
Abstract

This thesis presents an implementation of a single-pass scan algorithm described by researchers Merrill
& Garland, as an extension to the functional language Futhark. The work consists of a generalization
of a prior implementation made by Persson & Nicolaisen, modified to work on regular segments.
In addition to generalization of the implementation, two major contributions in the form of an analyt-
ical model to estimate optimal workload per thread based on type analysis and safe rewriting of index
arithmetic to computationally cheaper calculations are made.
The implementation and contributions are tested, and their respective benefits are documented using
Futharks built-in benchmarking system.

U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

Master’s Thesis

Morten Clausen

Regular Segmented Single-pass Scan in Futhark

Supervisor: Cosmin Oancea & Troels Henriksen

Submission: 31st of May, 2021

Contents

1 Introduction & Motivation 3

1.1 The Scan Operator . 3

1.2 Segmented Scan . 4

1.3 Contributions . 5

2 Background 6

3 Preliminaries 7

3.1 Nvidias Single-Pass Scan Algorithm . 7

3.2 Futhark . 9

4 Baseline algorithm 10

4.1 Glossary . 10

4.2 Load & Map . 10

4.3 Transposition . 11

4.4 Thread-Level Scan . 11

4.5 Block-Level Scan . 12

4.6 Lookback Phase . 13

4.7 Result Distribution . 15

4.8 Initial Results . 16

5 Sequentiality Degree 19

5.1 Analytical Model for Shared memory . 20

5.2 Analytical Model for Register memory . 21

5.3 Formula for Sequentiality Degree . 22

5.4 Benchmarks . 23

6 Optimizing Index Calculations 27

6.1 Thread-level scan . 28

6.2 Block-Level Scan . 29

6.3 Lookback . 30

6.4 Result Distribution . 30

6.5 Benchmarks . 33

1

7 Implementation 35

7.1 Determining Sequential Work . 35

7.2 Load & Map and Transpose . 36

7.3 Thread-Level Scan . 36

7.4 Block-Level Scan . 37

7.5 Lookback Phase . 38

7.6 Result Distribution . 41

8 Empirical Validation 42

9 Conclusion & Future Work 44

A Source Code 46

B Benchmarked Programs 52

B.1 LSSP . 52

B.2 Radix-Sort . 53

B.3 KD-Tree . 54

2

1 Introduction & Motivation

1.1 The Scan Operator

A scan applies a binary associative operator � and a neutral element ne on a collection [x0, . . . , xn],
resulting in a new sequence [2]:

scan� ne [x0 . . . xn] = [ne� x0, ne� x0 � x1, . . . , ne�n
i=0 xi]

Scan plays a fundamental role in parallel programming, as Blelloch has shown how to use it as a
building block for parallel programs [1]. He provides examples of applications relying on scans to
perform the majority of computations, such as radix-sort, quick-sort, the merging step of merge-sort
as well as the construction of minimum spanning trees. With scan serving as a fundamental building
block, it is desirable to have an efficient parallel implementation of the primitive.

One potential implementation is the scan-then-propagate strategy, which is illustrated in figure 1.
The collection is divided into groups, and the scan is done in stages. During the first stage, each

Figure 1: Overview of a two-pass parallel scan algorithm

group performs a local scan and writes this partial result to global memory. In the second stage, the
last element from each group’s local scan is collected, scanned and distributed back to their original
position. The last element in each group now has the expected value. In the third and final stage, each
group - except the first - reads the last value of the preceding block, and combines it with the partial
values written in stage 1, which results in the final values for all elements.

This strategy, while clearly parallel, has the drawback of doing two passes over the scanned collection.
Additionally, during stage 1 each element is read and a partial result is written, which is then read
again in stage 3 before being combined and written back again. This results in ⇠4n global memory
movements (⇠2n reads, ⇠2n writes) during the scan. Comparing this to a purely sequential version

3

which is able to perform the scan in a single pass, the optimal is ⇠2n total memory movements. It
is possible to achieve ⇠3n memory movements by skipping the write-back of partial results in stage
1, but this makes fusing multiple operations more cumbersome, as the local scan would have to be
performed again in stage 3. This essentially doubles the amount of operations each group performs,
and is not an absolute improvement to the approach with ⇠4n movements.

One strategy to achieve a single pass and ⇠2n movements is the chained-scan approach where the
input is again split into groups, and like in stage 1 of the scan-then-propagate strategy, each group
performs a local scan. Instead of writing the partial result to global memory, each group waits on the
previous group to calculate the final value of the last element. This value is then combined with the
local scan, and the result is written to global memory. This results in the desired ⇠2n global memory
movements, but introduces a serial dependence between the groups. This extra latency can severely
hinder throughput. To combat this, Merril & Garland has developed a generalized chained-scan with
decoupled-lookback[6]. In this approach, instead of waiting, each group looks at the results of the
predecessors until it either has enough partial results to calculate the final result, or finds a group that
already has a final result available.

1.2 Segmented Scan

Sometimes it is beneficial to split the scanned collection into segments, such that the scan restarts at
the beginning of each new segment. This plays an important role in flattening programs with nested
parallelism, as each inner workload can be treated as a segment and turned into a flat representation
with a segmented operation.

In the case of segmented scan, the scan operator also takes a collection of flags as argument, which
specifies the beginning of segments.An example would be multiplication over a nested array
[[2,3],[4],[4,5]], which is converted to a flat array to avoid irregular parallelism, along with
a flag array:

1 let xs = [2,3,4,4,5]

2 let flags = [true, false, true, true, false]

3 in sgm_scan (*) 1 xs flags -- [2,6,4,4,20]

The flags are constructed in such a way that flag[i] == true when xs[i] is the first element
in a segment. A segmented scan can be expressed as a regular scan by modifying the operator:

sgm_scan� ne xs flags = fst $ unzip $ scan�0 (ne, false) zip(xs, flags)

where

(v1, f1)�0 (v2, f2) = (if f2 then v2 else v1 � v2, f1 _ f2)

If the segments are all of equal length, the flags can however be omitted and instead inferred from
the segment length. The segmented scan is then referred to as regular. Omitting the flags means sav-
ing memory operations, as otherwise each elements would require ⇠2n reads along with ⇠n writes.
Regular segmented scans naturally occur when the scan operator is combined with a map. For in-
stance scanning each row of a matrix can be achieved with: map (scan � ne) matrix, which
corresponds to a regular segmented scan.

4

1.3 Contributions

The goal of this thesis is to implement a chained-scan with decoupled lookback as described in section
1.1, in the compiler for the functional array language Futhark1, such that it works on regular segmented
scans mentioned in section 1.2.

An existing implementation done by Persson & Nicolaisen already exists, but is limited to non-
segmented scans[8]. The Futhark compiler thus defaults to a two-pass approach when compiling
segmented scans.

The contributions to the scan primitive in Futhark are therefore as follows:

1. Modify the existing single-pass scan implementation to also work on regular segments. The
implementation is done in such a fashion where it does not require more memory movements
than the non-segmented version.

2. Deriving a method for dynamically choosing the amount of sequential work each thread should
perform. Having each thread perform some sequential work minimizes inter-thread communi-
cation, but the optimal amount depends on the type of operator provided for the scan.

3. Optimize index calculations in order to minimize the number of 64-bit modulo operations. Cal-
culating relative indices within segments is most easily done by applying the modulo operator
along with the size of segments, but this is a costly operation. Changing these calculations while
preserving the original semantics thus results in better performance.

1
https://futhark-lang.org/

5

2 Background

Since the invention of digital computers, computing power has been a valuable resource. Great efforts
have been made to increase the amount of power per cost, as shown in an article by Moore [7], which
later resulted in the now famous "Moore’s law". This continuos doubling of transistor density lead to
powerful single-processor architectures being the prevalent industry standard. However, as the data in
figure 2 shows, we have reached a point where doubling the number of transistors no longer doubles
performance2.

Figure 2: Data borrowed from K. Rupp

This trend have led to alternative architectures being more attractive, with multi-core processing or
even massively parallel hardware becoming more common. To take full advantage of a parallel archi-
tecture, a different approach to programming is necessary, as reasoning about parallel and sequential
code is inherently different. One model of approach as suggested by Blelloch, is to use scan operations
as primitive building blocks[1]. This has led to a parallel programming paradigm where the program-
mer can abstract away from the low-level details of thread management, and instead think of parallel
programs as combinations of the parallel primitives.

With this approach, the primitives becomes the performance bottleneck, and increasing performance
is a question of implementing the primitive as efficiently as possible.

2
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

6

3 Preliminaries

3.1 Nvidias Single-Pass Scan Algorithm

Futhark is able to compile code using different backends. One of those is Nvidias parallel platform
CUDA. CUDA uses a specific notion of work groups by grouping threads together in warps, which is
further grouped together in blocks. This allows algorithms to be specified through what work should
be done at the thread-level, and what communication should happen at each grouping layer. Nvidia
researchers Merrill & Garland have developed such an algorithm for the scan operation, expressed in
CUDA work groups.

The algorithm is based on a chained-scan, where each block is assigned a slice of the collection to be
scanned. Each block then computes a local scan result of its given slice, and waits for its predecessor
to communicate the value of the last element in its own scan result. This notion of predecessor is
based on assigning a dynamic id to blocks as they start execution. Not all blocks are active at once,
and cannot be expected to be scheduled in a predetermined order. In order to reduce latency when
propagating results between blocks, it is beneficial to arrange for blocks close in time to also be close
in space. As such, when a block spawns it is atomically assigned an id, which means it will work on
the slice immediately following the slice of the block with id� 1, and the dynamic id is incremented.

When a block has received the value of the last element from the previous block, this value is combined
with the local scan result, and the block can send the value of its last element to the next block. This
solution can lead to high latency for the blocks assigned to the end of the collection, which is why
Merrill & Garland propose a decoupled lookback procedure to resolve this issue:

1. Each block is assigned 3 fields:

• Aggregate: The value of the last element in the slice after performing the local scan.

• Prefix: The combined value of the current block’s aggregate and the aggregates of the
previous blocks.

• Status: A flag having one of 3 values:

– A: aggregate has been computed and is available
– P: prefix has been computed and is available
– X: No value is available, starting status of all blocks

2. Each block performs a local scan, and saves the value of the last element in the aggregate field,
then sets its status to A. The first block (id = 0) copies the aggregate value to prefix and sets
status to P, and jumps to step 5.

3. Each block performs a lookback to calculate an exclusive prefix. Starting at the immediately
preceding block, the current block inspects the status and conditionally does the following:

• X: Block until the status changes to not X.

• A: The aggregate value of the inspected block is added to the exclusive prefix, and the
lookback continues to the block preceding the inspected block.

• P: The prefix of the inspected block is added to the exclusive prefix, and the lookback is
terminated.

7

4. Each block combines the exclusive prefix with its aggregate and saves the result in the prefix
field. The status is then set to P.

5. Each block combines the exclusive prefix with the elements obtained from the local scan, to
finally create the total scan.

This decoupled lookback minimizes latency by having each block calculate the exclusive prefix on
their own, removing the serial dependence between blocks.

8

3.2 Futhark

The actual implementation of an efficient segmented scan algorithm will happen through the expansion
of the compiler for the functional language Futhark[5].

As part of the compiling, code is transformed in order to optimize the resulting program. One of these
transformations is the act of fusing maps and scans together. The fusion happens when a map and a
scan is applied to the same collection. A piece of code like:

1 let ys = map (+1) xs

2 in scan (*) 1 ys

can be turned into:

1 scanomap (*) (+1) 1 xs

The scanomap is semantically equivalent to:

scanomap� f ne xs ⌘ scan� ne (map f xs)

The benefit to combining the scan and the map into a single primitive is that it limits the amount of
memory movements required, as the intermediate result is not manifested. This scanomap construct
thus means that the implementation also has to handle potential mappings.

Note that every scan can be viewed as a scanomap where the mapping is the identity function, thus
an implementation of scanomap is general enough to serve as an implementation of a scan with no
mapping. The creation of the scanomap primitive is a case of horizontal fusion, where the output
of one operation becomes the input of another. Futhark also does vertical fusion, meaning maps and
scans on the same source collection are fused. This means if we have a scanomap� f ne and a map g
on the same collection, the implementation must have a workflow corresponding to the illustration in
figure 3.

Figure 3: Handling of input during vertical and horizontal fusion of maps and scan

This again reduces the number of memory movements, as the input collection only needs to be read
once before the map and the scanomap starts computation.

9

4 Baseline algorithm

4.1 Glossary

As mentioned in section 1.3, each thread will perform some sequential work on a number of elements,
which we will refer to as m. Other relevant constants relating to the model of thread blocks include:

Constant Semantic
m The number of elements each thread will operate on at a given time.
ne The neutral element used during the scan.

dynamic_id The id assigned to blocks as they spawn, imposing a temporal ordering on
blocks. The first block to spawn is assigned 0, and the id is incremented for
each following block.

block_size The number of threads within a single block
thread_id The local id of a thread in regards to the block.

A value between 0 and block_size-1.
block_offset The global index at which a block starts, in regards to the entire input collec-

tion.
sgm_size The size of the regular segments in the input collection.

For multi-dimensional arrays, this corresponds to the size of the inner-most
dimension.

Table 1: Glossary of constants values used in the single-pass algorithm

4.2 Load & Map

The fused construct illustrated in figure 3 has already been handled in the implementation of the non-
segmented single-pass scan by Persson & Nicolaisen. Performing mappings can be done in exactly
the same way whether the mapped collection is segmented or not. This part of the algorithm does thus
not differ from the existing implementation, but is still included for completeness.

For simplicity we will use float as the data type in the pseudo-code, even though this in reality is
dependant on the map function.

1 float[] local = new float[m];

2 int block_offset = dynamic_id * m * block_size;

3 for(int i = 0; i < m; i++){

4 int phys_tid = block_offset + threadId + i * block_size;

5 if(phys_tid < input.length)

6 float elem = input[phys_tid];

7 float map_out = g(elem);

8 float scan_in = f(elem);

9 g_dest[phys_tid] = map_out;

10 local[i] = scan_in;

11 else

12 local[i] = ne;

13 }

10

The fused construct is implemented by having a single read per element on line 6, with line 7+9
handling the vertical fusion by applying g and writing the result back, while line 8+10 handles the
horizontal fusion by applying f and keeping the result in local memory.

One thing to note about the calculation of phys_tid on line 4 is that the thread does not calcu-
late m consecutive indices. Rather, each thread calculates and accesses m indices with a stride of
block_size. This results in the entire block reading block_size consecutive elements from
global memory each loop iteration, which ensures coalesced access and improves throughput3.

4.3 Transposition

As a result of the memory coalescing shown in section 4.2, each thread now has m non-consecutive
elements in local memory, which is not useful for computing the scan result. To group consecutive
elements together in the same thread, shared memory is used as a staging buffer for the threads to
transpose the elements. The transposition is carried out like so:

1 for(int i = 0; i < m; i++){

2 int shared_idx = threadId + i * block_size;

3 shr_mem[shared_idx] = local[i];

4 }

5 barrier();

6 for(int i = 0; i < m; i++){

7 int shared_idx = threadId * m + i;

8 local[i] = shr_mem[shared_idx];

9 }

The first loop places elements into shared memory with a stride of block_size, similar to how
the load in section 4.2 was carried out. This then means the shared memory contains a slice of the
transformed input with the ordering preserved, and thus the second loop can simple read from shared
memory using a stride of 1. As a result, the local memory now contains a slice of m consecutive
elements as needed.

4.4 Thread-Level Scan

With local containing consecutive elements, each thread can now perform a sequential scan on the
m elements. Since this scan might cross between segments, each thread has to calculate the global
indices of the elements they scan. If the global index of an element corresponds to the start of a new
segment, it is not combined with the previous value, effectively restarting the scan.

1 int gIdx = block_offset + threadId * m;

2 for(int i = 1; i < m; i++){

3 bool new_sgm = gIdx+i % sgm_size == 0;

4 if(!new_sgm)

5 local[i] = ScanOp(local[i-1], local[i]);

6 }

7 shr_mem[threadId] = local[m-1];

3
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/

11

The last resulting element after the local scan is published in shared memory on line 7, in order to
prepare for a block-level scan. Also note that the loop starts with i=1, as the first element in the local
array has no predecessor to be combined with.

4.5 Block-Level Scan

At the block-level, the results each thread published in shared memory is scanned again. The goal is
to obtain an accumulator value for each thread, which can be combined with the local results to obtain
a partial scan of the entire block.

This scan in shared memory is done using the pre-existing groupScan construct, which needs a
predicate, a scan operator and the array to be scanned. This predicate takes two indices and returns
true whenever the two indices belong to different segments.

The groupScan can utilize any block-wide scan strategy to carry out the scan, but we will assume
the used strategy is a scaled down version of the scan-then-propagate strategy mentioned in section
1.1. That is, the shared memory is divided into sub-blocks with length equal to the size of a warp.
Each warp then performs a scan like stage 1 in figure 1. The first warp then collects the last element
from the other warps, temporarily moving its own results to local memory. The first warp then scans
the collected results and distributes them back (like stage 2), before restoring its own results from local
memory. Each warp them combines the distributed result with its own scan result to obtain the final
value (like stage 3). Since this scan is performed entirely in shared memory, the penalty of doing two
passes is negligible.

The groupScan needs a way to determine if two elements belong to different segments. This is most
easily done by converting the indices of the elements in shared memory back to their original global
indices.

A formula for determining whether two global indices i1, i2 belong to different regular segments is
i2 � i1 > i2 % sgm_size, when i1 i2. The elements being scanned are however results from
slices of length m, so the indices have to be converted by multiplying with this length, and adding the
block_offset.

1 bool crossesSegment(int idx1, int idx2){

2 int end = idx2 * m + block_offset + m - 1;

3 int start = idx1 * m + block_offset + m - 1;

4 return end - start > end % sgm_size;

5 }

6 groupScan crossesSegment ScanOp shr_mem;

7 float acc;

8 if (threadId == 0)

9 acc = shr_mem[grp_size-1];

10 else

11 acc = shr_mem[threadId-1];

After performing the block-level scan on lines 1-6, each thread reads the value at the position of its
predecessor (line 11). The exception is the first thread which has no predecessor. This thread instead
reads the last value of the entire block, as this is the aggregate value described in section 3.1.

At this point, each thread could combine the accumulator value from the groupScan with its own
local values, but this action is delayed until after the lookback has been performed.

12

4.6 Lookback Phase

The lookback functions as described in section 3.1. Extra cases regarding segments can be added to
optimize the lookback, in addition to the cases required for correctness. Originally, the first block
would skip the lookback and immediately publish its result as a prefix, since it had no preceding
blocks. This can be expanded to include any block which perfectly overlaps with the beginning of a
new segment. That is, any block where the first element is also the first element of a segment can skip
the lookback phase. This is handled on lines 2-7 in the code below. The variables aggrs, prefixs

and statuss are global arrays containing the aggregates, prefixes and status flags of the blocks.

Furthermore, blocks that overlap segment boundaries still need the prefix from the preceding block, but
the successor blocks do not. This means boundary-overlapping blocks can also immediately publish
their result as a prefix before starting the lookback in order to speedup the lookback for other blocks.
This is handled on lines 11-16 and 73-75 by calculating the distance to the next segment boundary
(sgm_size - sgm_idx) and comparing it to the number of elements treated by the block.

During the lookback itself, only the first warp will be used to calculate the required prefix, as shown
in line 9. exchange and warpscan are fixed arrays in shared memory which contains the ag-
gregates and the flags of the blocks visited by the warp during each iteration of the loop on line 25.
shr_readOffset is a singleton array also in shared memory, used to communicate the current
lookback offset between the entire warp.

At each iteration of the loop, 32 blocks (size of a warp) are inspected for their aggregates and statuses.
When looking at blocks outside the same segment as the block performing the lookback, the result of
the block can be ignored and the flag can be treated as P, as it is not necessary to look past that block.
Thus lines 31-38 ensures that block results are only included when part of the current segment.

The first thread then sequentially reduces the aggregates and flags from lowest dynamic id to highest
(line 43-69). When the right-hand flag is A the aggregates are simply combined (line 58) and we
increment how many aggregates we have used so far (line 59). The used-counter determines how far
the lookback should be shifted for the next iteration of the loop. If the right-hand flag is not A, we keep
the right-hand value and flag as the result, and reset the used-counter.

After the sequential reduction has been carried out, the thread checks is the resulting flag is P and stops
the lookback loop if that is the case (line 64-65). Otherwise the lookback is shifted depending on the
value of used, and the rest of the warp is informed of the new offset. (line 66-68). In any case, the
first thread combines the calculated aggregate with its current prefix to obtain either a partial or total
prefix, depending on the value of the final flag (line 69).

After the lookback is terminated, the first thread publishes the prefix of the block and sets the status
to P (lines 72-75), unless the block crosses a segment boundary. In that case, this was already done
on lines 11-16. The rest of the threads reads the prefix from the first thread (lines 79-80), and the final
values can now be calculated.

1 float prefix = 0;

2 int sgm_idx = block_offset % sgm_size

3 bool block_new_sgm = sgm_idx == 0;

4 if(block_new_sgm && threadId == 0)

5 prefixs[dynamic_id] = acc;

6 statuss[dynamic_id] = P;

7 acc = 0;

8 barrier();

13

9 if(!block_new_sgm && threadId < warp_size)

10 if(threadId == 0)

11 if(sgm_size - sgm_idx >= block_size * m)

12 aggrs[dynamic_id] = acc;

13 statuss[dynamic_id] = A;

14 else

15 prefixs[dynamic_id] = acc;

16 statuss[dynamic_id] = P;

17 warpscan[0] = statuss[dynamic_id-1];

18 warp_barrier();

19 int status = warpscan[0];

20 if(status == P)

21 if(threadId == 0)

22 prefix = prefixs[dynamic_id-1];

23 else

24 int readOffset = dynamic_id - warp_size;

25 while(readOffset > -warp_size)

26 float aggr = 0;

27 int flag = X;

28 int readI = readOffset + threadId;

29 int prev_end = (readI + 1) * block_size * m - 1;

30 bool same_sgm = block_offset - prev_end <= sgm_idx

31 if(readI >= 0 && same_sgm)

32 flag = statuss[readI];

33 if(flag == P)

34 aggr = prefixs[readI];

35 else if(flag == A)

36 aggr = aggrs[readI];

37 else if(readI >= 0)

38 flag = P;

39 exchange[threadId] = aggr;

40 warpscan[threadId] = flag;

41 warp_barrier();

42 flag = warpscan[warp_size-1];

43 if(threadId == 0) # single-threaded reduce

44 if(!(flag == P))

45 float agg1 = 0;

46 float agg2;

47 int flag1 = X;

48 int flag2;

49 int used = 0;

50 for(int i = 0; i < warp_size; i++)

51 flag2 = warpscan[i];

52 agg2 = exchange[i];

53 if(!(flag2 == A))

54 flag1 = flag2;

55 agg1 = agg2;

56 used = 0;

57 else

58 agg1 = ScanOp(agg1, agg2);

14

59 used++;

60 flag = flag1;

61 aggr = agg1;

62 else

63 aggr = exchange[warp_size-1];

64 if (flag == P)

65 readOffset = -warp_size;

66 else

67 readOffset -= used;

68 shr_readOffset[0] = readOffset;

69 prefix = ScanOp(aggr, prefix)

70 warp_barrier();

71 readOffset = shr_readOffset[0];

72 if (threadId == 0)

73 if(sgm_size - sgm_idx >= block_size * m)

74 prefixs[dynamic_id] = ScanOp(prefix, acc);

75 statuss[dynamic_id] = P;

76 exchange[0] = prefix;

77 acc = 0;

78 barrier();

79 if (threadId != 0)

80 prefix = exchange[0];

4.7 Result Distribution

Once the prefix has been calculated, it is time to combine it with the accumulated value from the group
scan and the local value from the thread scan. During this final combination of values, there are two
cases to consider:

1. The thread scan crossed between segments

2. The group scan crossed between segments

In case 1, it means that the accumulated value from the group scan should only be combined with
the local values appearing before the segment crossing. This is handled in line 12-16 by calculating
how many elements are left in the current segment, and then skipping the combining step if the loop
exceeds that amount.

In case 2, the prefix value obtained from the lookback phase should only be combined with the ac-
cumulated value from the group scan, if the local slice of the thread overlaps with the segment the
previous block ended in. This is calculated in lines 4-7 by finding the global index of the last element
in the previous block, and the global index of the first element in the current thread.

If neither of the scans crossed between segments, the prefix value, accumulated value and local value
are all combined.

Result distribution:

1 float x1; float y1;

2 float x2 = prefix; #from lookback phase

15

3 float y2 = acc; #from groupScan

4 int prev_block_end = block_offset-1;

5 int thread_start = block_offset + threadId * m;

6 bool prev_block_same_sgm =

7 thread_start - prev_block_end <= thread_start % sgm_size;

8 if(prev_block_same_sgm)

9 x1 = ScanOp(x2, y2);

10 else

11 x1 = y2;

12 int prev_Idx = thread_start - 1;

13 int already_scanned = prev_Idx % sgm_size;

14 int remaining_sgm = sgm_size - already_scanned - 1;

15 for(int i = 0; i < m; i++){

16 if(i < remaining_sgm)

17 y1 = local[i];

18 local[i] = ScanOp(x1, y1);

19 }

Before writing the final results back to global memory, the values are once again transposed in shared
memory, to ensure the writing is also done in a coalesced fashion. This step is simply repeating what
was done in section 4.3, but with lines 2 and 7 swapped.

4.8 Initial Results

Futhark has a built-in benchmarking system, which in addition to timing the execution of compiled
code also compares the results of parallel execution to the results obtained from sequential execution.
Each benchmark thus also verifies correctness of the algorithm, by ensuring equivalence with the
sequential counterpart. The comparison is an equivalence test and not an exact equality, as floating
point arithmetic is non-associative. As a consequence, parallel algorithms working on floating points
rarely obtain the exact values a sequential algorithm would. These results are instead verified to be
within an acceptable margin of difference.

Testing out the modified algorithm on the pre-made micro benchmarks, which sums over segments of
32-bit integers, a clear speedup can be perceived. The times are averages of 100 runs, and with each
thread scanning m = 9 elements. While the sizes of the segments vary, the number of segments are
chosen such that the total number of elements are 107 in all cases.

Figure 4a shows that on a GTX 780 Titan, the single-pass algorithm provides a 4.0x-4.6x speedup on
segmented sums compared to the two-pass version. On the faster RTX 2080 Titan (4b) the relative
speedup is smaller but still quite significant, with a range of 2.9x-3.5x improvement. A thing to note
is that the relative performance increases in the favor of the single-pass version as the size of the
segments decreases. This is because smaller segments increases the likelihood of reaching the special
cases during the lookback phase, where either the block aligns with a segment start or overlaps a
segment boundary, which speeds up the lookback phase.

Figure 5 shows the same benchmarks, but expressed as operation speed rather than total running time.
Since the benchmarks sum 107 integers of 4 bytes each, and each element is transferred twice (1 read,
1 write), the total amount of bytes moved is 80 MB. While the two-pass approach performs 2 reads
and 2 writes per element and thus moves 160 MB of data, using 160 MB in the calculation of effective
bandwidth makes comparing the results from the two approaches nonsensical.

16

(a) Segmented sum on a GTX 780 Ti (b) Segmented sum on a RTX 2080 Ti

Figure 4: Running time of segmented sums

(a) Segmented sum on a GTX 780 Ti (b) Segmented sum on a RTX 2080 Ti

Figure 5: Speed of segmented sums

Rather than calculating the effective bandwidth of the actual implementation, we will calculate a band-
width based on the specification of the optimal implementation, which as discussed in section 1.1 uses
2n memory movements.

The speed is thus found by dividing 80 MB with the running time of the relevant benchmark. The
results are 74-86 GB/s on the GTX 780 Ti, and 295-400 GB/s on the RTX 2080 Ti. The respective
memory bandwidth of these gpus are 336 GB/s and 616 GB/s 45. Compared to the bandwidth, the
implementation reaches 22%-25% of the theoretical limit on GTX 270 Ti, and 48%-65% on RTX
2080 Ti. The current implementation thus seems to benefit higher-end hardware more.

If we extend the benchmarks to not just segmented scans, but also segmented radix-sort which utilizes
scan, we can see the difference in performance is not only due to hardware differences. Using the same
parameters as before (m = 9, runs = 100), but only including segments of size � 104 so the sorting
step is not too small, figure 6 shows that the speedup becomes only 1.2x for GTX 780 Ti and 1.1x for
RTX 2080 Ti. In fact, the single-pass performs worse on segments of size = 104 on the 2080 Ti.

This discrepancy is explained in the following section, by taking a more detailed look at the scan
operator used and the number of sequential elements per thread.

4
https://www.techpowerup.com/gpu-specs/geforce-gtx-780-ti.c2512

5
https://www.techpowerup.com/gpu-specs/geforce-rtx-2080-ti.c3305

17

(a) Segmented radix-sort on a GTX 780 Ti (b) Segmented radix-sort on a RTX 2080 Ti

Figure 6: Running times of radix-sort

18

5 Sequentiality Degree

As the values of each element in a scan depends on the values of the preceding elements, a parallel scan
naturally requires a certain amount of communication between threads in order to propagate results.
This inter-thread communication however adds latency to the execution, meaning that reducing the
amount of inter-thread communication increases the overall speed of the implementation.

This fact is the reason behind letting each thread sequentially calculate a slice of elements, rather
than assigning a single thread to each elements. The greater the value of m, the less inter-thread
communication is needed. This of course carries the risk of starving the gpu of work, but as long as
m is sufficiently small, this does not pose a real issue. More precisely, in a scan of n elements on a
gpu with t concurrently active threads, as long as m is not greater than n

t , the amount of parallelism is
unaffected.

On an ideal GPU, optimal performance would be achieved with m =
⌅
n
t

⇧
, but in reality hardware

properties limit the range of m to somewhere between 1 and ⇠16. This limit is due to resources such
as memory and registers being shared across threads. Threads are being managed by a streaming
multiprocessor (SM), which has a set amount of registers and shared memory available. The more
resources each thread requires, the fewer concurrent active threads the SM can spawn.

Assuming there is always enough work to not decrease the amount of parallelism, we are interested in
choosing the greatest value of m that does not inhibit the number of concurrent active threads. This is
done by inspecting the amount of resources available and comparing it to the amount required by the
scan operator.

Concentrating on the results of the radix sort on the 2080 Ti with segment size = 104, if we repeat
the benchmark with different values of m, the data paints a different picture than the results shown in
section 4.8.

Figure 7: Benchmarking different values of m for radix-sorting

As depicted in figure 7, the performance goes from a 1.1x slowdown at m = 9 to a 2.2x speedup at
m = 2. Inspecting the scan operator used in radix-sort, it can be seen to perform pairwise addition on
a 4-tuple of 64-bit integers:

1 let pairwise op (a1,b1,c1,d1) (a2,b2,c2,d2) =

2 (a1 `op` a2, b1 `op` b2, c1 `op` c2, d1 `op` d2)

3 [...]

4 let offsets = scan (pairwise (+)) (0,0,0,0) flags

19

Comparing this to a less resource-intensive operator such as addition on 32-bit floats, m can be set
much higher. As figure 8 shows, increasing m increases performance until reaching the optimal value
at m = 15. At m = 16 resource usage reaches a point where the number of active threads has to be
reduced, worsening performance.

Figure 8: Benchmarking different values of m for floating-point addition

There are two main factors to consider in determining the size of m: shared memory and register
memory. For the sake of example, we will use the specifications of GPUs with compute capability 7.5,
as documented in [3].

5.1 Analytical Model for Shared memory

As specified in the technical documentation, blocks on a gpu with compute capability 7.5 can have
a maximum of 64 KB of shared memory allocated. Dividing by the maximum number of possible
threads in a block (1024), we get that each thread can have 64 bytes of shared memory available,
corresponding to 16 32-bit words. This of course assumes that both of these values are set to the upper
limit, which might not be the case in reality.

By inspecting the steps of the algorithm, we can identify where shared memory is used and possibly
reused. During the reading step, as shown in section 4, all the elements are loaded from global to
shared memory as part of a transposition, in order to ensure coalesced memory access. This step
is also mirrored in the final write-back. Each thread naturally loads m elements, but the amount of
memory used is not m ⇤ t, with t being the size of an element in bytes. Tuples are not treated as
singular elements, rather each element within a tuple is processed separately. This means that the first
element of all tuples is transposed, and the shared memory is reused when the second element is being
transposed and so on. If we define max(t) to be the size of the largest atomic type contained in t, the
amount of shared memory each thread uses for the load/write steps becomes m ⇤max(t).

When doing the thread-level scan as presented in section 4.4, shared memory is only used in the end
when each thread publishes the last element of the scanned slice. Since each thread only publishes a
single element, this memory usage is independent of m. The intra-block scan from section 4.5 operates
in shared memory, but does not use additional memory, because it reuses the shared memory allocated
during the reading stage. This means the shared memory used per thread for these steps is the total
size of t in bytes, which we will call sum(t).

Doing the lookback presented in section 4.6, the result of previous blocks are loaded into shared mem-

20

ory, along with the flag that identifies whether the result is prefix, aggregate or unavailable. The
amount of block results is equal to the size of a warp, which is 32 in this case. The flag value
is contained in a single byte, which means the amount of shared memory used doing lookback is
(sum(t) + 1) ⇤ warp_size. This is not per thread, but for the entire block. If this amount of memory
does not exceed the memory used in the previous step, the memory from before can simply be reused.

If we view the shared memory usage of the previous step for the entire block, it becomes sum(t) ⇤
block_size. The size of the block has to be at least the size of a warp, so with a large enough sum(t)
and block_size > warp_size, we get sum(t)⇤block_size � (sum(t)+1)⇤warp_size. The smallest
possible size of sum(t) is 1 byte, and by using that value we can determine the minimum block size
needed to guarantee the lookback reuses memory from the scan step.

1 ⇤ block_size � (1 + 1) ⇤ warp_size
=)

block_size � 2 ⇤ warp_size

We will thus continue the calculations with the assumption that blocks contains at least 2 warps. We
know the constraints on shared memory is 64 bytes per thread and have:

max(m ⇤max(t), sum(t)) 64

Since we want the maximal m and sum(t) is independent of m, for cases where sum(t) > 64 we may
as well choose an m such that m ⇤max(t) = sum(t). We can thus rewrite the constraint to:

m max(64, sum(t))

max(t)
(1)

5.2 Analytical Model for Register memory

GPUs can also experience performance issues due to register pressure, which happens if execution
requires more 32-bit registers than are available. Trying to determine the exact amount of registers
a given piece of code will use is a difficult matter, so instead we will rely on some conservative
assumptions. The most likely effect the value of m has on register usage, is the loops that run for m
iterations, which might get vectorized and thus require registers for each value of the loop variables.

Since values represented with fewer than 32 bits still occupy a full 32-bit register, we need a slightly
different notion of sum(t). All types less than 32 bits in size need to be rounded up to one word. Thus
we define:

sum " (t) =
⌃tprim2t max(size(tprim), 4)

4

Where size(t) returns the size of a type t in bytes.

The programming guide specifies a max of 64K 32-bit registers per block, which results in 64 registers
per thread using the same assumption as in the previous section. We will also further assume that these
64 registers are general-purpose, and not further split into e.g. floating-point registers and address
registers. The loop that relies on m and uses the most variables is the loop in the result distribution:

1 float[] local = float[m];

2 [...]

21

3 float x1; float y1;

4 float x2 = prefix; #from lookback phase

5 float y2 = acc;

6 [...]

7 int last_tIdx = block_offset + threadId * m - 1;

8 int already_scanned = last_tIdx % sgm_size;

9 int remaining_sgm = sgm_size - already_scanned - 1;

10 for(int i = 0; i < m; i++){

11 if(i < remaining_sgm)

12 y1 = local[i];

13 local[i] = ScanOp(x1, y1);

14 }

The loop variables are i (1 word), the address of local[i] (2 words), the scan-parameter y1
(sum " (t)) and the result of the scan operation (sum " (t)). This means that in terms of m,
m ⇤ (2 ⇤ sum " (t) + 3) registers are needed. Depending on the scan operator, this number can vary
quite a bit. If the operator is normal addition, the resulting code would most likely compile into in-
structions where one of the parameter registers are also used for the result, thus reducing the number of
registers in use. Conversely, if the operator makes use of intermediary values, the number of registers
would be greater.

The constants used in the loop of the result distribution is remaining_sgm (1 word) and x1 (sum "
(t) words). remaining_sgmwould generally need to be stored in 2 words depending on the segment
size, but in the next section we will cover how to guarantee a value that fits within 1 word. We will
thus for now assume 1 word is enough. This leaves us with 64� 1� sum " (t) registers for the loop
variables:

64� 1� sum " (t) � m ⇤ (2 ⇤ sum " (t) + 3)

=)

m 63� sum " (t)

2 ⇤ sum " (t) + 3
(2)

5.3 Formula for Sequentiality Degree

Combining the constraints from (1) and (2), we should choose the maximal integer m such that:

m min

✓
max(64, sum(t))

max(t)
,

63� sum " (t)

2 ⇤ sum " (t) + 3

◆
(3)

This constraint is of course specific to gpus with compute capability 7.5, and should be more generic
by relying on device properties. If we instead use kmem = max_block_mem

max_block_size and kreg =
max_block_reg
max_block_size , we

can write:

m = max

✓
min

✓�
max(kmem, sum(t))

max(t)

⌫
,

�
kreg � 1� sum " (t)

2 ⇤ sum " (t) + 3

⌫◆
, 1

◆
(4)

The inequality is changed to an equality, as we want the greatest value for m. Additionally, for very
large type sizes, flooring the quotients might result in 0. As the algorithm cannot function with m = 0,
m is bounded with a lower limit of 1.

22

The values of kreg and kmem should ideally be calculated dynamically by querying the device that
executes the code, but as the size of the local arrays for each thread depends on the value of m,
the result cannot be passed as a normal parameter. CUDA requires size-expressions for arrays to be
constant, and while the run-time for the program corresponds to the compile-time of the kernel, the
Futhark compiler code does not easily allow for the passing of values as compile-time constants.

Instead we will use static values for the hardware constants, and use kreg = 64, kmem = 48 on the RTX
2080 Ti and kreg = 64, kmem = 36 on GTX 780 Ti. The reason that kmem is not 64 and 48 respectively,
is that the devices have been configured to use 1/4 of the available memory as cache, meaning the max
amount of shared memory is instead 3/4 of the specified maximum in the documentation.

Going back to the initial example of the radix-sort, even though the sorting is of 32-bit integers, the
scan used is over 4-tuples of 64-bit integers, which explains why m = 9 was not a good fit. Using
the values of the RTX 2080 Ti and memory sizes of a 4-tuple of int64, we can plug in the values to
determine m:

m = max

✓
min

✓�
max(48, 8)

2

⌫
,

�
64� 1� 8

2 ⇤ 8 + 3

⌫◆
, 1

◆
= max(min(24, 2), 1) = 2

This gives us the m = 2 which the benchmarks in figure 7 showed to be the most efficient.

5.4 Benchmarks

To test how beneficial it is to have a semi-dynamically chosen m, we can test the performance of a
scan on differently sized types. Figure 9 shows an additive scan on integers represented with 1, 2, 4
and 8 bytes on the GTX 780 Ti.

For the sake of brevity, the lower bound on m of 1 will be omitted in the following calculations, as the
type sizes are small enough that the bound becomes irrelevant. With kreg = 64, kmem = 36, the values
of m becomes:

int8 : m = min

✓�
max(36, 1)

1

⌫
,

�
64� 1� 1

2 ⇤ 1 + 3

⌫◆
= min(36, 12) = 12

int16 : m = min

✓�
max(36, 2)

2

⌫
,

�
64� 1� 1

2 ⇤ 1 + 3

⌫◆
= min(18, 12) = 12

int32 : m = min

✓�
max(36, 4)

4

⌫
,

�
64� 1� 1

2 ⇤ 1 + 3

⌫◆
= min(9, 12) = 9

int64 : m = min

✓�
max(36, 8)

8

⌫
,

�
64� 1� 1

2 ⇤ 2 + 3

⌫◆
= min(4, 8) = 4

For each of the data types, m has also been fixed to various other values to see how the dynamically
chosen one compares. In figures 9a-9c, the dynamic values performs best out of the four tested, while
in 9d, m = 6 performs about 10% better than the dynamic m = 4.

23

(a) For 1 byte elements, m is dynamically set to 12 (b) For 2 byte elements, m is dynamically set to 12

(c) For 4 byte elements, m is dynamically set to 9 (d) For 8 byte elements, m is dynamically set to 4

Figure 9: GTX 780 Ti executing with different values of m on different types

Figure 10 shows the same experiment repeated on the RTX 2080 Ti. Here the chosen values are:

int8 : m = min

✓�
max(48, 1)

1

⌫
,

�
64� 1� 1

2 ⇤ 1 + 3

⌫◆
= min(48, 12) = 12

int16 : m = min

✓�
max(48, 2)

2

⌫
,

�
64� 1� 1

2 ⇤ 1 + 3

⌫◆
= min(24, 12) = 12

int32 : m = min

✓�
max(48, 4)

4

⌫
,

�
64� 1� 1

2 ⇤ 1 + 3

⌫◆
= min(12, 12) = 12

int64 : m = min

✓�
max(48, 8)

8

⌫
,

�
64� 1� 1

2 ⇤ 2 + 3

⌫◆
= min(6, 8) = 6

Looking at figures 10a-10c, the dynamic value is outperformed by m = 15. 15 seems to be the
limit, as the performance worsens significantly at m = 16. A possibly explanation could be what
was discussed in the section about register memory; Using operators that easily translate to machine
instructions can allow for efficient reusing of registers. In fact, the two benchmarks in figure 9 where
the register constraint was the limiting factor (int8 and int16) also perform better at m = 15, with a
3%-15% increase for int8 and 4%-16% for int16, depending on segment size.

Figure 10d shows another important caveat to the method of choosing m. m = 6 performs best for
segments where the size is 1000, but for sizes � 10000 the best performing value is m = 9. For

24

(a) For 1 byte elements, m is dynamically set to 12 (b) For 2 byte elements, m is dynamically set to 12

(c) For 4 byte elements, m is dynamically set to 12 (d) For 8 byte elements, m is dynamically set to 6

Figure 10: RTX 2080 Ti executing with different values of m on different types

25

segments of size = 1000 and below, the segment size is smaller than the number of elements each
block handles. Thus each block never has to inspect more than one block during the lookback. At size
= 10000 and above, the segment size is greater than the number of elements in each block, meaning
more work has to be performed during lookback. During lookback, the more elements each block
computes, the fewer blocks have to be inspected before hitting a segment boundary. This explains
the change of optimal values for m between 1000 and 10000 segment size. What can be concluded
from this is; The method for determining m only considers how to avoid exceeding register and shared
memory. It does not take into account whether the benefit from increasing the elements per block and
decreasing inter-thread communication outweighs the penalty from exceeding memory constraints.

This can further be seen in 10d due to the fact that m = 12 performs worse than m = 9 and m = 6
as a result of exceeding the memory constraints, but at segments size � 10000, m = 15 performs
better than m = 12 even though it exceeds the memory constraints even more. As mentioned, this is
because increasing the elements per block lessens the workload during lookback, and the benefit starts
to outweigh the drawback of exceeding memory.

The dynamic m does however seem to be a general improvement over the static value, as no one value
for m would have performed great in a benchmark, without doing poorly in another.

26

6 Optimizing Index Calculations

Modulo calculations are generally very costly to perform, especially on 64-bit values. With the base-
line algorithm described in section 4, there are currently used 64-bit modulo calculations on line 3 of
the thread-level scan (sec 4.4), line 4 of the block-level scan (sec 4.5), line 2 of the lookback (sec 4.6)
and line 7+13 of the results distribution (sec 4.7). To minimize the cost, we will look at a way to safely
transform the calculations into 32-bit arithmetic operations.

The divisor in all the mentioned modulo calculations is sgm_size, and we cannot generally assume
the size of segments to fit within 32 bits. We can however change the calculations on a case basis. The
are two major cases to consider: when the size of segments is less than the number of elements treated
by a block (1), and when the size is greater than or equal the number of elements treated by a block
(2). We will refer to the number of elements treated by a block as the "group size".

The group size is the product of m and the number of threads in a group. Since we are now using
equation 4 from section 5.3 to determine m, we can put an upper limit on this value by looking at
hardware specifications. With the current model, the maximum possible shared memory per thread is
164 (Compute Capability 8.0), and the smallest data type passed to scan must take up 1 byte.

We therefore know that m will not be greater than 164/1, and the number of threads in a block does
not exceed 1024 (at least on current NVIDIA hardware). The maximum group size then becomes
164·1024, which easily fits within 32 bits. This does rely on the assumption that the value of sum " (t)
is not greater than the amount of shared memory per thread, but even if that is the case, as long as a
scan is not performed on elements with a data size greater than 4MB each, the group size is still
representable with 32 bits.

If we are in case (1) where the segment size is less than the group size, we know the segment size to
be representable in 32 bits also.

If we are in case (2) where the segment size is larger than the group size, there is at most one segment
crossing within each block. This case can further be divided into cases where the current block has no
segment crossings (2a), and blocks that have exactly one segment crossing (2b). If we are in case (2b),
we can calculate the relative index within the block where the segment crossing in located. This will
be a value between 0 and group size-1, so is representable with 32 bits. In case (2a) this relative index
can be set to any value equal to or greater than the group size, as there is no segment crossing within
the current block.

On line 2 of the lookback (section 4.6), we calculated a 64-bit sgm_idx value, representing what
element of the current segment the block starts at. The calculation of this value is left unchanged and
will be the only 64-bit modulo operation we do not remove. The value could be computed by a single
thread and propagated to the rest of the block, but in testing this approach it did not prove to be faster
than having the threads individually compute the value.

Subtracting sgm_idx from sgm_size results in the distance to the first segment crossing in terms
of number of elements, which gives us the relative index needed for case (2). Referring to this as a
boundary index, the boundary index can be viewed as both the number of remaining elements in the
current segment, as well as the index in the group where the first new segment starts. In case (2a)
where there is no new segment within the current block, the boundary index is set to the group size. In
case (2b) we know sgm_size-sgm_idx to be representable with 32 bits.

If we are in case (1), the size of segments fits within 32 bits, and we will store it in a 32-bit variable
sgm_sizeC. When not int case (1) we will set this value to the group size.

27

The calculation of these values then becomes:

1 int64 sgm_idx = block_offset % sgm_size;

2 int32 boundary_idx = (int32) min(m*block_size, sgm_size-sgm_idx);

3 int32 sgm_sizeC = (int32) min(m*block_size, sgm_size);

With two variables taking one of two different values each, there are 4 combinations of assignments:

A boundary_idx = sgm_size� sgm_idx ^ sgm_sizeC = sgm_size:
With sgm_sizeC equal to sgm_size, the segment size must be less than the group size,
which means we are in case (1).

B boundary_idx = m ⇤ block_size ^ sgm_sizeC = m ⇤ block_size:
If sgm_sizeC is equal to the group size, we know its because sgm_size is not less than the
group size, meaning we are in case (2).
Further, because the boundary index is also equal to the group size, the next segment crossing
must not happen within the block and we are in case (2a).

C boundary_idx = sgm_size� sgm_idx ^ sgm_sizeC = m ⇤ block_size:
With similar reasoning as above, we are in case (2). Because sgm_size-sgm_idx is less
than the group size, there is a segment crossing within the block and we are in case (2b).

D boundary_idx = m ⇤ block_size ^ sgm_sizeC = sgm_size:
Looking at the definition of boundary_idx above, we must have boundary_idx sgm_sizeC.
With boundary_idx = m ⇤ block_size this gives us m ⇤ block_size sgm_sizeC.

sgm_sizeC is also upper bounded by the group size, so we have sgm_sizeC m⇤block_size.
Combining these two inequalities shows that we must have sgm_sizeC = m⇤block_size, which
means this is just assignment B again, and we are in case (2a).

We have now associated the cases with corresponding variable assignments, and the correctness of the
new calculations in the algorithm will be argued for on a case-by-case basis.

6.1 Thread-level scan

Only the calculation of new_sgm has to be changed at this step:

1 for(int i = 1; i < m; i++){

2 bool new_sgm = (threadId*m+i-boundary_idx) % sgm_sizeC == 0;

3 if(!new_sgm)

4 local[i] = ScanOp(local[i-1], input[gIdx+i];

5 }

The key observation here is that the sub-expression threadId ⇤m+ i will have a value between 0 and
block_size ⇤m� 1.

• Case (1):
With both boundary_idx and sgm_siceC being less than block_size ⇤ m, new_sgm will be
true when 9k.k 2 N) threadId⇤m+ i = sgm_sizeC ⇤k+ boundary_idx. More informally,
new_sgm is true when the thread index reaches the boundary index, and for each full segment
length after the boundary.

28

• Case (2a):
Since we have boundary_idx = block_size⇤m, we get threadId⇤m+ i�boundary_idx < 0,
and thus new_sgm will never be true as required.

• Case (2b):
As sgm_sizeC = block_size ⇤m and threadId ⇤m + i � boundary_idx < block_size ⇤m,
new_sgm will only be true exactly when threadId⇤m+i�boundary_idx = 0, which happens
at threadId ⇤m+ i = boundary_idx.

6.2 Block-Level Scan

As before, the threads publish their last element before starting a intra-group scan. Since each thread
only publishes a single element, the indices for this scan will have values between 0 and block_size�1.
The predicate for determining if two indices belong to different segments is modified like so:

1 bool crossesSegment(idx1, idx2){

2 int end = idx2*m+m-1;

3 int start = idx1*m+m-1;

4 return end - start > (end+sgm_sizeC-boundary_idx) % sgm_sizeC)

5 }

Similar to the thread-level scan, end and start takes on values in the range m�1 and block_size⇤m�1.

• Case (1):
With sgm_sizeC = sgm_size and boundary_idx = sgm_size � sgm_idx, The calcula-
tion on line 4 becomes end � start > end + sgm_idx mod sgm_size. Since sgm_idx =
block_offset mod sgm_size, we get:

end+ sgm_idx mod sgm_size
=

end+ (block_offset mod sgm_size) mod sgm_size
=

end+ block_offset mod sgm_size

We are then back to the original calculation used in section 4.5, meaning the original semantics
are preserved.

• Case (2a):
We have sgm_sizeC = block_size ⇤ m = boundary_idx. The expression on line 4 thus
corresponds to end� start > end which will never be true.

• Case (2b):
Note that since sgm_sizeC = block_size ⇤ m, boundary_idx sgm_sizeC and end <
block_size ⇤ m, we get that end + sgm_sizeC � boundary_idx mod sgm_sizeC can only
take one of two values, either end+ sgm_sizeC � boundary_idx or end� boundary_idx.

29

With only 1 segment crossing, the predicate should only be true when start < boundary_idx^
boundary_idx end. This corresponds to proving:

start < boundary_idx ^ boundary_idx end

()
end� start > end+ sgm_sizeC � boundary_idx mod sgm_sizeC

To prove the ()) case, assume start < boundary_idx ^ boundary_idx end. Then we
have end + sgm_sizeC � boundary_idx � sgm_sizeC, which means end + sgm_sizeC �
boundary_idx mod sgm_sizeC = end � boundary_idx. Since start < boundary_idx, we
have end� start > end� boundary_idx and line 4 returns true.

For the (() case, assume we have end�start > end+sgm_sizeC�boundary_idx mod sgm_sizeC.
If end + sgm_sizeC � boundary_idx mod sgm_sizeC = end � boundary_idx we must
have boundary_idx end. We also have end � start > end � boundary_idx which implies
start < boundary_idx as required.

If we instead have end+sgm_sizeC�boundary_idx mod sgm_sizeC = end+sgm_sizeC�
boundary_idx, we have end � start > end + sgm_sizeC � boundary_idx. However, since
boundary_idx sgm_sizeC we get sgm_sizeC � boundary_idx � 0, and with start > 0
we arrive at a contradiction. This case can thus not happen, which concludes the proof.

6.3 Lookback

For the lookback phase, no changes are necessary. The calculation to determine if results from two
different block belong to different segments relies on sgm_idxwhich we have kept, and no additional
modulo operations are used during this step.

1 int readI = readOffset + threadId;

2 int prev_end = (readI + 1) * group_size * m - 1;

3 bool same_sgm = group_offset - prev_end <= sgm_idx

6.4 Result Distribution

For the final step, two calculations where performed to determine whether the result of the previous
block should be applied to the current thread, and how many elements the thread could combine before
crossing into a new segment.

1 bool block_new_sgm = sgm_idx == 0;

2 bool prev_block_same_sgm = !block_new_sgm && threadId*m < boundary_idx;

3 int remaining_sgm =

4 sgm_sizeC - 1 -

5 (threadId*m-1+sgm_sizeC-boundary_idx) % sgm_sizeC;

6 for(int i = 0; i < m; i++){

7 if(i < remaining_sgm)

8 local[i] = ScanOp(x1, local[i])

9 }

30

The first calculation is rather simple, as we just have to check that the current group does not perfectly
overlap with a segment start, and that the first element of the thread comes before the boundary.

remaining_sgm does not always need to calculate the exact amount of elements remaining in the
segment, only if the current thread actually crosses between segments. When the thread does not cross
between segments, any value such that remaining_sgm � m will suffice.

All segment crossing will be located at indices k ⇤ sgm_size + boundary_idx for some k 2 N.
The starting index of threads can similarly be expressed as an integer quotient of sgm_sizeC with a
remainder:

9q, r 2 N.threadId ⇤m = q ⇤ sgm_sizeC + r ^ r < sgm_sizeC

Threads that overlap segments thus do so at k = q + 1 when r > boundary_idx, and at k = q when
r boundary_idx.

We will start by proving case (1). When r > boundary_idx, threads need to calculate

remaining_sgm
=

k ⇤ sgm_size+ boundary_idx� threadId ⇤m
=

(q + 1) ⇤ sgm_size+ boundary_idx� q ⇤ sgm_sizeC + r

=

sgm_size+ boundary_idx� r

Rewriting the calculation on line 5 gives us:

threadId ⇤m� 1 + sgm_sizeC � boundary_idx mod sgm_sizeC
=

(q + 1) ⇤ sgm_sizeC + r � 1� boundary_idx mod sgm_sizeC
=

r � 1� boundary_idx

remaining_sgm then becomes:

sgm_sizeC � 1� (r � 1� boundary_idx)
=

sgm_sizeC � r + boundary_idx

Since we are in the case (1) we have sgm_sizeC = sgm_size and we get what we needed.

When r boundary_idx, threads need to calculate:

remaining_sgm
=

k ⇤ sgm_size+ boundary_idx� threadId ⇤m
=

q ⇤ sgm_size+ boundary_idx� q ⇤ sgm_sizeC + r

=

boundary_idx� r

31

The difference of r and boundary_idx is never more than sgm_sizeC, as we have 0 r boundary_idx
sgm_sizeC. Rewriting of line 5 then becomes:

threadId ⇤m� 1 + sgm_sizeC � boundary_idx mod sgm_sizeC
=

(q + 1) ⇤ sgm_sizeC + r � 1� boundary_idx mod sgm_sizeC
=

sgm_sizeC + r � 1� boundary_idx

remaining_sgm then becomes:

sgm_sizeC � 1� (sgm_sizeC + r � 1� boundary_idx)
=

boundary_idx� r

This means that all threads calculate the exact value for remaining_sgm, and not just those that
overlap a segment boundary. We are therefore guaranteed to have remaining_sgm � m when threads
do not cross. This concludes case (1)

In case (2a) we are guaranteed that no threads overlap a segment crossing. We have sgm_sizeC =
boundary_idx = block_size⇤m, so remaining_sgm = sgm_sizeC�threadId⇤m = block_size⇤
m� threadId ⇤m. Since threadId < block_size, we get remaining_sgm � m as wanted.

In case (2b) we know there is exactly one segment crossing at boundary_idx. Thus only the thread
that fulfills threadId⇤m boundary_idx < (threadId+1)⇤m needs to calculate the precise value
for remaining_sgm.
With threadId ⇤m boundary_idx, we get threadId ⇤m � 1 � boundary_idx < 0 and thus line
5 is:

threadId ⇤m� 1 + sgm_sizeC � boundary_idx mod sgm_sizeC
=

threadId ⇤m� 1 + sgm_sizeC � boundary_idx

Therefore remaining_sgm = boundary_idx� threadId⇤m, which is the same as the distance from
the start of the thread to the boundary, equivalent to the number of remaining elements.

The other threads in the block must just needs the inequality of remaining_sgm � m satisfied.
If we have theadId ⇤m boundary_idx, but do not have boundary_idx < (threadId+ 1) ⇤m, we
still get remaining_sgm = boundary_idx � threadId ⇤ m. Since boundary_idx � (threadId +
1) ⇤m we get remaining_sgm � (threadId+ 1) ⇤m� threadId ⇤m = m as required.

If threadId ⇤m > boundary_idx, line 5 gives us:

threadId ⇤m� 1 + sgm_sizeC � boundary_idx mod sgm_sizeC
=

threadId ⇤m� 1� boundary_idx

(block_size� 1) ⇤m� 1

This means remaining_sgm � block_size ⇤m� 1� ((block_size� 1) ⇤m� 1) = m.

32

6.5 Benchmarks

Repeating the benchmarks from section 5.4 with the new index calculations, a speedup of between
20%-40% is obtained on both gpus. Figure 11 shows the results of the GTX 780 Ti and figure 12
shows the results of the RTX 2080 Ti. Similar to the results in section 4.8, the performance increase
gets larger as the segment size becomes smaller. As the lookback is skipped more often for small
segments, the index calculations takes up a relatively larger part of the computation, which explains
why scans on smaller segments benefit more from the optimization.

(a) m is dynamically set to 12 (b) m is dynamically set to 12

(c) m is dynamically set to 9 (d) m is dynamically set to 4

Figure 11: Comparison of new vs. old index calculations on the GTX 780 Ti

33

(a) m is dynamically set to 12 (b) m is dynamically set to 12

(c) m is dynamically set to 12 (d) m is dynamically set to 6

Figure 12: Comparison of new vs. old index calculations on the RTX 2080 Ti

34

7 Implementation

The Futhark compiler is written in Haskell, and implementation of the single-pass segmented scan is
done by creating a new Haskell module for the algorithm.

The module is located at src/Futhark/CodeGen/ImpGen/Kernels/SegScan/SegSinglePass.hs.

Adding the single-pass algorithm as possible compilation output is achieved by adding a guard clause
when the chosen backend is CUDA. The clause is on lines 6-11, and imposes some restrictions on the
scan operator. The provided operator cannot be vectorized (line 10), and the data type it operates on
cannot be arrays (line 11). If this does not hold, the compilation will default to the two-pass approach.

Additionally, the general compilation of scans in Futhark allows for providing several scan operators,
but we have only covered how to handle one operator in section 4. Therefore on line 7, multiple
possible scan operators are combined into a single do-all operator, so the case is still covered by the
presented single-pass algorithm.

This does however come with a drawback, as the resulting operator also has the combined resource
cost of all the individual operators. As discussed in section 5, the amount of sequential work each
thread should perform is constrained by the type size of the operator. With individual operators it
could have been possible to reuse shared memory and registers by applying the operators one at a
time. This would result in the constraining factor is the operator with the greatest type size, rather than
the combined type size of all the operators.

1 compileSegScan pat lvl space scans kbody = sWhen (0 .<. n) $ do

2 target <- hostTarget <$> askEnv

3 case target of

4 CUDA

5 ...

6 | all ok scans ->

7 SegSinglePass.compileSegScan pat lvl space (combineScans scans) kbody

8 where

9 ok op =

10 segBinOpShape op == mempty

11 && all primType (lambdaReturnType (segBinOpLambda op))

12 _ -> TwoPass.compileSegScan pat lvl space scans kbody

13 where

14 n = product $ map toInt64Exp $ segSpaceDims space

7.1 Determining Sequential Work

In section 5.3 we arrived at equation 4 for determining the value of m. Implementing this is then
simply a question of calculating the required values sum(t), sum " (t) and max(t).

Line 1 converts the return type of the scan operator to a flat list of primitive types. This list serves as
the basis for calculating the necessary values. primByteSize returns the size of a primitive type in
bytes, so calculating sum(t) is easily done with a fold over the type list, as shown on line 2. Similarly
on line 5, max(t) is calculated by choosing the maximum value after converting the types to their byte
sizes. Line 3 and 4 calculates sum " (t) by using a modified primByteSize with a lower bound of
4 bytes.

35

On lines 10 and 11 we have the static hardware constants for the GTX 780 Ti. Lines 12 and 13 then
use these constants to calculate the two constraints we arrived at in sections 5.1 and 5.2. Note that the
flooring is done implicitly by utilizing integer division. Finally line 14 implements the equation from
section 5.3.

1 tys = map (\(Prim pt) -> pt) $ lambdaReturnType $ segBinOpLambda scanOp

2 sumT = foldl (\bytes typ -> bytes + primByteSize typ) 0 tys

3 primByteSize' = max 4 . primByteSize

4 sumT' = foldl (\bytes typ -> bytes + primByteSize' typ) 0 tys `div` 4

5 maxT = maximum (map primByteSize tys)

6 -- RTX 2080 Ti constants (CC 7.5)

7 -- k_reg = 64

8 -- k_mem = 48

9 -- GTX 780 Ti constants (CC 3.5)

10 k_reg = 64

11 k_mem = 36

12 mem_constraint = max k_mem sumT `div` maxT

13 reg_constraint = (k_reg-1-sumT') `div` (2*sumT'+3)

14 m = fromIntegral $ max 1 $ min mem_constraint reg_constraint

7.2 Load & Map and Transpose

The steps of loading, mapping and transposing the input before starting the scan is unaffected by the
generalization of segmenting the scan. This part of the implementation is therefore exactly the same
as the implementation by Persson & Nicolaisen, and not described in greater detail for the sake of
brevity.

7.3 Thread-Level Scan

As described in section 4.4, the thread-level scan computes the global index of the second element it
treats (lines 1-3), as the first element has no local predecessor the be combined with. The scan is then
carried out in a for-loop (line 4), with a check to avoid combining elements from different segments.
Lines 8-10 compile the check as described in section 6.1. Lines 12-22 apply the scan operator on two
neighboring elements if the check passes. Lines 24-26 then write the last element to shared memory
for preparation of the block-level scan.

1 globalIdx <-

2 dPrimVE "gidx" $

3 (kernelLocalThreadId constants * m) + 1

4 sFor "i" (m -1) $ \i -> do

5 let xs = map paramName $ xParams scanOp

6 ys = map paramName $ yParams scanOp

7
8 isNewSgm <-

9 dPrimVE "new_sgm" $

10 (globalIdx + sExt32 i - boundary) `mod` segsize_compact .==. 0

11
12 sUnless isNewSgm $ do

36

13 forM_ (zip privateArrays $ zip3 xs ys tys) $ \(src, (x, y, ty)) -> do

14 dPrim_ x ty

15 dPrim_ y ty

16 copyDWIMFix x [] (Var src) [i]

17 copyDWIMFix y [] (Var src) [i + 1]

18
19 compileStms mempty (bodyStms $ lambdaBody $ segBinOpLambda scanOp) $

20 forM_ (zip privateArrays $ bodyResult $

21 lambdaBody $ segBinOpLambda scanOp) $ \(dest, res) ->

22 copyDWIMFix dest [i + 1] res []

23
24 forM_ (zip prefixArrays privateArrays) $ \(dest, src) ->

25 copyDWIMFix dest [sExt64 $ kernelLocalThreadId constants]

26 (Var src) [m - 1]

27 sOp localBarrier

7.4 Block-Level Scan

As described in section 6.2, the predicate for determining if the indices of two elements belong to
different segments is implemented in lines 1-5. The predicate is then passes to the groupScan

construct on lines 10-16, which performs a block-level scan in shared memory, in the manner described
in section 4.5.

The first thread then reads the last element from the groupScan result (lines 18-20), with the other
threads reading the value at position threadId-1 (lines 21-23). All threads store the read value as
a local accumulator value.

1 let crossesSegment =

2 Just $ \from to ->

3 let from' = (from + 1) * m - 1

4 to' = (to + 1) * m - 1

5 in (to' - from') .>. (to'+segsize_compact-boundary) `mod` segsize_compact

6
7 scanOp' <- renameLambda $ segBinOpLambda scanOp

8 accs <- mapM (dPrim "acc") tys

9
10 groupScan

11 crossesSegment

12 (tvExp numThreads)

13 (kernelGroupSize constants)

14 scanOp'

15 prefixArrays

16 sOp localBarrier

17
18 let firstThread acc prefixes =

19 copyDWIMFix (tvVar acc) []

20 (Var prefixes) [sExt64 (kernelGroupSize constants) - 1]

21 notFirstThread acc prefixes =

22 copyDWIMFix (tvVar acc) []

23 (Var prefixes) [sExt64 (kernelLocalThreadId constants) - 1]

37

24 sIf (kernelLocalThreadId constants .==. 0)

25 (zipWithM_ firstThread accs prefixArrays)

26 (zipWithM_ notFirstThread accs prefixArrays)

27 sOp localBarrier

7.5 Lookback Phase

The compiler implementation responsible for the lookback phase is 170+ lines of code and rather
cumbersome. We choose to instead focus on the part of the implementation which has changed to
handle the inclusion of segments. The entire source code listing can be found in appendix A.

Corresponding to the start of the code in section 4.6, lines 1-3 initializes the prefixes to their corre-
sponding neutral element. Line 4 then calculates whether the block perfectly starts a new segment. If
it does, line 6-14 makes the first thread in the block publish the block aggregate as a prefix (line 8-9),
and set the status of the block to P (line 12). Afterwards the local accumulator of the first thread which
stored the block aggregate is reset to the neutral element (line 13-14).

1 prefixes <-

2 forM (zip scanOpNe tys) $ \(ne, ty) ->

3 dPrimV "prefix" $ TPrimExp $ toExp' ty ne

4 blockNewSgm <- dPrimVE "block_new_sgm" $ sgmIdx .==. 0

5
6 sWhen (blockNewSgm .&&. kernelLocalThreadId constants .==. 0) $ do

7 everythingVolatile $

8 forM_ (zip incprefixArrays accs) $ \(incprefixArray, acc) ->

9 copyDWIMFix incprefixArray [tvExp dynamicId] (tvSize acc) []

10 sOp globalFence

11 everythingVolatile $

12 copyDWIMFix statusFlags [tvExp dynamicId] (intConst Int8 statusP) []

13 forM_ (zip scanOpNe accs) $ \(ne, acc) ->

14 copyDWIMFix (tvVar acc) [] ne []

The next step altered with segment handling is the early publishing of the block prefix if the first and
last element within the block are in different segments. This is the first part of the actual lookback,
which only starts if the block did not perfectly start a new segment, and only includes the first warp of
threads (line 1).

The first thread checks if the index of the next segment crossing is equal to the number of elements
treated by the block (lines 2-3). As discussed in section 6, this only happens when there are no segment
crossings within the block. If there are no crossing, the thread proceeds as normal to publish the block
aggregate and set the status to A (lines 4-10). Otherwise, the aggregate can be published as a prefix,
as other blocks do not need to perform a lookback past the segment crossing. Lines 13-19 thus makes
the first thread write the aggregate as a prefix and set the block status to P.

1 sWhen (bNot blockNewSgm .&&. kernelLocalThreadId constants .<. warpSize) $ do

2 sWhen (kernelLocalThreadId constants .==. 0) $ do

3 sIf (boundary .==. sExt32 (unCount group_size * m))

4 (do

5 everythingVolatile $

6 forM_ (zip aggregateArrays accs) $ \(aggregateArray, acc) ->

38

7 copyDWIMFix aggregateArray [tvExp dynamicId] (tvSize acc) []

8 sOp globalFence

9 everythingVolatile $

10 copyDWIMFix statusFlags [tvExp dynamicId] (intConst Int8 statusA) []

11)

12 (

13 do

14 everythingVolatile $

15 forM_ (zip incprefixArrays accs) $ \(incprefixArray, acc) ->

16 copyDWIMFix incprefixArray [tvExp dynamicId] (tvSize acc) []

17 sOp globalFence

18 everythingVolatile $

19 copyDWIMFix statusFlags [tvExp dynamicId] (intConst Int8 statusP) []

20)

21 copyDWIMFix warpscan [0] (Var statusFlags) [tvExp dynamicId - 1]

22 sOp localFence

The last part of the lookback that is modified is when the first warp reads the values and statuses of
the blocks. Lines 1-3 starts by setting the read offset to 32 blocks before the current block, and line 4
defines the reading should stop when the offset is 32 blocks before the very first block.

Lines 5-8 defines the predicate that determines whether an inspected block belongs to the same seg-
ment as the block performing the lookback. It takes a read offset, which is also the dynamic id of
a block, and calculates the global index of the last element in that block (line 6-7). It then finds the
distance from that element to the first element in the current block, and checks whether that interval
overlaps a segment boundary on line 8.

The predicate is used on line 16, where the reading continues as normal on line 17-30 by reading either
the aggregate or prefix depending on the status of the block, if the last element in the block belongs to
the same segment as the start of the current block. If not, lines 31-32 makes the thread overwrite the
flag to P without reading a value, which means the aggregate is still the neutral element, as declared
on line 11-12.

1 readOffset <-

2 dPrimV "readOffset" $

3 sExt32 $ tvExp dynamicId - sExt64 (kernelWaveSize constants)

4 let loopStop = warpSize * (-1)

5 sameSegment readIdx =

6 let startIdx = sExt64 (tvExp readIdx + 1) *

7 kernelGroupSize constants * m - 1

8 in tvExp blockOff - startIdx .<=. sgmIdx

9 sWhile (tvExp readOffset .>. loopStop) $ do

10 readI <- dPrimV "read_i" $ tvExp readOffset + kernelLocalThreadId constants

11 aggrs <- forM (zip scanOpNe tys) $ \(ne, ty) ->

12 dPrimV "aggr" $ TPrimExp $ toExp' ty ne

13 flag <- dPrimV "flag" statusX

14 used <- dPrimV "used" (0 :: Imp.TExp Int8)

15 everythingVolatile $

16 sIf (tvExp readI .>=. 0 .&&. sameSegment readI)

17 (do

18 copyDWIMFix (tvVar flag) []

39

19 (Var statusFlags) [sExt64 $ tvExp readI]

20 sIf

21 (tvExp flag .==. statusP)

22 (forM_ (zip incprefixArrays aggrs) $ \(incprefix, aggr) ->

23 copyDWIMFix (tvVar aggr) []

24 (Var incprefix) [sExt64 $ tvExp readI]

25)

26 (sWhen (tvExp flag .==. statusA) $ do

27 forM_ (zip aggrs aggregateArrays) $ \(aggr, aggregate) ->

28 copyDWIMFix (tvVar aggr) []

29 (Var aggregate) [sExt64 $ tvExp readI]

30))

31 (sWhen (tvExp readI .>=. 0) $

32 copyDWIMFix (tvVar flag) [] (intConst Int8 statusP) [])

After the lookback, the first thread combines the block aggregate with the prefix obtained from the
lookback, if it did not already publish a result before the lookback started. Like prior to the lookback,
line 4 checks that there are no segment crossings within the block. It then passes the prefix from
the lookback and the block aggregate -which is stored in acc- to the scan operator (line 6-8). The
combined result is then published as a prefix (line 10-12) and the status is set to P line (15-16). Lines
18-19 stores the prefix in shared memory in order to propagate the value to the other threads in the
block, and line 20-21 resets acc to the neutral element for the first thread.

1 sWhen (kernelLocalThreadId constants .==. 0) $ do

2 let xs = map paramName $ take (length tys) $ lambdaParams scanOp

3 ys = map paramName $ drop (length tys) $ lambdaParams scanOp

4 sWhen (boundary .==. sExt32 (unCount group_size * m))

5 (do

6 forM_ (zip xs prefixes) $ \(x, prefix) -> dPrimV_ x $ tvExp prefix

7 forM_ (zip ys accs) $ \(y, acc) -> dPrimV_ y $ tvExp acc

8 compileStms mempty (bodyStms $ lambdaBody scanOp) $

9 everythingVolatile $

10 forM_ (zip incprefixArrays $ bodyResult $ lambdaBody scanOp) $

11 \(incprefixArray, res) ->

12 copyDWIMFix incprefixArray [tvExp dynamicId] res []

13 sOp globalFence

14 everythingVolatile $

15 copyDWIMFix statusFlags [tvExp dynamicId]

16 (intConst Int8 statusP) []

17)

18 forM_ (zip exchanges prefixes) $ \(exchange, prefix) ->

19 copyDWIMFix exchange [0] (tvSize prefix) []

20 forM_ (zip3 accs tys scanOpNe) $ \(acc, ty, ne) ->

21 tvVar acc <~~ toExp' ty ne

40

7.6 Result Distribution

The result distribution is the last part of the compiler that is changed. Lines 1 and 2 gets the parameters
from the scan operation. scanOp and scanOp’ is the same operation, only with renamed parameters
to avoid naming conflicts, as we are writing to two sets of parameters at the same time.

Lines 4-9 writes the accumulator value and the prefix from the block-level scan and the lookback phase
to the parameters of the scan operator. Then lines 11-14 combines the prefix and accumulator if there
is no segment boundary between the start of the current thread and the end of the previous block. If
there is, the distribution continues with just the accumulator value, as shown on line 17.

Lines 19-22 then calculates the remaining segment or stopping_point as described in section 6,
with lines 24-31 generation the for loop which calculates the final values of the scan. Line 25 ensures
that the accumulator is only combined if the elements is before the stopping point.

1 let (xs, ys) = splitAt (length tys) $ map paramName $ lambdaParams scanOp

2 (xs', ys') = splitAt (length tys) $ map paramName $ lambdaParams scanOp'

3
4 forM_ (zip4 (zip prefixes accs) (zip xs xs') (zip ys ys') tys) $

5 \((prefix, acc), (x, x'), (y, y'), ty) -> do

6 dPrim_ x ty

7 dPrim_ y ty

8 dPrimV_ x' $ tvExp prefix

9 dPrimV_ y' $ tvExp acc

10
11 sIf (kernelLocalThreadId constants * m .<. boundary .&&. bNot blockNewSgm)

12 (compileStms mempty (bodyStms $ lambdaBody scanOp') $

13 forM_ (zip3 xs tys $ bodyResult $ lambdaBody scanOp') $

14 \(x, ty, res) -> x <~~ toExp' ty res)

15 (forM_ (zip xs accs) $

16 \(x, acc) ->

17 do copyDWIMFix x [] (Var $ tvVar acc) [])

18
19 stop <-

20 dPrimVE "stopping_point" $

21 segsize_compact - (kernelLocalThreadId constants * m - 1 +

22 segsize_compact - boundary) `rem` segsize_compact

23
24 sFor "i" m $ \i -> do

25 sWhen (sExt32 i .<. stop - 1) $ do

26 forM_ (zip privateArrays ys) $ \(src, y) ->

27 copyDWIMFix y [] (Var src) [i]

28 compileStms mempty (bodyStms $ lambdaBody scanOp) $

29 forM_ (zip privateArrays $ bodyResult $ lambdaBody scanOp) $

30 \(dest, res) ->

31 copyDWIMFix dest [i] res []

41

8 Empirical Validation

As mention in section 1.2, a regular segmented scan naturally occurs when mapping a scan over regular
sized inputs. In order to benchmark the final implementation on different applications, we can thus
take some programs that rely on the scan operator and apply them on a list of equally sized input
problems.

The programs used for benchmarking and validation can be found in appendix B, but we give here a
high-level overview on how the programs benefit from the scan operator:

• Longest Satisfying Streak Problem (LSSP):
LSSP is a problem about finding the longest interval within a given array, such that the elements
in the interval satisfies a provided predicate, e.g. being sorted or only being positive numbers.

Although not immediately apparent how to solve this with a scan, the elements can be trans-
formed to include extra information such as the longest streak that must start with the first ele-
ment, longest streak that must end with the last element, longest streak encountered so far and
so on. This transforms the problem into that of a ”near homomorphism”, a concept introduced
by Gorlatch[4]. The scan operator can then use this extra information to compute the desired
result.

• Radix-Sort:
As mentioned in the introduction, radix-sorting can be implemented by using a scan to calculate
the indices of elements during partitions. Radix-sorting performs a split of elements based on
whether a specific bit is set or not, and scanning over those bits with the addition-operator results
in the indices the element should be moved to during the split.

• KD-Tree:
A KD-tree is a data-structure used for partitioning k-dimensional points and storing them for
faster searching. The construction of the tree is done by sorting the points on a dimension,
choosing the median, and splitting the points into two equally sized parts based on their relation
to the median. This process is repeated on the two new parts until some lower threshold is hit.

The sorting can be done using a radix-sort as just discussed, and since the construction creates
equally sized partitions (with padding for odd length inputs), this already utilizes an underlying
regular segmented scan. The construction of a KD-tree does thus not need to be mapped onto
multiple inputs before we can bench the effects of the segmented scan implementation.

GTX 780 Ti RTX 2080 Ti
Time [µs] Speedup Time [µs] Speedup

Application 2-Pass 1-Pass 2-Pass 1-Pass
LSSP 7 444 5 343 x1.39 1 839 768 x2.39
Radix-Sort 151 045 121 267 x1.25 70 808 29 177 x2.43
KD-Tree 606 422 469 235 x1.29 268 952 140 461 x1.91

Table 2: Time measurement and speedups of different applications

The running times and improvements of the 3 applications can be seen in table 2. Each benchmark has
been run 100 times, and the reported values are the averages of these runs.

42

The LSSP program is instanced to calculate the longest sorted streak from 105 32-bit integers with
100 problem inputs. The radix-sort sorts 104 32-bit integers and is given 1000 problem inputs. The
KD-tree construction is provided one large problem input of around 2 · 106 5-dimensional points, with
32-bit floats as coordinates.

On the GTX 780 Ti, the speedup is a modest 25%-39%. While still a significant speedup, the results
are outshined by the 91%-143% speedup gained on the RTX 2080 Ti. This difference in performance
increase is explained by the hardware specifications mentioned in section 5. The GTX 780 Ti has 3/4
the amount of shared memory available that the RTX 2080 Ti has, and as a result the RTX 2080 Ti is
able to reduce inter-thread communication to a larger degree without suffering a performance penalty.
This means that scans carried out on gpus with more resources get a higher performance boosts.

43

9 Conclusion & Future Work

In section 4 we have shown how to generalize Merrill & Garland’s single-pass scan algorithm to also
account for regular segments. This generalization makes use of short-circuiting calculations that span
across multiple segments, further reducing latency when blocks propagate partial results to successors.

We additionally constructed an analytical model in section 5, to statically determine the amount
of sequential work each thread should perform, with the assumption that device threads would not
be starved of work. The model benefits the compiler by making it produce kernels with reduced
inter-thread communication, without straining the resources of the device. The model conservatively
chooses an amount of sequential work that is estimated to not require more memory resources than
available, even though we have proved there are cases when it can be beneficial to set the amount of
sequential work even higher.

We have shown how to safely change the segment calculations introduced in section 4 into 32-bit
representable arithmetic. This change is proven in section 6 to preserve the original semantics, while
increasing the performance of the generated code.

Finally, we have presented the extension to the Futhark compiler in section 7, and validated the quality
of the compilation output by benchmarking scan-reliant Futhark programs in section 8.

There are still limitations to the implementation, which opens the possibility of further improvements:

• The model for determining sequential work uses hardware specifications in its calculations.
In the implementation these values are hardcoded, meaning application of the model does not
give accurate results for all gpus. Changing the implementation to query the device for these
constants would allow for better general use.

• The calculation of the prefix during the lookback phase is done by a single thread. The calcu-
lation is done in such a way that it is guaranteed to fit within a warp, so applying a warp-level
parallel calculation instead could lead to increased performance.

• The implementation only supports scanning with a single operator. The compiler can fuse mul-
tiple scans together, resulting in multiple operators which has to be combined into one for the
current approach to function. Generalizing the implementation to accept multiple operators and
reusing resources between application of each operator would limit the total resource usage.
This would also mean updating the model for determining sequential work, as lower resource
usage allows each thread to perform more sequential work without exceeding resource limits.

44

References

[1] G. E. Blelloch. “Scans as primitive parallel operations”. In: IEEE Transactions on Computers
38.11 (1989), pp. 1526–1538. DOI: 10.1109/12.42122.

[2] G. E. Blelloch, S. Chatterjee, and M. Zagha. “Scan primitives for vector computers”. In: Pro-
ceedings of the 1990 ACM/IEEE conference on Supercomputing. 1990, pp. 666–675.

[3] CUDA C++ Programming Guide. NVIDIA Corporation. 2788 San Tomas Expressway, Santa
Clara, CA 95051, 2021.

[4] S. Gorlatch. “Systematic efficient parallelization of scan and other list homomorphisms”. In:
Euro-Par’96 Parallel Processing. Ed. by Luc Bougé et al. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1996, pp. 401–408. ISBN: 978-3-540-70636-6.

[5] T. Henriksen. “Design and Implementation of the Futhark Programming Language”. PhD thesis.
Universitetsparken 5, 2100 København: University of Copenhagen, Nov. 2017.

[6] D. Merrill and M. Garland. Single-pass Parallel Prefix Scan with Decoupled Look-back. Tech.
rep. NVIDIA Corporation, 2016.

[7] G. E. Moore. “Cramming more components onto integrated circuits”. In: Electronics 38.8 (1965).

[8] M. Persson and A. Nicolaisen. “Implementing Single-Pass Scan in the Futhark Compiler”. MSc
Project, Department of Computer Science, University of Copenhagen. 2020.

45

A Source Code

1 {-# LANGUAGE FlexibleContexts #-}

2 {-# LANGUAGE TypeFamilies #-}

3
4 -- | Code generation for segmented and non-segmented scans. Uses a

5 -- fast single-pass algorithm, but which only works on NVIDIA GPUs and

6 -- with some constraints on the operator. We use this when we can.

7 module Futhark.CodeGen.ImpGen.Kernels.SegScan.SegSinglePass (compileSegScan) where

8
9 import Control.Monad.Except

10 import Data.List (zip4)

11 import Data.Maybe

12 import qualified Futhark.CodeGen.ImpCode.Kernels as Imp

13 import Futhark.CodeGen.ImpGen

14 import Futhark.CodeGen.ImpGen.Kernels.Base

15 import Futhark.IR.KernelsMem

16 import qualified Futhark.IR.Mem.IxFun as IxFun

17 import Futhark.Transform.Rename

18 import Futhark.Util (takeLast)

19 import Futhark.Util.IntegralExp (IntegralExp (mod, rem), divUp, quot)

20 import Prelude hiding (quot, mod, rem)

21
22 xParams, yParams :: SegBinOp KernelsMem -> [LParam KernelsMem]

23 xParams scan =

24 take (length (segBinOpNeutral scan)) (lambdaParams (segBinOpLambda scan))

25 yParams scan =

26 drop (length (segBinOpNeutral scan)) (lambdaParams (segBinOpLambda scan))

27
28 alignTo :: IntegralExp a => a -> a -> a

29 alignTo x a = (x `divUp` a) * a

30
31 createLocalArrays ::

32 Count GroupSize SubExp ->

33 SubExp ->

34 [PrimType] ->

35 InKernelGen (VName, [VName], [VName], VName, VName, [VName])

36 createLocalArrays (Count groupSize) m types = do

37 let groupSizeE = toInt64Exp groupSize

38 workSize = toInt64Exp m * groupSizeE

39 prefixArraysSize =

40 foldl (\acc tySize -> alignTo acc tySize + tySize * groupSizeE) 0 $

41 map primByteSize types

42 maxTransposedArraySize =

43 foldl1 sMax64 $ map (\ty -> workSize * primByteSize ty) types

44
45 warpSize :: Num a => a

46 warpSize = 32

47 maxWarpExchangeSize =

48 foldl (\acc tySize -> alignTo acc tySize + tySize * fromInteger warpSize) 0 $

49 map primByteSize types

50 maxLookbackSize = maxWarpExchangeSize + warpSize

51 size = Imp.bytes $ maxLookbackSize `sMax64` prefixArraysSize `sMax64` maxTransposedArraySize

52
53 varTE :: TV Int64 -> TPrimExp Int64 VName

54 varTE = le64 . tvVar

55
56 byteOffsets <-

57 mapM (fmap varTE . dPrimV "byte_offsets") $

58 scanl (\off tySize -> alignTo off tySize + toInt64Exp groupSize * tySize) 0 $

59 map primByteSize types

60
61 warpByteOffsets <-

62 mapM (fmap varTE . dPrimV "warp_byte_offset") $

63 scanl (\off tySize -> alignTo off tySize + warpSize * tySize) warpSize $

64 map primByteSize types

65
66 sComment "Allocate reused shared memeory" $ return ()

67
68 localMem <- sAlloc "local_mem" size (Space "local")

69 transposeArrayLength <- dPrimV "trans_arr_len" workSize

70
71 sharedId <- sArrayInMem "shared_id" int32 (Shape [constant (1 :: Int32)]) localMem

72 sharedReadOffset <- sArrayInMem "shared_read_offset" int32 (Shape [constant (1 :: Int32)]) localMem

73
74 transposedArrays <-

75 forM types $ \ty ->

76 sArrayInMem

77 "local_transpose_arr"

78 ty

79 (Shape [tvSize transposeArrayLength])

80 localMem

81
82 prefixArrays <-

83 forM (zip byteOffsets types) $ \(off, ty) -> do

84 let off' = off `quot` primByteSize ty

85 sArray

86 "local_prefix_arr"

87 ty

88 (Shape [groupSize])

89 $ ArrayIn localMem $ IxFun.iotaOffset off' [pe64 groupSize]

90
91 warpscan <- sArrayInMem "warpscan" int8 (Shape [constant (warpSize :: Int64)]) localMem

92 warpExchanges <-

93 forM (zip warpByteOffsets types) $ \(off, ty) -> do

46

94 let off' = off `quot` primByteSize ty

95 sArray

96 "warp_exchange"

97 ty

98 (Shape [constant (warpSize :: Int64)])

99 $ ArrayIn localMem $ IxFun.iotaOffset off' [warpSize]

100
101 return (sharedId, transposedArrays, prefixArrays, sharedReadOffset, warpscan, warpExchanges)

102 -- | Compile 'SegScan' instance to host-level code with calls to a

103 -- single-pass kernel.

104 compileSegScan ::

105 Pattern KernelsMem ->

106 SegLevel ->

107 SegSpace ->

108 SegBinOp KernelsMem ->

109 KernelBody KernelsMem ->

110 CallKernelGen ()

111 compileSegScan pat lvl space scanOp kbody = do

112 let Pattern _ all_pes = pat

113 group_size = toInt64Exp <$> segGroupSize lvl

114 n = product $ map toInt64Exp $ segSpaceDims space

115 sumT :: Integer

116 maxT :: Integer

117 sumT = foldl (\bytes typ -> bytes + primByteSize typ) 0 tys

118 primByteSize' = max 4 . primByteSize

119 sumT' = foldl (\bytes typ -> bytes + primByteSize' typ) 0 tys `div` 4

120 maxT = maximum (map primByteSize tys)

121 -- TODO: Make these constants dynamic by querying device

122 -- RTX 2080 Ti constants (CC 7.5)

123 -- k_reg = 64

124 -- k_mem = 48 --12*4

125 -- GTX 780 Ti constants (CC 3.5)

126 k_reg = 64

127 k_mem = 36 --9*4

128 mem_constraint = max k_mem sumT `div` maxT

129 --reg_constraint = (k_reg `div` sumT) - 6

130 reg_constraint = (k_reg-1-sumT') `div` (2*sumT'+3)

131 m :: Num a => a

132 m = fromIntegral $ max 1 $ min mem_constraint reg_constraint

133 num_groups = Count (n `divUp` (unCount group_size * m))

134 num_threads = unCount num_groups * unCount group_size

135 (gtids, dims) = unzip $ unSegSpace space

136 dims' = map toInt64Exp dims

137 segment_size = last dims'

138 scanOpNe = segBinOpNeutral scanOp

139 tys = map (\(Prim pt) -> pt) $ lambdaReturnType $ segBinOpLambda scanOp

140 statusX, statusA, statusP :: Num a => a

141 statusX = 0

142 statusA = 1

143 statusP = 2

144 makeStatusUsed flag used = tvExp flag .|. (tvExp used .<<. 2)

145 unmakeStatusUsed :: TV Int8 -> TV Int8 -> TV Int8 -> InKernelGen ()

146 unmakeStatusUsed flagUsed flag used = do

147 used <-- tvExp flagUsed .>>. 2

148 flag <-- tvExp flagUsed .&. 3

149
150 -- Allocate the shared memory for output component

151 numGroups <- dPrimV "numGroups" $ unCount num_groups

152 numThreads <- dPrimV "numThreads" num_threads

153
154 globalId <- sStaticArray "id_counter" (Space "device") int32 $ Imp.ArrayZeros 1

155 statusFlags <- sAllocArray "status_flags" int8 (Shape [tvSize numGroups]) (Space "device")

156 (aggregateArrays, incprefixArrays) <-

157 fmap unzip $

158 forM tys $ \ty ->

159 (,) <$> sAllocArray "aggregates" ty (Shape [tvSize numGroups]) (Space "device")

160 <*> sAllocArray "incprefixes" ty (Shape [tvSize numGroups]) (Space "device")

161
162 sReplicate statusFlags $ intConst Int8 statusX

163
164 sKernelThread "segscan" num_groups group_size (segFlat space) $ do

165 constants <- kernelConstants <$> askEnv

166
167 (sharedId, transposedArrays, prefixArrays, sharedReadOffset, warpscan, exchanges) <-

168 createLocalArrays (segGroupSize lvl) (intConst Int64 m) tys

169
170 dynamicId <- dPrim "dynamic_id" int32 :: ImpM lore r op (TV Int64)

171 sWhen (kernelLocalThreadId constants .==. 0) $ do

172 (globalIdMem, _, globalIdOff) <- fullyIndexArray globalId [0]

173 sOp $

174 Imp.Atomic DefaultSpace $

175 Imp.AtomicAdd

176 Int32

177 (tvVar dynamicId)

178 globalIdMem

179 (Count $ unCount globalIdOff)

180 (untyped (1 :: Imp.TExp Int32))

181 copyDWIMFix sharedId [0] (tvSize dynamicId) []

182
183 let localBarrier = Imp.Barrier Imp.FenceLocal

184 localFence = Imp.MemFence Imp.FenceLocal

185 globalFence = Imp.MemFence Imp.FenceGlobal

186
187 sOp localBarrier

188 copyDWIMFix (tvVar dynamicId) [] (Var sharedId) [0]

189 sOp localBarrier

190

47

191 blockOff <-

192 dPrimV "blockOff" $

193 sExt64 (tvExp dynamicId) * m * kernelGroupSize constants

194 sgmIdx <- dPrimVE "sgm_idx" $ tvExp blockOff `mod` segment_size

195 boundary <-

196 dPrimVE "boundary" $

197 sExt32 $ sMin64 (m * unCount group_size) (segment_size - sgmIdx)

198 segsize_compact <-

199 dPrimVE "segsize_compact" $

200 sExt32 $ sMin64 (m * unCount group_size) segment_size

201 privateArrays <-

202 forM tys $ \ty ->

203 sAllocArray

204 "private"

205 ty

206 (Shape [intConst Int64 m])

207 (ScalarSpace [intConst Int64 m] ty)

208 sComment "Load and map" $

209 sFor "i" m $ \i -> do

210 -- The map's input index

211 phys_tid <- dPrimVE "phys_tid" $

212 tvExp blockOff + sExt64 (kernelLocalThreadId constants)

213 + i * kernelGroupSize constants

214 zipWithM_ dPrimV_ gtids $ unflattenIndex dims' phys_tid

215 -- Perform the map

216 let in_bounds =

217 compileStms mempty (kernelBodyStms kbody) $ do

218 let (all_scan_res, map_res) = splitAt (segBinOpResults [scanOp]) $ kernelBodyResult kbody

219
220 -- Write map results to their global memory destinations

221 forM_ (zip (takeLast (length map_res) all_pes) map_res) $ \(dest, src) ->

222 copyDWIMFix (patElemName dest) (map Imp.vi64 gtids) (kernelResultSubExp src) []

223
224 -- Write to-scan results to private memory.

225 forM_ (zip privateArrays $ map kernelResultSubExp all_scan_res) $ \(dest, src) ->

226 copyDWIMFix dest [i] src []

227
228 out_of_bounds =

229 forM_ (zip privateArrays scanOpNe) $ \(dest, ne) ->

230 copyDWIMFix dest [i] ne []

231
232 sIf (phys_tid .<. n) in_bounds out_of_bounds

233
234 sComment "Transpose scan inputs" $ do

235 forM_ (zip transposedArrays privateArrays) $ \(trans, priv) -> do

236 sOp localBarrier

237 sFor "i" m $ \i -> do

238 sharedIdx <-

239 dPrimVE "sharedIdx" $

240 sExt64 (kernelLocalThreadId constants)

241 + i * kernelGroupSize constants

242 copyDWIMFix trans [sharedIdx] (Var priv) [i]

243 sOp localBarrier

244 sFor "i" m $ \i -> do

245 sharedIdx <- dPrimV "sharedIdx" $ kernelLocalThreadId constants * m + i

246 copyDWIMFix priv [sExt64 i] (Var trans) [sExt64 $ tvExp sharedIdx]

247 sOp localBarrier

248
249 sComment "Per thread scan" $ do

250 -- We don't need to touch the first element, so only m-1

251 -- iterations here.

252 globalIdx <-

253 dPrimVE "gidx" $

254 (kernelLocalThreadId constants * m) + 1

255 sFor "i" (m -1) $ \i -> do

256 let xs = map paramName $ xParams scanOp

257 ys = map paramName $ yParams scanOp

258 -- determine if start of segment

259 isNewSgm <-

260 dPrimVE "new_sgm" $ (globalIdx + sExt32 i - boundary) `mod` segsize_compact .==. 0

261 -- skip scan of first element in segment

262 sUnless isNewSgm $ do

263 forM_ (zip privateArrays $ zip3 xs ys tys) $ \(src, (x, y, ty)) -> do

264 dPrim_ x ty

265 dPrim_ y ty

266 copyDWIMFix x [] (Var src) [i]

267 copyDWIMFix y [] (Var src) [i + 1]

268
269 compileStms mempty (bodyStms $ lambdaBody $ segBinOpLambda scanOp) $

270 forM_ (zip privateArrays $ bodyResult $ lambdaBody $ segBinOpLambda scanOp) $ \(dest, res) ->

271 copyDWIMFix dest [i + 1] res []

272
273 sComment "Publish results in shared memory" $ do

274 forM_ (zip prefixArrays privateArrays) $ \(dest, src) ->

275 copyDWIMFix dest [sExt64 $ kernelLocalThreadId constants] (Var src) [m - 1]

276 sOp localBarrier

277
278 let crossesSegment =

279 Just $ \from to ->

280 let from' = (from + 1) * m - 1

281 to' = (to + 1) * m - 1

282 in (to' - from') .>. (to'+segsize_compact-boundary) `mod` segsize_compact

283
284 scanOp' <- renameLambda $ segBinOpLambda scanOp

285
286 accs <- mapM (dPrim "acc") tys

287 sComment "Scan results (with warp scan)" $ do

48

288 groupScan

289 crossesSegment

290 (tvExp numThreads)

291 (kernelGroupSize constants)

292 scanOp'

293 prefixArrays

294
295 sOp localBarrier

296 let firstThread acc prefixes =

297 copyDWIMFix (tvVar acc) [] (Var prefixes) [sExt64 (kernelGroupSize constants) - 1]

298 notFirstThread acc prefixes =

299 copyDWIMFix (tvVar acc) [] (Var prefixes) [sExt64 (kernelLocalThreadId constants) - 1]

300 sIf

301 (kernelLocalThreadId constants .==. 0)

302 (zipWithM_ firstThread accs prefixArrays)

303 (zipWithM_ notFirstThread accs prefixArrays)

304
305 sOp localBarrier

306 prefixes <-

307 forM (zip scanOpNe tys) $ \(ne, ty) ->

308 dPrimV "prefix" $ TPrimExp $ toExp' ty ne

309 blockNewSgm <- dPrimVE "block_new_sgm" $ sgmIdx .==. 0

310 sComment "Perform lookback" $ do

311 sWhen (blockNewSgm .&&. kernelLocalThreadId constants .==. 0) $ do

312 everythingVolatile $

313 forM_ (zip incprefixArrays accs) $ \(incprefixArray, acc) ->

314 copyDWIMFix incprefixArray [tvExp dynamicId] (tvSize acc) []

315 sOp globalFence

316 everythingVolatile $

317 copyDWIMFix statusFlags [tvExp dynamicId] (intConst Int8 statusP) []

318 forM_ (zip scanOpNe accs) $ \(ne, acc) ->

319 copyDWIMFix (tvVar acc) [] ne []

320 -- end sWhen

321
322 let warpSize = kernelWaveSize constants

323 sWhen (bNot blockNewSgm .&&. kernelLocalThreadId constants .<. warpSize) $ do

324 sWhen (kernelLocalThreadId constants .==. 0) $ do

325 sIf (boundary .==. sExt32 (unCount group_size * m))

326 (do

327 everythingVolatile $

328 forM_ (zip aggregateArrays accs) $ \(aggregateArray, acc) ->

329 copyDWIMFix aggregateArray [tvExp dynamicId] (tvSize acc) []

330 sOp globalFence

331 everythingVolatile $

332 copyDWIMFix statusFlags [tvExp dynamicId] (intConst Int8 statusA) []

333)

334 (

335 do

336 everythingVolatile $

337 forM_ (zip incprefixArrays accs) $ \(incprefixArray, acc) ->

338 copyDWIMFix incprefixArray [tvExp dynamicId] (tvSize acc) []

339 sOp globalFence

340 everythingVolatile $

341 copyDWIMFix statusFlags [tvExp dynamicId] (intConst Int8 statusP) []

342)

343 copyDWIMFix warpscan [0] (Var statusFlags) [tvExp dynamicId - 1]

344 -- sWhen

345 sOp localFence

346
347 status <- dPrim "status" int8 :: InKernelGen (TV Int8)

348 copyDWIMFix (tvVar status) [] (Var warpscan) [0]

349
350 sIf

351 (tvExp status .==. statusP)

352 (sWhen (kernelLocalThreadId constants .==. 0) $

353 everythingVolatile $

354 forM_ (zip prefixes incprefixArrays) $ \(prefix, incprefixArray) ->

355 copyDWIMFix (tvVar prefix) [] (Var incprefixArray) [tvExp dynamicId - 1]

356)

357 (do

358 readOffset <-

359 dPrimV "readOffset" $

360 sExt32 $ tvExp dynamicId - sExt64 (kernelWaveSize constants)

361 let loopStop = warpSize * (-1)

362 sameSegment readIdx =

363 let startIdx = sExt64 (tvExp readIdx + 1) * kernelGroupSize constants * m - 1

364 in tvExp blockOff - startIdx .<=. sgmIdx

365 sWhile (tvExp readOffset .>. loopStop) $ do

366 readI <- dPrimV "read_i" $ tvExp readOffset + kernelLocalThreadId constants

367 aggrs <- forM (zip scanOpNe tys) $ \(ne, ty) ->

368 dPrimV "aggr" $ TPrimExp $ toExp' ty ne

369 flag <- dPrimV "flag" statusX

370 used <- dPrimV "used" (0 :: Imp.TExp Int8)

371 everythingVolatile $

372 sIf (tvExp readI .>=. 0 .&&. sameSegment readI)

373 (do

374 copyDWIMFix (tvVar flag) [] (Var statusFlags) [sExt64 $ tvExp readI]

375 sIf

376 (tvExp flag .==. statusP)

377 (forM_ (zip incprefixArrays aggrs) $ \(incprefix, aggr) ->

378 copyDWIMFix (tvVar aggr) [] (Var incprefix) [sExt64 $ tvExp readI]

379)

380 (sWhen (tvExp flag .==. statusA) $ do

381 forM_ (zip aggrs aggregateArrays) $ \(aggr, aggregate) ->

382 copyDWIMFix (tvVar aggr) [] (Var aggregate) [sExt64 $ tvExp readI]

383 used <-- (1 :: Imp.TExp Int8)

384))

49

385 (sWhen (tvExp readI .>=. 0) $

386 copyDWIMFix (tvVar flag) [] (intConst Int8 statusP) [])

387 -- end sIf

388 -- end sWhen

389 forM_ (zip exchanges aggrs) $ \(exchange, aggr) ->

390 copyDWIMFix exchange [sExt64 $ kernelLocalThreadId constants] (tvSize aggr) []

391 tmp <- dPrimV "tmp" $ makeStatusUsed flag used

392 copyDWIMFix warpscan [sExt64 $ kernelLocalThreadId constants] (tvSize tmp) []

393 sOp localFence

394
395 (warpscanMem, warpscanSpace, warpscanOff) <-

396 fullyIndexArray warpscan [sExt64 warpSize - 1]

397 flag <-- TPrimExp (Imp.index warpscanMem warpscanOff int8 warpscanSpace Imp.Volatile)

398 sWhen (kernelLocalThreadId constants .==. 0) $ do

399 -- TODO: This is a single-threaded reduce

400 sIf

401 (bNot $ tvExp flag .==. statusP)

402 (do

403 scanOp'' <- renameLambda scanOp'

404 let (agg1s, agg2s) = splitAt (length tys) $ map paramName $ lambdaParams scanOp''

405
406 forM_ (zip3 agg1s scanOpNe tys) $ \(agg1, ne, ty) ->

407 dPrimV_ agg1 $ TPrimExp $ toExp' ty ne

408 zipWithM_ dPrim_ agg2s tys

409
410 flag1 <- dPrimV "flag1" statusX

411 flag2 <- dPrim "flag2" int8

412 used1 <- dPrimV "used1" (0 :: Imp.TExp Int8)

413 used2 <- dPrim "used2" int8

414 sFor "i" warpSize $ \i -> do

415 copyDWIMFix (tvVar flag2) [] (Var warpscan) [sExt64 i]

416 unmakeStatusUsed flag2 flag2 used2

417 forM_ (zip agg2s exchanges) $ \(agg2, exchange) ->

418 copyDWIMFix agg2 [] (Var exchange) [sExt64 i]

419 sIf

420 (bNot $ tvExp flag2 .==. statusA)

421 (do

422 flag1 <-- tvExp flag2

423 used1 <-- tvExp used2

424 forM_ (zip3 agg1s tys agg2s) $ \(agg1, ty, agg2) ->

425 agg1 <~~ toExp' ty (Var agg2)

426)

427 (do

428 used1 <-- tvExp used1 + tvExp used2

429 compileStms mempty (bodyStms $ lambdaBody scanOp'') $

430 forM_ (zip3 agg1s tys $ bodyResult $ lambdaBody scanOp'') $

431 \(agg1, ty, res) -> agg1 <~~ toExp' ty res

432)

433 flag <-- tvExp flag1

434 used <-- tvExp used1

435 forM_ (zip3 aggrs tys agg1s) $ \(aggr, ty, agg1) ->

436 tvVar aggr <~~ toExp' ty (Var agg1)

437)

438 -- else

439 (forM_ (zip aggrs exchanges) $ \(aggr, exchange) ->

440 copyDWIMFix (tvVar aggr) [] (Var exchange) [sExt64 warpSize - 1]

441)

442 -- end sIf

443 sIf

444 (tvExp flag .==. statusP)

445 (readOffset <-- loopStop)

446 (readOffset <-- tvExp readOffset - zExt32 (tvExp used))

447 copyDWIMFix sharedReadOffset [0] (tvSize readOffset) []

448 scanOp''' <- renameLambda scanOp'

449 let (xs, ys) = splitAt (length tys) $ map paramName $ lambdaParams scanOp'''

450 forM_ (zip xs aggrs) $ \(x, aggr) -> dPrimV_ x (tvExp aggr)

451 forM_ (zip ys prefixes) $ \(y, prefix) -> dPrimV_ y (tvExp prefix)

452 compileStms mempty (bodyStms $ lambdaBody scanOp''') $

453 forM_ (zip3 prefixes tys $ bodyResult $ lambdaBody scanOp''') $

454 \(prefix, ty, res) -> prefix <-- TPrimExp (toExp' ty res)

455 -- end sWhen

456 sOp localFence

457 copyDWIMFix (tvVar readOffset) [] (Var sharedReadOffset) [0]

458)

459 -- end sWhile

460 -- end sIf

461 sWhen (kernelLocalThreadId constants .==. 0) $ do

462 scanOp'''' <- renameLambda scanOp'

463 let xs = map paramName $ take (length tys) $ lambdaParams scanOp''''

464 ys = map paramName $ drop (length tys) $ lambdaParams scanOp''''

465 sWhen

466 (boundary .==. sExt32 (unCount group_size * m))

467 (do

468 forM_ (zip xs prefixes) $ \(x, prefix) -> dPrimV_ x $ tvExp prefix

469 forM_ (zip ys accs) $ \(y, acc) -> dPrimV_ y $ tvExp acc

470 compileStms mempty (bodyStms $ lambdaBody scanOp'''') $

471 everythingVolatile $

472 forM_ (zip incprefixArrays $ bodyResult $ lambdaBody scanOp'''') $

473 \(incprefixArray, res) -> copyDWIMFix incprefixArray [tvExp dynamicId] res []

474 sOp globalFence

475 everythingVolatile $ copyDWIMFix statusFlags [tvExp dynamicId] (intConst Int8 statusP) []

476)

477 forM_ (zip exchanges prefixes) $ \(exchange, prefix) ->

478 copyDWIMFix exchange [0] (tvSize prefix) []

479 forM_ (zip3 accs tys scanOpNe) $ \(acc, ty, ne) ->

480 tvVar acc <~~ toExp' ty ne

481 -- end sWhen

50

482 -- end sWhen

483
484 sWhen (bNot $ tvExp dynamicId .==. 0) $ do

485 sOp localBarrier

486 forM_ (zip exchanges prefixes) $ \(exchange, prefix) ->

487 copyDWIMFix (tvVar prefix) [] (Var exchange) [0]

488 sOp localBarrier

489 -- end sWhen

490 -- end sComment

491
492 scanOp''''' <- renameLambda scanOp'

493 scanOp'''''' <- renameLambda scanOp'

494
495 sComment "Distribute results" $ do

496 let (xs, ys) = splitAt (length tys) $ map paramName $ lambdaParams scanOp'''''

497 (xs', ys') = splitAt (length tys) $ map paramName $ lambdaParams scanOp''''''

498
499 forM_ (zip4 (zip prefixes accs) (zip xs xs') (zip ys ys') tys) $

500 \((prefix, acc), (x, x'), (y, y'), ty) -> do

501 dPrim_ x ty

502 dPrim_ y ty

503 dPrimV_ x' $ tvExp prefix

504 dPrimV_ y' $ tvExp acc

505
506 sIf (kernelLocalThreadId constants * m .<. boundary .&&. bNot blockNewSgm)

507 (compileStms mempty (bodyStms $ lambdaBody scanOp'''''') $

508 forM_ (zip3 xs tys $ bodyResult $ lambdaBody scanOp'''''') $

509 \(x, ty, res) -> x <~~ toExp' ty res)

510 (forM_ (zip xs accs) $

511 \(x, acc) ->

512 do copyDWIMFix x [] (Var $ tvVar acc) [])

513 -- calculate where previous thread stopped, to determine number of

514 -- elements left before new segment.

515 stop <-

516 dPrimVE "stopping_point" $

517 segsize_compact - (kernelLocalThreadId constants * m - 1 + segsize_compact - boundary) `rem` segsize_compact

518 sFor "i" m $ \i -> do

519 sWhen (sExt32 i .<. stop - 1) $ do

520 forM_ (zip privateArrays ys) $ \(src, y) ->

521 -- only include prefix for the first segment part per thread

522 copyDWIMFix y [] (Var src) [i]

523 compileStms mempty (bodyStms $ lambdaBody scanOp''''') $

524 forM_ (zip privateArrays $ bodyResult $ lambdaBody scanOp''''') $

525 \(dest, res) ->

526 copyDWIMFix dest [i] res []

527
528 sComment "Transpose scan output" $ do

529 forM_ (zip transposedArrays privateArrays) $ \(trans, priv) -> do

530 sOp localBarrier

531 sFor "i" m $ \i -> do

532 sharedIdx <-

533 dPrimV "sharedIdx" $

534 sExt64 (kernelLocalThreadId constants * m) + i

535 copyDWIMFix trans [tvExp sharedIdx] (Var priv) [i]

536 sOp localBarrier

537 sFor "i" m $ \i -> do

538 sharedIdx <-

539 dPrimV "sharedIdx" $

540 kernelLocalThreadId constants

541 + sExt32 (kernelGroupSize constants * i)

542 copyDWIMFix priv [i] (Var trans) [sExt64 $ tvExp sharedIdx]

543 sOp localBarrier

544
545 sComment "Write block scan results to global memory" $

546 sFor "i" m $ \i -> do

547 flat_idx <-

548 dPrimVE "flat_idx" $

549 tvExp blockOff + kernelGroupSize constants * i

550 + sExt64 (kernelLocalThreadId constants)

551 zipWithM_ dPrimV_ gtids $ unflattenIndex dims' flat_idx

552 sWhen (flat_idx .<. n) $ do

553 forM_ (zip (map patElemName all_pes) privateArrays) $ \(dest, src) ->

554 copyDWIMFix dest (map Imp.vi64 gtids) (Var src) [i]

555
556 sComment "If this is the last block, reset the dynamicId" $

557 sWhen (tvExp dynamicId .==. unCount num_groups - 1) $

558 copyDWIMFix globalId [0] (constant (0 :: Int32)) []

51

B Benchmarked Programs

B.1 LSSP

1 type int = i32

2 let max (x:int, y:int) = i32.max x y

3 let scanOp (pred2 : int -> int -> bool)

4 (x: (int,int,int,int,int,int))

5 (y: (int,int,int,int,int,int))

6 : (int,int,int,int,int,int) =

7 let (lssx, lisx, lcsx, tlx, firstx, lastx) = x

8 let (lssy, lisy, lcsy, tly, firsty, lasty) = y

9
10 let connect= pred2 lastx firsty || tlx == 0 || tly == 0

11 let newlss = if connect then max (max (lcsx + lisy, lssx), lssy)

12 else max (lssx, lssy)

13 let newlis = if lisx == tlx && connect then tlx + lisy else lisx

14 let newlcs = if lcsy == tly && connect then tly + lcsx else lcsy

15 let newtl = tlx + tly

16 let first = if tlx == 0 then firsty else firstx

17 let last = if tly == 0 then lastx else lasty in

18 (newlss, newlis, newlcs, newtl, first, last)

19
20 let mapOp (pred1 : int -> bool) (x: int) : (int,int,int,int,int,int) =

21 let xmatch = if pred1 x then 1 else 0 in

22 (xmatch, xmatch, xmatch, 1, x, x)

23
24 let lssp (pred1 : int -> bool)

25 (pred2 : int -> int -> bool)

26 (xs : []int) : int =

27 let (x,_,_,_,_,_) =

28 last <|

29 scan (scanOp pred2) (0,0,0,0,0,0) <|

30 map (mapOp pred1) xs

31 in x

32
33 -- ==

34 -- entry: lssp_bench_sorted

35 -- compiled random input { [1][10000000]i32 } auto output

36 -- compiled random input { [10][1000000]i32 } auto output

37 -- compiled random input { [100][100000]i32 } auto output

38 -- compiled random input { [1000][10000]i32 } auto output

39 entry lssp_bench_sorted [m] [n] (xs : [m][n]i32) =

40 let pred1 _ = true

41 let pred2 x y = x <= y

42 in map (lssp pred1 pred2) xs

52

B.2 Radix-Sort

Source: https://github.com/diku-dk/futhark-benchmarks/blob/master/misc/
knn-by-kdtree/lib/github.com/diku-dk/sorts/radix_sort.fut

1 local let radix_sort_step [n] 't (xs: [n]t) (get_bit: i32 -> t -> i32)

2 (digit_n: i32): [n]t =

3 let num x = get_bit (digit_n+1) x * 2 + get_bit digit_n x

4 let pairwise op (a1,b1,c1,d1) (a2,b2,c2,d2) =

5 (a1 `op` a2, b1 `op` b2, c1 `op` c2, d1 `op` d2)

6 let bins = xs |> map num

7 let flags = bins |> map (\x -> if x == 0 then (1,0,0,0)

8 else if x == 1 then (0,1,0,0)

9 else if x == 2 then (0,0,1,0)

10 else (0,0,0,1))

11 let offsets = scan (pairwise (+)) (0,0,0,0) flags

12 let (na,nb,nc,_nd) = last offsets

13 let f bin (a,b,c,d) = match bin

14 case 0 -> a-1

15 case 1 -> na+b-1

16 case 2 -> na+nb+c-1

17 case _ -> na+nb+nc+d-1

18 let is = map2 f bins offsets

19 in scatter (copy xs) is xs

20
21 let radix_sort [n] 't (num_bits: i32) (get_bit: i32 -> t -> i32)

22 (xs: [n]t): [n]t =

23 let iters = if n == 0 then 0 else (num_bits+2-1)/2

24 in loop xs for i < iters do radix_sort_step xs get_bit (i*2)

25
26 let radix_sort_int [n] 't (num_bits: i32) (get_bit: i32 -> t -> i32)

27 (xs: [n]t): [n]t =

28 let get_bit' i x =

29 -- Flip the most significant bit.

30 let b = get_bit i x

31 in if i == num_bits-1 then b ^ 1 else b

32 in radix_sort num_bits get_bit' xs

33
34 -- ==

35 -- random input { [1000][10000]i32 } auto output

36 entry main [n] [m] (data : [n][m]i32) =

37 map (radix_sort_int i32.num_bits i32.get_bit) data

53

B.3 KD-Tree

Source: https://github.com/diku-dk/futhark-benchmarks/blob/master/misc/
knn-by-kdtree/buildKDtree.fut

1 -- ==

2 -- entry: main

3 --

4 -- compiled input @ valid-data/kdtree-ppl-32-m-2097152.in

5 -- output @ valid-data/kdtree-ppl-32-m-2097152.out

6
7 import "lib/github.com/diku-dk/sorts/radix_sort"

8 import "util"

9
10 let iota32 n = (0..1..<i32.i64 n) :> [n]i32

11
12 local let closestLog2 (p: i32) : i32 =

13 if p<=1 then 0

14 else let (_,res) = loop (q,r) = (p,0)

15 while q > 1 do

16 (q >> 1, r+1)

17 let err_down = p - (1 << res)

18 let err_upwd = (1 << (res+1)) - p

19 in if err_down <= err_upwd

20 then res else res+1

21
22 let computeTreeShape (m: i32) (defppl: i32) : (i32, i32, i32, i32) =

23 let def_num_leaves = (m + defppl - 1) / defppl

24 let hp1 = closestLog2 def_num_leaves in

25 if hp1 <= 0 then (-1, 0, m, m)

26 else let h = hp1 - 1

27 let num_leaves = 1 << (h+1)

28 let ppl = (m + num_leaves - 1) / num_leaves

29 in (h, num_leaves-1, ppl, num_leaves*ppl)

30
31 local let updateBounds [n] [d2] (level: i32) (median_dims: [n]i32)

32 (median_vals: [n]f32)

33 (node_ind: i32)

34 (lubs_cur: *[d2]f32) : *[d2]f32=

35 let d = d2 / 2

36 let ancestor = 0

37 let (_, res) =

38 loop (ancestor,lubs_cur) for i < level do

39 let k = level - i - 1

40 let ancestor_child = compute_Kth_ancestor k node_ind

41 let anc_dim = median_dims[ancestor]

42 let lub_ind = if (ancestor_child & 1) == 0

43 then anc_dim

44 else i32.i64 d+anc_dim

45 let anc_med = median_vals[ancestor]

46 let lubs_cur[lub_ind] = if !(f32.isinf anc_med)

54

47 then anc_med

48 else lubs_cur[lub_ind]

49 in (ancestor_child, lubs_cur)

50 in res

51
52 local let findClosestMed [n] (cur_dim: i32) (median_dims: [n]i32)

53 (node_ind: i32) : i32 =

54 let cur_node = node_ind

55 let res_ind = -1i32

56 let (_, res) =

57 loop (cur_node, res_ind)

58 while (cur_node != 0) && (res_ind == (-1i32)) do

59 let parent = getParent cur_node

60 let res_ind = if median_dims[parent] == cur_dim then parent else -1

61 in (parent, res_ind)

62 in res

63 let mkKDtree [m] [d] (height: i32) (q: i64) (m' : i64)

64 (input: [m][d]f32) :

65 (*[m'][d]f32, *[m']i32, *[q]i32, *[q]f32, *[q]i32) =

66
67 let inputT = transpose input

68 let lbs = map (reduce_comm f32.min f32.highest) inputT |> opaque

69 let ubs = map (reduce_comm f32.max f32.lowest) inputT |> opaque

70 let lubs = lbs ++ ubs

71
72 let num_pads = m' - m

73 let input' = input ++ (replicate num_pads (replicate d f32.inf))

74 :> [m'][d]f32

75 let indir = iota32 m'

76
77 let median_vals = replicate q 0.0f32

78 let median_dims = replicate q (-1i32)

79 let clanc_eqdim = replicate q (-1i32)

80 let (indir' : *[m']i32

81 , median_dims': *[q]i32

82 , median_vals': *[q]f32

83 , clanc_eqdim': *[q]i32

84) =

85 loop (indir : *[m']i32

86 , median_dims: *[q]i32

87 , median_vals: *[q]f32

88 , clanc_eqdim: *[q]i32)

89 for lev < (height+1) do

90 let nodes_this_lvl = 1 << i64.i32 lev

91 let pts_per_node_at_lev = m' / nodes_this_lvl

92 let indir2d = unflatten nodes_this_lvl pts_per_node_at_lev indir

93
94 let (med_dims, anc_same_med) =

95 map (\(i: i32) ->

96 let node_ind = i + i32.i64 nodes_this_lvl - 1

55

97 let diffs =

98 map (\i ->

99 f32.abs(lubs_cur[i+i32.i64 d] - lubs_cur[i]))

100 (iota32 d)

101 let (cur_dim, _) =

102 reduce_comm (\ (i1,v1) (i2,v2) ->

103 if v1 >= v2 then (i1, v1)

104 else (i2, v2))

105 (-1, f32.lowest)

106 <| zip (iota32 d) diffs

107 let prev_anc = findClosestMed cur_dim median_dims

108 node_ind

109 in (cur_dim, prev_anc)

110) (iota32 nodes_this_lvl)

111 |> unzip

112
113 let chosen_columns = map2 (\indir_chunk dim ->

114 map (\ind -> input'[ind, dim]

115) indir_chunk

116) indir2d med_dims

117
118 let (sorted_dim_2d, sort_inds_2d) =

119 map2 zip chosen_columns

120 (replicate nodes_this_lvl (iota32 pts_per_node_at_lev))

121 |> map (radix_sort_float_by_key (\(l,_) -> l)

122 f32.num_bits f32.get_bit)

123 |> map unzip |> unzip

124
125 let med_vals = map (\sorted_dim ->

126 let mi = pts_per_node_at_lev/2

127 in (sorted_dim[mi] + sorted_dim[mi-1])/2

128) sorted_dim_2d

129
130 let indir2d' = map2(\ indir_chunk sort_inds ->

131 map (\ind -> indir_chunk[ind]) sort_inds

132) indir2d sort_inds_2d

133
134 let this_lev_inds = map (+ (nodes_this_lvl-1))

135 (iota nodes_this_lvl)

136 let median_dims' = scatter median_dims this_lev_inds med_dims

137 let median_vals' = scatter median_vals this_lev_inds med_vals

138 let clanc_eqdim' = scatter clanc_eqdim this_lev_inds anc_same_med

139 let indir'' = flatten indir2d' :> *[m']i32

140
141 in (indir'', median_dims', median_vals', clanc_eqdim')

142
143 let input'' = map (\ ind -> map (\k -> input'[ind, k]) (iota32 d))

144 indir' :> *[m'][d]f32

145 in (input'', indir', median_dims', median_vals', clanc_eqdim')

146

56

147
148 let main0 (m: i32) (defppl: i32) =

149 computeTreeShape m defppl

150
151 let main [m] [d] (defppl: i32) (input: [m][d]f32) =

152 let (height, num_inner_nodes, _, m') = computeTreeShape (i32.i64 m) defppl

153 let (leafs, indir, median_dims, median_vals, clanc_eqdim) =

154 mkKDtree height (i64.i32 num_inner_nodes) (i64.i32 m') input

155 let r = i64.i32 (m' / 64)

156 in (leafs[:r], indir[:r], median_dims, median_vals, clanc_eqdim)

57

