU backends, since it largely works the same way
for all of them. It outputs a program largely identical to the input ImpGPU program,
except with the embedded kernels replaced with a simple LaunchKernel operation and the
afore-mentioned metadata and kernel source code attached.

Then, another pass generates C host code from this intermediate program. This includes,
again, translation from ImpCode to C, but this time for the host. In principle, there could
be one pass doing this for every GPU API supported, but to avoid the associated code
duplication, it instead targets an internal GPU abstraction layer providing a uniform
interface. There are hand-written C implementations of this abstraction layer for each of
the compute APIs, so that the code generation does not need to differentiate much between
them.

In the remainder of this section, we will briefly explain some more concepts in the ImpGPU
representation to already give some context on why we are interested in certain WebGPU
features. We will then go into more detail on our translation of them into WebGPU and
WGSL later in chapter 4, once we have introduced both properly in chapter 3.

2.2.4 Kernel Uses

The values that should be made accessible to the kernel are called kernel uses. They are
divided into three categories. Scalar uses and memory uses are what their names indicate,
both referring to local variables available when the kernel is launched. The third category
are constant uses. They do not name an existing variable on the host but instead given
an expression and a name for the value of the expression that should be available in the
kernel. The name stems from the fact that the expression can be evaluated already when
the program is started, when compiling the kernel at runtime, instead of requiring the
local context of where it is ultimately launched. In addition to constant literals, these
expressions can also refer to so-called size values. This encompasses certain quantities
queried from the GPU device, such as available shared memory or cache sizes, as well as
tuning values. The latter is a mechanism to adjust how the program chooses between
several different options for exploiting parallelism. For our purposes we can just treat these
as more constant values. See [15] for details.

2.2.5 Block and Grid Size

The grid size, i.e. the amount of thread blocks in each dimension, is always given as simple
expressions that must be evaluated on the host where the kernel is launched. The block size
comes in two flavours: Either a plain expression like the grid size, or a constant expression
like those explained above for constant uses. Each dimension can individually be either
an expression or a constant expression. We will later see that constant block sizes are
more compatible with WebGPU, so it is convenient that the compiler already distinguishes
between the two options.
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3 WebGPU

WebGPU is an API designed to allow accessing the capabilities of GPUs on the web. It is
currently defined by a work-in-progress W3C Working Draft and is eventually intended
to become a W3C Recommendation [16]. There already exists a related API on the web
platform, WebGL. WebGL is modelled closely on the OpenGL API and focused on graphics
rendering use-cases [13]. On the other hand, WebGPU is modelled more closely on a newer
generation of native GPU APIs such as Khronos’ Vulkan, Microsoft’s DirectX 12, and
Apple’s Metal. It matches the capabilities of modern GPUs more closely, and also includes
explicit support for general compute workloads in addition to graphics rendering.

WebGPU is still relatively new and support in browsers is limited. Chromium-derived
browsers have the most support, with it enabled by default in Chrome and Edge on
Windows. Support in other major browsers and on other platforms is in-progress and can
often be enabled using experimental flags.1

As a web API, WebGPU has some unique design goals compared to the other APIs
mentioned. It is intended to be portable across a wide variety of hardware and operating
systems and thus designed to be implementable on top of all of the native APIs mentioned
earlier, and restricted to capabilities supported by all of them. There are also very strict
security requirements, as the primary use case involves running potentially untrusted
code from the web. The underlying native APIs can produce undefined behaviour, both
on the host and on the device, leading to unpredictable results and potential security
vulnerabilities. As a result, all WebGPU commands must strictly validate their inputs,
and the API must be restricted enough to ensure that no undefined behaviour can occur if
this validation succeeds. It may also be necessary to limit an individual page’s use of GPU
resources to keep the overall system responsive.

In addition to security, the web also has stricter privacy requirements than most ap-
plications. A web page should not be able to fingerprint individual users based on their
hardware, so a browser may be required to not expose exact hardware capabilities. And
lastly, some of the API design is to discourage use of the API that could degrade the user
experience, for example by only providing asynchronous versions of some operations to
lead developers away from patterns that could make the site or browser unresponsive.

3.1 The WebGPU API

Designed as a web platform API, WebGPU is most commonly a JavaScript API, though
as we will see later, there are bindings for other languages. There is a top-level GPU object
exposed as navigator.gpu in browsers. This is mainly used to a acquire an adapter and
then a device. An adapter represents an overall implementation of the WebGPU API
consisting of the underlying native API and the browser implementation on top of it. A
device is created from an adapter and represents a logical device, enabling concurrent and
isolated use of a physical device by more than one logical device. Once created, it is the
main object used to interact with the WebGPU API.

While compute-focused GPU APIs such as CUDA and OpenCL typically directly offer
primitive operations such as launching kernels and copying memory between the host and
the device, the structure of WebGPU is closer to that of modern graphics APIs. Most
commands interacting with the GPU are recorded into a command buffer which is then
submitted to a queue to be executed. Compute kernels are part of a shader module that

1https://caniuse.com/webgpu
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has to be invoked as part of a compute pipeline with a variety of meta information specified.
In the rest of this section, we will present the parts of the WebGPU API most relevant to
the implementation of the Futhark backend and point out the most relevant differences to
OpenCL and CUDA.

Throughout this section, we will include JavaScript code snippets illustrating using
the API to implement a simple example program. Like our earlier CUDA kernel from
Listing 2.1, it involves an input and output buffer, as well as a single kernel computing
the output by adding 2 to each element of the input. As before, error handling and some
details are omitted to keep the example concise and more readable.

3.1.1 Initialization

As already discussed, from the top-level API object we first acquire an adapter, and using
that, we can request a device. As part of requesting a device, we can request additional
optional features, and request limits past the default values.

Optional features are a way to provide additional features that may not be available
on all WebGPU implementations. Their availability can be queried on the adapter before
requesting a device. They must be explicitly requested if the application wants to make use
of them. The current list of features [WebGPU §3.6.1] includes, among others, support for
additional texture and buffer formats, and most relevantly for us, support for half-precision
floating point numbers in kernels.

Limits describe numerical maximum values supported for various properties. There are
many limits [WebGPU §3.6.2]. The ones most relevant for our purposes include maximum
size of buffers, the maximum size of kernel shared memory, and the maximum thread block
size. The specification provides a default value for each limit that every implementation
must support, but higher values can be requested by an application. This enables more
capabilities but potentially at the cost of portability, since not all implementations may
support the higher limits.

Acquiring an adapter and a device are both asynchronous operations. In JavaScript, they
return a promise that will resolve at some later point. As we will see later, asynchronous
operations are not entirely straightforward for us to make use of as we do not directly
generate JavaScript with its async/await syntax.

Once a device has been acquired, we can start using it to create other API objects such
as buffers and pipelines. Each device also comes with an associated primary queue that
work can be submitted to. It will then be completed asynchronously. To synchronize with
work being finished on the device, a callback can be registered that is invoked once all work,
that has been submitted to the queue when the callback is registered, is done. Notably,
unlike in OpenCL and CUDA, there is no built-in synchronous way to wait on the host
until device work has completed.

1 const adapter = await navigator .gpu. requestAdapter ();
2 const device = await adapter . requestDevice ();

3.1.2 Shaders and Kernels

Programs to be run on the GPU are called shaders in general. There are several flavors of
shaders, relevant mostly for graphics rendering. For this project, we are only concerned with
compute shaders, which can be used for general-purpose computation without involving the
GPU graphics pipeline. In this thesis, we will often refer to compute shaders, or specific
entry points in them, as kernels which is how the equivalent concept is generalled called in
compute-focused APIs such as OpenCL and by extension also internally in the Futhark
compiler.
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Shaders are given in source code form and written in the WebGPU Shading Language
(WGSL, see section 3.2) designed for this purpose. An entire shader is also called a module,
consisting of one or more entry points that can be invoked by the host and additional
declarations describing the shader’s interface, i.e. what inputs it receives and what resources
it has access to. For our purposes, the interface consists pipeline-overridable constants and
bound buffers, both of which are discussed in more detail later in this section.

1 // Let ‘shader ‘ be the text of Listing 3.1.
2 const shaderModule = device . createShaderModule ({ code: shader });

3.1.3 Buffers

GPU memory is represented by buffer objects. Buffers are of a fixed size specified when
creating them. Additionally, at creation time, a set of valid buffer usages must be specified,
restricting how the buffer may be used later. Example usages include vertex and index
buffers used for rendering, or uniform buffers for uniform data based to shaders (graphics
or compute). These are the usages relevant in our context:

• UNIFORM: Can be used to pass uniform read-only data to shaders.

• STORAGE: Can be bound as general read-write memory in shaders.

• COPY_SRC: Data can be copied from this buffer to other buffers.

• COPY_DST: Data can be copied from other buffers to this one.

• MAP_READ: Can be mapped as read-only memory.

• MAP_WRITE: Can be mapped as read-write memory.

Mapping a buffer refers to making it available as normal memory to the host side that it
can read (and potentially write to) directly. While a buffer is mapped, it cannot be used
for other purposes until explicitly unmapped. (Note that this does not imply the ability to
directly access device memory from the host, the API implementation can copy the data to
host memory when mapping and, for read-write mappings, copy it back when unmapped.)

Notably, if a buffer has the MAP_READ usage, the only other usage permissible for the
same buffer is COPY_DST [WebGPU §5.1.2]. The same is true for MAP_WRITE but with
COPY_SRC. This means that any buffer that can be bound in a shader cannot also be used
for mapping on the host. An intermediate buffer is required instead. These restrictions are
unlike OpenCL and CUDA, where allocated global memory can be freely used in kernels
and copied to and from.

Buffers can be written to from the host either by mapping them or by using the
writeBuffer method of a GPUQueue. The latter method allows copying data from host
memory to a GPU buffer and only requires the COPY_DST usage. On the other hand,
mapping is the only way to read data from the GPU back to the host. Thus, to read any
data computed by a kernel back to the host, we must first copy on the device side to a
separate MAP_READ readback buffer, which can then be mapped on the host.

It is also important to note that mapping a buffer is currently always an asynchronous
operation, like some of the initialization steps discussed above. There are discussions
around relaxing this restriction, but it is unclear whether a synchronous/blocking variant
will be provided in the future.2

2https://github.com/gpuweb/gpuweb/issues/2217
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1 const input = device . createBuffer ({
2 size: BUFFER_SIZE ,
3 usage: GPUBufferUsage . STORAGE | GPUBufferUsage .COPY_DST ,
4 });
5 const output = device . createBuffer ({
6 size: BUFFER_SIZE ,
7 usage: GPUBufferUsage . STORAGE | GPUBufferUsage .COPY_SRC ,
8 });
9 const readback = device . createBuffer ({

10 size: BUFFER_SIZE ,
11 usage: GPUBufferUsage . MAP_READ | GPUBufferUsage .COPY_DST ,
12 });
13
14 const params = device . createBuffer ({
15 size: 4,
16 usage: GPUBufferUsage . UNIFORM | GPUBufferUsage .COPY_DST ,
17 });

3.1.4 Pipelines and Layouts

Invoking shader entry points happens as part of executing a pipeline. There are two types
of pipelines, GPURenderPipeline and GPUComputePipeline. We deal only with compute
pipelines. A pipeline specifies the shader module and entry point to use, as well as what
inputs and outputs are available in the form of a pipeline layout. This must match the
declarations in the shader source code.

Giving an entry point access to a memory buffer is done by binding it to a specific slot.
Buffer slots (variables in the shader module that buffers can be bound to) are divided into
groups. Each slot is annotated with a group index and an index within the group in the
shader source. On the host, a bind group layout is created that must match the shader.
Each entry in the layout declares what binding index it is for, what type of buffer can be
bound, and which shader stage it is visible to. (We only consider the compute shader stage
here.) The layout does not define the specific buffer that will eventually be bound however.

In scenarios where the different entry points are executed after each other and share
some, but not all, of the same bindings, the grouping mechanism allows reducing overhead
by only changing some of the groups. We do not make use of this functionality however,
and only ever use a single bind group.

Since a single module can contain multiple entry points, not all entry points may use
all declared bind slots. It is valid to use a pipeline layout that omits slots declared in the
module that are not statically used by the entry point specified. All slots declared in the
layout must also later be supplied with a concrete buffer when the kernel is dispatched.

As we have mentioned before, in Futhark’s GPU backends, some values are supplied to
the kernel as constants when it is compiled. For this, we use pipeline-overridable constants
which are simple scalar values passed to the shader as read-only values. Their values are
already specified when the pipeline is created, not when it is queued for execution.

The block size for compute kernels must be specified either as a constant in the shader
source, or as a pipeline-overridable constant. This means that it is fixed once the pipeline
has been created.

While there is an explicit compilation step of shader source text into a shader module
and this should report problems such as syntax and type errors, the WebGPU specification
explicitly allows for shaders to only be fully compiled to their final form when creating a
pipeline, with access to the values of pipeline-overridable constants and to the bind group
layouts. As a result, pipeline creation is a potentially expensive operation.

1 const bgl = device . createBindGroupLayout ({
2 entries : [
3 { binding : 0, visibility : GPUShaderStage .COMPUTE ,
4 buffer : { type: "read -only - storage " } },
5 { binding : 1, visibility : GPUShaderStage .COMPUTE ,
6 buffer : { type: " storage " } },
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7 { binding : 2, visibility : GPUShaderStage .COMPUTE ,
8 buffer : { type: " uniform " } },
9 ]

10 });
11
12 const blockSize = 256;
13 const pipeline = device . createComputePipeline ({
14 layout : device . createPipelineLayout ({ bindGroupLayouts : [bgl] }),
15 compute : {
16 module : shaderModule ,
17 entryPoint : "plus2",
18 constants : {
19 " block_size ": blockSize ,
20 }
21 },
22 });

3.1.5 Invoking Kernels

With a pipeline in place, a kernel can be invoked. First, a set of bind groups must be
created that match the bind group layouts specified when creating the pipeline. These
match each slot in the layout with a concrete buffer to be used. Then, a command buffer
is created that sets the pipeline, the bind groups, and then dispatches the kernel. While
the block size for the kernel was specified as part of pipeline creation at the latest, the
number of blocks is dynamically given as part of the dispatch. The finished command
buffer is then submitted to a queue and executed asynchronously. Command buffers can
be submitted multiple times, though we do not make use of this ability.

1 const hInput = new Int32Array ( BUFFER_SIZE / 4);
2 for (var i = 0; i < BUFFER_SIZE ; i++) { hInput [i] = i; }
3
4 const hParams = new Int32Array (1);
5 hParams [0] = BUFFER_SIZE / 4;
6
7 device .queue. writeBuffer (input , 0, hInput , 0);
8 device .queue. writeBuffer (params , 0, hParams , 0);
9

10 const bg = device . createBindGroup ({
11 layout : bgl ,
12 entries : [
13 { binding : 0, resource : { buffer : input } },
14 { binding : 1, resource : { buffer : output } },
15 { binding : 2, resource : { buffer : params } },
16 ]
17 });
18
19 const commandEncoder = device . createCommandEncoder ();
20 const passEncoder = commandEncoder . beginComputePass ();
21 passEncoder . setPipeline ( pipeline );
22 passEncoder . setBindGroup (0, bg);
23 passEncoder . dispatchWorkgroups (Math.ceil (( BUFFER_SIZE / 4) / blockSize ));
24 passEncoder .end ();
25 commandEncoder . copyBufferToBuffer (output , 0, readback , 0, BUFFER_SIZE );
26 device .queue. submit ([ commandEncoder . finish ()]);
27
28 await readback . mapAsync ( GPUMapMode .READ , 0, BUFFER_SIZE );
29 const readbackMapped = readback . getMappedRange (0, BUFFER_SIZE );
30 const data = new Int32Array ( readbackMapped );
31
32 console .log("Ran plus2 , got: ", data);
33
34 readback .unmap ();

3.1.6 Emscripten and Native Implementations

As mentioned before and clearly indicated by its name, WebGPU is designed mainly to
make GPU capabilities available on the web. It is however also more generally a very
portable and reasonably simple GPU graphics and compute API, and has found use in
other contexts. Dawn[1] and wgpu[8] are the WebGPU implementations of Chrome and
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Firefox, written in C++ and Rust respectively. While they are used to implement WebGPU
on the web by the two browsers, they also expose a native API that other programs can
use to portably make use of GPU capabilities.

While both projects provide their own specific APIs and extensions past the current
WebGPU specification, a shared C WebGPU header has also been created that aims
to standardize a C interface mirroring the web specification[7]. Both Dawn and wgpu
provide implementations of this header. Additionally, Emscripten[4] also supports the same
header. Emscripten is a toolchain for compiling native code (typically C and C++) to
JavaScript and/or WebAssembly that can be run on the web. Using this, a C application
can be written against the native WebGPU header and then be compiled to JavaScript
and WebAssembly that make use of the browser’s WebGPU implementation.

3.2 WGSL

The WebGPU Shading Language[2], abbreviated WGSL, has been developed along with
the WebGPU standard itself for writing shaders to be used with WebGPU. Like the API
itself, it is currently specified as a W3C Working Draft. It is a relatively simple statically
typed imperative language with syntax close to that of the Rust language.

A simple example compute shader is shown in Listing 3.1. It continues our "plus 2"
example, adding 2 to each element of an input array and writing the result to a separate
output array, illustrating many of the concepts discussed below.

The basic built-in scalar types are bool, i32, u32, and f32. 16-bit floating point numbers
are supported as f16 as an extension. Additionally, there are 2–4 element vectors of the
scalar types and 2–4 x 2–4 element matrices, as well as the atomic<i32> and atomic<u32>
types for atomic operations. Shaders can also define custom struct types. There are
two variants for arrays, array<T> for runtime-sized arrays and array<T, N> for fixed-size
arrays. There is also a ptr<AS,T,AM> type that will be discussed in more detail later.
Lastly, there are some additional built-in types that are not relevant in our context, for
example for handling textures when rendering graphics.

There are several types of value declarations:

• const declarations give a name to the value of an expression that must be constant
at shader creation time. They can appear in module and function scope.

• override declarations give a name to a value that is a pipeline-overridable constant,
where the value is either specified by the host code at pipeline creation time as
discussed earlier, or the value of an override expression (effectively a constant
expression possibly referring to other override names). They can only appear in
module scope.

• let declarations can only appear in function scope and always have an initializer
expression. They give a name to the value of the initializer expression as evaluated
at runtime when the let statement is executed.

In addition to these value declarations, there are also variable declarations using the var
keyword. These associate a name with a corresponding backing memory allocation that is
allocated for the variable, which can be mutable at runtime (unlike the value declarations).
Variables can be in one of multiple address spaces, depending on how they are declared and
whether they are declared in module or function scope. See section 3.2.1 for more details.

Many items — among others module-scoped variables, functions, and function parameters
— can be annotated with attributes. For example, the group and binding attributes are
used to specify how to map the bind groups set on the host side to shader-side variables.
Functions are declared as a compute shader entry point using the compute attribute.
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1 @group (0) @binding (0)
2 var <storage , read > input: array <i32 >;
3 @group (0) @binding (1)
4 var <storage , read_write > output : array <i32 >;
5
6 struct Params {
7 count: u32 ,
8 }
9

10 @group (0) @binding (2)
11 var <uniform > params : Params ;
12
13 override block_size : i32;
14
15 @compute @workgroup_size ( block_size )
16 fn plus2(
17 @builtin ( global_invocation_id )
18 global_id : vec3 <u32 >,
19 ) {
20 if ( global_id .x >= params .count) {
21 return ;
22 }
23
24 output [ global_id .x] = input[ global_id .x] + 2;
25 }

Listing 3.1: A simple WGSL shader

Access to certain built-in values such as the thread ID is given by annotating entry point
parameters with the builtin attribute, for example as @builtin(global_invocation_id)
in Listing 3.1. Note that entry point function parameters can only be used for built-in
values like this; arguments from the host are always passed through items declared at
module scope.

Otherwise, WGSL largely supports a set of statements and expressions common for
imperative languages, including, among others, structured control flow with if statements
and for and while loops, as well as function definitions and calls. As is common for
shader languages, it also supports a variety of built-in functions. For our purposes, the
numeric, atomic, and synchronization built-ins are most relevant and will be discussed
later, but there are others, for example for sampling textures. There is also a built-in
bitcast function to convert between the different built-in types.

3.2.1 Address Spaces, Arrays, and Pointers

WGSL’s handling of arrays and pointers deserves special mention. We have seen earlier
that in Futhark’s GPU backends, memory is generally untyped and has reference-like
semantics where the specific buffer a name refers to can be changed at runtime. Thankfully,
it does not assume the ability to perform arithmetic on pointers, as is valid in C. Even
so, WGSL is a challenging target in this regard, as its array and pointer types are very
restricted in their capabilities.

The language explicitly supports several address spaces in which the memory backing
a variable may be located in to reflect the different types of GPU memory available to
shaders. In Listing 3.1 we can explicitly see the storage and uniform address spaces used
in the form of the var<storage, _> and var<uniform> declarations. The storage buffer
declarations contain explicit access modes: read or read_write. For uniform variables,
read-only access is implicit.

There are also several more address spaces, all implicitly with a read_write access
mode:

• private for module-scoped variables private to a single invocation,

• function for function-scoped variables (always private to a single invocation), and
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• workgroup for memory shared between threads in the same workgroup (CUDA shared
memory).

All var declarations inside function bodies implicitly have the function address space,
while declarations in module scope must have an address space explicitly declared. (There
is also a handle address space, but it is only relevant when dealing with textures and
samplers for graphics rendering.)

Pointer types contain information about both address space and access mode of the
memory pointed to, leading to the fully general type ptr<AS, T, AM>, although for all
address spaces other than storage, the access mode must not be written out, instead
being implicitly determined as above.

As we have seen before, array types come in two forms: array<T> and array<T, N> for
runtime-sized and fixed-sized arrays respectively. Runtime-sized arrays are only valid when
used with the storage address space. This distinction carries into pointers, as the pointer
type used to refer to an array is either ptr<AS, array<T, N>, AM> or ptr<storage,
array<T>, AM>, including the array type as the pointee’s type.

Pointers can be used within a function and passed as parameters to functions, but have
various restrictions. They cannot be used as the return value of a function. Pointers to
composite types such as vectors, arrays, or structures can be projected into pointers to
the elements making them up, but there is otherwise no explicit pointer arithmetic or any
ability to cast between pointers of different types. There are also no conversions between
pointers and integers.

As an example, in C, an array of integers can be pointed to using an int*, a pointer to
an integer, because it is possible to add to the pointer value to acquire pointers to other
elements of the array. In WGSL, a ptr<function, i32> only gives access to memory
storing exactly one integer. A ptr<function, array<i32,5>> gives access to memory
storing five integers. The former can be acquired from the latter using normal indexing
expressions.

Pointer types are also not so-called storable types [WGSL §6.4.1]. This means it cannot
be the type of a variable declaration, only of a value declaration such as let declarations
and function parameters [WGSL §7.3]. As a result, no mutable pointer variables are allowed
in WGSL.

Lastly, there are no generic functions and pointer arguments must be fully specified.
This makes it impossible to write functions that can for example take any kind of buffer as
an argument. Functions taking a shared memory buffer can only work for a specific size of
buffer since runtime-sized arrays in the workgroup address space are not allowed.

3.2.2 Uniformity

WGSL provides some built-in operations that involve cooperation between the threads
in a thread block, most notably the storageBarrier and workgroupBarrier functions.
They can be used to ensure that all memory and atomic operations that are executed by a
thread (affecting the storage or workgroup address spaces respectively) before the barrier
are visible to all threads in the same block after the barrier.

Both functions are a form of control barrier, which means that the program is executed
as if all threads in the block execute the barrier instruction concurrently. Some compute
APIs also support memory fences that only have an effect on memory operation ordering,
without the control flow synchronization. They are currently not exposed in WGSL, due
to a lack of them in the Metal API, but could be added in the future if Metal starts
supporting them.3

3https://github.com/gpuweb/gpuweb/issues/1374
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In all compute APIs, executing a control barrier is only valid in uniform control flow.
This means that all threads in the block must reach the barrier. For example, a barrier
in a conditional branch that only some threads reach is not allowed. In general, this is a
dynamic property: What is important is that, in any given run of the program, all threads
reach the barrier. In APIs such as CUDA and OpenCL, the behaviour when this property
is violated is simply not defined. In practice, it can lead to kernel execution hanging
indefinitely or returning unexpected results.

WebGPU and WGSL are explicitly designed to prevent this kind of undefined behaviour
in the underlying native API, even in the presence of maliciously crafted input. As a
result, the WGSL specification defines a static uniformity analysis to ensure that barriers
are only placed in uniform control flow. Explaining the analysis in detail [WGSL §14.2]
would exceed the scope of this section, but importantly the analysis must inherently be
conservative. There are necessarily some programs where, dynamically at runtime, all
barriers would be reached in uniform control flow, for example when given the correct input
data. But this cannot be proven statically, and so WGSL cannot permit such programs.

We will see later how this static uniformity analysis caused problems while implementing
the WebGPU backend, as well as how we solved them.
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In this chapter we will describe the bulk of the practical work of this project, actually
implementing the new WebGPU backend. As we have described before, this consists of
two main parts: Generating WGSL shader code for the GPU kernels, and getting working
host-side code for the WebGPU API using a mixture of code generation and hand-written
C code.

4.1 Generating WGSL Shaders

In contrast to all existing GPU backends where kernels are written in a variant of C,
WebGPU shaders must be provided in WGSL as described earlier. At first glance, ImpCode
and WGSL match up reasonably well. They are both imperative languages and so overall
control flow in the kernel function body involving constructs such as if blocks and while
and for loops can be translated straightforwardly. We have implemented a Haskell module
with an AST definition for the subset of WGSL that we need to be able to generate, along
with a pretty-printer to turn ASTs into WGSL source text we can include in the generated
program. With that, the basis of compiling the body of a kernel is recursively traversing the
statements and expressions making up the ImpCode kernel body and producing equivalent
WGSL output.

However WGSL is in many ways more limited than the previous targets of CUDA or
OpenCL C kernels in what it supports and this has required various bits of more involved
translation. The remainder of this section will describe many of the challenges and how
we solved them. There are also some problems that we were not able to resolve in this
project, and as a result our backend does not support all valid Futhark programs. These
will mostly be discussed separately in section 6.1, but we will mention some of them here
in passing.

We have included a fragment of an example ImpCode program with an embedded kernel
in Listing 4.1 to illustrate the general structure. It implements the same program as our
earlier CUDA and WebGPU examples, adding 2 to each number in an array.

4.1.1 Integer Signedness

One of the more simple-to-resolve mismatches between ImpCode and WGSL is that WGSL,
like most common programming languages, has signed and unsigned integer types and
the semantics of operations such as comparisons or bit-shifts depend on the types of the
involved variables. In ImpCode, signedness is always a property of individual operations,
not of variables in general. We chose to always declare variables in WGSL as being signed
and have then implemented functions that perform the correct unsigned operation on the
signed integer type that get called when required. For example, a CmpSlt (signed less-than)
expression gets translated to a simple expression using the < operator in WGSL, while a
CmpUlt expression turns into a function call to ult_i32:

1 fn ult_i32 (a: i32 , b: i32) -> bool {
2 return bitcast <u32 >(a) < bitcast <u32 >(b);
3 }

This is the same approach used in existing backends when generating C code, where
signedness is also a property of the type.
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1 var segmap_tblock_size_5228 : i64
2 segmap_tblock_size_5228 <- get_size (main. segmap_tblock_size_5220 ,

thread_block_size )
3 var segmap_usable_groups_5229 : i64
4 segmap_usable_groups_5229 <- sdiv_up64 ( d0_5197 ) ( segmap_tblock_size_5228 )
5 var mem_5238 : mem@device
6 mem_5238 <- malloc ( mul_nw64 (4 i64) ( d0_5197 )) @device
7 kernel {
8 blocks { [ segmap_usable_groups_5229 ] }
9 tblock_size {

10 [const get_size (main. segmap_tblock_size_5220 , thread_block_size )]
11 }
12 uses {
13 scalar_copy (d0_5197 , i64)
14 mem_copy ( a_mem_5235 )
15 mem_copy ( mem_5238 )
16 const( segmap_tblock_size_5228 , get_size (main. segmap_tblock_size_5220 ,

thread_block_size ))
17 }
18 body {
19 var local_tid_5242 : i32
20 var block_id_5243 : i32
21 local_tid_5242 <- get_local_id (0)
22 block_id_5243 <- get_tblock_id (0)
23 var gtid_5231 : i64
24 gtid_5231 <- add_nw64 ( mul_nw64 ( sext_i32_i64 ( block_id_5243 )) (

segmap_tblock_size_5228 )) ( sext_i32_i64 ( local_tid_5242 ))
25 if slt64 ( gtid_5231 ) ( d0_5197 ) then {
26 var eta_p_5233 : i32
27 eta_p_5233 <- a_mem_5235 <i32@global >[ gtid_5231 ]
28 var lifted_lambda_res_5234 : i32
29 lifted_lambda_res_5234 <- add32 (2 i32) ( eta_p_5233 )
30 mem_5238 <i32@global >[ gtid_5231 ] <- lifted_lambda_res_5234
31 } else {
32 skip
33 }
34 }
35 }

Listing 4.1: Example ImpCode fragment with an embedded kernel adding 2 to every element
of an array.
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4.1.2 Missing Primitive Types

More significantly, the only scalar numeric datatypes supported in WGSL are 32-bit signed
and unsigned integers (i32 and u32), as well as 16-bit and 32-bit floating point numbers
(f16 and f32). The f16 type is only available as an optional WebGPU feature, which we
require unconditionally. To increase compatibility, this could be adjusted to only require
the feature if 16-bit floats are used in the Futhark program being compiled in the future.
According to an investigation performed when the f16 feature was proposed in 20221, it
can be supported by implementations on a decent variety of common recent hardware and
software combinations, but is still much less portable than WebGPU overall is.

Futhark, and by extension also ImpCode, support 8-bit, 16-bit, and 64-bit integers as
well as 64-bit floating point numbers in addition to what is exposed in WGSL. We have
not implemented support for 64-bit floats, which are only required if the source Futhark
program actually usues them itself, but do support the other integer sizes.

64-bit integers are represented in WGSL as a 2-element vector of i32s. We have created,
in hand-written WGSL, a library of functions operating on this representation to implement
almost all of the required 64-bit operations, such arithmetic like addition or multiplication,
and comparisons. These functions are used by the code generator to translate the equivalent
expressions from ImpCode. An advantage of this approach is that the same buffers can be
correctly interpreted as containing native 64-bit integers on the host and this vec2<i32>
representation on the device, as they use the same memory layout (assuming little-endian
architectures). This means we do not have to add in additional conversion steps or buffer
(re-)allocation. The largest missing piece of our i64 support is 64-bit division. This is
somewhat complicated to implement by hand with only 32-bit division as a primitive, and
we have assessed that our limited time was better spent elsewhere, so currently 64-bit
divisions will only return correct results when the values involved fit into 32 bits.

Smaller integer types are represented as a full i32 in WGSL, with their own associated
library of operations. There is however an additional complication: With 64-bit integers
we get the identical in-memory representation between host and device effectively for free,
but representing each 8- or 16-bit integer with a full 32 bits clearly does not give the same
memory layout. In order to support the representation without significantly modifying
the host-side code generation, and to avoid increasing the memory footprint of arrays of 8-
and 16-bit integers, we have decided to keep the in-memory representation the standard
one also used on the host. In the kernel, memory buffers are always declared as containing
i32s and all accesses to them go through functions that operate on the correct fourth or
half of the full value respectively.

This is straightforward for reading, but more difficult for writing: The expectation is
that different threads on the GPU are able write to different 8/16-bit elements of the array
without synchronization, even when they happen to be stored as part of the same i32
value. Thus all writes must happen using atomic operations instead, to avoid racing with
writes to adjacent elements. The implementation of this for 8-bit integers is shown in
Listing 4.2. Note that there is no expectation that the entire write itself is atomic here, so
using two sequential atomic operations is fine. If two threads were to write to the same
element, this would already be a data race in the input kernel.

This solution for smaller integers is very similar to how f16 is handled in the existing
C CPU backends, since 16-bit floats do not exist in standard C. In local variables, they
are treated like 32-bit floats, exactly how we handle the integers. On the CPU, a 16-bit
integer type is however always available, so that can be used as the type in memory, so
that reading and writing only involves a cast instead of our more complicated functions.

1https://github.com/gpuweb/gpuweb/issues/2512
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1 alias i8 = i32;
2
3 fn read_i8 ( buffer : ptr <storage , array <atomic <i8 >>, read_write >, i: i32
4 ) -> i8 {
5 let elem_idx = i / 4;
6 let idx_in_elem = i % 4;
7
8 let v = atomicLoad (&((* buffer )[ elem_idx ]));
9 return norm_i8 (v >> bitcast <u32 >( idx_in_elem * 8));

10 }
11
12 fn write_i8 ( buffer : ptr <storage , array <atomic <i8 >>, read_write >,
13 i: i32 ,
14 val: i8
15 ) {
16 let elem_idx = i / 4;
17 let idx_in_elem = i % 4;
18
19 let shift_amt = bitcast <u32 >( idx_in_elem * 8);
20
21 let mask = 0xff << shift_amt ;
22 let shifted_val = (val << shift_amt ) & mask;
23
24 // First zero out the previous value using the inverted mask.
25 atomicAnd (&((* buffer )[ elem_idx ]), ~mask);
26 // And then write the new value.
27 atomicOr (&((* buffer )[ elem_idx ]), shifted_val );
28 }

Listing 4.2: read_i8 and write_i8

Boolean variables also require some extra consideration. WGSL has a bool type, but
it is not defined as host-shareable [WGSL §6.4.2]. This means that in local variables we
can simply translate ImpCode’s booleans to WGSL booleans, but we cannot use them
as the element type of memory buffers. Instead we employ the same memory layout as
for i8 variables, with read_bool and write_bool functions implemented in terms of the
corresponding i8 variants.

Integers both larger and smaller than 32 bits are generally supported on GPUs in
hardware, as can be seen from OpenCL’s and CUDA’s support for them. WGSL decided
to hold off on them out of compatibility concerns with some potential underlying APIs2,
but will hopefully add support for them at some point in the future3, which would make
these workarounds unnecessary.

4.1.3 Typed Memory

WGSL also requires annotating memory buffers with their element type, unlike CUDA
and OpenCL where pointers to memory buffers can simply be cast to the appropriate
type when necessary. ImpCode does not contain type annotations for buffers. Instead the
memory is accessed at types given in the individual Read or Write statements. In order to
generate a declaration for the buffers used by kernels, we thus have to search the kernel
body for all accesses to the buffers and record the types they are accessed at. If a single
buffer is accessed at multiple types, we currently generate an error, as we have to declare
a single type in WGSL. This could potentially happen if the same buffer is re-used for
different purposes within a single kernel. This is generally not required, but sometimes
done by the Futhark compiler as an optimization to reduce memory usage, or to re-use
limited shared memory. As a potential future extension, this behaviour could potentially
be disabled for the WebGPU backend entirely. A buffer can be re-used at different types
in different kernels, since we generate a completely separate set of bindings for each kernel.
We also investigated the possibility of instead generating multiple bindings at different

2https://github.com/gpuweb/gpuweb/issues/229
3https://github.com/gpuweb/gpuweb/issues/273
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types for a single buffer, but WebGPU only allows this kind of aliasing if all bindings are
declared read-only [WebGPU §14.1], limiting the usefulness of this approach.

4.1.4 Kernel Interface

In section 2.2.3, we described the three categories of values passed from the host to
kernels: constant uses, scalar uses, and memory uses. On the C-based backends, scalar and
memory uses are implemented as function parameters for the kernel, while constant uses
are implemented as preprocessor definitions passed to the kernel compiler. In WGSL, kernel
entry point parameters can only be used for access to built-in values such as the thread ID.
For everything passed by the host, we need to generate appropriate module-scoped WGSL
declarations instead.

Memory uses are the simplest: We have already discussed finding an appropriate type for
them, and once we have that, we generate straightforward storage buffer declarations. One
last complication to deal with are potential name collisions. We generate all kernels in a
program into a single WGSL module, so we have to ensure that we do not generate bindings
with the same name for two separate kernels. We do this by prefixing the module-scoped
name with the kernel name to ensure it is unique. We then have to be careful during
translation of the kernel body to replace all mentions of the name by the prefixed name.
Another possible approach would have been to declare a local pointer to the module-scoped
buffer in the entry point’s body with the original name, and then always treat memory
buffer names as being pointer-typed instead of array-typed while translating the kernel
body. Bind slot indices are simply assigned in sequential order across all generated kernels.
We do not make use of multiple bind groups, though if large programs ever exceed the
maximum amount of slots permitted per group, we could use them to gain additional slots.

Constant uses fit WebGPU’s pipeline-overridable constant concept fairly well. Their
values are available when the kernels are being compiled and do not change, so we can
pass them in when creating the pipelines. A major difference between pipeline-overridable
constants and the preprocessor definitions used in the C-based backends is that override
constants must be statically typed like everything else in WGSL. In practice, the Futhark
compiler currently only generates 64-bit integer constant uses, so that is what we generate.
In the future, it would also be possible to determine the type of the ImpCode expression
if necessary. The only other complication is that, as described above, 64-bit integers are
represented as a vec2<i32> and override constants can only be of scalar type. Thus we
generate two i32 override declarations and combine them at the start of the kernel body.
The host-side expression is duplicated and the high and low halfs respectively extracted.
We also have to ensure the uniqueness of the override declarations, like for memory above,
though here we can avoid keeping track of the renames by using the original name for the
function-scoped combined vec2<i32>.

The remaining category is scalar uses. In principle, these could also be implemented
using override constants, but this would require creating a new pipeline and thus potentially
triggering shader re-compilation every time a kernel is invoked, since the scalar values are
more dynamic. We will see that we cannot always avoid creating a new pipeline for each
dispatch, but we attempt to do this as little as possible. Thus, we make use of uniform
buffers for the scalars. For every kernel, we generate a struct definition in the module
containing a field for every scalar use and declare a uniform buffer binding containing a
single instance that type. At the start of the kernel body, we copy every scalar into a local
variable of the expected name.
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4.1.5 Block Size

As described previously, WebGPU is unlike the other compute APIs supported by Futhark
in that the block size must be provided in the shader itself using the @workgroup_size
attribute. The value provided in the attribute can however be an override expression
(for our purposes: the name of an override constant), saving us from having to actually
modify the shader source at runtime. When the Futhark compiler generates kernels, some
block sizes will be constants, while others may need to be computed at runtime when
dispatching the kernel. On the shader side, we simply generate one override expression for
each dimension specified in the kernel. The host code is ultimately responsible for dealing
with the difference between constant and dynamic block sizes.

4.1.6 Shared Memory

This is another area where the WebGPU backend is fairly different from the other GPU
backends. The kernel ImpCode contains DeclareMem and SharedAlloc statments that are
used to declare shared memory to actually assign some region of shared memory to a
previously-declared variable respectively. The SharedAlloc contains an expression for the
size required for the buffer, which can actually be evaluted on the host before launching
the kernel, rather than in the kernel itself. On the other GPU backends, a single dynamic
shared memory allocation is declared in the kernel code. Its size is set to be the sum of all
the allocations, computed on the host. In the kernel, this is then split into the required
allocations using, effectively, pointer arithmetic. On WebGPU, this splitting is not possible
as soon as more than one type is involved. Instead, we declare an array variable in the
workgroup address space for each SharedAlloc encountered in the kernel body. The size
is declared using yet more override constants, one per allocation, so that the host can
compute each size and pass it in as part of pipeline creation.

An additional issue is that our functions for reading and writing 8- and 16-bit integers,
presented earlier, do not work with these shared memory allocations. In Listing 4.2, we
can see that the pointer is (and must be) explicitly declared with storage address space,
so we cannot pass in a workgroup buffer. The obvious fix is to write a second set of
functions taking a ptr<workgroup, array<atomic<i8>>> instead. We would then need
to track which names refer to shared memory instead of normal memory buffers, so that
for each Read and Write statement, we can pick which function to use. Unfortunately,
this is also not possible, because runtime-sized arrays are only allowed with the storage
address space (see section 3.2.1), so ptr<workgroup, array<atomic<i8>>> is not a valid
type. On top of that, we will see in a moment that we need to support using a WGSL
function called workgroupUniformLoad with our shared memory buffers, and it cannot be
used with atomic types.

Since shared memory buffers are never copied directly to or from the host, we instead
relax our requirement that they should keep the same memory layout. In shared memory,
every i8 and i16 is represented by a full i32, just like in local functions. We can then use
normal indexing and assignment expressions/statements to read/write from them. This
also makes it possible to use the workgroupUniformLoad function. The main downside
is that we waste limited shared memory space for what is effectively padding with such
arrays.

4.1.7 Atomics

Kernels can also make use of a set of atomic operations on primitive types. WGSL
only supports atomics with the atomic<i32> and atomic<u32> types, while ImpCode can
generally express atomic operations on any integer types, and even supports atomic floating
point addition. Our backend currently only supports kernels that exclusively use atomics
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for 32-bit integers. Since we represent smaller integer types using a full i32, it would be
possible to extend this to support some operations for those too, like an atomic compare-
and-exchange. We can not, in general, use the built-in atomic arithmetic operations for
them, since the behaviour when overflowing the limited number of bits would be incorrect.
They could however be implemented by emulating them using a compare-exchange loop,
potentially degrading performance to some extent. For 64-bit integers, even this is not
an option. Without any atomic primitives that can affect 64 bits at once, implementing
support for them efficiently is basically impossible. The only feasible implementation
would be using the smaller atomics to implement a simple spin-lock guarding an ordinary
vec2<i32> buffer, but it is unclear whether even this would be possible for the general
case, since such a lock would necessarily involve barriers and/or memory fences. We will
see in the next section that these are already somewhat problematic in and of themselves.

Even for the 32-bit integers we do support, there is an extra complication. In the
existing backends, atomic operations are done on normal memory buffers that can also
be read and written non-atomically. In WGSL, atomic operations are only possible on
the atomic<T> types. Thus, when determining the type of a buffer, any atomic operation
causes it to be promoted to have atomic elements. We must then generate an atomicLoad
and atomicStore for every read and write to that buffer, even where the other backends
perform ordinary reads and writes. Due to the lack of casting, unlike for normal buffers,
we also have to choose between atomic<i32> and atomic<u32> for each buffer. The only
atomic operations where the sign is relevant are the minimum and maximum operations.
As long as only one version of these is used, we can determine a type to use. If both are,
our backend produces an error.

4.1.8 Barriers, Fences, and Uniformity

As kernel-specific extensions to ImpCode, there are also statements for memory fences and
barriers. As we have explained in section 3.2.2, these can be used to synchronize between
the different threads in a single block. The Futhark compiler emits them for various kernels,
for example for an efficient reduction kernel.

Barriers must be only be executed in uniform control flow, as discussed earlier. This
restriction applies to CUDA and OpenCL too, and so the kernels output by the compiler
already respect it. However, unlike in those APIs, WGSL’s static uniformity analysis [WGSL
§14.2] must also come to the result that they are in uniform control flow. Unfortunately,
the kernels generated by the compiler contain patterns that do not pass the analysis.
Concretely, barriers sometimes appear in conditional branches that depend on a value read
from shared memory. All threads in the block read the same value, so we know that this
control flow is uniform, but the analysis does not consider it to be.

WGSL does however provide a function that lets us provide extra information to the
analysis: workgroupUniformLoad [WGSL §16.11.4]. This function can only be used in
uniform control flow itself, but in that case it can be used to read a value from shared
memory in all threads, that is then considered uniform by the analysis. This is exactly the
scenario we need to support. In order to make use of it, we added a new kernel-specific
ImpCode statement for uniform loads, for which we generate a call to this function. We
then adjusted the kernel construction code to emit this new statement where required. On
the existing GPU backends, a uniform load can simply be implemented as a normal load.

workgroupUniformLoad cannot be used to read atomic values. This means any given
shared memory buffer can either be accessed atomically or with a uniform load, but not
both. We generally perform the same analysis as for other buffers to determine whether
it is accessed atomically or not, and promote normal reads and writes to atomic ones
accordingly. A uniform load from a buffer determined to be atomic will result in a compiler
error.
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In addition to barriers, the compiler also generates fences. These can be used to ensure
a consistent ordering on memory accesses visible between different threads. Their effect is
weaker than that of a barrier, because they only affect the ordering of different memory
accesses, and don’t ensure the visibility of them to other threads like a barrier does. On
the other hand, they are not required to be in uniform control flow, making them more
flexible.

Unfortunately, WGSL does not currently support any memory fences. In our current
implementation, they are simply discarded, but this does have the potential to lead to
incorrect results. The plan for the future is to take advantage of the limited scenarios
where the Futhark compiler generates them to generate different, but equivalent code.
Specifically, they are used just after a write to memory in a way that the required effect
can potentially also be achieved by using an atomic store instruction instead. It is however
not entirely clear whether this is technically correct according to WGSL’s memory model,
and we have not finished a prototype implementation of this due to time constraints.

4.2 Host Code

The main goal of adding a WebGPU target to Futhark is making it possible to run Futhark
programs on the web. This requires ultimately generating either JavaScript or a mixture of
JavaScript and WebAssembly (Wasm) to be run by a web browser. One possible approach
for this would have been to directly add the capability to generate this code to the Futhark
compiler, but generating an entire new output language requires significant implementation
effort. On the kernel side, doing this for WGSL was unavoidable, but for the host code
there is another option, also used by the existing WebAssembly backend [14] for Futhark.

As mentioned in section 3.1.6, the Emscripten compiler can compile C and C++ code to
JavaScript and Wasm. With its support for the shared webgpu.h header, it is possible for
us to re-use large parts of the existing C host code generation and C runtime system of the
Futhark compiler, but compiling it for the web platform instead of to native executables.

This means we did not have to re-implement code generation from ImpCode again for
the host code, as it can be shared with the other C-based backends. The Futhark compiler
has a small internal C GPU abstraction layer in the generated runtime system so that the
compiler mostly generates code targeting this abstraction layer, which then has multiple
implementations for e.g. CUDA and OpenCL. We thus added a new implementation the
abstraction layer targeting the native WebGPU header.

4.2.1 ImpCode to C Host Code

We have already described the overall structure of the GPU backends in section 2.2.3. We
first compile an ImpGPU program to WGSL shader source code, as described above, while
also collecting a variety of meta-information about the generated kernels required to then
generate the host code. All the existing GPU backends share a single pass for this, but
WebGPU is sufficiently different to require its own implementation.

The overall output from this pass, including all the metadata, is also specific to the
WebGPU backend. Initially, we also defined our own ImpCode variant by defining a custom
HostOp type to extend it with. However we were later able to actually re-use the same
type used by the existing backends instead, so we extracted it and some related types used
for kernel metadata into a shared module now used by all GPU backends. This shared
representation is what is compiled to C host code targeting the internal C GPU abstraction
layer, so keeping it the same enabled us to re-use this step from the existing backends
without further modifications.

This generates most of the program required. In order to actually implement the C GPU
abstraction, we do however have to generate additional C code specific to the WebGPU
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backend. This contains the metadata mentioned earlier, required to correctly compile
and interact with the WGSL shader generated by the earlier step. It takes the form of a
wgpu_kernel_info struct and an array of instances of this struct, one for each kernel. We
will see what information this contains and how it is used in the next section.

4.2.2 The Runtime System

The compiled Futhark program consists not only of the code generated by the compiler
for the specific program being compiled, but also of a runtime system that is written by
hand in C. This includes some backend-agnostic bits, such as dealing with Futhark’s binary
data format or a generic device memory management API. The backend-specific part
handles initialization of the underlying API and implements the GPU abstraction layer.
The backend is required to define some types and functions used by the runtime system.
What we need to implement can broadly be divided into three categories: Initialization
and global context, memory operations, and kernel operations.

The context type used by our backend is very similar to that of the other backends. It
contains various bits used by the runtime system, such as a free list of allocated GPU
memory, and also the WebGPU context, including the adapter, the device, and the compiled
shader module. Initialization is mostly straightforward and similar to the other backends,
with the exception of handling the asynchronous nature of some of the involved WebGPU
operations. This is discussed in detail in section 4.2.3. The context must also provide
some information about the current device, such as the maximum thread block size. On
WebGPU these will always be the default limit value from the standard, unless more is
explicitly requested. In the future, we could request the maximum available and use that
value, but currently we always just report the default.

GPU Memory

Memory operations mostly involve delegating to the corresponding WebGPU functions.
For example, allocating memory is simply creating a new buffer object. Copying memory
from the host to the device and between buffers on the device also has straightforward
WebGPU analogues. Copying from the device to the host is the most complicated. General
memory buffers are created with the STORAGE use so they can be bound in kernels, but
as described in section 3.1.3, this is incompatible with mapping them to be read on the
host. As a result, we have to first create an intermediate buffer with the MAP_READ usage
and issue an on-device copy, before we can then map this buffer and copy the data to
the destination. The GPU abstraction layer also defines a separate function that can be
used to copy individual scalar values instead of larger parts of buffers; here we use a single
pre-allocated readback buffer since we have a guaranteed maximum size. A potential future
improvement would be to also re-use the readback buffers for general copies, only allocating
a new one when the existing one is too small. Some care has to be taken to avoid a very
large readback buffer permanently occupying memory that might be needed elsewhere
however. Mapping a buffer for reading also has the asynchronicity problem discussed in
more detail later.

One final complication is that both buffer sizes and the size of copy operations must
always be a multiple of 4 in WebGPU. We can simply round up buffer sizes, and the same
works for common cases of copying entire buffers. When copying from the device to the
host, we can simply round up all operations until the final copy from the mapped buffer to
the destination, which is just an ordinary memcpy without the multiple-of-4 requirement.
There remain two problematic cases: Host-to-device and device-to-device copies, where
the size is not already a multiple of 4, and the target range is somewhere in the middle of
the target buffer, not at the end of it. Rounding up here risks overwriting unrelated data.
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One possible workaround would be to issue the copy with a size that is rounded down, and
then dispatch a kernel that performs the remaining writes. Out of time constraints, we
have for now instead implemented a simple check for the problematic cases that aborts the
program instead of silently corrupting data, since they are not all that common.

Kernels

The most complex part of the WebGPU-specific runtime system is creating and dispatching
kernels. The GPU abstraction layer defines two functions that will be called as appropriate:
gpu_create_kernel and gpu_launch_kernel. Each kernel gets created once as part
of runtime initialization and then launched potentially many times, as required by the
program. We have discussed the details of what is required to be able to dispatch a kernel
on WebGPU in section 3.1. What remains is how this maps to the expectations and
requirements of Futhark in practice.

Some tasks can always be done as part of creating a kernel: We create the bind group
layout, we create a uniform buffer that is used to hold the scalar parameters for each launch,
and we create the pipeline layout. We also allocate entries for all of the pipeline-overridable
constants and set those that are truly constant. This already hints at one of our limitations:
Some of our pipeline-overridable constants are not actually fixed at kernel creation time,
namely those used for dynamic block sizes and for shared memory allocation sizes. For
kernels where none of these are present, we already create the pipeline when creating the
kernel. Otherwise, we have to defer this until the kernel is launched. Some pseudocode to
illustrate this process is included in Listing 4.3.

All this is where all the kernel metadata mentioned previously comes in. We start by
finding the right wgpu_kernel_info instance. It contains information on the total size of
the scalars buffer, how many binding slots the kernel uses and what indices are assigned to
them, and which, if any, override constants are used for dynamic block sizes and shared
memory sizes. As of the writing of this report, it also contains a list of all the override
constants used by the kernel in general. This should not be required, as we should be able
to simply set all override constants in the entire module, no matter which kernel they are
intended for. However, Chrome/Dawn currently has a bug in its validation checks where it
only allows override constants actually used by the kernel to be specified when creating a
pipeline for it, so we have to collect this extra information and filter which constants are
set. We have reported this bug4 and the relevant W3C working group has confirmed that
the spec behaviour as written is intended5 and will be clarified. As a result, we expect to
be able to remove this workaround in the near future.

The other half of the equation is actually launching a kernel. If the pipeline has not
been created yet, this is the first step. Here we can now add values for the dynamic block
size and shared memory size constant overrides. These are passed as arguments to the
gpu_launch_kernel function. Its interface assumes a single total shared memory size, as
for the other backends, so our code generation simply passes the size of the individual
blocks as part of the generic argument array for arguments to the kernel itself.

Dealing with those is next. From the kernel metadata, we know how many arguments
to expect, as well as which are scalars and which are memory buffers. We create a bind
group, matching the layout created earlier, containing the memory buffers. For the scalars,
we create a buffer containing all of them to copy into the uniform scalars buffer created
previously. This has to match the memory layout of the generated WGSL struct. For this
purpose, the kernel metadata also contains the offset and size of each scalar field, computed
during kernel translation by implementing WGSL’s struct layout algorithm. Once all of

4https://issues.chromium.org/issues/338624452
5https://github.com/gpuweb/gpuweb/issues/4624
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this is in place, we can finally record a command buffer dispatching the kernel and submit
it to the device.

4.2.3 Asyncify

In section 3.1 we have seen that some operations in WebGPU are asynchronous on the
host side, returning JavaScript promises. On the web, it is important to avoid blocking
script execution for too long, as this can hang the entire site, degrading the user experience,
and so the WebGPU API currently forces developers to handle asynchronously completing
promises here. When using Dawn or wgpu to target native applications, they provide
extensions that make it straightforward to block until a promise completes, but as we are
targeting the web, this is not an option for us.

In the generic WebGPU C header, the asynchronous functions take an extra callback
parameter that is invoked once the result is available. This presents a problem, as the
GPU abstraction layer we would like to provide an implemention for does not make any
affordances for this and expects to be provided simple functions that return synchronously.

Some of the asynchronous operations are only invoked once when initializing, namely
acquiring an adapter and a device. These could perhaps be worked around without
requiring major modifications to the existing abstraction layer by special-casing initialization.
However we also have two more problematic asynchronous operations: Mapping a buffer
to be read (or written) on the host side, and waiting for work submitted to a queue to be
complete. These can, and do frequently, appear at any point during the program’s runtime,
right in the middle of generated code, possibly multiple calls deep. Adapting the existing
abstraction layer and code generation to deal with a callback-based approach here would
be difficult.

Luckily, variants of this problem occur frequently when using Emscripten to write native
code that interacts with web APIs, since many modern web APIs involve asynchronous
operations that are easily handled using async-await syntax in JavaScript. As a result,
Emscripten contains a compiler pass and associated APIs called Asyncify [5, 18] that makes
this problem easier to deal with.

Asyncify instruments the code while compiling to support unwinding out of the Wasm
VM back to the controlling JavaScript code and then rewinding back to where unwinding
started once the JavaScript side re-invokes the Wasm VM, with the option of passing some
result value back. This lets the JavaScript await an asynchronous operations, for example
a network fetch, before returning control to the Wasm code.

However we cannot quite make use of the mechanism as described directly, because we
do not have an asynchronous JavaScript API, but instead the callback-based C API, so
there is not immediately something the JavaScript side could await before returning to
Wasm. We investigated two approaches for working around this.

First, we tried directly using the JavaScript WebGPU API to start the asynchronous
operations, resulting in a promise that could be awaited. The Emscripten-compiled Wasm
invokes glue JavaScript code whenever interacting with the WebGPU API, so in principle
the device and other API objects like buffers created from the Wasm side have valid
corresponding JavaScript objects that we can use. And in fact, Emscripten provides library
functions to facilitate passing such API objects between JavaScript and Wasm/native code.
Unfortunately, the Emscripten-provided glue code that is used when WebGPU API calls
happen from the Wasm side interferes with this idea. It implements its own layer of state
and validation tracking, with the result that, for example, if a buffer is mapped using the
JS WebGPU API, we cannot directly get the mapped memory on the Wasm side. It would
likely be possible to work around this, for example by manually invoking parts of the glue
code from hand-written JavaScript, or changing its interal state. However, the generated
glue code is not part of Emscripten’s stable interface and liable to change between versions,
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1 CreateKernel (ctx , name):
2 info = GetKernelInfo (name);
3 kernel = {info: info };
4 kernel . scalars = CreateBuffer (UNIFORM , info. scalarSize );
5 bgls = new BindGroupLayoutEntry [info. numBindings + 1];
6 bgls [0] = { binding : info. scalarBinding , type: UNIFORM };
7 for (i < info. numBindings ) {
8 bgls[i+1] = { binding : info. bindings [i], type: STORAGE };
9 }

10 kernel .bgl = CreateBindGroupLayout (bgls);
11 kernel . pipelineLayout = CreatePipelineLayout ([ kernel .bgl ]);
12
13 kernel . overrides = new Override [info. numOverrides ];
14 CopyConstantOverrides ( kernel .override , ctx. overrides );
15
16 kernel . staticPipeline =
17 info. numDynamicBlockSizes == 0
18 && info. numSharedMemorySizes == 0;
19
20 if ( kernel . staticPipeline ) {
21 kernel . pipeline = CreatePipeline ( kernel . pipelineLayout ,
22 kernel .overrides , ctx.module , kernel .name);
23 }
24
25 LaunchKernel (ctx , kernel , gridSizes , blockSizes , args):
26 info = kernel .info;
27 shmemArgs = args [.. info. numSharedMemorySizes ];
28 scalarArgs = args[ shmemArgs .. shmemArgs + info. numScalars ];
29 memArgs = args[ scalarArgs ..];
30
31 scalars = malloc (info. scalarSize );
32 CopyScalarArgs (scalars , scalarArgs , info. scalarOffsets );
33 CopyToDevice ( kernel .scalars , scalars );
34
35 bges = new BindGroupEntry [info. numBindings + 1];
36 bges [0] = { binding : info. scalarBinding , buffer : kernel . scalars };
37 for (i < info. numBindings ) {
38 bges[i+1] = { binding : info. bindings [i], buffer : memArgs [i] };
39 }
40 bg = CreateBindGroup (bges);
41
42 if ( kernel . staticPipeline ) {
43 pipeline = kernel . pipeline ;
44 } else {
45 overrides = kernel . overrides
46 + MakeBlockSizeOverrides (info , blockSizes )
47 + MakeSharedMemOverrides (info , shmemArgs );
48 pipeline = CreatePipeline ( kernel . pipelineLayout ,
49 overrides , ctx.module , kernel .name);
50 }
51
52 cmds = CreateCommandEncoder ();
53 cmds. SetPipeline ( pipeline );
54 cmds. SetBindGroup (bg);
55 cmds. Dispatch ( gridSizes );
56 ctx. device . Submit (cmds. Encode ());

Listing 4.3: Pseudo-code illustrating creating and launching kernels.
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1
2 typedef struct wgpu_wait_info {
3 bool released ;
4 void * result ;
5 } wgpu_wait_info ;
6
7 void wgpu_map_sync_callback ( WGPUBufferMapAsyncStatus status ,
8 void * info_v ) {
9 wgpu_wait_info *info = ( wgpu_wait_info *) info_v ;

10 *(( WGPUBufferMapAsyncStatus *) info -> result ) = status ;
11 info -> released = true;
12 }
13
14 WGPUBufferMapAsyncStatus wgpu_map_buffer_sync ( WGPUInstance instance ,
15 WGPUBuffer buffer ,
16 WGPUMapModeFlags mode ,
17 size_t offset , size_t size) {
18 WGPUBufferMapAsyncStatus status ;
19 wgpu_wait_info info = {
20 . released = false ,
21 . result = (void *)&status ,
22 };
23
24 wgpuBufferMapAsync (buffer , mode , offset , size ,
25 wgpu_map_sync_callback , (void *) &info);
26
27 while (! info. released ) {
28 emscripten_sleep (0);
29 }
30
31 return status ;
32 }

Listing 4.4: Synchronous wrapper for wgpuBufferMapAsync.

making this a fragile solution. Another option would be to perform even more operations
directly in JavaScript and manually deal with things such as copying mapped data into
the Wasm heap and back out, but this comes with a potential performance overhead and
not insignifcant complexity and maintenance costs.

Instead, we implemented a different option. As part of the Asyncify API Emscripten
provides an emscripten_sleep function. As can be gleaned from the name, this function
pauses execution of the code that calls it for a given amount of time. Crucially however,
it does this by using the Asyncify infrastructure to return back to JavaScript and yield
control to the normal browser event loop until the sleep time has elapsed. This means that
events are processed, and this includes the callbacks for our asynchronous operations being
called.

Thus we can wrap all of the asynchronous operations in blocking functions in our C
implementation that call the asynchronous functions and repeatedly call emscripten_sleep
until the corresponding callback is involved and sets a flag to end the loop. The callback
also writes the result of the operation into a location where the synchronous wrapper can
access it after its loop. An example implementation of this pattern for mapping a buffer is
included in Listing 4.4.

In some ways, this gets us the best of both worlds: From the Futhark runtime’s
perspective, running in the WASM VM, the calls become simple blocking function calls.
At the same time, the browser event loops still gets to run, so we achieve this without
actually freezing the site for the user. The main downside is the performance implications.
The Asyncify-instrumented code is slower than the original would be, although given that
most of the actual work is going to happen on the GPU, performance of the host code is
not as big a concern for us. Additionally, when the actual time that must be waited is
short, the overhead of unwinding out of the WASM code and almost immediately resuming
it is likely significant. As long as the web platform offers no blocking options for these
calls, it is unlikely this can be avoided.
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4.3 JavaScript Interface

The generated C code compiled by Emscripten can in principle be used directly. Exported
functions are accessible through an Emscripten-generated module object and many of
them can be called as relatively normal JavaScript functions. However they are not very
developer-friendly: One has to do entirely manual memory management, like that in C,
accessing the Wasm heap through a set of TypedArray objects provided by Emscripten.
Correctly creating a Futhark array from a simple JavaScript array (or TypedArray) involves
several copies and steps that are not very obvious. Additionally, all functions that can
potentially be asynchronous must be called with a special ccall wrapper provided by
Emscripten to correctly handle the Asyncify hooks.

To make the compiled program easier to use, we also generate a plain JavaScript interface
to it. The interface can be seen in practice in section 6.4, where we present a simple
demo application that makes use of this interface to invoke a Futhark library calculating a
Mandelbrot set image.

The interface is packaged into a single FutharkModule class. Once instantiated, it
provides simple JavaScript functions for every entry point in the Futhark program, as well
as some utility functions such as malloc and free wrappers.

The class also contains nested classes for every Futhark array type used by the program.
This mirrors the C API, where a separate type is generated for every combination of array
rank and element type that appears in the public API. The JavaScript wrapper around
this class makes it easier to construct these arrays as well as get ordinary TypedArray
objects containing the same data. The C API also contains functions for working with
opaque types such as tuples and records. We have not yet implemented wrappers for them,
though we expect it to be straightforward to add them.

For both the entry point wrapper functions and the array wrapper classes, we take
advantage of a manifest file generated by the Futhark compiler. This is an existing feature
where the compiler can generate a JSON file describing the C API generated for a Futhark
program. We embed a copy of this JSON file in the generated JavaScript, and then generate
the wrapper functions and classes based on information in the manifest at runtime, taking
advantage of the dynamic nature of JavaScript. This reduces the amount of JavaScript code
we have to generate in the compiler. Generating JavaScript currently happens by effectively
performing string interpolation, as opposed to the fairly sophisticated infrastructure for
generating C code, or even the simple AST module we have defined for WGSL. As a result,
minimizing the amount of JavaScript we have to generate directly is generally preferable.
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The Futhark compiler comes with a built-in testing tool for Futhark programs, futhark
test. In its basic form, it reads test annotations in Futhark source files and then invokes
the given entry points with the specified data and compares to the expected output. (There
are more options, such as generating random data or invoking further code to generate
the input data, but the details are not particularly relevant here.) In this chapter, we
will describe how we supported running these tests with our backend from a technical
standpoint. Discussion of testing and benchmarking results is part of chapter 6, where we
evaluate the completeness of our backend.

There is a comprehensive test suite of such tests to validate that the compiler itself works
as expected. As part of this project, we would like to support running these tests using the
new WebGPU backend. Eventually, that is what we did, with more details in section 5.2.
However this method of testing requires that the backend already works end-to-end, even
if it does not necessarily have to support all Futhark features yet. Getting to that point is
already a significant portion of the entire project, so we would like to be able to somehow
test our in-progress backend while developing it. Chronologically, we started with the
WGSL shader code generation and continued on to generating usable host code only when
that was reasonably complete. Thus, we developed a solution to test intermediate progress
on the shader generation, described in the next section.

5.1 Ad-hoc Shader Testing

It is impossible to run, and thus to test, shaders without host-side code to set up all the
required objects like pipelines and bind groups as well as the input data. Implementing
and/or generating all the required code for that is itself a major part of the project, so we
would like to first test the generated shaders in isolation.

Without generated host code, we must write it by hand. Writing host code for the
entire test suite would be infeasible, but we can take advantage of some common structures
in the test suite to run a decent amount of tests without much variety in the host code.
Specifically, there are many tests that take one or more input arrays and map a relatively
simple function over all of them. As long as there is no nested parallelism inside the
mapped function, this will compile into a single kernel with multiple input arrays and a
single output array. Notably, this structure applies to (almost1) all of the primitives
tests, testing correct implementation of the arithmetic, comparison, and logical operators,
as well as built-in functions, for Futhark’s built-in primitive types. An example of one
of these simple tests is shown in Listing 5.1. Being able to run these tests immediately
while working on generating the corresponding shader code was a very helpful tool and
passing them gives us some confidence in the correctness of the generated shaders before
continuing on to proper host code generation.

We created a new subcommand for the futhark dev command that is used for various
tasks relevant for working on the Futhark compiler itself. It runs the compilation pipeline on
the given input file up to and including generating the WGSL shader. The shader generation
collects some extra information, which would normally be implicit in the generated host
code, that describes the generated kernel interface, such as the names of pipeline-overridable
constants, the binding indices of buffers, and the entry point name. Other properties of the

1Some tests, e.g. testing the absolute value function for unsigned integer types, get optimized to not
involving a GPU kernel invocation at all. These are not supported by the ad-hoc testing setup.
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1 -- Test comparison of i32 values .
2 --
3 -- ==
4 -- entry: lt
5 -- input { [0i32 , 1i32 , -1i32 , 1i32 , -2i32 ]
6 -- [0i32 , 2i32 , 1i32 , -1i32 , -1i32] }
7 -- output { [false , true , true , false , true] }
8
9

10 -- ==
11 -- entry: eq
12 -- input { [0i32 , 1i32 , -1i32 , 1i32 , -2i32 ]
13 -- [0i32 , 2i32 , 1i32 , -1i32 , -1i32] }
14 -- output { [true , false , false , false , false] }
15
16 -- ==
17 -- entry: lte
18 -- input { [0i32 , 1i32 , -1i32 , 1i32 , -2i32 ]
19 -- [0i32 , 2i32 , 1i32 , -1i32 , -1i32] }
20 -- output { [true , true , true , false , true] }
21
22
23 entry lt (x:[] i32) (y:[] i32)= map2 (<) x y
24 entry eq (x:[] i32) (y:[] i32)= map2 (==) x y
25 entry lte (x:[] i32) (y:[] i32)= map2 (<=) x y

Listing 5.1: tests/primitive/i32_cmpop.fut, testing i32 comparison operators.

kernel interface are implicitly assumed based on the limited structure of tests supported,
such as all input and output arrays having the same length and the only required scalar
argument being that length. The subcommand then outputs a JavaScript file defining
several global variables containing all this information and the shader source code in a
structured format. It also parses the test annotations in the input file and converts them
into corresponding JavaScript literals that are also included in the output. Here we have
to be careful to convert 64-bit numbers to JavaScript BigInt literals instead of normal
numbers.

We then wrote a JavaScript program / simple web page that can include these test
specification files. It creates a shader module, a pipeline, as well as the required buffers
and then iterates over the embedded test cases, sets the input buffer contents, and runs
the kernel. The overall process is similar to the final host code implementation described
earlier, but specialized to the kind of kernel we support here. The only flexibility is in the
number of input buffers, as well as their sizes and element types. The resulting output
is compared to the expected and a result is output on the web page. This enables us to,
for example, run all of the primitive tests and get an overview over what passes and what
does not, as a useful intermediate check before we have proper host code generation.

5.2 futhark test Support

While this intermediate testing solution was appropriate to check our work while the host
code was not implemented yet, ultimately we want to support the entire test suite using
the normal futhark test command. However, this is not as straightforward as it would
be for most other backends, because futhark test needs to be able to run the compiled
executable in order run the tests. For most backends, the output is a native executable
file that can just be run, but in our case, the target platform is the web, which adds some
complications.

We initially considered adding functionality for compiling to a native executable with the
WebGPU backend using one of the native implementations of the WebGPU API mentioned
before — Dawn and wgpu — instead of compiling using Emscripten. That would enable
simply using futhark test without further work. However we ultimately decided that
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Figure 5.1: Architecture of our futhark test support.

since the main target for this backend is the web, the testing should ideally reflect that
environment to avoid inconsistencies between the implementations.

Let us start by describing how futhark test interacts with the programs being tested.
It first compiles them to a so-called server executable. Whereas the default executables
produced by Futhark run a single entry point once with input and output happening via
the standard IO streams, server executables allow several runs, potentially of different entry
points, in a single execution. This is helpful because there is a not insignificant overhead
associated with starting the program, most notably compiling the shaders/kernels that
are generally embedded into the executable in source code form. Server executables are
controlled using a simple line-oriented plain text protocol via the standard IO streams,
with the server accepting commands on standard input and printing responses to standard
output.

The server process maintains a set of variables that can be interacted with using the
commands. The store and restore commands are used to write and read values to/from
files at a given path respectively. They are stored in Futhark’s own binary data format2.
The call command is used to invoke an entry point with the arguments given in the form
of previously-defined variables, and stores the results in the named output variables. There
are some additional commands, such as for printing certain metadata about the program
and available entry points, but the details are not all that important for our purposes.

futhark test supports specifying a separate runner program which it runs instead of
attempting to run the compiled Futhark program directly. We have implemented a Python
wrapper program that can be used as a runner for programs with the WebGPU program.
It starts a local web server serving the compiled program as a simple web site and then uses
Selenium [3] to start a browser and have it connect to the wrapper. The served website
then contains an implementation of a custom protocol very similar to the normal Futhark
server protocol that connects to the Python wrapper with a WebSocket connection. This
overall structure is illustrated in Figure 5.1.

The Python wrapper mostly just relays the Futhark server protocol messages it receives.
The protocol used between the wrapper and the server implementation running in the
browser uses JSON messages instead of the simple line-oriented plaintext format of the
Futhark server protocol to make it easier to work with in JavaScript and avoid any potential
confusion on which part of the stack a message comes from. The only other major difference
is that the store and restore commands contain the data to use directly in the message

2https://futhark.readthedocs.io/en/stable/binary-data-format.html
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instead of containing file paths. This is necessary because, running inside a web browser, the
JavaScript server implementation cannot open arbitrary local files. The Python wrapper is
responsible for intercepting all store and restore commands and doing the required file
I/O. It sends the raw file contents to the JavaScript implementation as a base64-encoded
string.

In JavaScript, we used the interface our backend generates to implement the required
protocol commands, including variable management and running entry points. We also
attempt to catch any potential runtime errors and report them back to futhark test
through the Python wrapper. While testing we have however discovered some cases where
we trigger a browser bug that crashes the entire tab, which we cannot recover from in
JavaScript. To deserialize incoming test data and serialize the resulting output when
communicating with the wrapper, we have also created a JavaScript implementation of
Futhark’s binary data format for scalar and array values.

With this infrastructure in place, no modifications to futhark test itself are required.
We can run the compiler test suite as normal, just adding an extra command line argument
to use the Python wrapper as runner program.

5.3 futhark bench Support

Futhark also has a benchmarking tool called futhark bench. It uses the same Futhark
server protocol as futhark test, with some additional commands, so we can use the same
infrastructure for supporting it too.

The compiled server executable is responsible for measuring the runtime of running entry
points and reporting it to the benchmarking tool. On the web, we use the High Resolution
Time [17] web API, with the performance.now() function. Using it, time can be measured
to a resolution of 100µs in general, although in so-called isolated contexts, a resolution
of 5µs is available. We can turn our local site into an isolated context by ensuring the
HTTP server portion of the Python wrapper includes specific headers when serving the
site, giving us access to the improved resolution.
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Having described many things that we have implemented, in this chapter we will discuss
some things that are not implemented in our backend. Some of these stem from limitations
in WebGPU or WGSL, while others could be implemented given more time. A few
limitations have already been mentioned in passing while discussing related features, and
so will only be briefly mentioned here. We will also discuss what this means qualitatively
in terms of what kinds of Futhark programs can already be expected to work properly, and
what will not work. To finish, we will show a simple but complete example of a Futhark
program being embedded in a web page and performing a non-trivial calculation on the
GPU.

6.1 Limitations

There are still many things our backend does not support compared to the existing GPU
backends. Some of these have a clear and relatively straightforward path towards resolving
them, we simply lacked the time to implement all of those solutions. Overall, our focus
was on attempting a relatively wide set of features expected from the backend rather than
completing, say, every aspect of arithmetic and conversion for all primitive types before
moving on. This approach is better suited to finding, and at least prototyping solutions
for, as many challenges imposed by WebGPU and WGSL as possible in the limited time
available.

6.1.1 Primitive Types and Operations

We have already discussed this topic to some extent in section 4.1. Futhark’s f64 type is
not supported at all. The compiler will not introduce it as long as it is not present in the
source program, so this is at least an easy-to-explain restriction. In principle it would be
possible to implement 64-bit floating point operations entirely in software, in WGSL, and
thus extend the backend to support the type, but this would be a significant undertaking
and potentially signficantly slower than exceptions for primitive types.

Another limitation regarding floating point arithmetic in particular is the set of built-in
functions, for example trigonometry functions or logarithms. WGSL provides some built-ins
itself, but Futhark’s standard library is more extensive. We have not made any attempt to
manually implement the missing functions, so any Futhark program using them will not
work. The same applies to some integer arithmetic, for example mul_hi which computes
the high half of the product of two numbers. There are also some functions that do have
WGSL equivalents, where we have simply not had the time to hook them up properly.
These will at least be easy to add in the future.

Floating point arithmetic also has a more fundamental issue: WGSL explicitly deviates
from the typical IEEE-754 floating point standard in a few ways [WGSL §14.6]. This
includes some rounding differences, but the most salient issue is handling of overflow,
infinities, and NaN (not a number) values. WGSL implementations may assume that all
of these are never present at runtime, and permits any indeterminate final result in case
they do appear during evaluation. Any expressions involving them that are evaluated
before runtime (i.e. constant expressions at shader-creation time and override expressions
at pipeline-creation time) are required to result in an explicit error. On the other side,
Futhark provides explicit access to infinity and NaN values in its standard library. Futhark
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• Primitive Types and Arithmetic:
– f64 type
– i64 division
– Some built-in arithmetic and conversion functions
– Full support for floating-point NaN and infinities

• In-kernel error handling
• The SetMem statement in ImpCode

• Atomics for types other than 32-bit integers
• Uniform control flow analysis violations, conflicts with atomic types in shared memory
• Memory Fences
• Built-in transpose and copy kernels

Figure 6.1: Summary of current limitations of our backend.

programs using them will compile to WGSL shaders that will either fail to compile or
potentially return incorrect results at runtime. This includes relatively common operations
such as f32.minimum which use infinities as neutral elements.

Lastly, aside from the built-in functions already mentioned, there are some more opera-
tions on primtive types we simply have not yet implemented. We have already mentioned
the only partially-implemented 64-bit integer division. In addition, some conversion opera-
tions between primitive types are not implemented, such as boolean ↔ float conversions
and float → signed integer conversions. Once more, these should be straightforward to
implement in the future, we just have not gotten to them.

6.1.2 Error Handling

Futhark is a safe programming language that produces runtime errors when programs
perform erroneous operations such as accessing an array out of bounds. This is relatively
straightforward to implement on the host, and here the WebGPU backend simply uses
the existing code generation and works like all others. Such errors can also occur in code
running on the GPU however. Here, a single thread detecting an error cannot generally
abort the entire kernel dispatch, let alone with a descriptive error message. (CUDA does
support aborting a kernel execution, but invalidates the entire driver context, making
handling such a failure challenging.) Terminating only the thread detecting the error is also
problematic, for example due to the uniform control flow requirements we have discussed
in earlier chapters.

The compiler takes advantage of the restricted structure of the kernels it generates to
implement an efficient on-device error handling approach [10]. Explaining it in detail
is out of scope for this thesis, but it involves a global on-device failure flag that can be
set and checked in kernels and a carefully designed mechanism that lets all threads in a
kernel early-exit in a synchronized manner in case of an error, avoiding the any issues from
non-uniformly executed barriers.

We have not implemented this error handling at all. The code generation for the existing
GPU backends involves C goto statements which do not exist in WGSL, so a different
method of achieving the same result would have to be found. Additionally, the code
generation would have to ensure that the involved barriers are not just placed in uniform
control flow, but so that WGSL’s static analysis can conclude that they are in uniform
control flow.
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When such dynamic errors, such as out-of-bounds array accesses, occur without being
caught by the discarded checks, WGSL specifies that a dynamic error occurs [WGSL §6.4.6].
This can have various effects including termination of the running kernel, an arbitrary
other location the buffer being read or written, or the whole statement being discarded,
among others.

6.1.3 Platform Limitations

In addition to what features specifically WebGPU and WGSL are missing, there are also
some restrictions imposed by the current state of the web platform and our use of Wasm.
As of writing this, Wasm in the browser is restricted to being a 32-bit target. Support for
a 64-bit target is in progress, but not currently stably implemented by any major browser.
This restricts the size of data that can be worked on to at most 4GB. In practice it will
be less, as there is of course some memory taken up for the stack and various data other
than the actual program input. Additionally, Emscripten currently defaults to a maximum
memory size of 2GB due to limited browser support for more. In the future, we could
support an option to use a larger maximum size when compiling the program.

Violating this limit unfortunately results in a very bad user experience at the moment.
In our testing, when using the futhark test support described earlier with a test case
that is too large, the entire browser tab crashes in Chrome. This currently not handled
well by the test runner because the WebSocket connection is not shut down gracefully, so
the futhark test invocation just hangs. In the future, some detection method for such
cases could likely be added to the runner.

6.1.4 Pointers

In kernels, our backend generally expects a memory name to refer to a module-scoped
variable declaration with some kind of array type. This mostly works fine, but is different
to the other GPU backends, where such a name always refers to a (mutable) pointer to
memory. We have seen that pointer types in WGSL are fairly restricted compared to those
in C and most other languages, notably the lack of mutable pointer variables.

The main consequence of this difference is our complete lack of support for the SetMem
statement in kernels. This is intended to change which buffer a name refers to, essentially
equivalent to simple assignment of pointer-typed variables. As an example, this can be
generated when the source Futhark program has an if condition that evaluates to an array.
There are also some cases where the compiler generates kernels that internally use a form
of double-buffering, which also uses SetMem.

Workarounds for this could be implemented. For example, since there is no ability
to allocate entirely new memory buffers from kernel code, the set of available buffers is
ultimately static. Instead of real WGSL array or pointer types, we could simply track
what buffer a name refers to using an index value, and generate code that accesses the
correct variable depending on its value at runtime. Alternatively, SetMem statements could
be translated to copies of the entire buffer, though this would be even slower.

6.1.5 Miscellaneous

For completeness, we will again mention our limited support for atomic operations, as well
as barriers and memory fences. This was explored in much more detail in section 4.1.

On the host code side, the backend is expected to report some device capabilities that
WebGPU does not expose, like L2 cache size or the amount of threads running in lockstep
(warp size). We can generally provide safe hardcoded values for these that will not impact
correctness, though programs may be less efficient as a result. In the future, we could
employ some heuristics to guess more accurate values based on information such as device
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manufacturer and name, but these may not be provided by all browsers out of privacy
concerns.

And finally, we are missing the built-in kernels that the compiler expects backends to
provide. While most kernels are generated in the compiler customized to the specific
program being compiled, some are very generic and instead hand-written and included in
all programs. Specifically, there is a variety of kernels for transposing multi-dimensional
arrays in different scenarios, and kernels for performing on-device copies that perform more
complicated indexing than a simple contiguous memcpy. We see no reason it would be
particularly challening to implement WGSL versions of these by hand, but have simply
not had the time to do so.

6.2 Evaluation

Unfortunately some of these limitations have meant that we were not able to systematically
run the entire compiler test suite despite the futhark test support described in the
previous section. This is because some of the more exotic failure modes are not easily
detected by the test runner (such as the entire browser tab crashing), and would have
either required more engineering effort (and time) to deal with robustly, or manually going
through the test suite and excluding all problematic tests.

As a result, this section is based on some hand-picked example tests, along with reasoning
about how the described limitations affect various features. Overall, while the list of
limitations is not exactly short we can nevertheless run a fair amount of Futhark programs.
Our testing has mostly focused on relatively small self-contained programs. The larger and
the more complex a Futhark program is, the more likely it is, that it will not work using
our current backend.

The most straightforward problems are those around the primitive types and missing
operations relating to them. Any Futhark program explicitly using something we have
described above as not support will not work, but that is all. All the arithmetic and similar
introduced by the compiler itself, that is not present in the source program, is supported
by our backend and will not lead to unexpected errors.

More interesting are how the other limitations affect generated the kernels generated
by Futhark. Very simple patterns such as programs only using the map SOAC (and its
variants) and perhaps some built-ins like replicate and iota should generally work fine.
Experimentally, we can also successfully run some programs involving more complicated
SOACs such as reductions, scans, and even Futharks’ generalized histogram function,
reduce_by_index. On the other hand, not all such programs work, for example due to
the missing built-in kernels or a host-issued copy operation that trips the rounding check.
Some uses of these functions, as well as nested combinations of them, generate kernels we
cannot compile, for example due to unsupported atomic operations or using a single buffer
at multiple types. It is not at all easy to predict which programs will work and which will
not, as things like these are not readily apparent from the Futhark source code.

There is also an unfortunate mix of of potential failure modes. Some Futhark input
programs simply cause an internal compiler error when they are not supported. Others
produce output containing a WGSL shader that will result in compiler errors when
initializing the Futhark runtime. Yet other programs only produce errors at runtime,
potentially depending on the input data.

A potentially worse outcome is a program that appears to run without errors but
produces incorrect results. This is especially due to our lack of support for memory fences
and in-kernel error checking and handling. Our backend currently simply discards fences
instead of raising a compiler error for kernels containing them. This increases the number
of programs that we can run, but at the cost of possibly incorrect results for them. In our
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Test Size WebGPU CUDA

map_i32
100 5662 123

1000 5619 120
10000 5499 292

reduce_i32
100 5662 123

1000 5619 120
10000 5499 292

scan_i32
100 5662 123

1000 5619 120
10000 5499 292

Table 6.1: Benchmark Results. Benchmarking was performed using the futhark bench
tool on a Windows machine with an AMD Ryzen 5 2600 6-core CPU and a
NVIDIA GTX 1660 Ti GPU. For the WebGPU benchmarks, Google Chrome
125.0.6522.112 was used. Runtime is reported in microseconds.

testing so far, results even for kernels that should contain fences are often correct, but
ultimately this is non-deterministic and dependent on factors such as hardware and the
underlying GPU API in use. In a similar vein, refusing to compile programs that should
have in-kernel error checking would reduce support for programs a lot, so we just discard
them. This is fine for Futhark programs that do not perform any erroneous operations, but
for any that do, our backend will return indeterminate results instead of an error message.

As a result, our backend is certainly not production-ready. With care, it does make it
possible to embed at least some Futhark programs in a web page, reliably taking advantage
of hardware acceleration for compute-heavy workloads. Many of the current limitations
can be resolved with further engineering effort on the backend, though some of them will
require either modifications to the programs generated by the Futhark compiler, possibly
with performance impacts, or waiting for WebGPU and WGSL to continue their evolution
and gain more features. None of these changes should require significant re-engineering of
the current backend, but instead simply extend it with more functionality.

In their current state, WebGPU and WGSL are less capable than existing targets
like OpenCL and CUDA. Nevertheless, we were able to implement a significant part of
a full Futhark backend on top of them. For many of the remaining issues, there is a
straightforward path to resolving them even with WebGPU as it is now. Others would
require further adjustments in parts of the Futhark compiler other than the backend, to
ensure it generates output that is implementable on WebGPU. In some cases, this would
likely mean generating less efficient kernels than currently for the other GPU backends.
Some limitations are unlikely to be fixed without further evolution in WebGPU or WGSL,
such as the lack of support for 64-bit floating point numbers or the general differences in
floating point semantics.

6.3 Performance

We have performed very little benchmarking of the WebGPU backend, focusing instead on
correctness and supporting as many features as we could in the time given. The Futhark
compiler has a set of benchmarks designed to allow comparing performance with other
implementations of the same parallel algorithms. We were unable to test these properly in
time. Many of them cannot run at all under our backend due to its limitations, though
some should be supported already. However Table 6.1 does contain results for three very
simple benchmarks, effectively micro-benchmarks of individual SOACs. The corresponding
Futhark file is included in Listing 6.1.
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1 -- ==
2 -- entry: map_i32
3 -- random input { i32 [100] i32 }
4 -- random input { i32 [1000] i32 }
5 -- random input { i32 [10000] i32 }
6
7 -- ==
8 -- entry: reduce_i32 scan_i32
9 -- random input { [100] i32 }

10 -- random input { [1000] i32 }
11 -- random input { [10000] i32 }
12
13 entry map_i32 [n] (x: i32) (xs: [n]i32): [n]i32 = map (+x) xs
14 entry reduce_i32 [n] (xs: [n]i32): i32 = reduce (+) 0 xs
15 entry scan_i32 [n] (xs: [n]i32): [n]i32 = scan (+) 0 xs

Listing 6.1: Futhark program used for benchmarking.

Even apart from the simple nature of the programs under test, the benchmarking is
very limited, most noticeably in terms of dataset size. Unfortunately we were not able to
reliably benchmark with more data due to some of the issues related to loading too much
data. We hope to resolve these at least to some extent soon, enabling us to acquire more
interesting numbers.

We can draw some very limited conclusions even from these benchmarks. Most obviously,
even the very small datasets are significantly slower than using the CUDA backend.
However the runtime does not increase much with more data. This indicates a high
constant overhead, likely from the mixture of JavaScript and Wasm host code, including
switching back and forth between them. At the same time, the data size is too small to
make real conclusions about how runtime would scale with more data. This is in part due
to the massively parallel nature of GPUs, where a decent amount of data is required in
order to actually exhaust the hardware’s resources. We can also see this in the CUDA
results, where runtime for the two smaller datasets does not vary consistently with dataset
size at all.

6.4 Demo

As a relatively simple practical end-to-end example of how a website could make use of an
embedded Futhark program, we have created a demo site. It renders an image of the classic
Mandelbrot fractal into a canvas on the page. The Futhark program calculates the entire
image and some JavaScript glue code is responsible for invoking the Futhark program and
copying the result into the canvas. A screenshot of the result can be seen in Figure 6.2.

We have also made this demo available on the web1. It will only work on a browser with
WebGPU support. As of writing, this includes recent Google Chrome (on Windows, Mac,
and Android) and Microsoft Edge (on Windows) versions without any special configuration.
Support on other browsers and platforms is frequently still gated behind experimental
features.2

The page itself is a very simple HTML page referencing two scripts: The JavaScript
output from running the Futhark compiler with the WebGPU backend, and the JavaScript
glue code presented below. The page also contains a canvas element to display the result
graphically.

The JavaScript glue is shown in Listing 6.2. It demonstrates the JavaScript interface
we described in section 4.3. Initialization consists of loading the Emscripten-provided
Module object (which is brought into scope by including the JavaScript file output by the
Futhark compiler into the same HTML page) and creating the FutharkModule from it.

1https://s-paarmann.de/futhark-webgpu-demo/
2See https://caniuse.com/webgpu for up-to-date information.
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Figure 6.2: Screenshot of the Mandelbrot demo page.

1 async function run () {
2 const m = await Module ();
3 const fut = new FutharkModule ();
4 await fut.init(m);
5
6 const canvas = document . getElementById (" canvas ");
7 const ctx = canvas . getContext ("2d");
8
9 const width = canvas .width;

10 const height = canvas . height ;
11 const max_depth = 50;
12 const [xmin , xmax] = [-1.7, 1.1];
13 const [ymin , ymax] = [-1.4, 1.4];
14
15 const [buf] = await fut.entry.main(width , height , max_depth , xmin , ymin ,

xmax , ymax);
16 const vals = await buf. values ();
17
18 const colors = new Uint8Array (vals.buffer , vals.byteOffset , vals. length *

4);
19 setColors (ctx , colors , width , height );
20
21 buf.free ();
22 }
23
24 function setColors (ctx , colors , width , height ) {
25 const imgData = ctx. createImageData (width , height );
26 imgData .data.set( colors );
27 ctx. putImageData (imgData , 0, 0);
28 }
29
30 window . addEventListener ("load", run);

Listing 6.2: JavaScript glue code for the Mandelbrot demo.
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1 -- Adapted from futhark /tests/ rosettacode / mandelbrot .fut
2
3 type complex = (f32 , f32)
4
5 def dot ((r, i): complex ): f32 =
6 r * r + i * i
7
8 def multComplex ((a, b): complex ) ((c, d): complex ): complex =
9 (a*c - b * d, a*d + b * c)

10
11 def addComplex ((a, b): complex ) ((c, d): complex ): complex =
12 (a + c, b + d)
13
14 def divergence (depth: i32) (c0: complex ): i32 =
15 (loop (c, i) = (c0 , 0) while i < depth && dot(c) < 4.0 do
16 ( addComplex c0 ( multComplex c c),
17 i + 1)).1
18
19 def rgba (r: u8) (b: u8) (g: u8) (a: u8): i32 =
20 (i32.u8 r) | (( i32.u8 b) << 8) | (( i32.u8 g) << 16) | (( i32.u8 a) << 24)
21
22 def color (depth: i32) (div: i32): i32 =
23 if div >= depth
24 then rgba 0 0 0 255
25 else
26 let quot = f32.i32 div / f32.i32 depth
27 let value = u8.f32 (255 * quot)
28 in if quot > 0.5 then rgba value value 255 255
29 else rgba 0 0 value 255
30
31 def main ( screenX : i64) ( screenY : i64) (depth: i32)
32 (xmin: f32) (ymin: f32) (xmax: f32) (ymax: f32): [ screenY ][ screenX

]i32 =
33 let sizex = xmax - xmin
34 let sizey = ymax - ymin
35 in map (\y: [ screenX ]i32 ->
36 map (\x: i32 ->
37 let c0 = (xmin + (f32.i64 x * sizex) / f32.i64 screenX ,
38 ymin + (f32.i64 y * sizey) / f32.i64 screenY )
39 in color depth ( divergence depth c0))
40 (iota screenX ))
41 (iota screenY )

Listing 6.3: Futhark code for the Mandelbrot demo.

From there, using the Futhark library is as simple as calling the entry.main method. It
receives and returns ordinary JavaScript objects. The returned buf value is an instance
of a FutharkArray type for the specific kind of array returned by the main entry point.
Calling values on it lets us retrieve a copy of the result as an ordinary TypedArray, in
this case a Int32Array. Then all that remains is setting that color data into the canvas.

For completeness, the corresponding Futhark program is also included in Listing 6.3.
It is very ordinary Futhark, adapted from an example from the compiler’s test suite to
calculate color values in addition to the divergence values.
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7 Conclusion

In this thesis project we have implemented a new backend for the Futhark compiler,
targeting JavaScript, WebAssembly and the WebGPU API in the browser. This involved
generating shader code to run on the GPU in the WGSL programming language, writing
and generating the required host-side code to interface with the WebGPU API in C, and
generating a JavaScript interface that is more friendly to use than the compiled C interface.
We also implemented initial support for using Futhark’s built-in testing and benchmarking
tools, automatically controlling a web browser to run the compiled programs.

WebGPU and WGSL in their current forms are more restrictive than the APIs used
by the existing Futhark GPU backends, OpenCL, CUDA, and HIP. As a result, we have
developed workarounds for a variety of missing features and WebGPU/WGSL-specific
restrictions. They are also structurally different from those APIs in several ways, requiring
extra complexity in code generation or the host code implementation. Overall we have
found WebGPU a viable compilation target, although some of the more advanced high-
performance kernels generated by Futhark for other backend cannot yet be implemented
efficiently. WebGPU is still a relatively young API and under active development, so it is
likely that, over time, some of these limitations can be lifted.

Owing in part to these restrictions and in part to our limited time, the backend we
developed is not yet capable of compiling all Futhark programs. Many structurally simple
programs work, including basic uses of Futhark’s map, reduce, and scan second-order array
combinators, and even simple (generalized) histograms. For more complex, potentially
nested, combinations of these operators, the Futhark compiler often generates efficient
kernels that our backend cannot yet compile successfully.

Thus, more work is required to turn our backend into a reliable option for compiling
all Futhark programs. This includes a mixture of relatively straightforward engineering
effort on the backend, and potentially some changes to other parts of the compiler to
generate simpler, but likely less performant kernels for the WebGPU backend. The future
evolution of WebGPU and WGSL will hopefully alleviate the need for such changes, and is
in some cases required for reasonably efficient implementation of some Futhark programs.
Nevertheless, overall our backend shows the feasibility of making GPU-accelerated high-level
functional parallel programming using Futhark available in the browser.
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