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Resumé

Denne rapport omhandler skabelsen af en oversættelse fra det funktionelle sprog
Futhark til en proces kalkyle (applied fi-calculus). Her tager vi udgangspunkt i
det data-parallelle programmeringssproget Futhark, som netop prøver at gøre det
nemmere for programmører at udtrykke programmer der afvikles parallelt på fy-
sisk hardware. Vi foreslår sproget ButF, som er en afgrænsning af Futhark, idet
vi vælger at fokusere på arrays og en delmængde af de forskellige array operatorer
Futhark tilbyder. Sammen med arrays har ButF inkluderet gængse processerings-
funktioner, også kaldet anden ordens array operatorer (SOACs), som dækker over
en række af funktionaliteter som ofte bruges. Et gængs eksempel er at man iterer
over et array og processerer element for element, men hvis iterationerne er uafhæn-
gige af hindanden, kan man bruge en map SOAC der evaluerer samtlige elementer
individuelt og parallelt.

fi-kalkylen i sig selv udvides med sammensatte navne og rundkastning, for at
lettere kunne udtrykke en flad array struktur. Der er allerede eksisterende forskning
omkring oversættelser mellem funktionelle sprog og fi-kalkylen, men ikke med fokus
på array datastrukturen samt SOACs. Alle konstruktioner i ButF er blevet fremstil-
let i denne kalkyle, og danner dermed en fuld oversættelse. I et forsøg på at forsimple
ButF i forhold til et bevis af korrekthed, produceres der en analyse af sprog primiti-
ver. Denne bliver brugt til se om kan aflede primitiver gennem andre primitiver uden
at drastisk øge den asymptotiske kompleksitet, og derved indskrænke mængden af
nødvendige primitiver.

Vi viser korrektheden af denne oversættelsen ved at opstille en ækvivalens af pro-
cesser, samt en operationel korrespondance. Her introduceres distinktionen mellem
administrative og vigtige reduktioner i processer, hvor vi sikrer os at reduktioner i
ButF følger vigtige reduktioner i en oversættelse.

Til sidst fremstilles der en gennemgang af de idéer der er blevet afdækket i løbet af
rapporten, samt en række ideer for videre arbejde. Dette kunne bestå af kompleksitets
analyse af oversættelsen, eller nærmere analyse af oversatte programmer.
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Chapter 1

Introduction

Parallel computing is an important milestone in computing and has since the first
graphics accelerators, and later the first dual-core central processing units (CPUs),
been a point of interest in computer science. Nowadays, most tasks are run on multi-
core machines that would benefit from utilizing all available resources. However,
there are di�culties to overcome when attempting to utilize multiple cores in parallel
to handle a task. The most fundamental problem is that not all tasks can be fully
parallelized. Some instructions can rely on others which essentially builds a non-
parallelizable chain of instructions [3]. Other problems include race conditions that
need to be avoided when accessing or writing a resource multiple times.

Current hardware and their problems As graphics processing units (GPUs) get
more sophisticated in terms of supported operations and higher computational unit
counts, e�cient parallelization becomes even more important. However, since GPUs
are still physically limited in their computational power and resources, optimizations
to utilize said resources become complex, especially since there are many di�erent
GPUs. Di�erent manufacturers, architectures, bandwidths, core counts, and memory
sizes are some of the parameters that need to be considered when one wants to utilize
a GPU in the most e�cient way.

Languages targeted at hardware OpenCL [4] and CUDA [5] are two frameworks
that are commonly used to allow the programmer to write code for GPUs. While
these frameworks provide the tools necessary to e�ciently use GPUs, they require
the programmer to often manually parallelize tasks and target specific hardware,
with their unique features, to achieve the best performance possible [6].

The diversity in computer hardware justifies using an abstraction layer one can
use to implement the desired functionality, whereafter a compiler can then optimize
the given code for the target computer at hand. This optimization process is an
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2 Chapter 1. Introduction

ongoing endeavor since a generic compiler does not always interpret the intention of
the programmer in the best possible way. [6, 7, 8]

Henriksen presents the Futhark language that focuses on the ability to express
parallelizable operations naturally and therefore makes it easier for a compiler to uti-
lize resources better [7]. Futhark is a pure functional programming language with
a focus on the data-parallel array data structure. It does so by abstracting com-
mon patterns on array manipulation by providing constructs in the form of built-in
functions. These include the second-order array combinators (SOACs): map, reduce,
and scan, also known from other languages. These functions provide the necessary
flexibility to minimize the overhead of parallelization, such that the compiler can
better utilize the hardware at hand. Futhark makes use of this variable amount
of parallelization by mainly targeting general purpose GPUs (GPGPUs) which are
more optimized for high thread-count processing. [7]

Since Futhark is a functional language it has its roots in the ⁄-calculus where
every computation is expressed as an application of functions. This paradigm is
usually known for not allowing side e�ects [10, ch. 12] nor native parallelism without
extensions. Futhark extends the ⁄-calculus, with the notion of arrays. Arrays are a
construct often associated with imperative languages, where their flat structure often
represents a real strip of computer memory, which makes its indexing functionality
e�cient on computer hardware. By indexing arrays, random memory locations can
be accessed in constant time [11]. Functional languages such as Haskell or Scheme
instead have lists, which are immutable and are based on nested pairs [12]. Compared
to this, the arrays of Futhark allow for a data-parallel manipulation of arrays, i.e.
a single operation is applied to each array element in parallel. Henriksen achieves
data-parallelism, by translating Futhark programs to GPU-code through either
CUDA or OpenCL. GPU hardware has limited resources for parallelization, and
Futhark programs are therefore optimized by the compiler to e�ciently utilize the
hardware in question [7, 13]. This is because GPUs are bound by physical constraints,
and it would thus be interesting to analyze these Futhark programs without the
limitations of the hardware.

With this, the question arose of how to transform Futhark into a language that
is hardware-independent, while still retaining the important aspects of the language.

The fi-calculus To answer this question the fi-calculus, which describes processes
with unbounded concurrency, is considered. In this report, parallelism is meant as
the act of running two processes simultaneously, while concurrency is meant as the
concept of independent operations. The concept of the fi-calculus is that processes
can reduce concurrently. These processes consist of channels that are used to send
and receive messages between processes. Here, as opposed to both ⁄-calculus and
GPGPUs instructions, computations are expressed exclusively via communications
between processes. Due to this natural representation of concurrency, the fi-calculus
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can make the concurrent behavior of Futhark programs explicit and might assist
in the analysis of programs.

Translation This work translates a subset of the Futhark to the fi-calculus. To
do this, we construct said subset, Basic Un-Typed Futhark (ButF), to isolate the
most interesting aspects of Futhark and simplify the translation. These aspects are
the SOACs as well as the array data structure, while other aspects such as in-place
updates and fusion rules are omitted. As the target of the translation the fi-calculus
is extended (Efi) to allow for better representations of Futhark data structures.
Efi is based on the applied fi-calculus proposed by Abadi, Blanchet, and Fournet
[14].

With this translation, an analysis of its primitives is conducted which analyzes
methods to reduce the set of primitives to be able to reduce the complexity of proofs.
We then propose an operational correspondence, ensuring that the translation be-
haves correctly.

The translation and accompanied notion of correctness is inspired by related work
on translation of various calculi into the fi-calculus and proving the correctness of
translations by Milner, Sangiorgi, and Amadio, Thomsen, and Thomsen [15, 16, 17].

Previous work This report is based on our previous work of Jensen, Paulsen, and
Teule [9], which defines prototypes of the two languages (ButF and Efi) for a possi-
ble translation. The previous work also looked into defining interesting expressions
and data structures from ButF in Efi and thereby indicated the feasibility of a trans-
lation. Here, we found that composite names and broadcasting provided a natural
encoding of arrays and indexing [18, 19].

Overview Chapter 2 shows the two main languages used in this report, those being
ButF and Efi. Chapter 3 provides a simple correctness relation, as well as a full
translation of ButF into Efi. Chapter 4 demonstrates how the set of primitives in
ButF can be reduced, introduces the concept of administrative reductions as well
as a new equivalence relation, and proves the correctness of the translation.

Finally chapter 5 contains a summary of the contribution made in this report, a
discussion of this contribution as well as ideas for future work.





Chapter 2

Introduction of Languages

The Futhark project provides a language that eases the process of programming
GPUs. The Futhark language is feature rich and therefore this chapter introduces
a simpler version to ease translation.

This chapter also improves upon the explicitly concurrent language Efi from
our previous work. Efi is an extended version of the applied fi-calculus by Abadi,
Blanchet, and Fournet [14] with broadcasting and composite names, to enable a
natural encoding of arrays. [9]

2.1 The Array Language Futhark

Futhark is a purely functional data-parallel array language, created to simplify
programming for GPUs. It employs a static, polymorphic type system which not
only ensures that functions and operators are used correctly but also allows for in-
place updates and size-dependent types.

Futhark’s use of SOACs allows its compiler to optimize the code through fu-
sion rules. These rules describe some SOACs patterns, for example, a sequential
relation. By applying the rules matching the corresponding patterns, the program
flow is rewritten to reduce the number of memory accesses while utilizing as much
parallelism as optimally possible. An example is the fusion of the nested maps in
equation (2.1).

map f (map g arr) = map (⁄x.f (g x)) arr (2.1)

Here, the two functions of each map are combined into a single map with a
function composition to eliminate the intermediate step where the outer map waits
for the result of the inner map. [20]

Fusion rules are also used to introduce a chunking parameter to functions that
enable the functions to be split into threads where each thread is responsible for a
chunk of the array instead of processing the entire array in a single thread. [21]

5



6 Chapter 2. Introduction of Languages

Through the utilization of chunking, the chunks can be mapped to the parallel
hardware which allows for a smaller work-span of a computation, since more steps are
calculated simultaneously. As illustrated in figure 2.1, the span to reduce an array of
eight elements ( [3,3,3,3,3,3,3,3]) with multiplication, results in the calculation (3 ·

3 · 3 · 3 · 3 · 3 · 3 · 3 = 6561) with seven multiplication operations. The reduce function
relies on the operator being associative, such that the order of operations can be
manipulated and even be split. By calculating multiple sub-results at the same time,
the asymptotic span to get the result is reduced from O(n) to O(log2(n)).

3 33333333
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Figure 2.1: An illustration of the work-span of a problem. Inspired by [9].

reduce (ú) 1 [3,3,3,3,3,3,3,3]æchunk

[[3 · 3], [3 · 3], [3 · 3], [3 · 3]] æ

[[[3 · 3] · [3 · 3]], [[3 · 3] · [3 · 3]]] æ

[[[[3 · 3] · [3 · 3]] · [[3 · 3] · [3 · 3]]]]

Figure 2.2: An example program to demonstrate parallel processing.

To illustrate conceptually how Futhark makes use of this, figure 2.2 shows an
example program. It shows how Futhark can rewrite a program to an optimal
concurrency to utilize the hardware’s available parallelism. In case the system does
not have four or more cores it would rewrite the expression to a more sequential
approach, for example, [3 ·3 ·3 ·3] · [3 ·3 ·3 ·3] where only two cores are utilized. This
reduces the overhead since in the case of the fully concurrent expression on a machine
with two cores, each core would need to calculate and return [3 ·3] twice, followed by
another calculation on the results, which comes with unnecessary memory operations
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for intermediate variables. Therefore, the larger singular instruction set can reduce
the overhead if there is not enough available parallelism. The process shown omits
the more detailed process of using fusion rules and stream SOACs1 instead of reduce
to illustrate the intuition. [21, 13]

2.2 Basic Un-Typed Futhark

Futhark is a complex language with many features and functionalities. To abstract
from less relevant aspects, the features in focus are isolated into a smaller and simpler
language. This reduces the complexity of a translation while maintaining aspects
such as concurrency, arrays, pure functions, and SOACs. This language (ButF) is
inspired by the prior work from [9], with some additions and changes to accomplish
a better and more useful translation.

The main changes are the inclusion of tuples, the removal of the prog and def

syntactic constructs, and the addition of a small-step semantics that aids in describing
the bisimulation of a corresponding translation. Also, note the inclusion of tuples
and pattern-matching, which provides the flexibility of binding individual values of
tuples to dedicated variables while also allowing to use a single variable name for an
entire tuple. This can be seen in example 2.2.1.

Example 2.2.1

The equation below shows three examples of the usage of tuples and pattern-matching.

let (x,y) = (1,2) in (+ x y) æ
ú 3

let x = (1,2) in x æ
ú (1,2)

let (x,y) = (1, (2, 3)) in let (a,b) = y in (x ‘+‘ a ‘+‘ b) æ
ú 6

2.2.1 Syntax

The syntax has received some minor modifications. Tuples and pattern-matching are
now a standard structure, to make it easier to represent Futhark programs that use
tuples. Infix functions are now denoted with ‘e‘, thus easily allowing any expression
to be used as an infix function. This can be used when providing an infix function
as input to another function.

1For a more detailed explanation of the process please refer to “Futhark: purely functional GPU-
programming with nested parallelism and in-place array updates” [21] and “Design and GPGPU
performance of Futhark’s redomap construct” [13].
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e ::= Expression

| c Constant
| x Variable
| (e0, . . . ,en) Tuple
| [ę ] Array
| e1[e2] Indexing
| e1 ‘e2‘ e3 Infix operation
| ⁄p.e Abstraction
| e1 e2 Application
| let p = e1 in e2 Name binding
| if e1 then e2 else e3

| loop p = e1 for x < e2 do e3

D

Control Structures

p ::= Pattern

| x Variable
| (p1, . . . ,pn) Tuple pattern

c ::= n | cf Constants

cf ::= Built-in Functions

| §

| B

| size
| concat
| iota
| map
| reduce
| scan

T

XXV SOACs

Figure 2.3: The syntax for ButF. This is an iteration upon the syntax presented in “Constructs of
the Futhark Programming Language Described in a pi-Calculus” [9].

Figure 2.3 shows the syntax of ButF. Here, the expression (e) is the main struc-
ture. The numbers (n), and cf denote the di�erent built-ins and constants for the
language. Since we only have numbers as primitive values, 0 represents logical false,
whereas everything else is interpreted as logical true. The constant function § de-
notes standard binary mathematical functions as prefix operators. These functions
include the standard arithmetic operator such as ≠, +, ·, /, and %, with / denoting
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standard integer division rounding towards zero. Furthermore, it also includes four
logical operators, ·, ‚, ,, and =. Likewise, the unary operators B include ¬ and -.
Note that the logical operators interpret 0 as false, and anything else as true.

The arithmetic expression 2+3 ·4, is written in ButF as seen in equation (2.2).

2 ‘+‘ (3 ‘·‘ 4) (2.2)

The ‘e‘ notation allows using an expression as an infix operator, such that equa-
tion (2.2) is equivalent to equation (2.3). Note that because ‘e‘ and application are
left-associative, parentheses are added to ensure that 3 · 4 is calculated first.

+ 2 (· 3 4) (2.3)

The meta-variable x is a placeholder for an expression that is bound by some
outside binding. Such bindings happen in let, loop, and abstraction. When binding,
patterns (p) are used instead of variables since it allows for name binding of multiple
variables from a tuple.

To assist in the formulation of a small-step semantics, the syntax of ButF has
a special run-time version of loop. The syntax in equation (2.4) allows for stating
the current iteration of the loop. We also introduce a run-time syntax for applied
built-in functions, such as size{[1,2,3]}.

e ::= . . .

| [x = n] loop p = e1 for x < e2 do e3

| cf{e1, . . . ,en}

(2.4)

2.2.2 Small-Step Semantics

This section describes the operational semantics for ButF through a small-step se-
mantics. The entire small-step semantics can be seen in appendix A for reference.

The meta-variable v is used to denote all values, with the set of all values being
denoted as V. This contains all constants (c), abstractions, as well as arrays and
tuples only containing values.

Arithmetic expressions are denoted with an underline (n+ 1) to show that the
expression is not to be regarded as syntax, but rather as a mathematical expression.
This semantics makes use of a æ to denote a reduction and  to denote a syntactic
rewrite.
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e æ e
Õ

[E-Arr]
[e0, . . . ,e, . . .en] æ [e0, . . . ,eÕ, . . . ,en]

e1 æ e
Õ
1 [E-Index-1]

e1[e2] æ e
Õ
1[e2]

e2 æ e
Õ
2 [E-Index-2]

e1[e2] æ e1[eÕ
2]

0 Æ m < n n = |[v̨ ]|
[E-Index]

[v̨ ][m] æ vm

e æ e
Õ

[E-Tup]
(e0 . . . ,e, . . . ,en) æ (e0, . . . ,eÕ, . . . ,en)

Figure 2.4: The rules for arrays and tuples in ButF.

Figure 2.4 shows the semantics of arrays, indexing, and tuples. The rules E-
Arr and E-Tup describe how expressions inside arrays and tuples can be evaluated
independently. Indexing works similarly to beta reduction, requiring that the indexed
array and the index are values. However, the individual expressions (e1 and e2) can
be evaluated independently from each other.

[E-Beta]
(⁄p.e) v æ e{p := v}

e1 æ e
Õ
1 [E-App-1]

e1 e2 æ e
Õ
1 e2

e2 æ e
Õ
2 [E-App-2]

e1 e2 æ e1 e
Õ
2

Figure 2.5: The application rules for ButF, describing —-reduction and reductions inside application.

Figure 2.5 shows the basic rules known from the ⁄-calculus, including —-reduction
and reduction inside application. Notice how E-Beta requires that the argument is
evaluated to a value (v), thus expressing the call-by-value nature of ButF. Applica-
tion rule is left-associative to keep it the same as Futhark.

The notation e{x := v} is used to denote the substitution of x with v, in the
expression (e). For patterns e{p := v} denotes a substitution of all variables in the
pattern p to their respective values in v.
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[E-Let]
let p = v in e æ e{p := v}

e1 æ e
Õ
1 [E-Let-1]

let p = e1 in e2 æ let p = e
Õ
1 in e2

Figure 2.6: The semantic rules for let bindings in ButF.

Figure 2.6 describes an alternative to the abstraction syntax for name binding
as a convenience to the programmer. Notice how E-Let is similar to E-Beta from
figure 2.5, and that the two following expressions are equivalent.

let x = v in e … (⁄x.e) v (2.5)

[E-Loop-Init]
loop p = e1 for x < e2 do e3  [x = 0] loop p = e1 for x < e2 do e3

m < n [E-Loop-Iter]
[x = m] loop p = v for x < n do e3 æ

[x = m+ 1] loop p = e3{p := v,x := m} for x < n do e3

m Ø n
[E-Loop-F]

[x = m] loop p = v for x < n do e3 æ v

Figure 2.7: The rules for the loop construct in ButF. The remaining rules can be seen in appendix A.

The semantics for the loop construct is described in figure 2.7. The E-Loop-
Init rule adds the initial binding for x which is 0 with a run-time syntax notation
in the form of [x = 0]. This is then used by the E-Loop-Iter rule that handles the
iterating process where the result of e3 with the correct substitutions is added to p

and the x variable is incremented.
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e1  e2 e2 æ e
Õ
2 [E-Rewrite]

e1 æ e
Õ
2

[E-Binop]
e1 ‘e2‘ e3  e2 e1 e3

[E-Expand]
cf  expand(cf )

Figure 2.8: The rules for transforming the built-in functions in ButF.

Figure 2.8 shows the semantics for the rewrites. Among these is using a function
with two parameters as an infix binary operator. The usage of ‘e‘ is always-left
associative, which can be seen in the example below. This is important for operators
which are not associative. E-Rewrite enables rewriting of an expression in order
to take a reduction. An expression e can therefore take any reductions which its
rewrites can take. E-Expand shows how built-in functions are transformed into a
wrapper function for the run-time built-in syntax (cf {}). The wrapper functions are
used since they support currying.

§{v1,v2}  v1 § v2

B {v}  B v

size{v}  |[v̨]|

concat{v1,v2}  [v̨1, v̨2]

iota{v}  [0, . . . ,v ≠ 1]
map{f , v̨}  [

#   »
f v]

reduce{f ,z, v̨}  z ‘f ‘ v0 ‘f ‘ · · · ‘f ‘ vn

scan{f ,z, v̨}  [a0, . . . ,an]

where ai  z ‘f ‘ v0 ‘f ‘ · · · ‘f ‘ vi

(2.6)

Equation (2.6) rewrites the run-time built-ins into their respective results. This
does not have to adhere to the syntax rules, as it allows for the use of mathematical
expressions, which are denoted with underline. Both binary and unary operators are
rewritten to their mathematical equivalents.

Size extracts the length (|v̨|) of arrays. Concat gets rewritten into a function
that takes two arrays and returns one single array consisting of all elements from
both arrays. Iota is a function to construct variable length arrays by taking an arity
parameter. The resulting array consists of values that are equal to their indices.
Map takes a function and an array and returns an array, consisting of the function
applied to all individual elements. Reduce and scan transform into similar functions,
both requiring a two-arity function (f) with the di�erence being that scan returns an
array of intermediate results and reduce returns a singular value. Here, f is assumed
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to be an associative operator with a neutral element (z) which is required to rewrite
both scan and reduce. It is assumed that z is always the neutral element of g, and
including it in reduce{} is only used when the input array is empty. Note that the
scan of ButF is an inclusive scan, meaning that element ai includes the value of vi.

If an expression is unable to reduce or rewrite but is not a value it is classified
as an error. For example, size{7} would be classified as an error, as one cannot take
the array size of an integer.

2.3 Extended fi-Calculus

The language used as the target for the translation is the Extended fi-calculus (Efi),
presented by Jensen, Paulsen, and Teule [9] and is based on the applied fi-calculus
presented by Abadi, Blanchet, and Fournet [14]. This section introduces the syntax
and semantics of Efi.

2.3.1 Syntax

Efi consists of three di�erent language constructs: processes (Ps), terms (Ms), and
extended processes (As). Here processes communicate over channels, which are iden-
tified via names or composite names (b).

P ,Q,S, . . . ::= Process

| 0 Null process
| P | Q Parallel composition
| !P Replicated process
| ‹a.P Restriction on name
| b(x̨ ).P Receive action
| bÈNÍ.P Send action
| b: ÈNÍ .P Broadcast action
| I(x̨ ) Process identifier
| [M ÛÙ N ] P ,Q Conditional

Figure 2.9: The syntax for processes.

Figure 2.9 shows the syntax for processes in Efi. First, a process may be null (0),
which is used to denote a process that does nothing. Parallel compositions (P | Q)
are used to define two processes running in parallel and are a necessity for defining a
process where two sub-processes can communicate. Replication (!P ) is used to define
a process that contains an unbounded amount of the process in parallel. Declaration
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of new names (‹a.P ) are used to restrict new names to the scope of P , thus making
them unknown to any outside process, unless P sends it to them. Once a new name
is restricted it becomes a bound name for the following process such that ‹a.P means
that a œ bn(P ). On the contrary, fn(P ) is the set of names that are in P but not
bound. To transmit names the receive and send actions are used. Receive (b(x).P )
receives a number, name, or composite name on a channel (b) and binds it to the
variable (x) in the process (P ). (bÈNÍ.P ) sends a term (N ) on a channel (b), this can
only be done if another process is ready to receive on the term the message is being
sent on. This means that only sending on names or composite names is allowed. To
send a message to multiple processes at the same time, a broadcast (b: ÈNÍ .P ) is
used. This sends a term (N ) to all processes that are ready to receive on the channel
b [19]. It is useful when a term needs to be propagated to multiple processes. It
should also be noted that a broadcast action can happen even if no processes are
currently ready to receive, in that case, the message is simply lost. Process identifiers
(I(x̨)) are used to define processes, where the input to the identifier is then bound
in the process. An example can be seen in example 2.3.1.

Example 2.3.1

If Add(x,y,r) = rÈx + yÍ, then Add(x,y,r) is an identifier for a process that takes
two variables and a name as input and then returns the sum of the numbers on the
channel r.

Lastly, there is the conditional [M ÛÙ N ] P ,Q, where the ÛÙ denotes a binary logical
operator. If the condition is true it evaluates to P , otherwise it evaluates to Q.

L,M ,N , . . . ::= Term

| n Number
| b Name or composite name
| x Variable
| M § N Arithmetic operation

b ::=
| a Name
| a · M1 · . . . · Mn (n > 0) Composite name

Figure 2.10: The syntax for terms.

The syntax for terms can be seen in figure 2.10. A term may be a number (n),
which in this language is constrained to the set of integers (Z). It can also be a name
for a channel (b), which is used to send or receive messages. Variables (x) are only
used as placeholders and can be bound to either a number, a name, or a composite
name. Operations (M § N ) are a way to use binary operators on terms. The only
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binary operators allowed are the standard binary operators for integers as defined
in section 2.2.1. Finally, a term may also be a composite name, which is a series of
terms that forms a name for a channel. The notion of composite names is based on
the work of Carbone and Ma�eis [18].

A,B,C, . . . ::= Extended process

| P Process
| A | B Parallel composition
| ‹a.A Restriction on name
| ‹x.A Restriction on variable
| {M/x} Active substitution

Figure 2.11: The syntax of extended processes.

The syntax for extended processes is similar to the process syntax and can be
seen in figure 2.11. An extended process may be a normal process (P ), a parallel
composition of extended processes (A | B), a declaration of a new name (‹a.A), a
variable (‹x.A), or an active substitution ({M/x}). All of them except active substi-
tution behave similarly to their process counterpart, with new variable declaration
behaving similarly to a name declaration. Active substitution is used to replace all
instances of a variable (x) with a term (M ) in all processes. Extended processes
function as an environment around some contained processes, in which variables (x)
are mapped to terms through restriction and substitutions.

2.3.2 Semantics

The semantics of Efi works through the notion of structural congruence (©) and
reduction (æ). Structural congruence allows a rewriting of expressions, to allow for
simpler reduction rules. For a process to reduce, a combination of some structural
congruence and reduction rules is used. The structural congruence rules for ButF
are shown in figure 2.12. [14, 22]
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Rename A © A
Õ by –-conversion

Par-0 A | 0 © A

Par-A A | (B | C) © (A | B) | C

Par-C A | B © B | A

Repl !P © P | !P

New-0 ‹n.0 © 0
New-C ‹u.‹v.A © ‹v.‹u.A

New-Par A | ‹u.B © ‹u.(A | B) when u < fv(A)fi fn(A)

Alias ‹x.{M/x} © 0
Subst {M/x} | A © {M/x} | A{M/x}

Rewrite {M/x} © {N/x} when M = N

Figure 2.12: The structural congruence rules for Efi. Notice the usage of equality on terms, which
applies to both names and numbers. [14, 23]

The Rename rule uses –-conversion which may do a change of bound names or
variables [24]. This is since substituting the free variables or names would potentially
result in a change of behavior due to other processes still containing the prior name.
Bound names can, however, be substituted freely, as they only exist within the scope
of the process, and thus substituting these does not a�ect any other processes. For
example, for P | Q where P = aÈbÍ.b(c) and Q = a(y).yÈzÍ, substituting a in P , ie.
P {c/a}, would mean that Q can not receive P ’s message anymore.

The Par- rules define the parallel composition operator as associative and com-
mutative and that the 0 process can be omitted. The Repl rule expands a replication
to an unbounded number of parallel processes.

The New- rules describe the behavior of restriction (‹a). These show that a
restriction on 0 is inconsequential, that restriction is commutative, and that a re-
striction’s scope can be rewritten to either extend or shrink it.

Alias describes how a substitution on a bound name (x) that is not used has
the same e�ect as 0. Subst applies an active substitution to any parallel process.
Active substitutions and accompanying rules can be used to introduce arbitrary
substitutions, which is useful when using the reduction rules. Lastly, Rewrite
describes how changing the substituting term with a di�erent but equal term is
allowed. An example of this would be to substitute 2+ 3 with 4+ 1 or 5.
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Comm bÈxÍ.P | b(x).Q M
≠æ P | Q

Broad b: ÈxÍ .Q | b(x).P1 | · · · | b(x).Pn
:b
≠æ Q | P1 | · · · | Pn

Par A
M
≠æ A

Õ

A | B
M
≠æ A

Õ
| B

B-Par
A

:b
≠æ A

Õ
B 8 b

A | B
:b
≠æ A

Õ
| B

Res A
q
≠æ A

Õ
q , : u

‹u.A q
≠æ ‹u.AÕ

B-Res A
:b
≠æ A

Õ

‹b.A M
≠æ ‹b.AÕ

Struct A
q
≠æ A

Õ

B
q
≠æ B

Õ
if A © B and A

Õ
© B

Õ

Then [M ÛÙ N ] P ,Q M
≠æ P if M ÛÙ N

Else [M ÛÙ N ] P ,Q M
≠æ Q if M ”ÛÙ N

Figure 2.13: The extended reduction rules of extended processes, with new rules for broadcasting
and normal communication over composite names. Here, q is either M or some :b.

To be able to evaluate Efi the rules in figure 2.13 are used. Here, the :b
≠æ is used

to denote a broadcast reduction on channel b, M≠æ is used to denote a non-broadcast
reduction and æ when either reduction can be used. The Comm and Broad rules
describe the sending and receiving actions happening in parallel processes where
the first process sends a variable and the other ones are receiving. Notice that the
variable name which is sent and received must be the same, which can be ensured
by structural congruence.

As mentioned, the broadcasting can reduce even if n = 0 meaning there are no
listeners. To be able to have concurrency in the calculus the Par rule shows that
a process can take a reduction independent from other parallel processes. The B-
Par rule ensures that a broadcast always a�ects all possible processes. Restrictions,
described by the Res rule, do not guard processes but rather describe the scope of a
name. Likewise, the B-Res acts as a guard against broadcasts and guarantees that
a broadcast reduction is only labeled as such within the scope of its name. The use
of structural congruence is enabled by the Struct rule. Lastly, the Then and Else
rules show how the conditionals evaluate to the respective processes.
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2.3.3 Weak Bisimilarity

To describe and compare translated programs, a notion of weak bisimilarity is used.
The inspiration for this relation was provided by Milner [22]. This defines equiva-
lence using program behavior instead of program structure, making it less restrictive
compared to structural congruence. In the translation, this is useful, in showing that
a translation behaves correctly, without requiring it to have a certain structure.

The definition of weak bisimilarity can be seen in definition 2.3.1.

Definition 2.3.1 (Weak Bisimulation) Let R be a symmetric binary relation between
processes. Then R is a weak bisimulation if for all pairs (P ,Q) œ R, it holds that if
P æ P

Õ then there exists a Q
Õ such that Q æ

ú
Q

Õ and (P Õ,QÕ) œ R.
Also, two processes (P and Q) are weakly bisimilar, ie. P ¥ Q, if there exists a

weak bisimulation R, such that (P ,Q) œ R.

Example 2.3.2 shows weak bisimulation and the usage of witnesses, here R
s is used

to denote a symmetrical binary relation, such that R
s = R fi {(y,x) | (x,y) œ R}.

Example 2.3.2

Consider the processes P = 0 and Q = a(s).bÈsÍ | aÈ5Í | aÈ6Í. Here P ¥ Q with the
witness R = {(P ,bÈ5Í | aÈ6Í), (P ,bÈ6Í | aÈ5Í), (P ,Q)}s. In this case (P ,Q) œ R, and
for any Q

Õ, P can match with zero reductions such that (P ,QÕ) œ R. Vice versa, P

cannot take any reductions, and R is, therefore, a weak bisimulation.

One would hardly consider P and Q in the example to behave similarly, in that Q

can communicate both internally and externally, while P does nothing. By itself,
weak bisimulation, as defined here, is, therefore, rather useless, in that it equates
wildly di�erent processes with each other.

To implement a relation that is more restrictive than weak bisimulation, we re-
quire that P and Q can communicate on the same channels through the notion of
observability.

Definition 2.3.2 (Observability) A prefix (–) can stand for any action: when receiv-
ing on a channel (b), – becomes b and when sending or broadcasting, – becomes b.
A process is observable at a prefix – if this prefix occurs unguarded and its name is
free in P . This is written as P ¿– where ¿– is called a barb.

To ensure that weak bisimilar programs behaves similarly to an outside process,
a notion of weak barbed bisimilarity is introduced, requiring that P and Q also share
barbs. Additionally, we require that P and Q are indistinguishable by any outside
process, which is achieved with contexts. A context (C œ C) is a one-hole process
placed around another process (P ) thus yielding a new process, ie. with C = xÈ5Í.[]
then C[P ] = xÈ5Í.P .

As a starting point the barbed bisimulation described by [25] is used.
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Definition 2.3.3 (Weak Barbed Bisimulation) Let R be a binary relation between
processes such that R is symmetric. Then R is a weak barbed bisimulation if for
all pairs (P ,Q) œ R the following holds:

1. if P æ P
Õ then there exists a Q

Õ such that Q æ
ú

Q
Õ and (P Õ,QÕ) œ R.

2. for all contexts (C), (C[P ],C[Q]) œ R,

3. and for all prefixes (–) if P ¿– then Q æ
ú
¿–.

By requiring that P and Q are similar by any context, we require that values
sent on observable channels are also equal. Example 2.3.3 shows how the iteration
over contexts ensures that P and Q are indistinguishable from an outside process.

Example 2.3.3

Let P = aÈ5Í and Q = aÈ6Í. Ignoring context, the relation R = {(P ,Q)} is a weak
barbed bisimulation in that neither P nor Q can reduce and they are both only
observable on a. However, we can use the context C = [] | a(v). [v = 5] bÈÍ,cÈÍ to
distinguish between P and Q. Thus, having (C[P ],C[Q]) in R would break the rules
for weak barbed bisimulation, in that C[P ] would observe b and C[Q] would observe
c.





Chapter 3

Translation of Basic Un-typed Futhark

Before any translation can be deemed a correct translation, it is necessary to define
the correctness criteria. This chapter covers such a definition for correctness when
translating from ButF into Efi, a generic translation of all expressions in ButF.

3.1 Correctness Criteria

We consider the translation to be correct when it preserves the reduction sequence
and result of the program. To do this we define operational correspondence, which
preserves the reduction sequence and thus ensures translation correctness.

The translating approach in this report is inspired by Milner [15] where the
translation is given a channel name, on which the translated process returns its
result. The notation for translation, therefore, becomes ~e�o, where o is the return
channel of the expression. [15]

The definition of operational correspondence can be seen in definition 3.1.1 and
is inspired by Sangiorgi [16].

Definition 3.1.1 (Operational Correspondence) A translation ~�o upholds operational
correspondence, if it is both sound and complete.

1. (Soundness) If e æ e
Õ, then ~e�o æ

ú ~eÕ�o

2. (Completeness) If for any P such that ~e�o æ P then there exists an e
Õ such

that e æ e
Õ and P æ

ú ~eÕ�o.

This operational correspondence requires that a translation is both complete and
sound. Here, soundness is achieved by guaranteeing that all reductions that happen
in a ButF program can be matched by a sequence of reductions in the corresponding
Efi process. Since the translation might require more reductions to represent ButF
behavior, a æ

ú arrow is used. Completeness ensures that all possible reductions from

21
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~e�o eventually lead to ~eÕ�o. This guarantees that a translation, cannot reduce in a
manner that would not follow the original expression.

3.2 Translation

This section proposes a general translation of ButF expressions into Efi. ButF
and Efi are conceptually di�erent, in that ButF expressions can evaluate to a value,
which can be combined with other values, as seen below.

(⁄x.+ x 2) (· 7 8)
is 56

(3.1)

Here, values and expressions are combined through operators and applications. Each
expression can be said to produce a result (or continue forever), which can be used
as a stand-in for the expression. In equation (3.1), (· 7 8) always produces 56, which
can be used as a stand-in for (· 7 8).

In Efi this is di�erent. Here, values are instead communicated between pro-
cesses. The contribution of a process is not the reduced process it becomes, but its
communication with other processes. The rewrites in ButF are performed by the
translation, instead of being done semantically. This is mainly because it is easier
for the translation to rewrite expressions, and this reduces the complexity of the
translation.

The translation is categorized into three sub-sections: section 3.2.1 covers the
translation of general ButF constructs, section 3.2.2 is the translation of array-
related constructs, and section 3.2.3 is the translation of SOACs.

3.2.1 Expressions

Figure 3.1 shows how the values of ButF are expressed and sent over the return
channel o in Efi. Here, all numbers and variables are compatible with terms in Efi,
and can immediately be sent on o. The values of tuples in ButF are first evaluated
by listening on return channels o0 to on and then sent as a tuple term on o. Notice
that tuples listen on the handle via the composite name h · h to ensure that the
handle h can only be used when pattern-matching. Notice also how the translation
delays the return on channel o, to ensure that each expression ei has been evaluated
and added to the array, as otherwise the unfinished array would be returned.
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~n�o
def
= oÈnÍ Number

~x�o
def
= oÈxÍ Variable

~(e0, . . . ,en)�o
def
=

‹o0. · · · .‹on.‹h.(
nŸ

i=0
(~ei�oi) |

o0(v0). · · · .on(vn).(oÈhÍ | !h · hÈv0, . . . ,vnÍ)

)

T

XXXXXV
Tuple

Figure 3.1: The translation of constant values, variables, and tuples.

Figure 3.2 shows the translation of possible operations. This includes the rewrit-
ing of infix operators and currying of constant functions. The latter uses the expand
function, to create an abstraction with appropriate inputs. Lastly, it translates ap-
plied unary and binary built-ins (§{x,y} and B {x}) into the Efi equivalent sending
on channel o.

~e1‘e2‘e3�o
def
= ~e2 e1 e3�o Infix operation

~cf �o
def
= ~expand(cf )�o Expand

~§{x,y}�o
def
= ‹o1.‹o2.(~x�o1 | ~y�o2 | o1(x).o2(y).oÈx § yÍ) Built-in of binary

~B {x}�o
def
= ‹o1.(~x�o1 | o1(x).oÈB xÍ) Built-in of unary

Figure 3.2: The translation of built-in expansion and operators.

Abstraction and application are fundamental for the functionality of ButF and
their translation can be seen in figure 3.3. The abstraction translation makes use
of a new name (f) to provide a handle for the parameter. This handle requires the
parameters and a return channel (ret), which are then substituted in the body of the
abstraction (~e�ret).
On the other hand, the application translation consists of the parallel composition
of the two translations together with a process that connects the outputs.
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~⁄x.e�o
def
= ‹f .(!f(x,ret).~e�ret | oÈfÍ) Abst-Val

~⁄(x0, . . . ,xn).e�o
def
= ‹f .(!f(h,ret).h · h(x0, . . . ,xn).~e�ret | oÈfÍ) Abst-Tup

~e1 e2�o
def
= ‹o1.‹o2.(~e1�o1 | ~e2�o2 | o1(f).o2(x).fÈx,oÍ) Application

Figure 3.3: The translation of abstraction and application. Inspired by Amadio, Thomsen, and
Thomsen [17].

ButF’s translation for name bindings via let and its control structures (if and
loop) are shown in figure 3.4. For the let translation, the expression ~e1�o1 is evalu-
ated first, which returns via the o1 channel to unguard and substitute the values in
~e2�o2 . This allows for a translation of the pattern-matching concept.

The if construct is translated by evaluating the predicate ~e1�o1 which is used
in the similar conditional control structure in Efi. This predicate then determines
whether ~e2� or ~e3� is evaluated. Here, the output channel (o) is propagated to
both bodies, eliminating unnecessary communication setup.

~let x = e1 in e2�o
def
= ‹o1.(~e1�o1 | o1(x).~e2�o) Let-Val

~let (x0, . . . ,xn) = e1 in e2�o
def
= ‹o1.(~e1�o1 | o1(h).h · h(x0, . . . ,xn).~e2�o) Let-Tup

~if e1 then e2 else e3�o
def
= ‹o1.(~e1�o1 | o1(v). [v , 0] ~e2�o,~e3�o) If

Figure 3.4: The translation of the let binding and the control structure if.

Loop The Loop process identifier in figure 3.5 works by using two cases via the
[i < s] structure. The base case is that the iterator (i) has reached the end value
(s) which results in the accumulator (x) being sent on the return channel (r). In
the case where the Loop still has at least one iteration to run, the Loop body is
evaluated sending the current iteration (i), the accumulator (x), and return channel
(aÕ) on the channel b. The new return channel (aÕ) is then given to the next iteration
of the loop. An example of Loop can be seen in example 3.2.1.

Loop(b, i,s,a,r) def
=

a(x). [i < s] ‹a
Õ.bÈx, i,aÕ

Í.
Loop(b, i+ 1,s,aÕ,r),

rÈxÍ

Figure 3.5: The process identifier to define the loop construct. [9]
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Example 3.2.1

Say that a programmer wants to add up the numbers 0 to 10 (not including 10).
Here, they could use the Loop identifier as follows.

Loop(b,0,10,a,r) | aÈ0Í | !b(x, i,o).oÈx+ iÍ

Notice how with each iteration a request is sent to channel b with the current accu-
mulator (x) and enumerator value (i).

The loop ButF construct has a few requirements, which must be reflected by the
translation. It has to return ~e1�o1 when the iterator (y) is lower than ~e2�o2 or it has
to run ~e3�o3 with the iterator and the initial or recursive bindings. In the translation
of loop, shown in figure 3.6, ~e1�o1 and ~e2�o2 are in a parallel composition, allowing
them to be evaluated independently. To execute the loop, o2 is used to receive the
stop condition, whereafter the Loop process identifier then can be used in which e1
can directly send the starting state via o1. The sub-process !b(x,y,o3).~e3�o3 calls
the body of the loop, binding the names x and y.

⇢

�

�

�

⌧

loop x = e1

for y < e2 do e3

�

�

�

�

�

o

def
=

‹b.‹o1.‹o2.(~e1�o1 | ~e2�o2 |

!b(x,y,o3).~e3�o3 |

o2(s).Loop(b,0,s,o1,o)
)

T

XXXXXV
Loop-Val

⇢

�

�

�

⌧

loop (x0, . . . ,xn) = e1

for y < e2 do e3

�

�

�

�

�

o

def
=

‹b.‹o1.‹o2.(~e1�o1 | ~e2�o2 |

!b(h,y,o3).h · h(x0, . . . ,xn).~e3�o3 |

o2(s).Loop(b,0,s,o1,o)
)

T

XXXXXV
Loop-Tup

Figure 3.6: The translation of loop control structure.

3.2.2 Arrays

The array construct is the core data structure for ButF and thus needs to be imple-
mented in Efi. The process identifier for array is therefore carefully constructed, so it
reflects the advantages of arrays. Each element in the array structure is independent
of each other due to the parallel composition of elements.

The Array in figure 3.7 requires two channels and a number at initialization
(handle, write). Here, the channel handle provides access to the array since the
array always sends its read channel and length on it. This means that any process
with the handle can ask for the channel read, which provides the functionality of the
array, and its length (len) as value. The composite name (handle · index) is used to



26 Chapter 3. Translation of Basic Un-typed Futhark

index the array where the requester uses the handle together with the desired index
to listen to the value. The write channel is used to add elements to the array whereas
the read channel sends all the array’s elements on the provided channel.

The parameter len is expected to be a number given when the array is created,
and can later be retrieved via handle. Otherwise, it would be hard to count the
number of elements received at write without some sort of stop signal. Given that
arrays in ButF always have a known static size at runtime, the static len parameter
reflects this. An example of the identifier can be seen in example 3.2.2.

Array(handle,write, len) def
=

‹read.‹b.(
!write(index,v).(

!b(r).rÈindex,vÍ |

!handle · indexÈvÍ

) |

!read(r).b: ÈrÍ | !handleÈread, lenÍ

)

Figure 3.7: The process identifier to define the array construct. [9]

Example 3.2.2

The array [2,3,5] can be expressed with the array identifier as follows:

Array(h, i,3) | iÈ0,2Í | iÈ1,3Í | iÈ2,5Í (3.2)

Here, h denotes a handle to the array which can be used in the program.

As mentioned, the read channel allows requesting all elements on the array to be
sent on a channel r. To achieve this, r is distributed to all the elements through a
broadcast on the channel b, requiring only a single reduction. However, this assumes
that all wanted array elements have been sent on write before sending a request on
read, which is not always the case. This could be solved by waiting for all elements
before sending on b, either as a part of Array or when calling Array as a process
identifier.

The Await process identifier facilitates waiting, ensuring that all parts of an array
are ready before they can be used. The identifier can be seen in figure 3.8, and is a
simple recursively defined process that sends on a done channel once it has received
the specified amount of inputs on a count channel.
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Await(n,count,done) def
= [n = 0] doneÈÍ,count().Await(n ≠ 1,count,done)

Figure 3.8: The process identifier for Await.

In figure 3.9 the Array process identifier has been modified such that outside
processes are notified when all expected elements are received.

Array(handle,write, len,done) def
=

‹read.‹b.‹count.(
Await(len,count,done) |

!write(index,v).(
!b(r).rÈindex,vÍ |

!handle · indexÈvÍ |

countÈÍ

) |

!read(r).b: ÈrÍ |

!handleÈread, lenÍ

)

Figure 3.9: An altered array implementation using Await to notify processes when the array is ready.

Figure 3.10 shows how the new Array process identifier is used to translate ButF
arrays. Here, the array handle is returned when the array is done (signaled on done).

~[e0, . . . ,en≠1]�o
def
=

‹handle.‹write.‹done.(Array(handle,write,n,done) |

nŸ

i=0
‹oi.(~ei�oi | oi(vi).writeÈi,viÍ) |

done().oÈhandleÍ

)

T

XXXXXXXXV

Array

~e1[e2]�o
def
=

‹o1.‹o2.(~e1�o1 | ~e2�o2 |

o1(h).o2(i). [i Ø 0] h · i(v).oÈvÍ,0)

D

Indexing

Figure 3.10: Translation of ButF arrays and indexing to Efi using the Array process identifier.
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Size The built-in of size{x}, uses the array handle to extract the length and returns
it on r. This translation can be seen in figure 3.11.

~size{x}�o
def
= ‹o1.(~x�o1 | o1(h).h(_, len).oÈlenÍ)

Figure 3.11: The translation of the size function.

Iota The Iota process identifier, as seen in section 3.2.2, requires a lower bound
(m), an upper bound (n), and a return channel (r). The lower bound is necessary
since this allows splitting it recursively, thus allowing for more concurrency. It then
proceeds to check for the base case where the lower and upper bounds are equal, in
which case it returns the element and identical index. If the base case is not fulfilled,
the recursive case splits the work up into two sub-problems.

Iota(m,n,r) def
= [m = n] rÈn,nÍ,

Iota(m,n/2,r) | Iota(n/2+ 1,n,r)

Figure 3.12: The process identifier for Iota.

~iota{x}�o
def
=

‹o1.(~x�o1 | ‹h.‹write.‹done.o1(n).(
Array(h,write,n,done) |

Iota(0,n,write) |

done().oÈhÍ

))

Figure 3.13: The translation of iota{x}.

The iota translation iota makes use of the Iota process identifier. Figure 3.13
shows the translation of the built-in. The built-in creates a new array and uses it as
the output for the Iota process identifier.

Concat The translation of concat in figure 3.14 takes in the two handles of the two
arrays on o1 and o2 which are then used to get their respective read channels and
their len values. A new array is created to capture the elements of both arrays but
with their combined lengths. The values of the first array are sent over unchanged,
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by supplying read1 to the input of the new array (write3 ). For the second array, its
indices need to be increased by the length of the first array. A replicated process is
used as a bridge that handles the receiving of elements from the second array.

~concat{x,y}�o
def
=

‹o1.‹o2.(~x�o1 | ~y�o2 | o1(h1).o2(h2).
h1(read1, len1).h2(read2, len2).
‹h3.‹in3.‹done.(done().oÈh3Í |

Array(h3,write3, len1 + len2,done)
read1Èwrite3Í |

‹x.(read2ÈxÍ | !x(i,v).write3Èi+ len1,vÍ)

)

)

Figure 3.14: The translation of the concat function.

3.2.3 Second-Order Array Combinators

This section presents the translation of the di�erent SOACs.

Map Map is simple, in that each element of the input array can be handled inde-
pendently. Figure 3.15 shows the process identifier for a simple map over values. It
requires a channel on which the array outputs its elements (input), the name of the
function channel that has to be mapped to the elements (f), and a return channel
(output). It maps the function onto the elements by receiving all elements and then
sending the values on the function channel. A replicated process then receives all
values, processes them, and returns the updated value on the return channel. Finally,
the updated value is sent on the output channel, with its respective index.

Map(input,f ,output) def
=

!input(index,value).‹r.(fÈvalue,rÍ |

r(valueÕ).outputÈindex,valueÕ
Í)

Figure 3.15: The map process identifier. [9]

The translation of map, can be seen in figure 3.16, where the parameters x and
y are the mapping function and input array respectively.
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~map{x,y}�o
def
=

‹o1.‹o2.(~x�o1 | ~y�o2 |

‹hr.‹write.‹done.o1(fm).o2(h).h(read, len).(
Array(hr,write, len,done) |

‹x.(readÈxÍ | Map(x,fm,write)) |

done().oÈhrÍ

))

Figure 3.16: The translation for the map SOAC.

Reduce Reduce can be seen in figure 3.17. When reducing arrays all elements
should be combined into a single value by using an operator. This is achieved using
an accumulator value, which is sequentially updated with values from the array.
However, this would result in an ine�cient linear span, as each element is handled
sequentially.

A better approach is to divide and conquer the problem by splitting the problem
into two sub-problems of similar structure but with half the problem size. This
relies on the operator being associative. This approach can be applied recursively
resulting in a binary tree of span log2(n) where each sub-problem can be calculated
independently.

Reduce(arr ,f ,ret) def
=

‹reduce.‹read.(
arr(read, len).readÈreadÍ.reduceÈret, len + 1Í |

!reduce(r,n).(
[n = 1]read(_,v).rÈvÍ,
[n > 1]‹r

Õ.(
reduceÈr

Õ,n/2Í | reduceÈr
Õ,n ≠ ndiv 2Í |

r
Õ(v1).rÕ(v2).fÈv1,v2,rÍ)))

Figure 3.17: The reduce process identifier. [9]

The process identifier for reduction is seen in figure 3.17. It starts by requesting
the length and the elements of the array, which it then sends along an internal reduce

channel. The reduce happens in the replicated process where this channel is used to
listen to a return channel and the current length of the work set. This allows the
replication to work recursively where each set of values is split, determined by its
length until the length reaches 1 ([n = 1]). For the recursive step when [n > 1], the
work set is split into two sets by sending both splits on reduce with a unique return
channel (rÕ) which results in a binary tree of reduces.



3.2. Translation 31

~reduce{x,y,z}�o
def
=

‹o1.‹o2.‹o3.(~x�o1 | ~y�o2 | ~z�o3 |

‹op.(o1(fr).o2(z).o3(h).h(_, len). [len = 0] oÈzÍ,
(Reduce(h,op,o) |

op(x,y,ret).‹r.frÈx,rÍ.r(f Õ
r).f Õ

rÈy,retÍ)))

Figure 3.18: The translation for the reduce SOAC.

The Built-in translation can be seen in figure 3.18. Similar to the map translation,
it captures the output of its parameters and parses them into the Reduce process
identifier. If the array does not contain any elements, it instead just returns the
neutral element.

Scan Scan functions much like reduction, but produces intermediate results as el-
ements are combined. Here, the i’th value of the resulting array is the reduction of
elements 0 to i. The problem is tackled by a divide-and-conquer approach by defining
a pivot point (p) that splits this problem as seen in equations (3.3) and (3.4).

scan f z [v0, . . . ,vp, . . . ,vn] (3.3)
let first = scan f z [v0, . . . ,vp]

in first ‘concat‘ (map (f (first[p])) (scan f [vp+1, . . . ,vn]))
(3.4)

With this in mind, a recursive scan process over elements with indices s to (and
including) t can be defined as seen in figure 3.19.

Scan(arr ,f ,s, t,r) def
= ‹r1.‹r2.([s < t]

Scan(arr ,f ,s,s+ (t ≠ s) div 2,r1) |

Scan(arr ,f ,s+ (t ≠ s) div 2+ 1, t,r2) |

!r1(i,v).(rÈi,vÍ |

[i = s+ (t ≠ s) div 2] !r2(i
Õ,vÕ).fÈv,vÕ,rÕ

Í.rÕ(vÕÕ).rÈi
Õ,vÕÕ

Í,0
),
arr · s(v).rÈs,vÍ)

Figure 3.19: The scan process identifier.

Figure 3.20 shows the translation of the built-in. The function channel op is used
to represent the operator for reduction. Given that such functions, of arity 2, are
represented through currying, the last line of figure 3.20 uncurries f into a single
function.
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~scan{x,y,z}�o
def
=

‹o1.‹o2.‹o3.(~x�o1 | ~y�o2 | ~z�o3 |

‹op.‹write.‹res.‹done.(
o1(fs).o2(z).o3(h).h(_, len).(

Scan(h,op,0, len ≠ 1,write) |

Array(res,write, len,done) |

done().ro(res) |

!op(v1,v2,rf ).‹r
Õ
f .fsÈv1,rÕ

f Í.rÕ
f (f

Õ
s).f Õ

sÈv2,rsÍ)))

Figure 3.20: The translation of the scan built-in.



Chapter 4

Correctness

This chapter shows the correctness of ButF through a proof of operational corre-
spondence. Currently, each SOAC is translated separately as a primitive, requiring
proof to handle each of these cases. Instead, the number of primitives can be reduced,
by implementing some ButF constructs in ButF itself. Therefore, the possible sub-
sets of primitives that are necessary are explored in this chapter. Alongside this, an
annotation of reduction is proposed, a new bisimilarity based on these annotations,
as well as a proof of correctness.

4.1 Choice of Primitives

In this section, the set of primitives is reduced to find a smaller set of necessary
primitives, which the remaining language constructs can then be constructed from.
This reduces the complexity and amount of proofs needed to determine a correct
translation.

Since the goal of this analysis is not to find the smallest subset, but merely
a subset that is easier to prove, this section does not attempt to prove that the
subset is the smallest possible. Instead, the focus is on finding concrete dependencies
between primitives.

These dependencies are then described together with the asymptotic complexities
of their work (W) and their span (S). The list of primitive candidates consists of
map, reduce, scan, size, iota, and concat. If a candidate is chosen to be a primitive,
it uses the implementation presented in chapter 3, and otherwise it is derived from
some other constructs. The rest of the translation except loop is as presented in
chapter 3. When describing complexity for functions that depend on other primitive
candidates, the notation Wf (n) is used to denote the worst-case work complexity of
f , given an array of size n. Sf (n) is used similarly for span. With this notation, each
ButF reduction is defined to cost 1 work, while rewrites are free. When defining
work and span, constants are omitted for simplicity.

33
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4.1.1 Recursion in Basic Un-Typed Futhark

When deriving ButF constructs from primitives, recursion is a useful tool. Though,
explicit recursion is not supported by the version of ButF described in chapter 2, it
can be expressed through the call-by-value fixed-point combinator, which can be seen
in listing 4.1.1 [26]. Fix is a generalization of the diverging process (⁄x.x x) (⁄x.x x),
such that the function f decides whether to expand fix again or not. Note how x x

has been replaced by (⁄y.x x y) as otherwise the application of fix would always
diverge due to ButF’s call-by-value semantics [26]. Example 4.1.1 shows how the fix
function can be used to define a factorial function.

1 let fix = \f.(\x.f (\y.x x y)) (\x.f (\y.x x y))

Listing 4.1.1: The fixpoint operator in ButF.

Example 4.1.1

Recursion can then be expressed using fix as seen in the creation of the factorial
function in listing 4.1.2.

1 let fact = fix (\f. \n. if (= n 0) then 1 else (* n (f (- n 1)))

2 ) in fact 10

Listing 4.1.2: Factorial function implemented recursively using the fix function.

This can be used to implement loop by using an iterator that is propagated
through the recursion and an if statement that is used to define when the recursion
ends.

loop p = e1 for x < e2 in e3
def
= loop e2 (\p. \x. e3) e1 0 (4.1)

1 let loop = \n. \body. (fix (\f.

2 \p. \x. if (>= x n) then p else
3 (f (body p x) (+ x 1))

4 )) in ...

Listing 4.1.3: The loop construct implemented via recursion.

Listing 4.1.3 and equation (4.1) shows this implementation where loop is defined
via the fix keyword where f is the handle for the recursive call, p is the initial
parameter or the result of the last evaluation of the body, x is the iterator, and n
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is the upper bound. By comparing the iterator (x) and upper limit (n), either p or
the result of a recursive call is returned. For the recursive step, the incremented x

and newly evaluated body is propagated. This means that loop is now replaced by
recursion to ease further analysis.

4.1.2 Map

Map is one of the potential primitives that could allow for concurrency and thus its
span should be as small as possible. The easiest way to achieve this is by implement-
ing map as a primitive, but we also found two other ways to implement map.

A simple way of implementing map is using scan, since this is also a concurrent
operator.

1 let map = (\f. scan ( \x. \y. f y) 0)

2 in ...

Listing 4.1.4: Map implemented using scan.

This implementation can be seen in listing 4.1.4, where it uses a let statement
to define map. This implementation then relies on a scan and a function that takes
two inputs and discards the first one. After the first input is discarded all that is left
is the function ⁄y.fy which corresponds to a map function. Thus the end result is
the same as mapping f . A downside of this method is that this only works as long
as the scan implementation combines elements left-associatively. This is due to the
fact that the operator function does not fulfill the associative property. Since this
map is based on a scan, the work and span depend on the scan implementation. So
the work is O(Wscan(n,Wf )) and the span is O(Sscan(n,Wf )).

Another way to implement map would be with concat, size, and recursion.

1 let map = (\f. \arr (

2 fix (\maph. \n. \m.

3 if (n �=� m) then [f arr[n]]

4 else
5 (maph n (m �/� 2)) �concat� (maph ((m �/� 2)�+� 1) n)

6 )

7 0 (size arr))

8 ) in ...

Listing 4.1.5: Map implemented using concat, size and recursion.
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In listing 4.1.5, the main idea is to split the mapping into a binary tree. This is
done using a helper function (maph) which takes an array, a start, and an end index.
This function then keeps splitting into a binary tree of recursive calls, until the start
and end are the same for the sub-problem at hand. Then it applies the function (f)
to the element of the array and returns that as a single-element array. Concat is
then used on the results to combine them into one single array. The complexity of
maph can be described recursively as seen in equation (4.2), where the problem size
(o) is m ≠ n. Here, it is assumed that the complexity is Wf when o = 0.

Wmaph(o,Wf ) = 2 · Wmaph(o/2,Wf ) +Wconcat(o)

Smaph(o,Sf ) = 2 · Smaph(o/2,Sf ) +Sconcat(o)
(4.2)

Note that the two subcalls to maph are not done concurrently, and we, therefore, add
their spans. Because the complexity of concat is unknown, it is hard to state a non-
recursive complexity of this map implementation. Given that map calls maph with
parameters 0 and the size of array, thus the work of map is Wmaph(n,Wf ) +Wsize,
for array size n. The span of map can be expressed similarly.

Finally, map can also be chosen as a primitive, in which case it is assumed that
it has the same asymptotic complexity as Futhark. For map this is a work of
O(n · Wf ) and a span of O(Sf ) [27].

4.1.3 Reduce

Reduce is a powerful and highly versatile SOAC, and its concurrent nature makes
it an option when it comes to reducing span. However, reduce can also be derived
from other constructs in multiple ways. The simplest is using scan and size, where
the function used in the reduce is instead used in the scan operation. Since the last
element of scan is the same as a reduce would yield, size can then be used to index this
last element and get the usual reduce result. This relies on scan, giving an asymptotic
work of O(Wscan(n,Wf ) + Wsize(n)) and span of O(Sscan(n,Sf ) + Ssize(n)). This
implementation of scan can be seen in listing 4.1.6.

1 let reduce = \f. \n. \arr. (scan f n arr)[size arr �-� 1]

2 in ...

Listing 4.1.6: Reduce implemented using scan and size.

Another way to construct reduce is by using recursion together with size, where
the array is simply iterated over and a binary operator is used to combine the results.
Size is used to set an upper bound the iterating process. This is a more linear
approach and therefore the work is O(n ·Wf +Wsize(n)) while the span is O(n ·Sf +
Ssize(n)). This implementation can be seen in listing 4.1.7.
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1 let reduce = \f. \n. \arr.

2 loop x = n for i < size arr do

3 x = f x arr[i] in ...

Listing 4.1.7: The reduce SOAC made with loop and size.

If reduce is chosen as a primitive, the work and span from Futhark can be used,
which is O(n · Wf ) and O(log2(n) · Sf ) [27].

4.1.4 Scan

Scan can be used to construct map and reduce. However, a primitive scan is rather
complex, which means having it as a derived operator eases a correctness proof
considerably. It can be naïvely derived from a series of reductions as seen in equa-
tion (2.6) in section 2.2.2.

1 let scan = fix (\f. \op. \z. \arr.

2 -- We need pairs, which can pair up values in list, ignoring a
potential last odd elementÒæ

3 let pairs = (\arr.

4 map (\i. (arr[* i 2], arr[+ 1 (* i 2)]))

5 (iota (size arr �/� 2))

6 )

7 in let s = size arr

8 if (s �<� 2) then arr

9 else
10 in let paired = map (\(x,y). op x y) (pairs arr)

11 in let recur = scan op z paired

12 in map (\i.

13 let carry = if (= i 0) then z else recur[/ (- i 1) 2]

14 in if (= 0 (% i 2))

15 then (op arr[i] carry)

16 else carry

17 ) (iota s)

18 ) in ...

Listing 4.1.8: The implementation of work e�cient scan in ButF.

With map and iota, scan can be implemented as the work e�cient scan algorithm
[28, 29], which can be seen in listing 4.1.8. The algorithm combines the array arr
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in pairs, creating a new array of size Ân/2Ê, which it calls scan on recursively. This
yields the array recur, where the i’th value is the result of reducing values 0 to i · 2
in arr. Recur and arr are then combined, to create the scan result where the j’th
element is determined according to the following two rules.

• If j is odd, the value can be found directly in recur at the index Â(j ≠ 1)/2Ê.
This is because recur contains the final result for every odd element.

• If j is even, then recur does not contain the result for the j’th value. Instead
we add the Â(j ≠ 1)/2Ê’th value of recur to arr [j] to yield the scan value at j.
If j is 0, there is no j ≠ 1, so the neutral element (z) is added instead.

The work and span complexity of scan can be written as seen in equation (4.3)

Wscan(n,Wf ) = Wscan(n/2,Wf ) +O(Wiota(n) +Wmap(n,Wf ) +Wsize(n))

Sscan(n,Sf ) = Sscan(n/2,Sf ) +O(Siota(n) +Smap(n,Sf ) +Ssize(n))
(4.3)

Scan when chosen as a primitive can be assumed to have the same complexity
as the implementation in Futhark which has a work of O(n · Wf ) and a span of
O(log2(n) · Sf ) [30].

4.1.5 Size

Size is an interesting function since it allows for dynamic bounded indexing in recur-
sion constructs which helps construct e�cient and error-free functionality. Without
size, going through each element of an array at a time is impractical the recursion
would not know when to stop. This would at some point cause indexing of a non-
existing index resulting in undefined behavior.

However, size can be built in two other ways using the other primitive candidates.
The first is a reduce that uses the counting function (⁄x.⁄y.x ‘+‘ 1) and the neutral
element 0, as seen in listing 4.1.9. This creates an equation that starts with 0
and adds 1 for each element in the array, resulting in the size of the array. One
flaw of this approach is that the counting function is not associative and thus only
works if the reduce applies the function left-associatively. This implementation relies
on the complexity of reduce for both the work and the span, making the work
O(Wreduce(n,1)) and span O(Sreduce(n,1)).

1 let size = \arr. reduce(\x. \y. x �+� 1) 0 arr

2 in ...

Listing 4.1.9: Size implemented with reduce.

The second way size can be defined is by using map, concat, and recursion. The
intuition is to create an array with the same length as the input array where each
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value is replaced by some non-zero value. To accommodate the lack of size, each
element is mapped to some non-zero (¬ 0) value, and a zero is concatenated to the
end. Then the size can be found by recursively traversing the array until 0 is found.
This can be seen in listing 4.1.10. This approach is similar to the intuition of string
termination in C where the null character (�\0�) is used to tell the program where
a string terminates. This implementation creates a chain of dependencies where the
map is sequentially run before the concat and loop which results in a work complexity
of O(Wmap(n,1)) +O(Wconcat(n)) +O(n), and equally for span.

1 let size = \arr.

2 let arr� = map (\x.¬ 0) 0 arr in
3 if (arr� = []) then 0
4 else let arr�� = concat arr� [0] in
5 fix (\counter . \i.

6 if arr��[i] = 0 then i

7 else (counter (i�+�1))

8 ) 0
9 in ...

Listing 4.1.10: Size implemented using map, concat, and recursion.

Since, in Futhark, size parameters are an essential part of the run-time, the
cost of size is O(1) [31]. However, these size parameters are not part of ButF which
makes size more complicated. In the translation of ButF (Efi) the size of an array
is defined in the construct similar to Futhark’s run-time in the form of the channel
len. This illustrates how the size of an array can be kept alongside the array which
keeps the work and span of size at O(1).

4.1.6 Iota

Iota is besides concat one of two ways to define variable length arrays. This is useful
in a variety of scenarios when building other primitives, for example, size can help
create an array with the same length as the input array, where the array’s values
correspond to their indices, i.e. [0,1,2, . . . ,n ≠ 1].

Iota can be built using concat, by iterating with recursion and concatenating the
array elements one by one. This implementation can be seen in listing 4.1.11. Note
that loop is equivalent to the recursive definition, but is used for readability.

This implementation using loop has a work of O(n · Wconcat(n)) and span of
O(n · Sconcat(n)) since loop is sequential.
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1 let iota = \n. (

2 loop i = [] for x < n do concat i [x])

3 ) in ...

Listing 4.1.11: Iota created from concat and loop.

1 let iota = fix (\f. \n.

2 if (n = 0) then
3 []

4 else
5 let h = / n 2
6 in let h_iota = iota h

7 in let res = concat h_iota (map (+ h) h_iota)

8 in if (= n (+ h h)) then
9 res

10 else
11 concat res [n-1]

12 ) in ...

Listing 4.1.12: Iota using potentially parallel operators concat and map.

Alternatively, iota can be implemented by calling iota recursively on n/2 instead
of n ≠ 1. This can be seen in listing 4.1.12, where iota is called recursively on half
the input. We observe that if n is even, then the second half of the scan is the
first half with n/2 added to each element. This observation can be used to reduce
the work, by only calling iota once recursively. If n is odd, then the result (res) is
[0,1,2, . . . ,n ≠ 2], while we would expect it to end at n ≠ 1. In this case, n ≠ 1 is
appended to the end. The complexity of this iota implementation can be expressed
recursively as seen in equation (4.4).

Wiota(n) = Wiota(n/2) +O(Wconcat(n) +Wmap(n,1))
Siota(n) = Siota(n/2) +O(Sconcat(n) +Smap(n,1))

(4.4)

Lastly, having iota as a primitive is assumed to have the same asymptotic com-
plexity as Futhark with a work of O(n) and a span of O(1) [32]. With the recursive
implementation, the minimum span is log2(n) in the best case, where concat and
map have constant spans. This makes iota as a primitive more desirable as it is more
e�ective than the derived implementations.
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4.1.7 Concat

Concat is the second way to create arrays of arbitrary length, in that it creates an
array by combining two other arrays.

It can be constructed by using iota, size, and map by creating a new array via iota

of the combined length of the two arrays and mapping over this array. The mapping
function then selects elements of either input array based on the index (from iota).
The implementation of this can be seen in listing 4.1.13.

This requires that the arrays are applied to the function, which is then propagated
to each element of the resulting array, resulting in a lot of duplicate arrays in the run-
time. The asymptotic complexity of this concat depends on map, size, and iota. Thus
the work is O(Wmap(n,1) + Wiota(n) + Wsize(n)) and the span is O(Smap(n,1) +
Siota(n) +Ssize(n)).

1 let concat = (\arr. \brr.

2 let s = size arr

3 in let choose = (\i. if (i �<=� s)

4 then arr[i]

5 else brr[+ s i])

6 in map choose (iota (+ s (size brr)))

7 ) in ...

Listing 4.1.13: An implementation of array concatenation functionality using map, size, and iota.

If concat is chosen as a primitive the asymptotic work and span can be assumed
to be the same as concat in Futhark, in which case the work is O(n) and the span
is O(1) [32].

4.1.8 Selecting Primitives

When selecting the set of primitives, it is necessary that all derived primitives which
are not in the set can be derived from the set of primitives. To prove the correctness
of the translation, the set of primitive candidates is chosen based on the ease of proof.
However, these implementations should also ideally have the exact same asymptotic
complexity as the primitive.

To sum up the complexities and provide an overview table 4.1 is used to help
select the set of primitives.
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Implementations

M
a
p

scan
†:

S: O(Sscan(n,Sf ))
W: O(Wscan(n,Wf ))

size, concat:
S: 2 · Smap(n,Sf ) +O(Ssize(n) +Sconcat(n))
W: 2·Wmap(n,Wf )+O(Wsize(n)+Wconcat(n))

Primitive:
S: O(Sf )
W: O(n · Wf )

R
e
d
u
c
e size:

S: O(Ssize(n) +n · Sf )
W: O(Wsize(n)+n·Wf )

scan, size:
S: O(Sscan(n,Sf ) +Ssize(n))
W: O(Wscan(n,Wf ) +Wsize(n))

Primitive:
S: O(log2(n)+Sf )
W: O(n · Wf )

S
c
a
n

map, size, iota :
S: Sscan(n/2,Sf ) +O(Siota(n) +Smap(n,Sf ) +Ssize(n))
W: Wscan(n/2,Wf ) +O(Wiota(n) +Wmap(n,Wf ) +Wsize(n))

Primitive:
S: O(log2(n)+Sf )
W: O(n · Wf )

S
iz

e

reduce
†:

S: O(Sreduce(n,1))
W: O(Wreduce(n,1))

scan, concat:
S: O(Sscan(n,1) +Sconcat(n) +n)
W: O(Wscan(n,1) +Wconcat(n) +n)

Primitive:
S: O(1)
W: O(1)

I
o
t
a

concat:
S: O(n · Sconcat(n))
W: O(n · Wconcat(n))

map, concat:
S: Siota(n/2) +O(Sconcat(n) +Smap(n,1))
W: Wiota(n/2)+O(Wconcat(n)+Wmap(n,1))

Primitive:
S: O(1)
W: O(n)

C
o
n
c
a
t map, size, iota:

S: O(Smap(n,1) +Siota(n) +Ssize(n))
W: O(Wmap(n,1) +Wiota(n) +Wsize(n))

Primitive:
S: O(1)
W: O(n)

Table 4.1: A comparison table for an overview of the di�erent work and span costs of the primitive
candidates. †The call to the SOAC is with an illegal operator, ie. an operator that is not associative.

Size and Concat

A simple primitive set, that would allow us to construct all primitives is size and
concat. The inferences necessary to demonstrate this can be seen in figure 4.1. The
figure shows each step when deriving the full set of operators, starting at size and
concat. The underline is used to denote the operator in question, for example in the
first line where only size is used to derive reduce.

{size,concat} æ {reduce,size,concat}

{reduce,size,concat} æ {map,reduce,size,concat}

{map,reduce,size,concat} æ {map,reduce,size, iota,concat}

{map,reduce,size, iota,concat} æ {map,reduce,scan,size, iota,concat}

Figure 4.1: Deriving all operators with just size and concat as primitive.

There is, however, one problem with this set of primitives which is the lack
of concurrency in the primitives. As neither the concat nor size implementation
has concurrency, the implementations using only these primitives cannot contain
any concurrency. The span of the derived SOACs would likely be worse than that
of Futhark. As such, any set of primitives that do not contain any of the three
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concurrent primitives (map, reduce, and scan) is not a good candidate for a primitive
set.

Reduce and Concat

Another small and valid set of primitives is reduce and concat. With these as prim-
itives, there is a form of concurrency due to the reduce.

{reduce,concat} æ {reduce,size,concat}

{reduce,size,concat} æ {map,reduce,size,concat}

{map,reduce,size,concat} æ {map,reduce,size, iota,concat}

{map,reduce,size, iota,concat} æ {map,reduce,scan,size, iota,concat}

Figure 4.2: The inference of all functions based on concat and reduce as primitives.

Figure 4.2 shows the inference focused on the parallel iota implementation. To
infer scan with this primitive set, map and iota are needed since its the only available
implementation of scan, This means scan can not be used to make map. It also follows
that size is needed before map and therefore before scan as well. This then again
means there is only one possible implementation for size too. However, there is a
choice for iota with either a linear implementation with concat or a possibly sub-
linear implementation whose complexity relies on the concat and map. The more
concurrent implementation using both concat and map has a better span in this case
due to the O(1) span of concat, which propagates to size and afterward to map.
There is, however, a significant work overhead. With this, the complexities of the
inferred implementations then become as seen in equation (4.5).

Ssize(n) = O(log2(n)) Wsize(n)) = O(n)

Smap(n) = O(log2(n) +Sf ) Wmap(n) = O(n · log2(n) +n · Wf )

Siota(n) = O(log2(n)) Wiota(n) = O(n · log2(n))

Sscan(n) = O(log2(n) +Sf ) Wscan(n) = O(n · log2(n) +n · Wf )

(4.5)

This shows reasonable complexities for the functions, however, map having a
logarithmic span is not optimal compared to Futhark. Furthermore, reduce is
assumed to not be the easiest operation to prove. Additionally both size and iota

su�er from implementations with sub-optimal performance compared to Futhark.

Scan, Size, and Iota

To avoid the higher work and span of size and iota, they can instead be chosen
as primitives. This would increase the number of primitives, however, due to the
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assumed simplicity of size and iota this is deemed an acceptable increase in proof
di�culty. Using these together with scan, it is possible to infer the rest of the
primitives, which can be seen in figure 4.4.

{scan,size, iota} æ {map,scan,size, iota}

{map,scan,size, iota} æ {map,reduce,scan,size, iota}

{map,reduce,scan,size, iota} æ {map,reduce,scan,size, iota,concat}

Figure 4.3: Deriving operators from primitives scan, size, and iota.

One problem with this is that it relies on {scan} æ {map} which restricts the
scan to being left-associative. This comes with a cost to the concurrency since this
requires all the function applications to happen sequentially.

We cannot implement map with concat and size, since map is required to imple-
ment concat. This is a problem, due to it removing the parallelism from scan, and
in extension the primitive set. Thus scan is replaced with map, which can be used
to e�ciently derive scan.

Map, Size, and Iota

With map, size, and iota all other primitives can be constructed as seen in figure 4.4.

{map,size, iota} æ {map,size, iota,concat}

{map,size, iota,concat} æ {map,scan,size, iota,concat}

{map,scan,size, iota,concat} æ {map,reduce,scan,size, iota,concat}

Figure 4.4: Deriving operators from primitives map, size, and iota. Note how this is similar to
figure 4.3, but scan is derived from map instead of the reverse.

We can now show how the asymptotic work and span complexities of the derived
concat, scan, and reduce compare to Futhark. Equation (4.6) shows the work and
span of concat as a derived operator, assuming that size, map, and iota inherit the
complexities of Futhark.

Sconcat(n) = O(1) +O(1) +O(1) = O(1)
Wconcat(n) = O(n · 1) +O(n) +O(1) = O(n)

(4.6)

The complexity of the derived scan operator is more complicated in that it is
defined recursively. In this case, we utilize the master theorem, which can be used to
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find asymptotic bounds of a large collection of recursive functions [33]. It assumes
that the function in question is constant for all su�ciently small inputs. We know
that the scan in equation (4.3) has constant work and span in the base case where
the input array has a length of less than two.

Sscan(n,Sf ) = Sscan(n/2,Sf ) +O(1) +O(Sf ) +O(1)
= Sscan(n/2,Sf ) +O(1)
= O(log2 n) (by master theorem)

Wscan(n,Wf ) = Wscan(n/2,Wf ) +O(n) +O(n · Wf ) +O(1)
Wscan(n,Wf ) = Wscan(n/2,Wf ) +O(n · Wf )

Assuming that Sf does not depend on n, the complexity of scan is rewritten to
the recursive call and O(1). Sscan(n,Sf ) is then on the form T (n) = a·T (n/b)+f(n)
where a = 1, b = 2, and f(n) = O(1). In that f(n) = ⌦(1), it must also hold that
f(n) = ⇥(nlogba) = ⇥(1), and thus, by the master theorem, T (n) = ⇥(log2 n).

Applying the master theorem on the work of scan requires a lower bound on the
work of scan, size, and iota, which is unknown. However, we believe that the work is
O(n·Wf +n). This can be shown inductively, with explicit constants a,b > 0 instead
of O

Wscan(n,Wf ) =

I
a n < 2

Wscan(Ân/2Ê,Wf ) + b · n · Wf n Ø 2 (4.7)

We must then show that Wscan(n,Wf ) Æ c · (n+Wf · n) for some c > 0. In the case
where n = 1, we get a Æ c(1 + Wf ), which holds when a Æ c assuming Wf Ø 0. In
the case where n > 1 the induction hypothesis can be substituted.

Wscan(n/2,Wf ) + b · n+Sf · n Æ

subst

c · (Ân/2Ê+Wf · Ân/2Ê)+b · n · Wf

Æ c · (n/2+Wf · n/2) + b · n · Wf

=
1
2 · c · n+

1
2 · c · Wf · n+ b · n · Wf

Æ
1
2 · c · n+ c · Wf · n (c Ø 2 · b)

Æ c(n+Wf · n)

Lastly, reduce can be constructed with scan and size. This results in the work
and span shown in equation (4.8).

Sreduce(n,Sf ) = O(log2 n+Sf ) +O(1) = O(log2 n+Sf )

Wreduce(n,Wf ) = O(n+n · Wf ) +O(1) = O(n)
(4.8)
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Notice how the upper bound on asymptotic work and span of the derived oper-
ators shown are matching the ones achieved by Futhark. Size, iota, and map are,
therefore, the three operators chosen as primitives, while the others are derived.

4.2 Administrative Reductions

When translating a ButF expression several channels are introduced to transmit
values in the translated program. Due to the di�erences between the languages, a
single reduction in ButF can be matched by one or more reductions in the trans-
lated process. Some of these reductions are only necessary to move values to the
right processes and do not correspond to any reduction in ButF. These reductions
are considered administrative reductions. To di�erentiate between these, a new re-
duction rule is created. This can be seen in figure 4.5, and it allows for a distinction
between administrative ( ¶

≠æ) and important reductions ( •
≠æ). The set of administra-

tive reductions is defined as the complement set of the important reductions ({•}).
In the case where it can be either, s

≠æ is used where s œ {¶,•}.
The additional syntax •A is introduced to explicitly annotate an action as im-

portant. For example when writing •aÈ5Í.P , sending on a is done as an important
reduction. Figure 4.5 defines the Imp reduction allowing important reductions on
such processes.

Adm A æ A
Õ

A
¶
≠æ A

Õ
Imp A

¶
≠æ A

Õ

•A
•
≠æ A

Õ

Figure 4.5: Labeled semantics to define important ( •
≠æ) and administrative reductions ( ¶

≠æ) in Efi.

The important annotations are added in the translation such that they match
the reductions in ButF. This can be seen in figure 4.6. With this notation, some of
the translations change slightly. Note that not all translations are annotated, as not
all translations correspond to a reduction in ButF. Application has an annotation
placed when sending on the function channel (f), as this corresponds to a function
application in ButF.

Let for values, has an annotation placed when receiving a value, which is used to
substitute the variable, and similarly let for tuples has an annotation when extracting
and substituting the values from the tuple. Both of these correspond to the reduction
on let in ButF. Indexing is annotated on the receiving of the value. If is annotated
when checking the condition, as this is the same as the if reduction in ButF. Finally,
map has an annotation where it sends to the function channel, which is necessary
since the translation of map does not make use of the normal application rule.
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~let x = e1 in e2�o
def
= ‹o1.(~e1�o1 | •o1(x).~e2�o) Let-Val

~let (x0, . . . ,xn) = e1 in e2�o
def
= ‹o1.(~e1�o1 | o1(h). • h · h(x0, . . . ,xn).~e2�o) Let-Tup

~if e1 then e2 else e3�o
def
= ‹o1.(~e1�o1 | o1(v). • [v , 0] ~e2�o,~e3�o) If

~e1 e2�o
def
= ‹o1.‹o2.(~e1�o1 | ~e2�o2 | o1(f).o2(x). • fÈx,oÍ) Application

~e1[e2]�o
def
=

‹o1.‹o2.(~e1�o1 | ~e2�o2

| o1(h).o2(i). [i Ø 0] • h · i(v).oÈvÍ,0)

D

Indexing

Map(input,f ,out) def
=

!input(index,value).‹r.(•fÈvalue,rÍ |

r(valueÕ).outÈindex,valueÕ
Í)

Figure 4.6: The annotated translations.

The distinction between important and administrative reductions is used to create
a new weak administrative bisimilarity relation. Here, a single important reduction
matches one reduction in ButF, and vice versa, whilst allowing arbitrary many
administrative reductions. Here, we introduce the arrows •

=∆= ¶
≠æ

ú •
≠æ

¶
≠æ

úand ¶
=∆= ¶

≠æ
ú.

Notice how •
=∆ requires at least one important reduction while ¶

=∆ allows zero or more
administrative reductions.

Definition 4.2.1 (Weak Administrative Bisimulation) Let R be a binary relation be-
tween processes, such that R is symmetric. Then R is a weak administrative bisim-
ulation

1. if P
•
≠æ P

Õ then there exists a Q
Õ such that Q

•
=∆ Q

Õ and (P Õ,QÕ) œ R, and

2. if P
¶
≠æ P

Õ then Q
¶
=∆ Q

Õ and (P Õ,QÕ) œ R.

We relate two processes P and Q, i.e. P ¥a Q if there exists a weak administrative
bisimulation R such that (P ,Q) œ R.

Compared to the weak bisimulation defined in section 2.3.3, the administrative
weak bisimulation is able to distinguish between processes. For example, a process
that can take an important reduction, would not be weak administrative bisimilar
with the 0 process. This makes it more useful since it allows for a more meaningful
relation between processes. However, it does not distinguish between the outputs of
the processes, such as aÈ5Í and aÈ6Í. Since a translation should always produce the
same result, a stricter relation is needed
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4.3 Weak Barbed Bisimulation

To create a stricter relation, barbs are combined with the weak administrative bisim-
ulation. The definition of this relation can be seen in definition 4.3.1.

Definition 4.3.1 (Weak Administrative Barbed Bisimulation) Let R be a binary re-
lation between processes such that R is symmetric. Then R is a weak administrative
barbed bisimulation if for all pairs (P ,Q) œ R the following holds

1. if P
•
≠æ P

Õ then there exists a Q
Õ such that Q

•
=∆ Q

Õ and (P Õ,QÕ) œ R,

2. if P
¶
≠æ P

Õ then Q
¶
=∆ Q

Õ and (P Õ,QÕ) œ R,

3. for all contexts C, (C[P ],C[Q]) œ R,

4. and for all prefixes –, if P ¿– then Q
¶
=∆¿–.

We relate two processes P and Q, i.e. P ¥̇a Q if there exists a weak administrative
barbed bisimulation R such that (P ,Q) œ R.

The following lemmas show some properties of ¥̇a, such as the behavior of the 0
process. While not directly related to ¥̇a, lemma WABB 1 describes how contexts
can reduce, which is useful in following lemmas.

Lemma WABB 1 For any P and C, if Q exists such that C[P ] s
≠æ Q, then one of the

following holds:

1. C reduces alone, thus Q = C
Õ[P ] with context C

Õ such that C[0] s
≠æ C

Õ[0],

2. P reduces alone, thus Q = C[P Õ] with P
s
≠æ P

Õ, and

3. C and P interact, thus Q = C
Õ[P Õ] for P

Õ and C
Õ such that O exists where

O | P
s
≠æ O

Õ
| P

Õ, C[P ] s
≠æ C

Õ[P Õ], and C[P ] © ‹ą.(O | P ).

Proof Let us consider two main possibilities; P appears in C[P ] unguarded or
guarded. If P is guarded, it cannot communicate with C nor take any reductions,
meaning C can only reduce alone, i.e. the first case.

Otherwise, P is unguarded in C[P ], which can only happen if P is behind a
combination of !, ‹a, or Q | in C. Using structural congruence, we can rearrange
these terms as follows for some other process O.

C[P ] © ‹ą.(O | P ) or C[P ] © !‹ą.(O | P )
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Note that O might contain P itself, or even !P . In the latter case that C[P ] =
!‹ą.(O | P ), it can still be rearranged to the former case.

!‹ą.(O | P ) ©

!‹ą.(O | P ) | ‹b̨.(O | P ) ©

‹b̨.(!‹ą.(O | P ) | O | P ) =

‹b̨.(OÕ
| P )

In that C[P ] and ‹ą.(O | P ) can take the same reductions, we know that Q is one
of the following three cases.

• Case Q © ‹ą.(O | P
Õ), P

s
≠æ P

Õ In this case, the reduction was internal to P ,
and therefore Q = C[P Õ], thus falling into the second lemma case.

• Case Q © ‹ą.(OÕ
| P ), O

s
≠æ O

Õ In this case, the reduction is internal to O,
and Q = C

Õ[P ] for some new context C
Õ, such that C[P ] s

≠æ C
Õ[P ]. We know

that P could not have influenced the reductions to C
Õ[P ], and we can therefore

state C[0] s
≠æ C

Õ[0]. This, therefore, falls into the first lemma case.

• Case Q © ‹ą.(OÕ
| P

Õ), O | P
s
≠æ O

Õ
| P

Õ Here, O and P both contributed to
the reduction, which could only have happened with either the Comm or the
Broad rules. Therefore, there exists a name or composite name (b) such
that P ¿b ·Q ¿b or vice versa. We can write Q using a new context C

Õ, i.e.
Q = C

Õ[P Õ], thus letting this case fall into the third lemma case. ⇤

Lemma WABB 2 states that if a process is bisimilar to 0 then this process will
always be similar to 0, and can not be observed on any prefix –. This is useful when
attempting to remove “garbage” processes, which are bisimilar with 0.

Lemma WABB 2 If P ¥̇a 0, then for any P
Õ where P

s
=∆ú

P
Õ it holds that ’–.P Õ 8 –

and P
Õ
¥̇a 0.

Proof We use æ
n to denote exactly n reductions by either •

≠æ or ¶
≠æ, i.e. æ

n=
s1
≠æ

s2
≠æ

. . .
sn
≠æ for s1, . . . ,sn œ {•,¶}. We then show by induction that for any n Ø 0 if P æ

n
P

Õ

then ’–.P Õ 8 – and P
Õ
¥̇a 0.

Case n = 0 Here, P
Õ = P and thus we must show that P 8 – for any prefix.

Let us assume the contradictory case where there exists an – such that P ¿–. We
know that there exists a weak administrative barbed bisimulation (R) such that
(P ,0) œ R, thus from the fourth requirement, because P ¿– then 0 ¶

=∆¿–. However,
this is impossible in that 0 ”æ and 0 8 –.

Case n > 0 From the induction hypothesis we know if P æ
n≠1

P
Õ then ’–.P Õ 8 –

and P
Õ
¥̇a0. We assume P æ

n≠1
P

Õ because otherwise the above holds trivially. Then
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we must show that if P
Õ s
≠æ P

ÕÕ then ’–.P ÕÕ 8 – and P
ÕÕ

¥̇a 0. In that P
Õ
¥̇a 0 we know

that an R exists such that (P Õ,0) œ R and R is an administrative barbed bisimulation.
Since 0 ”

•
≠æ, then P

Õ
”
•
≠æ however we know that P

Õ ¶
≠æ P

ÕÕ, in that P
ÕÕ exists. Therefore,

because (RÕ,0) œ R, then (P ÕÕ,0) œ R, and thus P
ÕÕ

¥̇a 0 and ’–.P 8 –. ⇤

Lemma WABB 3 states how “garbage processes” can not a�ect other processes,
and can thus be removed. This would thus allow for a basic garbage collection, by
removing all the unreachable processes.

Lemma WABB 3 If P ¥̇a 0, then for all Q it holds P | Q ¥̇a Q.

Proof Let R be the relation R = {(C[P | Q],C[Q]) | P ,Q œ Ps,C œ Cs,P ¥̇a 0}. It
is then demonstrated that R

s is a weak administrative barbed bisimulation.
Let us consider any pair (C[P | Q],C[Q]) œ R

s against the requirement of weak
administrative barbed bisimulation. By the first two requirements if C[P | Q] s

≠æ O

then C[Q] should follow with s
=∆. By lemma WABB 1 O is one of either three cases.

• C
Õ reduces alone, i.e. O = C

Õ[P | Q]. Here C[Q] can follow by s
≠æ.

• P | Q reduces alone, i.e. O = C[S], for P | Q
s
≠æ S. Because P can not observed

on any channels (lemma WABB 2), either P or Q reduced alone. Thus if
S = P | Q

Õ where Q
s
≠æ Q

Õ then C[Q] s
≠æ C[QÕ], and (C[P | Q

Õ],C[QÕ]) œ R.
Else if S = P

Õ
| Q where P

s
≠æ P

Õ, and because P ¥̇a 0, s must be ¶. Then C[Q]
can follow with no reductions. Because, by lemma WABB 2, P

Õ
¥̇a 0 we know

that (C[P Õ
| Q],C[Q]) œ R.

• P | Q and C both contribute to the reduction, i.e. there must exist an S such
that S | P | Q

s
≠æ S

Õ
| P

Õ
| Q

Õ, S is a sub-process of C, and there exists C
Õ

which has S
Õ as a sub-process. We know that P can only reduce by itself, and

thus P
Õ = P and S | Q

s
≠æ S

Õ
| Q

Õ. Then C[Q] must be able to follow with
C[Q] s

≠æ C
Õ[Q].

The third requirement automatically holds by our selection of R. The fourth require-
ment requires that if C[P | Q] ¿– then Q

¶
=∆¿–. From lemma WABB 2 we know that

P cannot be observed with any prefix, thus if we can observe P | Q with a prefix –

it must be because we can observe Q with –.
Then we consider pairs (C[Q],C[P | Q]) œ R

s. Again we enumerate the cases of
lemma WABB 1.

• When C reduces alone, we can follow the same argumentation as before.

• Q reduces alone, and thus O = C[QÕ] where Q
s
≠æ Q

Õ. Here, C[P | Q] can follow
to C[P | Q

Õ].
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• C and Q both contribute to the reduction, and we can then follow the same
argumentation as before.

For the fourth requirement, we require that if C[Q] ¿– then C[P | Q] ¿–, which
holds. Having considered every pair in R

s, we know that the lemma holds. ⇤

Lemma WABB 4 states that ¥̇a is transitive. This is a common property to show
with weak bisimulations, as this demonstrates that it is an equivalence relation.

Lemma WABB 4 For any three processes (P , Q, and S), if P ¥̇a Q and Q ¥̇a S then
P ¥̇a S.

Proof We know that there exist two weak administrative barbed bisimulations (R1
and R2), such that (P ,Q) œ R1 and (Q,S) œ R2. Then we can construct a witness
for P ¥̇a S as R = {(C[P ],C[S]) | C œ C, (P ,Q1) œ R1, (Q2,S) œ R2,Q1 = Q2}.

We must then show that R
s is a weak administrative barbed bisimulation. First,

we consider every pair (P ,S) œ R
s. We know that there exists Q such that (P ,Q) œ

R1 and (Q,S) œ R2. If P
•
≠æ P

Õ then Q
¶
=∆ Q

Õ •
≠æ

¶
=∆ Q

ÕÕ and (P Õ,QÕÕ) œ R1. We know
that Q

¶
≠æ Q1 . . .Qn

¶
≠æ Q

Õ, and each Qi has a corresponding Si where (Qi,Si) œ R2.
Therefore, S

¶
=∆ S

Õ where (QÕ,SÕ) œ R2. Because Q
Õ •
≠æ Q

ÕÕ, S
Õ can follow with •

=∆ S
ÕÕ

where (QÕÕ,SÕÕ) œ R2, and therefore (P Õ,SÕÕ) œ R.
If P ¿ – then S should follow with S

¶
=∆¿–. We do know that Q

¶
=∆ Q

Õ
¿–,

and then per the same argument as above S
¶
=∆ S

Õ where (QÕ,SÕ) œ R2. Then
S

Õ ¶
=∆ S

ÕÕ
¿–, and thus S

¶
=∆ S

Õ ¶
=∆¿–. The same can be shown for pairs (S,P ) œ R

s.
Lastly, for pairs (C[P ],C[S]) and (C[S],C[P ]) in R

s, we know that Q exists
such that (C[P ],C[Q]) œ R1 and (C[Q],C[S]) œ R2. Then we can follow the same
argument as above. ⇤

Lemma WABB 5 For any two process processes P and Q, if S exists such that P ¥̇aS

and S
s
≠æ Q then P

s
=∆ ¥̇aQ

Proof Because P ¥̇a S then there exists weak administrative barbed bisimulation
R such that (P ,S) œ R. Then per weak administrative barbed bisimulation, because
S

s
≠æ Q then P

s
=∆ P

Õ and (P Õ,Q) œ R. Then we know that P
Õ
¥̇a Q, and P

s
=∆ ¥̇aQ.⇤

Lemma WABB 6 shows that if P reaches some process Q through administrative
reductions, then P and Q are bisimilar.

Lemma WABB 6 For any P ,Q then P ¥̇a Q if P
¶
=∆ Q and for every P

ÕÕ where
P

s
≠æ P

ÕÕ it holds that either

1. P
ÕÕ ¶
=∆ Q, and P

ÕÕ is closed, i.e. ’–.P ÕÕ 8 –, or
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2. Q
s
=∆ P

ÕÕ.

Proof Here, we propose the relation R = {(C[P Õ],C[Q]) | P
¶
=∆ P

Õ
· Q

¶
=∆/ P

Õ,C œ

Cs} fi {(C[QÕ],C[QÕ]) | Q
•
=∆ú

Q
Õ,C œ Cs}, and show that R

s is a weak administrative
barbed bisimulation.

First consider pairs (P Õ,Q), (Q,P Õ) œ R
s where P

Õ is some process where P
¶
=∆

P
Õ. If P

Õ ¶
≠æ P

ÕÕ, then P
ÕÕ ¶
=∆ Q, in which case Q can follow with zero reductions

and (P ÕÕ,Q) œ R. If P
Õ •
≠æ P

ÕÕ then per definition Q can follow with Q
•
=∆ P

ÕÕ and
(P ÕÕ,P ÕÕ) œ R. We know that P

Õ ¶
=∆ Q and therefore if Q

s
≠æ Q

Õ then P
Õ ¶
=∆ s

≠æ Q
Õ and

(QÕ,QÕ) œ R. Also if for some –, Q ¿– we know that P
Õ ¶
=∆ Q ¿–.

Secondly we consider pairs (C[P Õ],C[Q]) œ R
s where P

¶
=∆ P

Õ. If C[P Õ] s
≠æ O

then because P
Õ is closed, O is either C

Õ[P Õ] for C[0] s
≠æ C

Õ[0] or C[P ÕÕ] for P
Õ s
≠æ P

ÕÕ.
In the former case C[Q] can follow with s

≠æ and (C Õ[P Õ],C Õ[Q]) œ R, and in the
latter case the previous argument is reused. We use the same argument for pairs
(C[Q],C[P Õ]) œ R

s noting that P
¶
=∆ Q.

Pairs (C[QÕ],C[QÕ]) œ R hold trivially. And thus because (P ,Q) œ R
s and R

s is
a weak administrative barbed bisimulation, the lemma holds. ⇤

4.4 Proving Correctness

With the new weak administrative barbed bisimulation and the smaller set of prim-
itives in ButF, the next step is to prove the correctness of the translation by the
notion of operational correspondence.

4.4.1 Relaxing Operational Correspondence

The operational correspondence of section 3.1 defines correctness through the idea
that the translation should match reductions in ButF. However, with the current
translation ~�o this is too strong, mainly due to two reasons.

1. Some translated expressions, such as arrays, can take administrative reduction
steps after being translated, thus overshooting the goal ~eÕ�o that the opera-
tional correspondence requires.

2. The translation introduces new replicated processes when creating arrays or
functions, which never disappear. Such “leftovers” are not present in the goal
(~eÕ�o) and therefore make it impossible to achieve structural congruence with
the goal.
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The second reason can be addressed by allowing the translation to get close to ~eÕ�o
through the notion of weak administrative barbed bisimulation.

To facilitate a more concise operational correspondence, it is defined as a non-
symmetric relation (R) between expressions and processes. This is inspired by the
work of Amadio, Thomsen, and Thomsen, Milner [17, 15]. We introduce the ?ok

relation, as the largest relation upholding the requirements for administrative op-
erational correspondence. Then a proof via co-induction can be used, by finding a
witness R which is a subset of ?ok [26].

Definition 4.4.1 (Administrative Operational Correspondence) Let R be a binary re-
lation between an expression and a process. Then R is an administrative operational
correspondence if ’(e,P ) œ R it holds that

1. if e æ e
Õ then there ÷P

Õ such that P
¶
=∆ •

≠æ ¥̇aP
Õ and (eÕ,P Õ) œ R, and

2. if P
¶
=∆ •

≠æ P
Õ then there ÷e

Õ,Q such that e æ e
Õ, Q ¥̇a P

Õ, and (eÕ,Q) œ R.

We denote e ?ok P if there exists an operational correspondence relation R such
that (e,P ) œ R.

4.4.2 Correctness of Translation

To prove the correctness of the translation, all the translations of the chosen primitive
language constructs are considered.

First, a set of lemmas are formed which are useful in regard to proving the
translation. Second, operational correspondence is proven to hold for all translations.
Third, rewrites are proven to not a�ect the operational correspondence. Lemma OK 1
and conjecture 1, combined, state that a translation of an expression sends on o if
and only if it is a value.

Lemma OK 1 If some expression e is a value then ÷P .~e�o
¶
=∆ P · P ¿o

Proof We assume that e is a value, as otherwise, the lemma holds trivially. We
introduce a notation D(e) for the depth of a value expression (e). If e is a number
or an abstraction, then D(e) = 0. However, if e is a tuple or array with elements e0
to em, then D(e) = maxiœ[0..m](D(ei)) + 1.

By induction on D(e) we show that the lemma holds for all e. In the base case
D(e) = 0, and thus e is either a number or abstraction. From the translation of
either number or abstraction, we know that ~e�o ¿o, upholding the lemma for e.

In the inductive case, where D(e) > 0, e must be either a tuple or array with
elements e0 to em. Here, the lemma holds for all e

Õ where D(eÕ) < D(e), and in
extension e0 to en. If e is a tuple, then we can take reductions such that ~e0�o0 to
~em�om all send on channels o0, . . . ,om. Then oÈhÍ is unguarded.

For array, after it has sent on channels o0 to om, it can then receive on done
because it has sent m+ 1 values. Then oÈhandleÍ is unguarded. ⇤
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Conjecture 1 If for some expression e, ÷P .~e�o
¶
=∆ P · P ¿o then e œ V or e œ V.

Is is assumed that this conjecture holds, as it relies on lemma OK 1. The conjecture
could be proven by iterating over all the translations, but this has been left out due
to time constraints.

Lemma OK 2 states that a replicated process that listens on a handle (a), can
be moved out of any context (C) given that a < fn(C)fi bn(C).

Lemma OK 2 Let a be a name and C be some context such that a < fn(C)fibn(C).
Also let P and Q be any process where fn(P )fl bn(C) = ?

Then ‹a.C[P | Q] ¥̇a ‹a.(P | C[Q]).

Proof We introduce the relation R:

R = {(K[‹a.C[P | Q],K[‹a.(P | C[Q])]) | K,C œ Cs,P ,Q œ Ps,
P = !a(. . . ).Pb ‚ P = !aÈ. . .Í.Pb, fn(P )fl bn(C) = ?,a < fn(C)fi bn(C)}

By showing that R
s is a weak administrative barbed bisimulation, we know that

‹a.C[P | Q] ¥̇a ‹a.(P | C[Q]).
Let us consider any pair (K[‹a.C[P | Q],K[‹a.(P | C[Q])]) œ R

s. If K[‹a.(P |

C[Q])] s
≠æ O, then there exists three cases for O by lemma WABB 1.

• If K reduces alone such that O = K
Õ[‹a.(P | C[Q])] then K[‹a.C[P | Q]] can

follow and (K Õ[‹a.C[P | Q]],K Õ[‹a.(P | C[Q])]) œ R.

• If ‹a.(P | C[Q]) reduce together with the context K, then there exists a process
S such that S | ‹a.(P | C[Q]) s

≠æ S
Õ
| ‹a.(P | Q

Õ). We know that P is preserved
in that it only communicates on a, which is restricted from S. Therefore we
know that S | ‹a.C[P | Q] s

≠æ.

• If ‹a.(P | C[Q]) reduces alone, then we can identify the following cases

– If C[Q] reduces according to lemma WABB 1, in which ‹a.C[P | Q] can
always follow.

– If Q is unguarded in C and P reduces together with Q over channel a,
i.e. P | C[Q] s

≠æ P | P
Õ
b | C[QÕ] , where P

Õ
b is a process created by P .

Through structural congruence, we can move P
Õ
b into C such that P

Õ
b |

C[Q] © C[P Õ
b | Q]. In that Q and in extension the hole in C is unguarded,

we know that C[P | Q] s
≠æ C[P | P

Õ
b | Q

Õ]. P
Õ
b | Q

Õ is a normal process and
thus (K[‹a.C[P | P

Õ
b | Q

Õ],K[‹a.(P | C[P Õ
b | Q

Õ])]) œ R.

Instead, if K[‹a.C[P | Q]] can be reduced, we can follow the same argument.
If the restriction on a was not in-place, then requirement four would be broken,

in that C[P | Q] might not be observable on either a or a. However, with the
restriction in-place, K[‹a.P | C[Q]] and K[‹a.C[P | Q]] cannot di�er in the channels
they expose. ⇤
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Conjecture 2 shows that substitution is preserved by the translation.

Conjecture 2 For e1 œ V and e2 œ B, then we have that

1. if e1 is a number (n) then ~e2�o {n/x} ¥̇a ~e2{xB n}�o,

2. or if e1 is an abstraction, tuple, or array then there exists a channel (h) and
‹h.(Q | ~e2�o {x/h}) ¥̇a ~e2{xB e1}�o. Here, Q is ~e1�o after sending h on o,
i.e. ~e1�o | o(x).P ¶

=∆ ¶
≠æ ‹h.(Q | P {h/x}).

Theorem 1 states that the translations of any rewritten expression are weak
administrative barbed bisimilar to the original. This ensures that the value sent on
o is correct.

Theorem 1 If e  e
Õ then ~e�o ¥̇a ~eÕ�o.

Proof To show that this holds, we consider every  reduction in the ButF seman-
tics.
Binary operation e = e1 ‘e2‘ e3 By the translation ~e1 ‘e2‘ e3� = ~e2e1e3� and thus
~e�o = ~eÕ�o and therefore they are also weak administrative barbed bisimilar.
Currying of cf e = cf Each cf (§, B, size, iota, map) has a matching abstraction
translation in Efi.
Binop and Unary Operator When e = §{x,y} or e =B {x}. Here, ~e�o is either
oÈx§yÍ or oÈB xÍ respectively. In that § and B behave identically in ButF and Efi,
~e�o and ~eÕ�o sends the same value on o.
Size e = size{v} The semantics only allows e  e

Õ if v = [v0, . . . ,vn≠1]. Then we
must show that ~e�o ¥̇a oÈnÍ, and thus we propose R = {(C[P ],C[oÈnÍ]) | P œ Ps |

C œ C,~e�o
¶
=∆ P} fi {(C[Z],C[0]) | C œ C,Z œ Ps,Z ¥̇a 0}, such that P

s is a witness.
For the pair (C[P ],C[oÈnÍ]) œ R

s, we must show that the weak administrative
barbed bisimulation requirements are satisfied. If C[P ] s

≠æ Q then by lemma WABB 1,
this can happen in three ways. If Q = C[P Õ] where P

s
≠æ P

Õ, then s = ¶ because
~e�o can never take important reductions, and therefore (C[P Õ],C[oÈnÍ]) œ R. Since
~e�o = ‹o1.(o1ÈxÍ | o1(h).h(_, len).oÈlenÍ) it can easily be observed, that no impor-
tant reduction can happen. If Q = C

Õ[P ] where C[0] s
≠æ C

Õ[0], then (C Õ[P ],C Õ[oÈnÍ]) œ

R. If C and P reduce together, then P ¿o, meaning C[P ] = C[‹h.S | oÈnÍ], where S

is the array leftovers of ~v�o, where ‹h.S ¥̇a 0. Then Q = C
Õ[‹h.S], and C[oÈnÍ] can

follow the same reduction and (C Õ[‹h.S],C Õ[0]) œ R.
We also know by the definition of ~e�o that ’P ,–.~e�o

¶
=∆ P · P ¿– =∆ – = o,

i.e. it is only ever observable on o. This matches oÈnÍ, and therefore if C[P ] ¿– then
C[oÈnÍ] ¿–.

Pairs (C[oÈnÍ],C[P ]) œ R
s, can be shown in a similar fashion.
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Map e = map{vf ,va} We assume that vf = ⁄x.eb, and va = [v0, . . . ,vn≠1], in that
e  e

Õ. First, we consider the translation of ~e�o as seen in equation (4.9).

~e�o =

‹o1.‹o2.(~vf�o1 | ~va�o2 |

‹hr.‹write.‹done.o1(fm).o2(h).h(read, len).(
Array(hr,write, len,done) |

‹x.(readÈxÍ | Map(x,fm,write)) |

done().oÈhrÍ

))

(4.9)

In ~e�o we can take the reductions inside ~va�o2 , then send on o1 and o2, and com-
municate on h and read. All these reductions are administrative, due to the vf and
va being values.

~e�o
¶
=∆ P =‹hr.‹write.‹done.‹ao. . . . .‹an≠1.(

S0 | · · · | Sn≠1 |

!fm(x,r).~eb�r |

Array(hr,write,n,done) |

‹x.(Map(x,fm,write) | xÈa0Í | · · · | xÈan≠1Í) |

done().oÈhrÍ

)

(4.10)

Here, Si denotes the support information for the handle ai after ~vi�oi sends on oi,
i.e. ~vi�oi | oi(x).W

¶
=∆ ‹ai.(Si | W {aj/x}). If vi is a number then ai is the same

number and Si = 0, and we ignore the restriction on ai. Otherwise, if vi is a tuple,
array, or function, then ai is a handle and Si is the supporting important for the
value. We know that ~e�o always reaches P through ¶

=∆, and that any intermediate
process between ~e�o and P is closed. Therefore, by lemma WABB 6 ~e�o ¥̇a P .
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We now consider the translation ~eÕ�o, where e = [vf v0, . . . ,vf vn≠1].

~eÕ�o = ‹handle.‹write.‹done.(Array(handle,write,n,done) |

O0 | · · · | On≠1 |

done().oÈhandleÍ

) where
Oi = ‹oi.(~vf vi�oi | oi(wi).writeÈi,wiÍ)

= ‹oi.(‹oa.‹ob.(
‹fm.(!fm(x,r).~eb�r | oaÈfmÍ) |

‹ai.(Si | obÈaiÍ) |

oa(f).ob(x). • fÈx,oiÍ

) | oi(wi).writeÈi,wiÍ)

¥̇a Q = ‹oi.(‹fm.‹ai.(
!fm(x,r).~eb�r | Si |

• fmÈai,oiÍ

) | oi(wi).writeÈi,wiÍ)

Here, each Oi can take administrative reductions by sending on oa, and ob, i.e.
Oi

¶
≠æ O

Ê
i

¶
≠æ O

Õ
i, where O

Ê
i is an intermediate process. In that both Oi and O

Ê
i

are closed (write is unrestricted but is guarded) we know by lemma WABB 6 that
Oi ¥̇a O

Õ
i. Also by lemma OK 2 it can be shown that !fm(x,r).~eb�r and Si can be

moved out along with its restriction on ai. Applying these two observations yields
equation (4.11) with processes O

ÕÕ
i which is O

Õ
i where Si, ‹ai, and !fm(.)~eb�r have

been moved out from O
ÕÕ
i .

~eÕ�o¥̇a ‹handle.‹write.‹done.‹fm.‹a0. . . . .‹an≠1.(
Array(handle,write,n,done) |

O
ÕÕ
0 | · · · | O

ÕÕ
n≠1 |

S0 | · · · | Sn≠1 |

!fm(x,r).~eb�r |

done().oÈhandleÍ

) where
O

ÕÕ
i = ‹oi.(•fmÈai,oiÍ | oi(wi).writeÈi,wiÍ)

(4.11)

Now we want to show that P in equation (4.10) is weak administrative barbed
bisimilar with equation (4.11). The only di�erence being that P has ‹x.(Map(x,fm,
write) . . . ) instead of O

ÕÕ
0 | . . . . Thus, we claim that these two are weak administrative

barbed bisimilar related, in equation (4.12).

O
ÕÕ
0 | · · · | O

ÕÕ
n≠1 ¥̇a ‹x.(Map(x,fm,write) | xÈa0Í | · · · | xÈan≠1Í) (4.12)
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We propose the witness R, and show that R
s is a weak administrative barbed bisim-

ulation. Here, O
2
i = Q

ÕÕ
i , O

3
i = oi(wi).writeÈi,wiÍ is O

2
i after sending on fm, and

lastly O
4
i = writeÈi,MÍ is O

3
i after sending on oi.

R = {(C[
Ÿ

iœI

O
ki
i |

Ÿ

jœJ

O
ÕÕ
i ], C[

Ÿ

iœI

O
ki
i | ‹x.(Map(x,fm,write) |

Ÿ

jœJ

xÈj,ajÍ)])

| C œ Cs,J fi I = {0, . . . ,n ≠ 1},ki œ {2,3,4}}

We consider pairs (C[X ],C[Y ]), (C[Y ],C[X ]) œ R
s, and X =

r
iœI O

3
i |

r
iœJ O

ÕÕ
i and

Y =
r

iœI O
3
i | ‹x.(Map(x,fm,write) |

r
jœJ xÈj,ajÍ), for the sets I fi J = {0, . . . ,n ≠

1}. Then if C[Y ] ¶
≠æ

ú
W for some W , we know that either some O

ki
i has commu-

nicated with C or Map communicated with a xÈu,auÍ. In the former case, C[X ]
can follow because X has O

ku
u as a sub-process. In the latter case, Map spawns

a process ‹r.(•fmÈau ,rÍ | r(valueÕ).writeÈj,valueÕ
Í, which is structurally congruent

with O
ÕÕ
u through alpha conversion. Then C[X ] can follow with zero reductions and

(C[X ],C[
r

iœI O
ki
i | O

ÕÕ
u | ‹x.(Map(. . . ) |

r
jœJ\u xÈj,ajÍ)]) œ R

s. The same argument
can be repeated for if C[X ] s

≠æ W for some other W .
Using equation (4.12) in ~eÕ�o, we can state that ~eÕ�o¥̇aP ¥̇a~e�o, and by lemma

WABB 4 ~e�o ¥̇a ~eÕ�o.
Iota e = size{v} This case can be shown similarly to size and map.
Propagation Considering the rewrites in figure A.7, where sub-expressions of index-
ing, application, array, tuple, let, and the if construct, are rewritten. Here, some
sub-expression ei in e is rewritten to e

Õ
i. By the translation of e, we know that ei is

unguarded. ei  e
Õ
i might itself happen by a propagation rule, but similarly to the

proof of lemma OK 1, this can be assumed to hold for ei. Therefore, ~ei�oi ¥̇a ~eÕ
i�oi

and ~e�o ¥̇a ~eÕ�o. ⇤

Lemma OK 3 Let R be the relation R = {(e,~e�o) | e œ B}, then R is an operational
correspondence.

Proof Here, we must show that for every pair (e,P ) œ R the rules for operational
correspondence are fulfilled. Due to the construction of R we know that P = ~e�o.
We only consider pairs where e æ e

Õ and where ~e�o contains •. By extension of this,
we are not considering values.
Array e = [e1, . . . ,en] Let us first consider that e æ e

Õ, and from the ButF se-
mantics, we know that there must exist an i such that ei æ e

Õ
i. Therefore we show

that ~e�o
¶
=∆ •

≠æ p such that P ¥̇a ~eÕ�o, in that (eÕ,~eÕ�o) œ r. Here, ~e�o contains
‹oi.(~ei�oi | oi(vi).writeÈi,viÍ). We assume that (ei,~ei�o) œ r, and therefore know
that ~ei�oi

¶
=∆ •

≠æ Q such that Q¥̇a~eÕ
i�oi . Let P be process ~e�o with the sub-process

~ei�oi replaced by Q. In that ~ei�oi is unguarded in ~e�o, we know that ~e�o
¶
=∆ •

≠æ P ,
and that P ¥̇a ~eÕ�o.
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Vice versa, we show that if ~e�o
¶
=∆ •

≠æ P , then P ¥̇a~eÕ�o where e æ e
Õ. Given that

the translation of array does not have •, the important reduction must happen inside
~ei�oi . The translation ensures that ~ei�oi can only be observed on oi, and therefore
the di�erent ~ei�oi cannot reduce together. We know there exists a j, such that the
important reduction happens in ~ej�oj , and because (ej ,~ej�o) œ R, we know that
~ej�oj

¶
=∆ •

≠æ Q for some Q and e
Õ
j where Q ¥̇a ~eÕ

j�oj and ej æ e
Õ
j . We can then select

e
Õ as e where ej has been replaced by e

Õ
j , and then P ¥̇a ~eÕ�o. This is because P

and ~eÕ�o only di�er by administrative reduction (for example in some other ~ei�oi

for i , j).
Tuple e = (e1, . . . ,en) Follows from the same argument as Array.

Indexing e = e1[e2] Operational correspondence requires that if e æ e
Õ then ~e�o

¶
=∆ •

≠æ P such that P ¥̇a ~eÕ�. The translation of indexing is defined as seen below.

~e1[e2]�= ‹o1.‹o2.(~e1�o1 | ~e2�o2 | o1(h).o2(i). [i Ø 0] • h · i(v).oÈvÍ,0)

There are three rules for indexing in ButF (E-Index, E-Index-1, and E-Index-2).
On the other hand, in Efi, there is the translation for the array (~e1�o1) and the
expression to define the desired index (~e2�o2). The E-Index-1/2 rules are used to
evaluate sub-expressions e1 and e2. Because (e1,~e1�0) œ R, if e1[e2] æ e

Õ
1[e2] then

~e1�o1
¶
=∆ •

≠æ ¥̇a~eÕ
1�o1 . Then because ~e1�o1 is unguarded in ~e�o, proof 10 holds.

~e�o
¶
=∆ •

≠æ ¥̇a‹o1.‹o2.(~eÕ
1�o1 | ~e2�o2 | o1(h).o2(i). [i Ø 0] • h · i(v).oÈvÍ,0) = ~eÕ�o

The same has to hold for e2. These have to be assumed to hold if all other cases are
operationally correspondent since e1 and e2 are in R.

The actual indexing operation (E-Index) is what is of relevance here. Here,
we know that if v1[v2] æ v3 then we have to have the corresponding operation
~v1[v2]�o

•
=∆ ¥̇a~v3�o. Because e æ e

Õ by E-Index, we know that e1 is an array
of length m and e2 is an integer less than m. With the translation ‹o1.‹o2.(~e1�o1 |

~e2�o2 | o1(h).o2(i). [i Ø 0] • h · i(v).oÈvÍ ) we know that they are ready to send on
their o after some administrative reductions channels by lemma OK 1. The transla-
tion thus proceeds to send the handle of the array via o1 and the value is sent on o2.
These are administrations reduction and are thus covered by the ¶

=∆ reductions.
This reduces the program down to ‹h.(Qh | •h · i(v).oÈvÍ), where Qh is the left-

overs from the array ~e1�o1 and i is the index from e2. Next is the composite name
together with •, which is defined as an important reduction, and is expressed by the
•
≠æ arrow: . . .

•
≠æ ‹o1.‹o2.(Qh | oÈv

Õ
Í). Lastly, the value is received internally as v

Õ and
returned along the out-channel (o). The still existing array Qh can now be garbage
collected by lemma WABB 3.

We must also show that if ~e�o
¶
=∆ •

≠æ P then we can find e
Õ such that P ¥̇a ~eÕ�o

and e æ e
Õ. The important reduction can either happen inside either ~e1�o1 or ~e2�o2
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(very similar to array), or when receiving from the composite name h · i. In the first
case, we can find a e

Õ much like in array and function application. In the latter case,
we know that e2 and i are integers that are greater or equal to zero and that some
process is listening on h · i. This is only the case if e2 is an array of size larger than
i. With this, we know that e æ by E-Index.
Application eB e1 e2 There are two cases for which e æ e

Õ. One case is when
sub-expressions e1 or e2 can reduce. In that ~e1�o1 and ~e2�o2 appear unguarded in
~e�o and since {(e1,~e1�o), (e2,~e2�o)} ™ R, we know that ~e�o can match ¶

=∆ •
≠æ ¥̇a.

The second case is when e1 ”æ · e2 ”æ. Here, E-Beta can take an important
reduction. These are matched by the translation of application.

‹o1.‹o2.(~e1�o1 | ~e2�o2 | o1(f).o2(x). • fÈx,oÍ)
¶
=∆

‹o1.‹o2.(‹f
Õ.o1Èf

Õ
Í.(!f Õ(x,r).~eb�r) | ‹v.(o2ÈvÍ | S) | o1(f).o2(x). • fÈx,oÍ)

¶
=∆

‹v.‹f
Õ.(!f Õ(x,r).~eb�r | •f ÕÈv,oÍ) | S

•
≠æ

‹f
Õ.(!f Õ(x,r).~eb�r) | ‹v.(Fo | S) ¥̇a

‹v.(Fo | S)

First, the expressions are evaluated to values such that they are ready to send on
the out-channels. This results in a guarded replicated function server for e1 and a
value ready to be sent for e2. Afterward, the administrative reductions, in the form
of communicating along the out-channels, are performed.

We know that e1 is an abstraction, ⁄x.eb, and therefore ~e1�o1 = ‹f .(!f(x,r)
.~eb�r | o1ÈfÍ). Also note that S is the process needed to maintain value v, i.e.
~e2�o2 ¥̇a ‹a.(S | o2ÈvÍ) such that S is only observable on a or a.

After the two sub-processes have sent their value on o, we can send on f
Õ which is

marked by a •. By sending (v,o) an instance of ~eb�r is unguarded, where the name
of the return channel is substituted with the name of the out-channel (o) together
with the value (v).

We let Fo denote the function body ~eb�r with return channel o and the value
from ~e2�o2 , i.e. Fo = ~eb�o {v/x}. Fo then corresponds to the translation of e

Õ =
eb{xB e1} by conjecture 2, and thus ~e�o

¶
=∆ •

≠æ ¥̇a~eÕ�o.
In the above, we assume that e1 = ⁄x.eb, but e1 can also be a tuple abstraction,

i.e. e1 = ⁄(x0, . . . ,xn).eb. Because e æ e
Õ, we know that e2 = (v1, . . . ,vn), and can

follow the same argument as above.
If ~e�o

¶
=∆ •

≠æ P then we must show that e
Õ exists such that P ¥̇a ~eÕ�o and e æ e

Õ.
Like with arrays, if •

≠æ happens entirely inside either ~e1�o1 or ~e2�o2 then, we can
select e

Õ = e
Õ
1 e2 or e

Õ = e1 e
Õ
2. If •

≠æ happens when sending on f , then both ~e1�o1 and
~e2�o2 can send on o after some administrative reductions. Therefore by conjecture 1
e1 and e2 must be values. Also ~e1�o1 must send the name of a function channel
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on o1 and therefore we know that e1 = ⁄x.eb or e1 = ⁄p.eb. Therefore we can take
E-Beta from e to e

Õ = eb{p := e2}.
Name binding eB let x = e1 in e2 If e æ e

Õ then ~e�o must follow with ¶
=∆ •

≠æ ¥̇a.
There are two rules for name binding in ButF, E-Let and E-Let-1. E-Let-1
is for reducing e1, and E-Let handles the case where e1 is a value. Let us first
consider when e1 is not a value. Assuming that e1 æ e

Õ
1, we use E-Let-1 and thus

e
Õ = let x = e

Õ
1 in e2, where e æ e

Õ. Because (e1,~e1�o) œ R and ~e1�o1 is unguarded
in ~e�o, ~e�o can follow with ¶

=∆ •
≠æ P such that P ¥̇a ~eÕ�o.

The other case is if e1 is a value, and there exists e
Õ where e æ e

Õ through E-Let.
~e�o should then follow with ¶

=∆ •
≠æ to P , such that P ¥̇a ~eÕ�o. The translation of e

can be seen below.
~e�o = ‹o1.(~e1�o1 | •o1(x).~e2�o)

We can then take any administrative reduction in ~e1�o followed by the important
reduction by sending on o1, yielding P . We can then use conjecture 2 to state
P ¥̇a ~e2{xB e1}�o. From E-Let we know that e

Õ = e2{xB e1} and have therefore
shown that ~e�o

¶
=∆ •

≠æ ¥̇a~eÕ�o. Like with application, the same argument can be
repeated if e = let p = e1 in e2.

If ~e�o
¶
=∆ •

≠æ P , then there must exists e
Õ such that e æ e

Õ and ~eÕ�o ¥̇a P . P is
one of two cases: either ¶

=∆ •
≠æ happened entirely inside ~e1�o1 or ¶

=∆ •
≠æ is the single

communication on o1. In the first case e
Õ = let e

Õ
1 in e2 where e1 æ e

Õ
1, and thus

because (e1,~e1�o) œ R then we know P ¥̇a ~eÕ�. In the second case, we know that
e1 is a value from conjecture 1 in that ~e1�o1 can communicate on o1. Therefore
e

Õ = e2[xB e1] and by previous argument P ¥̇a ~eÕ�o.
Conditional e = if e1 then e2 else e3

There are three rules for the if/else conditionals in ButF, E-If-1 which allows
e1 to reduce to a value, E-If-True if the conditional is non-zero, and E-If-False
if the condition is zero. The translation for e is as seen below.

‹o1.(~e1�o1 | o1(v). [v , 0] ~e2�o,~e3�o)

For the first case E-If-1, we know that any reduction done by e1, can be done
by ~e1�o1 since ~e1�o1 is unguarded and (e1,~e1�o) œ R. Once e1 is done and can
send some term (M) on o1, there is only one reduction left. This reduction reduces
[M , 0] ~e2�o,~e3�o to either ~e2�o or ~e3�o. Since e æ and e1 ”æ, expression e1 must
be a value, and thus either E-If-True is matched and [M , 0] ~e2�o,~e3�o

•
≠æ ~e2�o

or E-If-False is matched and [M , 0] ~e2�o,~e3�o
•
≠æ ~e3�o.

In the other case when ~e�o
¶
=∆ •

≠æ P , we can show that e
Õ exists such that P ¥̇a e

Õ

and e æ e
Õ, in much the same way as with name binding. ⇤

With all cases covered and shown to satisfy the operational correspondence, the



62 Chapter 4. Correctness

translation as a whole is shown to have the operational correspondence property. We
denote e ?ok ~e�o when (e,~e�o) œ R.

Theorem 2 For any e it holds that e ?ok ~e�o and if there exists e
Õ
œ V, such that

e æ
ú

e
Õ it holds that ~e�o

•
=∆ú

¥̇a ~eÕ�o.

Proof By lemma OK 3, we know that a witness exists such that e¥̇a~e�o. Therefore
if e æ

ú
e

Õ then ~e�o
¶
=∆ •

≠æ ¥̇a
¶
=∆ •

≠æ ¥̇a . . .
¶
=∆ •

≠æ ¥̇a~eÕ�o. By repeated usage of lemma

WABB 5 each ¥̇a can be moved to the end such that eo
•
=∆

ú
and the theorem holds.⇤
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Conclusion

By analyzing the two paradigms in regards to translating them, the two languages,
Efi and ButF were created. Their syntaxes and semantics were defined to be able
to reason about them. With this foundation, a generic translation was proposed. By
then creating a framework to further reason about the translations’ behavior, in the
form of iterating the requirements for weak bisimulations, it enabled us to define and
prove the correctness. We, therefore, discuss this process and our findings, some of
which is followed by interesting ideas some of which were deprioritized due to time
constraints.

Changes over prior work This report features several improvements over our pre-
vious work [9]. The first improvement is the addition of a small-step semantics,
so ButF’s reductions are now able to be described in more detail. The syntax
for ButF was also subject to some changes. The prog and def syntactic elements
were completely removed and iota is introduced as a built-in function. Furthermore,
support for tuples and patterns has been added, allowing the language to be more
similar to Futhark. Lastly, recursion is added to allow for easier implementation
of derived primitive candidates. While this is a feature Futhark does not support,
adding recursion does not extend the expressivity of ButF beyond the expressivity
of Futhark.

We also change the Efi (formerly ButF-fi) with minor changes. Some of those
being the removal of bounded replication as well as newly labeled semantics to ensure
that broadcasting casts to all receivers.

5.1 Contribution and Results

This report started with a focus on the analysis of parallelism in regard to Futhark.
Here, the work and the span complexities were described as fundamental metrics
for the benefit of using concurrent approaches. By analyzing Futhark, the aspects
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deemed interesting and important were isolated and condensed into the smaller lan-
guage ButF. Its smaller syntax combined with a small-step semantics defines the
foundation of further analysis.

We introduce the fi-calculus as the target language due to its di�erent kind of
properties such as natural concurrency. The fi-calculus was extended to better facil-
itate a translation which we then called Efi. We define equivalence on Efi processes
through the notion of observability, contexts, and bisimulation.

With these two languages, a generic translation has been created such that every
ButF program is able to be translated into Efi. To reduce the complexity of the
translation, several ButF expressions were implemented in the language itself via
other ButF expressions, thus simplifying the language. These implementations were
then analyzed in their complexity and dependencies. Afterward, possible subsets of
these derived expressions were considered, in which one of them was chosen to reduce
the complexity of the proof while maintaining the asymptotic complexity of work and
span.

To show the correctness of the translation, we introduce the notion of operational
correspondence as a relation. Here, the translation is modified with annotations
on important and administrative reductions. Through a case-by-case analysis, the
translation is proven to be correct in regard to this operational correspondence.
This resulted in proposing a correct translation for core concepts of Futhark into
an extended fi-calculus, that can be used for further analysis.

5.2 Basic Un-Typed Futhark and Extended fi-Calculus

ButF is a language that reduces the extensive nature of Futhark by only keeping
the features deemed relevant. On the other hand, Efi is an extension of the fi-
calculus to facilitate said relevant features in a more natural way. These changes to
the languages come with advantages and disadvantages.

Type systems Since ButF is un-typed it made it easier to implement the language.
However, this comes at the disadvantage of not being able to clearly and unambigu-
ously validate the correctness of programs. For example, indexing an abstraction is
valid syntax, but results in undefined behavior. Type systems, on both the ButF
side as well as the Efi side of the translation, could also have helped the translation
itself by defining a stricter correspondence via types.

Omitted Futhark features Futhark comes with various optimization strategies com-
pared to ButF, some of which have been left out despite being beneficial for con-
currency optimizations.

In-place updating of arrays allows the compiler to directly update an array instead
of having to construct an updated copy. Here, the programmer can tell the compiler



5.2. Basic Un-Typed Futhark and Extended fi-Calculus 65

that the argument has no other references that could be a�ected when updating. This
is an especially e�cient optimization with sequences of memory-intensive operations
where the intermediate results are not used. While this optimization is relevant and
useful for real hardware, it can limit parallelism and is therefore omitted from ButF.
[21]

The Futhark compiler also has fusion rules for their SOACs that help the com-
piler to match patterns of SOACs and restructure or fuse them into a more optimized
structure that allows for chunking the workload. In these rewriting rules, the chunk
size is dynamic which makes it easier to utilize the hardware at hand, but the par-
allelization can be maximized by setting the chunk size to one. [21]

This report did not further look into incorporating these features since the hard-
ware aspect was abstracted away from by using the fi-calculus as process model which
is unbounded.

Expressivity of Efi The inclusion of broadcasting, composite names, and using the
applied fi-calculus are deemed good choices to reduce the complexity of the transla-
tion. Broadcasting has been shown to be more expressive than fi-calculus by Ene and
Muntean [34], and similarly Carbone and Ma�eis [18], however how these extensions
relate to each other has not been explored. Due to this, composite names might be
expressible by the broadcast fi-calculus or vice versa, and the expressivity of Efi is
therefore unknown.

Efi as a computational model Since Efi is an extended fi-calculus, additional ex-
pressivity has been added. However, the origin of this project lies in Futhark which
is more closely tied to computers and their instructions as we know them. Broad-
cast is an extension for the fi-calculus that allows the propagation of values to an
unbounded amount of processes. This type of single reduction is not nearly as easy
to represent in computer-executable languages. This means that using broadcast is,
despite providing interesting and useful functionality, not easily representable for a
complexity analysis to optimize the execution of computer code. This is because
it would not be fair to assume that one action, broadcast, can ever be matched by
limited computer resources.

The composite names extension enabled a natural encoding of arrays, which is a
data structure that is closely related to the sequential memory of computers. While
memory can be indexed with pointers and simple arithmetic (to a degree), the same
applies to composite names, which makes this extension a reasonable inclusion.

These thoughts need to be considered when designing a proper and representable
complexity analysis.
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5.3 Translation

This section discusses the translation, being the main contribution of this report.

Choice of primitives By analyzing the possible sets of primitive candidates, based on
our derived implementations, the ideal set for our use case was determined. However,
there might exist better methods of implementing these, which might further ease
translation and provide better asymptotic complexity. There were di�erent possible
sets with various qualities, such as being the smallest, the lowest span complexity, or
the easiest to prove. The choice that was made focused on the ease of proving whilst
still aiming to not increase the asymptotic span complexity. Since the set found and
chosen is considerably smaller, simpler to prove, and even preserves the asymptotic
work and span complexities of all primitive candidates, it helped the further analysis
considerably.

Important reductions and bisimulation When proving the correctness of the trans-
lation, we introduce the notion of important reductions through the • syntax. These
present a “blocker” which can only be removed with an important reduction •

≠æ. This
block prevents the translated program from executing ahead of the source program.
This is useful in the operational correspondence, in that reduction of e and ~e�o both
meet at e

Õ and ~eÕ�o when e æ e
Õ. Without this blocker (and important reductions)

one can still propose a relaxed operational correspondence, where ~e�o can skip over
~eÕ�o, but must be able to reach some later ~eÕÕ�o where e æ

ú
e

ÕÕ. However, it was
anticipated that such a correspondence was harder to prove.

The formulation of two operational correspondences During the report two defi-
nitions of operational correspondence are proposed. The first is an initial approach
inspired by Sangiorgi [16]. Our approach di�ers in that the translation is allowed to
take multiple steps to match each reduction in ButF.

However, we feared that this definition would be cumbersome to prove, in that we
would need to consider the many di�erent translation rules of chapter 3. Instead, we
formulated the administrative operational correspondence which related expressions
and processes mush like bisimulation, inspired by Milner, Amadio, Thomsen, and
Thomsen [15, 17]. Then, as a proof by co-induction, we propose a relation containing
any pair of expressions and their translation and show that this is a operational
correspondence. A proof therefore only needed to consider each pair in isolation.

However, we found that showing the validity of these pairs was still rather cum-
bersome, and it is unclear whether a proof via co-induction was simpler. Maybe a
distinction between soundness and completeness would have been beneficial as these
could then have been proven separately.
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Translation of values ButF has several di�erent types of values: number, array,
tuple, and abstraction. Numbers are easily represented in Efi, but arrays, tuples,
and abstractions are instead represented by a handle to some replicated resource,
functioning much like a pointer to some memory.

This handle-representation of values in the translation has one major oversight.
The semantics of ButF at run-time is able to distinguish between the di�erent
value types, thus only allowing reductions when the expression has no errors. The
translation does not tag run-time values with their type, meaning that it cannot
distinguish between an array handle and a tuple handle. This is solved by requiring
di�erent interactions with each value type: calling a function (fÈv,rÍ), fetching array
elements (h ·i(v) or h(read, len)), and fetching tuple elements (h ·h(v0, . . . ,vn≠1)). In
the case of an error the translation stops, because either the communication arity or
action on a handle does not match. While not an elegant nor robust solution, it does
ensure that the translation stops reducing on an error. A more elegant and preferred
solution is to implement sorts in Efi, or have some run-time tagging alongside values.

Array translation This report features two di�erent implementations of arrays. The
main di�erence between them is the addition of the await process ensuring that an
array cannot be used before all elements have been added to the array. Ensuring this
is essential for the translation since it would otherwise make operational correspon-
dence di�cult. This is due to some elements of the array potentially being multiple
reductions ahead compared to the rest of the array.

Additionally, several di�erent approaches for the array implementation were con-
sidered. The earliest of these was implementing the index operator using a combi-
nation of broadcast and if statements on all elements of the array. This would allow
for indexing without using composite names, but would also require more reductions
every time indexing is used. Another possible addition discussed was cells for modifi-
able memory [9]. This idea is deemed unimportant for the translation, as Futhark’s
in-place updating does not add more concurrency. Thus to keep the translation as
simple as possible, only read-only arrays were implemented.

Another change is removing broadcast from the Array when requesting array
elements, in favor of sending the request to each element via replication, switching
the channel on each request. The main reasoning behind this is to ensure that all
elements of the array would receive all requests on the read channel and in case
any elements arrive after the message has been sent, they would still receive it.
One problem with this approach is, however, that it requires more overhead since it
requires the creating of a new channel each time a message on read is received, as well
as having to send the channel name to all elements, such that the communications
do not interfere with each other. Furthermore, this also complicates the proof of
operational correspondence and was thus deemed an impractical approach.
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Parallelism and data-parallelism Futhark is a data-parallel language, in that array
operations are e�ciently mapped to the hardware at hand.

ButF and Efi are not parallel languages in themselves, however, one can design a
cost model in which concurrent expressions and processes are run in parallel. Then,
like Futhark, array operations become parallel, but also constructs like indexing
and application have parallelizable aspects. This is because sub-expressions (e1 and
e2) of ButF application and indexing are reduced concurrently in both ButF’s
semantics and the translation in Efi. ButF can therefore be parallel outside of the
data-parallelism of Futhark.

5.4 Future Work

This project covered the translation, however, there are other interesting aspects
that can be worked on in the future that did not make it into this report.

Cost model and complexity analysis The natural continuation of this work is to use
the translation to analyze the parallel properties of the translated constructs. To
do this a cost model is needed that needs to be designed to capture the work and
span properties of processes. However, this has not been researched in this project
due to time constraints which leaves us with only a translation that has been proven
correct, but not useful. With such a cost analysis we would be able to compare the
translation to Futhark to find potential weaknesses or speed-ups. Such a cost model
could be implemented similarly to the • notation used to mark important reductions.
In related work, a “tick notation” is used to analyze cost in a similar manner [35].
This would not only give insight into parallel properties of the constructs but also
be a framework that can be extended and used to optimize the translation further.

Expressivity Analyzing the expressivity of Efi is an interesting point of interest
which could help discover how Efi relates to similar fi-calculi in regards to expressiv-
ity. This can help with the understanding of Efi itself and also open up for related
work on similar categories of fi-calculi. Researching this could be interesting since it
might open Efi to already-created analysis methods.

We also believe that it is possible to create a correct translation without these
extensions, however how this impacts the complexity of a translation is unknown and
might be interesting to explore.

A transpiler implementation An actual transpiler would be an excellent base for
further analysis while being able to automatically translate any program. This base
could be extended in various ways such as testing, model checking, proving assistance,
compiling, error handling, and more.
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Running a fi-calculus on hardware Since Efi is a process calculus it could be interest-
ing to research how to run it on hardware. While some research has already been done
in regards to doing this with the fi-calculus, there is none on our variant [36]. If one
could either run Efi directly on the hardware or on an abstract machine, it could be
compared more directly to Futhark. Thank you for reading our report!
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Appendix A

Basic Un-Typed Futhark Small-Step

Semantics

This is an overview of the entire small-step semantics for ButF.

e æ e
Õ

[E-Arr]
[e0, . . . ,e, . . .en] æ [e0, . . . ,eÕ, . . . ,en]

e1 æ e
Õ
1 [E-Index-1]

e1[e2] æ e
Õ
1[e2]

e2 æ e
Õ
2 [E-Index-2]

v1[e2] æ v1[eÕ
2]

m Æ n n = |[v̨ ]|
[E-Index]

[v̨ ][m] æ vm

e æ e
Õ

[E-Tup]
(e0 . . . ,e, . . . ,en) æ (e0, . . . ,eÕ, . . . ,en)

Figure A.1: Small-step semantics rules for arrays and tuples in ButF.

[E-Beta]
(⁄p ∆ e) v æ e{p := v}

e1 æ e
Õ
1 [E-App-1]

e1 e2 æ e
Õ
1 e2

e2 æ e
Õ
2 [E-App-2]

e1 e2 æ e1 e
Õ
2

Figure A.2: Application rules for ButF, describing —-reduction and reduction inside application.
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[E-Let]
let p = v in e æ e{p := v}

e1 æ e
Õ
1 [E-Let-1]

let p = e1 in e2 æ let p = e
Õ
1 in e2

Figure A.3: The semantic rules for let bindings in ButF.

e1 æ e
Õ
1 [E-If-1]

if e1 then e2 else e3 æ if e
Õ
1 then e2 else e3

v , 0 [E-If-True]
if v then e2 else e3 æ e2

v = 0 [E-If-False]
if v then e2 else e3 æ e3

Figure A.4: The rules for conditionals in ButF.

[E-Loop-Init]
loop p = e1 for x < e2 do e3  [x = 0] loop p = e1 for x < e2 do e3

m < n [E-Loop-Iter]
[x = m] loop p = v for x < n do e3 æ

[x = m+ 1] loop p = e3{p := v,x := m} for x < n do e3

m Ø n
[E-Loop-F]

[x = m] loop p = v for x < n do e3 æ v

e1 æ e
Õ
1 [E-Loop-1]

[x = m] loop p = e1 for x < e2 do e3 æ loop p = e
Õ
1 for x < e2 do e3

e2 æ e
Õ
2 [E-Loop-2]

[x = m] loop p = e1 for x < e2 do e3 æ loop p = e1 for x < e
Õ
2 do e3

Figure A.5: The small-step semantics rules for the loop construct in ButF.
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e1  e2 e2 æ e
Õ
2 [E-Rewrite]

e1 æ e
Õ
2

[E-Binop]
e1 ‘e2‘ e3  e2 e1 e3

[E-Expand]
cf  expand(cf )

Figure A.6: The rules for transforming the built-in functions in ButF.

§{v1,v2}  v1 § v2

B {v}  B v

size{v}  |[v̨]|

concat{v1,v2}  [v̨1, v̨2]

iota{v}  [0, . . . ,v ≠ 1]
map{f , v̨}  [

#   »
f v]

reduce{f ,z, v̨}  z ‘f ‘ v0 ‘f ‘ · · · ‘f ‘ vn

scan{f ,z, v̨}  [a0, . . . ,an]

where ai  z ‘f ‘ v0 ‘f ‘ · · · ‘f ‘ vi

(A.1)

expand(§) = ⁄x.⁄y. § {x,y}

expand(B) = ⁄x. B {x}

expand(size) = ⁄v.size{v}

expand(concat) = ⁄x.⁄y.concat{x,y}

expand(iota) = ⁄x.iota{x}

expand(map) = ⁄f .⁄x.map{f ,x}

expand(reduce) = ⁄f .⁄z.⁄x.reduce{z,f ,x}

expand(scan) = ⁄f .⁄z.⁄x.scan{f ,z,x}

(A.2)
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e  e
Õ

[E-Arr-R]
[e0, . . . ,e, . . .en]  [e0, . . . ,eÕ, . . . ,en]

e1  e
Õ
1 [E-Index-1-R]

e1[e2]  e
Õ
1[e2]

e2  e
Õ
2 [E-Index-2-R]

e1[e2]  e1[eÕ
2]

e  e
Õ

[E-Tup-R]
(e0 . . . ,e, . . . ,en)  (e0, . . . ,eÕ, . . . ,en)

e1  e
Õ
1 [E-App-1-R]

e1 e2  e
Õ
1 e2

e2  e
Õ
2 [E-App-2-R]

v1 e2  v1 e
Õ
2

e1  e
Õ
1 [E-Let-1-R]

let p = e1 in e2  let p = e
Õ
1 in e2

e1  e
Õ
1 [E-If-1-R]

if e1 then e2 else e3  if e
Õ
1 then e2 else e3

Figure A.7: The rules that allow rewrites of sub-expressions.
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Appendix B

Summary of the Extended fi-Calculus

P ,Q,S, . . . ::= Process

| 0 Null process
| P | Q Parallel composition
| !P Replicated process
| ‹a.P Restriction on name
| b(x̨ ).P Receive action
| bÈNÍ.P Send action
| b: ÈNÍ .P Broadcast action
| I(x̨ ) Process identifier
| [M ÛÙ N ] P ,Q Conditional

L,M ,N , . . . ::= Term

| n Number
| b Name or composite name
| x Variable
| M § N Arithmetic operation

b ::=
| a Name
| a · M1 · . . . · Mn (n > 0) Composite name

A,B,C, . . . ::= Extended process

| P Process
| A | B Parallel composition
| ‹a.A Restriction on name
| ‹x.A Restriction on variable
| {M/x} Active substitution

Figure B.1: The extended syntax of processes and terms, with broadcast sending and composite
names
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Comm bÈxÍ.P | b(x).Q M
≠æ P | Q

Broad b: ÈxÍ .Q | b(x).P1 | · · · | b(x).Pn
:b
≠æ Q | P1 | · · · | Pn

Par A
M
≠æ A

Õ

A | B
M
≠æ A

Õ
| B

B-Par
A

:b
≠æ A

Õ
B 8 b

A | B
:b
≠æ A

Õ
| B

Res A
q
≠æ A

Õ
q , : u

‹u.A q
≠æ ‹u.AÕ

B-Res A
:b
≠æ A

Õ

‹b.A M
≠æ ‹b.AÕ

Struct A
q
≠æ A

Õ

B
q
≠æ B

Õ
if A © B and A

Õ
© B

Õ

Then [M ÛÙ N ] P ,Q M
≠æ P if M ÛÙ N

Else [M ÛÙ N ] P ,Q M
≠æ Q if M ”ÛÙ N

Figure B.2: The extended reduction rules of extended processes, with new rules for broadcasting
and normal communication over composite names. Here, q is either M or some :b.
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Rename A © A
Õ by –-conversion

Par-0 A | 0 © A

Par-A A | (B | C) © (A | B) | C

Par-C A | B © B | A

Repl !P © P | !P

New-0 ‹n.0 © 0
New-C ‹u.‹v.A © ‹v.‹u.A

New-Par A | ‹u.B © ‹u.(A | B) when u < fv(A)fi fn(A)

Alias ‹x.{M/x} © 0
Subst {M/x} | A © {M/x} | A{M/x}

Rewrite {M/x} © {N/x} when M = N

Figure B.3: The structural congruence rules for Efi. Notice the usage of equality on terms, which
applies to both names and numbers. [14, 23]


