
Benchmarking Futhark-AD using MINPACK-2
Project Outside Course Scope, 7.5 ECTS

Peter Kanstrup Larsen
Supervisor: Cosmin Eugen Oancea

January 2023

1 Abstract

The purpose of this project has been twofold. First, to review literature for tech-
niques implementing automatic differentiation (AD). Second, to identify and
implement a set of benchmarks in Futhark that exhibit sparse Jacobian/Hes-
sian matrices.
To do this, we have translated a problem from the FORTRAN MINPACK-2
collection and benchmarked the Futhark-AD on this. This gave promising re-
sults when looking at speedup, but the generated Jacobians do not validate.
Furhter investigation of the sparsity patterns have not been made due to time
limitations.

The project code can be found in this GitHub repository:

https://github.com/PeterLarsen404/minpack2-fut

2 Introduction

Computing the derivatives of an objective function in computer programs is a
fundamental operation in several fields such as optimization, neural networks,
and physics-based modeling. In optimization, differentiation is used to compute
gradients of a function, which are commonly used in optimization algorithms
such as gradient descent. In neural networks, gradients of a model’s parameters
with respect to a loss function are used in the network’s training and inference.

The methods used for computing the derivatives are classified into four cate-
gories: Manual differentiation, numerical differentiation, symbolic differentia-
tion, and automatic differentiation (AD):

1

2.0.1 Manual differentiation

Manual differentiation calculates a function’s derivative by using the calculus
rules. As the name implies, it is done by hand rather than using a computer
program or calculator. The process involves applying rules, such as the power
rule, the product rule, and the chain rule. This method is mainly used for simple
functions since it can become tedious and time-consuming for more complex, or
multiple-variable functions.

2.0.2 Numerical differentation

Numerical differentiation is a method of approximating the derivative of a func-
tion using numerical techniques. It is often applied when it is difficult to obtain
the analytical form of the derivative. The basic idea is to approximate the
derivative by measuring the change in the function’s value for small changes in
the independent variable.

However, the accuracy of numerical differentiation methods depends on the
step size used, which sometimes leads to less accurate results. Additionally,
numerical differentiation methods can have numerical errors, such as round-off
errors, and truncation errors.1

2.0.3 Symbolic differentiation

Symbolic differentiation involves manipulating the function using the rules of
calculus and algebra to obtain an expression for the derivative. The result of
symbolic differentiation is an exact expression for the derivative, represented
by mathematical symbols rather than numerical values. A drawback of using
symbolic derivatives is that the derivatives grow exponentially, resulting in un-
maintainable code [6], and can lead to inefficient runtime when evaluated [3].

2.0.4 Automatic differentiation

Lastly, we have automatic differentiation which will be the main method of this
paper. The idea behind AD is that the process of differentiation is performed
using a computer program. We will dive deeper into the exact computation in
the next section.

Examples of the different differentiation methods can be observed in Figure 1.

1https://en.wikipedia.org/wiki/Numerical differentiation

2

Figure 1: Examples of differentiation methods (image from [2]).

Futhark-AD is an AD library made to compute the derivatives of Futhark pro-
grams. Futhark is a statically typed, data-parallel, and purely functional array
language designed to be compiled to efficient parallel code [5].

In this paper, we look into how well the Futhark-AD library handles the compu-
tation of Jacobian matrices. To do this, we use a problem from the MINPACK-2
test collection and investigate the validity and runtime of the computation.

3

3 Automatic differentiation

AD exploits that every function, no matter how complicated, is executed on a
computer as a sequence of elementary operations such as additions, multiplica-
tions, and elementary functions such as sin and log. By successively applying
the chain rules on the composition of operations, the exact derivatives can be
computed in a mechanical fashion.

There are two basic modes of AD, which are usually referred to as forward mode
and reverse mode. The following notation and object function are used in the
following sections:
A function f : Rn → Rm consists of the intermediate variables vi with:

1. vi−n = xi, i = 1, ..., n Are the input variables.

2. vi, i = 1, ..., l Are the intermediate variables.

3. ym−i = vl−i, i = m− 1, ..., 0 Are the output variables.

4. v̇ = ∂v
∂x Is the derivative of the variable.

We let y = f(x1, x2) = x2
1 − x1 · cos(x2) + sin(x1), which gives us the following

computational graph:

Figure 2: Computational graph of the example: y = f(x1, x2) = x2
1 − x1 ·

cos(x2) + sin(x1)

3.1 Forward mode

To compute the derivative using the forward mode, we apply the chain rule to
each operation in the forward primal trace. We evaluate each primal in lockstep
with its corresponding derivative and obtain the derivative of the function in
the final variable of the derivative trace [2].

4

3.1.1 Forward mode AD example

Let y = f(x1, x2) = x2
1 − x1 · cos(x2) + sin(x1). We want to evaluate it at

(x1, x2) = (3, 8).
Forward Primal Trace:

v−1 = x1 = 3 (1)

v0 = x2 = 8 (2)

v1 = v2−1 = 32 (3)

v2 = v−1 · cos(v0) = 3 · cos(8) (4)

v3 = sin(v−1) = sin(3) (5)

v4 = v1 − v2 = 9 + 0.4365 (6)

v5 = v4 + v3 = 9.4365 + 0.1411 (7)

y = v5 = 9.5776 (8)

For the Forward Tangent Trace, we let ẋ = 1 to compute ∂y
∂x :

v̇−1 = ẋ1 = 1 (9)

v̇0 = ẋ2 = 0 (10)

v̇1 = 2 · v−1 = 2 · 3 (11)

v̇2 = v̇−1 · cos(v0) + v̇0 · v−1 = 1 ∗ cos(8) + 0 ∗ 3 (12)

v̇3 = cos(v−1) = cos(3) (13)

v̇4 = v̇1 − v̇2 = 6 + 0.1455 (14)

v̇5 = v̇4 + v̇3 = 6.1455− 0.99 (15)

ẏ = v̇5 = 5.1555 (16)

Observing the above example we see that the forward mode can compute the
Jacobian matrix one column each evaluation, this is done by initializing one
of the variables to be 1 and the rest to zero. Thus, it takes n evaluations to
compute the full Jacobian.

Instead of using unit vectors to compute the entire Jacobian, we can use an
arbitrary vector r to easily compute the Jacobian-vector product ∇f ∗ r in only
only one evaluation.

The run time for computing the Jacobian using the forward mode is: n·c·ops(f),
where c is a constant guaranteed to be c < 6 [7], and ops(f) is the number of
operations required to evaluate f .

Forward AD is very advantageous when working with functions of type f : R →
Rm because every derivative can be computed in only one evaluation. The
method does however lack when the function is of the type f : Rn → R.

5

3.1.2 Forward-AD in Futhark

The implementation of forward mode AD in Futhark [9] is closely related to
the ”dual number formulation” described in [2]. The use of dual numbers in
forward mode AD is very helpful because they have the property of automati-
cally calculating the derivative of a function while calculating the value of the
function.

We denote dual numbers with ϵ and give them the property of being a nilpotent
number such that ϵ2 = 0 and ϵ ̸= 0. The behavior of dual numbers is somewhat
similar to complex numbers when using math operators.2

Simple Example of dual numbers:a

Let f(x) = 3x+ 2. We want to evaluate it at 4:
Convert 4 to dual number:

4 + 1ϵ (17)

Multiply by 3:

(4 + 1ϵ) · (3 + 0ϵ) = 12 + 3ϵ (18)

Add 2:

14 + 3ϵ (19)

Thus:

f(4) = 14 and f ′(4) = 3 (20)

aExample taken from: https://blog.demofox.org/2014/12/30/dual-numbers-automatic-
differentiation/

In Futhark-AD, the higher-order function corresponding to the forward mode is
jvp, with the following types:

jvp : (f : α → β) → (x : α) → (dx : α) → β

Where: f is the function we want to find the derivative of. x is the point of
evaluation. dx is the input tangents.
jvp stands for ”Jacobian-vector product” and computes: J(f(x)) · dx

2https://en.wikipedia.org/wiki/Dual number

6

3.2 Reverse mode

The reverse mode of AD is also known as backpropagation. The idea is first to
evaluate the function at a specific input, and then propagate the gradient of the
output with respect to the input backward through the computation, applying
the chain rule at each operation - The contrast to forward mode AD.

We introduce a new notation: v̄i =
∂yj

∂vi
denoting the contribution of the change

in each variable vi to the change in the output y.

7

3.2.1 Reverse mode AD example

Let y = f(x1, x2) = x2
1 − x1 · cos(x2) + sin(x1). We want to evaluate it at

(x1, x2) = (3, 8).
We start with the Forward Primal Trace, which will be the same as the forward
mode:

v−1 = x1 = 3 (21)

v0 = x2 = 8 (22)

v1 = v2−1 = 32 (23)

v2 = v−1 · cos(v0) = 3 · cos(8) (24)

v3 = sin(v−1) = sin(3) (25)

v4 = v1 − v2 = 9 + 0.4365 (26)

v5 = v4 + v3 = 9.4365 + 0.1411 (27)

y = v5 = 9.5776 (28)

For the Reverse Adjoint Trace, we let v̄5 = ȳ = ∂y
∂y = 1 to compute both ∂y

∂x1

and ∂y
∂x2

. Recall that this is computed ”bottom-up”:

v̄5 = ȳ = 1

v̄4 = v̄5
∂v5
∂v4

= v̄5 · 1 = 1

v̄3 = v̄5
∂v5
∂v3

= v̄5 · 1 = 1

v̄1 = v̄4
∂v4
∂v1

= v̄4 · 1 = 1

v̄2 = v̄4
∂v4
∂v2

= v̄4 · (−1) = −1

v̄−1 = v̄3
∂v3
∂v−1

= v̄3 · cos(v−1) = −0.99

v̄−1 = v̄−1 + v̄2
∂v2
∂v−1

= v̄−1 + v̄2 · cos(v0) = −0.844

v̄0 = v̄2
∂v2
∂v0

= v̄2 · v−1 · (−sin(v0)) = −2.968

v̄−1 = v̄−1 + v̄1
∂v1
∂v−1

= v̄−1 + v̄1 · 2 · v−1 = 5.156

x̄1 = v̄−1 = 5.156

x̄2 = v̄0 = 2.968

Compared to the forward mode, the reverse mode is significantly less costly to
evaluate (in terms of operation count), when the functions have a large number

8

of inputs. Looking at the example when the function is of the type f : Rn → R,
reverse mode only needs one evaluation compared to the n evaluations needed
by the forward mode.

This trait is very advantageous from a machine learning point of view since the
objective often includes many parameters, and the gradient of this objective is
used in the backpropagation of the model. However, since we use the operations
of the evaluated function in the reverse adjoint trace, we need to store them.
As the number of operations increases, the amount of storage required also in-
creases proportionally, which may cause issues [4].

The runtime for computing the Jacobian using the reverse mode is: m·c·ops(f).

3.3 Reverse-AD in Futhark

In reverse mode, intermediate program states are needed to compute the reverse
adjoint trace. This is however not an easy task to solve from a parallel execu-
tion point of view. Normally the variables are stored on a tape and abstractions
such as checkpointing [4] are used to efficiently make the data transfer. How-
ever, these approaches are not suited for parallel context and are difficult to
implement when concerning spatial and temporal locality across scopes [9].

To solve this, authors of [9] requires the return sweep to recompute the forward
sweep in order to bring all the needed variables into scope. This solution solves
the problem as it does not modify the work-span asymptotic since the recom-
putation overhead is at worst proportional to the depth of the deepest nest of
scopes, which is constant for a given non-recursive program.

Additionally, reverse AD replaces reads with accumulations, which are not
suited for the data-parallel constructs used in Futhark. The authors of [9] solves
this by describing a set of rewrite rules, and introduce accumulators to handle
free variables.

In Futhark-AD, the higher-order function corresponding to the forward mode is
vjp, with the following types:

vjp : (f : α → β) → (x : α) → (dy : β) → α

Where: f is the function we want to find the derivative of. x is the point of
evaluation. dy is the output adjoints.
vjp stands for ”vector-Jacobian product” and computes: dyT · J(f(x))

9

4 MINPACK-2-fut

To test Futhark-AD we take inspiration from the MINPACK-2 test problem
collection.

MINPACK-2 is a FORTRAN library of subroutines for solving systems of non-
linear equations, least squares problems, and minimization problems. The prob-
lems in the collection comes from a real application and are chosen with the
following requirement in mind: Each problem must come from a real application
and be representative of other commonly encountered problems. Thus, the col-
lection includes problems from many fields such as: Fluid dynamics, medicine,
combustion, superconductivity, and more [1].

4.1 Flow in a Channel problem

We have chosen to test Futhark-AD on the ”Flow in a Channel” problem from
MINPACK-2, which deals with the boundary value problem that fluid injection
through one side of a long vertical channel introduces.

The FORTRAN subroutine dficfj found in the dficfj.f3 file, corresponds to
this problem. The subroutine takes 8 arguments, of which only the following
are interesting for this paper:

x: Vector containing starting point.

r: Reynolds number4

nint: Number of subintervals in the collocation method used to discretize the
boundary value problem (Is always: size of x

8)

task: Determines the behavior of dficfj depending on the character:

XS: Return the solution of the flow in a channel problem where Reynolds
number is 0. This is the standard starting point, and can be used as
x.

F: Evaluate the function at x.

J: Evaluate the Jacobian matrix at x.

3FORTRAN code found at: https://ftp.mcs.anl.gov/pub/MINPACK-2/tprobs/dficfj.f
4https://en.wikipedia.org/wiki/Reynolds number

10

4.1.1 Translation and design

To test Futhark-AD, a translation from the FORTRAN subroutine to a Futhark
function was required. Since Futhark-AD computes the Jacobian of the func-
tion, we focused on translating the parts corresponding to task F and XS. The
following describes the implemented Futhark functions. The code is found in
the appendix section:

task XS (nint : i64) : [nint*8]f64
This function corresponds to the work made when task = ’XS’. The argu-
ment nint is used to determine the size of the output array, which is equal to
nint*8. We use this function to generate the input vectors x needed for dficfj.

mk eq (nint : i64) (r: f64) (b : i64) (rhnfhk : [4][8][8][5]f64) (x :
[nint*8]f64) : [8]f64
This helper function is used by the objective function dficfj to compute the
collocation and continuity equations. The function is intended to be used in the
following way: tabulate nint (\i -> mk eq (nint-1) r i rhnfhk x). We
compute 8 equations for each evaluation of mk eq.

We use the following arguments:

nint : Should always be nint - 1 since it determines when the last 4 continuity
equations are computed.

r: Reynolds number.

b: Used to keep track of how many equations has been made in total.

rhnfhk: Array which stores every possible combination of rho, h, and n factorial.
(This is computed by the function dficfj).

x: Array determining the evaluation point of the objective function. (Also
the array generated by task XS).

11

dficfj (nint : i64) (x : [nint*8]f64) (r : f64) : [nint*8]f64
This is the objective function and corresponds to the work made when task =

’F’.

We firstly use the predefined rho values to compute the 4 × 8 × 8 × 5 array
rhoijhs, which stores every possible combination of rho, h, and n factorial.
The values of rhoijhs only changes depending on h, which is equal to 1

nint

We then use mk eq to compute the fvec array, which contains the function eval-
uated at x, and return it.

We use the following arguments:

nint: Number of subintervals.

x: Array determining the evaluation point. (Could be the array generated
by task XS).

r: Reynolds number.

4.1.2 Implementation

The primary focus of the translation has been to obtain as much parallelism
as possible using the parallel constructs available in Futhark. Examples of this
are, including, but not limited to:

Generation of x
Originally, the computation of x when task = ’XS’ was done using nint loop
iterations. However, since we have no dependencies between each iteration
we could potentially do every iteration in parallel. Using the keyword loop

in Futhark results in an entirely sequential execution [5], so we opted to use
tabulate nint, generating 8 elements of x, nint times and flatten the array.

Generation of rhnfhk
Originally, rhnfhk was computed using a nest of 4 loops with no dependencies.
Hence, we could use a nest of tabulate and tabulate 3d to compute this in
parallel. The ”helper” arrays: hms, rhnfhk, nfs contain the values needed for
the final calculation and are easily iterated through by the nested tabulates.

12

4.1.3 Usage of Futhark-AD

In this paper, we aim to investigate the computation of the Jacobian of dficfj
with respect to x, hence the Jacobian would be a matrix of size: (nint ∗ 8) ×
(nint ∗ 8).

We therefore make the function dficfj test ad, which is just a rewritten
dficfj in order to only use x as the input argument. We use 1 as Reynolds
number.

1 def dficfj_test_ad [n] (x : [n]f64) : [n]f64 =

2 let nint = n/8i64

3 in dficfj nint x 1f64 :> [n]f64

To compute the Jacobians, we apply the jvp and vjp functions from Futhark-
AD on dficfj test ad. Since the functions only compute one coloum/row for
each evaluation, we use them in a tabulate to compute the entire Jacobian
matrix:

1 forward_ad_jac = tabulate n (\ i ->

2 jvp dficfj_test_ad x (replicate n 0 with [i] = 1))

3

4 reverse_ad_jac = transpose (tabulate n (\ i ->

5 vjp dficfj_test_ad x (replicate n 0 with [i] = 1)))

Where n is equal to the length of x. Note that reverse ad jac is transposed.

5 Benchmarks and validation

The input datasets used for benchmarking and testing is generated using task XS,
and nint values from 1 to 1000000.

5.1 Benchmarks

To benchmark Futhark-AD and our implementation of dficfj, we take the av-
erage runtime of the Futhark functions using the futhark bench command.

Since we want to know how well the implementations compare to the original
FORTRAN subroutines, we compile these to c and time the functions using the
clock function. All benchmarks have been run on an A-100 GPU and an Intel
8-core 1.60GHz CPU:

13

Figure 3: Plot showing the runtime for the functions corresponding to when task
= ’F’. Left plot shows microseconds on a linear scale, right on a logarithmic.

Figure 4: Plot showing the runtime for the functions corresponding to when task
= ’XS’. Left plot shows microseconds on a linear scale, right on a logarithmic.

14

Figure 5: Plot showing the runtime for the functions corresponding to when task
= ’J’. Left plot shows microseconds on a linear scale, right on a logarithmic.

As expected, dficfj and task XS are very fast for large values when executed on
a GPU. This is because we have no dependencies between loops and can perform
them in parallel. Most interesting is Figure: 5 since it compares the computation
of Jacobians in FORTRAN with Futhark-AD. We observe promising results for
the runtime of forward mode in Futhark-AD, outperforming FORTRAN for
values larger than 101.

5.2 Validation

To test the validity of our implementation dficfj, and the Jacobian gener-
ated by Futhark-AD, we compare the output of the functions with the output
computed by the original FORTRAN subroutines using futhark test:

Dficfj: Validates.

TaskXS: Validates.

jvp/vjp: Fails.

When nint = 1, the 8 × 8 Jacobian computed by jvp has 5 mismatches, the
use of vjp results in 31 mismatches.

Looking at the mismatches, we see that the elements from jvp is off by a small
margin. More interesting is the mismatches from vjp: 4 out of 8 columns con-
sists entirely of 0.

15

Moreover, using ”cuda” as backend for compiling the reverse mode Futhark-AD,
results in a compiler error.

Further investigation of the computed Jacobian and the Futhark compiler is
needed to conclude anything from these results.

6 Discussion and Furture work

Naturally, investigation of the validity should be the first priority moving for-
ward. Benchmarks for functions doing the same work but yielding different
results are challenging and mostly uninteresting. However, if the errors only
occur in special cases and can be avoided using different translation strategies,
our results might hint to the efficiency of performing AD on the GPU.

The MINPACK-2 test collection includes far more problems, with real-world
use cases. Further translation of the collection would not only bring new in-
teresting problems to solve, but would also test the robustness and runtime of
Futhark-AD more thoroughly.

When potential compiler errors have been solved, the next step would be to
further investigate how matrix sparsity affects the performance of Futhark-AD.
Additionally, the work on array short circuiting as shown in [8] might improve
the speedup even further, particularly for array initialization where certain slices
have predetermined values (such as in x, which has intervals of 4 zeroes)

7 Conclusion

This project’s objective was to explore the Futhark-AD tool using the FOR-
TRAN MINPACK-2 test collection. To do this, we successfully translated the
”Flow in a Channel problem” to Futhark, focusing on maximizing the paral-
lelism. We then benchmarked the forward and reverse modes of Futhark-AD
using the translated subproblem as the objective function.

The results were promising from a runtime point of view, achieving a big speedup
when executed on a GPU. Unfortunately, the computed Jacobians do not vali-
date when compared to the Jacobians computed by the FORTRAN subroutine.
This issue remains to be solved in future work.

16

References

[1] Brett M Averick, Richard G Carter, Guo-Liang Xue, and JJ Moré. The
minpack-2 test problem collection. Technical report, Argonne National
Lab.(ANL), Argonne, IL (United States), 1992.

[2] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul,
and Jeffrey Mark Siskind. Automatic differentiation in machine learning: a
survey. Journal of Marchine Learning Research, 18:1–43, 2018.

[3] George F Corliss. Applications of differentiation arithmetic. In Reliability
in computing, pages 127–148. Elsevier, 1988.

[4] Benjamin Dauvergne and Laurent Hascoët. The data-flow equations
of checkpointing in reverse automatic differentiation. In Computational
Science–ICCS 2006: 6th International Conference, Reading, UK, May 28-
31, 2006, Proceedings, Part IV 6, pages 566–573. Springer, 2006.

[5] Martin Elsman, Troels Henriksen, and Cosmin E. Oancea. Parallel Pro-
gramming in Futhark. 2018.

[6] Andreas Griewank et al. On automatic differentiation. Mathematical Pro-
gramming: recent developments and applications, 6(6):83–107, 1989.

[7] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles
and techniques of algorithmic differentiation. SIAM, 2008.

[8] P. Munksgaard, T. Henriksen, P. Sadayappan, and C. Oancea. Memory
optimizations in an array language. In 2022 SC22: International Conference
for High Performance Computing, Networking, Storage and Analysis (SC)
(SC), pages 424–438, Los Alamitos, CA, USA, nov 2022. IEEE Computer
Society.

[9] R. Schenck, O. Ronning, T. Henriksen, and C. E. Oancea. Ad for an array
language with nested parallelism. In 2022 SC22: International Conference
for High Performance Computing, Networking, Storage and Analysis (SC),
pages 829–843, Los Alamitos, CA, USA, nov 2022. IEEE Computer Society.

17

8 Code

8.1 task XS

1 def task_XS (nint : i64) : []f64 =

2 let zero : f64 = 0.0

3 let one : f64 = 1.0

4 let two : f64 = 2.0

5 let three : f64 = 3.0

6 let six : f64 = 6.0

7 let twelve : f64 = 12.0

8

9 let h : f64 = 1f64 / (f64.i64 nint)

10

11 -- Compute 8 elements of x, nint times

12 let x = flatten (tabulate nint (\i ->

13 let xt = f64.i64 i*h

14 in [xt*xt*(three -two*xt),

15 six*xt*(one -xt),

16 six*(one -two*xt),

17 -twelve ,zero ,zero ,zero ,zero]))

18 in x

18

8.2 mk eq

1 -- Computes the collocation and continuity equations

2 -- (4 collocation , 4 continuity).

3 -- "b" goes from 1 to nint.

4 def mk_eq [n] (nint_ : i64) (r: f64) (b : i64)

5 (rhnfhk : [][][][] f64)

6 (x : [n]f64) : [8] f64 =

7 let cpts = 4i64

8 let deg = 4i64

9 let npi = cpts + deg

10 let var = b*npi

11

12 -- Create the values for each k in the

13 -- collocation equations.

14 let col_w_pre_red : [4][5][4] f64 =

15 tabulate_3d 4 5 4 (\ k i j ->

16 if (j > (4-i)) then

17 rhnfhk[k,4+j-i,4+j-i,4-i]*x[var +4+j]

18 else

19 (rhnfhk[k,j,j,j]*x[var+i+j])+

20 (rhnfhk[k,4+j-i,4+j-i,4-i]*x[var +4+j]))

21

22 -- Reduce the array to get w[deg +1] values.

23 let col_w_red : [4][5] f64 =

24 tabulate_2d 4 5 (\ i j ->

25 reduce (+) 0 col_w_pre_red[i,j])

26

27 -- Compute the collocation equations.

28 let col_eq : [4] f64 =map (\ w -> w[4] -

29 r*(w[1]*w[2]-w[0]*w[3])) col_w_red

30

31 -- Create the values in the collocation equations.

32 let con_w_pre_red : [4][4] f64 =

33 tabulate_2d 4 4 (\ i j ->

34 if (j > (4-i)) then

35 rhnfhk [1,0,4+j-i,4-i]*x[var +4+j]

36 else

37 (rhnfhk[1,0,j,j]*x[var+i+j])+

38 (rhnfhk [1,0,4+j-i,4-i]*x[var +4+j]))

39

40 -- Reduce the array to get w[deg] values.

41 let con_w_red : [4] f64 =

42 map (\ e -> reduce (+) 0 e) con_w_pre_red

43

44 -- Compute the continuity equations.

45 -- If i is equal to (nint -1) compute the

46 -- last two elements instead of four.

47 let con_eq : [4] f64 =

48 if (b < nint_) then

19

49 tabulate 4 (\i -> x[var+cpts+deg+i]-con_w_red[i])

50 else

51 [con_w_red [0]-1f64 ,con_w_red [1],0f64 ,0f64]

52

53 -- Concatenate the equations.

54 in tabulate 8 (\i ->

55 if i < 4 then col_eq[i] else con_eq[i-4]) :> [8] f64

20

9 dficfj

1 def dficfj (nint : i64) (x : []f64) (r : f64) : []f64 =

2 let cpts : i64 = 4

3 let deg : i64 = 4

4 let npi : i64 = cpts + deg

5 let dim : i64 = deg + cpts - 1

6 let dim_ : i64 = dim+1

7 let deg_ : i64 = deg+1

8

9 let h = 1f64 / (f64.i64 nint)

10

11 -- Predefined rho array

12 let rho : [4] f64 = [

13 0.0694318413734436035 ,

14 0.330009490251541138 ,

15 0.669990539550781250 ,

16 0.930568158626556396

17]

18

19 -- Store every value of hm in a an array.

20 let hms = tabulate deg_ (\i -> h**(f64.i64 i))

21

22 -- Store every value of rhoijh in a 3d array.

23 let rhoijhs : [deg_][cpts][dim_]f64 =

24 tabulate_3d deg_ cpts dim_ (\ i j k ->

25 hms[i]*(rho[j]**(f64.i64 k)))

26

27 -- Store every value of nf in an array.

28 let nfs : [dim_]f64 = [1 ,1 ,2 ,2*3 ,2*3*4 ,2*3*4*5 ,2*3*4*5*6

29 ,2*3*4*5*6*7] :> [dim_]f64

30

31 -- Create the 4d rhnfhk array:

32 let rhnfhk : [deg_][cpts][dim_][dim_]f64 =

33 tabulate deg_ (\m ->

34 tabulate_3d cpts dim_ dim_ (\ i j k ->

35 rhoijhs[m,i,j]/nfs[k]))

36

37 -- Rearrange rhnfhk to make it fit the one in fortran.

38 let rhnfhk : [cpts][dim_][dim_][deg_]f64 =

39 tabulate cpts (\i ->

40 tabulate_3d dim_ dim_ deg_ (\ j k m ->

41 rhnfhk[m,i,j,k]))

42

43 -- Compute fvec

44 let fvec =

45 flatten (map (\ i ->

46 mk_eq (nint -1) r i rhnfhk x) (iota nint))

47

21

48 -- Prepend x[0], x[1] and remove last two elements.

49 let fvec = tabulate (npi*nint) (\ i ->

50 if i < 2 then x[i] else fvec[i-2])

51

52 in fvec

22

