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Abstract

In this thesis, we describe our work with reverse automatic differentiation (AD) in the data-

parallel programming language Futhark. The main motivation is to extend and optimise re-

verse AD in Futhark’s compiler to permit more expressive programs to by differentiated auto-

matically and efficiently.

Futhark’s AD consists of a set of rewrite rules that are used to transform a program to its differ-

entiated counterpart. We present reverse mode AD rewrite rules for the operations reduce-by-

index and scan. Reduce-by-index, also known as multi-reduce, has a generic cases and multiple

special cases, of which the latter are loosely described by Schenck et al. 2022. We formulate

and present a rewrite rule for the generic case and present specific rewrite rules for the special

cases as Futhark pseudo-code.

Likewise, we examine the reverse AD rewrite rules for scan presented by Schenck et al. 2022,

one of which we have simplified with a performance benefit. The existing AD implementation

is modified to work when the scan operates on tuples. We have extended the generic case with

specialised rewrite rules for scan operators whose Jacobian matches specific patterns.

We have implemented the presented rewrite rules of both reduce-by-index and scan in Futhark’s

compiler. The performance of differentiated programs is evaluated experimentally and com-

pared to its primal program performance and the program differentiated with forward AD

instead. In many case, this demonstrates reasonable reverse AD overheads and competitive

performance to Futhark’s established forward AD implementation.
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1Introduction

Differentiation is an essential tool for countless tasks. The subject of efficient differentiation

methods remains relevant, especially to computer scientists where machine learning often rely

heavily on differentiation (Baydin et al. 2018). ML algorithms typically take millions of data

points as parameters, making efficient and precise differentiation vital but tedious to compute

by hand. One solution is to use automatic differentiation (AD) which is a method that has

only caught the attention of the machine learning community a couple of years ago, and it

continues to provide an opportunity for expansion (Domke 2009).

ML workloads are run on (clusters of) GPUs so it is essential that AD is implemented in high-

level languages with efficient mappings to GPU hardware. Futhark is one such language (Hen-

riksen, Serup, et al. 2017, Elsman et al. 2018a, Henriksen 2017). AD has already partly been

implemented in the Futhark compiler but mostly the forward mode which is not optimal for

most ML tasks. Reverse mode AD is certainly preferable for these tasks but the implementation

has yet to be completed. This project aims to examine, extend and optimise parts of the reverse

mode AD implementation of Futhark.

Multiple methods of differentiation already exist, so why the interest in automatic differen-

tiation especially? Its advantages appear clearly, when we take a look at AD in comparison

to the other methods of derivative computations. We can discriminate between the following

differentiation method categories: manual, numerical, symbolic and automatic (Baydin et al.

2018). Figure 1.1 shows how a function might be differentiated by each method category.

The first and simplest category is that of manual differentiation (example figure 1.1a). This

method might be easy for small, simple expressions but would be infeasible for large programs.

It might take a long time and is prone to errors. As programmers we would much rather take

the lazy approach and let a computer do the work for us, even when possibly accepting a cer-

tain dynamic overhead in comparison with hand-optimised code.

The next two methods, numerical and symbolic, could be confused for variants of automatic

differentiation but are actually separate methods. Numerical differentiation relies on the com-

putation of finite differences in sample points from the original function and computes a nu-

meric derivative (example figure 1.1b). Numerical methods come with the disadvantage that

1



Program P and the corresponding mathematical expression f (x):
1 def f x =
2 let a = x * x
3 in a + 10

f (x) = x2 + 10

f (x) = x2 + 10

Mental calculations

d
d x

f (x) = 2x

(a) Manual differentiation

d
d x

f (x)≈ f (x + h)− f (x)
h

(b) Numerical differentiation with step size h> 0

Derivation rules:
d

d x
(h(x) + g(x))� d

d x
h(x) +

d
d x

g(x)

d
d x

c� 0
d

d x
xn� nxn−1

Derivative of f (x):
d

d x
f (x) =

d
d x
(x2 + 10) = 2x

(c) Symbolic differentiation

1 def f' x ẋ =
2 let a = x * x
3 let ȧ = 2*x * ẋ
4 let res = a + 10
5 let ˙res = ȧ
6 in ˙res

(d) Automatic differentiation (here forward
mode). ẋ is the tangent of variable x

Figure 1.1: Examples of the four categories of differentiation computation

they only compute an approximation and not an exact derivative.

Symbolic differentiation fixes this problem by automatically manipulating expressions to its

derivatives (example figure 1.1c). It gradually transforms the input expression using derivation

rules to finally reveal an exact derivative expression. However, the runtime may be bad since

expressions might grow exponentially large compared to the original function, also known

as expression swell (Baydin et al. 2018, p. 7). This problem is caused by unnecessary re-

computation of duplicate subexpressions in the derivative. It also requires the input expression

to be closed-form which limits the expressiveness of algorithms greatly.

While numeric and symbolic methods are both automatic in their computation, they each di-

verge from AD on crucial points. Automatic differentiation covers methods relying on the

accumulation of values through code execution resulting in a numerical derivative (example

figure 1.1d). Thus, AD uses parts from both these methods: It uses mathematical derivation

2 CHAPTER 1. INTRODUCTION



rules like symbolic differentiation; but returns a numerical derivative like numerical differen-

tiation (Griewank 2003). AD delivers a derivative at machine precision without expression

swell as intermediate variable derivatives are accumulated and reused.

The aim of this thesis is to extend the reverse mode AD implementation in the Futhark com-

piler, specifically reduce-by-index and scan. These operations will be presented as they are used

(chapter 4 and chapter 5). We use the rewrite rules presented by Schenck et al. 2022 as a start-

ing point and extend and optimise them in accordance with the original semantics. During the

development of the implementation, the focus has been on performance concerns, specifically

analytical considerations of performance such as asymptotic work-depth analysis and examina-

tion of constant factors based on Futhark’s compiler transformations, e.g. fusion of GPU parallel

constructs. For evaluation, we compare the runtime observations with Futhark’s forward mode

AD implementation and our expected performance calculations based on AD theory and GPU

behaviour. Our main contributions are implementations of reverse AD for reduce-by-index and

scan. The specific contributions of this thesis are:

• A reverse mode AD rewrite rule for reduce-by-index with generic case operators which

preserves the expected work-depth asymptotics of the primal program.

• A formal representation of the rewrite rules reduce-by-index with special case operators:

min/max, addition and multiplication.

• A systematic derivation of the rewrite rule for scan (with an arbitrary operator), inspired

from Schenck et al. 2022, that has allowed us to perform some simplifications on the

initial rule.

• Analysis for optimising the re-write rules of scan based on statically-reasoned sparsity of

intermediate results.

• Implementation of reverse mode AD of reduce-by-index with generic and special cases

in the Futhark compiler.

• Extending the implementation of reverse mode AD for scan with tuple operators and

special case operators in the Futhark compiler.

• An experimental evaluation of differentiated programs using reduce-by-index, demon-

strating (i) reasonable overheads compared to the primal programs for special cases,

(ii) significant speedups on computation of the full Jacobian compared to forward mode

AD in Futhark, and (iii) that a significant performance bottleneck is due to Futhark not

supporting a GPU-efficient Radix sort implementation.
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• An experimental evaluation of differentiated programs using scan, demonstrating (i)

competitive performance with forward mode AD when using special case operators, (ii)

up to 3× speedup of the differentiated program when exploiting a Jacobian pattern.

The exploitation of sparse Jacobian patterns enables scans with operators working on

tuples containing more than 4 elements, which runs out of shared memory with the un-

optimized rewrite rule; it would likely result in order-of-magnitude speedups otherwise.

This thesis consists of three main parts: Methods and Materials (part I), Implementation (part II)

and Evaluation (part III). Methods and Materials presents relevant parts of the Futhark language

and internal representation (chapter 2), the theoretical background of AD including forward

and reverse mode (chapter 3), and the previous work with regards to reverse AD of reduce-

by-index and scan (chapter 4 and chapter 5). Mind that the first part of the Futhark chapter

(section 2.1) is meant as an index table for semantics of Futhark language constructs as well as

an introduction to the language. Implementation includes the details of our contributions where

for the generic and special cases of reduce-by-index and scan, we present a high-level strategy

based in the theory, a rewrite rule as generated Futhark-esque pseudocode, a primitive analysis

of generated internal representation, and an asymptotic work-depth analysis. In Evaluation,

we consider validation and performance of our implementation (chapter 8 and chapter 9).

The validation chapter presents our testing strategy which includes manually derived tests

and tests with random input that validates our implementation against forward mode AD. In

the performance chapter, we present and analyse the benchmarks of our implementation and

assess it in comparison with primal programs and forward mode AD. Lastly, the conclusion and

future work sections are to be found in chapter 10 and chapter 11 respectively.
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Part I

Methods and Materials

5



2Futhark

A goal of this thesis is to expand the AD implementation in the Futhark compiler, specifically

the reverse mode. Section 2.1 explains relevant parts of Futhark syntax and semantics as well

as relevant parts of the internal representation of the language.

2.1 The Futhark Language

Futhark is a pure functional programming language designed for efficient general purpose

GPU (GPGPU) code (Henriksen, Serup, et al. 2017). In pure functional languages, program

statements are side effect free. This is a desirable property for AD since side effects complicate

the intermediate adjoint/tangent computations.

A Futhark function generally consists of a sequence of let-bindings:

let v1 = . . .

. . .

let vk = . . . in vk

As Futhark is side effect free, variables cannot be modified after assignment but can be over-

shadowed. Notice that in-place updates are disallowed in the form they exist in imperative

programs like C (e.g. ys[i] = x). We can access the same semantics of in-place updates by:

let ys = xs with [i] = x

Semantically, ys is a copy of xs where index i is updated to x. Operationally, no copying

is performed and essentially the i’th element of xs is overwritten with the new value x, thus

preserving the cost of the imperative update. xs is consumed by the operation which means it is

illegal for subsequent statements to reference that array. Consumption of the array is required

to preserve a side effect free language. This is implemented by a uniqueness type mechanism

that essentially type checks that xs is not reachable by any program statement following the

update (Henriksen, Serup, et al. 2017).

Additionally, Futhark supports a syntactic sugar resembling the imperative style notation more

closely by let xs[i] = x but this still creates a new variable overshadowing xs.

6



Mind that if we have a statement let x = as where as is an array, x is an alias of as, i.e. they

reference the same memory. Alternatively, we can use copy such that let x = copy as. In

this statement, the contents of as are copied to a new memory space which xs references. This

prevents xs and as from becoming aliases but introduces the overhead of reading and writing

the entirety of as.

Futhark has loops as well even though they are inherently an imperative style construct. For

this project only the Futhark for-loop is relevant:

loop acc = init for i in is do
bod y

acc is an accumulator that is set to an initial expression init in the loop header and after each

iteration acc is bound to the result of that iteration. i is in iterator which is taken from the

array is. Notice that such a loop is sequentially executed.

Some common Futhark functions are explained in table 2.1. A * in an input parameter type

means that the function consumes that parameter, i.e. any use of that actual parameter is ille-

gal after the program point of the call. A * in the output type means that the result is unique,

which means the result is guaranteed to not alias any non-unique parameters.

2.1.1 Second-Order Array Combinators

Futhark features second-order array combinators (SOACs). These are data-parallel oper-

ations executed by the GPU. Table 2.2 shows the semantics of the SOACs that are relevant to

our project.

The figure includes the work-depth asymptotics of the SOACs in Futhark. In a classic asymp-

totic runtime analysis, only the number of operations is taken into account but the runtime of

parallel programs depends heavily on the amount of parallelism. Work-depth analysis provides

a method for assessing the efficiency of parallel programs (Shiloach et al. 1982). The analy-

sis consists of two measures: work complexity and depth. Work complexity is the amount of

executed operations and depth is the required number of sequential steps. Ideally, a parallel

program should be work efficient, i.e. its asymptotic work is equal to that of an optimal sequen-

tial implementation. Below we give a brief explanation of the semantics of each SOAC.

Map: apply a function to every element of an input array. You can also map over multiple

arrays at once, e.g. map3 maps over 3 arrays with a three-ary function. Since the function

applications are independent, a map can be fully parallelised with a depth of O(df) (depth of a

single function application).

2.1. THE FUTHARK LANGUAGE 7



Type and Semantics Explanation

iota : (n: i64) → *[n]i64
iota n ≡ [0..n -1]

Returns an array with the
numbers from 0 to n− 1.

replicate : (n: i64) → α → *[n]α
replicate n x ≡ [x,. . .,x]

Returns an array with n
copies of x.

zip : [n]α → [n]β → [n](α,β)
zip a b ≡ [(a0, b0), (a1, b1), . . . , (an−1, bn−1)]

Returns an array where the
i’th element is a[i] tupled
with b[i].

unzip : [n](α,β) → ([n]α,[n]β)
unzip xs ≡

([ xs0.0, xs1.0, . . . , xsn−1.0],
[xs0.1, xs1.1, . . . , xsn−1.1])

Takes an array of 2-ary tu-
ples and returns a tuple with
two arrays where the first
one holds the initial indices
of element tuples and the
second array holds the sec-
ond indices of the element
tuples.

reverse : [n]α → [n]α
reverse xs ≡ [xsn−1, xsn−2, . . . , xs0]

Returns the input array in
reverse order.

copy : [n]α → *[n]α
copy xs ≡ xs

Returns a unique copy of the
input array.

Table 2.1: Types and semantics of common Futhark functions. zip and unzip also exist for
3-ary, 4-ary and 5-ary tuples by appending the arity to the function name, e.g. zip3.

8 CHAPTER 2. FUTHARK



Type and Semantics Work Depth

map : (α → β) → [n]α → [n]β
map f [x0, . . . , xn−1] ≡

[f x0, . . . , f xn−1]

O(wfn) O(df)

scatter : *[n]α → [m]i64 → [m]α → *[n]α
scatter dst is vs ≡

for i in [0..m -1] do
dst[is[i]] = vs[i]

O(m) O(1)

reduce : (α → α → α) → α → [n]α → α
reduce � e [x0, . . . , xn−1] ≡

e � x1 � . . . � xn−1

O(wn) O(w log(n))

scan : (α → α → α) → α → [n]α → [n]α
scan � e [x0, . . . , xn−1] ≡

[x0, x0 � x1, . . . , x0 � · · ·� xn−1]

O(wn) O(w log(n))

seg_scan : (α → α → α) →
α → [n]bool → [n]α → [n]α

seg_scan � e flags vs ≡
-- with k+1 segments with lengths k_i +1
[x0.0, x0.0 � x0.1, . . . , x0.0 � · · ·� x0.k0

,
x1.0, x1.0 � x1.1, . . . , x1.0 � · · ·� x1.k1

,
. . . ,
xk.0, xk.0 � xk.1, . . . , xk.0 � · · ·� xk.kk

]

O(wn) O(w log(n))

reduce_by_index : *[m]α → (α → α → α) →
α → [n]i64 → [n]α →
*[m]α

reduce_by_index dst � e inds vs ≡
for i in [0..n -1] do

dst[inds[i]] �= vs[i]

O(wn) O(wn)�

Table 2.2: Types and semantics of relevant Futhark SOACs as well as their asymptotic work-
depths (Elsman et al. 2018b). Mapping function f has wf work and df depth. Operator � has
w work. �: In practice, the expected depth is O(w log(n)).

2.1. THE FUTHARK LANGUAGE 9



Scatter: make m in-place updates in destination dst at indices is with values vs. The first

* in the operation type indicates that the input destination array is consumed. Recall that

consumption means the array cannot be legally referenced afterwards. As before, the * in the

output type means that the result is nique (has no aliases). Notice that the work do not depend

on the length of the destination array only on the number of in-place updates: It simply writes

to the needed indices. Illegal indices are ignored, i.e. if the index is negative or out-of-bounds

of the destination array. The depth is O(1) because the updates do not depend on each other

so scatter can be fully parallelised. It requires that no index is updated more than once, as

this would result in undeterministic behaviour.

Reduce: accumulate all values of an input array with binary operator �. The operator needs to

be associative so multiple subarrays can be processed in parallel while maintaining determin-

istic behaviour.

Scan: similar to reduce but it returns a list with all the intermediate results of accumulating

with associative operator �. There are two types of scan: inclusive and exclusive. Futhark’s

build-in scan operator is inclusive which means the first position is index 0 element x0, then

x0� x1 and so on up to x0� · · ·� xn (semantics shown in table 2.2). An exclusive scan has the

neutral element e in first position, then x0 etc. up to x0� · · ·� xn−1. Notice the last element of

the input array is not taken into account by the exclusive scan, so the resulting array will have

length n using either type of scan. An exclusive scan scan_exc can be implemented with little

overhead by shifting the elements of the input array one index:

scan_exc � e as =
scan � e (map (λi → if i == 0

then e
else as[i -1])

(iota n))

Segmented scan: scans inside specified segments of an input array (Blelloch 1989). The seg-

ments are defined by an n-length flag array which marks the beginning of each new segment

by true flag and all other flags are false. Like single scan, segmented scan can be inclusive or

exclusive inside each segment. Mind that segmented scan seg_scan is not build into Futhark

but it is a common SOAC nonetheless. An inclusive segmented scan can be implemented in

Futhark by (Elsman et al. 2018c):

10 CHAPTER 2. FUTHARK



seg_scan � e flags vs =
let (_, res) = unzip �

scan (λ(x_flag , x) (y_flag , y) →
let fl = x_flag || y_flag
let vl = if y_flag then y else x � y
in (fl , vl)

) (false , ne) (zip flags arr)
in res

Intuitively, this segmented scan implementation might seem excessively complicated. Why not

just map over the segments with a scan? The challenge is that Futhark only supports regular

arrays, i.e. internal arrays of the same level must be the same length. All segments might

not have the same length so an array with the segments as elements would be irregular. It is

possible to work with "irregular" structures by e.g. using a single array for all segments. Then

a flag array can be used to store the placements of the segments, like in segmented scan.

Reduce-by-index: we will be implementing the reverse AD derivative of reduce_by_index. The

type and semantics of reduce_by_index are explained thouroughly in section 4.3.

The SOACs reduce, scan and seg_scan all have the same work-depth asymptotics. Mind

that the depth is O(w log(n)) where w is the work of � because the operator will be executed

sequentially.

2.2 Internal Representation of Futhark

The Futhark compiler is known to aggressively optimise programs to the point where they can

hardly be recognised. The process yields relatively efficient data-parallel programs which can

be constructed from the convenient perspective of a high-level language. The compiler trans-

lates programs to an internal representation (IR) and optimises the program by e.g. removing

dead code, rearranging program order and control flow, and fusing SOACs.

The latter, fusing, is applied to sequences of SOACs when they take similar input arrays.

Here the word similar means that the SOACs take the same, partly the same input arrays, or

possibly just arrays of the same length. The SOACs are merged to a single kernel which is

executed on the GPU. Fusing saves much time since we can remove superfluous kernels call

overheads and memory accesses. It is especially important to be mindful of memory accesses

since global GPU memory is slow in comparison to accesses registers for example.

The Futhark syntax does not specify which SOACs are fused, so IR uses modified constructs
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IR Construct Type SOAC

Map input length����
� →

input arrays� �� �
{αn

j } j∈0..i →
map function� �� �

({α j} j∈0..i → {β j} j∈0..k)→ {β n
j } j∈0..k

map

ScatterOMap values length n����
� →

input arrays� �� �
{αn

j } j∈0..i →
map function� �� �

({αn
j } j∈0..i → {�n × β n

j } j∈0..k)

→
destinations� �� �
{βm

j } j∈0..k→ {βm
j } j∈0..k

scatter ◦ map

ScanOMap input length n����
� →

input arrays� �� �
{αn

j } j∈0..i →
scan ops w. neutral elems� �� �

{(β j → β j → β j)× β j} j∈0..k

→
map function� �� �

({αn
j } j∈0..i → {β n

j } j∈0..k)→ {β n
j } j∈0..k

scan ◦ map�

ReduceOMap input length n����
� →

input arrays� �� �
{αn

j } j∈0..i →
reduce ops w. neutral elem.s� �� �

{(β j → β j → β j)× β j} j∈0..k

→
map function� �� �

({αn
j } j∈0..i → {β n

j } j∈0..k)→ {β j} j∈0..k

reduce ◦ map�

HistOMap values length n����
� →

input arrays� �� �
{αn

j } j∈0..i

→

histograms� �� �

{
buckets m����
� →

neutral elem����
β j →

dest����
βm

j →
reduce op.� �� �

(β j → β j → β j)} j∈0..k

→
map function� �� �

({αn
j } j∈0..i → {�n × β n

j } j∈0..k)→ {βm
j } j∈0..k

reduce_by_index ◦ map

Table 2.3: SOAC constructs in the internal representation (IR) and their types. The constructs
take i+1 input arrays and result in k+1 outputs. The notation {µ j} j∈0..x denotes a tuple with
x + 1 elements of types µ0 × · · · × µx . µn means an n-length array with element type µ. Type
uniqueness information is omitted. �: the maps in scan and reduce may return additional
arrays which are not used by the scan/reduce functions (not shown in figure).
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for representing computation of fused SOACS. The relevant SOAC constructs are shown in ta-

ble 2.3. Consider first the construct Map whose input is a list of arrays and a mapping functions.

The compiler merges fusable SOACs into a single mapping function, whose input is a tuple with

elements from all input arrays. The fused function returns a tuple with an element for each

result array. Let us look at a Futhark example:

def main [n] (as: [n]i64) (vs: [n]i64) =
let a = map2 (*) as vs
let v = map (*5) vs
in (a,v)

The two maps can be fused since the arrays are the same length and they both map over vs.

The generated IR code for this example is:

entry_main (n : i64 , as : [n]i64 , vs : [n]i64)
: {*[n]i64 , *[n]i64} = {
let {a : [n]i64 ,

v : [n]i64} =
Map(n, {as , vs},

λ{x1 : i64 , x2 : i64}
: {i64 , i64} →

let {res1 : i64} = mul64(x1 , x2)
let {res2 : i64} = mul64 (5i64 , x2)
in {res1 , res2 })

in {a,v}
}

Mind that for the sake of readability, the code shown above is a beautified version of the IR.

Notice there is only one map construct which computes both a and v from the original Futhark

program, so the compiler has indeed fused the maps. Notice the compiler will only need to

read vs once - if the maps had not been fused, vs would be read twice. This fused map takes

2 input arrays and constructs 2 new arrays but there are no general requirements to the ratio

between input arrays and outputs. The map function simply takes elements of the used arrays

and outputs a tuple with elements for each resulting array, here a and v1.

The other constructs shown in table 2.3 are essentially function compositions of some SOAC

and a map. ScatterOMap applies a map to some input arrays which computes index and value

arrays. It can fuse multiple scatters as long as the value arrays are all the same length. The

1The cost model is that fusion should never duplicate computation.
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destination arrays need not have the same length.

Similarly, ScanOMap, ReduceOMap and HistOMap are able to fuse multiple scans, reduces

and reduce_by_indexs respectively. These fused SOACs may have different operators and

neutral elements which are provided to the SOAC construct in an array. As an example, con-

sider the Futhark program:

def main [n] (vs: [n]i64) (as: [n]i64) =
let a = scan (+) 0 (map (*3) as)
let v = scan (*) 1 vs
in (a,v)

The compiler translates it to:

entry_main (n : i64 , vs : [n]i64 , as : [n]i64)
: {*[n]i64 , *[n]i64} = {
let {a : [n]i64 ,

v : [n]i64} =
ScanOMap (n,

{as , vs},
{λ {x : i64 , y : i64}

: {i64} →
let {res : i64} = add64(x, y)
in {res},

{0 i64},
λ {x : i64 , y : i64}

: {i64} →
let {res : i64} = mul64(x, y)
in {res},

{1 i64 }},
λ {ai : i64 , vi : i64}

: {i64 ,
i64} →

let {res : i64} = mul64 (3i64 , ai)
in {res , vi})

in {a, v}
}

This IR code fuses the scans and the map from the Futhark code into one single construct

ScanOMap.
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Mind, that this aggressive optimisation approach provide some limitations as well as speed.

It might be difficult for a programmer to understand how their program is mapped to IR. Print

statements do not exist since some optimisations require the language to be pure (Henriksen

2018). This restricts Futhark programmers from e.g. using the common "printf debugging"

method. Also arrays of tuples actually do not exist in the IR and are converted to tuples of

arrays instead. Thus zip and unzip are constructs that only exists in the Futhark language but

not in the internal representation, i.e. they are syntactic sugar.

The IR also includes unsafe operations which do not exist in Futhark. One such is Scratch
which allocates an array of some type without initialising the memory. Notice that reading any

of these elements results in undeterministic behaviour! However, scratching can be used safely

when every element is written to before reading it. In these cases, it is more efficient than writ-

ing dummy values which are are overwritten anyhow. However, it is inappropriate to provide

unsafe operations to the layman Futhark programmer. Inside the compiler, the developers can

guarantee their usages of Scratch are safe.
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3Theory of Automatic Differentiation

In this section, we will give the intuition behind automatic differentiation as well as its math-

ematical foundation. Automatic differentiation is the generation of a program derivative. In

its essence, it relies on the rules of differentiation. E.g. a program computing the function

f : �→ �, f (x) = x2 will have the derivative f (x) = 2x by the rule
d xn

d x
= nxn−1. The initial

challenge is, how do you translate a program to a function that you can differentiate? The

derivation rules are defined on mathematical expressions, not program statements. A program

defines a function that can be derived according to an input or output. Mind that the program

needs to be side-effect free (which is guaranteed for pure functional languages). A program

consists of statements which can each be interpreted as a function. Then these functions can be

combined with function composition. Thus a program is essentially a composition of functions

where function f (x) = h(g(x)) = (h ◦ g)(x) corresponds to:

def f x =
let v1 = g x in h v1

Notice that in the mathematical expression, the computation order is from right to left, whereas

in the program the computation is from left to right.

AD takes a program and transforms it to a differentiated program by applying transforma-

tion rules to every program statement. Each statement makes a contribution to the derivative.

The idea is to construct derivative statements for all intermediate variables individually. These

are accumulated to a final derivative of the output or input. Mind that some statements make

a zero contribution, e.g. control flow statements. Intuitively, conditions in control flow state-

ments do not directly affect the computation of the result. Thus the control flow appears

unchanged in the differentiated program and just the statement body(s) are transformed.

The derivative contribution of a program statement can be represented as a Jacobian. The

Jacobian of a function f (x) is a matrix that holds the derivative in a given input point x. The

Jacobian of a differentiable function f : �a → �b at point x ∈ �a is defined as (Baydin et al.
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2018, p. 10):

Jf (x) =
�
∂ f
∂ x1
(x) · · · ∂ f

∂ xa
(x)
�
=



∇+T f1(x)

...

∇T fb(x)


 =




∂ f1

∂ x1
(x) · · · ∂ f1

∂ xa
(x)

...
. . .

...
∂ fb

∂ x1
(x) · · · ∂ fb

∂ xa
(x)




Mind that the entries of the Jacobian are scalars. As mentioned, programs can be viewed as

function compositions, where the contribution of each statement is a separate Jacobian. The

contributions are combined to a derivative of a program by applying the chain rule to the

Jacobians. Remember, the chain rule is used to differentiate composed functions and has the

definition
d f (z(x))

d x
=

d f (z(x))
dz(x)

· dz(x)
d x

. As an example, consider a differentiable function

P : �a → �d that defines program P. Assume P(x) = h(g(k(x))) where the sub-functions are

k : �a→ �b, g : �b→ �c,h : �c → �d . Then the Jacobian of P at point x ∈ �a is

JP(x) = Jh(g(k(x))) · Jg(k(x)) · Jk(x)

which we get by simply applying the chain rule. Notice that matrix multiplication is associative

so there are two possible computation orders. These two orders are the basis for the main types

of AD: reverse mode and forward mode. The program P is derived with the two modes in the

following way:

Forward mode:
−→
JP (x) = Jh(g(k(x))) · [Jg(k(x)) · Jk(x)]

Reverse mode:
←−
JP (x) = [Jh(g(k(x))) · Jg(k(x))] · Jk(x)

In forward mode, the matrices are multiplied right to left, so intermediate derivatives are

computed in program order. In reverse mode, the matrices are multiplied left to right, so

intermediate derivatives are computed in reverse program order.

3.1 Efficiency of Differentiated Programs

The two modes are desirable in different use cases. We continue with the example in program

P : �a→ �d . If there are considerably more inputs than outputs i.e. d � a, reverse mode will

be much faster than forward mode. The cause is that in forward mode the intermediate result is

a matrix of dimensions a× c which is much larger than the b×d intermediate matrix produced

by reverse mode. With analogous argument, if we have considerably more outputs than inputs

i.e. a � d, forward mode will be faster. Lets look at an example where P(x) = h(g(k(x)))
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with k : �n→ �n, g : �n→ �n, h : �n→ �. I.e. a program that takes n inputs and returns one

output, so a = n and d = 1. Then the Jacobian is:

1×n����
JP(x) =

1×n� �� �
Jh(g(k(x))) ·

n×n� �� �
Jg(k(x)) ·

n×n����
Jk(x)

In reverse mode, we first multiply the matrices Jh of 1× n and Jg of n× n which can be done

in O(n2) work. The resulting matrix has dimensions 1× n which is multiplied on Jk of n× n.

This is O(n2) work so reverse mode uses O(n2) work in total for this example.

In forward mode, it starts by multiplying the matrices Jg of n× n and Jk of n× n, which takes

O(n3) work. This results in a matrix of size n × n on which Jh of 1 × n is multiplied, taking

O(n2). Thus forward mode takes O(n3) work in this example where reverse mode only took

O(n2).

Notice that
−→
JP (x) depends on intermediate results from the original program, k(x) and g(k(x)).

In forward mode, the derivatives are computed in program order, so the computations can sim-

ply be interwoven in the original program. In reverse mode, we have to execute the original

program P(x) first while saving intermediate results and then compute
←−
JP (x), e.g. we need to

compute g(k(x)) to compute Jacobian Jh(g(k(x))). This means that reverse mode derivatives

introduce more runtime constants and uses more memory than forward mode. Therefore, for-

ward mode is preferred when a ≈ d.

Another important property of AD is that a row/column of the Jacobian can be constructed

such that it has the same asymptotic work-depth as the original program. This is because a

derivative statement only produces a constant overhead to the corresponding original state-

ment (Baydin et al. 2018, p. 3). However in practice, it might be more efficient to modify the

asymptotics slightly, which we will look more into later in the report.

3.2 Forward Mode

In forward mode,
−→
JP (as) is computed in point as = [a0, . . . , an] with an initial direction of

.as = [ .a0, . . . ,
.an]. Derivatives of intermediate variables are computed in program order, right

after their initialisation. A program statement can be transformed with the following rule
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Forward Primal Trace Forward Tangent (Derivative) Trace

let v1 = x1 * x2
let v2 =

if v1 > 0 then v1
else -1 * v1

let y = v2 + 2 * x1 **2

let
.
v1 = x2 *

.
x1 + x1 *

.
x2

let
.
v2 =

if v1 > 0 then
.
v1

else -1 *
.
v1

let .y =
.
v2 + 4 * x1 *

.
x1

Figure 3.1: An example program derived with forward mode. The first column shows the orig-
inal program P : �→ �→ � which implements function f (x1, x2) = |x1 x2|+2x2

1. The second

column shows the computation of the tangents. The differentiated program
−→
P (x1, x2,

.x1,
.x2)

is the primal trace interleaved with the tangent operations.

(Schenck et al. 2022, p. 2):

let v = f (a0, . . . , an) =⇒
let v = f (a0, . . . , an)

let
.v =
�n

i=0

∂ f (a0, . . . , an)
∂ ai

.ai
(3.1)

where the notation
.v means the tangent of intermediate variable v. A tangent in this context

is the derivative of v with respect to the direction
.as. I.e. the tangent is the derivative of an

intermediate variable with respect to the input. Notice that the rule assumes access to the

tangent
.ai. This is a safe assumption since ai cannot be used before initialisation so its tangent

must have been computed in the transformation of a previous statement.

By applying this transformation to every line of the program, a program derivative is produced.

The derivative of a program P(as) is
−→
P (as, .as). The program transformation is defined in the

function (Jacobian-vector product):

jvp : (P : �n→ �m)→ (−→P : �n→ �n→ �m)

Mind that a transformation of the program according to
.as only produces a single column of

the Jacobian. To compute some column i of the Jacobian, you call jvp with dx = (0,. . .,0)
with [i] = 1, i.e. the i’th unit vector. The whole Jacobian is computed by mapping jvp over

the standard basis of the input domain �n.

Figure 3.1 shows the forward mode derivative of a small example program.

3.3 Reverse Mode

A program derivative constructed by reverse mode, consists of a forward and a return sweep. In
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Forward Primal Trace Reverse Adjoint (Derivative) Trace

let v1 = x1 * x2
let v2 =

if v1 > 0 then v1
else -1 * v1

let y = v2 + 2 * x1 **2

--from v1 assignment
let x1 += x2 * v1
let x2 += x1 * v1
--from v2 assignment
let v1 +=

if v1 > 0 then v2
else -1 * v2

--from y assignment
let v2 += y
let x1 += 4 * x1 * y

Figure 3.2: Deriving an example program P : � → � with reverse mode. The first column
shows the original program. The second column shows the computation of the adjoints which
are executed bottom up. The differentiated program

←−
P (x1, x2, y) is the primal trace followed

by the reverse trace.

def −→P x1 x2
.
x1

.
x2 =

let v1 = x1 * x2
let

.
v1 = x2 *

.
x1 + x1 *

.
x2

let v2 =
if v1 > 0 then v1

else -1 * v1
let

.
v2 =

if v1 > 0 then
.
v1

else -1 *
.
v1

let y = v2 + 2 * x1 **2
let .y =

.
v2 + 4 * x1 *

.
x1

in (y,.y)

(a) Forward mode derivative
−→
P

def ←−P x1 x2 y =
let v1 = x1 * x2
let v2 =

if v1 > 0 then v1
else -1 * v1

let y = v2 + 2 * x1 **2
let v2 += y
let x1 += 4 * x1 * y
let v1 +=

if v1 > 0 then v2
else -1 * v2

let x1 += x2 * v1
let x2 += x1 * v1
in (y, x1, x2)

(b) Reverse mode derivative
←−
P

Figure 3.3: The forward and reverse mode differentiated programs from figure 3.1 and fig-
ure 3.2 side-by-side.
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its simplest form, the forward sweep is just the original code where intermediate variables are

saved. As mentioned earlier, intermediate variables are saved as the derivatives are computed

in reverse program order but depend on earlier intermediate results. Sometimes the forward

sweep code will be modified to compute extra variables used for optimising the reverse sweep.

The return sweep computes the adjoints in reverse program order. In the context of AD,

an adjoint a of variable a is the derivative of P with respect to a. An adjoint may be updated

multiple times as every use of a contributes to a. The adjoint a is updated with the derivative

of the statement result with respect to a. The program transformation done by reverse mode

AD is given by the following function (vector-Jacobian product):

v jp : (P : �n→ �m)→ (←−P : �n→ �m→ �n)

←−
P starts computing adjoints from the end of the program so it takes output adjoints ys as

argument as well as an input point as = [a0, . . . , an]. Mind that a single reverse AD application

to a program with ys, only produces a single row of the Jacobian. To compute the i’th row of

the Jacobian, you call v jp with the i’th unit vector. The full Jacobian is constructed by mapping

v jp over the standard basis of output domain �m.

The transformation rule for reverse mode AD is as follows (Schenck et al. 2022, p. 2):

let v = f (a0, . . . , an)
stmts

=⇒

let v = f (a0, . . . , an)
v jp(stmts)

let a0+ =
∂ f (a0, . . . , an)

∂ a0
v

...

let an+ =
∂ f (a0, . . . , an)

∂ an
v

(3.2)

where stmts is a placeholder for the program statements subsequent to the assignment of v.

Notice that the transformed program uses v but does not explicitly define it. However, it is

guaranteed that any adjoint v is finalised for a legal program P. Clearly, all uses of v must

appear after the initialisation of v so when the adjoints are accumulated in reverse program

order and we reach the assignment of v, there can be no more contributions to v. Thus v is

final at this point in the return sweep. The adjoint of a variable will be suitably initialised

before the first accumulation, which is not shown.

Figure 3.2 shows the reverse mode derivative of a small example program, which is the same

example used for forward mode in figure 3.1. Figure 3.3 shows both of the differentiated

programs for comparison.
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3.3.1 Nested Scopes in Reverse Automatic Differentiation

This section is rather technical and only included for completeness, so it can safely be omitted

by the reader.

As mentioned, control structures are not modified when deriving a program. Only state-

ments directly affecting the result are affected by AD. However in some cases of reverse AD,

the derivation will introduce significant memory overheads when program scopes are nested.

The reason for this is that intermediate variables and results of inner scopes are used by the

return sweep so they need to be stored for a longer period of time than in the original program.

This problem can be accommodated by instead recomputing variables of inner scopes when

they are used in the return sweep (Schenck et al. 2022, p. 4). For example, a new scope will

appear when introducing an anonymous function. Functions can be derived by using v jpλ:

v jpλ(res,λx1 . . . xn→ bod y)⇒ λx1 . . . xn→
←−−→
bod y

where stms in res← bod y
←−→stms in (res, f vsbod y)← v jpbod y(res, bod y)
←−−→
bod y ←←−→stms in f vsbod y

where v jpbod y returns the derivative of some body of statements and f vsbod y is the adjoints of

the free variables in bod y , FV (bod y). The double arrow in←−→stms and
←−−→
bod y express that they

contain both a forward and a return sweep. This means that a anonymous function derivative

may have multiple nested forward and return sweeps. Similarly, control structure such as loops

or if-statements will have introduce new scopes. These are derived using v jpbod y . Consider

the example shown in figure 3.4. The task is to derive the anonymous function in figure 3.4a

which has four nested scopes. This results in 4 forward sweeps and 4 return sweeps (see

figure 3.4b), meaning the forward sweep is computed 4 times in order to make the original

variables available to the return sweep. However, the original variables are not used by the

return sweeps in this function, so the compiler detects the re-executed forward sweeps as dead

code and eliminates them (see figure 3.4c). This is a common pattern which occurs when

scopes are perfectly nested, i.e. the entire content is in the innermost scope1 (Schenck et al.

2022, p. 4). Perfect nesting ensures that the result of the forward sweep is not used in the

return sweep, since the outer scopes only contains a single statement each. In the example, all

of the re-computation is removed but notice this may not be the case if the innermost scope

has more than one statement. A common expectation is thus to execute the forward sweep

twice (Schenck et al. 2022, p. 4): once for the outermost scope, and once for the innermost

1This does not apply to perfectly nested loops but these are not relevant to the project.
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1 -- scope 0: outer
2 λ ass →
3 let xss = -- scope 1: first map
4 map (λ c as →
5 let xs = -- scope 2: if - branches
6 if c then ...
7 -- scope 3: second map
8 else map (λ a → a*a) as
9 in xs

10 ) cs ass
11 in xss

(a) A Futhark function

1 λ ass xss →
2 let xss = -- forward scope 0
3 map (λ c as →
4 if c then ... else map (λ a → a*a) as
5 ) cs ass
6 let ass = -- return scope 0
7 map (λ c as xs →
8 let xs = if c then ... -- forward scope 1
9 else map (λ a → a*a) as

10 in if c then ... -- return scope 1
11 else -- forward scope 2
12 let xs ' = map (λ a → a*a) as
13 let as = -- return scope 2
14 map (λ a x →
15 -- forward scope 3
16 let x = a * a
17 -- return scope 3
18 in 2 * a * x
19 ) as xs
20 in as
21 ) cs ass xss
22 in ass

(b) The function derived using v jpλ

1 λ ass xss →
2 let ass =
3 map (λ c as xs →
4 if c then ...
5 else map (λ a x → 2*a*x ) as xs ) cs ass xss
6 in ass

(c) The optimised function derivative (dead code removal)

Figure 3.4: Example of redundant execution in reverse AD with nested scopes (Schenck et al.
2022, p. 4).
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scope. The redundant re-execution in the innermost scope will typically be cheap because it

often only handles scalar operations.
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4Differentiation of (Multi-)Reduce in

Reverse Mode

Reverse mode differentiation of reduce has already been implemented in Futhark – however,

the more complicated version reduce-by-index has not. We will begin by examining the auto-

matic differentiation of single-reduce since it is essentially a special case of reduce-by-index.

As such we will build on the differentiation of reduce to derive the rule for differentiation of

reduce-by-index.

First, the general derivative is explained which works for all valid operators �. In some cases,

the derivative can be computed more efficiently than the generic case so afterwards we go

through a couple of special cases, which are also relevant for reduce-by-index. Recall the se-

mantics of reduce:

reduce : (α→ α→ α)→ α→ [n]α→ α
reduce � e� [a0, a1, . . . , an−1]≡ a0 � a1 � · · ·� an−1

where � is an associative operator.

4.1 Generic Case for Reduce

Consider a program statement:

let y = reduce � ne as
so we have y = a0 � · · ·� an−1. Thus the result y of a reduce is affected by each element ai of

the input array as so their adjoints ai are updated. We can more easily reason about an adjoint

ai by grouping the terms of y:

y =

li� �� �
a0 � · · ·� ai−1 � ai �

ri� �� �
ai+1 � · · ·� an−1
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If we have li and ri for every i then we can simply apply the reverse AD rewrite rule 3.2:

ai + =
∂ li � ai � ri

∂ ai
y

+ represents an addition operator that matches the data type (notice it might be vectorised).

Mind that � is not allowed to have free variables in the Futhark AD implementation (yet). If

� had free variables, the adjoints for those would need to be computed as well. The derivative

of li � ai � ri is computed with the helper function generated by the application of the v jpλ
transformation (briefly mentioned in section 3.3.1) to the extended operator, which reduces

three elements:

f ← v jpλ(y ,λ(li, ai, ri)→ li � ai � ri)

This is how a single adjoint update is computed but we remain to explain the computation of

li and ri which should be computed for each ai. The full return sweep of the generic case is

(Schenck et al. 2022, p. 6):

-- Return sweep:
let ls = scan_exc � e_� as
let rs = reverse as �

scan_exc (flip �) e_� � reverse
let as += map f ls as rs

where � pipes the result to a function and flip flips the argument order of a function.

To compute the updates, we need li and ri for all indices i in as. The left values ls can be

found by a scan with �. The scan is exclusive since li should not include ai. The right values

rs are more complicated to compute as the scan should be from right to left. The problem is

solved by reversing as before scanning and then reversing the result. The arguments of � are

flipped in the scan since commutativity is not guaranteed. Afterwards, the adjoint updates can

be computed by mapping over ls, rs and as with function f .

The differentiated program preserves work-depth asymptotics of the original program as re-

duce has O(log(n)) depth and O(n) work which is the same as the most expensive operator

in the derivative (scan). However, the derivative requires two scans, a map and two reverses,

which add some expensive constants. Thus we are interested in identifying special cases where

we can lower those constants.
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4.2 Special Cases of Reduce

In some cases, parts of the generic reduce derivative are excessive or can be done in more ef-

ficient ways. Some of these cases and their derivatives are presented here. The details of case

identification and execution are explained more thoroughly in the implementation section.

Addition: When � ≡ +, the derivative is simply
∂ li + ai + ri

∂ ai
y = y . Thus the adjoint con-

tribution will be as+ = y .

Multiplication: When � ≡ ·, the derivative is simply
∂ li · ai · ri

∂ ai
y = li · ri · y . Here, we can

further identify three relevant subcases:

• If as contains only nonzero values, then we have li · ri = y/ai when y is the result of the

reduce. Thus we update the adjoint with ai+ =
y
ai
· y .

• The second case is that as contains exactly one zero value at element ak. Then the

derivative is zero for all indexes except k i.e. i ∈ [0..n]/k, li · ri ≡ 0 so there is no adjoint

contribution to insert in the differentiated program for these indices. The zero index k

will, however, have the contribution ak+ = li · ri · y .

• If as contains multiple zero values, then ∀i, li · ri ≡ 0, so the adjoints are not changed.

To determine which of the above cases hold, statements are added to the program that counts

the number of zeros in as and compute the product of non-zero elements. The pseudocode

below shows the modified forward sweep.

-- Multiplication forward sweep:
let (zs , prod_zs ) = reduce (λ(c1 ,p1) (c2 ,p2) → (c1+c2 , p1*p2))

(0 ,1)
(map (λx →

if x == 0 then (1 ,1)
else (0,x))

as)
let y = if zs > 0 then 0 else prod_zs

Min-max: When we reduce with the min or max operators, only one element of as will affect

the result, namely the minimum or maximum element ak. Thus the return sweep only up-

dates the adjoint of ak by let as[k] += as[k]. The forward sweep is required to store the

minimum/maximum element ak and its index k (using argmin or argmax).
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4.3 Reduce-by-index

Reduce-by-index is a SOAC in Futhark which executes a collection of reduces (Henriksen, Hell-

fritzsch, et al. 2020). The intuition of reduce-by-index is that it generalises the computation of

a histogram where values are put into some buckets specified by indices. It takes three arrays:

destination, indices and values. It reduces values into the corresponding indices in the desti-

nation array. Like single reduce, reduce-by-index uses an operator � to combine values. � is

required to be associative (like a normal reduce) and commutative. It needs to be commuta-

tive since there are no specified computation order so a non-commutative operator would give

non-deterministic results. Recall that the semantics of reduce-by-index are:

reduce_by_index : *[m]α → (α → α → α) → α → [n]i32 → [n]α → *[m]α
reduce_by_index dst (�) e inds vs =

for i = 0..n-1 do
dst[inds[i]] �= vs[i]

where e is the neutral element of �. Like scatter, the destination array is consumed because

the implementation overwrites the original elements of used buckets. If the index array inds
holds any illegal bucket numbers (out-of-bounds of destination), these indices are simply ig-

nored. Notice that the neutral element e� is not used. This is because presented semantics are

sequential but it is required for efficient GPU code generation.

The derivative of reduce-by-index is a modified version of the single-reduce derivative. The

intuition is that each separate bucket of reduce-by-index should be derived like a single-reduce.

Thus reduce-by-index has the same generic and special cases but on every bucket instead of a

single bucket. Another difference is that we need to update the adjoint of the destination array

as well as the value adjoints. Adjoints of the indices should not be updated since they do not

directly affect the result. Our solution is explained in chapter 6.
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5Differentiation of Scan in Reverse

Mode

Recall the semantics of scan:

scan : (α→ α→ α)→ α→ [n]α→ [n]α
scan � e� [x0, . . . , xn−1]≡ [x0, x0 � x1, . . . , x0 � · · ·� xn−1]

where � is an associative operator. The reverse AD transformation of scan has only been

implemented partially in the compiler. Currently, it does not work with arrays containing

tuples when the operator crosses the tuple entries. For example, using the scan operator

λ(a1, a2) (b1, b2) → (b1 · a2 + b2 · a1, b1 · b2)

does not work in the current implementation even though the operator is associative. Our goal

is to modify and extend the implementation so scan works for arrays with tuples of scalars. Ad-

ditionally, the compiler is lacking some optimisations, including some that have been identified

by Schenck et al. 2022.

5.1 Generic Case of Scan

The generic case is based on the solution presented by Schenck et al. 2022. This section

presents the steps and their associated arguments when constructing a return sweep for the

reverse AD derivative of scan. As a starting point, we look at an imperative implementation

of scan:

def scan [n] (as: [n]α) : [n]α =
let rs [0] = as [0]
let ys = loop rs = rs for i in [1..n -1] do

let rs[i] = rs[i -1] � as[i] in rs
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The idea is to unroll the loop, apply the reverse AD rewrite rule and then roll the statements

back into a loop. The unrolled loop is:

let rs [0] = as [0]
let rs [1] = rs [0] � as [1]
. . .

let rs[n -1] = rs[n -2] � as[n -1]

Then we can apply the reverse AD rewrite rule given by (3.2) to each statement, resulting in

the reverse sweep:

let rs[n -2] = ∂ (rs[n-2]� as[n-1])/∂ rs[n-2] * rs[n -1]
let as[n -1] = ∂ (rs[n-2]� as[n-1])/∂ as[n-1] * rs[n -1]
. . .

let rs[0] = ∂ (rs[0]� as[1])/∂ rs[0] * rs[1]
let as[1] = ∂ (rs[0]� as[1])/∂ as[1] * rs[1]
let as[0] = rs[0]

When we roll the return sweep back into a loop, we get:

let (rs,as) = loop (rs,as) = (copy ys,as) for i in [n -1..1] do
let rs[i -1] += ∂ (rs[i-1]� as[i])/∂ rs[i-1] * rs[i]
let as[i] += ∂ (rs[i-1]� as[i])/∂ as[i] * rs[i]
in (rs,as)

let as[0] += rs[0]

Notice that the loop is in reverse order of the original loop with the iterator going from n−1 to

1. When analysing the dependencies between iterations, we notice that rs is independent of

as, and as depends only on rs elements modified by previous iterations. Thus the updates to

rs and as can be safely distributed into two different loops without breaking any dependency

cycles.

let rs = loop rs = copy ys for i in [n -1..1] do
let rs[i -1] += ∂ (rs[i-1]� as[i])/∂ rs[i-1] * rs[i]
in rs

let as = loop as = as for i in [n -1..0] do
let as[i] +=

if i==0 then rs[i]
else ∂ (rs[i-1]� as[i])/∂ as[i] * rs[i]

in as
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Notice that the final statement of the combined loop was let as[0] += rs[0], which is moved

into the as loop by extending the iteration space. To make the return sweep efficient in Futhark,

we need to convert the code from imperative style to SOACs, which exploit Futhark’s profi-

ciency in GPU utilisation. The loop updating as can easily be changed to a map over as and

iota n for indexing into rs.

let as +=
map (λi ri ai →

if i==0
then ri
else ∂ (rs[i-1]� ai)/∂ ai * ri

) (iota n) rs as

In the loop constructing rs, there are dependencies across iterations. This means that the

conversion to parallel code requires a bit more thought. We start by transforming the loop to

the following code:

let rs = loop rs = replicate n 0 for i in [n -1..0] do
let rs[i] +=

if i==n-1 then ys[i]
else ∂ (rs[i]� as[i+1])/∂ rs[i] * rs[i+1]

in rs

The iteration space has been extended to cover the full length of the adjoint array and the

indices are shifted +1. Notice that before the element rs[n − 1] was not updated by the

loop body because rs was initialised to ys. This loop can be expressed by a backward linear

recurrence (Schenck et al. 2022, p. 8):

rsn−1 = ysn−1

rsi = ysi + csi · rsi+1, i ∈ n− 2 . . . 0

where ys is the adjoint of the scan result ys, and cs is an array of Jacobians
←−
J�(rs[i]), defined

by csn−1 = 1 and csi = ∂ (rsi � asi+1)/∂ rsi. The last element csn−1 is not used in the recurrence

but is used by the code out of convenience so it is set to the identity matrix that matches

size of the Jacobians. We can transform the backward recurrence to a forward one by instead

constructing a recurrence for rsr such that rsr = reverse rs:

rsr0 = ysn−1

rsr i = ysn−i−1 + csn−i−1 · rsr i−1, i ∈ 1 . . . n− 1
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This type of recurrence can be solved by a scan with linear function composition (Blelloch

1990):

scan (λ(d1 ,c1) (d2 ,c2) →
(d2 + c2 · d1 , c2 × c1)

) (0,1) ( reverse ys) ( reverse cs)

where (0,1) is the neutral element. 0 is a structure of zeros matching the element type of ys.

The input arrays are reversed since the recurrence uses the elements in reverse order. Now

every imperative operation has been converted to GPU parallel operations. The final return

sweep of a statement let ys = scan � e� as:

1 -- generating adjoint of rs
2 let cs =
3 map (λi → if i==n-1
4 then 1
5 else ∂ (rs[i]� as[i+1])/∂ rs[i]
6 ) (iota n)
7 let lino (d1 ,c1) (d2 ,c2) = (d2 + c2 · d1 , c2 × c1)
8 let (rs,_) =
9 scan lino (0,1) ( reverse ys) ( reverse cs)

10 � reverse
11

12 -- updating adjoint of as
13 let as +=
14 map (λi ri ai →
15 if i==0
16 then ri
17 else ∂ (rs[i-1]� ai)/∂ ai * ri
18 ) (iota n) rs as

where as before, (0,1) is the neutral element of lino using the appropriate types. E.g. when

cs is an array of d × d matrices, 1 is a d × d identity matrix and 0 is a vector of d zeros. The

forward sweep is not modified so it is the primal program let ys = scan � e� as.

The construction of rs follows straight-forward from the linear recurrence (ln. 1-10). The

only difference is that we reverse the result of the scan to get rs instead of the reversed recur-

rence rsr. Notice that the input scan operator � does not have any impact on the scan operator

l ino in the return sweep.

cs is constructed at lines 2-6, which as mentioned is an array of Jacobians each defined by
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a partial derivative. Naturally, the partial derivatives need to be converted to actual code. The

derivative code is generated by mapping v jpλ over the identity matrix (see section 3.3). We

return to this problem later in chapter 7.

as is updated by a simple map at lines 12-18. The map function computes Jacobian-vector

product
←−−−
J�ri ght

(asi) · rsi, where �ri ght is � where the arguments are flipped. However, we do

not need to compute the full Jacobian. We have the property that
←−
P (x , y) = y

←−
J P(x) for some

program P with input x , output y and output adjoint y (Schenck et al. 2022, p. 3). This

means we can execute v jpλ just once by v jpλ(rs,�ri ght) and use the resulting function in the

map operator.

The return sweep presented by Schenck et al. 2022 is very similar to the one we present but our

version is simplified. In their version they have a map following the scan which is unnecessary

and expensive. In our version, only the first result of the scan rs is read/used whereas in their

version both results are read.

5.2 Special Cases of Scan

The paper Schenck et al. 2022 presents two special cases: vectorised operations and addition.

5.2.1 Vectorised

When the scan operator is a sequence of maps, the operations can be converted to multiple

scans instead. We can apply the rewrite rule (Schenck et al. 2022, p. 8):

scan (map �) ne xs ⇒
transpose xs � map ( scan � ne ) � transpose

where ne is an array with neutral elements ne. Mapping with scan � is faster on the GPU,

provided the length of the inner arrays m is less than the length of the input array n. When �
has depth d, the transformed statement has the depth O(d log(m)) as we scan over arrays of

length m. The original statement has depth O(d log(n)) which is asymptotically worse when

n> m.

Another advantage is that the reverse AD implementation for scan becomes simpler. More

importantly, note that without the rewrite the generic rule for scan is not work-efficient when

the scan operator receives arrays as arguments because two Jacobians are multiplied. Consider

the statement

scan (map (+)) (replicate m 0) as
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where as: [n][m]i32. This scan has work O(nm). The Jacobians of the map will have size

m×m, which means that the reverse sweep scan with l ino will have work O(nm3). The generic

rewrite rule will therefore have work O(nm3), which is worse than the work of the original scan

O(nm) and thus not work efficient. The vectorised rewrite rule turns scan’s operator into one

that operates on (tuples of) scalars rather than arrays such that the differentiation of scan
becomes work efficient.

5.2.2 Addition

Another special case is that of addition. This case can be highly optimised. cs is redundant as

every Jacobian is an identity matrix with addition as operator:

∂ (rs[i]+ as[i+1])
∂ rs[i]

= 1

Similarly when updating as, the Jacobian is an identity matrix as well:

∂ (rs[i-1]+ as[i])
∂ as[i]

= 1

so let as += rs. rs is only used as an intermediate variable for the return sweep, so actually

we do not need to declare it. Thus the reverse sweep of the addition case is:

let as += scan (+) 0 ( reverse ys) � reverse
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Part II

Implementation
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6Reduce-by-index Implementation

We have implemented reduce-by-index and the presented special cases in the Futhark compiler.

Recall the semantics of reduce-by-index (by imperative code):

reduce_by_index : *[w]α → (α → α → α) → α → [n]i32 → [n]α → *[w]α
reduce_by_index dst � ne is vs =

for i = 0..n-1 do
dst[is[i]] �= vs[i]

where dst is the destination, � is the operator, ne is the neutral element of �, and vs is an

array of values who belong to a bucket defined by the corresponding index in is. Essentially,

reduce-by-index does multiple reduces where each is identified by a bucket index i inside the

destination array. This means the rationale behind reverse AD for reduce-by-index and single-

reduce are closely related and we will use reverse AD of single-reduce as a basis for our solution.

In this section, we present the generated Futhark (pseudo)code for each case of reduce-by-

index. This includes an examination of the program design and performance considerations.

Additionally, the generated code is examined with work-depth analysis. This analysis is used

to confirm that the differentiated program agrees with the same work-depth asymptotic as the

original program. Using a conservative approach, the asymptotic depth of reduce-by-index is

linear O(kn), where vs is n long and the operator is O(k) work (see table 2.2). This considers

the unlikely worst case where all indices of is are equal. Instead, we maintain the expected

asymptotic work-depth when constructing the reverse sweep, i.e. O(nk) work and O(k log(n))
depth. The differentiated program should keep or improve this work-depth. Notice that the

size w of the destination array does not affect the asymptotic work-depth. The reason is that

reduce-by-index makes in-place updates like scatter and we can update at most n elements, if

all indices are in-bounds.

In summary, this chapter presents and justifies the solution for reduce-by-index with operators

for the same cases as reverse AD of single-reduce. This includes for each case an implementa-

tion strategy, the generated (high-level) Futhark code, and a work-depth analysis. Additionally,
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the internal representation (IR) is presented for the generic case.

6.1 Generic Case

First, we go through the overall implementation strategy, then the details as presented in list-

ing 6.1. The work-depth asymptotics of the generated Futhark pseudocode is then analysed.

Lastly, to establish an understanding of how the operations of the Futhark code are fused, we

present the IR (section 6.1.5).

6.1.1 Strategy

As mentioned previously, the differentiated program builds on the reasoning of differentiating

reduce (see section 4.1). The task is to find a reverse AD transformation rule for a statement:

let ys = reduce_by_index dst � ne is vs

where we have the dimensions vs:[n]α, is:[n]i64, and dst:[w]α. The idea is the same as

for single-reduce but we derive each bucket separately. Specifically, the derivation of reduce-

by-index corresponds to applying single-reduce derivation w times. We can reason for each

individual bucket yi, whose semantics are:

yi = dsti � vj1 � vj2 � · · ·� vjq

where j1, . . . , jq are the q indices of values going into bucket i, i.e. we have is j1 = i, . . . , is jq = i.

Notice that for each bucket there is exactly one value coming from dst, specifically dsti. We

can rewrite the original statement to two statements:

let h_part = reduce_by_index ( replicate w ne) � ne is vs
let ys = map2 (�) dst h_part

This transformation is safe because � is commutative and associative. As it is semantically

equivalent to the original statement, we can differentiate the transformed code instead. Notice,

that vs is used only by the first statement and dst only by the second statement. This means we

can separate the strategies for adjoint updates of vs and dst. We will begin with the strategy

for dst.

6.1.1.1 Updating adjoints of dst

To update the adjoints of dst, we will differentiate the statement let ys = map2 (�) dst
h_part. We apply the reverse mode transformation rule 3.2:
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-- forward sweep
let ys = map2 (�) dst h_part
-- reverse sweep
let dst = ∂ (map2 (�) dst h_part)/∂ dst * ys
let h_part = ∂ (map2 (�) dst h_part)/∂ h_part * ys

The partial derivatives can be translated to code using v jpλ. We can generically generate the

adjoint updates by:

fdst ← v jpλ(ys, map (�))
fhpar t ← v jpλ(ys, map (�ri ght))

which are both applied to dst and h_part. The operator �ri ght is � where the argument order

is flipped. However, notice that � is commutative so �ri ght ≡ �, meaning we need to apply

v jpλ only once creating a single differentiated function fdst . Mind that for updating h_part,

fdst is applied to h_part dst and for updating dst the order is dst h_part. We generate the

code:

-- forward sweep
let ys = map2 (�) dst h_part
-- reverse sweep
let dst = fdst dst h_part
let h_part = fdst h_part dst

I.e. we can compute the derivative for dst and h_part using two maps (which are fused in IR).

6.1.1.2 Updating adjoints of vs

The adjoints of vs are updated according to the statement let h_part = reduce_by_index
(replicate w ne) � ne is vs. Since the destination is a replicate, there is no need to

compute its adjoints. Naturally, the semantics are similar to those of yi:

h_par ti = ne� vj1 � vj2 � · · ·� vjq

= vj1 � vj2 � · · ·� vjq

We observe that we can safely ignore the destination when updating vs, since the neutral el-

ements have no impact on h_part. Thus if we can gather the values vj1 , . . . , vjq together and

use essentially the same strategy as for single-reduce. The challenge is that all values going

to a specific bucket do not reside at consecutive positions in vs. When the values for each
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bucket are not grouped together in the value array, it is difficult to construct an efficient GPU

implementation. Our strategy is to sort vs and is with regards to is such that all values for a

single bucket are in a continuous segment. The specifics of the sorting algorithm are given in

section 6.1.2.

When the arrays are sorted, we can use segmented scans to construct the left and right par-

tial prefixes as in the reverse sweep of single reduce. To construct the right partial prefixes,

we also need to reverse the bucket segments. There are two possibilities: reverse inside each

bucket segment or reverse the whole array such that the order of segments is reversed as well.

We have chosen the latter, since it offers the simplest solution and simple code is often most

efficient. The only challenge is that we need to construct a flag array for the segments in re-

verse order. However, as it turns out the new flag array can be efficiently constructed from the

original flags, essentially by reversing the original flags. This is described in more detail later.

After the segmented right scan, it simply reverses again which restores the original order of

segments.

In the single-reduce derivative, the next step is to derive the � application using v jpλ, i.e.

the function λ(li, vi, ri)→ li � vi � ri where li = v1� · · ·� vi−1 and ri = vi+1� · · ·� vq. Based on

the semantics of h_part, the adjoint updates of vs are vi+ =
∂ li � vi � ri

∂ vi
h_par ti. Unlike the

single-reduce case, we cannot simply use:

f ← v jpλ(h_par ti,λ(li, vi, ri)→ li � vi � ri)

The problem here is that h_par ti is the adjoint of bucket i. The number of buckets is not

known at compile time but v jpλ generates the code at compile time. To solve this we include

a map:

f ← v jpλ(h_par tseg , map (λ(li, vi, ri)→ li � vi � ri))

The resulting anonymous function is given the arguments ls, svs and rs and the function

which is differentiated, has the adjoint h_par tseg . h_par tseg is h_par t where the adjoint for

each bucket is repeated for each value going to that bucket. f results in the vs adjoint updates

sorted with regards to is. Thus in the end, the adjoints must be distributed back into their

original positions, so the correct vs adjoints are updated. So assuming access to the partial

prefixes ls and rs, sorted values svs, and sorted iota siota, we get the transformed code:
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-- forward sweep
let h_part = reduce_by_index ( replicate w ne) � ne is vs
-- reverse sweep
let svs = f ls svs rs
let vs += scatter ( Scratch α n) siota svs

We scatter into a Scratch which allocates an n-length array of values element type (see sec-

tion 2.2 for explanation of scratch). It is safe to use Scratch here as the scatter only rear-

ranges the n elements into another n length array, so no indices will be left uninitialised.

6.1.2 Sorting Strategy

Our strategy requires sorting vs and is with respect to is. We sort iota n with respect to is
and then reposition vs using a gather with the sorted iota n. For sorting, we have chosen the

algorithm radix sort which has O(n) work and O(log(n)) depth when the size of an element is

constant. Notice that the work-depth complies with the optimal work-depth of the differenti-

ated program. Radix sort sorts by comparing elements bitwise. Our implementation is based

on Henriksen 2021 which is slightly optimised by comparing 2 bits at a time instead of just 1

bit.

We have made one optimisation on the algorithm which is specific to our AD implemen-

tation. When the indices are 64-bit integers, the sorting loop has 32 iterations. However, it

is only required to consider the number of bits required to index into the last bucket, under

the assumption that all indices are in-bounds. The problem is that indices are not required

to be in-bounds of the destination array so the algorithm must consider all bits to assure no

out-of-bounds values are placed in in-bounds segments.

Notice that only values whose indices are in-bounds of destination, will affect the result. This

means only the adjoints of these values will be updated so out-of-bounds values actually do

not need to be sorted. The straight-forward approach would be to zip values with their index

using iota n and filter out the out-of-bounds values. However, filter is a rather expensive

operation in Futhark so we would rather not use it. Instead, we can map out-of-bounds indices

to the number of buckets. Then the number of significant bits is:

�log(hist_size+ 1)�

Because the implementation looks at two bits in each loop iterations, the number of needed

iterations is the significant bits divided by two.

It is possible to optimise the algorithm even more but that is not the focus of this project.
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6.1.3 Generated High-Level Futhark Code

1 -- Primal , assuming vs: [n]α, is: [n]i64 , dst: [w]α:
2 -- let ys = reduce_by_index dst � ne is vs
3 -- Forward sweep:
4 let h_part = reduce_by_index ( replicate w ne) � ne is vs
5 let ys = map2 � dst h_part
6 -- Reverse sweep:
7 h_part = fdst h_part dst
8 dst += fdst dst h_part
9

10 let flag = map (λi → i == 0 || sis[i] != sis[i -1]) (iota n)
11 let flag_rev = map (λi → i==0 || flag[n-i]) (iota n)
12 let ls = seg_scan_exc � ne flag svs
13 let rs = reverse svs �

14 seg_scan_exc � ne flag_rev � reverse
15 let f_bar = map (λi → if i < w && -1 < i
16 then h_part[i]
17 else 0s
18 ) sis
19 let svs = f svs ls rs
20 vs += scatter ( Scratch α n) siota svs
21 -- Where:
22 -- siota: 'iota n' sorted wrt 'is '
23 -- sis: 'is ' sorted wrt 'is '
24 -- svs: 'vs ' sorted wrt 'is '
25 -- f_dst = v jpλ ys_bar (map2 �)
26 -- f = v jpλ f_bar (map3 (λsvi li ri → li � svi � ri))
27 -- 0s is a structure of type α with zero(s)

Listing 6.1: Pseudocode for generic case of reduce-by-index (sorting omitted)

Listing 6.1 shows the code generated by the compiler as Futhark-esque pseudo-code. The pat-

tern let ys = reduce_by_index dst � ne is vs is the generic reduce-by-index case with

array types is ∈ [n]i64, vs ∈ [n]α, dst ∈ [w]α. The forward sweep is modified as described in

section 6.1.1 (ln. 4-5). It first computes the result without destination array in h_part, then

the final result is computed in ys by applying dst with �. Remember that � is required to be

commutative, hence the treatment is safe.

The adjoint of dst is updated by a function generated with v jpλ (ln. 8 and 25). The adjoint
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sis: [0,0,0, 1, 1, 1,1,1,2]

svs: [0,1,2, 3, 4, 5,6,7,8]

flag: [t,f,f, t, f, f,f,f,t]

flag_rev: [t,t,f, f, f, f,t,f,f]

reverse svs: [8,7,6, 5, 4, 3,2,1,0]

reverse rs: [0,0,7,13,18,22,0,2,3]

rs: [3,2,0,22,18,13,7,0,0]

Table 6.1: Example of constructing the right scan array rs with + as operator

of h_part is computed similarly but the argument order is flipped so it is differentiated with

respect to h_part (ln. 7 and 25). On a separate note, a = instead of + = would suffice since

dst is consumed and thus it cannot be used in subsequent statements of the original program.

This means that this is the first time the adjoint dst is updated (it is initialised to zeros).

For the computation of vs, we assume access to sorted arrays sis, svs and siota which

are is, vs and iota n respectively, sorted with regards to is. As mentioned earlier, this is

done with radix sort. The sorting code is omitted since the specific implementation is not rel-

evant. In principle, one can use any sorting implementation, preferably of high efficiency. It

starts by constructing siota from sorting iota n with respect to is and then siota is used

for computing svs.

The value array should be segmented scanned from the left and right inside each bucket,

creating partial prefixes ls and rs. First, we need to construct flag arrays marking the seg-

ments. The flag array of the left scan ls is simple to create as a new segment begins whenever

an element of sis is different from the previous (ln. 10). Naturally, the first element of the

flag array is always true as a segment always begins there. Then ls can be created with an

exclusive segmented scan using � (ln. 12). The flag array flag_rev for the right scan in rs
is constructed from the left scan flag array (ln. 11). Semantically, it removes the first element

of flag, reverses it and prepends a true marking the start of the first segment. This method

can be implemented directly in Futhark but it is much more efficient to use a map instead. The

reason is that in-place updates restrict some optimisations in the compiler, e.g. fusion. rs is

then build exactly like in the reverse sweep of single reduce just with a segmented scan instead
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of a regular scan (ln. 13-14). Notice that the parameters of � are not flipped for the right scan

since it is guaranteed to be commutative. The construction of rs might be difficult to follow

just with a verbal argument, so we illustrate it with an example in table 6.1 to better establish

an intuition.

When ls and rs have been constructed, v jpλ is used to derive the operator application li�vi�ri

according to vi (ln. 15-19 and 26). Remember that in the case an index sis[i] of a value svs
[i] is out-of-bounds of dst, it is ignored. Since the out-of-bounds values are not filtered out,

it still needs to set dummy adjoint updates which are set to 0. The updates are sorted after

is so the adjoint updates need to be sorted back into their original indices with siota and a

scatter (ln. 20). Remember it is safe scatter into a Scratch here as it only permutes the

elements.

6.1.4 Work-Depth Analysis

The ideal asymptotic work-depth of the differentiated program is that of the original program.

The asymptotic expected work-depth of the original program statement is O(kn) work and

O(k log(n)) depth when the operator � has O(k) work. The forward sweep is O(k(w + n))
work and O(k log(n)) depth. Thus the program derivative is not work efficient: This is caused

by the map over the destination. However, the number of values will seldom be smaller than

the number of buckets, i.e. w< n (Schenck et al. 2022, p. 7). Therefore in most use cases, the

forward sweep will honor the asymptotic work-depth of the original program.

The reverse sweep should comply with the asymptotic work-depth as well. Remember that the

sorting of the arrays complies with the work-depth asymptotics. The maps constructing the

flag arrays use O(n) work and O(1) depth. The segmented scans for ls and rs are O(kn) work

and O(k log(n)) depth. Reversing the lists is O(n) work and O(1) depth. The map construct-

ing f_bar is O(n) work and O(1) depth. The function f differentiates the operator � so the

resulting anonymous function will have O(k) work and depth since it is executed sequentially.

The scatter is O(n) work and O(1) depth. Thus the reverse sweep complies with the ideal

asymptotics of O(kn) work and O(k log(n)) depth.
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6.1.5 Internal Representation

1 let h_part = HistOMap (n, [is , vs], [ HistOp (w, ne , replicate w ne ,
(*))], id)

2 let (ys , dst, h_part) = Map(w, [dst , h_part , ys],
3 λx y z → (y * z, x * y, x * z))
4 let flag = Map(n, [iota n, sis],
5 λi j → if i == 0 then true
6 else sis[i -1] != j)
7 let (_,ls ,_, rs_rev ) =
8 ScanOMap (n, [iota n, flag],
9 [λf1 x f2 y →

10 if f2 then (f1 || f2 , y)
11 else (f1 || f2 , x * y),
12 (false , ne),
13 λf1 x f2 y →
14 if f2 then (f1 || f2 ,y)
15 else (f1 || f2 , x * y),
16 (false , ne) ],
17 λi f →
18 let v_exc =
19 if f then ne
20 else svs[i -1]
21 let (rflag , v_revexc ) =
22 if i == 0 then (true , ne)
23 else (flag[n-i],svs[n-i])
24 in (f, v_exc , rflag , v_revexc ) )
25 let vs = ScatterOMap ([sis , iota n, ls , siota],
26 λsi i li sio →
27 let hi_bar =
28 if si < w && -1 < si
29 then h_part[si] else 0
30 (sio , rs_rev [n-i -1] * hi_bar * li)),
31 ([n], ne , Scratch α n) )

Listing 6.2: Generic case of reduce-by-index in the internal Futhark representation (without

sorting code)

The compiler will optimise programs aggressively so the compiled program looks quite different
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from the pseudocode shown in section 4.1. The program has the same overall structure but is

obfuscated by fusing of parallel operations and changes to data representations. You can look

up the internal constructs in table 2.3 and explanations in section 2.2, if you need a reminder.

The changes does not affect the asymptotics of the program but optimisations such as fusion

might remove big runtime constants. It is very expensive to access memory from the GPU and

fusion may replace global-memory accesses with register accesses, thus having the potential of

greatly improving performance.

Listing 6.2 is a beautified version of the internal representation of a differentiated reduce-

by-index program. As an example, we derive a Futhark program containing just a multipli-

cation reduce-by-index let ys = reduce_by_index dst (*) ne is vs (disabling special

cases so generic case is applied). The forward sweep computes one histogram HistOMap on

line 1 into a dummy destination of neutral elements with the given operator � ≡ ∗. There is

no suitable map to fuse with so the map function is the identity function id. The Map on lines

2-4 is not suitable because (1) the input lengths are different and (2) the map is on the result

of the histogram. However, the three maps computing ys, h_part, and dst are fused together.

The flag array for the left scan is computed roughly the same as in the Futhark pseudocode.

The important differences come when ls and rs are computed (ln. 7-24). This is done by

fusing a scan on a map which does the computations from lines 11-14 in listing 6.1. Recall that

the construct ScanOMap is a function composition scan ◦ map, i.e. the map function is applied

first. The map essentially rotates the segments such that for each segment, the first element is

set to the neutral element and the last is removed. This is used by the left scans because the

built-in scan is inclusive but these scans are exclusive. Analogously, it also rotates segments the

other way where the last element is set to the neutral element and the first is removed, which

is used for right scans. Additionally, the map computes the flag array for the right scans.

ScanOMap is given two scanning functions since it scans over two value arrays generated by the

map. The scan functions are duplicates as the same operators and neutral elements are used

to scan on both ls and rs. Notice that it results in a reversed rs. The ScatterOMap has a map

function that effectively reverses rs which saves a read and a write compared to a program

explicitly reversing rs (ln. 25-31). The map function also checks that indices are in bounds of

the destination array (ln. 27-29) and computes the adjoint update of the values array (ln. 30).

Another remark is that the iotas do not introduce runtime overheads when they are used

as input to GPU parallel constructs. The GPU can simply use the thread ID instead of the iota

element.

6.1. GENERIC CASE 45



6.2 Reduce-by-index with Addition

1 -- Primal :
2 -- let ys = reduce_by_index dst (+) ne is vs
3 -- Forward sweep:
4 let dst_cpy = copy dst
5 let ys = reduce_by_index dst_cpy (+) ne is vs
6 -- Reverse sweep:
7 dst += ys
8 vs += map (λi →
9 if i < w && -1 < i

10 then ys[i]
11 else 0
12 ) is

Listing 6.3: Pseudocode for reverse AD of reduce-by-index with addition

The compiler identifies the addition pattern let ys = reduce_by_index dst (+) ne is
vs with the array types is ∈ [n]i64, vs ∈ [n]α, dst ∈ [w]α. In the addition case, the strategy

is quite simple. In the single reduce version, all value adjoints were updated by the adjoint of

the reduce result. Here each value adjoint is dependent on the result adjoint in that value’s

bucket:

vsi+ =
∂ (dst j + vsj1 + · · ·+ vsi + · · ·+ vsjq)

∂ vsi
ysj = ysj

where j1, . . . , jq are the q indices of values going into bucket j = isi. The update for the des-

tination is analogous, dsti+ = ysi. Thus the adjoint updates only depend on adjoints of their

corresponding bucket, so the translation from the single reduce derivative is straight-forward.

However in contrast to single reduce, not all value updates will be updated. The program

should check that the corresponding index is[i] of a value is in-bounds of the destination

array and if not its adjoint should not be updated as it does not affect the result.

The generated Futhark pseudocode of the addition case is presented in listing 6.3. Notice

that the forward sweep uses a copy of the destination array, dst (ln. 4-5). This is because

reduce-by-index consumes its destination which is problematic if the reverse sweep uses the

original destination. Consider the program in figure 6.1a where dst is used in a statement

before the reduce-by-index. If the destination is not copied, the reverse AD implementation

constructs the program derivative in figure 6.1b. This differentiated program will give a type
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1 let a = map (**2) dst
2 let b =
3 reduce_by_index dst (+)

0 is vs
4 let x = map2 (+) a b
5 in x

(a) The original program before applying AD

1 -- forward sweep:
2 let a = map (**2) dst
3 let b =
4 reduce_by_index dst (+)

0 is vs
5 let x = map2 (+) a b
6 -- reverse sweep:
7 let a = x
8 let b = x
9 let dst = x

10 let vs =
11 map (λi →
12 if i < w && -1 < i
13 then x[i]
14 else 0
15 ) is
16 let dst +=
17 map (*2*a) dst

(b) Incorrect reverse AD program derivative

Figure 6.1: An example program and its type-faulty reverse AD derivative demonstrating the
necessity of copying destination.

error because dst is consumed (ln. 4) and then later accessed (ln. 17). Thus we need to copy

the destination in the forward sweep before it is consumed by reduce-by-index.

We now turn our attention to the reverse sweep. The destination adjoints are updated di-

rectly by adding ys (ln. 7). Adjoints of values are updated by the ys element in its bucket

index if it is in-bounds of destination (ln. 8-12). Otherwise, the adjoint is not updated (update

is set to 0).

6.2.1 Work-Depth Analysis

The forward sweep does a copy on dst taking O(w) work and O(1) depth. The reduce-by-

index takes O(n) work and O(log(n)) depth. Thus the total work-depth for the forward sweep

is O(w + n) work and O(log(n)) depth. The work does not agree with the original program

work which was just O(n). However as mentioned in the generic case, the number of buckets

w is usually less than the number of values n. Thus the forward sweep (usually) complies with

work-depth asymptotic.

The reverse sweep takes O(n) work and O(1) depth which complies with the desired work-

depth.
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6.3 Reduce-by-index with Multiplication

1 -- Primal , assuming vs: [n]α, is: [n]i64 , dst: [w]α:
2 -- let ys = reduce_by_index dst (*) ne is vs
3 -- Forward sweep:
4 let (ps , zs) = map (λv → if v == 0 then (1 ,1) else (v ,0)) vs
5 let non_zero_prod =
6 reduce_by_index ( replicate w ne) (*) ne is ps
7 let zero_count =
8 reduce_by_index ( replicate w 0) (+) 0 is zs
9 let h_part = map2 (λp c → if c == 0 then p else 0)

10 non_zero_prod zero_count
11 let ys = map2 (*) dst h_part
12 -- Reverse sweep:
13 dst += map2 (*) h_part ys
14

15 let part_bar = map2 (*) dst ys
16 vs +=
17 map2 (λi v →
18 if -1 < i && i < w then
19 let zr_cts = zero_count [i]
20 let pr_bar = part_bar [i]
21 let nz_prd = non_zero_prod [i]
22 in if zr_cts == 0
23 then pr_bar * ( nz_prd / v)
24 else if zr_cts == 1 and v == 0
25 then nz_prd * pr_bar
26 else 0
27 else 0
28 ) is vs

Listing 6.4: Pseudocode for multiplication case of reduce-by-index

The compiler recognises the pattern let ys = reduce_by_index dst (*) ne is vs with

array types is ∈ [n]i64, vs ∈ [n]α, dst ∈ [w]α. The strategy has the same overall structure

as single reduce multiplication with the subcases determined by the number of zeros (see sec-

tion 4.2). Again the forward sweep is modified to include the non-zero product and the number

of zeros but now for each bucket instead of just once. Like in the generic case, we construct

the partial histogram h_part (the histogram without dst). Then the adjoints of dst can be
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updated by dsti+ =
∂ dsti · h_par ti

∂ dsti
ysi = h_par ti · ysi. Adjoint updates of the values are found

by looking up the number of zeros in the corresponding bucket to determine which subcase

of multiplication should be used. The subcases for each bucket are the same as for a single

reduce: no zeros, one zero or multiple zeros in the bucket. The only difference is that we need

to check if the corresponding bucket of a given value actually exists. A value with an out-of-

bounds index will not affect the result, so it is updated by 0.

The generated Futhark pseudocode is shown in listing 6.4. The forward sweep counts the

number of zeros and product of non-zero elements in each bucket. First we map over vs creat-

ing two arrays: ps which is vs where zeros are set to 1, and zs which flags the zero elements

(ln. 4). The first array is used to compute the product of non-zeros in each bucket where we

simply do the multiplication reduce-by-index (ln. 5-6). As destination, we use an array of neu-

tral elements. We use addition reduce-by-index on zs to count number of zeros in each bucket

(ln. 7-8). Here we use an array of zeros since 0 is neutral element of +. Instead of a reduce-by-

index, we can first compute a partial histogram h_part with a map over non_zero_prod and

zero_count. h_part is the histogram without regards for destination values (ln. 9-10). Then

ys is found by multiplying dst on h_part with a map (ln. 11). The two maps of constructing

h_part and ys will be fused by the compiler.

Notice that unlike the addition case there is no need to copy the destination array since we do

not use reduce-by-index on it and thus it is not consumed.

The reverse sweep updates the adjoints of destination dst and values vs. dst is updated

by dsti+ = h_par ti · ysi (ln. 13). As mentioned in the generic case, = could replace + = with-

out changing the semantics since dst cannot have been updated in previous reverse sweep

statements.

The remainder of the reverse sweep, is dedicated to updating vs (ln. 16-28). It is updated by

a map whose function (1) checks the corresponding index is in-bounds and (2) identifies the

subcase of the bucket. When there are no zero elements the update is vsi+ = ysi/vsi · ysi, with

one zero element at index i the update is vsi+ = xi · ysi and otherwise there are no updates.

Notice that nz_prd does not take dst into account so dst is multiplied with ys at line 15.

6.3.1 Work-Depth Analysis

The forward sweep includes two reduce-by-index with O(1)work operators on n length arrays,

so they have O(n) work and O(log(n)) depth. These two are fused in the internal representa-

tion. Additionally, it has three maps on arrays of length w where the last two are fused. These
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take O(w) work and O(1) depth. So the final work-depth of the forward sweep is O(w + n)
work and O(log(n)) depth. The work does not comply with the original program which is O(n)
work but as mentioned in the addition case we usually have w < n. Thus the forward sweep

generally complies with work-depth asymptotic.

The reverse sweep has three maps where the first two are fused. All operators are O(1) work-

depth. The fused maps use arrays of length w and the last map is on arrays of length n. Thus

the reverse sweep use O(w+n) work and O(1) which is in agreement with the forward sweep.

6.4 Reduce-by-index with Min-Max

1 -- Primal , assuming vs: [n]α, is: [n]i64 , dst: [w]α:
2 -- let ys = reduce_by_index dst minmax ne is vs
3 -- Forward sweep:
4 let dst_cpy = copy dst
5 let (ys , ys_inds ) = zip vs (iota n)
6 � reduce_by_index dst_cpy argminmax (ne ,-1) is
7 -- Reverse sweep:
8 dst += map2 (λx_ind b → if y_ind == -1
9 then b

10 else 0
11 ) ys_inds ys
12

13 vs_ctrbs = map2 (λi b → if i == -1
14 then 0
15 else vs[i] + b
16 ) ys_inds ys
17 vs = scatter vs ys_inds vs_ctrbs

Listing 6.5: Pseudocode for reverse AD of reduce-by-index with min-max

This case is applied to the pattern let ys = reduce_by_index dst � ne is vs where � is

either max or min. In the min-max case only one element in each bucket affects the outcome.

Thus it is only this element for each bucket whose adjoint will be updated. The strategy is that

the forward sweep computes the min/max element and its index, so the reverse sweep knows

which adjoints to update. If two elements are equal, the min/max operators are defined to

choose the least index. The index of the bucket element in dst is noted as -1. Notice that this

means the element in dst is prioritised when choosing the least index of max/min element. For

destination adjoints, we make an update if the index of the max array is -1. For value adjoints,
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we make an update if the bucket index is in-bounds of destination and is different from -1.

The generated Futhark pseudocode is shown in listing 6.5. The forward sweep is modified

to compute both the index ys_inds and the value of the min/max element ys for each bucket

(ln. 4-6).

With the same argument as in the addition case, the destination array needs to be copied

in the forward sweep before it is consumed by reduce-by-index (ln. 4).

The reverse sweep updates the adjoints for destination and values. dst is updated if it is a

min/max element by dsti+ = ysi (ln. 8-11). This is done by mapping over the max elements

and their indices, and if an index k is -1 we know dst[k] is the min/max element of the bucket.

Thus the adjoint of dst[k] is updated by ys[k]. If the index is any other than -1, we use a

zero update.

Like dst, the element of the adjoint update for vs is computed by mapping over ys_inds
and ys (ln. 13-17). vs is updated when the index is different from -1. To minimise the number

of reads from memory, we first make an array vs_ctrbs that holds value adjoints if a value is

the max/min element and 0 otherwise (ln. 13-16). Notice that vs_ctrbs will only compute

the adjoints for in-bound indices because it is created with a map over ys_inds. Any value

where its bucket index is out-of-bounds, will be ignored as it simply will not exist in ys_inds.

The adjoints in vs_ctrbs are scattered into vs using ys_inds. Mind that scatter ignores any

illegal indices so -1 indices where destination is the min/max element will not be used.

6.4.1 Work-Depth Analysis

The work-depth for the forward sweep is analogous to the addition case resulting in O(w+ n)
work and O(log(n)) depth. Likewise, this complies with work-depth of the original program

assuming w< n.

The reverse sweep uses two maps and a scatter, where the two maps are fused. The maps take

O(w) work and O(1) depth. The scatter takes O(n) work and O(1) depth. In total, the reverse

sweep has O(w+ n) work and O(1) depth, which agrees with the forward sweep.

6.5 Vectorising the Special Cases

As an addition to cases relevant to single-reduce, we have vectorised the special cases as well.

This simply means that the compiler detects if the reduce operator is a sequence of nested maps

where the innermost operation is a special case operator. Then it applies the corresponding

special case using nested maps.
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Instinctively, the vectorised cases maintain the ideal work-depth of their special case, since

the only difference is maps using O(n) work and O(1) depth.
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7Scan Implementation

This section explains our reverse AD implementation of scan. Recall the semantics of scan:

scan : (α→ α→ α)→ α→ [n]α→ [n]α
scan � e� [x0, . . . , xn−1]≡ [x0, x0 � x1, . . . , x0 � · · ·� xn−1]

where � is an associative operator. In this chapter, we explain how the strategy relates to the

theory of chapter 5, go through our considerations with regards to optimisations, and argue for

correctness when the solution surpass what is trivial. Our implementation includes every part

of the reverse AD scan theory (see chapter 5), as well as some optimisations we have identified.

Like the reduce-by-index implementation chapter, this chapter presents each case of scan

with the assistance of the Futhark pseudocode generated by the compiler for that case. Then

the code is examined with work-depth analysis to assure that the asymptotics agree with those

of the corresponding primal program.

7.1 Generic Case

The compiler identifies the statement let ys = scan � ne as where � is associative and as
:[n]α. Listing 7.1 shows the code generated by the compiler in a Futhark-esque pseudocode

version. The code is mostly the same as the reverse sweep presented in chapter 5, except the

partial derivatives computing Jacobians are written as code instead of mathematical notation

(ln. 10 and 21). The Jacobians in cs are made by mapping v jpλ over a d × d identity matrix

(ln. 10). The Jacobian code is generated at compile time by:

fi = v jpλ(idMat[i], �),∀i ∈ 0..d − 1 (7.1)

where idMat is a d × d identity matrix and idMat[i] is the unit vector with the 1 in position

i represented as a tuple. The compiler applies v jpλ to each row of the identity matrix. Notice

that this is only possible because the size of the element tuples d is known at compile time.
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1 -- Primal :
2 -- let ys = scan � ne as
3 -- Forward sweep:
4 let ys = scan � ne as
5 -- Reverse sweep:
6 let cs =
7 map (λi → if i==n-1
8 then idMat
9 -- see equation (7.1)

10 else (f0 rs[i] as[i+1], . . ., fd−1 rs[i] as[i+1])
11 ) (iota n)
12 let lino (d1 ,c1) (d2 ,c2) = (d2 + c2 * d1 , c2 × c1)
13 let (rs,_) =
14 scan lino ( replicate d 0, idMat) ( reverse ys) ( reverse cs)
15 � reverse
16
17 let as +=
18 map (λi ri ai →
19 if i==0
20 then ri
21 else f i as[i+1]
22 ) (iota n) rs as
23 -- idMat is dxd identity matrix

Listing 7.1: Futhark pseudocode for reverse AD of scan with generic case operators. Mind that
* denotes matrix-vector multiplication and × denotes matrix-matrix multiplication.

When updating the adjoint as, we use:

f i = v jpλ(rs[i], ��rs[i − 1])

where �� is � where the argument order is flipped.

In the IR, the construction of cs is fused with the scan in a ScanOMap. The mapping function

also reverses cs and ys. As cs is only used for constructing rs, it does not need to instantiate

it in memory, saving nd2 writes and reads. The reverse on the scan result is fused with the

map updating as such that a reversed version rsr of rs is saved and the map uses iota n to

read rsr in reverse order by rsr[n-i-1].

7.1.1 Limitations

The implementation does have some limitations with regards to what input types and scanning

operators are allowed. Firstly, if � is an array operator, it must be a map such that the code can
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be transformed by the vectorised special case. An example of a currently disallowed operator

would be matrix multiplication where each matrix is represented as a 2D array. Cases like this

are discussed in chapter 11. As an alternative, a d × d matrix can be represented as a tuple

with d2 entries, which is a functional case of the implementation.

If the input array includes tuples, the tuple elements must all be of the same type which are

either integers or floats. The reason is that linear function composition applies vector addition

and matrix multiplication on the result adjoints ys and Jacobians cs, so the types need to

match.

7.1.2 Work-Depth Analysis

The work-depth asymptotics of the primal program is O(wn)work and O(w log(n)) depth when

w is the work of operator �. An ideal AD implementation should not affect the asymptotic

work-depth.

The construction of cs is O(wn)work and O(w) depth, assuming f0, . . . , fd−1 generated by v jpλ
does not affect the O(w) work of the operator �. Tuple size d is a constant so it is not included

in the asymptotic measures. Constructing rs costs O(wn) work and O(w log(n)) depth for the

scan and each of the reverses are O(n) work and O(1) depth.

The map updating as is O(wn) work and O(w) depth, assuming f does not change the work of

�.

The forward sweep is simply the unchanged primal program so it does not affect the work-

depth asymptotics. Thus the total work-depth asymptotics of the differentiated program is

O(wn) work and O(w log(n)) depth which is in agreement with the primal program.

7.2 Scan with Addition

-- Primal :
-- let ys = scan (+) 0 as
-- Forward sweep:
let ys = scan (+) 0 as
-- Reverse sweep:
let as += scan (+) 0 ( reverse ys) � reverse

Listing 7.2: Pseudocode for the addition case of scan

The compiler recognises the pattern let ys = scan (+) 0 as where as:[n]α. Listing 7.2

shows the generated code when deriving a scan with addition operator. The reverse sweep is
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unchanged from the code shown in chapter 5. In the IR, the reverse of ys is fused with the

reverse sweep scan.

The work-depth of the primal program is O(n) work and O(log(n)) depth. The differentiated

program consists of two addition scans, which have O(n) work and O(log(n)) depth, and two

reverses using O(n) work and O(1) depth. Thus the differentiated program is in agreement

with the work-depth of the primal program.

7.3 Vectorised Scan Operators

When the scan operator is vectorised, the compiler transforms the scan such that it either fits

the generic or addition case. Thus the compiler only has a transformation rule for vectorised

operators, whose result is then piped into v jp again to construct the derivative. Recall the

transformation from the theory section:

scan (map �) ne xs ⇒
transpose xs � map (scan � ne) � transpose

Mind that the transformation changes the work-depth asymptotics. For a vectorised operator

with input array type [n][m]α, the transformed program will have n scans on arrays of size m.

The depth of the original program is O(mw log(n)) when the scan operator is w work since the

map will be sequentialised. Thus the depth is changed from O(mw log(n)) to O(w log(m)) by

the transformation. This is an improvement of work-depth.

7.4 Jacobian Patterns

In the generic case, we compute Jacobians for the purpose of constructing rs. These Jacobians

are scanned over with linear function composition l ino which includes expensive matrix-matrix

and matrix-vector multiplication. Luckily, there are cases in which the matrix operations can

be optimised. We can identify parts of the Jacobian which will always be zero and thus not

affect the result. These entries can therefore be removed such that the differentiated program

only needs to handle a smaller part of the Jacobians.

We have implemented two Jacobian patterns: ZeroQuad and MatrixMul. There exist more

relevant patterns, some of which are discussed in chapter 11. We begin by defining the two

patterns, for each of them presenting the mathematical rationale of how l ino can be optimised

in the pattern and the updated version of the generated Futhark pseudocode (section 7.4.1,

section 7.4.2). The last section 7.4.3 explains how the patterns are recognised and handled at

compile time.
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Dimension Explanation

n Length of input array as

d Tuple size of as element type

q Dimension of the q×q diago-
nal matrices in the Jacobian

k Number of diagonal matri-
ces

Variable Type Usage

as, ys, as, ys [n]

d� �� �
(α, . . . ,α) All patterns

cs [n]

d2
� �� �
(α, . . . ,α) Generic pattern

cs_i, i ∈ [1..k] [n]

q2

� �� �
(α, . . . ,α) ZeroQuad

Ms [n]

q2

� �� �
(α, . . . ,α) MatrixMul

vseg.i, i ∈ [1..k] [q]α ZeroQuad and Matrix-
Mul

Figure 7.1: Table of definitions and types, provided as a look-up table for the section of Jacobian
patterns (section 7.4).

Since this section introduces a fair amount of dimensions and variables, we have chosen to

include index tables for the sake of readability. The index tables are shown in figure 7.1. The

information is also given in the text continuously as it are used.

7.4.1 ZeroQuad Pattern

One pattern case, which we have observed is a pattern on a d × d matrix (represented with d2

tuple):




�
M1

�
. . . 0
�
M2

� ...
...

. . .

0 . . .
�
Mk

�




We call this pattern ZeroQuad (short for zero quadrant). The pattern has multiple q×q matrices

along the diagonal and zero entries everywhere else. Notice the diagonal matrices fill out the

matrix exactly so d mod q = 0. There are 1 < k = d/q diagonal matrices M1, . . . ,Mk which

may contain both zero and non-zero entries.

The following section explains the possible optimisations when the Jacobians of cs are of
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the ZeroQuad pattern. The idea is to inspect the matrix operations of linear function compo-

sition l ino where the Jacobians are used, and identify inefficiencies. First, we consider matrix

multiplication. When two ZeroQuad matrices are multiplied, we have:




�
M1.1

�
. . . 0

�
M1.2

� ...
...

. . .

0 . . .
�
M1.k

�



×




�
M2.1

�
. . . 0

�
M2.2

� ...
...

. . .

0 . . .
�
M2.k

�




=




�
M1.1

�
×
�
M2.1

�
. . . 0

�
M1.2

�
×
�
M2.2

� ...
...

. . .

0 . . .
�
M1.k

�
×
�
M2.k

�




We observe that the result is another ZeroQuad matrix so multiplication preserves the pattern.

Notice that the operation corresponds to multiplying every set of diagonal matrices M1.i×M2.i.

This means that multiplying two ZeroQuad matrices corresponds to multiplying k smaller ma-

trices, i.e. k independent matrix multiplications. Linear function composition includes matrix-

vector multiplication as well, which has the following form with ZeroQuad:




�
M1

�
. . . 0
�
M2

� ...
...

. . .

0 . . .
�
Mk

�



×




v1

v2
...

vd


 =




�
M1

�
× vseg.1�

M2

�
× vseg.2

...�
Mk

�
× vseg.k




where vseg.i is the i’th segment of v when splitting it into k segments of length q. We observe

that this corresponds to k independent matrix-vector products, multiplying a diagonal matrix

Mi with vector segment vseg.i. Thus the linear function composition on ZeroQuad matrices has

the form:

l ino (v1, m1) (v2, m2) = (v2 +m2 × v1, m2 ×m1)

=







v2.1
...

v2.d


+




�
M2.1

�
. . . 0

...
. . .

...

0 . . .
�
M2.k

�


×




v1.1
...

v1.d


 ,
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�
M2.1

�
. . . 0

...
. . .

...

0 . . .
�
M2.k

�


×




�
M1.1

�
. . . 0

...
. . .

...

0 . . .
�
M1.k

�







=







v2seg.1 +
�
M2.1

�
× v1seg.1

...

v2seg.k +
�
M2.k

�
× v1seg.k


 ,




�
M2.1

�
×
�
M1.1

�
. . . 0

...
. . .

...

0 . . .
�
M2.k

�
×
�
M1.k

�







This means that l ino on ZeroQuad matrices corresponds to applying l ino k times on the diag-

onal matrices and their corresponding q-length segments of the vectors. Therefore the scan
with l ino can be transformed to k scans with l ino on arrays with smaller elements. We can

optimise l ino by rewriting it to:

l inoZQ (v1.seg.i,M1.i) (v2.seg.i,M2.i) =

=
�
v2seg.i +
�
M2.i

�
× v1.seg.i,
�
M2.i

�
×
�
M1.i

��

Notice that l inoZQ works on vectors and square matrices with dimension q instead of d, because

l inoZQ is used for the k scans. It is applied to a vector segment and the corresponding diagonal

matrix. Mind that l ino and l inoZQ are actually the same operator but they are applied on vectors

and matrices of different dimensions. We define l inoZQ for the sake of clarity so referrals to

linear function composition in the generic and ZeroQuad cases are more easily distinguishable.

7.4.1.1 Efficiency Analysis

The new linear function composition optimises the differentiated program by excluding re-

dundant operations and storage of zero entries. We begin by examining the memory efficiency.

The vectors and matrices given to l inoZQ have dimensions q and q× q respectively where l ino

takes d and d × d. l inoZQ uses q memory for a vector and q2 for a matrix but it is run k times

so the total memory usage is kq = d for a vector and kq2 = k(d/k)2 = d2/k for a matrix. The

l ino operator uses d for a vector, which is the same as a vector in k calls to l inoZQ, but l ino uses

d2 on a matrix. Thus the l inoZQ spends a fraction of the matrix memory needed by l ino:

kq2

d2
=

k(d/k)2

d2
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=
d2/k
d2

=
1
k

I.e. l inoZQ spends 1/k of what l ino spends on matrices. For example, consider a differentiated

program that scans with 2 × 2 matrix multiplication. The Jacobians are 4 × 4 which fit the

ZeroQuad pattern with q = 2 and k = 2. Thus a differentiated program utilising the ZeroQuad

pattern will spend 1/2 of the memory spend on matrices in l ino. As mentioned the amount

spend on vectors is the same for the two versions since the whole vector may affect the result.

Operation-wise, l inoZQ has O(q+q2) = O(q2) work for the first tuple entry and O(q3) work for

the second entry. Then the total work of scanning with l inoZQ is O(nk(q2+q3)) = O(nkq3) and

the depth is O(q3 log(n)) because the k scans are run in parallel. The work-depth asymptotics

of l ino are O(nd3) work and O(d3 log(n)) depth. This means the optimised version has better

asymptotics since nkq3 = nk(d/k)3 = n(d3/k2) < nd3. However, the tuple size d is considered a

constant so actually this provides only a constant improvement, however large.

7.4.1.2 High-Level Futhark Code for ZeroQuad Pattern

The generated Futhark pseudocode for ZeroQuad Jacobians is shown in listing 7.3 which is a

modified version of the generic case in listing 7.1. At compile time we extract the diagonal

matrices from the Jacobians (ln. 7). Instead of cs, we define k Jacobian arrays of length n

where csi is the i’th diagonal matrices from the Jacobians. Notice that the neutral elements

are set to identity matrices of dimension q×q since the diagonal matrices are of this dimension

(ln. 6).

The elements of ys (vectors) need to be split into the k segments such that they match the

dimension of the diagonal matrices. First, d arrays ysi are created holding the i’th elements

of all the vectors (ln. 9). Then in the k scans with l inoZQ the q-length segments are fetched by

zipping the relevant ysi arrays. The scans are still over n-length arrays but the elements are

the i’th diagonal matrices and vector segments (ln. 11-17).

For the final map updating as, the scan results rs1, . . . ,rsk are combined into a single vector

as if it had applied l ino to the unmodified Jacobians.

In the IR, the following operations are fused together in a ScanOMap: the construction of

cs1, . . . ,csk, the k scans and reverses on the scan input. The reverses on the scan results

are fused with the map updating as in a Map construct.

Recall that zip and unzip are removed at compile time with no runtime overheads so
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1 -- Forward sweep:
2 let ys = scan � ne as
3 -- Reverse sweep:
4 let (cs1,. . .,csk) =
5 map (λi → if i==n-1
6 then (idMatQ ,. . .,idMatQ )
7 else extract matrices from (f0 rs[i] as[i+1], . . ., fd−1 rs[i]

as[i+1])
8 ) (iota n)
9 let (ys1, . . . ,ysd ) = unzip ys

10 let linoZQ (d1 ,c1) (d2 ,c2) = (d2 + c2 * d1 , c2 × c1)
11 let ((rs1,_),. . .,(rsk ,_)) =
12 (scan linoZQ ( replicate q 0, idMatQ ) ( reverse (zip ys1 . . . ysq)) (

reverse cs1)
13 � reverse ,
14 . . .,
15 scan linoZQ ( replicate q 0, idMatQ ) ( reverse (zip ys(k−1)q+1 . . . ysd ))

( reverse csk)
16 � reverse
17 )
18
19 let as +=
20 map (λi ri ai →
21 if i==0
22 then ri
23 else f i as[i+1]
24 ) (iota n) (zip rs1 . . . rsk) as
25 -- idMatD is dxd identity matrix
26 -- idMatQ is qxq identity matrix

Listing 7.3: Pseudocode for the generic case of scan with ZeroQuad Jacobians. Mind that *
denotes matrix-vector multiplication and × denotes matrix-matrix multiplication.

splitting ys in segments is free.

7.4.2 MatrixMul Pattern

Another Jacobian pattern has a very similar shape to ZeroQuad:




�
M
�

. . . 0
�
M
� ...

...
. . .

0 . . .
�
M
�
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It is the same pattern as ZeroQuad except the diagonal matrices M are equal. We call the

pattern MatrixMul because it occurs for matrix multiplication A× B when differentiating with

respect to A. Mind that the pattern might appear with other operators as well. When two

matrices of this shape are multiplied, we have:




�
M1

�
. . . 0
�
M1

� ...
...

. . .

0 . . .
�
M1

�



×




�
M2

�
. . . 0
�
M2

� ...
...

. . .

0 . . .
�
M2

�




=




�
M1

�
×
�
M2

�
. . . 0

�
M1

�
×
�
M2

� ...
...

. . .

0 . . .
�
M1

�
×
�
M2

�




So matrix multiplication with matrices of the MatrixMul pattern, results in k identical matrix

multiplications M1 × M2. Notice that the operation preserves the MatrixMul pattern. The

matrix-vector multiplication is of the form:




�
M
�

. . . 0
�
M
� ...

...
. . .

0 . . .
�
M
�



×




v1

v2
...

vd


 =




�
M
�
× vseg.1�

M
�
× vseg.2

...�
M
�
× vseg.k




In the matrix-vector product, all k segments of the vector are multiplied by the diagonal matrix

M, so it corresponds to multiplying M on k different vectors. These vectors are obtained by

splitting vector v in k segments of length q. Now we can write linear function composition in

the following form.

l ino (v1, m1) (v2, m2) = (v2 +m2 × v1, m2 ×m1)

=







v2.1
...

v2.d


+




�
M2

�
. . . 0

...
. . .

...

0 . . .
�
M2

�


×




v1.1
...

v1.d


 ,
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�
M2

�
. . . 0

...
. . .

...

0 . . .
�
M2

�


×




�
M1

�
. . . 0

...
. . .

...

0 . . .
�
M1

�







=







v2seg.1 +
�
M2

�
× v1seg.1

...

v2seg.k +
�
M2

�
× v1seg.k


 ,




�
M2

�
×
�
M1

�
. . . 0

...
. . .

...

0 . . .
�
M2

�
×
�
M1

�







This form contains a lot of duplicate operations, so we rewrite linear function composition to:

l inoM M (v1,M1) (v2,M2) =


v2 +




�
M2

�
× v1seg.1

...�
M2

�
× v1seg.k


 ,M2 ×M1




The new l inoM M changes the dimensions of the second entry from l ino so the matrices are q×q

instead of d×d. This is unproblematic since the second tuple entry of the scan lino is unused

except inside the scan itself. The previous investigation of matrix operations with MatrixMul

have shown that l inoM M will respect the semantics of the first scan result.

7.4.2.1 Efficiency Analysis

l inoM M is expected to give a significant performance boost compared to the unoptimised version

l ino both memory-wise and with respect to number of operations.

l inoM M needs q2 memory for each matrix while l ino needs d2. Thus a matrix in l inoM M

spends only a fraction of the memory spend on a matrix in l ino:

q2

d2
=
(d/k)2

d2

=
d2/k2

d2

=
1
k2

So e.g. when you differentiate scan with 2× 2 matrix multiplication, the Jacobians are 4× 4.

Then l inoM M will use 1/22 = 1/4 of the memory on matrices compared to l ino, i.e. the opti-

misation eliminates 3/4 of the matrix memory. Mind that the two versions still need the same

amount of memory to store the vectors.

As the matrices are smaller, l inoM M will also need less operations. The matrix multiplication

uses asymptotic work O(q3) = O(d3/k3) while in l ino it is O(d3). The matrix-vector mul-
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1 -- Forward sweep:
2 let ys = scan � ne as
3 -- Reverse sweep:
4 let Ms =
5 map (λi → if i==n-1
6 then idMatQ
7 else extract matrices from (f0 rs[i] as[i+1], . . ., fd−1 rs[i]

as[i+1])
8 ) (iota n)
9 let linoM M ((d1,. . .,dd ),c1) (d2 ,c2) =

10 let ts =
11 (c2 × (d1,. . .,dq),
12 . . .,
13 c2 × (d(k−1)q+1,. . .,dd ))
14 in (d2 + ts , c2 × c1)
15 let (rs,_) =
16 scan linoM M ( replicate d 0, idMatQ ) ( reverse ys) ( reverse Ms)
17 � reverse
18
19 let as +=
20 map (λi ri ai →
21 if i==0
22 then ri
23 else f i as[i+1]
24 ) (iota n) rs as
25 -- idMatD is dxd identity matrix
26 -- idMatQ is qxq identity matrix

Listing 7.4: Pseudocode for the generic case of scan with MatrixMul Jacobians. Mind that *
denotes matrix-vector multiplication and × denotes matrix-matrix multiplication.

tiplication also provide a performance boost with l ino having O(d2) work and l inoM M has

O(k · q2) = O(k · (d/k)2) = O(d2/k). Recall however that d is considered a constant meaning

the improvement is constant.

7.4.2.2 High-Level Futhark Code for MatrixMul Pattern

Our implementation generates the code shown in listing 7.4 which like the ZeroQuad case, is

a modified version of the generic case in listing 7.1. Instead of cs, we construct an array Ms
holding a single q×q diagonal matrix from each Jacobian. These are extracted at compile time

such that only used entries are computed at runtime.

Lines 9-14 implements the mathematical definition of l inoM M directly where it pattern

matches on the first vector input to construct the q-length vector segments. Then it simply

scans with l inoM M (ln. 15-17). Notice the neutral elements for the scan have different dimen-
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sions with a d-length vector and a q× q matrix. The update to as is unaffected.

In the IR, operations on lines 4-16 are fused in a ScanOMap construct, i.e. the construction

of Ms, the reverses of the inputs to scan and the scan itself. The reverse on the scan result

and the update to as are fused in a Map.

7.4.3 Recognising Patterns at Compile Time

As mentioned, the Jacobian patterns are identified at compile time. We use v jpλ to generate

the code computing the Jacobians and this code is given to the simplifier. The simplifier takes a

program and optimises it by removing redundancies and applying code transformations using

a static analysis. In this case, we use the simplifier to identify Jacobian entries that are always

zero. Mind that if one Jacobian fits a pattern then every Jacobian has the same pattern. The

reason is that the simplifier examines only the derivative code for � without any inputs.

The simplified Jacobian is then used to identify potential Jacobian patterns. Currently, all

implemented patterns consists of q×q diagonal matrices so it should find the smallest possible

correct q if such a q exists. The compiler creates a list of possible q sizes [1, 2, . . . , d/2] where

the elements must divide the Jacobian completely, i.e. d mod q = 0. It uses brute-force to

find q by checking if all non-zero entries fit in 1 × 1 diagonal matrices, then 2 × 2, etc. The

smallest possible q is chosen as it excludes as many zero entries as possible. If no q is found,

the compiler applies the generic case because the matrix does not fit a Jacobian pattern. If a q

is found, the compiler checks if all diagonal matrices are equal and if so the MatrixMul pattern

is applied. Otherwise, it applies ZeroQuad.

It might be possible to optimise this pattern recognition, such that we do not need to use brute-

force. However, the tuple size d is usually small so the overhead is not expensive. Furthermore,

this analysis is done at compile time so it will not affect the runtime of differentiated programs,

only the compiling time.

Our pattern recognition implementation has its limitations. Firstly, there are more relevant

Jacobian patterns which have not been implemented, as discussed in chapter 11. Secondly, we

apply only a static analysis and no dynamic analysis. In some cases, a pattern is not recognis-

able at compile time but it is at runtime because the inputs are taken into account. However,

this would probably be expensive because every Jacobian should be examined when each one

has a different input.
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Part III

Evaluation
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8Validation

This section describes how we have validated our implementation of reverse AD scan and

reduce-by-index. We have two categories of tests: the primary tests with manually selected

inputs, and the secondary tests validating reverse AD against forward AD with randomly gen-

erated inputs. All the primary tests pass with our implementation with both C and CUDA

backends. All secondary tests pass with the C backend, while a few encounter runtime errors

with the CUDA backend, specifically reduce-by-index with vectorised operators. However, the

forward AD fails in the same cases so it would indicate that the problem was not introduced

by our implementation.

For the manual tests, we have systematically chosen primal programs and inputs such that

the tests reach every (edge) case that we have identified. The test function receives output

adjoints and input and applies v jp to the primal program. We have reused some test programs

already in the Futhark AD test suit1, which we have supplemented with extra tests for special

cases. Our full test suit is found in the AD test suit of our GitHub in futhark/tests/ad (Larsen

et al. 2022). The test outputs are either computed by hand or generated by forward AD, de-

pending on the size of the input and output. When the input and output are relatively small,

the program is typically derived by hand. Other programs would be impractical to derive by

hand so the test output is generated by forward AD.

Additionally, we have tests working on randomly generated inputs that compare the full Ja-

cobians computed by forward and reverse mode AD. Mind that the full Jacobian is costly to

compute because reverse AD is run size(output) times and forward AD is run size(input)
times. When comparing forward and reverse AD directly, we have to compute the full Jaco-

bian as forward AD produces a column and reverse AD produces a row. Thus destination size is

set to at most 100 and the number of values to at most a 1000, such that the tests are finished

within a reasonable time frame. These tests handle larger data sets than our manual tests but

still a small amount compared to likely "real" use-cases.

The generated input data is integers such that rounding errors or overflows do not cause ran-

dom differences in the results, which would be a problem with floats.

1The Futhark Github, i.e. futhark/tests/ad (The Futhark Hackers n.d.)
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8.1 Validating Reverse AD of Reduce-by-index

Tests for reduce-by-index are named reducebyindex*.fut where * is some test name. We

have identified the following test categories for reduce-by-index based on the operator:

• generic case operators,

• addition,

• multiplication,

• minimum and maximum,

• multiple levels of vectorised operators,

• and vectorised special case operators.

Table 8.1 shows a sample of the tested primal programs with reduce-by-index which are differ-

entiated with respect to destination and values using v jp. Some primal programs are one-liners

testing reduce-by-index in isolation, while others include multiple statements. The latter are

included to test if the reduce-by-index AD transformation works in collaborations with the

other AD transformations. Specifically, we test that non-zero adjoints are updated correctly

and the original destination array is available if needed by reverse sweep statements.

Each of the above tests categories have multiple instances reaching the relevant subcases, e.g. if

the operator is max and the maximum element of a bucket lies in dst. We also ensure each spe-

cial case have tests with arrays including out-of-bounds bucket indices, whose adjoints should

not be updated.

The random tests comparing forward and reverse mode use the same test categories as the

manual tests. The input data for indices is generated within bounds of destination. The rea-

son is that if the indices had been generated within the full range of 64-bit integers, the large

majority would be out-of-bounds, resulting in only very few adjoints actually being updated.

This would effectively only test that out-of-bounds adjoints are not updated which would not

be appropriate for validation.

8.2 Validating Reverse AD of Scan

The tests for reverse AD of scan are stored in files scan*.fut where * is a test name. The

tests categories for reverse AD of scan are:
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Primal Program Operator

def sat_add (x:f32) (y:f32) =
let sat_val = f32.i32 ((1 << 4) - 1)
in if sat_val - x < y

then sat_val else x + y

def primal [n][m] (is: [n]i64)
(dst: [m]f32 , as: [n]f32) =

reduce_by_index (copy dst) sat_add 0 is as

satadd: saturated addi-
tion
Generic Case

def primal [n][m] (is: [n]i64)
(dst: [m](f32 ,i64),

vs: [n](f32 ,i64)) =
reduce_by_index (copy dst) argmax (f32.lowest
,i64. highest ) is vs

argmax
Generic Case

def primal [n][m][k][l] (is: [n]i64)
(dst: [k][m][l]f32 ,

vs: [n][m][l]f32 ,
c: [k][m][l]f32) =

let tmp = reduce_by_index
(copy dst) (map2 (map2 (*)))
( replicate m ( replicate l 1)) is vs

in map2 (map2 (map2 (*))) tmp c

vecmul
Vectorised
Multiplication Case

def op (a1:f32 ,b1:f32) (a2:f32 ,b2:f32) =
(b1*a2+b2*a1 , b1*b2)

def primal [n] (is: [n]i64)
(vs: [n](f32 ,f32)) =

reduce_by_index ( replicate 4 (0 ,1)) op (0 ,1)
is vs

crossing tuple operator
Generic Case

def primal [n][m] (is: [n]i64) (vs: [n]f32)
(dst: [m]f32) =

let dst2 = copy dst
let a = map (**2) dst2
let b = reduce_by_index dst2 (*) 1 is vs
in map2 (+) a b

checks reverse sweep
access original dst
Multiplication Case

Table 8.1: Sample of the primal programs for the tests of reverse AD with reduce-by-index.
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Primal Program Operator

def primal [n] (as: [n]f32) =
scan (*) 1 as

mul
Generic Case with no
pattern

def primal [n] (as: [n](f32 ,f32 ,f32)) =
scan (λ(a1 ,b1 ,c1) (a2 ,b2 ,c2) →

(a1+a2 , b1*b2 , f32.max c1 c2))
(0,1, f32. lowest ) as

tuple operator
Generic Case with Zero-
Quad pattern

def mm2by2 (a1:f32 , b1:f32 , c1:f32 , d1:f32)
(a2:f32 , b2:f32 , c2:f32 , d2:f32) =

( a1*a2 + b1*c2
, a1*b2 + b1*d2
, c1*a2 + d1*c2
, c1*b2 + d1*d2 )

def primal [n] (as: [n](f32 ,f32 ,f32 ,f32)) =
scan mm2by2 (1, 0, 0, 1) as

mm2by2: 2 × 2 matrix
multiplication
Generic Case with
MatrixMul pattern

def primal [n] (as: [n]f32) =
scan (+) 0 as

add
Addition Case

def primal [n][k] (as: [n][k]f32) =
scan (map2 (+)) ( replicate k 0) as

vecadd
Vectorised
Addition Case

Table 8.2: Sample of the primal programs for the tests of reverse AD with scan.
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• generic case operators with either

– no statically identifiable patterns in the Jacobians,

– ZeroQuad pattern in the Jacobians,

– or MatrixMul pattern in the Jacobians,

• addition operator,

• and multiple levels of vectorised operators with

– addition

– or a generic case operator.

The primal programs shown in table 8.2 are derived using v jp with respect to input array as.

The tuple sizes of the arguments to the operator should be varied as memory is an important

concern with reverse AD of scan, e.g. we test with multiplication of 2 × 2 to 4 × 4 matrices.

Both manual and random tests use the above test categories.
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9Performance

The performance of our implementation is evaluated by benchmarking differentiated programs

generated by different versions of our implementation and comparing with the primal program

and forward AD derivative. Section 9.1 presents the evaluation of reduce-by-index and sec-

tion 9.2 does the same for scan.

All benchmarks are executed on a machine with two Intel E5-2650 CPUs and an NVIDIA RTX

2080Ti GPU using CUDA 11.3. Futhark is implemented with multiple backends of which we

use the CUDA backend. The reported results are the average runtime of a 100 runs. The run-

time includes all overheads except reading the input and writing the final output.

AD derivative programs have the same asymptotic work-depth as their primal program counter-

parts, so we would expect the derivatives to add a constant overhead. Here, overhead denotes

the ratio between the runtimes of differentiated and primal programs. Ideally, AD introduces

only a small amount of additional operations to construct the derivative program so the AD

overhead should be a small constant (Griewank and Walther 2008).

9.1 Performance of Reduce-by-index

The benchmarks for reduce-by-index are run with a values array of 50 million scalars. The

scalars are distributed evenly to the appropriate element type, where vectorised cases have

inner arrays of length 100. The scalars are 32-bit integers in the benchmarks with operators

satadd and argmax and 32-bit floats in the rest of the benchmarks. Derivatives are made with

respect to values and destination using randomly chosen initial adjoints. The benchmarks are

run with three different bucket numbers (destination length): 31, 1023 and 1.5 million. It is

relevant to compare performance with different numbers of buckets since it affects the number

of significant bits for sorting (see section 6.1.2).

The random input data for indices is generated inside a range such that they are in-bounds

of the destination array. Values whose corresponding indices are out-of-bounds, are ignored

so the amount of in-bounds indices greatly affects runtime. More importantly this affects the

72



Primal Runtime Rev AD Overhead Fwd AD Overhead

# of Buckets: 31 1023 1.5M 31 1023 1.5M 31 1023 1.5M

satadd 1146µs 1145µs 5228µs 52.4× 96.7× 33.7× 2.4× 3.5× 4.8×

argmax 2721µs 3910µs 24048µs 30.3× 38.7× 9.8× 5.0× 4.9× 3.4×

Table 9.1: Reverse and forward AD overheads for generic case operators with reduce-by-index
for 31, 1023, and 1.5 million buckets. The AD overheads are the ratios between the differen-
tiated and primal programs. Satadd is saturated addition.

runtime differently in the primal and differentiated programs because the reverse sweep will

still sort the redundant elements. It is likely that real use cases would include mostly in-bounds

indices so we consider it most appropriate to benchmark with in-bounds indices.

9.1.1 Performance of Generic Case with Reduce-by-index

Table 9.1 shows the reverse and forward AD overheads for generic case operators with reduce-

by-index. The first observation in table 9.1 is that the reverse AD overheads are hefty compared

to the forward AD overheads. This is expected because the differentiated programs sort the

values and indices arrays. As explained in chapter 6, the sorting does not affect the asymptotic

runtime but it is quite a big constant. We can examine the effect of sorting using table 9.2. The

table shows that the sorting dominates the runtime, taking up to 82%.

As expected the runtime of Radix sort grows when increasing the number of buckets as it has

to sort after more significant bits. Our expectation is that Radix sort with 1023 buckets takes

twice as long as 31 buckets, and Radix sort with 1.5 million buckets takes almost twice as

long as 1023 buckets1. This is confirmed by table 9.2. Notice that the runtime of Radix sort is

independent of the operator for a fixed number of buckets. This is expected since it does not

use the operator.

A surprising observation regarding sorting is that the time to permute the values using

siota is affected by the number of buckets (see table 9.2). We would not expect this because

it is constructed by simply indexing into vs with siota, namely map (λi → vs[i]) siota.

This means that the number of memory accesses does not depend on the number of buckets.

However, the sorting of the values becomes more expensive with increasing numbers of buckets

(see table 9.2). Our theory is that this is caused by a better cache performance with small

1Radix sort with 31 buckets has 3 iterations sorting 6 bits, 1023 buckets has 6 iterations sorting 12 bits, and
1.5 million buckets has 11 iterations sorting 22 bits.
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AD Runtime

# of Buckets: 31 1023 1.5M

Radix Sort 35k µs 70k µs 130k µs

Permutation of vs 6k µs 14k µs 16k µs

Other tasks 19k µs 27k µs 31k µs

Total: 60k µs 111k µs 177k µs

sa
ta

dd

Sorting Percentage: 68% 76% 82%

Radix Sort 35k µs 70k µs 130k µs

Permutation of vs 11k µs 29k µs 32k µs

Other tasks 37k µs 52k µs 73k µs

Total: 83k µs 151k µs 235k µs

ar
gm

ax

Sorting Percentage: 55% 66% 69%

Table 9.2: Profiling reduce-by-index with generic case operators to examine the effect sorting
has on the runtime with different numbers of buckets. Radix sort runtimes include the con-
struction of siota and sis. The permutation of vs is the gather operation that constructs svs.
Sorting percentage is the fraction of runtime, we spend on Radix sort and permutation of vs.
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Rev AD Runtime Fwd AD Runtime

# of Buckets: 31 1023 1.5M 31 1023 1.5M

satadd 1.9 s 110 s 260k s 140k s 200k s 1,300k s

argmax 2.6 s 160 s 350k s 680k s 960k s 4,200k s

Table 9.3: Estimated runtimes of computing the full Jacobian with reverse and forward AD for
reduce-by-index with generic case operators.

numbers of buckets because it gets more hits in the L2 cache when indexing into vs. The

average distance between values going to the same bucket is smaller meaning there is a higher

probability of a cache hit. The ScatterOMap updating the vs adjoints has a similar runtime

behavior, which is likely due to the L2 cache hit rate as well since it uses siota to scatter the

updates.

Notice that repositioning the values in the argmax case is around twice as expensive as in

the satadd case (see table 9.2). This is expected as the argmax case reduces over 2 arrays while

the satadd case reduces over a single array.

When examining the behaviour of the reverse AD overheads in table 9.1, we observe that

they peak at 1023 buckets. The reason is that for small bucket numbers, the GPU is able to

apply a faster version of reduce-by-index (Henriksen, Hellfritzsch, et al. 2020).2 This means

the primal runtimes are close for small numbers of buckets but the runtimes of the reverse

sweep still increase. This causes the reverse AD overhead to grow when going from 31 to 1023

buckets.

The overheads of reverse and forward AD can be seen in table 9.1. Recall that reverse AD com-

putes a row of the Jacobian while forward computes a column, which means the AD runtimes

of the two modes are not directly comparable. To make them comparable, we approximate

runtimes of computing the full Jacobian, meaning reverse AD runtimes are multiplied by the

number of outputs and forward AD runtimes are multiplied by the number of inputs. The in-

puts are the values and the destination arrays and the output is the resulting destination array.

As the benchmarks are made with 50 million values, forward AD has 50 million more runs

2Reduce-by-index is implemented in multiple versions depending on the operator and number of buckets. For
small numbers of buckets, it uses a single-pass version that constructs partial histograms which can fit into shared
memory. With many buckets, it uses a multi-pass version instead as the partial histograms cannot fit in shared
memory (Henriksen, Hellfritzsch, et al. 2020).
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Actual AD Overheads Theoretical AD Overheads

# of Buckets: 31 1023 1.5M 31 1023 1.5M

satadd 52.4× 96.7× 33.7× ∼ 22× ∼ 37× ∼ 10×

argmax 30.3× 38.7× 9.8× ∼ 18× ∼ 21× ∼ 4×

Table 9.4: The reverse AD overheads of reduce-by-index and the potential reverse AD over-
heads if the programs used CUB’s implementation of Radix sort.

than reverse AD. Table 9.3 shows estimated runtimes for computation of the full Jacobian.

It is evident that reverse AD is preferable with this number input values. The observations

demonstrate excellently that even with great runtime constants, the asymptotic work-depth

of a program will ultimately dictate the runtime behaviour. Mind that the current Radix sort

implementation in Futhark is around 50× slower than CUB’s state-of-the-art Radix sort im-

plementation. We can make an estimate of the AD overhead using CUB’s Radix sort by using

Amdahl’s Law (Amdahl 1967). For example, the theoretical speed-up of reduce-by-index with

satadd and 1.5 million buckets is:3

Speedup =
1

(1− F) +
F
S

=
1

(1− 0.73) +
0.73
50

=∼ 4×

where F is the fraction of the program that is enhanced by a factor of S. This means the

differentiated program would be around 4× faster. Table 9.4 shows estimated reverse AD

overheads if CUB’s Radix sort had been used. The overheads are significantly lower since

sorting constitutes a large fraction of the observed runtimes.

9.1.2 Performance of Special Cases with Reduce-by-index

Table 9.5 shows the benchmarks for reduce-by-index with special case operators. The special

cases are significantly faster as expected. We will consider the operators one-by-one and ex-

amine their benchmarks.

The add operator follows the addition special case. The reverse AD overhead goes below 1×
meaning the differentiated program becomes faster than the primal. The reason is that the

3Mind the speedup is only on the Radix sort fraction of the program, not the permutation of vs which is
otherwise considered part of the sorting cost.
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Primal Runtime AD Overhead

Generic Special case

# of Buckets: 31 1023 1.5M 31 1023 1.5M 31 1023 1.5M

add 1165µs 1169µs 4742µs 41.8× 77.4× 31.7× 1.0× 0.9× 0.8×

vecadd 2428µs 6906µs 38629µs 6.6× 2.3× 0.8× 1.6× 0.5× 0.3×

mul 1147µs 1149µs 5255µs 52.3× 96.2× 33.5× 2.6× 2.8× 12.9×

vecmul 2432µs 13385µs 46524µs 406.7× 61.7× 16.1× 12.9× 9.4× 3.2×

max 1346µs 1365µs 5068µs 45.0× 81.5× 36.1× 2.5× 3.1× 5.1×

vecmax 1948µs 14479µs 46522µs 503.2× 57.1× 16.1× – 6.3× 2.4×

Table 9.5: The reverse AD overheads in the special case operators of reduce-by-index applying
the rewrite rule of either the generic case or appropriate special case.

forward sweep result is not used so it is removed, leaving only a cheap map. Thus the AD over-

head becomes lower with increasing numbers of buckets as the depth of the map is constant

but the depth of the reduce-by-index in the primal program is growing. We observe similar

results for the vectorised addition operator vecadd that matches the vectorised addition case.

The mul operator matches the multiplication special case. The runtimes and the AD overheads

with 31 and 1023 buckets are almost the same. This is because the runtime is dominated by

the forward sweep reduce-by-index which uses the optimised version with a small number of

buckets. Additionally, multiplication is supported by the hardware giving an even more effi-

cient reduce-by-index. With 1.5 million buckets, it switches to a slower version. However, this

does not explain the increase in AD overhead from 2.8× with 1023 buckets to 12.9× with 1.5

million buckets. By profiling the program, we have identified that the overhead increase is

caused by the final map of the reverse sweep. This map indexes uncoalesced into arrays whose

length is the number of buckets, so our theory is that the slow-down is caused by the caching

being more efficient with small numbers of buckets.

The vectorised multiplication operator vecmul has decreasing AD overheads in contrary to the

mul operator. The first observation is that the primal runtime increases significantly with the

number of buckets. The reverse sweep does not increase as much in comparison, so the reverse
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Rev AD Overhead Fwd AD Overhead

# of Buckets: 31 1023 1.5M 31 1023 1.5M

add 1.0× 0.9× 0.8× 1.3× 1.4× 2.4×

vecadd 1.6× 0.5× 0.3× 1.8× 1.7× 2.1×

mul 2.6× 2.8× 12.9× 2.3× 3.3× 4.5×

vecmul 12.9× 9.4× 3.2× 7.5× 3.2× 2.0×

max 2.5× 3.1× 5.1× 2.1× 2.9× 4.9×

vecmax – 6.3× 2.4× 9.6× 2.8× 2.0×

Table 9.6: The reverse and forward AD overheads of reduce-by-index with special case opera-
tors. The vecmax operator with 31 buckets throws a runtime CUDA error (invalid argument).

sweep constitutes a smaller part of the runtime lowering the overheads.

The max operator matches the min/max special case. The AD overhead increases with the

number of buckets. The reason is that the AD transformation converts the max operator, which

is supported by hardware, to an argmax operator that is not supported by the hardware. This

impacts the efficiency of reduce-by-index (Henriksen, Hellfritzsch, et al. 2020).

The vecmax overheads show the same behaviour as the vecmul overheads. Again, the reason

is that the primal runtimes increase greatly, resulting in the forward sweep dominating the

runtime of the differentiated program. Thus the AD overheads decrease.

Table 9.6 shows the forward and reverse AD overheads for comparison. We observe that

the reverse mode overheads are only slightly slower and even faster in some cases, specifically

add and vecadd operators. As with the generic case operators, forward AD needs has 50 million

more runs than reverse AD to compute the full Jacobian. Evidently, reverse mode is superior

to forward mode using special case operators.

In addition to the benchmarks shown here, appendix A have some benchmarks for intermedi-

ate versions of the reduce-by-index AD implementation. During the development phase, we

located points in the implementation with multiple possible solutions where it were difficult

to argue purely theoretically for a single solution. We have done benchmarks to check which
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Primal Runtime Rev AD Overhead Fwd AD Overhead

— Generic ZeroQuad MatMul —

mm2by2 1574µs 31.6× 18.8× 8.9× 2.4×

mm3by3 2492µs − 31.3× 11.3× 5.9×

mm4by4 5709µs − − 11.3× 6.7×

l ino 1506µs 5.5× 4.4× 4.0× 2.0×

l ino,2by2 1680µs 137.8× � � 4.3×

Table 9.7: Benchmarks of reverse AD scan with generic case operators, potentially applying a
Jacobian pattern. Forward AD overheads are shown for comparison. The AD overheads are
the ratio between the differentiated and primal programs. − means the pattern is applicable
but the program is not executable; � means the pattern is not applicable.

solution (if possible) performs the best for the problem.

9.2 Performance of Scan

The benchmarks are done with random input data of a 100 million 32-bit float scalars. These

scalars are distributed into the appropriate tuple size for the operator so e.g. the scan with

operator mm2by2 has 100M/22 = 25M 4-tuples and mm4by4 has 100M/42 = 6.25M 16-

tuples. Thus the input array lengths for each operator will differ but all benchmarks will work

on the same amount of data (or approximately the same). The derivatives are made with

respect to the input array using randomly chosen initial adjoints.

9.2.1 Performance of Scan with Generic Case

Table 9.7 shows benchmarks for selected scan programs comparing the runtimes of the primal

program and the differentiated programs using reverse and forward AD.

The reverse AD overheads are subdivided into each Jacobian pattern which is reported

when the pattern is applicable and the program executable. Notice that if some pattern A is

applicable, then that should imply the differentiated program using pattern A is executable.

However, this is not the case. Consider the case of scan with 3 × 3 matrix multiplication

(mm3by3 in table 9.7). The Generic pattern is applicable but the GPU throws a runtime error
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ScanOMap Map Total Mem AD Overhead

Reads Writes Reads Writes Expected Actual

Primal 4n 4n – – ∼ 8n – –

Generic 12n 24n 8n 4n ∼ 48n ∼ 6.0× 31.6×
ZeroQuad 12n 16n 8n 4n ∼ 40n ∼ 5.0× 18.8×m

m
2b

y2

MatMul 12n 12n 8n 4n ∼ 36n ∼ 4.5× 8.9×
Primal 2n 2n – – ∼ 4n – –

Generic 5n 8n 4n 2n ∼ 19n ∼ 4.8× 5.5×
ZeroQuad 5n 6n 4n 2n ∼ 17n ∼ 4.3× 4.4×li

n o

MatMul 5n 5n 4n 2n ∼ 16n ∼ 4.0× 4.0×

Table 9.8: Case study of mm2by2 and l ino for comparison of expected and actual reverse AD
overheads. Expected overheads are based on approximate numbers of global memory accesses,
using the ratio between primal and differentiated program accesses.

so the program is not executable. Specifically, a kernel failed to launch with error code 1 in-

valid argument. Similar errors occur at all GPU backends. Most likely, the cause for this error

is that the kernel requests more shared memory than available. The Generic case of mm3by3

scans over 90 arrays that with a block size of 256 requires 90·4·256= 92kb of shared memory.

However, the maximum amount of shared memory per CUDA block is 64kb with the GPU used

for the benchmarks.

We will now consider whether the results with the Jacobian patterns are reasonable accord-

ing to the theoretical background. We expect the AD overhead to be roughly the ratio between

the number of memory accesses in the primal and differentiated programs. The rationale is

that memory accesses are far more expensive than scalar operations so they will dominate the

runtime. By inspecting the IR of the differentiated program, we can count the approximate

number of global memory accesses (see table 9.8). Consider the operator case of scan with

l ino. The primal program has a single scan that writes 2n and reads 2n elements. The differen-

tiated program consists of two IR constructs, ScanOMap and Map, which have a total of ∼ 19n

memory accesses when using the Generic Jacobian pattern. By this logic we expect a Generic

case AD overhead with l ino scan to be approximately:

19n
4n
=∼ 4.8×
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This expected overhead matches roughly the observed overhead of 5.5×. Table 9.8 shows that

the expected overheads for l ino matches the actual overheads relatively well. The difference

may lie in the amount of used shared memory and extra instructions.

With the mm2by2 operator the actual overheads are much higher than expected, when we only

consider the global memory accesses (see table 9.8). By profiling, we found that the runtime

of reverse AD Generic case is dominated by ScanOMap constituting 95% of the runtime. Part

of the explanation is likely that the scan uses far more shared memory, were e.g. the Generic

pattern scans over 24 arrays and the primal program scans over only 4. This will reduce the

number of active blocks per streaming multiprocessor (SM), i.e. it cannot run as many threads

in parallel. Additionally, it has far more instructions than the primal. This also explains why

the actual overheads come closer to the expected when using less memory in the more spe-

cialised Jacobian patterns.

The number of global memory accesses cannot alone explain the observed overheads for mm2by2

because the reverse sweep uses a much larger amount of shared memory and far more in-

structions. Instead we will look at the runtime ratio between the Jacobian pattern cases. We

might expect the runtime ratios to roughly match the ratio between the number of scan arrays.

This provides a measure for the shared memory usage and the number of instructions in the

ScanOMap which seemingly has a huge impact on the AD overheads in the mm2by2 case. The

Generic pattern case of mm2by2 scans over 20 arrays. The ZeroQuad case scans over 12 ar-

rays with l inoZQ so the ratio is 24/16 =∼ 1.5×,4 which roughly matches the runtime ratio of

31.6/18.8 =∼ 1.7× speed-up. The MatrixMul case scans over 8 arrays with l inoM M giving an

scan array ratio of 24/12 =∼ 2×, where the runtime ratio 31.6/8.9 =∼ 3.5× is actually far

better. The reason might be that the MatrixMul case uses far less shared memory so the global

memory accesses dominates the runtime. Also the Generic pattern case has O(d3) computa-

tions while MatrixMul has only O(q3) = O((d/k)3).
Similarly, for the case of mm3by3 the scan array ratio is 45/27=∼ 1.7× going from ZeroQuad

to MatrixMul pattern whereas the runtime ratio is better 31.3/11.3 = 2.8×. The same expla-

nation as mm2by2 is applicable.

The operator mm4by4 only has one executable differentiated program which is the MatrixMul

case. The overhead from the primal is 11.3×, exactly like the overhead of the MatrixMul case

with mm3by3. Mind that in the differentiated programs mm2by2, mm3by3 and mm4by4 with

the MatrixMul pattern, the reverse sweep scan multiplies matrices of the same size as the primal

program. Thus the reverse AD overhead should increase gradually with the dimension of the

matrices d × d since the matrix-vector multiplication in l inoM M has O(k2) work and k = d. We

observe that the overhead does not increase from mm3by3 to mm4by4 with MatrixMul which

4The scans of the forward and reverse sweeps are fused, so we add 4 arrays.
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Primal Runtime Rev AD Overhead Fwd AD Overhead

add 1545µs 1.96× 1.95×

vecadd 260770µs 0.03× 1.54×

mul 1544µs 4.35× 1.97×

vecmul 262093µs 0.05× 1.53×

Table 9.9: Benchmarks for special cases addition and vectorised with reverse AD scan. Multi-
plication is not a special case but is included as reference point for vectorised multiplication.

might be caused by the primal being rather slow compared to the primal of mm3by3 providing

an overhead of 5709/2492= 2.3× instead of the rough overhead expectation 42/32 =∼ 1.8×.

The primal slowdown is likely caused by an increase in the shared memory usage.

The l ino,2by2 program is a considerable outlier as the overhead is 137×, far from expected.

The Jacobian is 6×6 so it scans over 42 arrays (36 from Jacobians and 6 from vectors). Again,

a likely explanation is that it uses far more instruction and a lot of shared memory, meaning it

cannot run as many blocks per SM.

In addition to the reverse AD overheads, table 9.7 presents the forward AD overheads. The

forward overheads are a few times better than our reverse AD overheads in all cases except

in l ino,2by2 where our overhead is over 100×. Recall that the rewrite rule of forward AD

introduces only a single derivative statement for each statement in the primal program, so

intuitively we see that a single run of forward AD should be faster than a run of reverse AD.

This matches the observations in table 9.7 showing that forward AD is a few times faster than

reverse AD. As mentioned in the theory part (see section 3.1), forward AD is preferable when

the numbers of inputs and outputs are equal which is the case with scan. This also means we

do not need to estimate the full Jacobian runtimes as forward and reverse AD should be run

the same number of times.

9.2.2 Performance of Scan with Special Cases

Table 9.9 shows benchmarks for differentiated programs constructed with the reverse AD scan

special cases as well as the primal program runtimes and the forward AD overheads.

We will examine the overheads. The reverse AD transformation of scan with addition intro-
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duces an extra scan with addition and a reverse. However, in the benchmarked program the

forward sweep is never used so it is removed by the simplifier. The reverse sweep consist of a

scan with addition and a reverse, i.e. the differentiated program is a ScanOMap and a Map.

Since it has the double amount of memory accesses, we would expect the reverse AD over-

head to be approximately 2×. This is in accordance with the observations with an overhead of

1.96×. The forward AD overhead is approximately the same because it also adds a single Map
to the primal program.

In vectorised addition, the compiler first applies the vectorise transformation to the program

then the addition case. Mind that the transformation is applied first so the forward sweep is also

transformed. Recall that the transformation changes the asymptotic depth of the program from

O(m log(n)) to O(log(m)) where m is the length of the innermost arrays. In this benchmark,

the inner arrays have m = 200 elements and the outer array has n = 100,000,000 elements.

Since m� n, the differentiated program greatly out-performs the primal program and forward

AD which does not transform the program. The same holds for the case of vectorised multipli-

cation which is slightly slower because it applies the generic case after transformation instead

of the addition case.
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10Conclusion

This thesis can naturally be split into two main goals: constructing reverse AD of reduce-by-

index and extending and optimising reverse AD of scan. For each of these operations, we have

four notable objectives: examining the previous work on reverse AD of the operation, construct

an efficient strategy, implement the rewrite rule in the Futhark compiler, and evaluate the per-

formance of differentiated programs using our implementation. Furthermore, we examine the

theory of automatic differentiation and its performance concerns.

The first objective is to explain the theoretical background of our work. We present the Futhark

language and parts of the internal representation, which has been an important part of our

thought process when constructing strategies for the implementation.

Automatic differentiation has been presented, both reverse and forward mode. Reverse AD

lays the foundation for our work, while forward mode is an important reference point for com-

parison of performance and it is essential to the discussion of when it is appropriate to apply

reverse mode or forward mode AD.

Others have published work on reverse AD of reduce-by-index and scan in Futhark, i.e. Schenck

et al. 2022. We present their strategy and approach as part of the first objective. We managed

to simplify their rewrite rule for scan resulting in a more optimised version of the generated

Futhark code.

The second objective is to analyse and construct efficient strategies for the reverse AD rewrite

rules. This includes performance considerations, e.g. Futhark’s IR and GPU behaviour. For

reduce-by-index, we have formulated a rewrite rule with generic case operators by transfor-

mation of the primal program into a semantically equivalent program with two statements of

lower complexity. We have applied AD rewrite rules to the transformed statements indepen-

dently to construct the adjoint updates for the values and destination arrays. The presented

rewrite rule preserves the expected work-depth asymptotics of the primal program, when as-

suming the number of buckets is smaller than the number of values which is a reasonable

assumption (Schenck et al. 2022). Additionally, Schenck et al. 2022 loosely explains the strat-

egy of the special cases while we present the rewrite rules for these formally using Futhark
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pseudocode.

For reverse AD of scan, we have used the strategies as presented by Schenck et al. 2022, and

simplified the rewrite rule for generic case in such a way that it should provide a performance

benefit. By using Futhark’s simplifier on Jacobians of generic case scan operators, we have

identified and constructed specialised rewrite rules for two Jacobian patterns, ZeroQuad and

MatrixMul.

The third objective is to make an implementation of reverse AD for reduce-by-index and scan

based on the presented strategies and rewrite rules. We have succeeded and validated the im-

plementation by testing differentiated programs against the forward AD implementation and

with manually constructed tests. Our implementation is freely available in our GitHub Larsen

et al. 2022.1

The fourth objective is experimental evaluation of the performance. We have done bench-

marks of primal program and their differentiated counterparts with reverse and forward mode

AD. We discuss the runtime behaviour and assess the results with respect to the expectation

from AD theory, Futhark’s implementation and GPU behaviour.

In reduce-by-index, the behaviour is mostly as expected, where the reverse AD overheads are

relatively high because of sorting. Using Amdahl’s Law, we have estimated the reverse AD

overheads using a state-of-the-art radix sort, instead of Futhark’s own, resulting in up to ∼ 4×
speedup. As expected, the reverse AD overheads are higher than forward AD overheads but

reverse AD significantly outperforms forward AD on computation of the full Jacobian as we

have size(output) � size(input). Additionally, the benchmarks confirm that the specialised

rewrite rules for the special cases do provide a significant performance benefit, up to ∼ 70×
speedup compared to the generic case.

In the performance evaluation of scan, we observe that the specialised Jacobian cases provide

up to ∼ 3.5× speedup in comparison with the Generic pattern case. Computation of the full

Jacobian with generic case operators is faster with forward mode AD, which is expected since

input and output have the same size. In the special cases however, we observe that reverse AD

is able to outperform forward AD in some cases and otherwise have competitive performance.

In summary, our research presents, analyses and evaluates our solutions for reverse mode AD

of reduce-by-index and scan. We have implemented our solution in Futhark’s compiler and

confirmed that in many cases, their performance is competitive compared to Futhark’s forward

AD.

1We have contributed mainly to the files Hist.hs, SOAC.hs and Scan.hs of the src/Futhark/AD/Rev folder
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11Future Work

This chapter contains possible areas of extension and optimisation to reverse AD of reduce-by-

index and scan in Futhark.

11.1 Additional Jacobian Patterns

It is possible to include even more Jacobian patterns of scan operators. E.g. we have observed

the following pattern in the Jacobian of l ino,2by2:




�
M1

�
0 · · · 0

0
...

0


 M2







This pattern has two square diagonal matrices of different dimensions. By the same arguments

used in the ZeroQuad pattern case, this pattern allows the reverse sweep scan to be transformed

into two scans on fewer elements. This has the potential of providing a speedup and less

memory usage compared to the Generic pattern case. Additionally, the pattern can be extended

to include any combination of different size square diagonal matrices.

11.2 Other Suggestions

The are several limitations and inefficiencies of this implementation, including:

• As mentioned, sorting constitutes the majority of the runtime in generic case reduce-

by-index. It would certainly be preferable to use a faster sorting algorithm, e.g. CUB’s

state-of-the-art Radix sort implementation which is roughly 50× faster than Futhark’s

own.
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• Currently, reverse AD of scan only works with tuples of primitives, i.e. apart from vec-

torised operators, array operators does not work. A straight-forward reverse AD imple-

mentation will not be work-efficient since the element dimension is dependent on the

input. Thus the size of the Jacobians are not constant for a given program unlike tuples

of primitives.
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AFine-tuning the Implementation

As explained in section 6.1.2, the indices that are out-of-bounds of the destination array, are

mapped to a single out-of-bounds bucket. This can be done either before or inside the sorting

loop. Table A.1 shows that it is slightly faster to place the map inside the loop, so this is

the chosen solution for the implementation. Recall that the out-of-bounds bucket is set to

the histogram size, which means the loop only needs �log(hist_size + 1)/2� iterations (see

section 6.1.2). Table A.2 shows a great performance boost, especially for small numbers of

buckets as expected. In the generic case of reduce-by-index, a flag array is constructed for the

segmented scans (see listing 6.2). The flag array can either be constructed in a Map before the

ScanOMap or it can be in-lined in the ScanOMap. Table A.3 shows that the unfused programs

are just slightly faster for the benchmarks with over 1 million values. Data-parallel programs

are likely to take a large number of inputs to justify the overhead of transferring data between

the CPU and GPU. Thus we assess that the unfused solution is most appropriate.

Inside Sorting Loop Before Sorting Loop

Input Size: 1M 25M 50M 1M 25M 50M

satadd 1831µs 55044µs 110764µs 1894µs 55806µs 112242µs

argmax 2486µs 74336µs 151247µs 2545µs 75000µs 152442µs

Table A.1: Benchmarking to identify the ideal placement of mapping out-of-bounds indices to
bucket hist_size
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Rev AD Overhead

Significant Bits All Bits

# of Buckets: 31 1023 1.5M 31 1023 1.5M

satadd 52.4× 96.7× 33.7× 308.3× 326.3× 74.3×

argmax 30.3× 38.7× 9.8× 138.4× 106.1× 18.7×

Table A.2: The reverse AD overhead of reduce-by-index with generic case operators when
sorting either after all bits or just the significant bits.

Fused Not Fused

Input Size: 1M 25M 50M 1M 25M 50M

satadd 1826µs 55240µs 111250µs 1831µs 55062µs 110746µs

argmax 2499µs 74446µs 151278µs 2547µs 74345µs 151256µs

Table A.3: Benchmarks to identify whether it is beneficial to fuse the construction of flag array
with the ScanOMap in reduce-by-index with generic case operators.
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