
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

BSc thesis
Nikolaj Hey Hinnerskov

Massively Parallel Selection of Stable History Period
in Change Detection for Time Series Data with Missing Values

Supervisors: Cosmin E. Oancea and Dmitry Serykh

Handed in: June, 2021

1 Massively Parallel Selection of Stable History Period

Abstract

Vast amounts of publicly available satellite time series data enable large-
scale monitoring of environmental disturbances such as deforestation or drought.
Such monitoring schemes are, however, computationally expensive, warranting
execution on massively parallel hardware. This project presents the theoretical
background for stable history detection, an essential component of monitoring,
along with its implementation in a hardware-agnostic data-parallel language.
The implementation is benchmarked on synthetic and real-world data to reveal a
two to three orders of magnitude speedup compared to existing publicly available
code. Though the implementations are given as high-level specifications, no non-
trivial implementation details are left out; including the need for numerically
stable linear model fitting. While this project will focus on satellite data with
missing values, the implementations can be applied to any time series data.

master 6a3d476

2 Massively Parallel Selection of Stable History Period

Contents

1 Introduction 3

1.1 Contributions . 4
1.2 Related work . 4
1.3 Report structure . 5
1.4 Mathematical preliminaries . 5
1.5 Notation in pseudocode . 6

2 Background 7

2.1 Programming massively parallel hardware 7
2.2 Change detection in satellite time series 10

3 Stable history detection 13

3.1 Recursive residuals . 14
3.2 The ROC test . 18

4 Linear models and ill-conditioned problems 21

4.1 Violating mathematical assumptions 21
4.2 Conditioning and sensitivity to numerics 21
4.3 Discussion on related work . 22

5 Data-parallel implementation 24

5.1 Parallelisation strategy . 25
5.2 Implementation in Futhark . 26

6 Benchmarking 29

6.1 The ROC test . 29
6.2 Recursive residuals . 30
6.3 Integration with BFAST-Monitor . 31

7 Validation 33

7.1 The ROC test . 33
7.2 Recursive residuals . 33
7.3 OLS methods . 34

8 Conclusion 35

A From FORTRAN to Futhark: linear models 37

A.1 Implementing robust linear model fitting in Futhark 38
A.2 Translation of LINPACK QR-decomposition 40

B Filtering missing values 43

master 6a3d476

3 Massively Parallel Selection of Stable History Period

Figure 1: Deforestation in Mato Grosso, Brazil, over the years 2003, 2010 and 2021.
Sequencing images of the same area in this manner yields a time series of values for
each pixel. The images are NASA Worldview Snapshots (https://wvs.earthdata.
nasa.gov).

1 Introduction

Accurate detection of landscape changes is a crucial tool in recognizing—and by exten-
sion, reducing—negative effects on natural resources and humans from human-induced
climate change [Gie+20; VZH12]. Frequent and spatially accurate satellite image data
of the earth are publicly available through initiatives such as NASA’s Earth Science
Data Systems program.1 Sequencing images of the same area over time yields a time
series of values for each pixel (see figure 1), that when monitored, enables detection of
landscape changes at a large scale. The satellite image data dealt with in this report
are accurate—in some cases—down to 30 square meters per pixel.2

For most places on earth, the landscape changes seasonally. Hence, the goal is to
detect disturbances in the environment (abnormalities) rather than mere change. To
this end, time series based structural change detection may be combined with season
trend modelling. One such method is break detection for additive season and trend
(BFAST), which is applied for each pixel time series in the image data [VZH12]. The
version considered here is specifically BFAST-Monitor (henceforth bfast).

In essence, monitoring disturbances consist of (1) fitting a linear regression model
to the data in a history period that is known to be stable (without disturbances), and
(2) detecting the first break from this fitted model, if any, during a monitoring period
[Gie+20; Zei+02]. This is done for each pixel in the satellite image data. An image
covering just 10 km2 of land may consist of hundreds of thousands of pixels, each
containing data for hundreds of time steps. Fitting such change detection schemes,
therefore, requires intense amounts of computation. Gieseke et al. [Gie+20] show
how to implement this monitoring scheme on commodity hardware (GPUs) and at
orders-of-magnitude faster runtimes than existing publicly available code. Using this
implementation, landscape changes can be detected at a large scale (in [Gie+20] over
the entire continental tropical Africa).

However, this relies on the assumption that a stable history period without dis-
turbances is known. Such a period may be selected using expert knowledge, but it
can vary across pixels, and with hundreds of thousands of these to monitor (for just
a small image), human supervision quickly becomes intolerable. To alleviate this, a
data-driven method for selecting the stable history period is employed. As we progress
in this report, we will find that the data-driven selection is much more computation-

1
https://earthdata.nasa.gov/esds

2
Data sets are from [Gie+20].

master 6a3d476

4 Massively Parallel Selection of Stable History Period

ally demanding than the monitoring itself; it requires fitting not just one model for
each time series but fitting a number of models linear in the length of the history
period under consideration. This makes it a crucial bottleneck in speeding up the
program and, as such, an excellent candidate for parallelisation.

Bfast [VZH12], including stable history detection, is available as a package in
the R programming language [R C20]. This package makes use of a structural change
detection package [Zei+02], also in the R language, and we shall refer to these two
packages collectively as “the R reference implementation”. The data-parallel imple-
mentation of bfast by [Gie+20] does not include stable history detection and is,
therefore, the subject of this project.

1.1 Contributions

The main contributions of this bachelor project are

1. An explanation of the theory needed for implementing stable history detection in
practice. This includes algorithmic descriptions of the reversely ordered CUSUM
test (ROC) [PT02] and the recursive residuals [GH84], and discretisations of
continuous time equations (11) to (13) from [Zei+02]. While this project will
focus on stable history detection, the algorithmic description may be relevant
to any application seeking to detect structural change in time series data.

2. A data-parallel implementation of stable history detection targeting Graphical
Processing Units (GPUs), integration of this with the bfast implementation by
[Gie+20], and validation against the R reference implementation by [VZH12]
and [Zei+02].

3. An implementation of a linear model fitting library in Futhark that will handle
ill-conditioned problems, including translation of a LINPACK3 rank-revealing
QR decomposition from FORTRAN to Futhark4.

1.2 Related work

The theory conveyed in this report is compiled from the recursive residuals [GH84],
the CUSUM test and variations on this [BDE75; PT02; OB20], structural change
detection [Zei+02] and stable history detection [VZH12]. Relevant literature such as
Pesaran and Timmermann [PT02] (ROC test), Zeileis et al. [Zei+02] (an R package
with the CUSUM test) or Otto and Breitung [OB20] (a related “Backward” CUSUM
test) detail the mathematics of the ROC and related tests, but no literature that
we are aware of include algorithmic descriptions of either the recursive residuals or
the ROC test. The algorithms given here are based in part on the theory referenced
above and in part on the source code of R language implementations by [Zei+02] and
[VZH12].

This project builds on work by Gieseke et al. [Gie+20], which parallelises the
monitoring part of bfast. Another data-parallel implementation exists, but it does
not handle missing values (see section 2.2.1) [Meh+18]. Missing values are both an
important aspect of bfast and a hugely limiting factor in the efficient execution on
GPUs. A third implementation exists for the Google Earth Engine (GEE) [Ham+20].
In evaluating its correctness, Hamunyela et al. observe several differences between
their implementation and the R reference implementation. The differences are at-
tributed to the use of different numerical solvers for fitting linear regression models

3
https://www.netlib.org/linpack/

4
https://www.futhark-lang.org

master 6a3d476

5 Massively Parallel Selection of Stable History Period

in R and GEE, though they are not explained further. The problem of choosing the
right numerical solver shall prove to be a major issue also in implementing stable
history detection. One that is tackled in section 4, where two different approaches
are discussed and eventually, an implementation of ordinary least squares regression
that will match that of R is given.

1.3 Report structure

The report is organised as follows. Section 2.1 introduces data-parallel programming
on GPUs. Section 2.2 presents the necessary background on change detection in time
series data. Section 3 details the theoretical aspects of implementing stable history
detection in practice. In reading this section, it may be beneficial to skip ahead to the
algorithmic descriptions and then return to the theory afterwards. Section 4 is an in-
termezzo between the theoretical part and its data-parallel implementation and is not
strictly necessary to understand the rest of the report; however, the implementation
would not validate in its absence. Section 5 discusses various parallelisation strategies
and presents a data-parallel implementation. Sections 6 and 7 then benchmark and
validate this. Finally, section 8 provides concluding remarks, including future work.

1.4 Mathematical preliminaries

The reader is assumed to be familiar with basic linear algebra and probability theory.
This includes matrices, vectors, norms, linear systems of equations and orthogonal fac-
torization; and random variables and probability distributions. The latter of which is
not as important as the first. We highlight the concepts most crucial to the readability
of this report through a set of brief and informal introductions:

Linear regression models. Given a data set {y, x1, . . . , xk}, a linear model assumes
a linear relationship between the target value y and the column vector of k

regressors x:

y =
kX

i=1

xi�i = x
T�. (1)

where � is a column vector of k parameters. Often we impose that x1 = 1 so
that �1 is the intercept—a type of offset for the target value. The linear model
assumption is practical in nature and will rarely hold in reality, meaning a linear
combination that describes the target values perfectly does not exist. In this
case, we estimate the best solution to the above equation by choosing �̂ so that
the squared difference between the true target value y and the model prediction
ŷ = x

T �̂ is minimised. We call �̂ the ordinary least squares (OLS) estimate.

Non-linear response from linear models. Linear models are not limited to linear
responses. We can predict target values, y, that are non-linear. For example, if
we fit the model

y = w2x
2 + w1x + w0

we need only estimate a linear relationship between regressors x
2 and x and

the target value y using parameters w2, w1 and w0. Yet the response is clearly
quadratic. In practice we do this by first augmenting the regressors; say we have
a value x1 = x, then we pre-compute x2 = x

2 and treat this as a fixed value:

y = w2x2 + w1x1 + w0.

master 6a3d476

6 Massively Parallel Selection of Stable History Period

Statistical hypothesis testing. A statistical hypothesis is a statement whose truth is
testable based on observed data. Here, we outline the steps required to perform
a statistical hypothesis test. The point is not to understand each individual
step, but to introduce relevant terms and to gain familiarity with the process
from an algorithmic point of view:

1. Formulate a hypothesis whose truth is not known by stating a null hypo-
thesis and its alternative. For example, a null hypothesis could be that
the average annual rainfall has remained constant since last year. The
alternative is that the average annual rainfall has changed.

2. Collect data that will be used to test the hypothesis. For example, we
observe the rainfall on only some days in each month of the year, and
average this.

3. Choose a confidence level ↵. For example, ↵ = 5%.
4. Assume that the collected data are samples from from a random variable

X with some known distribution.
5. Then, using this assumption, calculate a test statistic resulting in a p-value

(the details of which are not needed here). The p-value is the probability of
obtaining results that are at least as unlikely as the observed result given
that the null hypothesis is true.

6. If the p-value is less than ↵, then we conclude that our sample is sufficiently
unlikely under the null hypothesis to reject it, meaning we consider the
alternative to be true. If the p-value is greater than ↵, we accept the null
hypothesis, meaning we consider it true.

See [Kre06, chapter 25] for more details.

1.5 Notation in pseudocode

An array-programming style of pseudocode is used in the algorithms in this report.
Regarding indexing, take v[a : b] to mean values of v at indices a through b � 1 and
take the absence of boundaries to mean all values, e.g. v[1 :] is all values except the
first and v[:] is simply all values. All of this extends to 2D-indexing for which we use
syntax similar to v[i, j]. Further, operations are vectorised (applied element-wise)
wherever appropriate.

A consequence of the indexing is that v[i] is 0-indexed, while subscripts such as vi

are 1-indexed. That is, if v = (v1, v2, . . . , vn) then v1 is the same as v[0] and so on.
While not the most fortunate notation, this allows a closer correspondence between
equations and algorithms.

master 6a3d476

7 Massively Parallel Selection of Stable History Period

2 Background

The background section is split into two parts. One is about programming massively
parallel hardware (section 2.1). The other is about change detection in satellite time
series data (section 2.2).

2.1 Programming massively parallel hardware

The data-parallel implementation given in this report targets Graphical Processing
Units (GPUs). A GPU is a hardware acceleration device that attaches to a host. The
host is a computer with one or more CPUs and some random access memory. From a
programmer’s perspective,5 a GPU consists of a number of threads and several types
of memory. The threads are organised into blocks, each containing a number of warps
[Hen17, p. 53]. A warp is a hardware-dependent fixed number of threads—typically 16
or 32—that execute instructions in lock-step [Oan18; Gie+20]. It follows that a warp
is the most fine-grained control of threads on a GPU available to the programmer. The
block size is often limited to a maximum of 32 warps of 32 threads each (1024 threads
in total).6 As for the memory, two types are important to the ensuing discussion:
(1) shared memory, which is fast on-chip memory shared across all threads in a block
(typically limited to less than 100 KiB per block), (2) global memory, which is slow
off-chip memory shared across all threads on the GPU (typically several gibibytes in
size) [Hen17, p. 56].

Conventional GPU programs consist of device code and host code. The device code
consists of kernels which are small, sequential programs to be run on the GPU. Kernels
are written7 with a single instruction, multiple threads (SIMT) model in mind, where
each instruction in the kernel is executed by multiple threads, each with their own
slice or copy of the data. Upon launch of a kernel, the host code orchestrates memory
allocation and sets the block size. This creates a barrier between the compute part
and its execution; e.g. we have to decide, in advance, how threads are to be grouped
into blocks which in turn will have an effect on the usage of shared memory. Efficient
utilisation of GPU resources thus has to be facilitated by the host code. We will
return to this point later.

The data-parallel implementation given in this report is not a conventional GPU
program with host and device code, but it will be compiled into one.8 The program
source code is instead written in the purely functional data-parallel array language,
Futhark. Futhark programs are written using “bulk” operations on arrays. To fa-
cilitate this, we are given a set of operators called second-order array combinators
(SOACs), whose nested composition, like pieces of a puzzle, build programs that are
parallel in infinitely many cores (or threads) [Oan18; Hen17]. In reality, infinitely
many cores are, of course, not available to us, but programming as if they were, al-
lows us to essentially abstract away the host part of the GPU program and instead let
it be handled by the compiler.9 Still, it is beneficial to keep the SIMT model in mind
when programming in Futhark. Ultimately, the program will adhere to this model
when compiled to target the GPU, and so we may have to consider the hardware con-
straints presented in the paragraphs above. The SOACs imitate familiar higher-order
functions such as map, filter and reduce

10 and, the reader can largely assume that
5
at least in CUDA/OpenCL-like models of programming GPUs.

6
This is for NVIDIA GPUs, AMD may differ.

7
Again, in CUDA/OpenCL-like models.

8
It will be compiled to OpenCL.

9
The technical term for this is implicit parallelism.

10
A parallel fold that assumes it is given an associative operator.

master 6a3d476

8 Massively Parallel Selection of Stable History Period

a familiar name will have familiar semantics.

2.1.1 A Futhark primer Futhark is a purely functional array language. A con-
sequence of being an array language is that operations are performed on arrays, not
lists—and somewhat related to this, that the precision of primitive types must be
given explicitly. For example, i8 is a signed 8-bit integer and f64 is a double preci-
sion float [EHO18]. Extending this to array types, [n]f64 is an array of n floats.

The central element of Futhark is its SOACs, which mirror higher-order functions
from conventional functional languages only they may be executed in parallel. The
type and semantics of each SOAC used in this report follow:11

• val map �a [n] �x: (f: a -> x)-> (as: [n]a)-> *[n]x

Apply the function f to each element in the array as. Here [n] is a size-parameter
meaning the value of n is inferred from as.

• val reduce [n] �a: (op: a -> a -> a)-> (ne: a)-> (as: [n]a)-> a

Combine array elements using associative operator op whose neutral element
is ne. In other words, a parallel fold that assumes it is given an associative
operator. If the operator is not associative, the result is indeterministic when
run in parallel.

• val scan [n] �a: (op: a -> a -> a)-> (ne: a)-> (as: [n]a)-> *[n]a

Combine array elements from left to right, storing intermediate results. This is
also called an inclusive prefix sum or cumulative sum. While the semantics are
sequential (left to right), it is parallel in practice, so once again, the operator
must be associative.

Futhark also supports sequential loops and in-place updates using uniqueness types
that will—at compile-time—determine whether an in-place update is safe. Unique
types are decorated with an asterisk: *[n]f64. Futhark does not support irregular
(jagged) arrays.

2.1.2 Constraints on parallelism The Futhark compiler does not support nested
irregular parallelism, which is to compose parallel operations with parallel operations
of different sizes. An example is a map inside a map, where the size of the innermost
operation varies:
map (\i -> map f (1...i)) [1,2,...,n]

If all parallelism in the above code is to be exploited and this is to be executed on a
GPU, we must allocate n blocks of n threads, because the inner map may require up
to n threads (recall that the block size is common to all blocks). Or, we can rewrite
(transform) the code by noting that a map composed with a map equals a map on
the flattened data:
map f [1, 1,2, ..., 1,2,...,n]

The difficulty of such transformations increase with with the complexity of the opera-
tions, but there exists rewrite rules for all the SOACs used in this report. Particularly,
the rewrite rules given in [Oan18, p. 47] preserve asymptotically the number of op-
erations performed by the nested irregular program (this type of flattening was first
introduced in [Ble96]). Using these rewrite rules it is possible to systematically derive
a flat implementation from any nested irregular program consisting of the SOACs
presented here.

11
These descriptions are based on the Futhark prelude documentation found at

https://futhark-lang.org/docs/prelude/.

master 6a3d476

9 Massively Parallel Selection of Stable History Period

2.1.3 Incremental flattening Flattening techniques are also used to map program-
level parallelism to hardware-level parallelism. While our program may be parallel
in infinitely many cores, the hardware will not be. Parallelism in excess of what the
hardware has to offer is at best wasted and it may be beneficial to instead sequentialise
operations.

In [Hen+19] a technique called incremental flattening is proposed where all pos-
sible mappings from program-level parallelism to hardware-level parallelism are gen-
erated. This results in multiple code versions that are then autotuned on a set of rep-
resentative data sets, generating static thresholds that determine the level of nested
parallelism to exploit. At each point in the code where a map operator is encountered,
the technique will (from [Hen+19]):

1. map the program parallelism onto the current hardware level and sequentialise
the inner parallelism,

2. map the discovered program parallelism onto the current hardware level and
recursively map the remaining inner parallelism at the next lower hardware
level and

3. recursively continue flattening the current hardware level.

This generates semantically equivalent code version that are then guarded by thresholds.
The thresholds are checked against the dimensions of the data at runtime and the
appropriate code version is run. This way we retain all parallelism in the program
when needed, but use efficient sequential code when it is in excess.

master 6a3d476

10 Massively Parallel Selection of Stable History Period

0 50 100 150 200 250 300

0

50

100

150

200

250

300

0 50 100 150 200 250 300

0

50

100

150

200

250

300

0 50 100 150 200 250 300

0

50

100

150

200

250

300

Figure 2: Satellite image data of a 10 km2 area in Peru (about 100-thousand pixels)
[Gie+20]. We show data for three time steps out of 235 to illustrate how clouds
obscure different pixels at different points in time (sharp edges are imaging effects).
Note that these are not true colors, but visualized vegetation indices.

2.2 Change detection in satellite time series

In this section, we introduce satellite time series data (section 2.2.1), the season-trend
model (section 2.2.2) and change detection (section 2.2.3). These are the three central
components of bfast (section 2.2.4).

2.2.1 Satellite time series data Artificial satellites orbit the earth, passing over
the same area at regular intervals (for example, every five days). Satellite image data
are thus collected over time, yielding for each pixel a time series of values [Gie+20].
In figure 2, we show example satellite image data of Peru that will be used throughout
this report. The data results from preprocessing of satellite imagery and consists of
vegetation indices, which are a quantitative indicator of the amount of vegetation for
each pixel [Gie+20]. For our purposes, we merely treat each pixel as a time series
of reals. Figure 2 also illustrates how clouds may obscure the view of the ground,
causing the corresponding pixels to contain little or no information. These pixels are
typically masked in the resulting data, meaning each pixel time series may have many
missing values.

master 6a3d476

11 Massively Parallel Selection of Stable History Period

0 20 40 60 80 100
i

0

2000

4000

6000
y

yi

ŷi

Figure 3: The season-trend model from equation (2) is fit to time series data from a
single pixel in Peru (see figure 2). Here, yi is the observed value and ŷi is the predicted
value using an OLS estimate for the parameters of equation (3).

2.2.2 The season-trend model The satellite time series data are modelled using
a method that accounts for seasonal and trend changes. Given a time series of reals,
y1, . . . , yN , we assume a season-trend model [VZH12]

yi = ↵1 + ↵2i +
pX

j=1

�j sin

✓
2⇡ji

f
+ �j

◆
+ ✏i, i = 1, 2, . . . , N, (2)

where ↵1 is the intercept, ↵2 is the trend and the third term captures the seasonal
pattern with amplitudes �1, . . . , �p and phases �1, . . . , �p. These are the unknown
parameters to be estimated. A known parameter is f which specifies the frequency of
observations over a 365-day period. For example, f = 365 for observations that are
each one day apart and f = 52 for observations that are 7 days apart. Another known
parameter is p which determines the number of harmonic terms used to account for
seasonality.12 The error term ✏i captures the remaining error [VZH12; Gie+20]. On
figure 3 the season-trend model is fit to time series data with p = 3.

The model from equation (2) can be written as a standard linear regression model
[VZH12]

yi = x
T
i �i + ✏i, (3)

xi = (1, i, sin(2⇡1i/f), cos(2⇡1i/f), . . . , sin(2⇡pi/f), cos(2⇡pi/f))T , (4)

�i = (↵1, ↵2, �1 cos(�1), �1 sin(�1), . . . , �p cos(�p), �p sin(�p))
T

, (5)

where at time i, yi and ✏i are as before, xi is a column vector of k = 2p+2 regressors
and �i is a column vector of k regression parameters. Using this form, we can estimate
the parameters �i using ordinary least squares (OLS) methods.

2.2.3 Structural change We write �i with a subscript i to indicate that the
parameters of the model may vary over time (but note that the elements of �i are
independent of i). If they do vary over time, meaning at least one of the parameters
at some time i is not equal to the others, we say that there is structural change. For
example, if �1 = �2 6= �3 then there is structural change with a structural break

12p is typically small, e.g. p = 3.

master 6a3d476

12 Massively Parallel Selection of Stable History Period

occurring at time 3 [Zei+02; Han01]. Alternatively, the regression parameters are
time-invariant,

�1 = �2 = · · · = �N = �, (6)

in which case there is no structural change and the same model applies to observations
y1, . . . , yN [Zei+02]. When the parameters are time-invariant we also say that the
model is stable [VZH12].

To relate this to satellite time series data, we can expect to see that the regression
parameters are constant for one period, i = 1, 2, . . . , n, but change over another,
i = n+1, . . . , N [VZH12]. Figure 3 gives an example of this where the model is stable
until a structural break occurs at time i = 41.13 Though, shortly after, the model
is once again stable. This divides the time series into two stable periods in which
the regression parameters are time-invariant: one before the break and one after the
break. For most of the remainder of this text, we are concerned with detecting a
stable period in a given time series.

2.2.4 BFAST-monitor Bfast combines season-trend modelling with structural
change detection and is applied independently for each pixel in the satellite image
data. Given a pixel time series, the main steps are to:

1. divide the time series into a history period, i = 1, 2, . . . , n, and a monitoring
period, i = n + 1, . . . , N . The end of the history period n is a user-specified
parameter.

2. Select the start, l, of a period in which a stable season-trend model can be fitted.
We call this the stable history period. The selection can be done manually or by
using data-driven methods.

3. Fit the season-trend model on the stable history period, i = l, l + 1, . . . , n.

4. Detect the first structural break from this model during the monitoring period,
if it exists.

In this project we are concerned only with selecting the start of a stable history period
using data-driven methods.

13
This structural break was determined using a test introduced later.

master 6a3d476

13 Massively Parallel Selection of Stable History Period

0 20 40 60 80 100
i

�3

�2

�1

0

1

2

3

CUSUM process boundary function structural break

Figure 4: A CUSUM test on the time series in figure 3. A structural break is detected
at time step 41, where the CUSUM process crosses the boundary function. Note how
the boundary can be crossed with either negative or positive magnitude.

3 Stable history detection

The history period of bfast ends at a user-specified point in time, n. What remains
is to select a starting point that will make use of as much data as possible, but
ensure a stable period. To this end, we test for structural change in the history
period i = 1, . . . , n. Specifically, we test the null hypothesis of “no structural change”,
which is exactly equation (6), against the alternative that the regression parameters
vary over time. If the alternative is true, a structural break will have occurred at
some point in time, and we use this break point to set the start of the stable history
period [Zei+02]. In this section, it is detailed how to carry out such a test. First,
the theoretical aspects are presented, then algorithms are given. From now on, when
referring to “the time series” we mean the history part, i = 1, 2, . . . , n, only.

Overview In testing the null hypothesis of no structural change, a standard stat-
istical tool is to consider cumulative sums of prediction errors [OB20]. Among these
methods is the CUSUM test, which evaluates a type of cumulative prediction error
against a boundary function. The boundary function is a linear function that the
cumulative prediction error will cross only with low probability under the null hypo-
thesis (this probability is a parameter that is typically set to 5%). More specifically,
the cumulative prediction error is a CUSUM process whose mean is zero under the
null hypothesis. If the alternative is true and there is but a single structural break
point, the CUSUM process will deviate systematically from its mean after this point
in time. We detect the structural break only when the CUSUM process crosses the
boundary function [VZH12; Zei+02; OB20; BDE75]. An example CUSUM test is
shown in figure 4. A lot of statistical theory is omitted here; see [Zei+02] and [OB20]
for details.

The test will only detect the first structural break, however, there may be multiple
breaks in the history period. Since the end of the stable history period is fixed and we
are to detect its start, we must know when the break closest to the end occurs. This
is achieved by instead starting at the end of the proposed history period and then,
moving backwards in time, detecting the first break. This is referred to as a reverse
ordered CUSUM (ROC) test [PT02]. In practice, it simply amounts to performing a

master 6a3d476

14 Massively Parallel Selection of Stable History Period

“forward” CUSUM test on the reversed input data. To bring figure 4 into this setting,
we can imagine that the data has already been reversed. Then the break point is the
start of a stable history period and the period immediately before this (the values to
the left of the break) is stable history.

Before we introduce the ROC test formally, we look at the prediction error, whose
definition was eluded earlier.

3.1 Recursive residuals

In this section, we define the type of prediction error used for the ROC test, namely
recursive residuals, which are standardized one-step-ahead prediction errors. In the
two following paragraphs, we dissect this statement before giving a formal definition.

A one-step-ahead prediction error is the residual obtained when using a model, fit
on the first i data points in a time series, to predict data point i+1. For a time series
of length n and a model with k parameters, we may compute n � k such one-step-
ahead prediction errors: fitting a model with k parameters requires at least k data
points, and so we can at most repeat the initial definition for i = k, . . . , n�1. For the
recursive residuals we compute and store all n � k one-step-ahead predictions. See
figure 5 for an example on the time series from figure 3.

We then standardize the one-step-ahead prediction errors. Here, standardization
refers to a linear transformation of the one-step-ahead prediction errors so that they
have zero mean under the null hypothesis of no structural change (recall equation (6))
[GH84]. Under the null hypothesis is key; if structural change occurs at some point in
time, the recursive residuals will only have zero mean up until this point. Since the
CUSUM process cumulates recursive residuals, it will systematically deviate from its
mean of zero after a structural break point.

To formally define the recursive residuals, let �̂i be the ordinary least squares
estimate of the regression coefficients � based on the first i observations in a time
series. Similarly, let Xi = (xT

1 , . . . ,x
T
i) and yi be the i ⇥ k regressor matrix and i ⇥ 1

vector of target values based on the first i observations of this time series, respectively.
Then

�̂i = (XT
i Xi)

�1
X

T
i yi, i = k, . . . , n, (7)

and the recursive residuals are defined as

ri =
yi � x

T
i �̂i�1q

1 + x
T
i (XT

i�1Xi�1)�1xi

, i = k + 1, . . . , n. (8)

Here, the numerator is the ith one-step-ahead prediction error while the denominator
ensures standardization (the details of which are left out for brevity). The recursive
residuals for the time series in figure 3 are depicted on figure 6.

Update formulas From equation (8) we realize that calculation of the recursive
residuals is a costly operation: we have to fit n � k models for a single time series.
Note that the OLS estimate, �̂i, from equation (7) requires computing the covariance
parameters (XT

i Xi)�1. That is, we must perform n � k inversions for a single time
series. Fortunately, there exists update formulas that, in theory, allows us to compute
the inversion only once. If we compute the initial fit on k observations to obtain
covariance parameters Mk = (XT

kXk)�1 and regression parameters �̂k. Then the
subsequent covariance parameters will be given by [GH84]:

Mi = Mi�1 � dd
T 1

1 + x
T
i d

, i = k + 1, . . . , n, (9)

master 6a3d476

15 Massively Parallel Selection of Stable History Period

0 20 40 60 80 100
i

�2000

0

2000

4000

6000

y

yi

ŷi

0 20 40 60 80 100
i

�2000

0

2000

4000

6000

y

yi

ŷi

0 20 40 60 80 100
i

�2000

0

2000

4000

6000

y

yi

ŷi

y9 � ŷ9

y10 � ŷ10

y11 � ŷ11

Figure 5: This figure illustrates the computation of one-step-ahead prediction errors
on the time series from figure 3. Denote by ŷ a season trend model with k = 8
parameters to be estimated using OLS methods. Top row : ŷ is fit on the first eight
observations y1, . . . , y8 (top row, gray area) and the residual y9 � ŷ9 is stored for later
use. This is the first one-step-ahead prediction. Mid row : ŷ is fit on the first nine
observations y1, . . . , y9 and the residual y10 � ŷ10 is stored for later use. This is the
second one-step-ahead prediction. Bottom row : ŷ is fit on the first ten observations
y1, . . . , y10 and the residual y11 � ŷ11 is stored for later use. This is the third one-
step-ahead prediction. We repeat this procedure for the rest of the time series.

master 6a3d476

16 Massively Parallel Selection of Stable History Period

0 20 40 60 80 100
�6000

�4000

�2000

0

2000

y

recresid

Figure 6: The recursive residuals for the time series in figure 3. They were obtained
by standardizing the one-step-ahead prediciton errors from figure 5.

where d = Mi�1xi, and the corresponding regression parameters by

�̂i = �̂i�1 + Mixi(yi � x
T
i �̂i�1). (10)

To show that this is a more efficient way to compute the fits needed for the recursive
residuals, we provide a short time complexity analysis: with or without the update
formulas, we have to compute the initial OLS estimate �̂k = (XT

kXk)�1
X

T
k yk, whose

cost is dominated by the number of operations performed when squaring the k ⇥
k regressor matrix Xk. Namely, there are k

2 elements in X
T
kXk, each of which

require O(k) operations to compute. Hence the total cost for this initial step is O(k3)
operations.

Without update formulas, we then have to perform another n�k�1 fits, with each
fit including one more observation than the previous. That is, we have to compute
equation (7) for i = k + 1, . . . , n. Again, this is dominated by squaring the regressor
matrix Xi, whose result contains k

2 elements. This time each of these elements
require O(i) operations to compute. Hence the cost for each subsequent fit is O(ik3)
operations. For sake of argument, assume that each of these have the lower cost of
O(k3) and let m = n � k. Then the total cost without update formulas is upper
bounded by O

�
(n � k)k3

�
= O(mk

3).
With update formulas there are no further matrix-matrix multiplications of this

size to perform (nor are there any further matrix inversions to perform, whose com-
plexity otherwise matches that of matrix-matrix multiplication). Though we do have
to perform the matrix multiplication dd

T where d is a k ⇥ 1 vector (equivalent to
an outer product). There are k

2 elements in the resulting matrix, but each element
warrants only a single multiplication operation. Matrix-vector multiplications have
exactly the same asymptotic cost and so the total cost with update formulas is upper
bounded by O

�
(n � k � 1)k2 + k

3
�

= O
�
(m � 1)k2 + k

3
�
. Since m > 1, we see that

the update formulas have better or equal asymptotic complexity. For m > k, the
update formulas clearly have better asymptotic complexity.

This analysis assumes usage of the matrix multiplication algorithm that results
from the definition of matrix-matrix multiplication, which has cubic asymptotic cost.
Algorithms with better asymptotic guarantees exist, e.g. a recent result achieves a
subcubic upper bound [AW20]. This does however not change the analysis; for matrix
multiplication to not dominate the asymptotic cost we would need a subquadratic
upper bound. Alternatively, we could change the argument to rely on similar costs
for matrix inversion.

master 6a3d476

17 Massively Parallel Selection of Stable History Period

Algorithm It is possible to formulate an algorithm directly from equations (7)
to (10), but empirical tests reveal that this approach is prone to numerical instability
once implemented (see section 4.3). In an attempt to alleviate this, algorithm 1 differs
from the equations in two ways:

1. Lines 2 and 11 check the update formula against an OLS fit for the first few
iterations. This is done to ensure that the update formulas produce a model
that is approximately equal to the OLS fit.

2. Lines 1 and 12 do not solve equation (7) directly when computing this OLS fit.
In fact it is sometimes required to drop parameters from the model in order to
ensure a meaningful fit (see section 4.1). This in turn means that “approximately
equal” in item 1 has to check both the number of parameters used in the model
and the parameters themselves.14

Algorithm 1 makes short of mentioning how to do this OLS fitting—including how
to obtain the rank (number of parameters in the model) of submatrices of X. See
section 4 for this and a discussion about numerical instability in linear model fitting
and its ties to the recursive residuals.

Algorithm 1 Recursive residuals

Require: A vector y = (y1, . . . , yn)T 2 Rn containing a time series of targets, and
the regressor matrix X = (xT

1 , . . . ,x
T
n) 2 Rn⇥k with each xi for i = 1, . . . , n as in

equation (4). Also n > k.
Ensure: Recursive residuals r 2 R(n�k)⇥1

1: Mk, �̂k = fit(X[: k, :], y[: k]) . initial OLS regression, see section 4
2: check = true
3: for i = k + 1, . . . , n do

4: xi = ith row of X . (k ⇥ 1)
5: d = Mi�1xi . (k ⇥ 1)
6: f = 1 + x

T
i d . for standardization

7: ŷ = x
T
i �̂i�1 . one-step-ahead prediction

8: ri�k = (yi � ŷ)/
p

f . recursive residual
9: Mi = Mi�1 � dd

T
/f . update covariance parameters (k ⇥ k)

10: �̂i = �̂i�1 � Mixi(yi � ŷ) . update parameters (k ⇥ 1)
11: if check then

12: Mi, b = fit(X[: i, :], y[: i]) . OLS regression
13: If X[: i � 1, :] and X[: i, :] both have full rank
14: and parameters from update formula, �̂i, and full
15: fit, b, are approximately equal, set check = false.
16: �̂i = b

17: end if

18: end for

19: return r = (r1, r2, . . . , rn�k)

14
When referring to the values of the parameters, approximately equal is comparison subject to

some tolerance value. We leave the actual implementation up to interpretation. A C++ version

of strucchange, used by newer versions of the R reference implementation of bfast, makes use of

an absolute check while the R version of strucchange uses both relative and absolute checks. The

absolute check looks like so: mean(abs(a - b))<= tol where tol is some reasonable floating point

value. In the reference implementations, the square root of machine epsilon divided by k is used.

With 64-bit floating point numbers and k = 8 this is approximately 1.8 ⇥ 10�9
on an Intel i5-4460

CPU.

master 6a3d476

18 Massively Parallel Selection of Stable History Period

3.2 The ROC test

We have seen what a reverse ordered CUSUM test is in the context of stable history
detection. In this subsection it is introduced formally. We start by defining two key
components from [Zei+02]: the CUSUM process and the boundary function. These
are given in a continuous normalized time (0  t  1), later we derive formulas for
working with discrete time input (i = 1, 2, . . . , n).

The CUSUM process W (t) contains cumulative sums of recursive residuals and is
defined as

W (t) =
1

�
p

n � k

k+bt·(n�k)cX

i=k+1

ri (0  t  1). (11)

where ri is the ith recursive residual, n � k is the total number of recursive
residuals (they are computed only after the first k data points) and k+bt·(n�k)c
is the last recursive residual considered at normalized time t [Zei+02].

The boundary is a linear function, b(t), whose crossing detects structural change in
the model used to compute the recursive residuals:

b(t) = � · (1 + 2t) (0  t  1) (12)

where � is a constant that depends on a user specified confidence level ↵. This
confidence level is the probability that the CUSUM process crosses the boundary
when there is no structural change [Zei+02].

To determine whether a crossing of the boundary function is significant we further
perform a “structural change test” (sctest) which results in a p-value. If this p-
value is smaller than the confidence level ↵, the null hypothesis is rejected and a
structural break point is declared where the boundary was crossed. Otherwise, the
null hypothesis is accepted and the start of the stable history is set to the earliest
possible point, t = 0.

The significance test requires computing the test statistic Sr [Zei+02]:

Sr = max
t

W (t)

1 + 2t
(13)

and the p-value, pSr :
pSr = f(Sr)

where
f(x) = 2 · [Q(3x) + exp(�4x

2)
�
1 � Q(x)

�
] (14)

and Q(x) is the complementary cumulative distribution function to the standard
normal distribution N (0, 1) [BDE75]:15,16

Q(x) =
1p
2⇡

Z 1

x
exp

�
�u

2
/2

�
du.

Equations (11) to (13), given in [Zei+02], are functions of a continuous, normalized
time: 0  t  1. In the next section we adapt them to better suit discrete time input
data in the form of i = 1, 2, . . . , n.

15
While the formula for the p-value is derived from [BDE75, p. 154], the connection with the

structural change test was obtained by studying the source code of R package strucchange.
16

Most programming languages contain approximations to this function.

master 6a3d476

19 Massively Parallel Selection of Stable History Period

From continuous to discrete time In practice, we wish to find a break in our
discrete time input data, so we only need to evaluate the CUSUM test at a series of
discrete time steps.

First, it follows that the CUSUM process in equation (11) not just contains cu-
mulative sums of recursive residuals, but that the process is a cumulative sum of
recursive residuals. To see this, first consider a change of variable by defining a linear
function j of t, so that j(t) traverses [0, n � k] as t traverses [0, 1]. The function j is
given explicitly by multiplying t with (n � k):

j(t) = t · (n � k).

Substituting t = j(t)/(n � k) into equation (11), we then have

W
0(j(t)) = W

�
j(t)/(n � k)

�
=

1

�
p

n � k

k+bj(t)cX

i=k+1

ri (0  t  1).

Now let i be the integer that takes on all non-zero discrete values in [0, n � k]; that is
i = 1, 2, . . . , n � k. Solving j(t) = i for t, we get t = i/(n � k), and so

Wi = W
0�

j
�
i/(n � k)

��
= W

0(i) =
1

�
p

n � k

k+iX

i=k+1

ri (i = 1, 2, . . . , n � k),

where the third equality holds because i is an integer. Wi is the recursive residual
at the ith discrete time step; evaluating Wi for all i, we obtain a cumulative sum of
recursive residuals. In other words, we have shown that when only discrete time steps
are considered, each recursive residual contributes to the sum exactly once.

Second, it follows that the boundary function in equation (12) is given by

bi = � ·
✓

1 + 2
i

n � k

◆

and that the test statistic in equation (13) is given by

Sr = max
i

Wi

1 + 2
�
i/(n � k)

� .

The proofs of these two formulas are similar to the one given for the CUSUM process.

Algorithm We conclude this section with an algorithm for carrying out a reverse
ordered CUSUM test to detect the start of a stable history period. See algorithm 2.
First, lines 2 to 7 compute the CUSUM process on the reversed input data. Here,
reversal of X amounts to reversing the order of the rows only. Then, in lines 9 to 14,
the p-value and � are calculated for the significance test and boundary, respectively.
Both make use of f from equation (14). Because � only depends on the parameter ↵,
it can be precomputed and e.g. stored in a lookup table. In line 16 the significance test
is carried out. If the null hypothesis is rejected, the boundary values are produced
and t is set to the point at which the CUSUM process crosses this boundary, if it
exists. Otherwise t = 0. One final note is that the process may cross with either
positive or negative magnitude (recall figure 4); checking the absolute value against
the positive boundary covers both cases (line 20).

master 6a3d476

20 Massively Parallel Selection of Stable History Period

Algorithm 2 Stable history detection (ROC test)

Require: A confidence level ↵ 2 R with 0 < ↵ < 1, a vector y = (y1, . . . , yn)T 2 Rn

containing a time series of targets, and the regressor matrix X = (xT
1 , . . . ,x

T
n) 2

Rn⇥k with each xi for i = 1, . . . , n as in equation (4). Also n > k.
Ensure: Time t 2 N at which the stable history period starts.
1: — Compute CUSUM process on reversed data
2: Xrev, yrev = reverse(X), reverse(y)
3: ⌘ = n � k . number of recursive residuals
4: r = recresid(Xrev, yrev) . recursive residuals (⌘ ⇥ 1), see al-

gorithm 1
5: r̄ = mean(r)
6: � =

q
1

⌘�1

P⌘
i=1(ri � r̄)2 . sample SD of rec. residuals

7: w =
1

�
p

⌘
· prefixSum(r) . CUSUM process (⌘ ⇥ 1)

8: — Perform structural change test
9: x = copy w

10: j = [1⌘ ,
2
⌘ , ...,

⌘
⌘]

11: x = x · 1/(1 + 2 · j)
12: p = f(max(abs(x))) . f from equation (14)
13: — Perform significance test and find break
14: � = f(↵) . independent of y, so can be precomputed
15: t = 0
16: if p < ↵ then

17: for i = 0, . . . , ⌘ � 1 do . boundary of limiting process (⌘ ⇥ 1)
18: b[i] = � · (1 + 2i

⌘)
19: end for

20: inds = where(|w| > b) . get indices where predicate is true
21: if length(inds) > 0 then

22: t = ⌘ � min(inds) . get index of first break in reversed data
and convert this to non-reversed

23: end if

24: end if

25: return t

master 6a3d476

21 Massively Parallel Selection of Stable History Period

4 Linear models and ill-conditioned problems

This section details a set of problems related to numerical stability and ill-conditioning
encountered when fitting linear models as part of this project. First, we highlight a
key mathematical assumption on ordinary least squares estimation that will serve
as background for the ensuing discussion. Second, we illustrate how methods for
computing the OLS estimate may differ in terms of numerical stability. Third, we
discuss the need for these methods and put this in relation to previous work.

The outcome of this section is a library for fitting linear least squares models in
Futhark that will obviate numerical issues often subtle in practice to programmers.
We defer the implementation to appendix A.

4.1 Violating mathematical assumptions

The linear regression model and the ordinary least squares (OLS) method for es-
timating its parameters is subject to a number of mathematical assumptions. One
assumption—quite subtle in practice—is that of no linear dependence between the
regressors in X [Hay00, p. 10]. Regressors correspond to columns of X, and so two
regressors are linearly dependent if one column is a linear combination of the other.
If this is the case, the execution of a program designed to compute OLS estimates will
produce results that cannot be interpreted as such. This and the following sections
will lead to an OLS estimating program that will produce meaningful results, even
when assumptions are violated initially.

Another way to address the assumption of no linear dependence between regressors
is to consider the rank of X. The rank of a matrix is the maximal number of linearly
independent columns [Mac95]. So if X has full rank, the regressors will be linearly
independent, as desired. The R reference implementation makes use of a special rank-
revealing QR decomposition (see [Cha87]) that when combined with dropping columns
until X has full rank will produce a meaningful fit even when model assumptions are
initially violated. Note that dropping a column is equivalent to dropping a regressor,
the meaningful fit is therefore a linear model with fewer parameters.

This covers the case when columns of X are truly linearly dependent. In practice,
they just have to be close enough for numerical work [Mol04, chapter 5]. If this
is the case, the problem is said to be ill-conditioned. A more general notion (not
necessarily pertaining to regressors) is that of “near singular” matrices. These matrices
are invertible, but ill-conditioned so that slight changes make them singular [Lay16,
p. 116]. If what we wish to invert depends on previous computations—especially
when floating point numbers are involved—we may be inducing such singularity in
our program. The next section will attempt to illustrate this.

4.2 Conditioning and sensitivity to numerics

We use the word conditioning to indicate how sensitive the solution of a given prob-
lem is to changes in the input data. If a problem has a high condition number, small
changes in input will mean a large change in its solution. Conversely, a small condi-
tion number indicates a robustness to slight changes in input [KC09]. Since we are
doing numerical work using floating point numbers, it is reasonable to expect that we
introduce some degree of slight changes with every operation.

For our purposes it will be sufficient to quantify conditioning for matrices. Form-
ally, the condition number of matrix A, (A), is defined as the magnitude of A

master 6a3d476

22 Massively Parallel Selection of Stable History Period

multiplied by the magnitude of its inverse:

(A) = ||A|| ||A�1||,

where || · || is a matrix norm [KC09].
Other than having a language for this type of problem, we are now able to illustrate

why Gauss-Jordan elimination is generally not used to solve linear least squares (LLS)
equations in statistical libraries such as statsmodels, numpy or those built in to the
R language. The OLS estimate for the parameters, �, of a linear regression model is
given by

X
T
X� = X

T
y.

A direct way to obtain � is thus to compute (XT
X)�1 using Gauss-Jordan elimination

(assuming it exists) followed by a single matrix multiplication. However, it can be
shown that (XT

X) = (X)2, meaning any ill-conditioning in X will be squared
when computing (XT

X)�1 [Saa03, p. 260]. The higher the condition number, the
closer the matrix is to being singular [Lay16, p. 116]. Thinking back to the previous
section (section 4.1), if X is close to ill-conditioned, it may be that X

T
X is outright

singular. We conclude that solving the system in this manner has the potential to
greatly enhance numerical issues. Changing the method for solving the LLS equations
will not change the conditioning of X, but we can avoid operating on X

T
X altogether.

Consider decomposing X into its QR factorization,

X = QR

where Q is orthogonal and R is upper triangular and square [KC09, p. 280]. Then
note,

X
T
X = R

T
Q

T
QR = R

T
R (15)

where the last equality holds by orthogonality; QT
Q = I. Plugging this into the LLS

equations, we get
R

T
R� = R

T
Q

T
y.

If X has full rank, then R is non-singular [Cha87]. It follows that RT is non-singular
[Lay16, p. 107] and so we can premultiply the equation by (RT)�1 to obtain

R� = Q
T
y. (16)

This final equation is what we solve in practice to obtain the OLS estimate given a
QR decomposition. The point being of course that we avoid operating on the product
that squares the condition number of the regressor matrix.

This should not be taken as an attempt at a formal argument that QR decompos-
ition is more numerically stable than directly solving the LLS equations. Empirical
validation showed this to be the case for stable history detection. Though, in general,
it should serve to illustrate that choosing a suitable method is an important task.
One that we will discuss next.

4.3 Discussion on related work

As we saw in section 4.2, the LLS equations may be solved directly via the inverse of
the squared regressor matrix, XT

X, using e.g. Gauss-Jordan elimination. This is the
approach taken by Gieseke et al. for the massively parallel monitoring part of bfast
because it is very amenable to parallelisation and as such makes for a very fast fit in
Futhark [Gie+20]. Experimentation revealed that this strategy is however not viable
when computing the stable history period.

master 6a3d476

23 Massively Parallel Selection of Stable History Period

For the monitoring part of bfast, a linear model is fit once over the entire stable
history period. This means sufficient data are available for the fit. In contrast, when
recursive residuals are employed to detect a stable history period, each subset of the
proposed history period is tested. This means linear models are fit with as little data
as mathematically possible (k data points for a k parameter model) even when the
proposed period is much larger. Typically, X has hundreds of rows, while the number
of parameters, k, is small (less than 10). Selecting k data points amounts to dropping
all but k rows from X. Even though X is well-conditioned it may be that this smaller
submatrix is not.

Using randomly generated data with missing values, designed to mimic real world
data sets, and k = 8, linear dependencies appear when fitting models only with k or
k + 1 data points. We will not try to make sense of this, but simply note that linear
dependencies seem to be inherent to stable history detection only in the most extreme
cases.

A Futhark library for fitting linear models using rank-revealing QR decomposition
is detailed in appendix A along with two translations of FORTRAN routines related
to rank-revealing QR-decomposition. We use this library in the implementation of
stable history detection.

master 6a3d476

24 Massively Parallel Selection of Stable History Period

map (�y0 !
let (n, X, y) = filtermissing X0 y0

-- CUSUM process on reversed data

let n = n - k

let r = recresid (reverse X) (reverse y)

let mean = (reduce (+) 0 r) / n

let sumd = reduce (+) 0 (map (�a ! (a - mean)**2) r)

let sd = sqrt (sumd / (n-1))

let fr = sd * (sqrt n)

let sdized = map (�ri ! ri/fr) r

let rcusum = scan (+) 0 sdized

-- Structural change test

let xs = map2 (�x i ! abs (x / (1+2*i/n)) rcusum (1...n)

let x = reduce (max) (�1) xs

let pval = f x -- f from equation (14)

let level = f ↵
let inds = map2 (�i ri ! if abs ri > ↵ + (2*↵*(i+1)/n)

then i

else 1
) (1...n) rcusum

let ind = reduce (min) 1 inds

in if pval < level then n - ind else 0

) (ys: [m][N]f64)

Figure 7: Nested irregular parallel pseudocode for stable history detection using the
ROC test. See algorithm 2 and section 3.2 for the sequential algorithm.

5 Data-parallel implementation

F
G H
This section details a data-parallel implementation of stable history detection

when applied to satellite image data. Algorithm 2 applies to a single pixel (time
series). Here we extend this to work on an image consisting of many pixels. Three
approaches are weighed against each other, one is a simple approach that exploits
only parallelism in the number of pixels (outer parallelism), while the others exploit
also parallelism inherent to the computations for a single pixel (inner parallelism).

Satellite data can contain missing values; for example, clouds may obscure the
ground at any given time and so data for this point in the pixel time series will
be missing [Gie+20]. Missing values are represented by dummy values, e.g. floating
point NANs. Missing data are ignored (filtered) in bfast [VZH12, p. 5], which is eas-
ily handled in a sequential setting, but presents difficulties in a parallel setting when
a program is to be statically mapped17 for efficient execution on GPUs [Oan18]. Spe-
cifically, filtering missing values cause the length of time series to differ across pixels,
which in turn is cause for nested irregular parallelism (not supported by the Futhark
compiler). The implementation is greatly influenced by the handling of missing values
for this reason.

Refer to section 2.1 for a primer on GPUs, Futhark and related terminology.

A data-parallel specification In figure 7 we show pseudocode for the data-parallel
specification of algorithm 2 in a functional style. It takes as input an array ys contain-

17
Read: the host code is to be written—or generated in the case of Futhark.

master 6a3d476

25 Massively Parallel Selection of Stable History Period

ing m time series of length N . It is assumed that the regressor matrix X0 containing
N rows of length k is part of the closure (precomputed or given elsewhere). Each
row in X0 is a pattern of k regressors as defined in equation (4). Inside the map,
missing values in the timeseries are filtered in line 2 (the corresponding rows in X0

are dropped). This step causes nested irregular parallelism in the operations that
follow. There is very close correspondence with algorithm 2. Refer to section 3.2 for
an explanation of each line.

5.1 Parallelisation strategy

The pseudocode in figure 7 exhibits nested irregular parallelism. As we saw in sec-
tion 2.1 nested irregular parallelism is not supported by the Futhark compiler and
we must either waste resources on idle threads or perform flattening transformations
or forgo the inner (nested) parallelism by sequentialising the variable-length compu-
tations. In the following we discuss the strengths and weaknesses of each of these
approaches.

(1) Sequentialisation: If we sequentialise all inner parallelism, we can map each
pixel-specific computation to its own GPU thread. An advantage of this is that
operations (SOACs) can be fused into sequential loops in a way that reduces the
number of acceses to global memory [Gie+20]. Accessing global memory is up to
two orders of magnitude slower than scalar operations [Gie+20, p. 5]. A second
advantage is that computations inside the outer loop can operate on the actual
length of the pixel time series (real world data sets may have a high frequency
of missing values). Though the gains in this are limited as we cannot eschew
the regularity imposed by the hardware; recall that GPU threads are divided
into warps of some hardware-dependent size,18 which execute their instructions
in lock-step. If threads in the same warp have different-sized operations, for
example loops with different counts, then all other threads will idle while the
thread that executes the largest size (most iterations) finishes [Gie+20]. Only
once all threads in the warp are done executing their instruction, will the warp of
threads move on to the next.19 For the same reasons, we cannot hide expensive
computations behind branches (e.g. in figure 7 ind is only needed when pval

< level); if one thread in the warp enters the branch, then all threads will
have to execute it (discarding their result as needed) [Hen17, p. 55]. Lastly,
hardware utilisation is highly dependent on the batch size. Small batches will
not saturate GPU resources. This leads us to the next strategy which exploits
inner parallelism.

(2) Flattening: The Futhark compiler does not support nested irregular parallelism,
so we have to transform the program in order to exploit inner parallelism. One
solution is to filter and flatten the data and then apply the flattening trans-
formations that were briefly presented in section 2.1. While such solution can
be systematically derived, it would be quite difficult to implement efficiently.
In particular, the number of operations are asymptotically the same as before
applying the transformations, but the space is not (an asymptotic increase in
memory usage can be very limiting). Further, recall that the GPU programming
interface dictates that threads must be grouped into blocks of some common
size. If we filter missing values and subsequently flatten the data, each pixel
time series may need to span one or more blocks. This limits the use of fast

18
On NVIDIA GPUs this is 16 or 32.

19
We call this thread divergence.

master 6a3d476

26 Massively Parallel Selection of Stable History Period

shared memory (which is private to each block), meaning global memory must
be accessed more often.

(3) Padding: A final approach is to pad the filtered time series with dummy val-
ues until an upper bound on the inner size of (non-missing values of) all time
series is reached. This regularizes the problem, eliminating the nested irregular
parallelism arising from missing values. To operate on the smallest possible
inner sizes, we then distribute the outer map around statements that operate
on the same size. This is the approach taken in [Gie+20].20 A downside is that
we leave GPU threads idle on padded values. A great advantage is that we
can now fit each time series within a single block; the maximum block size is
1024 for most NVIDIA GPUs and the length of the time series in bfast are in
the hundreds. This enables the use of fast shared memory for most, if not all
intermediate arrays.

To summarize, we may (1) sequentialise all inner operations, (2) parallelise the
inner operations through flattening transformations or (3) parallelise the inner oper-
ations, but work with regularized (padded) data. We will not consider approach (2)
any further for the reasons outlined above. Next we show how approach (3) can be
implemented.

5.2 Implementation in Futhark

To implement approach (3), we first filter each time series and then pad them to
some upper bound on the length, N . All remaining operations in figure 7, except the
recursive residuals, will then have the same inner-parallel size of n = N �k. The first
step is thus to distribute the outer map around the filtering, recursive residuals and
ROC test, respectively:

let (Ns, Xs , ys) = map (filtermissing X) ys0

let rs = map (�X y ! recresid (reverse X) (reverse y)) Xs ys

in map (�y r N !
let n = N - k

let mean = (reduce (+) 0 r) / n

... --- rest is unchanged

) ys rs Ns

The implementation of filtermissing is given in appendix B. The map in the last line
does not have to be distributed further, however the map over the recursive residuals
does.

In figure 8 we give the data-parallel specification for the recusive residuals (al-
gorithm 1). There are two things to note compared to algorithm 1. First, the loop
is split into two; one where the numerical stability check is made unconditional and
one where there is no check. Second, once the map has been distributed, it is inter-
changed inwards into the loop21 (not shown here) and checking is made to stop only
once all threads are finished lest it will be cause for nested irregular paralleism. This
transformation means that the resulting program differs slightly from algorithm 1.
For some time series, more checks than needed will be performed and since we do
not discard the results of the model fit computed during this check, but we use these
values in place of the update formula values, we have slightly altered the result. The

20
A possible dummy value for floating point time series is the floating point NAN-value.

21
It can be shown that in a perfect nest of loops, a parallel outer loop (a map) can always be moved

inwards without violating data-dependencies [Oan18].

master 6a3d476

27 Massively Parallel Selection of Stable History Period

map (�y X !
let n = N

let (rank , M, �̂) = fit X[:k,:] y[:k]

let (i, check) = (k, true)

let r = replicate 0 (n-k)

-- Sequential loop with check

while check && i < (n-1) do

let (r[i-k], M, �̂) = loopbody i M �̂
let (rank �, M, b) = fit X[:i+1,:] y[:i+1]

let absdiff = map2 (�a b ! abs (a-b)) b �̂
let approx = ((reduce (+) 0 absdiff) / k) <= tol

let check = !(rank == rank � == k && approx)

let (i, rank , �̂) = (i+1, rank �, b)

-- Sequential loop without check

while i < n do

let (r[i-k], M, �̂) = loopbody i M �̂
let i = i+1

in r

) (ys: [m][N]f64) (Xs: [m][N][k])

(a) Recursive residuals in an outer map over the filtered array of pixels ys

and the corresponding regressor matrices Xs.

let loopbody (i: i64) (M: [k][k]f64) (�̂: [k]f64) =

-- Recursive residual

let x = X[i,:]

let d = matvecmul M x

let f = 1 + (dotprod x d)

let resid = y[i] - (dotprod x �̂)
let recresid = resid / (sqrt f)

-- Update formulas

let D = outerprod d d

let M = map2 (map2 (�a b ! a - b/fr)) M D

let �̂ = map2 (+) �̂ (map (�a ! (dotprod x a) * resid) M)

in (recresid , M, �̂)

(b) Common loop body for recursive residuals. Assume that it is inlined
in figure 8a and that X and y are part of the closure.

Figure 8: Nested irregular parallel pseudocode with in-place updates.

master 6a3d476

28 Massively Parallel Selection of Stable History Period

model fit is more precise so this will have no ill effect on the results. Other than this,
we distribute the map over statements of the same inner size.

Operations dotprod and matvecmul used in figure 8 are straightforward to implement
in Futhark. The dot product is a map-reduce:

let dotprod [n] (xs: [n]f64) (ys: [n]f64): f64 =

reduce (+) 0 (map2 (*) xs ys)

And matrix-vector multiplication a map of this:

let matvecmul [n][m] (xss: [n][m]f64) (ys: [m]f64) =

map (dotprod ys) xss

The fit function is OLS regression using a rank-revealing QR-decomposition, as de-
tailed in section 4. The implementation is given in appendix A.

5.2.1 Incremental flattening Until now we have focused on how to parallelise
stable history detection. However, with enough pixels, the data-parallelism will be
in excess of what the hardware has to offer and it may be beneficial to instead effi-
ciently sequentialise operations. Incremental flattening, as presented in section 2.1.3,
is part of the Futhark compiler and we use it to both autotune the data-parallel
map-distributed program and to generate an inner-sequential version, from the map-
distributed version. Henceforth we call the program derived using approach (3) for
the map-distributed version and the generated program adhering to approach (1) for
the inner-sequential version.

master 6a3d476

29 Massively Parallel Selection of Stable History Period

D1 D2 D3 D4 D5 D6 Peru Sahara
m 16384 16384 32768 32768 65536 16384 111556 67858
n 512 256 256 128 128 256 113 114
fNAN 50% 50% 50% 50% 50% 75% 69% 25%

Table 1: Data sets from [Gie+20]. The dimensions m and n denote the number of
pixels and the length of the time series (proposed history period), respectively. While
fNAN denotes the frequency of missing (NAN) values.

6 Benchmarking

This section first evaluates the performance impact of the parallelisation strategies
discussed in section 5, and identifies the parts of the implementation where optim-
isation efforts are best focused. After this, the performance impact that the addition
of stable history detection has had on the bfast implementation from [Gie+20] is
briefly analysed.

Setup All benchmarks in this section are run on a machine with a 16-core Intel
Xeon E5-2650 CPU running at 2.6 GHz, 126 GB of RAM and an NVIDIA RTX 2080
Ti GPU with 11GB of DRAM and 4352 cores running at 1.55 GHz. Table 1 shows
the data sets used for benchmarking, which includes synthetic data sets D1–D6 and
two real data sets of satellite imagery from Peru and the Saharan desert, respectively.
The synthetic data sets are used so that we may control performance-critical features
of the data. D1–D5 vary the number of pixels and length of each pixel time series,
while keeping the number of missing values constant. D6 has a higher frequency of
missing values.

6.1 The ROC test

The performance of stable history detection is shown on figure 9 where map-distr de-
notes the map-distributed version and inner-seq denotes the inner sequential version
(see section 5.2.1). We report memory reads and writes performed by the program per
second (in GB/s) in order to have a performance-measure that is normalised across
data sets. The memory reads and writes are calculated as the actual memory accessed
by the program. That is, we count every word accessed, multiply this by the size of
a word and divide by the total runtime.

The map-distributed version is 1.3–2.5 times faster than the inner-sequential ver-
sion, depending on the data set in question. But do note that the inner-sequential
version is generated by Futhark from the map-distributed program. It should be pos-
sible to write a more efficient version in OpenCL by hand. Still, the performance
gap illustrates shows that it is worth exploiting not only outer parallelism but also
inner parallelism. The results corroborate the discussion of the two code versions
from section 5.1, which serves to highlight why one version is faster than the other.

The performance is quite stable across all data sets. With D1 being the poorest
performing; it has a low number of pixels and long time series compared to the
others (so does D6, but it has many more missing values). The map-distributed
version enjoys the greatest speedup on this data set, however. We also see that the
performance on the synthetic data sets is comparable to the performance of the real
world data sets.

We see that about half of the bandwidth provided by the hardware is utilised
(percentages under each group of bars). For reference, a naive copy of memory from

master 6a3d476

30 Massively Parallel Selection of Stable History Period

D1 D2 D3 D4 D5 D6 peru sahara
0

100

200

300

400

50

150

250

350

G
B

/s

118.75ms
47%

⇥2.49

97.65ms
53%

⇥1.81

192.26ms
54%

⇥1.91

114.91ms
56%

⇥1.57

264.82ms
58%

⇥1.47

76.31ms
56%

⇥1.41

322.09ms
55%

⇥1.32

351.61ms
54%

⇥1.92

map-distr inner-seq

Figure 9: Memory reads and writes measured in GB per second. The map-distributed
version is map-distr and the inner-sequential version is inner-seq. Under each data
set, the runtime for map-distr is shown along with utilised percentage of hardware
bandwidth, which is 616 GB/s for the GPU used here, and the speedup in runtime
for map-distr relative to inner-seq.

D1 D2 D3 D4 D5 D6
ROC test (%) 81.8 87.3 85.7 87.3 88.8 89.6
recursive residuals (%) 18.2 12.7 14.3 12.7 11.2 10.4

Table 2: Runtime distribution between the two main components of the map-
distributed version of the stable history detection. The first row shows the total
runtime of both components, while the two bottom rows show the percentage of total
runtime. ROC test corresponds to figure 7 (minus call to recresid) while recursive
residuals correspond to figure 8.

one location in global memory to another should be close to hardware bandwidth.
The performance of the program is memory-bound; we perform only few floating
point operations for each memory access. This suggests that the program has much
room for optimisation.

The map-distributed version is two to three orders of magnitude faster than the
R reference implementation when run on a single CPU core. This is hardly a fair
comparison, but it should give an idea of the scale at which stable history detection
has been accelerated through the work of this project.

On table 2 we decompose the runtime of the stable history detection into its two
main components: the ROC test and the recursive residuals. In all cases, the recursive
residuals are responsible for more than 80% of the total runtime. This suggests that
optimisation efforts should be focused on the recursive residuals. Next we decompose
the runtime of the recursive residuals to further pinpoint where the program spends
most of its time.

6.2 Recursive residuals

The recursive residuals can be divided into two performance-critical parts. The loop,
which carries out the update formulas and subsequently check these against a linear
model fit using QR decomposition (check-loop), and the loop, which too carries the

master 6a3d476

31 Massively Parallel Selection of Stable History Period

D1 D2 D3 D4 D5 D6
filter (%) 4.0 2.7 2.8 2.7 2.2 2.4
no-check-loop (%) 64.3 37.6 35.7 28.0 23.2 23.2
check-loop (%) 35.7 62.4 64.3 72.0 76.8 76.8
number of checks 8/304 12/164 12/164 9/86 11/87 12/92

Table 3: Runtime distribution between components of the recursive residuals com-
putation. Labels no-check-loop, check-loop and filter denote the sequential loop
of update formulas, sequential loop of update formulas with checking against QR
decomposition-based linear model fit and the filtering that puts valid values before
missing values before missing values in the time series and each corresponding re-
gressor matrix, respectively. The number of check-loop iterations out of the total
number of iterations is shown on the bottom row.

update formulas, but without such a check (no-check-loop). From table 3 we see
that for all data sets except D1, the runtime is dominated by check-loop. This is
the first few iterations of the recursive residuals computation and is no more than 12
iterations across all data sets. Thus a very small number of iterations dominate the
runtime. With the only difference between no-check-loop and check-loop being the
model fitting, any optimisation efforts should be focused on the linear model fitting
presented in section 4.

Referring back to figure 9 this may also serve to explain why the performance is
so stable across data sets. Since the runtime is dominated only by a few number of
iterations, the actual length of each time series has less of an impact.

6.3 Integration with BFAST-Monitor

Here, we briefly analyse the impact that the stable history detection has on the
performance of bfast when integrated with the implementation from [Gie+20]. We
start by presenting three different code versions:

1. bfast-fix is the monitoring part of bfast, where the start of the stable history
period is fixed to time 0 for all pixels (time series). This corresponds with the
implementation from [Gie+20] except that it has been converted from 32-bit
floating point numbers to 64-bit floating point numbers.

2. bfast-var is identical to bfast-fix except that it takes an array of precomputed
stable history start indices. This is to show whether a variable start of history
has any effect on the performance prior to adding the actual stable history
computation.

3. bfast-ROC is identical to bfast-var except that it does not take a precomputed
array of stable history indices, but computes them using the map-distributed
ROC test presented in this report.

Recall that detecting the start of the stable history period requires fitting up to n�k

models where n is the length of the pixel time series and k is the number of parameters,
while the monitoring part has to fit only a single model per time series. As we saw
in the previous section, the stable history detection will only perform up to 12 QR
decomposition-based model fits and use update formulas for the rest on data sets
D1–D6 (corresponding to the check-loop and no-check-loop, respectively). This is
much less than the worst case n�k, but we still expect to see a considerable slowdown
compared to the implementation given in [Gie+20].

master 6a3d476

32 Massively Parallel Selection of Stable History Period

D1 D2 D3 D4 D5 D6 Peru Sahara
bfast-fix (ms) 17.8 10.0 18.1 10.9 22.1 14.0 38.7 35.0
bfast-var (ms) 18.1 10.1 18.5 11.1 21.9 14.7 33.8 35.1
bfast-ROC (ms) 135.1 105.6 205.3 123.5 282.6 88.9 348.3 377.8
slowdown

� roc-f64
fix-f64

�
⇥7.6 ⇥10.5 ⇥11.3 ⇥11.4 ⇥12.8 ⇥6.3 ⇥9.0 ⇥10.8

Table 4: This table shows the runtime in milliseconds for the three versions of bfast
presented in section 6.3. The array of indices fed to bfast-variable was precomputed
using bfast-ROC.

On table 4, we see runtimes for each of the three versions. There are two things
to note, (1) there is no significant slowdown in adding the precomputed variable start
of history (bfast-fix and bfast-var are similar), but (2) including stable history
detection (ROC test) slows it down by up to 13 times.

master 6a3d476

33 Massively Parallel Selection of Stable History Period

D0 Peru Sahara Africa
m 5000 111556 67968 500000
N 100 235 228 327

Table 5: Data sets used in testing. Multiple synthetic data sets are used, but we only
show one. The dimensions m and N denote the number of pixels and the length of
the time series, respectively.

7 Validation

In this section, we validate the data-parallel implementations of recursive residuals
and stable history detection against the R reference implementations.

Methodology and data We write a test suite in Python that calls both R and
Futhark code.22 We run both synthetically generated (random) data and three real
world data sets through the test suite. The three real world data sets are satellite
imagery from Peru, the Saharan desert and a small subset of a data set that contains
the entire continental tropical Africa [Gie+20]. Their characteristics are shown on
table 5.

7.1 The ROC test

The stable history detection outputs the index of the start of a stable history period.
It validates with no differences when run a number of synthetic data sets. Nor are
there any differences when run on the more than 500-thousand pixels in the Africa
data set. There is however one difference in the Peru data set, and one difference
in the Sahara data set. Both differences are caused by the CUSUM process crossing
its boundary earlier than the R reference implementation (line 20 of algorithm 2).
This is shown in table 6 where (part of) the CUSUM processes and boundaries for
the two pixels in question are tabulated. The CUSUM processes for R and Futhark
differ around the 12th decimal place (not apparent from the table data), while the
boundaries differ around the 6th decimal place. In both cases, the Futhark boundary
is too large, but more generally we can conclude that precision in the 6th decimal
place is not sufficient to match the results of the R reference implementation. This
causes the start of the stable history period to be respectively one and two time steps
too early in the Futhark version. This should give an idea of how sensitive the ROC
test is to numerics.

7.2 Recursive residuals

The recursive residuals are arrays of floating point numbers, so to validate these we
compute a relative error measure. More precisely, for two arrays to be considered
equal the following has to hold for each element:

abs(a � b)  tola + tolr · abs(b)

where a is the value subject to test, b is the reference value, tola = 10�5 and tolr =
10�8. The tolerance tola is what we consider close to zero.

All real world data sets pass this test. But there are three differences in the
synthetic data set D0. The differences are minor; the maximum relative error for the

22
The Futhark code is called from Python using PyOpenCL (https://documen.tician.de/

pyopencl/).

master 6a3d476

34 Massively Parallel Selection of Stable History Period

i 54 53 (R crosses) 52 51 (F. crosses)
R abs(cusum) 2.21110450 2.36514512 2.34888991 2.46709502
Futhark abs(cusum) 2.21110450 2.36514512 2.34888991 2.46709502

R boundary 2.35594091 2.36514381 2.37434670 2.38354960
Futhark boundary 2.35594294 2.36514584 2.37434874 2.38355164

(a) Part of a CUSUM test on a pixel in the Sahara data set. The reference implementation
crosses (exceeds) the boundary at index 53 while our implementations cross the boundary at
index 51.

i 28 27 (R crosses) 26 (F. crosses) 25
R abs(cusum) 2.21958123 2.33554313 2.38459770 2.41008640
Futhark abs(cusum) 2.21958123 2.33554313 2.38459770 2.41008640
R boundary 2.31599845 2.33554275 2.35508704 2.37463133
Futhark boundary 2.31600045 2.33554475 2.35508906 2.37463337

(b) Part of a CUSUM test on a pixel in the Peru data set. The reference implementation
crosses (exceeds) the boundary at index 27 while our implementations cross the boundary at
index 26.

Table 6: Tabular representation of two CUSUM tests (refer to figure 4 for a visual
example on different data). Note that the CUSUM test is computed on the reversed
input data hence the indices are in reversed order. The table should be read from left
to right and numbers should be compared within columns. The points of interest are
highlighted in bold.

recursive residuals of all three pixels is about 0.0725%. In all three cases the difference
occurs in the first recursive residual computed, which is when the computation is at its
most unstable and a k-parameter model is fit using only k data points. The difference
does not have to do with the fit, however. Instead it is introduced in what amounts
to line 5 of algorithm 1. No further investigation was done.

7.3 OLS methods

In section 4, it was claimed that a rank-revealing QR decomposition is necessary when
fitting linear models in the computation of the recursive residuals. To quantify this
statement, if we solve the linear least squares equations directly using Gauss-Jordan
elimination: 67 out of 5000 pixels in D0 differ from the reference implementation. In
the Sahara data set 13573 out of 67968 pixels differ. However, there are no differences
for data sets Peru and Africa. The same does not hold for the ROC test, where
Gauss-Jordan elimination will cause differences across all data sets.

master 6a3d476

35 Massively Parallel Selection of Stable History Period

8 Conclusion

To conclude, stable history detection has been implemented to run on massively
parallel hardware (GPUs), thus further enabling large scale detection of environmental
disturbances in satellite image data. The implementation is, however, not restricted
to such scenario and can be applied to detect structural change in any time series
data.

The theory needed to implement stable history detection has been explained, a
proof has been given for the discretisation of key formulas, and two algorithms have
been formulated; one for the recursive residuals and one for the ROC test that together
constitute stable history detection.

Benchmarking of parallelisation strategies suggest that (1) exploiting parallelism
not only in the number of pixels but also the parallelism inherent to each pixel time
series computation yields a significant speedup in practice (up to 2.5 times for the
tested data sets and GPU), and (2) that the solution given here only achieves about
half of theoretical bandwidth, meaning there is room for optimisation. Still, the
implementation is two to three orders of magnitude faster than existing publicly
available code (the R reference implementation) when processing a batch of pixels.

Validation revealed that stable history detection is sensitive to numerics and that
advanced numerical methods for linear regression are necessary to achieve a sufficiently
accurate implementation.

The data-parallel implementation of stable history detection in Futhark, an equi-
valent sequential Python implementation and the test suite for validation are all
available at https://github.com/nhey/recresid-roc. The Futhark library for fit-
ting linear models using a rank-revealing QR decomposition is available at https:

//github.com/nhey/lm. The integration of stable history detection with bfast is
available at https://github.com/nhey/bfast.

Future work The R reference implementation offers many features not considered
in this project. These features can most likely be parallelised through similar tech-
niques as those presented in [Gie+20] and sustained here.

This project revealed a need for Futhark implementations of advanced factoriza-
tions from linear algebra, where the focus is as much on numerical stability as it is on
high-performance. The implementation of rank-revealing QR decomposition, given
in this report, is written in a sequential style and the benchmarking results should
benefit greatly from this being parallelised.

Finally, there are likely performance optimisations to be had in the data-parallel
implementations given in the repositories linked to above; the implementation part of
this project has been focused on strict validation against the R reference implement-
ation while showing different parallelisation strategies, and not much effort has gone
into fine-tuning the resulting implementations.

master 6a3d476

36 Massively Parallel Selection of Stable History Period

References

[AW20] Josh Alman and Virginia Vassilevska Williams. A Refined Laser Method
and Faster Matrix Multiplication. 2020. arXiv: 2010.05846 [cs.DS].

[BDE75] R. L. Brown, J. Durbin and J. M. Evans. “Techniques for Testing the
Constancy of Regression Relationships over Time”. In: Journal of the
Royal Statistical Society. Series B (Methodological) 37.2 (1975), pp. 149–
192. issn: 00359246. url: http://www.jstor.org/stable/2984889.

[Ble96] Guy E. Blelloch. “Programming Parallel Algorithms”. In: Commun. ACM
39.3 (Mar. 1996), pp. 85–97. issn: 0001-0782. doi: 10.1145/227234.

227246. url: https://doi.org/10.1145/227234.227246.
[Cha87] Tony F. Chan. “Rank revealing QR factorizations”. In: Linear Algebra and

its Applications 88-89 (1987), pp. 67–82. issn: 0024-3795. doi: https:
/ / doi . org / 10 . 1016 / 0024 - 3795(87) 90103 - 0. url: https : / / www .

sciencedirect.com/science/article/pii/0024379587901030.
[EHO18] Martin Elsman, Troels Henriksen and Cosmin E. Oancea. Parallel Pro-

gramming in Futhark. 2018. url: https://futhark-book.readthedocs.
io.

[GH84] Jacqueline S. Galpin and Douglas M. Hawkins. “The Use of Recursive
Residuals in Checking Model Fit in Linear Regression”. In: The American
Statistician 38.2 (1984), pp. 94–105. issn: 00031305. url: http://www.
jstor.org/stable/2683242.

[Gie+20] F. Gieseke et al. “Massively-Parallel Change Detection for Satellite Time
Series Data with Missing Values”. In: 2020 IEEE 36th International Con-
ference on Data Engineering (ICDE). 2020, pp. 385–396. doi: 10.1109/
ICDE48307.2020.00040.

[Ham+20] Eliakim Hamunyela et al. “Implementation of BFASTmonitor Algorithm
on Google Earth Engine to Support Large-Area and Sub-Annual Change
Monitoring Using Earth Observation Data”. In: Remote Sensing 12 (Sept.
2020), p. 2953. doi: 10.3390/rs12182953.

[Han01] Bruce E. Hansen. “The New Econometrics of Structural Change: Dating
Breaks in U.S. Labour Productivity”. In: Journal of Economic Perspect-
ives 15.4 (Dec. 2001), pp. 117–128. doi: 10.1257/jep.15.4.117. url:
https://www.aeaweb.org/articles?id=10.1257/jep.15.4.117.

[Hay00] Fumio Hayashi. Econometrics. Princeton Univ. Press, 2000. isbn: 0691010188.
[Hen+19] Troels Henriksen et al. “Incremental Flattening for Nested Data Parallel-

ism”. In: Proceedings of the 24th Symposium on Principles and Practice of
Parallel Programming. PPoPP ’19. Washington, District of Columbia: As-
sociation for Computing Machinery, 2019, pp. 53–67. isbn: 9781450362252.
doi: 10.1145/3293883.3295707. url: https://doi.org/10.1145/

3293883.3295707.
[Hen17] Troels Henriksen. “Design and Implementation of the Futhark Program-

ming Language”. PhD thesis. Universitetsparken 5, 2100 København: Uni-
versity of Copenhagen, Nov. 2017.

[KC09] David R. Kincaid and E. Ward Cheney. Numerical analysis: mathematics
of scientific computing. 3rd ed. Pacific Grove, Calif.: Brooks/Cole, 2009.
isbn: 9780821847886.

master 6a3d476

37 Massively Parallel Selection of Stable History Period

[Kre06] Erwin Kreyszig. Advanced engineering mathematics. eng. 9th. Hoboken,
NJ: Wiley, 2006. isbn: 0471728977.

[Lay16] D.C. Lay. Linear Algebra and Its Applications. Pearson Education, 2016.
isbn: 9780321982384.

[Mac95] George Mackiw. “A Note on the Equality of the Column and Row Rank
of a Matrix”. In: Mathematics Magazine 68.4 (1995), pp. 285–286. doi:
10.1080/0025570X.1995.11996337.

[Meh+18] Malte von Mehren et al. Massively-Parallel Break Detection for Satellite
Data. 2018. arXiv: 1807.01751 [cs.DC].

[Mol04] C.B. Moler. Numerical Computing with MATLAB. Other titles in ap-
plied mathematics. Society for Industrial and Applied Mathematics, 2004.
isbn: 9780898715606. url: https://se.mathworks.com/content/dam/
mathworks/mathworks-dot-com/moler/leastsquares.pdf.

[Oan18] Cosmin E. Oancea. Lecture Notes for the Software Track of the PMPH
Course. 2018.

[OB20] Sven Otto and Jörg Breitung. Backward CUSUM for Testing and Mon-
itoring Structural Change. 2020. arXiv: 2003.02682 [econ.EM].

[PT02] Hashem Pesaran and Allan Timmermann. “Market Timing and Return
Prediction under Model Instability”. In: Journal of Empirical Finance 9
(Apr. 2002), pp. 495–510. doi: 10.1016/S0927-5398(02)00007-5.

[R C20] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing. Vienna, Austria, 2020. url:
https://www.R-project.org/.

[Saa03] Y. Saad. Iterative Methods for Sparse Linear Systems. 2nd. USA: Society
for Industrial and Applied Mathematics, 2003. isbn: 0898715342.

[VZH12] Jan Verbesselt, Achim Zeileis and Martin Herold. “Near real-time disturb-
ance detection using satellite image time series”. In: Remote Sensing of
Environment 123 (2012), pp. 98–108. issn: 0034-4257. doi: https://doi.
org/10.1016/j.rse.2012.02.022. url: https://www.sciencedirect.
com/science/article/pii/S0034425712001150.

[Zei+02] Achim Zeileis et al. “Strucchange: An R Package for Testing for Structural
Change in Linear Regression Models”. In: Journal of Statistical Software
7 (July 2002). doi: 10.18637/jss.v007.i02.

A From FORTRAN to Futhark: linear models

Advanced implementations of QR decomposition exists in both R and numpy. In
both cases these implementations are merely wrapped calls to underlying FORTRAN
routines (famously LAPACK and LINPACK). To implement rank-revealing QR de-
composition with limited time available, it seemed most reasonable to replicate one
of these FORTRAN routines.

The R language uses a modified version of LINPACKs pivoting QR decomposition,
dqrdc, for fitting models with the lm package. It is aptly named dqrdc2.23 As part of

23
https://github.com/wch/r-source/blob/79298c499218846d14500255efd622b5021c10ec/src/appl/

dqrdc2.f

master 6a3d476

38 Massively Parallel Selection of Stable History Period

this project dqrdc2 was translated from FORTRAN to both Futhark and Python.24
The Futhark version, being the most interesting, is detailed in section A.2.

Another LINPACK routine called dqrqty was translated from FORTRAN. Given
the output from dqrdc2 and a vector y, this will compute Q

T
y where Q is from the

QR decomposition of a matrix X. It is necessary to translate this, because dqrdc2

does not directly output the QR decomposition, but rather outputs something from
which Q and R can be constructed. See section A.2 for the Futhark source code.

The two translations are organised in a Futhark module that we call linpack_d—
we shall see this in action in the next section.

A.1 Implementing robust linear model fitting in Futhark

This section highlights details necessary to understand the implementation of linear
model fitting using rank-revealing QR decomposition in Futhark. Refer to section 2.1
for an introduction to Futhark.

We structure the implementation in a Futhark module on figure 10 to keep it
decoupled from the stable history detection code. The module is set to work with
64-bit floating point numbers only in lines 1 to 9. This is limitation is due to the
translation of FORTRAN routine dqrdc2 from the linpack_d module.25 We could
alter dqrdc2 to work with 32-bit floating point numbers, but this is not straightforward
as two key tolerance values have to be derived for the 32-bit version.26

For convenience, the module then defines what a regression result is in line 11 along
with auxiliary functions dotprod_nan, back_substitution and identity in lines 13
to 25, which are a dot product that ignores nan values (treats them as zeros), back
substitution for solving upper triangular systems of equations (see [KC09, p. 150])
and a function that generates an identity matrix, respectively.

The interesting part is the fit function in line 40, which given an p⇥n transposed
regressor matrix X

T and an n ⇥ 1 vector of target values, y, will produce the OLS
estimate of the regression parameters, �̂, the covariance parameters, (XT

X)�1, and
the rank of X. A rank-revealing QR decomposition, dqrdc2, is available to us in the
linpack_d module from appendix A. From this we obtain the upper triangular matrix
R from the QR decomposition of X along with the rank of X (lines 41 and 42):

let (A�, pivot, qraux, rank) = linpack.dqrdc2 (copy X�) 1e-7

let R = transpose (lower_triangular_nan A�[:p,:p])

Here, A’ contains RT below the main diagonal.27 To extract R we first need to know
its dimension, k. Since X = QR, we know that the shared dimension of Q and R is
k = min(n, p, r) where r is the rank of X. Fitting a linear regression with p parameters
requires at least p data points, so we always have n � p. Moreover, the rank of X is
at most p. We conclude that k = r  p. However, if we want fit to be mappable in
Futhark it must be regular (see section 5). Since the rank of X may vary, we cannot
use this value to directly slice A’ lest the result will be cause for irregular parallelism.
The first step in determining R from the output is therefore to slice A’[:p,:p] and
then set the values above the diagonal determined by the rank to floating point NAN.
This is done in the lower_triangular_nan function in line 32.

24
The Python programming language, https://www.python.org/

25
in LINPACK a d-prefix denotes double—or 64-bit—precision

26
Attempts at this were made, but a good balance between accuracy and performance, which is

ultimately what these tolerance values adjust, was not immediately found.
27

As to why this is, consult the original FORTRAN source code. This style of output makes more

sense in low-level imperative languages that expose memory pointers to the programmer, such as

FORTRAN or C.

master 6a3d476

39 Massively Parallel Selection of Stable History Period

1 module lm_f64 = {

2 import "../../diku-dk/linalg/linalg"

3 import "linpack"

4

5 module T = f64

6 type real = T.t

7

8 module linalg = mk_linalg T

9 module linpack = linpack_d

10

11 type results [p] = { params: [p]real, cov_params: [p][p]real, rank: i64 }

12

13 let dotprod_nan [n] (xs: [n]real) (ys: [n]real): real =

14 reduce (+) 0 (map2 (\x y -> if T.isnan y then 0 else x*y) xs ys)

15

16 let back_substitution [n] (U: [n][n]real) (y: [n]real): [n]real =

17 let x = replicate n (T.i64 0)

18 in loop x for j in 0..<n do

19 let i = n - j - 1

20 let sumx = dotprod_nan x[i+1:n] U[i,i+1:n]

21 let x[i] = (y[i] T.- sumx) T./ U[i,i]

22 in x

23

24 let identity (n: i64): [n][n]real =

25 tabulate_2d n n (\i j ->if j == i then T.i64 1 else T.i64 0)

26

27 let chol2inv [n] (U: [n][n]real): ([n][n]real, [n][n]real) =

28 let UinvT = map (back_substitution U) (identity n)

29 let Uinv = transpose UinvT

30 in (linalg.matmul Uinv UinvT, Uinv)

31

32 let lower_triangular_nan [m][n] (rank: i64) (L: [m][n]real): [m][n]real =

33 map2 (\j ->

34 map2 (\i ele -> if i+1 > rank || j+1 > rank

35 then T.nan

36 else ele

37) (iota n)

38) (iota m) L

39

40 let fit [n][p] (X�: [p][n]real) (y: [n]real): results [p] =

41 let (A�, pivot, qraux, rank) = linpack.dqrdc2 (copy X�) 1e-7

42 let R = transpose (lower_triangular_nan rank A�[:p,:p])

43 let (cov_params, Rinv) = chol2inv R

44 let Q�y = linpack.dqrqty A� qraux rank y

45 let Q�y = Q�y[:p]

46 let beta = linalg.matvecmul_row Rinv Q�y

47 let beta = scatter (replicate p (T.i64 0)) pivot beta

48 let pp = p*p

49 let pivot_2d = map (\i -> map (\j -> (i,j)) pivot) pivot

50 |> flatten :> [pp](i64,i64)

51 let cov_params = scatter_2d (replicate pp (T.i64 0) |> unflatten p p)

52 pivot_2d (cov_params |> flatten :> [pp]real)

53 let cov_params = map (map (\x -> if T.isnan x then 0 else x)) cov_params

54 let beta = map (\x -> if T.isnan x then 0 else x) beta

55 in { params = beta, cov_params = cov_params, rank = rank }

56 }

Figure 10: A futhark module for fitting linear models that pose ill-conditioned prob-
lems.

master 6a3d476

40 Massively Parallel Selection of Stable History Period

Next, we compute the covariance parameters. Equation (15) reveals that XT
X =

R
T
R and we use this result in line 43:

let (cov_params, Rinv) = chol2inv R

The function chol2inv computes (UT
U)�1 given an upper triangular matrix U:

let chol2inv [n] (U: [n][n]real): ([n][n]real, [n][n]real) =

let UinvT = map (back_substitution U) (identity n)

let Uinv = transpose UinvT

in (linalg.matmul Uinv UinvT, Uinv)

In the two first lines of the body, U is inverted by solving the linear system UH = I

for H = U
�1. This is done using back substitution because U is upper triangular. In

the third and final line (UT
U)�1 is computed. To see this, note that

(UT
U)�1 = U

�1(UT)�1 = U
�1(U�1)T .

In our case, the intermediate result U
�1 = R

�1 is usable later. The reader may re-
cognize chol2inv as the standard procedure used to invert a matrix given its Cholesky
decomposition, albeit transposed.28

We then compute the regression parameters by solving equation (16):

R� = Q
T
y

for � to obtain the OLS estimate. Traditionally this would, once again, be done using
back-substitution because R is upper triangular [KC09, p. 150]. But since we need to
compute R

�1 regardless and back-substituion involves a number of sequential steps,
it is preferable to premultiply both sides with R

�1 in a data-parallel setting (lines 44
to 46):

let Q�y = linpack.dqrqty A� qraux rank y

let Q�y = Q�y[:p]

let beta = linalg.matvecmul_row Rinv Q�y

Here, we use another translation of a LINPACK FORTRAN routine, dqrqty, to com-
pute the right hand side. To reiterate, given y along with the previously computed
A’ and qraux, which contain the information needed to construct Q from the QR
decomposition of X, it will output Q

T
y. See section A.2 for the Futhark translation

of the FORTRAN source code.
A final implementation detail is that the translated LINPACK routines make use

of pivoting to improve numerical stability. Therefore, we pivot each result back to its
original configuration in lines 47 to 52. Lastly, we rid the results of internal padding
using NAN values in lines 53 and 54.

A.2 Translation of LINPACK QR-decomposition

The algorithm used in dqrdc2 is based on Householder reflections, but modified to
also reveal the rank of the input matrix. Luckily the source code is endowed with a
few explanatory comments.29

28
The name chol2inv comes from similar functionality in the R language. In particular we note

that if fed transpose of L from Cholesky decomposition A = LLT
, the result is A�1

.
29

The FORTRAN source code also includes a few historic comments. A particularly enjoyable one

is given as part of the program preface: i am very nervous about modifying linpack code in this way.
if you are a computational linear algebra guru and you really understand how to solve this problem
please feel free to suggest improvements to this code. The comment seems to have been written in

1995. Though the routine was last modified in 2019.

master 6a3d476

41 Massively Parallel Selection of Stable History Period

FORTRAN ordering makes use of row-major indexing, but has a column-major
layout in memory. Therefore the Futhark version of dqrdc2 operates on arrays, trans-
posed relative to the original FORTRAN source program.

The routine takes as input a matrix x whose decomposition is to be computed
along with a tolerance value, tol, used when determining the rank of x. We begin by
computing the norms of the columns of x:
module T = f64

type t = f64

local let dotprod xs ys : t =

T.(reduce (+) (i64 0) (map2 (*) xs ys))

let dnrm2 xs =

T.sqrt (dotprod xs xs)

let dqrdc2 [n][p] (x: *[p][n]t) (tol: t): ([p][n]t, [p]i64, [p]t, i64) =

let qraux = replicate p (T.i64 0)

let work = replicate (2*p) (T.i64 0) |> unflatten 2 p

let jpvt = iota p

let (qraux, work) =

loop (qraux, work) for j < p do

let nrm = dnrm2 x[j,:]

let qraux[j] = nrm

let work[0,j] = nrm

let work[1,j] = if T.(nrm == i64 0) then T.i64 1 else nrm

in (qraux, work)

We then enter the loop that will perform Householder reflections. Each iteration is
initiated by pivoting the columns of x so that those with non-negligible norm come
first. This is the rank-revealing operation. In code:
let lup = i64.min n p

let k = p + 1

let (x, jpvt, qraux, _, k) =

loop (x, jpvt, qraux, work, k) for l < lup do

let (x, jpvt, qraux, work, k) =

loop (x, jpvt, qraux, work, k) = (x, jpvt, qraux, work, k)

while (l+1 < k) && T.(qraux[l] < work[1,l] * tol) do

let lp1 = l + 1

let x =

loop (x) for i < n do

let t = x[l,i]

let x =

loop (x) for j0 < (p - lp1) do

let j = j0 + lp1

let x[j-1,i] = x[j,i]

in x

let x[p-1, i] = t

in x

let i = jpvt[l]

let t = qraux[l]

let tt = work[0,l]

let ttt = work[1,l]

let (jpvt,qraux,work) =

loop (jpvt,qraux,work)

master 6a3d476

42 Massively Parallel Selection of Stable History Period

for j0 < (p - lp1) do

let j = j0 + lp1

let jpvt[j-1] = jpvt[j]

let qraux[j-1] = qraux[j]

let work[0,j-1] = work[0,j]

let work[1,j-1] = work[1,j]

in (jpvt,qraux,work)

let jpvt[p-1] = i

let qraux[p-1] = t

let work[0,p-1] = tt

let work[1,p-1] = ttt

let k = k - 1

in (x, jpvt, qraux, work, k)

The actual Householder reflection on the current column follows suit.

let (qraux, work, x) =

if l+1 == n

then (qraux, work, x)

else let nrmxl = dnrm2 x[l,l:]

in if T.(nrmxl == i64 0)

then (qraux, work, x)

else let nrmxl = if T.(x[l,l] != i64 0)

then dsign nrmxl x[l,l]

else nrmxl

let x =

loop (x) for i0 < n - l do

let i = i0 + l

in x with [l,i] = x[l,i] / nrmxl

let x[l,l] = T.(i64 1 + x[l,l])

let (qraux, work, x) =

loop (qraux, work, x) for j in (l+1..<p) do

let t =

loop (t) = (T.i64 0) for i0 < n - l do

let i = i0 + l

in t - x[l,i] * x[j,i]

let t = t / x[l,l]

let x =

loop (x) for i0 < n - l do

let i = i0 + l

in x with [j,i] = x[j,i] + t * x[l,i]

in if T.(qraux[j] == i64 0)

then (qraux, work, x)

else let tt = T.(((abs x[j,l])/qraux[j]) ** i64 2)

let tt = T.(i64 1 - tt)

let tt = T.(max tt (i64 0))

let t = tt

in if T.(abs t >= f64 1e-6)

then let qraux[j] = T.(qraux[j] * sqrt t)

in (qraux, work, x)

else let qraux[j] = dnrm2 x[j,l+1:]

let work[0,j] = qraux[j]

in (qraux, work, x)

let qraux[l] = x[l,l]

let x[l,l] = T.(i64 (-1) * nrmxl)

in (qraux, work, x)

master 6a3d476

43 Massively Parallel Selection of Stable History Period

in (x, jpvt, qraux, work, k)

let k = i64.min (k-1) n

in (x, jpvt, qraux, k)

where dsign sets the sign of its first argument a to match that of its second argument
b:

local let dsign a b = T.((sgn b) * (abs a))

This operation is undefined when b is zero.
Another LINPACK routine called dqrqty was translated from FORTRAN. Given

the output from dqrdc2 and a vector y, the function dqrqty computes Q
T
y where

Q is from the QR decomposition of a matrix X. The code follows without further
explanation:

module T = f64

type t = f64

-- Compute �Q�y� given output from �dqrdc2� (�Q� is reconstructed

-- from �x� and �qraux�).
let dqrqty [n][p] (x: [p][n]t) (qraux: [p]t) (k: i64) (y: [n]t) =

let ju = i64.min k (n-1)

in loop (qty) = (copy y) for j < ju do

if qraux[j] T.== (T.i64 0)

then qty

else let t = - qraux[j] * qty[j]

let t =

loop (t) for i0 < (n - j - 1) do

let i = i0 + j + 1

in t - x[j,i] * qty[i]

let t = t / qraux[j]

let qty[j] = qty[j] + t * qraux[j]

let qty =

loop (qty) for i0 < (n - j - 1) do

let i = i0 + j + 1

in qty with [i] = qty[i] + t * x[j,i]

in qty

B Filtering missing values

Generally, data sets represent missing values using floating point NAN values. This
is a simple way to store time series with missing values; if we did not use NAN values,
we would have to keep auxiliary arrays that map each value to their respective time
step or use some similar data structure. We therefore “filter” an array containing
missing values by moving all non-NAN values to the start of the array (in order) and
padding the rest of the array with NANs:

let filterPadWithKeys [n] �t

(p : (t -> bool))

(dummy : t)

(arr : [n]t) : (i64 , [n]t, [n]i64) =

let tfs = map (\a -> if p a then 1i64 else 0i64) arr

let isT = scan (+) 0i64 tfs

let i = last isT

let inds= map2 (\a iT -> if p a then iT - 1 else -1i64) arr isT

let rs = scatter (replicate n dummy) inds arr

master 6a3d476

44 Massively Parallel Selection of Stable History Period

let ks = scatter (replicate n (-1i64)) inds (iota n)

in (i, rs , ks)

let filter_nan_pad = filterPadWithKeys ((!) <-< f64.isnan) f64.nan

The function (<-<) is function composition. The implementation is from [Gie+20].
The function scatter facilitates in-place updates. A short description is provided:

val scatter �t [m] [n]: (dest: *[m]t) -> (is: [n]i64) -> (vs: [n]t) -> *[m]t

Using indices found in is and values found in vs, update dest in-place like so:
for i in 0...n-1: dest[is[i]] = vs[i]. Note that the size of dest does not have to
equal n. Further, any index value less than zero in is is ignored.

master 6a3d476

