Implementing Single-Pass Scan in
the Futhark Compiler

Andreas Nicolaisen, jtc303
Marco Aslak Persson, bfrb55

Abstract

This report presents an algorithm for the single pass parallel scan, and its implementation
in the Futhark compiler. The algorithm is based on the one presented by Duane Merrill
and Michael Garland in the article “Single-pass Parallel Prefix Scan with Decoupled Look-
back”[8|. The algorithm is first introduced at a high level, to give an intuition for how
it works, and the reasoning behind its structure. Then we present how this algorithm is
implemented inside the Futhark compiler, and report an initial evaluation of its performance.
Finally, we discuss several possible improvements that can benefit our implementation.

Contents

1 Introduction 1
2 Algorithm - Motivation & High level 2
2.1 Motivation e 2
2.2 Highlevel 3
3 Algorithm - Detailed explanation 4
3.1 Dynamic block numbering o000 4
3.2 Global memory read and map - Phase 1)
3.3 Transposition - Phase 2.o 6
3.4 Perthreadscan 7
3.5 Blocklevel scan 7
3.6 Synchronizing with other blocks 7
3.7 Distribution of lookback result oL 10
3.8 Writing the private data to global memory 10
4 Resource usage 11
5 Implementation 13
5.1 Global load and mapping phase implementation 13
5.2 Transposition phase implementation 14
5.3 Per-thread scan phase implementation 15
5.4 Group scan phase implementationo 16
5.5 Lookback phase implementation 16
5.6 Distribution and global write phase implementation 16
6 Benchmarks 18
7 Possible improvements & limitations 19
8 Conclusion 19
9 References 20
10 Appendix 22
10.1 Appendix A - simple.fut 22
10.2 Appendix B - advanced.fut 22
10.3 Appendix C - radix_sort.fut 22

IT

1 Introduction

The scan operator, also known as parallel-prefix sum, is a basic block of data-parallel pro-
gramming, as it appears in the implementation of important algorithms such as radix sort,
numeric recurrences, €.g., T, = a, * T,_1 + b,, solvers of partial differential equations [1],
financial algorithms aimed at option pricing [9] and graphics algorithms [4]. Furthermore,
scan is required by analysis that is aimed at enhancing the degree of application parallelism
that is mapped to hardware [3].

Scan has the following signature:

(0 = a—a) = a—|a] = o (1)

The first part of the signature is a binary associative operator, the second is the neutral
element of that operator, and the third is an input array of the same element type a. The
result is an array of the same element type and length as the input array. Given the input
list z = [0, ..., %,_1], a neutral element ne and the operator @, the result of the (inclusive)
scan is semantically the following:

[ne®xg, ne®@rg®x, Ne@ro®r1 D, ..., NEDTED ... DTy 1] (2)

It is important to mention that parallel implementation of scan are work efficient, i.e., the
total number of operations performed by all cores is O(n), and even when an infinite number
of cores are available, the parallel implementation of scan requires O(log n) sequential steps
to complete, i.e., depth complexity is O(log n).

While the theoretical importance of the scan operator was well understood since the eight-
ies [2], the scan construct was conspicuously missing from the multi-core parallel implemen-
tation of large benchmark suites such as Spec2006, and it was not accounted for in compiler
analysis—ranging from entirely dynamic [10] to mostly static [12, 11]—aimed at automatic
parallelization of legacy sequential code. This is because, when the number of cores is low,
one can use simpler, ad-hoc implementations of scan, for example in which each core can
scan sequentially (and independent of the others) its chunk of elements, and the difficult part
that requires inter-thread communication can be also performed sequentially by one thread,
without affecting performance (because the number of cores is low, typically less than 64).

It was only with the advent of highly-parallel commodity hardware such as GPGPUs—whose
full utilization requires tens-to-hundred of thousands of hardware threads—that the practi-
cal importance of scan as a basic-block of parallel programming was finally demonstrated,
because the ad-hoc solutions such as the one mentioned above do not scale well when the
number of cores increases. Since scan patterns are not supported by loop-based dependence
analysis, and scan patterns are difficult to recognize from sequential implementations, it has
become important to support scan as a primitive construct at language level, thus enabling
(i) high-level optimizations by means of re-write rules such as fusion, and (ii) efficient code
generation for highly-parallel hardware (which are tedious and non-trivial to achieve).

In this report, we present our implementation of a single-pass-scan algorithm, in the Futhark
compiler [6]. We will first explain the algorithm at a high level, by breaking it into smaller
parts and examining them individually, and explain how they fit together. Then we will go
into how it was implemented into the Futhark compiler, and explain how different parts of

the compiler implementation relates to the generated OpenCL code. We’'ll then present our
benchmark results where we achieve a speedup from 11572us to 4750us in comparison to the
previous Futhark implementation, on a scan with plus as the operator on a 1GiB input. We
within get 84.8% of the performence of memcpy on the same input. We will finally discuss
the limitations of the algorithm and implementation, and suggest possible improvements.

2 Algorithm - Motivation & High level

2.1 Motivation

Typical GPU implementations of scan use three kernels, for example:

(1) Each block reduces its chunk of consecutive elements and writes its result into a smallish
array;

(2) The smallish array is scanned;

(3) Each block scans its chunks of consecutive elements, to which it also adds the prefix
computed in step (2).

This approach requires at least three accesses to global memory for each of the to-be-scanned
elements: one read from global memory in step (1) and one read and one write from global
memory in step (3). Matters are even worse in the current Futhark compiler implementation
of scan that requires four global-memory accesses per scanned element: the first phase
performs a partial scan of the elements that are processed by a block, and the last stage
adds the prefix to each element. This approach is taken because Futhark IR supports a
construct that represents the fusion of a map operation with a scan, which is difficult to
be supported by the three-access approach without requiring redundant computation of the
map operation.

The implementation presented in this report requires only two global-memory accesses per
scanned element: if we assume for simplicity that the scanned element is of size one word,
then the goal is that our scan should have performance comparable to that of memcopy.!

I The memcopy operation is an absolute upper-bound for performance because any implementation of
scan requires at least two global memory accesses and some arithmetic computation.

2.2 High level

Our implementation is based on the algorithm presented by Duane Merrill and Michael
Garland|8]. The main idea is to implement the scan within one kernel by communicating the
prefixes across blocks in a pipelined fashion, whose efficiency is improved by some (parallel)
redundant computation. The main stages of the algorithm are:

(1) A dynamically renaming scheme (based on atomic increment) is applied to blocks to
ensure that for any n < ¢, if the block (re)named ¢ is running then block n is already
under execution as well. The dynamic renaming prevents deadlocks, which are possible
with the original block numbering.?

(2) Chunks of M elements per thread are read in coalesced way from global to register
memory, where they transformed using the map function. They are then put into
correct order, by using the shared memory as a transposition buffer;

(3) Each thread scans sequentially its M elements;
(4) A block level scan processes the last elements of each thread;

(5) The block prefix is published in global memory (i) with status-flag P, i.e., full prefix,
for the first block, and (ii) with status flag A, i.e., partial prefix, for the other blocks,

(6) An inter-block communication scheme is employed to compute the prefix of the blocks
preceeding the current one (in program order).

(7) The prefix of the previous blocks and of the previous threads in the current block are
added to the per-thread scanned elements;

(8) The fully-scanned elements are copied in coalesced fashion to global memory, using as
before shared memory as a transposition buffer.

Our compiler implementation extends Merrill and Garland’s algorithm in several ways: First,
we of course support scan operators a — o — « for arbitrary type a. Second, and more
importantly, our compiler implementation allows for the scan bulk operation to be fused
with a map operation that produces some of the values that are scanned. Throughout this
section, and the implementation section, we will use the variable M to denote the number
of elements (from to-be-scanned array) that will be sequentially processed by each thread?.
The value we have used is M = 9, but in a more complete implementation this should be
adjusted based on the number and type of parameters. This is discussed in the Resource
usage and the Possible improvements & limitations sections. The next section present the
algorithm in more detail, and flowchart 2 graphically depicts steps (2)-(4) in the itemized
list above.

2 For example, let us assume that a maximal number ¢ of blocks can be concurrently executed, but that
block 0 has not been scheduled for execution yet. Then we are in a deadlock situation because the currently
executed blocks need the value of the prefix of block 0, but block 0, who is the one computing it, cannot be
scheduled before one of the other blocks finishes.

3This conforms with Brent’s Lemma related to efficiently sequentializing the parallelism in excess of what
the hardware can support.

— =

— O © 00O Uk Wi -

3 Algorithm - Detailed explanation

In this section, we will go into details of how each part of the algorithm works.

3.1 Dynamic block numbering

Since this algorithm is dependent upon each block receiving the prefix corresponding to the
computation of previous blocks, we need to make sure that if block 7 has been scheduled for
execution, then all blocks less than i have finished or are also under execution. (Otherwise
we may possibly have a deadlock, as explained in section 2.2) Normally, there is no such
guarantee, but by dynamically allocating block numbers, after a block has been spawned, we
can achieve the same effect. This is accomplished by having each block perform an atomic
read, which increases a counter maintained in global memory. The atomic read returns the
previous (non-increased) value, which is then used as the block number, throughout the
whole implementation.

// DynamicIdGenesis s a global memory location, which is initialized to 0
// before anything is ran.

shared dynamicIdShared = null

if threadId == 0:
dynamicIdShared = atomicInc(DynamicIdGenesis) // Reads and increases by 1

localBarrier()
dynamicId = dynamicIdShared

Figure 1: dynamic id pseudocode

b: Block size (4)
m: Elems per thread (2)

gba' 0 (b-1) \

memory
Read from global memory with a stride
v
Sleg'Ster 0 (5 Y N TETEEE Phase 1
lemory
Perform map
A) 4
Register . Ly .
Memory 0 (b-1)' > (Write relevant map results to global memory)
Write relevant map results to shared
memory, in same order as the came
A
Shared . \ ol L
Memory 0 m (b-1) Phase 2
Read consecutive elements from shared memory
A v
Register

Perform per thread scan

Y Y
Register * *
Memory 0 m
Publish last result of the per thread scan
Shared " .
Memory m (bm)
Perform scan of local prefixes in shared memory
A 4 A 4 A 4 A 4
Shared o .
Memory m (bm)

Figure 2: Flow chart of the algorithm, up to before lookback (not including dynamic id

3.2 Global memory read and map - Phase 1

This phase is illustrated in Figure 2, in the Phase 1 part.

In order to achieve a high throughput of the algorithm, it is especially important to read
from global memory as fast as possible. In order to do this, we need to read in a coalesced
fashion. This is done by having each thread read from addresses adjacent to each other,
requiring each thread to read with a stride, as show in Figure 2 (see Figure 3 for how the
indexes are calculated). The value read is then mapped, and any part of the result that
needs to be returned directly, is written to global memory, and any part that is input to
the scan function is kept in register memory. This process is repeated for each element each
thread has to process (ie. M times).

0 O Uik Wi

—
N = O ©

0 O Ui WK

—
N = O ©

blockOffset = dynamicId * M * groupSize
private[M] privateArray

for i in 0 to M:
globallndex = blockOffset + threadId + i * groupSize
value input [globalIndex]
mapResult mapFunction(value)

(mapResultyiopar, mapResulty,ivate) = split(mapResult)
mapOutput [globalIndex] = mapResultgiopal
privateArray[i] = mapResult,iyate

Figure 3: Load and map pseudocode

3.3 Transposition - Phase 2

This phase is illustrated in Figure 2, in the Phase 2 part.

We now have the input to the scan function in our private arrays, but they are in the wrong
order. Fx. the first thread has the scan inputs to index 0, 0 +blockSize, 0+ 2-blockSize,
and so on. In order for the algorithm to progress, we need each thread to have consecutive
elements. To achieve this, all threads needs to put their mapped values into shared memory;,
and read back elements in consecutive order. This can be done in 2 ways. One way is to
have each thread write it’s values into shared memory, in the order that is has them, and
then read back with a stride of blockSize. The other other way (the one we have chosen
to use), is to have each thread write with a stride of blockSize to shared memory, and
read back consecutive elements (as illustrated in Figure 2 and Figure 4). The performance
differences between the two methods should be negligible.

// privatedrray contains values set in the previous section,
// in the same order as they were set.
local[m * groupSize] transpositionArray

for i in 0 to M:
sharedIdx = threadId + i * groupSize
transpositionArray[sharedIdx] = privateArray[i]

for i in 0 to M:
sharedIdx = threadId * M + i
privateArray[i] = transpositionArray[sharedIdx]

Figure 4: “Transposition” of mapped values pseudocode

0 O Uik Wi

—
N = O O

3.4 Per thread scan

In order to maximize throughput, we need to minimize the amount of communication needed
between threads and between blocks. To do this, we allow each thread to process as many
elements as possible by itself, since this requires no inter-thread communication. This number
(M) is ultimately limited by the amount of shared memory and register memory that can
be used, without significantly affecting occupancy. This is simply achieved by having each
thread sequentially scan its elements, which are kept in register memory. Once each thread
has completed this step, all the threads in a block “publish” their last element into an array
in shared memory.

3.5 Block level scan

The results published in the previous stage, is then scanned, in order to produce an array of
prefixes. Each thread then gets the index of its own threadId - 1, in this array of prefixes.
This value is the accumulated values of all of the elements preceding each thread, inside the
block. If each thread were to map this value onto its elements, using the scan operator, all
of the elements in the block would be scanned, as if they were the only elements. Since we
would still need to map the accumulated value of all of the elements preceding this block, we
don’t do this yet. Further, since there are no elements in the block, before the elements of
the first thread, the first thread gets the last result of the scanned local prefixes, for reasons
that will become apparent in the next section. The process in illustated in Figure 5.

// Contains the value of each threads last element:
local[groupSize] individualThreadResults

localPrefixes = scan operator individualThreadResults

accumulator = null
if threadld == O:
// First thread get the last element
accumulator = localPrefixes[groupSize - 1]
else:
accumulator = localPrefixes[threadId]

Figure 5: How each thread finds it’s accumulator

3.6 Synchronizing with other blocks

Before we detail how we synchronize, we need to establish a couple of things. To communicate
with the other blocks, we maintain three arrays in global memory, all of them having a length
equal to the total number of blocks. One array records the status flags (see Table 1 for the
flags and their meaning), one array records the aggregates values, and the last array records
the inclusive prefizes. A block’s aggregate is the reduction across all the elements processed
by the current block. A block’s inclusive prefiz is the accumulated value of all of the elements

Flag Meaning
X The block hasn’t published anything
Aggregate | The aggregate of the block can be found in
the global aggregate array
Prefix The inclusive prefix of the block can be found
in the global prefix array

Table 1: Flags and what they mean

processed by the blocks up until and including the that block, i.e., is the sum of the aggregates
up to and including the that block.

So far, we only have that each thread in our block has scanned its elements (and has a
local prefix ready from the previous threads). So to continue, we need to find the inclusive
prefix of the previous block, i.e., the accumulated value from all of the aggregates of all of
the previous blocks. To do this, we need each block to publish (share) its aggregated value.
This is achieved by the first thread in each block, which updates the corresponding entry in
the array of aggregates (how the first thread got this value is detailed in the section 3.5).
When it is certain that the value has been written to global memory (accomplished by using
a global fence), the status flag array is also updated at the index of its blockId to the value
Aggregate. Since the very first block has no elements before it, it publishes its aggregate as
a prefix instead.

When we have published our own aggregate (which was as soon as possible, in order to help
other blocks), we can start looking back at what other blocks have published. We start
by looking back at the block immediately before us, to see if it has published its inclusive
prefix. If it has, we can use it directly and don’t need to look further back. This first part
is not strictly necessary, as the algorithm would still get the correct result without it, but it
improves performance performance.

If the previous block has not published its inclusive prefix yet, the current block needs to
compute it itself.* To do this, we start by getting the flags and values of the previous 32 (the
size of a warp) blocks. We then reduce these flags and values down to a single flag and value.
This reduction is done from lower numbered blocks to higher numbered, by combining their
flags and values according to table 2.

Left hand flag | Right hand flag | Result
Anything X Resulting flag is X, and there is no value
X Anything The right hand flag and value is taken
Aggregate Aggregate Resulting flag is aggregate, and the 2 values
combined using the scan operator
Prefix Aggregate Resulting flag is prefix, and the 2 values are
combined using the scan operator

Table 2: How flags and values are combined during reduction

4The alternative is for the current block to wait until the previous block computes its inclusive prefix.
This approach underutilizes the system’s bandwidth, and induces a serial dependency, so instead we use the
approach in which each block may perform some redundant computation.

Has the previous

block published it's
inclusive prefix?

Yes

No

Y

Set read offset to the
current block id - 32,
and declare an
accumulating flag

with statusX

A 4
Y

Load the previous
flags and values, [€—
based on the offset

@@/

Y

Y

o
Reduce over flags
and values, and
combine with existing
aggregate flag and

value

Y

Set read offset further

Resulted in? StatusX
back

StatusA

StatusP

Y

We have an prefix

Figure 6: Decision diagram for the lookback phase
As detailed in Figure 6, we now do one of three things.

(1) If we ended up with a flag of X, we simply repeat the process, reading from the same
indexes (hoping that the previous blocks has published their results).

(2) If we ended up with a flag of aggregate, we adjust the offset we’re looking back with,
and continue looking further back. As long as any of these two flag are the result of
the reduce, we repeat the process.

(3) When we end up with a result of Prefix, we have computed the full prefix of all the
elements processed by previous blocks, and we can stop the lookback.

Before we start distributing this prefix to the elements of the current block, we combine it
with the aggregate of the current block, to compute the inclusive prefix of the current block.
We then write this value into the global array of inclusive prefixes, and update the flag of
our block from aggregate to prefix. (A global-memory fence is required between these two
updates, so that the other blocks observe the updates in the correct order, just like in the
case when we published the aggregate).

0O Ui Wi

— =
o= OO

The reason we need each block to spend time publishing its inclusive prefix, is to allow the
following blocks to stop their lookback early, without having to go all the way back to the
first block. Without this part, the depth of the algorithm, would be O(n), and thus not
parallel at all.

3.7 Distribution of lookback result

We now have the accumulated value of all of the elements preceding the current block, ie.
the value found during the lookback. Further, each thread has the accumulated value of all
of the elements preceding it, inside the block. Now each thread need to map these 2 values
onto its elements. To save time, we first combine these 2 values, and then simply map the
result onto our elements in a for loop, see Figure 7 for pseudocode.

// exzclusivePrefiz contains the result found in the previous section
// accumulator contains the value it got in block level scan section
// privatedrray contains the values set in the Per thread scan section

if threadId == 0:
accumulator = neutralElement

accumulatorAndPrefix = operator accumulator exclusivePrefix

for i in 0..M:
privateArray[i] = operator accumulatorAndPrefix privateArray[i]

Figure 7: How each thread distributes the result of the lookback and the accumulator

3.8 Writing the private data to global memory

We now have a final result in a private-memory array, and we need to write it to global
memory. Just like when we read the input in the first place, we have to write back to global
memory in a coalesced fashion. In order to to this, we again need to “transpose” them
the same way we did earlier, by using shared memory as a staging buffer, but the steps
are reversed, i.e., first we write from private to shared memory, and then from shared to
global memory. Figure 8 shows the pseudocode that achieves this coalesced update of global
memory.

10

0 O Uik Wi

e e el el el e
O UL W= O ©

// privatedrray contains the values set in the previous section
local[m * groupSize] transpositionArray

for i in 0 to M:
sharedIdx = threadId * M + i
transpositionArray[sharedIdx] = privateArray[i]

for i in O to M:
sharedIdx = threadId + groupSize * i

privateArray[i] = transpositionArray[sharedIdx]

blockOffset

dynamicId * M * groupSize

for i in 0..M:
globalldx = blockOffset + (groupSize * i) + threadId
resultArray[globalldx] = privateArrayl[i]

Figure 8: How each thread distributes the result of the lookback and the accumulator

4 Resource usage

The limiting factor for how many elements each thread can process—i.e., what should the
value of M be?—is a combination of the amount of shared memory available per thread,
and the amount of register memory available per thread. Before we can discuss this, we first
need to explain what an element can be. In section 2.2 and 3, elements were discussed as
though they were of basic types, but this is not necessarily so. For example, the type of an
element can be a g-tuple tuple, where ¢ is statically known, e.g., (int, int, int, int).
In the following computation we assume that the element type of the input array is some
tuple type @ = (o, ..., q,). In the places were we use shared memory, we use the following
amounts:

1. During the transposition phase, we transpose one component of all of the elements, at
a time. This uses a maximum of M - groupSize - maz{_;(sizeof(c;)) bytes of shared
memory.

2. During the block level scan, we need to hold an entire element for each thread, in
shared memory. This uses groupSize - sizeof(a) = groupSize - suml_,(sizeof(;))
bytes of shared memory.

3. During the lookback phase, we use 32bytes + 32 - sizeof(«) bytes of shared memory.

4. To share the result of the lookback, shared memory is used to store a single element.
This however will always be less than any of the other phases.

These 4 instances of shared memory use, are never required to exist at the same time, and
therefore we can allocate the maximal amount required by any stage, and reuse the available
shared memory for each stage. The resulting allocation is a formula in unknown M, which
can be computed by searching for the maximal value of M that does not result in a significant

11

decrease of occupancy—i.e., the number of blocks scheduled concurrently on the same SM
is limited by the amount of shared memory available on the SM (for Nvidia, this is 48Kb).

We use the following amounts of register memory:

1. When loading the input to the map function, we have to hold a single element of it in
register memory, before we can do the map.

2. After performing the map, we have to hold the result, before we can write any relevant
part(s) of it to global memory. Again, we only need to hold one instance.

3. Throughout the algorithm, each thread holds its elements in its registers, using M -
sizeof () bytes of register memory.

4. After the block level scan phase, each thread additionally holds sizeof(«) bytes of
register memory.

5. After the lookback phase, each thread additionally holds sizeof(a) bytes of register
memory.

The first 2 needs to be able to exist at the same time as the third, but once the transposition
starts, they no longer needs to exist. The last 3 of these need to exist at the same time.
Therefore, the constraint they impose on M, is that the sum of them must be lesser or equal
to the amount of register available to each thread. Further, there is a general overhead, since
any variables used by the program also takes up space in register memory.

12

© 00O U WN =

5 Implementation

In order to implement this single pass scan in the Futhark compiler, we've changed the
implementation of the scanomap primitive, which is a higher order primitive function that
consists of a segmented scan fused with a map. Another thing to note is that at this
intermediate representation we're working at, arrays of composite types are split up into an
array for each component [5].

Our implementation can be found in src/Futhark/CodeGen/ImpGen/Kernel/SegScan.hs
in our clone of the Futhark repository. Which can be found at https://github.com/
AndreasNicolaisen/futhark/tree/wip.

5.1 Global load and mapping phase implementation

The first stage of the scan code generation first assigns each block a dynamic id using atomic
incrementation of a global variable. Then a for-loop repeating M times is generated, where
for each iteration the map function is applied to the input loaded from global memory (read
in a coalesced fashion). Each component of the map result is either written directly back
to global memory if it’s to be used elsewhere, and any parts of the components used by the
scan are written to private memory.

sFor "i" tM $ \i -> do

-- The map’s input index

dPrimV_ gtid $ (tvExp block0ff) + localThreadIld + i * groupSize

-- Perform the map

sWhen ((Imp.vi32 gtid) .<. n) $ do

compileStms mempty (kernelBodyStms kbody) $
do let (scan_res, map_res) =
splitAt (segBinOpResults scans) $ kernelBodyResult kbody
forM_ (zip (takeLast (length map_res) all_pes) map_res) $
\(dest, src) -> do
-- Write map results to their global memory destinations
copyDWIMFix (patElemName dest) [Imp.vi32 gtid]
(kernelResultSubExp src) []

for (int32_t i = 0; i < 9; i++) {
int32_t gtid =
blockOff + local_tid + i * segscan_group_size;
if (s1t32(gtid, n)) {
float x =
((__global float *) xs_mem) [sext_i32_i64(gtid)];

private_mem[sext_i32_i64(i)] = x;

OO U R WN =

}
}

=

forM_ (zip privateArrays $ map kernelResultSubExp scan_res) $
\(dest, (Var src)) -> do
copyDWIMFix dest [i] (Var src) []

(a) Compiler Implementation (b) Generated OpenCL

Figure 9: Global-load and mapping phase of the program: scan (+) 0 xs

In Figure 9a the Futhark compiler implementation of this phase is shown besides the gener-
ated OpenCL in Figure 9b. Lines 1-5 in the compiler code directly corresponds to line 1-4
in the generated code. Line 6 then compiles the map lambda body (which is the identity
function in this case), which in effect simply loads the input into x as seen in the output
code line 5-6. Line 7-8 then divides the results of the mapping into the components that are
used by the scan (scan_res) and the ones to be written to global memory (map_res). Then
line 9-13 generate the code for writing the results to global memory, and line 15-17 generate
the code for writing to private memory, corresponding to line 8 in the generated code.

Note that the privateArrays referred to the implementation code is an array that contains
a private array of M items for each component in the scan type.

13

https://github.com/AndreasNicolaisen/futhark/tree/wip
https://github.com/AndreasNicolaisen/futhark/tree/wip

[

OO0~ U B WN -

5.2 'Transposition phase implementation

This phase then writes the values held in the thread’s private arrays into local memory such
that each thread can read sequential values back into their private memory, so the data is
ready to be scanned. This is done for each component, one component at a time, so that local
memory only has to hold the data of one component at a time, reusing the local memory.

1

2

forM_ (zip transposedArrays privateArrays) $ \(trams, priv) -> do i
sOp localBarrier 5
sFor "i" tM $ \i -> do 6
sharedIdx <- dPrimV "sharedIdx" $ localThreadld + i * groupSize 7
copyDWIMFix trans [tvExp sharedIdx] (Var priv) [il 8

sOp localBarrier 9
sFor "i" tM $ \i -> do 10
sharedIdx <- dPrimV "sharedIdx" $ localThreadId * tM + i 11
copyDWIMFix priv [i] (Var trans) [tvExp sharedIdx] 12

sOp localBarrier 13
14

15

(a) Compiler Implementation

Figure 10: Transposition phase of the

barrier (CLK_LOCAL_MEM_FENCE) ;
for (int32_t i = 0; i < 9; i++) {
int32_t sharedIdx = local_tid + i * segscan_group_size;

((__local float *) local_mem) [sext_i32_i64(sharedIdx)] =
private_mem[sext_i32_i64(i)];
}
barrier (CLK_LOCAL_MEM_FENCE) ;
for (int32_t i = 0; i < 9; i++) {
int32_t sharedIdx = local_tid * 9 + i;

private_mem[sext_i32_i64(i)] =
((__local float *) local_mem) [sext_i32_i64(sharedIdx)];
}
barrier (CLK_LOCAL_MEM_FENCE) ;

(b) Generated OpenCL

program: scan (+) 0 xs

We can see in Figure 10 that line 1 in the implementation starts looping over the private
and local array for each component. At each iteration line 3-5 then generates the code that
transposes the private values into shared memory, corresponding to line 2-7 in the generated
code. And line 7-9 generate the code load the sequential elements back into private memory;,

corresponding to line 9-14 in the generated code.

14

OO~ U WN

5.3 Per-thread scan phase implementation

In this phase each thread then scans its private elements in place, and then publishes the

last value in local memory.

sFor "i" tM $ \i -> do
let xs = map paramName $ xParams scanOp
ys = map paramName $ yParams scanOp
nes = segBinOpNeutral scanOp 1 for (int32_t i = 0; i < 9; i++) {
2 float x;
mapM_ 3 float y;
(\(src, (x, y, ne, ty)) -> 4
do dPrim_ x ty 5 if (i ==0) {
dPrim_ y ty 6 x = 0.0F;
sIf (i .==. 0) 7 } else {
(copyDWIMFix x [1 ne [1) 8 x = private_mem[sext_i32_i64(i - 1)1;
(copyDWIMFix x []1 (Var src) [i - 11) 9 ¥
copyDWIMFix y [l (Var src) [i]) 10 y = private_mem[sext_i32_i64(i)];
$ zip privateArrays $ zip4 xs ys nes tys 11
12 float res;
compileStms mempty (bodyStms $ lambdaBody $ segBinOpLambda scanOp) $ 13
mapM_ 14 res = X +y;
(\(dest, res) -> 15 private_mem[sext_i32_i64(i)] = res;
copyDWIMFix dest [i] res [1) 16 |}
$ zip privateArrays $ bodyResult $ lambdaBody $ segBinOpLambda scanOp 17
18 ((__local float *) local_mem) [sext_i32_i64(local_tid)] =
mapM_ (\(dest, src) -> 19 private_mem[8];
copyDWIMFix dest [kernelLocalThreadId constants] 20 | barrier (CLK_LOCAL_MEM_FENCE) ;
(Var src) [tM - 1])
$ zip prefixArrays privateArrays
sOp localBarrier

(a) Compiler Implementation

(b) Generated OpenCL

Figure 11: Per-thread scan phase of the program: scan (+) 0 xs

We can see in Figure 11 that line 1 in the implementation that the outer loop is generated,
corresponding to line 1 in the generated code. Line 2-4 then extracts which parts of the scan
operator’s lambda’s parameters are the first and second arguments (the xs and ys) and the
neutral element for each component. Then line 6-14 then either sets x to be neutral element
or the previous scan results, and y to be the current element, corresponding to line 2-10 in
the generated code. Line 16 then compiles the lambda body corresponding to line 12-14 in
the generated code. Line 17-20 then stores each component of the result into its respective
private array (in-place), corresponding to line 15 in the generated program. Finally line 22-25
then writes the last scanned element to shared memory for each component, corresponding
to line 18-19 in the generated program.

15

© OO U WN

5.4 Group scan phase implementation

In the group scan phase all the publishes values from the per-thread scan phase is then
scanned over in local memory. Each thread then sets their accumulator to be the previous
thread’s scan result, which will be used later to prefix all it’s private elements. The first
thread in each block sets its accumulator the very last resulting value, which will be used by
the lookback stage.

accs <- forM tys (\ty -> dPrim "acc" ty) 1 | float acc;
groupScan 2
Nothing 3 |/ ...
(tvExp numThreads) 4 // Group scan implementation omitted
(kernelGroupSize constants) 5 |// ...
scanOp’ 6
prefixArrays 7 | barrier (CLK_LOCAL_MEM_FENCE) ;
8 | if (local_tid == 0) {
forM_ (zip accs prefixArrays) 9 acc = ((__local float *) local_mem)
(\(acc, prefixes) -> 10 [sext_i32_i64(segscan_group_size - 1)1;
sIf (localThreadId .==. 0) 11 } else {
(copyDWIMFix (tvVar acc) [] (Var prefixes) [groupSize - 1]) 12 acc = ((__local float *) local_mem)
(copyDWIMFix (tvVar acc) [] (Var prefixes) [localThreadId - 11)) 13 [sext_i32_i64(local_tid - 1)1;
14 ¥
sOp localBarrier 15 barrier (CLK_LOCAL_MEM_FENCE) ;
(a) Compiler Implementation (b) Generated OpenCL

Figure 12: Group scan phase of the program: scan (+) 0 xs

As seen in Figure 12 on line 1, an accumulator variable for each component is declared,
corresponding to line 1 in the generated program. Then on line 2-7 the group scan is gener-
ated using a helper function already present in the compiler implementation, the resulting
(long) code has been omitted from the generated program shown. Then on line 9-13 the
accumulator is loaded with the resulting values for each component, corresponding to line
8-14 in the generated program.

5.5 Lookback phase implementation

The lookback phase implementation is more or less a direct implementation of the algorithm
described earlier, handling multiple components the same way as seen in earlier phases.
The global inclusive-prefix and aggregate arrays are split up into multiple global arrays for
each component, just like local and private arrays. The algorithm’s implementation (and
generated code) is rather large, so for the sake of brevity it has been omitted.

5.6 Distribution and global write phase implementation

Here the prefix gotten from the lookback is combined with each thread’s aggregate in order
to arrive at the value each element in the thread’s private memory should be prefixed with.
Then the final results are written to global memory.

We can see in Figure 13a that line 1-4 extracts the x and y parameters for two instances
of the scan operator lambda (one for combing the aggregate and the prefix, and one for
prefixing the private elements). Then on lien 6-12 the parameters are declared, and the first
lambda’s parameters are initialized, corresponding to line 1-5 in the generated program. On
line 14-16 the first lambda body is then compiled and the result is assign the x parameter of
the second lambda (for each component), corresponding to line 7-8 in the generated code.

16

©ooTOU A WN -

let xs = map paramName $ xParams scanOp’
ys = map paramName $ yParams scanOp’
xs’ = map paramName $ xParams scanOp’’
ys’ = map paramName $ yParams scanOp’’
mapM_

(\((prefix, acc), (x, x’), (y, y’), ty) ->
do dPrim_ x ty
dPrim_ y ty
dPrimV_ x’ (tvExp acc)
dPrimV_ y’ (tvExp prefix))
$ zip4 (zip prefixes accs) (zip xs xs’) (zip ys ys’) tys

compileStms mempty (bodyStms $ lambdaBody scanOp’’) $ do
forM_ (zip3 xs tys $ bodyResult $ lambdaBody scanOp’’)
(\(x, ty, res) -> x <~~ toExp’ ty res)

sFor "i" tM $ \i -> do
mapM_
(\(src, y) ->
copyDWIMFix y [1 (Var src) [il)
$ zip privateArrays ys

compileStms mempty (bodyStms $ lambdaBody scanOp’) $
mapM_
(\(dest, res) ->
copyDWIMFix dest [i] res [])
$ zip privateArrays $ bodyResult $ lambdaBody scanOp’

forM_ (zip (map patElemName all_pes) privateArrays) $ \(dest, src) -> do

sFor "i" tM $ \i -> do

dPrimV_ gtid $ (tvExp blockOff) + localThreadId * (tM) + i

sWhen ((Imp.vi32 gtid) .<. n) $ do
copyDWIMFix dest [Imp.vi32 gtid] (Var src) [i]

(a) Compiler Implementation

OO0~ U ks WN -

float
float
float
float

float

x1;

yi;

x0 = acc;

y0 = prefix;
resO0 = x0 + yO;

x1 = res0;
for (int32_t i = 0; i < 9; i++) {
y1 = private_mem[sext_i32_i64(i)];

float resl = x1 + yi;
private_mem[sext_i32_i64(i)] = resi;

}

for (int32_t i = 0; i < 9; i++) {
int32_t gtid = blockOff + local_tid * 9 + i;

if (slt32(gtid, n)) {

((__global float *) mem) [sext_i32_i64(gtid)] =
private_mem[sext_i32_i64(i)];

(b) Generated OpenCL

Figure 13: Distribution and global write back for program: scan (+) 0 xs

On line 18-28 a loop over all private items is generated where each component of the private
items are loaded into the y parameter of the second lambda, the body compiled and the result
stored back into the private array, corresponding line 9-14 in the generated code. Finally on
line 30-34 all the private items then then written into global memory, corresponding to line

16-23 in the generated code.

17

6 Benchmarks

Our benchmarks can be seen in Table 3 and 4. In Table 3, we compare our implementation
to the original Futhark compiler. We are running 3 different programs, “Simple-1GiB” is,
as the name would suggest, a simple scan on 32 bit integers, with the plus operator. The
“1GiB” being the size of the input. “Advanced-100MiB” is a fused map and scan, that takes
a single array of 32 bit integers as input. The map then produces 2 new elements, which the
scan operators on. The scan then produces 2 elements as well. Finally, all 4, as well as the
input, are returned. The final program “Radix-100MiB”% run radix sort on 32 bit integers.
All 3 programs can be found in the Appendix.

Times (u seconds) Our Futhark
Program: GTX 780Ti | RTX 2080Ti | GTX 780Ti | RTX 2080Ti
Simple-1GiB 15980 4750 50150 11572
Advanced-100MiB | 3109 1097 7593 2213
Radix-100Mib 136568 50178 230707 82663

Table 3: Programs and their run times.

Simple-1GiB Our Reference MemCpy
Comparison: GTX 780Ti | RTX 2080Ti | GTX 780Ti | RTX 2080Ti | GTX 780Ti | RTX 2080Ti
Time (micro s.) 15980 4750 12773 4377 8251 4027
Throughput (GiB/s) | 125.16 421.05 156.58 456.93 242.39 496.65

Table 4: Comparison to reference solution.

As we can see in Table 3, we significantly outperform the original implementation in the
Futhark compiler. For the first 2 simpler programs, the speedup is between 2 to 3 times.
This is as expected, since we have around half of the amount of accesses to global memory,
compared to what the original implementation has. For the last one, the speedup is not
quite as good, but still significant.

In Table 4 we compare our implementation to a reference solution, written in OpenCL. We
are nearly as fast, but are probaly missing some performance, since our reduction during the
lookback is done with a single thread, whereas the reference implementation does it with an
entire warp.

Sadapted from: https://github.com/diku-dk/sorts/blob/60879a9d0758d61c855540c6accf8b627e7376d3/
lib/github.com/diku-dk/sorts/radix_sort.fut

18

https://github.com/diku-dk/sorts/blob/60879a9d0758d61c855540c6accf8b627e7376d3/lib/github.com/diku-dk/sorts/radix_sort.fut
https://github.com/diku-dk/sorts/blob/60879a9d0758d61c855540c6accf8b627e7376d3/lib/github.com/diku-dk/sorts/radix_sort.fut

7 Possible improvements & limitations

First of all, let’s list some of the limitations of the algorithm and implementation:

e The part of the compiler that our implementation replaces, also covers the case of
reqular-segmented scan, which we do not support (yet) in our implementation. How-
ever, we hypothesize that this can be added in a manner similar to how the regular-
segmented reduce is implemented |7].

e We don’t handle multiple scan operators being fused, albeit this is a relatively straight-
forward extension.

Then we have some possible improvements:

e The reduction of flags and values during the lookback, is run using a single thread, but
should probably be done using an entire warp.

e The reduction function used does a lot of bitpacking, to keep the flag, and the number
of used values in the same byte. This allows us the adjust the lookback offset in small
steps, but might be more expensive, than just stepping with 32 at a time. Whether this
is actually faster is unknown to us, the question lies in how expensive the bitpacking
is, compared to reading flags and values unnecessarily.

e Remove hardcoding of number of elements per thread (M), and use constraints men-
tioned in section 4 to calculate the maximum possible value.

8 Conclusion

In this report, we have detailed an algorithm for single pass parallel scan. We have ex-
plained the details of the algorithm, and how it works. Further, we have explained how we
implemented the algorithm in the Futhark compiler, and related how different parts of the
compiler corresponds to different parts of the OpenCL code it generates. We have compared
its performance to that of the original implementation in the Futhark compiler, as well as
a reference implementation written directly in OpenCL. Finally, we have explained the lim-
itations of the algorithm and implementation, and given some possible improvements that
could be made.

19

9
1]

2l

3]

4]

[5]

(6]

7]

8]

19]

[10]

11

References

Christian Andreetta, Vivien Bégot, Jost Berthold, Martin Elsman, Fritz Henglein,
Troels Henriksen, Maj-Britt Nordfang, and Cosmin E. Oancea. Finpar: A parallel
financial benchmark. ACM Trans. Archit. Code Optim., 13(2):18:1-18:27, June 2016.

Guy E. Blelloch. Scans as Primitive Parallel Operations. Computers, IEEE Transac-
tions, 38(11):1526-1538, 1989.

Guy E Blelloch, Jonathan C Hardwick, Jay Sipelstein, Marco Zagha, and Siddhartha
Chatterjee. Implementation of a Portable Nested Data-Parallel Language. Journal of
parallel and distributed computing, 21(1):4-14, 1994.

Martin Elsman, Troels Henriksen, and Niels Gustav Westphal Serup. Data-parallel flat-
tening by expansion. In Proceedings of the 6th ACM SIGPLAN International Workshop
on Libraries, Languages and Compilers for Array Programming, ARRAY 2019, page
14-24, New York, NY, USA, 2019. Association for Computing Machinery.

Troels Henriksen, Ken Friis Larsen, and Cosmin E. Oancea. Design and gpgpu per-
formance of futhark’s redomap construct. In Proceedings of the 3rd ACM SIGPLAN
International Workshop on Libraries, Languages, and Compilers for Array Program-
ming, ARRAY 2016, page 17-24, New York, NY, USA, 2016. Association for Computing
Machinery.

Troels Henriksen, Frederik Thorge, Martin Elsman, and Cosmin Oancea. Incremental
flattening for nested data parallelism. In Proceedings of the 24th Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP ’19, page 5367, New York, NY,
USA, 2019. Association for Computing Machinery.

Rasmus Wriedt Larsen and Troels Henriksen. Strategies for regular segmented reduc-
tions on gpu. In Proceedings of the 6th ACM SIGPLAN International Workshop on
Functional High-Performance Computing, FHPC 2017, page 42-52, New York, NY,
USA, 2017. Association for Computing Machinery.

Duane Merrill and Michael Garland. Single-pass parallel prefix scan with decoupled
look-back, 2016.

Cosmin E. Oancea, Christian Andreetta, Jost Berthold, Alain Frisch, and Fritz Hen-
glein. Financial software on gpus: Between haskell and fortran. In Proceedings of the
1st ACM SIGPLAN Workshop on Functional High-performance Computing, FHPC 12,
pages 61-72, New York, NY, USA, 2012. ACM.

Cosmin E. Oancea and Alan Mycroft. Set-congruence dynamic analysis for thread-level
speculation (tls). In Languages and Compilers for Parallel Computing: 21th Interna-
tional Workshop, LCPC 2008, Edmonton, Canada, July 31 - August 2, 2008, Revised
Selected Papers, pages 156-171, Berlin, Heidelberg, 2008. Springer-Verlag.

Cosmin E. Oancea and Lawrence Rauchwerger. A hybrid approach to proving memory
reference monotonicity. In Sanjay Rajopadhye and Michelle Mills Strout, editors, Lan-
guages and Compilers for Parallel Computing, pages 61-75. Springer Berlin Heidelberg,
2013.

20

[12] Louis-Noél Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanujam,
P. Sadayappan, and Nicolas Vasilache. Loop transformations: Convexity, pruning and
optimization. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 11, pages 549-562, New York, NY,

USA, 2011. ACM.

21

10 Appendix

10.1 Appendix A - simple.fut

-- entry: main
-- compiled random input { [10000000]i32 } auto output

let main [n] (xs:[n]i32): [n]i32 =
scan (+) O xs

10.2 Appendix B - advanced.fut

-- entry: main
-- compiled random input { [10000000]f32 } auto output

let main [n] (as: [n]i32): ([n]i32, [n]i32, [n]i32, [n]i32, [n]i32) =
let (bs, cs) = unzip <| map (\a -> (a - 1, a + 1)) as
let (ds, es) = unzip <| scan (\(xb, xc) (yb, yc) -> (xb + yb, xc + yc)) (0, 0)
<| zip bs cs

in (as, bs, cs, ds, es)

10.3 Appendix C - radix_sort.fut

-- entry: main
-- compiled random input { [26214400]i32 } auto output

local let radix_sort_step [n] ’t (xs: [n]t) (get_bit: i32 -> t -> i32)
(digit_n: 132): [n]lt =
let num x = get_bit (digit_n+l1) x * 2 + get_bit digit_n x
let pairwise op (al,bl,cl,d1l) (a2,b2,c2,d2) =
(al ‘op‘ a2, bl ‘op‘ b2, cl ‘op‘ c2, dl ‘op‘ d2)
let bins = xs |> map num
let flags = bins |> map (\x -> if x == 0 then (1,0,0,0)
else if x == 1 then (0,1,0,0)
else if x == 2 then (0,0,1,0)
else (0,0,0,1))
let offsets = scan (pairwise (+)) (0,0,0,0) flags
let (na,nb,nc,_nd) = last offsets
let f bin (a,b,c,d) = match bin
case 0 -> a-1
case 1 -> na+b-1

22

case 2 -> na+nb+c-1
case _ -> natnb+nc+d-1
let is = map2 f bins offsets
in scatter (copy xs) is xs

-- | The ‘num_bits‘ and ‘get_bit¢ arguments can be taken from one of
-- the numeric modules of module type ‘integral‘@mtype@"/futlib/math"
-- or ‘float‘@mtype@"/futlib/math", such as ‘i32¢‘Qterm@"/futlib/math"
-- or ‘f64‘Q@term@"/futlib/math". However, if you know that

-- the input array only uses lower-order bits (say, if all integers
-- are less than 100), then you can profitably pass a smaller

-- ‘num_bits‘ value to reduce the number of sequential iteratioms.

-- *xWarning:** while radix sort can be used with numbers, the bitwise
-- representation of of both integers and floats means that negative
-- numbers are sorted as *greater* than non-negative. Negative floats
-- are further sorted according to their absolute value. For example,
-- radix-sorting ‘[-2.0, -1.0, 0.0, 1.0, 2.0]¢ will produce ‘[0.0,

-- 1.0, 2.0, -1.0, -2.0]¢. VUse ‘radix_sort_int‘@term and
-- ‘radix_sort_float‘@term in the (likely) cases that this is not what
-- you want.

let radix_sort [n] ’t (num_bits: i32) (get_bit: i32 -> t -> i32)
(xs: [n]t): [n]t =
let iters = if n == 0 then 0 else (num_bits+2-1)/2
in loop xs for i < iters do radix_sort_step xs get_bit (ix*2)

-- | A thin wrapper around ‘radix_sort‘@term that ensures negative
-- integers are sorted as expected. Simply pass the usual ‘num_bits‘
-- and ‘get_bit¢ definitions from e.g. ‘i32‘Q@term@"/futlib/math".
let radix_sort_int [n] ’t (num_bits: i32) (get_bit: i32 -> t -> i32)
(xs: [n]t): [nlt =
let get_bit’ i x =
-- Flip the most significant bit.
let b = get_bit i x
in if i == num_bits-1 then b = 1 else b
in radix_sort num_bits get_bit’ xs

let main [n] (xs: [n]i32): [n]i32 =
radix_sort_int i32.num_bits i32.get_bit xs

23

	Introduction
	Algorithm - Motivation & High level
	Motivation
	High level

	Algorithm - Detailed explanation
	Dynamic block numbering
	Global memory read and map - Phase 1
	Transposition - Phase 2
	Per thread scan
	Block level scan
	Synchronizing with other blocks
	Distribution of lookback result
	Writing the private data to global memory

	Resource usage
	Implementation
	Global load and mapping phase implementation
	Transposition phase implementation
	Per-thread scan phase implementation
	Group scan phase implementation
	Lookback phase implementation
	Distribution and global write phase implementation

	Benchmarks
	Possible improvements & limitations
	Conclusion
	References
	Appendix
	Appendix A - simple.fut
	Appendix B - advanced.fut
	Appendix C - radix_sort.fut

