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Abstract

This thesis describes the theory of L-systems and how their derivations and visual

interpretations can leverage a parallel computing architecture to achieve very high

performance. We introduce the theory of L-systems as well as a description of the

algorithms for parallel generation and visualisation of L-systems presented by the article

Parallel Generation of L-Systems(Lipp et al., 2009).

We present our own domain specific language for L-systems. The syntax supports

the definition of deterministic, context-free L-systems which can be bracketed or non-

bracketed. The language is implemented by a compiler whose target is to produce highly

parallel programs in the Futhark programming language. The strengths and weaknesses

of Futhark is discussed in the Methods and Materials chapter. The compiler can generate

code for our four parallel algorithms for derivation and our two parallel algorithms

for visual interpretation. The strategies are benchmarked with multiple L-systems and

different iteration numbers with 10 runs per test setting. The results show that our

fastest derivation strategy can generate up to 17695 symbols per microsecond (17.7

billion symbols per second) and the visual interpretation algorithms can interpret up to

113 symbols per microsecond (113 million symbols per second) for our test cases.
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1Introduction

Lindenmayer systems (abbreviated L-systems) are formal grammars and rewriting sys-

tems for generating geometric structures. They were originally created by biologist

Aristid Lindenmayer to simulate plant growth (Prusinkiewicz and Lindenmayer, 2004).

However, they are also immensely useful for producing other kinds of self-similar pat-

terns, also known as fractals. L-systems can describe the structure of a fractal as an

axiom, an alphabet of symbols and a set of productions using those symbols. The axiom

is an initial string which is used as the basis for the L-system. Each symbol in the axiom

is rewritten using the L-system’s productions to get a new string. This new string is

again rewritten and so on for the number of iterations decided by the user. The formal

description of L-systems is covered in section 2.1.

However, a string describing a pattern or a simulation of plant growth is not especially

interesting alone. A string of an L-system can also be represented graphically as seen in

Figure 1.1. Each symbol in the grammar is given a visual interpretation so an arbitrary

string created by an L-system can be converted to a picture. Visual representation is

covered in section 2.1.3.

So far we have only mentioned the theoretical aspects of L-systems but to use them

in an efficient way, an implementation is needed. As it turns out, a naive sequential

(a) Koch curve (4 iterations) (b) Fractal plant (5 iterations) (c) Sierpinski triangle (6 itera-
tions)

Figure 1.1: Examples of visual representations based on L-systems. They are produced and
drawn by our parallel implementation.
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implementation of L-systems quickly becomes infeasible to run when increasing the

iteration number. Consider a system which has an axiom "A" and A is rewritten to AA
in each iteration. As every symbol is is rewritten to two symbols, the resulting string

will double its size and so the string will grow exponentially and have 2n symbols after

n iterations. Many L-systems have an exponential growth as it is common to rewrite

a symbol to multiple symbols. We cannot eliminate the property that L-systems grow

exponentially but we can try to handle the data in an efficient way. The rewrite of each

symbol in a string is independent of the other rewrites, so an iteration on a string can be

done in parallel. Parallel derivation is covered in section 2.2.2. The visual interpretation

can be done in parallel as well and that is covered in section 2.2.3.

We would like to note that it is also possible to represent some exponentially growing

L-systems so they use less than exponential space (St-Amour et al., 2007). However, we

have chosen to focus on time efficiency and not space efficiency for our project.

For this thesis, we have created two main works of our own:

1. A language for defining L-systems.

2. A compiler to make GPU parallel programs with two purposes: producing instances

of L-systems and visual interpretation of L-systems.

We have also implemented an interpreter for the purpose of testing the correctness of

the results of the compiler.

The language makes it possible to define L-systems in a notation close to the theoretical

definition of L-systems. This is much easier and more compact than describing L-systems

directly as the representations used by parallel programming, which is explained in

section 2.3.2. Our implementation is inspired by the article Parallel Generation of
L-Systems (Lipp et al., 2009), which is described in section 2.2. However, we have

made changes to their methods and implemented several methods for comparison of

efficiency.

2 Chapter 1 Introduction



2Methods and Materials

2.1 Lindenmayer Systems

L-systems are a way of producing fractal-like forms (Santell, 2019). A formal grammar is

used to describe the syntax of the fractal. The L-system takes an axiom which is a string

of characters from the alphabet of the grammar. It rewrites the axiom by expanding

each character with one of the grammar’s rules. E.g. if the axiom was AB and there

was a rule that A goes to B, and B to AB, then a new string BAB would be formed. The

L-system can rewrite this new string and so on in an iterative process to produce new

strings. The string after each iteration gives a fractal-like form when each symbol is given

a visual representation. Theoretically, the iterative process could be infinite which would

indeed produce a fractal but of course that is not practically possible. Thus, the L-system

needs an iteration number. This also means that an L-system cannot practically produce

a fractal as fractals are infinitely deep and thus the L-system would need an infinite

number of iterations. However, for the sake of text simplicity, we will call a fractal-like

form a fractal for the remainder of the thesis.

2.1.1 Formal Grammars for Fractals

A formal grammar is a description of how to produce valid words in a language. A

grammar consists of an alphabet of symbols and a number of rules that are called

productions. Productions contain only the symbols from the grammar’s alphabet. An

example of a rule is:

A → BC

This means that applying the rule on A, you get the string BC. The application of

productions is called transformation, derivation or rewriting. You can talk about both

a transformation of a single symbol and a transformation of a whole string, where a

production is applied to every symbol in the string. A symbol can also be called a

character.

In L-systems, the left-hand side of the arrow is called the predecessor and the right-

hand side is called the successor (Santell, 2019). The production describes a possible

3



n = 1 n = 3
FL FL
FL+RF+ FL+RF+

FFL+RF++-FL-RF+
FL+RF++-FL-RF++-FL+RF+--FL-RF+

Table 2.1: Producing strings for dragon curves with n iterations.

transformation of the predecessor, here A, to the successor, BC. The successor can have

as few or as many characters as needed or even none, but the predecessor can contain

only one character that is rewritten by that production. The predecessor can also contain

other properties like conditions for application which are explained in section 2.1.2.

As example we can look at the grammar of a dragon curve (Prusinkiewicz and Linden-

mayer, 2004):

Axiom: FL

Productions: L → L + RF+
R → −FL − R

Here the characters F, + and - are constants which means that they are not transformed

when rewriting the string. Thus they do not need a production. In Table 2.1, the L-system

iterations, n, of the dragon curve can be seen for n = 1 and n = 3.

2.1.2 Types of L-Systems

There are several kinds of L-systems where a few will be explained here.

An L-system can be either context-free or context-sensitive. It is context-sensitive if the

grammar contains productions that can only be used if the predecessor is preceded or

succeeded by a specific symbol (Santell, 2019). This contrasts context-free L-systems

which are characterized by having no predecessors that uses context. An example of

a context-free production is C → AB which transforms C into AB. When writing

context-sensitive productions, we need a notation for marking what is context and what

is the symbol in being transformed. The notation X < Y means X precedes Y , Y > X

means X succeeds Y and X < Y > Z means Y is preceded by X and succeeded by Z.

In these examples of predecessors, X and Z are the context and Y is the symbol being

transformed. An example of a context-sensitive production is A < C > B → AB where

C is transformed to AB if it is preceded by a A and succeeded by a B.

4 Chapter 2 Methods and Materials



Another type is stochastic L-systems (Santell, 2019). They contain several productions for

each predecessor where a random production is chosen based on the probability for each

production. That means that each production for a specific predecessor will be given

a probability of how likely it is that it is chosen for application. E.g. we could define

an L-system with the productions A
0.4−→ AB, A

0.4−→ A and A
0.2−→ B. Here A has a 40%

chance of being derived to AB, a 40% chance of A and 20% chance of B. Stochastic

L-systems are useful for e.g. producing plant fractals because there is some randomness

in the growth of a plant. If an L-system is not stochastic, it is deterministic which means

that there can be at most one applicable rule to each symbol.

An L-system can also be parametric (Prusinkiewicz and Lindenmayer, 2004). Each symbol

can have a list of parameters associated with it where a parameter is a real number.

A symbol with a parameter list is called a module and a combination of parametric

symbols is a series of modules. The values of a parameter list is set by the production

constructing its module. Optionally conditions on the parameter values can be used

to choose between multiple productions for a symbol. An example of a parametric

production is a(i, j) : i < 0 → a(1, j + 1)bc which matches on the production only if the

first parameter of a is negative. If we have the string a(2, 3)a(−7, 5), then the first module

a(2, 3) cannot be transformed by the rule as 2 ≮ 0 while module a(−7, 5) satisfies the

condition by −7 < 0. Thus the transformed string in this case is a(2, 3)a(1, 6)bc assuming

there are no applicable productions to a(2, 3).

The last type we will consider is bracketed L-systems (Santell, 2019). It is a bit different

than the other discussed types as it is does not affect the derivation of an L-system.

Instead it is useful for visualisation. However, it should be noted that when combined

with context-sensitivity, the derivation will become more complex which is described

in section 2.2.3.2. We will return to bracketed L-systems in section 2.2.3.2, when the

methods for visualisation has been covered.

All of the types can be mixed and matched as needed. Even context-free and context-

sensitive can mixed in the sense that an L-system can contain both context-free and

context-sensitive productions. However, the L-system will be considered context-sensitive

as a whole if it has any context-sensitive rules.

For this project, we have chosen to implement context-free, bracketed L-systems as a

sample of the full range of L-systems. However, we will discuss how our implementation

can be extended to cover all of the types of L-systems in section 5.

2.1 Lindenmayer Systems 5



Figure 2.1: Dragon curve with 15 iterations produced and rendered by our parallel implementa-
tion.

2.1.3 Visualisation of L-Systems

An L-system only produces a string representation of the fractal. However, fractals

are typically represented visually. We can use turtle graphics to visualise the string

representation of a fractal. The “turtle” is a cursor on an empty canvas. The turtle has a

direction and a position on the canvas. The turtle can do each of the following possible

actions: turn, move or draw. Turn turns the turtle a number of degrees, move moves

the turtle a number of steps along the turtle direction and draw is a move where the

turtle draws a line between the starting point and the end point. Turtle graphics can be

used by giving each character in the grammar an action. As an example, we use at the

dragon curve again and give the characters the following turtle actions (Prusinkiewicz

and Lindenmayer, 2004, p. 11):

F : draw

− : turn left 90◦

+ : turn right 90◦

L : no action

R : no action

6 Chapter 2 Methods and Materials



With this interpretation list, we can convert a dragon curve string to a list of turtle

commands and perform each command in the list to produce a picture. When using this

graphical interpretation, the dragon curve looks as in Figure 2.1.

As promised, bracketed L-systems will now be covered. Bracketed L-systems are used

for creating branches, where a branch is started by [ and is ended by ]. When the

visualisation of the branch has ended and it has reached the end bracket ], it will go back

to the turtle position before the branch. This means that multiple parts of the created

fractal use the same starting position. The bracket notation makes it easy to implement

nested branching as the starting and ending tags are different. A stack can be used to

implement the branching where [ pushes a position on the stack and ] pops a position

and updates the turtle position to the popped position.

2.1.3.1 Turtle Commands as Matrices

We need to have a representation for turtle commands before turtle graphics becomes

useful for computation. You can represent the commands with transformation matrices

and the turtle state as a matrix as well. The reasoning behind the construction of these

matrices are not relevant to the project so we will just present definitions and use them

in our implementation. The turtle state, also called current coordinate system, can be

represented by (Ju et al., 2004, p. 6):

S =




u1 u2 0
−u2 u1 0
p1 p2 1




where (p1, p2) is the turtle’s position and (u1, u2) is a vector describing direction and

step size. We need two transformation matrices for turtle commands (Ju et al., 2004,

p. 44):

LM(d) =




1 0 0
0 1 0
d 0 1




LT () =




cos(α) sin(α) 0
−sin(α) cos(α) 0

0 0 1




LM(d) moves the turtle d steps and LT (α) turns the turtle with degree α. Notice that

these matrices only work for 2D spaces but they can also be made as 3D. The draw

2.1 Lindenmayer Systems 7



command can be done with LM where the start and end points for the line is saved. A

command is applied by pre-multiplying the appropiate matrix to the turtle state S (Ju

et al., 2004, p. 5):

Snew = L · S

2.1.4 Parallelism in L-Systems

When working with context-free L-systems, each transformation of a character is inde-

pendent of the other transformations in a single iteration. This means that it does not

matter in which order each symbol of the string is derived as long as the successors

are put together correctly afterwards. Therefore it can be done in parallel. However,

to transform the symbols of the next iteration, we have to know which symbols are in

that next iteration. The symbols are found by transforming all the symbols from the

current iteration and concatenating the results in a single string. Thus the next iteration

is dependent on the current iteration and each iteration will be handled sequentially.

However for many L-systems, a lot of threads will be needed. The number of symbols

generated in the last iteration will be O(n ·mi) where n is the number of characters in the

axiom, m is the longest successor and i is the number of iterations. There will be n · mi

symbols as in the worst case only the longest production is applied so in the first iteration

each of the n symbols are rewritten to m successors so the string is O(nm) afterwards.

In the second iteration, the nm symbols are rewritten with m symbols each again so

there are nmm = nm2 and so on. Notice that m is a really loose bound as L-systems only

rarely are able to use just the longest successor and successors often contain constant

symbols which derive to themselves.

Ideally, each transformation should have its own thread such that all transformations

are done in parallel in a single iteration. However in practice, it is faster not to utilise

full parallelism and instead divide data into equal chunks that are handled in parallel

(Henriksen, 2017, p. 18). This is handled by the programming language, we use for our

implementation (Futhark). Thus, there is no need to go into more details with that and

we can assume for our asymptotic time analyses later in the report that the programs are

fully parallel.

A GPU is able to run thousands of threads in parallel but each thread can only do a small

amounts of computations. Each transformation of a character is a very small computation

as it only needs to find an appropriate production and transform the character accordingly.

8 Chapter 2 Methods and Materials



Therefore, it would be appropriate to use a programming language that specialises in

GPU parallelism like Futhark.

Interpretation can be done in parallel as well but this is described in section 2.2.3.

2.2 Previous Work

The main inspiration sources for this project is the article Parallel Generation of L-Systems
(Lipp et al., 2009). It describes a way to use a GPU or a CPU to parallelize L-systems by

exploiting the independency of derivations in L-systems. It also describes ways to use

parallelism in the visual interpretation of L-systems. We will focus on the GPU approach.

Their approaches are made to be efficient on large L-systems and utilize thousands of

parallel GPU threads. Be aware that a highly parallel implementation likely will not

outperform single-core implementations on small L-systems because of the overhead of

starting the GPU. The rest of the section will explain the work presented in the article.

The approach of the article has two phases, derivation and interpretation:

1. Derivation: There is a pre-step to derivation: Representation. Representation is

needed since derivation cannot be done by a computer before we have a way

to represent the strings and productions as data. Representation is described in

section 2.2.1. An efficient, parallel way to derive is of course also essential, and

this is described in section 2.2.2.

2. Interpretation: The visualisation is done using turtle graphics. Two parallel con-

cepts are given for this in section 2.2.3.

2.2.1 Representation

This is a description of the runtime representation which is used by the parallel program.

Presumably, the authors have implemented the representations directly in CUDA and

a CPU language, as opposed to making a DSL for L-systems and compile to a parallel

language like we do. The production rules are stored in a 2D array where each successor

is stored in the row index by the ASCII value of the predecessor. Collision chains are used

to resolve collisions where there are multiple successors for the same predecessor such

as in stochastic L-systems. Collision chains solve the problem by taking the elements

that are stored in the same slot and put them in a linked list and make the slot point

2.2 Previous Work 9



(a) An example of the representation of the production a(l) → a(l + g1)[b(l ∗ g2)].

(b) An example of the production a(l)(0.5) → a(l + g1)[b(l ∗ g2)] from a stochastic parametric L-system.

(c) An example of the production b < a > c → aa from a context sensitive L-system.

Figure 2.2: Representations for different types of L-systems (based on Lipp et al., 2009)
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Figure 2.3: An example of a module string representation. In this example, a has parameters 1
and 0.5 and b has 2.3, 8 and 3. [ and ] do not have any parameters.

to the list (Cormen et al., 2009, p. 257). Just before any rule is a header containing

information on the rule. The specific contents of a rule header depends on the type

of L-system being implemented. It is used to hold information on the rules which is

useful for deriving symbols when the productions are used. With the different types of

L-systems, the contents of the header are:

• All L-systems will have the number of successors in the header.

• Parametric L-systems will hold the number of parameters in the successor.

• Stochastic L-systems will have the probability of the production.

• Context-sensitive L-systems will hold the left and right context letters in the header.

The types of L-systems can be combined. The representations for each basic L-system

type is visualized in Figure 2.2.

In parametric L-systems, the parameters are translated into unique numerical IDs to allow

O(1) lookup in a table holding the parameter values. The representation of modules uses

three arrays. A visualised example is given in Figure 2.3. The first array contains the

n letters of the module string. The second array is length n and contains the indices to

the parameter values. This is done because the modules can have multiple parameters

so the index is an offset into the parameter value array. If a character does not have a

parameter, the offset is set to -1. The third array is the array containing the parameter

values.

2.2 Previous Work 11



2.2.2 Parallel Derivation

The derivation is done by expanding a string iteratively where each expansion iteration

is done in parallel in the GPU. The derivation requires a production array, an axiom

and a number of iterations. All the information is uploaded to the GPU. The iterations

are performed sequentially but each iteration is performed in parallel. In each iteration

the current string is derived. One iteration is handled by three passes. An example of

running the passes is visualized in Figure 2.4. The three steps are:

1. Each kernel is launched with n threads where each thread is assigned m =
inputSize/n subsequent modules/characters. The first pass counts the total num-

ber of successors needed for all symbols assigned to the thread. This is done

by a simple lookup in the corresponding production headers. If the L-system is

parametric then this step will also count the number of parameters in the same

way as it counts the number of successors. This is basically a map which does a

look-up in the production array.

2. The second pass does a sum-scan on the result from the first pass. This is used

to calculate offsets and the length of the derivation result for when the third pass

actually does the rewriting. If the L-system is parametric then it will also do a

sum-scan on the parameters. It only requires one scan as symbols and parameters

can be included in a single array. The sum result on the parameters is used to

calculate offsets into the parameter value array.

3. n threads are launched again. The third pass does the actual rewriting of the string.

It fetches the production for each assigned module/character. First it should choose

an applicable production and this step depends on the type of L-system:

• If the L-system is context-sensitive then the preceding and succeeding sym-

bols are compared with the letters in the production header to check if the

production can be used.

• If the L-system is bracketed context-sensitive then finding the context becomes

more complicated because of bracketed L-systems’ use of a stack. In this

kind of system a parallel hierarchy extraction step is needed which will be

explained in section 2.2.3.2.

12 Chapter 2 Methods and Materials



Figure 2.4: The three passes performed in each iteration. The parameters have been omitted.
(Lipp et al., 2009, p. 4).

• If the L-system is stochastic then for every symbol in the string, a random

number for each applicable production is chosen. The number is multiplied

by the probability in the header and the production with the highest product

of probability and random number is used for derivation. The article says that

the random number is found by using the position in the string to index into

an array with random numbers. However, this does not make sense since it

would cause the same random number to be chosen for every production. We

think they mean the position of the production in the production array which

can be used for indexing into a random array. They would use a new random

array every time a production should be chosen so a production will not get

the same random number each time it is applicable.

When a production is chosen for application, a thread will insert the successors into

a resulting string. If no applicable production is found for a symbol, the symbol will

be copied into the resulting string. If the L-system is parametric, it will evaluate the

parameters for all successor modules before inserting them. All of the successors

are inserted in parallel using the array with successor offsets from the second pass.

An example of derivation using the passes is shown in Figure 2.4. Notice that because

each thread handles more than one module, the intermediate result arrays are shorter

than the input array.
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2.2.3 Parallel Interpretation

Derivation results in a string which can be interpreted to a visual representation. For

this, turtle graphics are used (explained in section 2.1.3). 4x4 matrices can be used to

implement the turtle states. Each symbol have a turtle command which can be repre-

sented by a 4x4 matrix transformation (except push and pop). These transformations

are applied to the turtle state to move the turtle for each symbol in the string. Thus a

turtle state is dependent on every one of the previous states, so it might appear like it can

only be accomplished sequentially. However, this is not the case. The article gives two

suggestions of how to use parallelism for interpretation, one for non-branching L-systems

and one for branching.

2.2.3.1 Visualisation of Non-Branching L-Systems

Strings of non-branching L-systems are divided into chunks which can be interpreted

independently. The interpretation is done in three passes:

1. It divides the string into n chunks and they are each given to a thread. The threads

multiply the symbol matrices in their chunk to one transformation matrix. It also

counts the number of generated geometry objects, which is the number of draw

commands (move and turn does not make geometry). Two arrays are created, one

to store the transformation matrices and the other to store geometry amounts.

2. It scans over the transformation matrices with matrix multiplication as scan opera-

tor. The starting accumulator is the identity matrix. This results in an array with

the turtle state transformations at the beginning of each chunk. Then another scan

over the geometry amount array is used to calculate offsets for the geometry.

3. It looks at the n string chunks again and multiply the symbol matrices. The ith

chunk is pre-multiplied by the ith transformation matrix from pass 2. Every time

there is a geometry generation (a draw command), the object position is computed

using the object offset array calculated in pass 2. The positions of objects are stored

in a vertex buffer object (VBO).

An example is shown in Figure 2.5.

14 Chapter 2 Methods and Materials



Figure 2.5: The three passes of visualisation of non-branching L-system (Lipp et al., 2009, p. 5).

2.2.3.2 Visualisation of Branching L-Systems

The interpretation of branched L-systems are not as easy as for non-branched systems

since push and pop cannot be applied with matrix transformations. However, the

branches also create an opportunity for parallelism since they can be interpreted inde-

pendently. The algorithm uses parallel hierarchy extraction. A branch hierarchy refers to

how deeply a bracket pair is enfolded within other bracket pairs. We also call the bracket

pair a push/pop pair as a starting bracket corresponds to a pop and an end bracket

corresponds to a push (explained in section 2.1.3). The idea is to extract the positions

and depths of the bracket pairs. These are stored in buckets (arrays) where each bucket

contains the pairs for a single depth. When you do this, the positions of a pop and its

corresponding push will always by next to each other in the bucket because the bucket

only contains one depth.

The algorithm contains five passes. It assumes that the maximal depth of the hierarchy is

known so the bucket arrays can be allocated before running the passes. It works with

chunks which are processed in parallel, just like the other algorithms.

1. First, the depth at the end of a chunk is computed relatively to the depth at the

beginning of the chunk. This is done by adding 1 for each push and subtracting 1

for each pop. An array is filled with the results for the chunks.

2. It scans over the array from the pass 1 to get the absolute depths for the start of

the chunks.
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Figure 2.6: The passes of visualisation of branching L-systems (Lipp et al., 2009, p. 6).

3. This pass has two jobs. Firstly, it computes the absolute depth for each push/pop

pair which can later be used to get an offset for each pair in the final bucket array.

Secondly, the pops and pushes at each depth in the chunk are counted and stored

in global 2D array. Each row represents a depth and column k is how many times

the depth occurs in the kth chunk. This means that when indexing with [i, j], you

get the number of times depth i occurs in chunk j.

4. It sum-scans over each row in pass 3 to get the bucket offsets for each chunk.

5. In this pass, the position of each push and pop is stored in the bucket array using

the depths and offsets from pass 4. The starting offsets into the bucket array for a

chunk c is the cth column of the result from pass 4. A chunk might have multiple

pushes/pops at the same level so the chunk needs to keep track of the offset to use.

This results in an array where every two consecutive elements in a row correspond

to a push/pop pair.

You can see an example in Figure 2.6.

The memory usage of the bucket array can be optimized. The article does not specify

how to determine a length for the buckets but we assume that they set it to the length of

the string to be sure they are long enough. This is because the largest possible number
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of push/pop pairs occurs when the string contains only brackets. In that case there is n/2

push/pop pairs where n is the length of the string. The total number of pushes and pops

are therefore n in this case. Before the algorithm, you do not know how many pairs will

be in each bucket so every bucket is set to be n long. Hence the 2D bucket array can be

very inefficient because a lot of elements will not be filled. To reduce the memory usage,

the bucket array can made into a 1D array instead. You can use the sum of the chunk

offset and the count of pop and push commands at an index j to map the jth bucket

element to its place in the 1D array.

The bucket arrays are used for parallel visualisation. The interpretation uses a parallel

work-queue. The idea is that a single thread starts doing the interpretation of the string

sequentially and when it finds a push, it creates two new work items, one for each

branch. So one thread takes the work inside the push/pop pair and another takes the

work after the pop. To do this the bucket array must be integrated into the string by

writing the positions of pop positions directly in the string by its corresponding push. The

integration is accomplished by first assigning the 1D bucket array to multiple threads.

Each odd element (the pops) is given a parameter containing the position to the module

referenced by the previous element (its associated push). As an optimization the offsets

needed for the geometry can be included in pass 1 and pass 2.

2.3 Parallelism in Futhark

2.3.1 Introduction to Futhark

Futhark is a programming language which is designed for writing efficient parallel code,

especially using the GPU. This makes it an ideal choice for implementation of parallel

L-systems (cf. section 2.1.4).

When working with Futhark, it is important to keep in mind the language’s strengths

and weaknesses. We have included some of the peculiarities here.

Firstly, Futhark is not parallel per default. The programmer has to identify sources

of parallelism himself and use Futhark’s built in parallel functions. We will look into

runtimes for a selection of the parallel functions in section 2.3.3.1. This is included to

give an intuition for the efficiency of a Futhark program.

Secondly some parallel functions have conditions of use to make them parallel. One

that is important for this project is that functions given to scan and reduce has to be

associative, because a parallel solution does not make the computations in order. Be
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aware, that mistakes of this kind will not result in compile time errors and will only be

visible as wrong results.

Thirdly, arrays must be regular which means that all internal arrays on the same level

has the same length. This is done because nested parallelism is "significantly easier to

map to hardware"(Henriksen, 2017, p. 23) under the assumption of regularity. Nested

parallelism is when a parallel function contains another parallel function and Futhark

utilizes all levels of nested parallelism assuming there is enough available GPU power. A

programmer can work around the regularity requirement however, by manually flattening

irregularities or simply modify it to be regular (Henriksen, 2017, p. 24).

Lastly, every Futhark type cannot be cleanly represented in the target language (Elsman

et al., n.d.(b), Basic Usage, sec. 2.2.1). If a program tries to return such a type it will

give an error message saying that it cannot show opaque types. An example of a opaque

type is arrays of tuples.

2.3.2 DSL or Direct Implementation in Futhark

As mentioned before, we will write a domain specific language (DSL) for L-systems

that is close to the formal notation and write a compiler from the DSL to Futhark.

Possibly, the reader would think that Futhark sounds perfect for the job so why do we

not just implement L-systems directly in Futhark? A DSL seems like an unnecessarily

complication on top of a perfectly fine parallel programming language. However, there

are a few problems with that.

Firstly in Futhark, the representations of productions are fairly complex and written for

the ease of computation, not for the comprehensibility of humans (cf. section 2.2.1). The

theoretical notation for L-systems (the grammar notation) is much easier to understand

and write for humans without making mistakes. Furthermore, the matrix representation

of each turtle command would also have to be made by hand.

Secondly, Futhark does not contain the same basic elements as L-system notation. Futhark

does not have chars or strings so all letters in a grammar would have to be converted

to numbers and a string would be an array of numbers. Futhark contains a lot of

functionality which is not used by L-systems and the notation is much more complicated

than what is needed to define an L-system. Thus a user would have use a lot of extra

time to familiarize themselves with the workings of Futhark.
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2.3.3 Work-Depth Asymptotic Analysis

To make a highly effective parallel program, it is important to establish an intuition

of the runtime of a parallel algorithm. A useful tool for this is work-depth asymptotic
analysis (Oancea, 2018). There are two main concepts (Oancea, 2018, p. 27): The work

complexity and the depth (also known as step complexity or span). The work complexity

is the number of executed operations when running a program. Depth is the number of

required sequential steps when running a program. They are denoted by W (n) and D(n)
respectively where n is a measure for the size of the workload. For the sake of simplicity,

the computations of work and depth assumes that an infinite amount of processors are

available.

A parallel program is work efficient if its asymptotic work is equal to the asymptotic work

of the same sequential algorithm (Oancea, 2018, p. 27). The parallel algorithm cannot

use less operations than the least amount of needed work and the sequential algorithm

will by definition use the least amount of work or it would not be optimal. Thus the

asymptotic work of a parallel algorithm can never be smaller than the asymptotic work

of the same sequential algorithm.

Work-depth asymptotic analysis does not take the number of cores in the processor into

account. However, these are clearly relevant to the runtime of a parallel program. For

this we can use Brent’s theorem (Oancea, 2018, p. 27):

W (n)
P

≤ T ≤ W (n)
P

+ D(n)

Where P is the number of cores and T is the time complexity of the program.

2.3.3.1 Analysis of Parallel Futhark Functions

In this section, we will go through work-depth analyses of a selection of Futhark functions.

It is merely a section that illustrates the work/span model, and Futhark’s behaviour

under that model, and not our own work (analyses reference: Henriksen and Elsman,

2019). We will use these cases as a basis for asymptotic analysis of our Futhark programs

for L-systems.
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To do work-depth analysis on Futhark programs, we need to some establish some basic

cases:

W (v) = 1
D(v) = 1

W (e1 ⊕ e2) = W (e1) + W (e2) + 1
D(e1 ⊕ e2) = D(e1) + D(e2) + 1

W (\x –> e) = 1
D(\x –> e) = 1

W ([e1, · · · , en]) = W (e1) + · · · + W (en) + 1
D([e1, · · · , en]) = D(e1) + · · · + D(en) + 1
W ((e1, · · · , en)) = W (e1) + · · · + W (en) + 1
D((e1, · · · , en)) = D(e1) + · · · + D(en) + 1

where v is a variable, ei is an expression and ⊕ is a basic operation. As stated above,

fetching variable values and each basic operation ⊕ have the work and depth 1. Of course

when applying an operator each argument expression has to be evaluated. Function

definitions have work and depth 1 as well as the function body is only evaluated in

Futhark when the function is called. The work and depth of making an array or a tuple

is 1, plus the evaluation of each element of course. So if each expression in the array or

tuple is evaluated in constant time then work and depth is O(n).

Now comes some more complex cases. We will use �e� for the result of evaluating

expression e. iota e makes an array from 0 to x (exclusive x) so its work is the work of

evaluating the input expression plus the number of elements (the work of each element

is one). The elements are made in parallel so the depth is only the depth of the input

expression plus 1 for initializing the array. If the argument is evaluated in constant time,

the work is O(n) and the depth is O(1).

W (iota e) = W (e) + �e�
D(iota e) = D(e) + 1

replicate has the work of evaluating the two arguments and inserting the

W (replicate e1 e2) = W (e1) + W (e2) + �e1�
D(replicate e1 e2) = D(e1) + D(e2) + 1
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The work-depth of take is the same as replicate’s as they both make an array of length

e1. The difference is that take copies elements from an array instead of duplicating a

single element as replicate.

The work of a let-binding is the work for evaluating the expressions and 1 for making

the binding. The depth is the same.

W (let x = e in e�) = W (e) + W (e�[x �→ �e�]) + 1
D(let x = e in e�) = D(e) + D(e�[x �→ �e�]) + 1

When applying a function, the work is the work of evaluating the input, the work of

evaluating the function body with the input and 1 for the function call.

W (e1 e2) = W (e1) + W (e�[x �→ �e2�]) + 1
D(e1 e2) = D(e1) + D(e�[x �→ �e2�]) + 1

where �e1� = \x –> e�

The work of map is the work of evaluating the two arguments and applying the function

to each element in the array. The depth is the depth of evaluating the arguments and the

greatest depth of applying the function to an element in the array. It is the maximum as

the function is applied to each element in parallel. 1 is added to depth to start map.

W (map e1 e2) = W (e1) + W (e2) + W (e�[x �→ v1]) + · · · + W (e�[x �→ vn])
D(map e1 e2) = D(e1) + D(e2) + max(D(e�[x �→ v1]), · · · , D(e�[x �→ vn])) + 1

where �e1� = \x –> e�

where �e2� = [v1, · · · , vn]

map2 maps over two arrays instead of one, and its work-depth is similar except the

function takes two arguments and work or depth of evaluating the second array is added

respectively. You may suspect that zip and unzip has the same work-depth, as it is similar

to map2 where the function puts the arrays together or separates them. However, zip
and unzip have no runtime cost in most cases as they can be fused into other operations

by the Futhark implementation (Elsman et al., n.d.(b), ch.2, sec.2.2).

In Table 2.2, a selection of the most useful parallel functions are shown. We will refer

to this table when making asymptotic work-depth analysis of our Futhark programs

later. Be aware that asymptotic notation eliminates all smaller terms which might be

considerable. E.g. filter, scan and reduce have the same asymptotic work-depth but
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Function Asymptotic Work Asymptotic Depth
filter O(n) O(log(n))
iota O(n) O(1)
map O(n) O(1)
reduce O(n) O(log(n))
replicate O(n) O(1)
scan O(n) O(log(n))
scatter O(n) O(1)
tabulate O(n) O(1)

Table 2.2: Asymptotic work-depth of parallel Futhark functions (input functions are assumed
O(1)) (Elsman et al., n.d.(a))

filter is much slower than scan and scan is much slower than reduce (Elsman et al.,
n.d.(a)).

2.3.3.2 Work-Depth Analysis of Example Program

Here is an example of a simple asymptotic work-depth analysis for a Futhark program.

We have written an example program which is shown in Listing 2.1. The program

calculates the product of the two input matrices.

1 -- Matrix multiplication (the dot product of the rows of 'xss '
2 -- with the columns of 'yss ').
3 let main [n][m][p] (xss: [n][p]f32) (yss: [p][m]f32) : [n][m]f32 =
4 map (\i -> map (\j ->
5 reduce (+) 0 (map
6 (\k -> xss[i, k] * yss[k, j])
7 (iota p)
8 )
9 ) (iota m)

10 ) (iota n)

Listing 2.1: Matrix product function in Futhark

We start by analysing the inner most part of the expression which is the map on line 5.

Firstly it maps over an iota which has O(n) work and O(1) depth. The function in map
only uses functions that are O(1). This means that the whole map has O(p + p) = O(p)
work and O(1 + 1) = O(1) depth. The reduce uses a function with O(1) work and

depth. The reduce and map steps are done sequentially which means the so far total

is O(p + p) = O(p) work and O(1 + log(p)) = O(log(p)) depth. The reduce is in the

function of the last map on line 4. In Futhark, nested parallelism is allowed so the

map is not forced to be sequential. Thus the map over iota m has O(mp) work and

O(1 + log(p)) = O(log(p)) depth. The map is in the function of another map over iota n.
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It has O(nmp) work and O(log(p)) depth, which is the final asymptotic work and depth

of the program. The sequential counterpart to this algorithm has O(nmp) work as well

so the program is work efficient.
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3
Implementation

Our implementation is attached to the report. There is a user guide in appendix 8.1.

3.1 A Language for L-Systems

Our domain specific language (DSL) can be used to define deterministic, context-free

L-systems that can be either bracketed or non-bracketed. It starts by defining the

axiom in nonterminal Axiom, then it defines the productions in Rules and optionally

visual interpretations can be defined with Inps. The visual interpretations are the turtle

commands move, draw and turn. Move and draw takes a step length in pixels and turn

takes a degree (not radians). The symbols can only be the upper- or lowercase letters

A-Z. Notice that this disallows the usage of special characters like + or - though they are

common in L-system definitions. This is discussed further in section 5. Another design

decision is to only allow non-zero integers as arguments to the turtle commands. They

cannot be zero as turning 0 degrees or moving or drawing 0 pixels would be the same as

no interpretation for that character, so it would bring redundancy into the language. It

could be changed to include decimal numbers by changing the regular expression and

their representation types to floats in the implementation.

Using F#, we have implemented an interpreter and a compiler for the language which

convert the given language to a representation understandable by the computer. The

interpreter and compiler can both derive and visually interpret the L-systems of this

language. The compiler can produce parallel programs using different parallel derivation

strategies. Parallel derivation strategies are discussed in section 3.2 and parallel visual

interpretation is discussed in section 3.3.
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3.1.1 Formal Definition

Prog → Axiom Rules | Axiom Rules Inps

Axiom → axiom: Str

Rules → rules: Rule

Rule → char -> Str | char -> Str, Rule

Inps → inter: Inp

Inp → char: Mv | char: Mv, Inp

Mv → move num | draw num | turn num

Str → char | char Str | [Str] | [Str]Str

Where char is defined with the regular expression:

[a-zA-Z]

And num is defined with the regular expression:

[-]?[1-9][0-9]∗

All whitespace is optional and is ignored in the language.

3.1.2 Example

An example of an L-system is the binary tree which has the productions A → B[QA]WA

and B → BB and the axiom A (Wikipedia, n.d.).

1 axiom: A
2 rules:
3 A -> B[QA]WA ,
4 B -> BB

The interpretation for each character is optional. The program of the binary tree with

interpretations would be:

1 axiom: A
2 rules:
3 A -> B[QA]WA ,
4 B -> BB
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5 inter:
6 A: draw 10,
7 B: draw 10,
8 Q: turn -45,
9 W: turn 45

There can also be characters that have no rule (constants), or characters with no visual

interpretation. In this example, W and Q have no rules. The binary tree will be a

continues example throughout the implementation chapter.

3.2 Derivation in Futhark

We have made four different parallel derivation strategies that can derive L-systems

written in our DSL. The compiler can compile programs in the DSL to each of these

strategies (ee user guide in appendix 8.1). For each strategy, Futhark code is included:

This contains only the main loop and not e.g. conversion functions for ASCII. The rest of

the code can be viewed in the attached code base. We have analysed the work-depth of

each strategy to get an idea of the efficiency of each of them. The analyses draw on the

work-depth of Futhark’s main parallel functions in Table 2.2.

Because of Futhark’s limitations, it is impossible to do exactly as described in the previous

work of Lipp et al., 2009. They manually divide the string into chunks and assign them

to threads so they do some sequential work which makes the depth of their algorithms

higher. This is not needed in Futhark as threads are handled by the parallel functions.

Also they make extensive use of irregular arrays and parallel inline updates which are

not possible in Futhark in the same way. We can work around these problems using the

parallel functions but not exactly as described. For comparison with our strategies, we

will start out by making an asymptotic work-depth analysis of the derivation passes from

the previous work.

3.2.1 Work-Depth of Strategy from Previous Work

First we assume the handled L-system is a deterministic, context-free L-system so it

handles the same L-system type as our strategies. This means that we have chosen to

ignore all representations and work done for e.g. parametric systems. The algorithm

uses chunking but this is not included in the asymptotic work-depth analysis. In practice,

it is actually faster to use chunking than full parallelism if the level of chunking is chosen
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wisely because of the overhead of communication between threads (Henriksen, 2017,

p. 18). Additionally, Futhark also uses chunking so it would be an unfair comparison if

chunking were only taken into consideration for this strategy.

Assume that the axiom is a symbols long. At the first iteration, the first pass finds

a production for each symbol and gets the length of the successor. This is done with a

map that is O(a) work and O(1) depth. The second pass scans over pass 1 to get offsets,

which takes O(a) work and O(log(a)) depth. The third pass rewrites the symbols to suc-

cessors in parallel using the offsets, which takes O(al) work and O(l) depth as the worst

case is that it only applies the longest successor of length l. The final work-depth of an

iteration is thus O(al) work and O(log(a) + l) depth but we would like the work-depth of

all iterations in total. We know that the generated symbols for the last iteration is at most

a · ln when n is iteration number and a is the axiom length (cf. section 2.1.4). Thus the

total work-depth is O(a · ln) work and O(log(a · ln−1) + nl) = O(log(a) + log(ln−1) + nl) =
O(log(a) + (n − 1) log(l) + nl) = O(log(a) + nl) depth. Be aware that log(a) will often be

very low compared to nl. A sequential counterpart to this algorithm would also have

O(a · ln) work because it has to look at all elements of the string. Therefore it is work

efficient.

3.2.2 Strategy 1

3.2.2.1 Representations

The representation is very similar to the one discussed section 2.2. We have not worked

with parametric L-systems and we have therefore simplified it by removing the parameter

number from the header and the table for parameter lookup. The production rules are

stored in a two-dimensional array. As mentioned Futhark does not have a char type so

the symbol representation has to be a number. To optimise space usage we have chosen

not to index with the ASCII values but instead we assign a unique ID to each character

used in the L-system. Conveniently, we can also use the ID to index into the production

array as each symbol can only have one production. This also means that the array for

each production only contains the successor as the predecessor is given implicitly as the

index. If a symbol is a constant, its production will be to itself, so a → a if a is a constant.

A side effect is that the same character can have different IDs in different L-systems. This

method comes with the trade-off that when the derivation is finished, the IDs need to

be converted back to the ASCII values so the user can know which number represents

which symbol. This is done by simply having an array with the ASCII values indexed by

the IDs. It takes space linear to the number of characters in the L-system. The conversion
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is then simply a map over the derivation result.

Futhark does not support irregular arrays which means all the representations of pro-

ductions need to have the same length. Therefore, dummy values have been added as

needed at the end of productions so they are all as long as the longest production in the

set. We have chosen −1 as dummy value because our symbol IDs cannot be negative

values so the dummy value can easily recognised.

An example could be an L-system with the productions A → AB and B → A. The

ID for A could be 0 and the ID for B would then have to be 1. The representation for the

productions would be [[0, 1], [0, −1]] and the array for ASCII conversion would be [65, 66].
The only other representation possible is [[1, −1], [1, 0]] and [66, 65] where A have ID 1
and B have ID 0.

3.2.2.2 Algorithm

1 let str = loop cur_str = axiom for i < n do
2 let 2d = map (\x -> rules[x]) cur_str
3 let flat = flatten 2d
4 in filter (!= -1) flat

Notice that Futhark has sequential loops where the header contains a mutable variable

initialisation. The variable is set to the loop result after each iteration and in this case it

contains the current string. i starts from 0 and increments by 1 each iteration until it

ends at i = n.

The algorithm has three passes:

1. Retrieve successors: It maps over the current string and makes a 2D array with the

successors from the applied rules.

2. Flatten array: It flattens the array to a 1D array

3. Filter: It filters out the dummy values.

This is done iteratively to n iterations. You can see an example in Figure 3.1.

3.2.2.3 Work-Depth Asymptotic Analysis

We start by analysing the loop body and assume it is the first iteration. We say a is the

number of characters in the axiom. The map input function uses only array indexing
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Figure 3.1: The three passes of strategy 1 performed in an iteration on the binary tree fractal.
Its grammar can be seen in section 3.1.2.

which is O(1), so the map takes O(a) work and O(1) depth. flatten takes O(1) work and

depth so the total work-depth does not change. The result of flatten is an array with

the length of all the applied productions concatenated. As all production arrays have

been padded to be as long as the longest successor, the length of flat is la when l is

the length of the longest successor. Therefore, filter is given an array of length la and

takes O(la) work and O(log(la)) depth so the total work-depth is updated. It results in

an array with a length of at most la symbols when no elements are removed. The work

and depth of each iteration of the loop will grow with the iteration number because

the string grows. The worst case is that filter removes no elements in any iteration in

which case the loop takes O(a · ln) work and O(log(a · ln)) = O(log(a) + n log(l)) depth.

It is work efficient because the same sequential algorithm would also have to look at all

symbols generated in the last iteration.

3.2.2.4 Advantages and Disadvantages

A disadvantage of this approach is the waste of space. If the L-system grammar has

a lot of variance in production length, the inner arrays of map could contain a lot of

dummy values together, which has no information. This is removed by filter but if

the number of symbols grows exponentially, then the number of applied productions
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grows exponentially and so could the wasted space (depending on the L-system). The

storage of the productions themselves also contain dummy values of course but this takes

a constant amount of space for a specific L-system. However for systems with almost

equally long productions, the space usage will be close to optimal.

As mentioned in section 2.3.3.1, filter is a relatively slow function compared to the

other parallel functions in Futhark, even though the asymptotic depth is O(log n). We

will see how much this affects runtime in section 4.

The biggest advantage is the simplicity of the approach where there is not needed a lot

of operations on the data to complete an iteration. Thus we suspect that it will perform

well for small strings where the overhead of doing the preparation work for efficient

parallelization from the other approaches are larger than the gain. Also it could perform

well for L-systems where all productions have (almost) the same length, as the depth of

the filter operation depends on the length of the string including dummy values.

3.2.3 Strategy 2

3.2.3.1 Representations

The representation for this algorithm is exactly the same as the one for strategy 1, except

each production has a header at index 0 containing the length of the production. E.g.

the L-system with the productions A → AB and B → A would have the representation

[[2, 0, 1], [1, 0, −1]] and [65, 66]. In the representation in section 3.2.2.1, the dummy value

needs to match the filter condition in the algorithm but in this algorithm the dummy

value is never used so the exact value does not matter.

3.2.3.2 Algorithm

1 let str = loop cur_str = axiom for i < n do
2 let m = length cur_str
3 let lens = map (\x -> rules[x, 0]) cur_str
4 let acc = scan (+) 0 lens
5 let len = last acc
6 let exacc = take m ([0] ++ acc)
7

8 let flag = scatter ( replicate len false ) exacc ( replicate m true)
9 let tmp = scatter ( replicate len 0) exacc cur_str

10 let ind1d = segmented_scan (+) 0 flag tmp
11

12 let ones = replicate len 1
13 let ind2d = segmented_scan (+) 0 flag ones

30 Chapter 3 Implementation



14 in map (\(x, y) -> rules[x, y]) (zip ind1d ind2d)

The algorithm has the following passes in an iteration:

1. Get production lengths: It maps over the string and uses the symbols as indexes into

the production array. It retrieves the length of each applied production from their

header and puts it in an array, lens.

2. Get offsets for productions: It scans over the production lengths to compute the

offsets. However, Futhark’s scan is inclusive and here an exclusive scan is needed.

This is due to the fact that we want the first offset to be the starting accumulator,

0, and the last offset is currently the length of the string after the iteration so that

one should be removed. The offset array is made in exacc (exclusive scan, hence

the variable name).

3. Make flag array: It scatters over a boolean array which contains false except in

the production offsets where it contains true.

4. Scatter production indexes using offsets: It uses the current string to retrieve applied

production indexes and put each index in the according production offset. The rest

of the values are 0.

5. Get production indexes: It uses segmented scan which is a helper function that scans

within the segments marked by a flag array (Elsman et al., n.d.(b), sec. 7.1). It seg-

ment scans over pass 4 to put the indexes for the symbols into their corresponding

segments. This means that the segment reserved for an applied production will

contain the symbol index for that production.

6. Get indexes into the productions: It segment scans over an array with ones using the

flag array. This results in an array where an element contains the index into the

applied production.

7. Make the string: It maps over the two index arrays and uses them to find and insert

the symbols in the final string.

Again a loop is used for iterating over the string, as this can only be done sequentially.

You can see an example in Figure 3.2.
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Figure 3.2: The passes of strategy 2 performed in an iteration on the binary tree fractal.
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3.2.3.3 Work-Depth Asymptotic Analysis

Again, we start with the loop body and assume it is the first iteration. length takes

constant work-depth. When a is the number of symbols in the axiom, the map on line

3 takes O(a) work and O(1) depth as the input function is O(1). The scan on line 4

takes O(a) work and O(log(a)) depth. Lines 5-7 does not exceed this work-depth so

we jump to line 8. Here the replicate on len takes O(k) work and O(1) depth when

len = k and the replicate on m takes O(a) work and O(1) depth. len and k is the

length of the resulting string after the iteration. It is most likely that k > m because

strings normally become longer with each iteration but it is not ensured. Thus the

total work is now O(a + k). The scatters on line 8 and 9 takes O(a) work and O(1)
depth so this does not change anything. The work-depth of segmented_scan is the

same as scan so it takes O(k) work and O(log(k)) depth because len = k. Thus the

total depth is updated to O(log(a) + log(k)) = O(log(ak)). The replicate on line 12

does not exceed it and the next segmented_scan has the same work-depth. The final

map has O(k) work and O(1) depth and zip is normally cost-free in Futhark. Thus that

work-depth of the first iteration is O(a + k) work and O(log(ak)) depth. The worst case

is that it only applies the production with the longest successor with length l in which

case k = la. Notice that this bound is very conservative as often there are constants

or small successors so k can be much smaller than al. Then work is O(a + la) = O(la)
and depth is O(log(a2l)) = O(2 · log(al)) = O(log(al)) of an iteration. This is the same

as an iteration for strategy 1, so the work-depth for n iterations is O(a · ln) work and

O(log(a) + n log(l)) depth. A sequential algorithm doing the same passes would also

have work as the number of generated symbols, so it is work efficient.

3.2.3.4 Advantages and Disadvantages

Compared to strategy 1, this strategy is much more space efficiently as it does not

include the dummy values when applying productions. It still has dummy values in the

production array which is a disadvantage but this takes only a constant amount of space

for a specific L-system.

This algorithm passes over the data many times which will affect the runtime, even

though it does not change the asymptotic work-depth. The benchmark tests will show

how much this slows down the derivation.

3.2.4 Strategy 3
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3.2.4.1 Representations

This representation stores all the productions in a one dimensional array. Every pro-

duction has a header with the successor length so it is possible to find start and end

points for productions in the array. The ID for a symbol is the index of the header in the

production array. Since productions’ indexes will not be in a row, there will be dummy

values in the conversion array to ASCII as some indexes are unused.

For example, the L-system with the productions A → AB and B → A would have the

representation [2, 0, 3, 1, 0] and [65, −1, −1, 66].

3.2.4.2 Algorithm

1 let str = loop cur_str = axiom for i < n do
2 let m = length cur_str
3 let lens = map (\x -> rules[x]) cur_str
4 let acc = scan (+) 0 lens
5 let len = last acc
6 let exacc = take m ([0] ++ acc)
7

8 let flag = scatter ( replicate len false ) exacc ( replicate m true)
9

10 let tmp = scatter ( replicate len 1) exacc (map (+1) cur_str )
11 let inds = segmented_scan (+) 0 flag tmp
12 in map (\x -> rules[x]) inds

This strategy is much like strategy 2, except the last few passes become simpler with the

new representation. The first three passes are the same as strategy 2, so you can look

there for a more elaborate description of those passes. The algorithm has the following

passes:

1. Get production lengths: Like strategy 2, it maps over the current string and uses the

symbol IDs to index into the production array and fetch the headers of the applied

productions.

2. Get offsets for productions: Like strategy 2, it scans over the production lengths to

get offsets.

3. Make flag array: Like strategy 2, it makes the flag array with true in the production

offsets, false otherwise.
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Figure 3.3: The passes of strategy 3 performed in an iteration on the binary tree fractal.

4. Scatter productions indexes using offsets: It adds 1 to every ID of the current string

because the successor of each production starts after the header which is one long.

Then it scatters these values into an array with only 1’s using the production offsets.

5. Find indexes into production array: It uses segmented_scan with the flag array and

pass 4 to make it increment the values in segments for the productions. This means

that the result of pass 5 is the list of indexes into the production array, to make the

next string.

6. Make the string: It maps over the indexes from pass 5 to fetch the successor IDs

from the production array.

An example is shown in Figure 3.3.
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3.2.4.3 Work-Depth Asymptotic Analysis

Until and including line 8, the work-depth analysis is the same as for strategy 2 so we

start from line 10 (9 is empty) and say we have O(a + k) work and O(log(ak)) depth.

The replicate and map on line 10 both takes O(a) work and O(1) depth. The scatter
does not change the analysis either with its O(k) work and O(1) depth. segmented_scan
has O(k) work and O(log(k)) depth and the last map takes O(k) work and O(1) depth.

Thus the total work-depth for n iterations is exactly the same as the two other strategies:

O(a · ln) work and O(log(a) + n log(l)) depth. With the same argument as strategy 2, the

algorithm is work efficient.

3.2.4.4 Advantages and Disadvantages

This strategy is very similar to strategy 2 but because of the one-dimensional represen-

tation, the indexes to the production array can be made with fewer passes. Thus we

predict that this strategy will perform better out of the two.

This strategy wastes some space in the ASCII conversion array while none in the produc-

tion array as strategy 2. This strategy will waste as much elements as the total length of

all productions which is at least one element per production except the last one. Thus

strategy 3 will waste most space if the productions are long, while strategy 2 wastes the

most when one production is much longer than the others.

3.2.5 Strategy 4

3.2.5.1 Representations

The representation is the same as for strategy 2. However, we have chosen to use ASCII

values for this strategy instead of unique IDs but both ways are possible.

3.2.5.2 Algorithm

1 let str = loop cur_str = axiom for i < n do
2 let k = length rules [0] - 1
3 let m: i32 = length cur_str
4 let lens: [m]i32 = map (\x -> rules[x, 0]) ( cur_str :> [m]i32)
5 let acc: [m]i32 = scan (+) 0 lens
6 let len: i32 = last acc
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7 let to_write l =
8 let (i, j) = (l / k, l % k)
9 let symbol = cur_str [i]

10 let dest_i = if i == 0 then j else acc[i -1]+j
11 let to = rules[symbol ,j+1]
12 in if to == -1 then (-1, 0) else (dest_i , to)
13 let (is , vs) = unzip ( tabulate (m*k) to_write )
14 let new_str = scatter ( replicate len 0) is vs
15 in new_str
16 in str

The algorithm has the following passes:

1. Get production lengths: It maps over the current string and gets the lengths of the

applied productions from their headers.

2. Get production offsets: It scans over pass 1 to get the production offsets.

3. Get symbols and their indexes into the final string: The longest possible string after

an iteration would be constructed by only applying the longest production to all

symbols. Therefore, the upperbound on the length is mk when m is the length of

the current string and k is the length of the longest successor. We take advantage

of the upperbound by making two arrays of length mk: The symbols for the final

string in vs and their indexes in is. We use a function, to_write, to get the two

arrays with the following steps:

a) Do integer division and modulo on the index in the array with the longest

successor. Integer division is used to index in the current string while the

modulo and the offset in acc together can be used to index into the result

string with dummy values, vs.

b) Get the ASCII value of the current symbol from the string.

c) Compute the destination index for the symbol using offsets from acc and the

previous step. The if-statement is only needed because Futhark’s scan is not

exclusive, so the offsets are displaced by 1 in acc and it does not contain the

first offset, 0.
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Figure 3.4: The passes of strategy 4 performed in an iteration on the binary tree fractal.

d) Use the current symbol as index into the production array and the modulo

result to get the specific symbol from the production. This might be a dummy

value, as the array for a production is always k long.

e) If the symbol from step 4 was a dummy value, −1, it puts a dummy value in

each of the arrays. If it was an ASCII value, it puts the destination index in

the index array and the ASCII value in the symbol array.

4. Make the final array: It scatters the symbols from vs into the final array using the

indexes from is. All dummy values are ignored by scatter as it cannot use −1 as

an index.

An example is shown in Figure 3.4.

3.2.5.3 Work-Depth Asymptotic Analysis

We start by analysing the loop body with the assumption that it is the first iteration and

the axiom has length a. length takes constant time so the first relevant operation is a

map. It takes O(a) work and O(1) depth. The scan takes O(a) and O(log(a)) depth so we

update the total depth. last takes constant time so it is irrelevant. The input function

to tabulate only uses constant time operations, so that means tabulate requires O(1)
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depth and O(al) work when l is the length of the longest successor. Now, the total

work-depth is O(al) work and O(log(a)). unzip is normally cost-free so it does not affect

the analysis. In the worst case, scatter is O(al) work and O(1) depth so it does not

affect it either. Therefore, one iteration takes O(kl) work and O(log(k)) when k is the

length of the input string. In the worst case, only the longest successor is applied in all

iterations so there are a · ln after n iterations. Thus, the work-depth of n iterations of the

loop is O(a · ln) work and O(log(a · ln−1)) = O(log(a) + n log(l)). Like the other strategies,

it is work efficient.

3.2.5.4 Advantages and Disadvantages

Generally we expect this strategy to perform well. It only uses one of the expensive

scan operations and this is over the input string and not the output string like strategy

2 and 3. Also we do not need to make the scan exclusive because that is handled by

the if-statement in line 10. This means that we can leave out the take from the other

strategies.

Strategy 4 has fewer passes over the data as it can get indexes and symbols for the final

array in just one pass which is beneficial for the runtime. However, it will probably

perform badly if the L-system has both really long and short productions since it has

many dummy values and would run out of threads sooner than strategy 2 and 3. It could

also run out of memory sooner.

3.3 Visual Interpretation in Futhark

There are two steps to visualisation: Produce the geometry and convert it to a picture

format. Geometry production is done by creating an array with line segments where

each line segment consists of a starting point and an end point. The conversion to a

viewable picture is not especially interesting for this project so we have used a Futhark

drawing library to make png files (library description: Elsman et al., n.d.(b), sec. 9).

We will not spend too much time describing work-depth asymptotic analyses for the

interpretation as they are conducted much in the same way as for derivation. Also we

have only one strategy so there are no strategies to compare the work-depth with. It is

hard to compare with the strategy from the previous work as they have not included

their implementation strategy in detail especially for the work-queue.

It should be noted that our implementation of visualisation is rotated differently than

other implementations. Most of the L-systems should have a specific starting rotation
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but we have not implemented that because the L-system still looks the same. It should

be relatively straight forward to implement: Just extend the language to allow setting

a starting rotation and then append a symbol in front of the axiom which rotates the

starting rotation to be the one specified in the program. Another problem with the

visualization is the fact that the draw library have the y-axis pointing down instead of up.

This results in the drawings being upside down. We did not solve these issues because of

time constraints and they are not as vital for the usage of the L-systems.

3.3.1 Non-Bracketed L-Systems

1 let main [n] (str: [n]i32): [][4] i32 =
2 let ints = ...
3 let mapres = map (\ x -> ints[x]) (str :> [n]i32)
4 let scanres = scan scanfun ([[1 ,0 ,0] ,[0 ,1 ,0] ,[0 ,0 ,1]] ,0) mapres
5 let (lastpos , finallen ) = last scanres
6 let exscanres = take n ([([[1 ,0 ,0] ,[0 ,1 ,0] ,[0 ,0 ,1]] ,0)] ++ scanres )
7 let indices = map2 (\ (_, o) (_, i) -> if o == 1 then i else -1)

mapres exscanres
8 let (m1 , _) = unzip exscanres
9 let (m2 , _) = unzip scanres

10 let points = map (\ i -> [i32.f32 (f32.round m1[i ,2 ,0]) , i32.f32 (f32.
round m1[i ,2 ,1]) , i32.f32 (f32.round m2[i ,2 ,0]) , i32.f32 (f32.round
m2[i ,2 ,1]) ]) (iota n)

11 in scatter ( replicate finallen [0 ,0 ,0 ,0]) indices points

Listing 3.1: Interpretation for non-bracketed L-systems (calculates line segments).

The ints array holds the interpretations for the specific L-system. Every symbol inter-

pretation is represented as a tuple with an integer and a transformation matrix. The

integer is 1 if it produces geometry and 0 if it does not. The algorithm for non-bracketed

L-systems has the following passes:

1. Get matrices and number of objects: It maps over the string to get the symbols’

transformation matrices from the interpretation array ints.

2. Scan with matrix multiplication and get object offsets: scanfun does matrix multi-

plication and integer addition on a tuple. After the scan, scanres holds the turtle

coordinate system after each symbol and how much geometry should be made.

The inclusive scan is made exclusive by removing the last element and appending

the neutral element in the front. The exclusive sum-scan of the integers can be

used as offsets into the resulting array with geometry.
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3. Get offsets for line segments into the result array: It maps over the offsets from pass 2

and the objects array from pass 1. If the symbol produces geometry then it uses the

offset from the scan else the symbol should be removed by using a negative index.

4. Produce line segments between every consecutive symbols: It uses a map to compute

start and end points for the lines to be drawn.

5. Discard lines of symbols not producing geometry: It uses scatter with the indices

calculated earlier to remove the line segments which should not be drawn.

The algorithm takes O(n) work and O(log(n)) depth, as the most asymptotically expen-

sive function used is a scan over an array with the length of the string (line 4). The input

function to scan takes O(1) work-depth as matrix multiplication with a matrix of known

size is asymptotically constant.

3.3.2 Bracketed L-Systems

The interpretation of bracketed L-systems is longer and more complicated so we have

chosen to divide the explanation in two. The code snippets together compose the whole

main function of the program. It is inspired by section 2.2.3.2 but the work queue is

much more complicated to do in Futhark than in CUDA.

3.3.2.1 Parallel Hierarchy Extraction

1 let main [n] (str: [n]i32): [][4] i32 =
2 let pass1 = map (\x -> (if x == 91 then 1 else if x == 93 then -1 else

0, objects [x])) str
3 let pass2com = scan (\ (a, b) (c, d) -> (a + c, b + d)) (0 ,0) pass1
4 let (pass2in , objsin ) = unzip pass2com
5 let pass2comex = take n ([(0 ,0)] ++ pass2com )
6 let (pass2 , offsets ) = unzip pass2comex
7 let dmax = reduce (\ x y -> i32.max x y) i32. lowest pass2
8 let pass3 = map (\i -> map3 (\ c ed id -> if (c == 91 && id == i + 1)

|| (c == 93 && ed == i + 1) then 1 else 0) str pass2 pass2in ) (iota
dmax)

9 let pass4 = unflatten dmax n (take (n * dmax) ([0] ++ scan (+) 0 (
flatten pass3)))

10 let pass5help = map (\ i -> if str[i] == 91 then pass4[pass2[i],i]
else if str[i] == 93 then pass4[ pass2in [i],i] else -1) (iota n)

11 let pass5 = scatter ( replicate n (-1)) pass5help (iota n)
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12 let pushpop = scatter ( replicate n 0) pass5 (map (\ i -> if i % 2 == 0
&& i + 1 < n then pass5[i + 1] else 0) (iota n))

13 (...)

Listing 3.2: Interpretation for bracketed L-systems: hierarchy extraction

Hierarchy extraction has six passes:

1. Find pushes and pops: It maps over the string and gives an array of tuples. The first

tuple value is 1 when there is a push and −1 when there is a pop (91 and 93 are

ASCII values for ’[’ and ’]’ respectively). Otherwise it is 0. The second value is 1 if

it generates geometry (draw command) and 0 if it does not (move or turn).

2. Get depths: It does an exclusive scan over pass 1 to get the depth of each index and

get the offsets for the geometry. It also computes the maximal depth with a reduce
over the offsets.

3. Make depth arrays: For each push and pop with position p and depth d do arr[d, p] =
1. All other elements should be initialised to 0.

4. Get offsets for 1D array: It scans over pass 3 to get the offsets for a 1D bucket array.

5. Make 1D bucket array: It maps over the input string and uses the offsets from pass 4

and the depths found in pass 2 to get the position for each push and pop in the

1D bucket array. Then it scatters the push and pop positions into the 1D bucket

array.

6. Integrate the bucket array into the string: The bucket array is ’integrated’ into the

string by making a new array where at the position of each push, we put the

position of its corresponding pop. When interpreting the string in the work-queue,

it can use this array to lookup the pop position when it encounters a push.

The most asymptotically expensive function in this algorithm is the scan on line 3 which

has O(n) work and O(log(n)) depth when the string is n long.

3.3.2.2 Work Queue

1 (...)
2 let (_, pointsin ) = loop (tmp , matrices ) = ([(0 , ints[str [0]])],

replicate n [[1 ,0 ,0] ,[0 ,1 ,0] ,[0 ,0 ,1]]) while length tmp != 0 do
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3 let (work , init) = unzip tmp
4 let m = length work
5 let (lens , ends) = unzip (map (\ x -> let en = loop i = x while i <

n && str[i] != 91 && str[i] != 93 do i + 1 in (en - x + if en < n
then 1 else 0, en) ) (work :> [m]i32))

6 let scanres = scan (+) 0 lens
7 let scanresex = take m ([0] ++ scanres )
8 let len = last scanres
9 let flag = scatter ( replicate len (0, false )) scanresex (zip (work :

> [m]i32) ( replicate m true))
10 let iotas = modified_segmented_scan (+) 0 flag ( replicate len 1)
11 let flag = scatter ( replicate len ([[1 ,0 ,0] ,[0 ,1 ,0] ,[0 ,0 ,1]] , false ))

scanresex (zip (init :> [m ][3][3] f32) ( replicate m true))
12 let ps = modified_segmented_scan scanfun [[1 ,0 ,0] ,[0 ,1 ,0] ,[0 ,0 ,1]]

flag (map (\ i -> ints[str[i]]) iotas)
13 let newmatrices = scatter matrices iotas ps
14 let newwork_items = map (\ i -> if i >= n || str[i] == 93 then [(-1,

[[1 ,0 ,0] ,[0 ,1 ,0] ,[0 ,0 ,1]]) , ( -1 ,[[1 ,0 ,0] ,[0 ,1 ,0] ,[0 ,0 ,1]])] else [(i
+1, matmul ints[str[i+1]] newmatrices [i -1]) , let ind = pushpop [i] + 1

in (ind , matmul ints[str[ind ]] newmatrices [i -1]) ]) ends
15 let newwork = filter (\ (x,_) -> x != -1) ( flatten newwork_items )
16 in (newwork , newmatrices )
17

18 let pointsex = take n ([[[1 ,0 ,0] ,[0 ,1 ,0] ,[0 ,0 ,1]]] ++ pointsin )
19 let points = map2 (\ m1 m2 -> [i32.f32 (f32.round m1 [2 ,0]) , i32.f32 (

f32.round m1 [2 ,1]) , i32.f32 (f32.round m2 [2 ,0]) , i32.f32 (f32.round
m2 [2 ,1]) ]) pointsex pointsin

20 let indices = map2 (\ (_, o) i -> if o == 1 then i else -1) pass1
offsets

21 in scatter ( replicate (last objsin ) [0 ,0 ,0 ,0]) indices points

Listing 3.3: Interpretation for bracketed L-systems: work queue

The approach for the work queue presented by Lipp et al., 2009 uses a lot of sequential

work which is not possible in Futhark. The work queue is a sequential loop which

continues until there is no more work (symbols to interpret). A work item consists of a

tuple with the index where it should start interpreting, and a starting turtle state for that

index. It continues interpreting symbols sequentially from that work item’s index until it

finds a push and it branches out.

7. Get the length of each work: For each work item find how many symbols should be

interpreted sequentially. This is done by a map over the work items and for each

work item, it sequentially finds the number of symbols until the next push/pop (or

end of the string).
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8. Get the total number of symbols to interpret and offsets: It scans over the lengths of

the work items to find the total number of symbols to interpret and the offsets.

9. Get an array with the indexes of all the symbols which are to be interpreted: It uses a

modified segmented scan which when encountering a true flag does not place the

element from the input array but instead places the element which are associated

with the flag (the flag is a tuple). The input flag array holds tuples which are

the work item index and true in the work offsets and (0,false) otherwise. This

marks the segments of the modified segmented scan. It results in an array with the

indexes of the symbols to be interpreted. For example the work items [1, 10] with

work lengths [2, 3] would generate [1, 2, 10, 11, 12].

10. Interpret the symbols: It maps over the previous array and gets the matrix for each

symbol. Then it scans over the matrix array with matrix multiplication. This is

done with the modified segmented scan where the flag array is the same as before,

except it has the starting turtle state matrices from the work items instead of the

indexes. The matrices are scattered into the matrix array.

11. Generate the new work items: It maps over the work items and generates two new

work items from each element. Some cannot generate new work items in which

case it should generate dummy work items. These dummy work items are then

filtered away.

12. Compute line segments: This is done just like in the non-bracketed version of

interpretation.

Figure 3.5 shows an example of the visualisation by this algorithm where the line seg-

ments are converted into a picture. Due to the size and volume of the algorithm, it is not

feasible and brings little value to dry run and show all the details of the visualisation

passes here. The picture is the result of running our implementation on the language

example showed in section 3.1.2 after three derivation iterations as in the examples

shown for the derivation strategies.

The runtime of the work queue depends on how many work items there are (the number

of brackets). The worst case occurs when there are no brackets as then the loop in the

map on line 5 will go through all elements in the string sequentially. Thus the work-depth

is O(n), when the string is n long. Be aware that the worst case is rare as a bracketed

L-system only rarely produces strings with no brackets. Our compiler checks if there are

any brackets in the L-system, and only uses the bracketed approach for visualisation if

the system is bracketed.
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Figure 3.5: Binary tree for 3 iterations computed by our parallel algorithm for bracketed inter-
pretation.

In the article, one thread starts by interpreting sequentially and new work items are

distributed to new threads as they appear. The work queue is implemented with a loop

since it is not possible to just write new work items into an array and have new threads

handle them as they discovered. Futhark also have restrictions on in-place array updates

which makes the simple sequential interpretation that the article describes more or less

impossible to implement. We discuss other ways the work queue might be implemented

in section 5.

3.4 Testing Correctness

We have made a broad sample of tests with different L-systems which are mostly based

on grammars from The Algorithmic Beauty of Plants (Prusinkiewicz and Lindenmayer,

2004). In addition to those, we have a couple of examples from the Wikipedia page

about L-systems (Wikipedia, n.d.) and we have made some grammars ourselves which

have names beginning with "test".

We have made a test script that handles all tests for both the interpreter and compiler

(script is based on a testing script from course IPS 2019 at UCPH). See appendix 8.1 for

how to run the script. The interpreter and the compiler is tested with the same tests

which are to be found in the folder tests of the project. All of our tests succeed for both

derivation and visualisation.

We have implemented an interpreter with the main purpose of making test cases for

the compiled programs with respect to interpretation. The interpreter’s derivation was

tested by a test script that compared its results with our dry runned test cases.

The visualisation was tested by comparing sets of list segments from the interpreter

and the compiler. A list segment consists of a starting point and an end point for a

line. Comparing segments is much more efficient than comparing a full image file which

contains a lot of extra data for satisfying the picture syntax. Furthermore when different
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picture formats are used the notation will unavoidably be different and the tests would

fail. Also we have not implemented the drawing mechanisms ourselves so it would test

more implementations apart from our own.

Running visualisation tests by hand proved to be rather impractical. We compared the

interpreter’s pictures with pictures of the fractal with the same number of iterations

(Prusinkiewicz and Lindenmayer, 2004), to catch any errors perceivable by the eye.

It would have been much more precise to compare the set of line segments with the

expected set but we prioritised other parts of the testing. The interpreter was used to

compute results for the tests of the compiler.

At first we had some difficulties comparing the results of the interpreter with the parallel

program as the line segments had an opaque type which meant that it could not be

returned (cf. section 2.3.1). Therefore, we changed the type to a 2D array for the testing

version. In the version that actually draws the picture, it still uses an array of tuples as

the drawing library needs that type.

We have chosen to test only positive cases of the L-system language due to time con-

straints. It is our assessment that it is more important to test functionality such as

derivation, than testing that the DSL fails when the user writes in a wrong syntax.

However, it would be important if the language should be used by many people and

especially people without much knowledge in computer science. In that case they would

probably not understand the errors so it would be more important but that is not the

case with this project. Also if there were any serious mistakes in the parser or lexer of

the DSL, they would probably have surfaced at the positive test cases.
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4Evaluation

We ran our tests on the GPU GeForce RTX 2080 Ti on a server from the University of

Copenhagen. The GPU has 4352 CUDA-cores. We have used futhark bench with CUDA

backend for benchmarking our programs with 10 runs per input for a program (Elsman

et al., n.d.(b), sec. futhark-bench). Raw data from the benchmarks are included in the

code repository in the folder benchmarks.

4.1 Derivation

4.1.1 General Tendencies

Figure 4.1 shows selected benchmark plots for derivation. All of our benchmark plots

can be seen in appendix 8.2, including references to the corresponding grammars, so the

results can be reproduced. The performance is better the higher the graph as we would

like the number of symbols generated per time to be the highest possible. The number of

symbols generated per time is the throughput.

We can see irregularities in some of the graphs. This could be due to variance in

the GPU performance or someone else using the server at the same time. We could

probably receive more predictable data by benchmarking with more than 10 runs per

program but we did not do this due to time constraints.

futhark bench gives a relative standard deviation (RSD) for each benchmark. We can

use this to find out if an irregularity has a high probability of being caused by an outlier.

An example is in one of the Koch curves where iteration 9 with strategy 1 seems to be

rather low (Figure 4.1b). However, when looking at the RSD graph in Figure 4.2b, the

RSD is relatively high for iteration 9. Thus, it is probable that external influences created

a single outlier that is dragging the curve downwards and causing an irregularity in the

graph.

Some of the spikes on the RSD graphs do not create irregularities in the benchmark

curves. There can be two main reasons for this. Firstly, RSD spikes will appear extremely

small on the derivation graph if they occur at small symbol numbers. This is because
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(a) Binary tree (b) Koch curve (b)

(c) Dragon curve (d) Snowflake curve

(e) Test 2 (f) Test 4

Figure 4.1: Benchmark curves for derivation of a selection of L-systems. The line cX uses strategy
number X. The rest of the plots for the L-systems can be seen in appendix 8.2.
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(a) Dragon curve (b) Koch curve (b)

Figure 4.2: Relative standard deviation as a function of iterations. The rest of the plots for the
L-systems can be seen in appendix 8.3.

(a) Binary tree (b) Dragon curve

Figure 4.3: Runtime as a function of iterations. The line cX uses strategy number X. The rest of
the plots for the curves can be seen in appendix 8.4.

the number of symbols generated per microsecond is close to 0 so even very high RSD

percentages will be invisible on the graphs. Secondly, it could be that multiple outliers

is cancelling each other out so the graph does not show an irregularity. The overall

tendencies are still visible through the irregularities.

On an ideal machine with no overheads or processor limitations, we would expect the

generated symbols per microseconds (throughput) to be a linear function of the number

of iterations for a specific L-system. This is due to the fact that the depth of the algorithms

is O(log(a) + n log(l)) where log(a) and log(l) are constants for a specific L-system so

only the iteration number n matters. However, the graphs grow rather slowly in the

beginning and then increase roughly linearly. Some stagnate their growth a bit at high

iterations which we will explain in a bit. The first part where the throughput is almost

constant and very low, is probably caused by the overheads which affect the runtime
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more in the small iterations. On a real machine, we would not expect the graphs to be

perfectly linear, because the GPU can run out of threads at which point the throughput

would stagnate in its growth. Brent’s theorem says that the runtime is bounded as:

W (n)
P

≤ T ≤ W (n)
P

+ D(n)

O(a · ln)
4352 ≤ Runtime ≤ O(a · ln)

4352 + O(log(a)) + n log(l)) = O(a · ln)

when we have 4352 GPU threads. When the amount of work is less than the amount that

the GPU can handle, the runtime will be bounded by the depth since W (n)/P is below

1. However at some point, the amount of work will be too large for the threads and

because the work grows exponentially with n, the runtime will be affected considerably

by the work instead of (almost) only by the depth. When the iteration number goes to

infinity, the asymptotic runtime is bounded by the work O(a · ln) and no longer by the

depth like when the GPU had enough threads. As the work is larger than the depth, we

would expect the throughput to decrease because the symbols per time becomes smaller.

Thus the growth of the graph would decrease when the GPU cannot handle the whole

string in parallel anymore. The growth would eventually become negative and then

converge towards a constant value for the throughput as the runtime becomes closer to

the work. None of the benchmark curves for the L-systems begins to fall but we can still

see the effect described by Brent’s theorem in Figure 4.3. For the slowly growing binary

tree, it does not run out of threads so Brent’s theorem does not affect the expected linear

function. The Koch curve reaches the number of symbols where the amount of work is

too big for the GPU, so the runtime begins to grow exponentially which is what Brent’s

theorem predicts because the work is an exponential function of the iteration number.

4.1.2 Comparing the Strategies

With small iteration numbers, the performance differences between the strategies are

very small. We think it is because there are only small numbers of symbols so the

overheads count more than the actual strategies.

In most cases, strategy 4 is the fastest strategy by far. This is consistent with expectations

since it goes through the data a small number of times and uses a low number of ex-

pensive operations. However, our theory was that it would perform badly for L-systems

with very long productions. Therefore, we made test 4 with an L-system that had one

90 symbols long production and otherwise only used constants (Figure 4.1f). In test 4,

strategy 4 is slower than the other strategies and runs out of memory at 8 iterations,

which were also one of the expected disadvantages (section 3.2.5.4). Be aware that
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these kinds of L-systems are rare so strategy 4 will be best in most cases.

Strategy 1 performs even worse in test 4. It is probably because it uses the expensive

filter function with O(log(n)) depth over the string with the dummy values. It runs

out of memory after 8 iterations like strategy 4 which is expected as it uses an array

of the same length as the array with dummy values in strategy 4. However, generally

strategy 1 performs well especially at small symbol numbers as seen in the binary tree

(Figure 4.1a) and L-systems with equally long productions (Figure 4.1e). In these cases,

using the expensive filter operation has proven to be worth the cost compared to e.g.

exchanging it for scans and scatters in strategy 2 and 3.

Strategy 2 is slower than strategy 3 like suspected. Strategy 2 and 3 are very simi-

lar with the difference being that 3 uses one segmented scan less so it makes sense that

strategy 3 is faster. The graphs c2 and c5 in Figure 4.1 are both strategy 2 where c5 uses

the ASCII values instead of unique IDs. c2 was converted by making both the production

array and ASCII conversion table 128 long, so we can use ASCII to index instead of

unique IDs. c5 was consistently faster than c2 which means that the maps between ASCII

and IDs were actually affecting the runtime quite a lot. The idea behind the unique IDs

was to try to reduce the overhead of uploading the production array to the GPU but

it has proven to be faster to use the ASCII values directly. However, the performance

difference between c2 and c5 is very small.

4.2 Visual Interpretation

Benchmark curves for interpretation can be seen in Figure 4.4. We expect the same

general tendencies as for derivation but be aware that the x-axis is the number of symbols

instead of iterations. For non-bracketed systems the depth is O(log(k)) where k is the

number of symbols so the throughput as a function of symbols should be logarithmic

and Figure 4.4a shows just that. The interpretation of bracketed L-systems uses different

amounts of sequential work so it is harder to set a general tendency for the plots. If the

sizes of the work items match with a good chunking size, the depth will be logarithmic

like for the non-bracketed L-systems (see e.g. test 6). If the sizes of the work items are

too big however, it will do a lot of sequential work and the curve will quickly settle on a

somewhat constant throughput (see the graph for test 5).

As all non-bracketed systems use the same strategy and the representation of the string

is the same for all systems, we would expect them to be equally fast for a given number

of symbols. The only operation that could have different runtime for strings of the
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(a) Non-bracketed L-systems (b) Bracketed L-systems

Figure 4.4: Benchmark curves for interpretation of a selection of L-systems. Symbols interpreta-
tion per microseconds as a function of symbols in the string.

same length is the scatter to place the generated lines because the L-systems can have

different numbers of symbols that use the turtle command draw. scatter has O(1) depth

so this should only generate differences between L-systems of the same length if the

GPU does not have enough threads to scatter the geometry for one L-system and does

have enough for another L-system. In the plot, the graphs for non-bracketed systems lay

roughly on top of each other which match with the expectation.

For bracketed L-systems however, we would expect L-systems to behave differently

depending on the length of work items. Therefore, the ratio between brackets and other

symbols in the string affects the runtime. The only production in test 6 is a → [aaaa] so

it has a high number of brackets compared to other symbols. Therefore, the sequentially

handled work items are fairly short and it has a high number of symbols interpreted per

microsecond. However, it seems that the work item lengths in fractal plant is closer to

optimal since its throughput is higher. Additionally, brackets has no visual interpretations

so the array with transformation matrices is short and thus the scan over the matrices

becomes faster in test 6.

Test 5 represents another edge case which is that there is only a single bracket in the

L-system. It has only three work items: The symbols before the push, the symbols inside

the brackets and the symbols after the pop. It is expected to be very slow as almost all

symbols are in one single work item and each work item is handled sequentially. As

expected Figure 4.4b shows that test 5 has a much lower throughput than the other

bracketed L-systems.

Notice that the bracketed L-systems are much slower than the non-bracketed L-systems.

This is also expected as the bracketed visualisation strategy has a great deal more passes

and sequential work.
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(a) Koch curve derivation (b) Koch curve interpretation

Figure 4.5: Benchmarks for derivation and interpretation approaches from Parallel Generation of
L-systems (Lipp et al., 2009, p. 8) and benchmarks for our implementation with the
same Koch curve. Be aware that these graphs use generated symbols and runtime for
running only the last iteration where the other figures in this report uses all previous
iterations as well.

4.3 Comparison with Other Research

We expected that our results would be faster than the results presented in Parallel
Generation of L-Systems since they use a much slower GPU (Geforce GTX 280). This

is also the case for derivation. When we compare derivation, our fastest strategy at 7

iterations Koch curve had about 3173 symbols per microsecond, and they had about

1600 (using the grammar from Prusinkiewicz and Lindenmayer, 2004, p. 10, (d)). This

is a 0.5x speed-up from their implementation. However, it is not possible to say if their

implementation would be faster on the hardware that we use for benchmarking.

For visual interpretation, Figure 4.5 shows that our implementation is actually slower

than their CUDA implementation. E.g. with the 7 iteration Koch curve, they had about

120 symbols per microsecond where we had about 51 symbols per microsecond. This

corresponds to a 2.3x speed-up from our implementation.

These speed-ups are rather insecure however, for multiple reasons. Firstly, we only
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have access to a very limited amount of their data (only the data presented in the article).

You should also be aware that we measure the time and generated symbols for the last

iteration only by subtracting the time used for the previous iteration. This might affect

the precision.

We would also like to note that when reading the data table in Lipp et al., 2009, p. 8,

we would assume that absolute time for 1 core divided by the relative speed-up to

CUDA would result in the absolute time for the CUDA implementation. However, we

get that it takes 3.45/3.2 = 1.078 milliseconds to derive a 7 iteration Koch curve, but our

implementation only took 0.530 milliseconds on average. Furthermore, they claim that

the Koch curve has 915,049 symbols after 7 iterations (Lipp et al., 2009, p. 8), where

we have only 624,999 symbols after 7 iterations. We thought it might be that the table

summed up the generated symbols for all iterations up to the 7th but that only gives

781,233 symbols. The number of symbols for the 2D plant does not match with our

number either. When we compute their throughput for the Koch curve derivation with

their numbers, it should be 915, 049/1078 ≈ 849 symbols per microseconds but their

graph says 1600. We have checked our results against a sequential implementation

(St-Amour et al., 2007) which gives the same number of symbols as our implementation.

Mind that their numbers for interpretation are consistent with their graphs. However, it

is still a problem that they have a different number of symbols.

Maybe Lipp et al., 2009 made mistakes in the article or just measure the numbers differ-

ently than we expect. In either way this means the comparisons with their benchmarks

are dubious at best.

If we assume that their throughput values are correct, it is quite high compared to

how much slower their GPU is. We think it might be that our Futhark programs utilise

more parallelism than what is optimal for the L-systems and this can be fixed in the CUDA

approach where the programmer can adjust the parallelism more directly. For example

in their implementation, they copy the symbols of a successor into the resulting string

sequentially but we do it in parallel. The length of a successor is normally very short

(below 10) and no more than 34 for the L-system grammars we used from Prusinkiewicz

and Lindenmayer, 2004. Thus it is reasonable to think that the overhead of making it

parallel is more than the gain. Futhark does not allow parallel inline updates in arrays

except using scatter and this is a weakness in the programming model that prevents us

from testing if a less parallel strategy would be faster. Even though the approach of Lipp

et al., 2009 has the asymptotic depth O(log(a) + nl) which is worse than our strategies’

depth O(log(a) + n log(l)), log(l) normally is not much smaller than l so the overhead of

using parallelism to make it log(l) does not pay off.

It might seem strange that their sequential program runs approximately equally as fast

as our parallel implementation for derivation with the 5 iteration Koch curve. However,
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they say that they have a "highly optimized single-core CPU version"(Lipp et al., 2009,

p. 7) so if this means a hand-optimised assembler program, it could be reasonable. After

all, Futhark is a high-level programming language so it is hard to compete with that.

Although we would expect a sequential implementation to be faster for small numbers

of symbols because it does not have the overheads of parallelism but at larger numbers

of symbols the parallel implementation should be faster. This is also visible here, as by 7

iterations, our implementation is much faster and it keeps growing where the graph of

the sequential implementation seems to be relatively constant after 3 iterations.
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5
Future work

This section contains ideas and suggestions for further work and improvements beyond

the scope defined by the time limitations of the present project.

5.1 Language Extensions

In the formal notation + and − are used very often along with a specified angle for

visualisation which is the amount + and − turn right and left respectively. This angle is

also used as the starting angle. In the current language design we decided to support

only alphabetical symbols, but other characters can be easily added as our implemen-

tation already do an ASCII to ID mapping anyway. If our grammar added more special

characters, we would have to consider if the characters cause ambiguity. E.g. if we added

the symbols ",:", we would need to escape these as they are used for determining the

tokens of our language.

A restriction on the visual interpretation is that the language only allows the turtle

commands to be given integers instead of floats. Furthermore, there is no way to specify

a starting rotation for the turtle so some fractal pictures will appear rotated compared to

the examples from the standard visual representation of those fractals.

Another area of improvement could be the support of more L-system types. As it

stands, the language can only describe deterministic, context-free L-system that are ei-

ther bracketed or non-bracketed. Expanding the language will only affect the derivation

part of the implementation as only the bracketed/non-bracketed property of L-system

types affects visual interpretation. It should be relatively simple to expand the language
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itself with more types. For example, we could exchange the Rule nonterminal with the

following, to implement context-sensitive productions:

RuleList → RuleType | RuleType, RuleList

RuleType → ContextFree | ContextSens

ContextFree → char -> Str

ContextSens → char < char -> Str |
char > char -> Str |
char < char > char -> Str

It is relatively straight forward to expand the grammar of the language compared to

making the same expansions in the implementation. The header in the productions

would be expanded with two elements: One for the unique ID of the preceding context

character and one for the unique ID of the succeeding context character. If a production

does not contain a preceding or succeeding context, then the header for the missing

context will contain a dummy value, e.g. −1. There could be multiple productions

for each symbol which are applied in different contexts, so the production array could

be an array of arrays, where each of the internal arrays holds every production for

a specific predecessor. The representation inside the internal arrays could be either

2D like in strategy 1 and 2 or 1D like strategy 3. However, this representation would

potentially include a great deal of dummy values and thus waste a lot of space. Another

approach, would be to use a one-dimensional production array where the unique ID of

the predecessor is included in the header. The unique ID of a symbol would be the index

to the first production for the symbol in the production array and every production for a

predecessor should be in a row. There would be no dummy values in the 1D array but it

would still have dummy values in the ASCII conversion array.

When applying productions, it would map over the productions to find which production

is applicable and then apply it. It depends on the representation exactly how it would

map. If more than one production is applicable, we would have to resolve the collision

in some way. To do that we would check if there is a consensus for the solution of these

collisions.

Be aware that the context of a symbol is not necessarily in the previous or next index of

the string in bracketed L-systems. If the previous or next character contains a bracket,

the context is determined in the following way:

• Preceding character is...

1. ... a push ’[’: The context is the symbol just before the push.
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2. ... a pop ’]’: The context is the symbol just before the corresponding push.

• Succeeding character is...

1. ... a push ’[’: The context is the symbol just after the push and the symbol just

after the corresponding pop. There are two contexts for the predecessor.

2. ... a pop ’]’: There is no context after.

To implement this, each push and pop would have the position of their corresponding

pop or push like in parallel hierarchy extraction.

Stochastic productions would have a representation very similar to the representation

of context-sensitive productions. The only change would be to include the probability

of the production in the header. When choosing between stochastic productions, we

could do like in the previous work and create a new random array each time and use

each production index to index into the random array and get a random value for each

production. The production with the highest product of probability and random value

would be applied.

Parametric L-systems could be implemented in the same way as in the previous work.

The parameter lists would be stored in a parameter array where each list has a header

containing the length of the list. Each parametric symbol in the string would have the

starting index of its parameter list in the parameter array. Lipp et al., 2009 does not

include production conditions in their implementation but we could incorporate that

as well. As we do not want to assume anything about the length of the condition, you

would have to save the condition descriptions in an array. The header of a production

would then contain an index to the corresponding condition.

5.2 Work-Queue

The current work queue is really slow and it does a lot of work compared to the one

described in the article. One idea that could be tested, would be to increase the amount

of sequential work and try to decrease the amount of work done. We do not think it

is possible to remove the for-loop since Futhark does not allow us to put threads on

stand-by that pick up new work items as they are discovered (a thread pool). Moreover,

Futhark does not allow us to do in-place updates for other threads to see which is used
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in the previous Work. The work queue can therefore only be optimized in the body of

the for-loop. One way that might allow the symbols to be interpreted sequentially is to

use a map with a sequential loop to determine how many symbols should be interpreted

per work item. The sequential loop in the map should work on two arrays: One to keep

the results of the interpretation (either the full matrices or just the points) and another

to keep the indices of the interpreted symbols. Futhark does not allow irregular arrays

so to make sure all the arrays are long enough they would all have to be as long as the

highest number of symbols per work item. This might result in big memory waste since

there is no guarantee that the symbols per work item is anywhere close to balanced. The

result of the map would be an array of tuples (or maybe arrays) where the tuples hold

the results of the interpretation and the indices where the results should be scattered

into the final interpretation array. The same strategy could be tried for derivation when

writing the successors of the applied productions into the final array.
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6Conclusion

This project has 3 notable objectives: to explore how L-system derivations may be

parallelized, to define and implement a language for defining and compiling L-systems

and lastly to define our own strategies for parallel derivation and interpretation of

L-systems written in our language.

The first objective was to explore the theory of L-systems and how they could be paral-

lelised. We based our project on research from theoretical articles and books about the

workings of L-systems and how their properties inspire parallelism, as well as theory

about massively parallel programming. Notably, we have focused on describing the

parallel approach for L-systems used by the article Parallel Generation of L-systems(Lipp

et al., 2009).

The second was to define and implement a domain specific language for writing L-

systems. We have made a language that can describe arbitrary deterministic and context-

free L-systems, both bracketed and non-bracketed. We have made a formal grammar for

the language and described its limitations and how it could potentially be expanded and

improved. For this language, we have written an interpreter and a compiler to parallel

programs in Futhark which can both derive and visually interpret the L-systems of our

language.

The third notable aspect of the purpose was to construct our own parallel strategies for

L-systems, especially for derivation but for visual interpretation as well. We constructed

four different derivation strategies and for each of them we made a work-depth analysis

and formulated advantages and disadvantages to set expectations for their efficiency.

We implemented the algorithms in Futhark and benchmarked them to measure their

performance on different L-systems. The benchmarks were used to compare each of

the strategies with both our expectations and the performances of the other strategies.

Our data matched the expected behavior of each strategy which were based on the

included theory of parallelism and our analyses of the algorithms. We found that strategy

4 performed the best in a large majority of the tested L-systems.

For visual interpretation, we made two algorithms: One for non-bracketed L-systems

and one for bracketed. Like for derivation, all of our benchmarks on the interpretation
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showed the expected tendencies. The algorithms were closely inspired by the approaches

described in the previous work but Futhark’s limitations proved to set restrictions that

made it difficult to translate parts of the bracketed approach to efficient parallel Futhark

code. A more low-level programming language with less restrictions might be more suit-

able to implement an irregular problem like visual interpretation of bracketed L-systems.

We also compared our strategies for derivation and interpretation with the benchmarks

from the article Parallel Generation of L-systems. We found that our derivation achieved

better performance, but that our interpretations were slower. We did, however, note that

for various reasons, the results are not fully comparable.

Our research discusses and evaluates different kinds of approaches for derivation of

L-systems in Futhark. While the specific data for the benchmarks are highly dependent

on the used GPU, the comparisons of the approaches can still be used as a guideline to

determine the focus for future research in efficient L-system derivation.
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8Appendixes

8.1 User Guide

We have made an interpreter and three compilers to Futhark with different strategies

(strategies covered in section 3.2). Compile the code by the command:

1 $ make

You can run the test programs with the interpreter by the command:

1 $ ./ runtests .sh

To test the derivation with a specific strategy use:

1 $ ./ runtests .sh -cx

Where x can 1, 2, 3, 4 and 5. The numbers correspond to the strategy with the same

number, except 5 which is included for testing reasons. 5 is the same as 2 except it uses

the ASCII values for the characters and not the unique IDs. To test the drawing use:

1 $ ./ runtests .sh -d -cx

Where x again is the strategy used for derivation.

The compiler has the command linsys which takes a description of an L-system in an

ls file. It can be run with a number of flags and flag combinations which are:

• ./linsys -i file: uses the interpreter to derive the L-system specified in file. It

will ask for the number of iterations.

• ./linsys -i -d file: uses the interpreter to derive and draw the L-system speci-

fied in file. It will ask for the number of iterations and then generate an svg file

with the same name as file except the file extension is .svg instead of .ls.

• ./linsys -s file: same as -i but with no instructions for the user in the console.
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• ./linsys -s -d file: same as -i -d but with no instructions for the user in the

console.

• ./linsys -cx file: generates a Futhark program which derives the L-system

specified in file. The program will take the number of iterations as argument. x

specifies the strategy used for derivation.

• ./linsys -cx -p file: generates a Futhark program which derives the L-system

and then calculates all the start and end points of all lines in the geometry. The

program takes the number of iterations as argument and x specifies the strategy

used for derivation. This is used by the test script.

• ./linsys -cx -d file: the same as -cx -p but instead of just start and end

points, it outputs a 2D array that can be turned into a png by data2png.py1. The

script only takes binary data so you should use the flag -b when running the

Futhark program.

• ./linsys -pd file: generates a Futhark program which can visualise the L-

system in file. The Futhark program takes an array of ASCII character integers as

argument. Any ASCII characters in the file with no interpretation in the L-system

will not generate geometry.

• ./linsys -sp file: uses the interpreter to derive the L-system and then calculates

the start and ends points of all the line in the geometry. It takes the iteration number

as input.

• ./linsys -pp file: same as -pd except that it computes start and end points of

all lines in the geometry.

1https://github.com/diku-dk/futhark/tree/master/tools
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8.2 Derivation Runtimes

(a) Binary tree, Wikipedia (b) Hexagonal Gosper curve, p. 12 (a)

(c) Dragon curve, p. 11 (a) (d) Snowflake curve, p. 2

(e) Combination of islands and lakes, p. 9, fig. 1.8 (f) Fractal plant, p. 25 (f)

(g) Koch curve, p. 10 (b) (h) Koch curve, p. 10 (c)
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(i) Koch curve, p. 10 (d) (j) Koch curve, p. 10 (e)

(k) Koch curve, p. 9 (b) (l) Quadratic Koch island, p. 9 (a)

(m) Sierpinski gasket, p. 11 (b) (n) Sierpinski triangle, Wikipedia

Figure 8.1: Benchmark curves for derivation of L-systems with references to their descriptions:
Wikipedia page about L-systems (Wikipedia, n.d.) or Prusinkiewicz and Lindenmayer,
2004. The graph cX uses strategy number X. Generated symbols per microseconds as
a function of iterations.
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8.3 RSD on Derivation

(a) Binary tree, Wikipedia (b) Hexagonal Gosper curve, p. 12 (a)

(c) Dragon curve, p. 11 (a) (d) Snowflake curve, p. 2

(e) Combination of islands and lakes, p. 9, fig. 1.8 (f) Fractal plant, p. 25 (f)

(g) Koch curve, p. 10 (b) (h) Koch curve, p. 10 (c)
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(i) Koch curve, p. 10 (d) (j) Koch curve, p. 10 (e)

(k) Koch curve, p. 9 (b) (l) Quadratic Koch island, p. 9 (a)

(m) Sierpinski gasket, p. 11 (b) (n) Sierpinski triangle, Wikipedia

Figure 8.2: Relative standard deviation on the derivation of L-systems with references to their
descriptions: Wikipedia page about L-systems (Wikipedia, n.d.) or Prusinkiewicz
and Lindenmayer, 2004. The graph cX uses strategy number X.

68 Chapter 8 Appendixes



8.4 Time to Generate Symbols

(a) Binary tree, Wikipedia (b) Hexagonal Gosper curve, p. 12 (a)

(c) Dragon curve, p. 11 (a) (d) Snowflake curve, p. 2

(e) Combination of islands and lakes, p. 9, fig. 1.8 (f) Fractal plant, p. 25 (f)

(g) Koch curve, p. 10 (b) (h) Koch curve, p. 10 (c)
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(i) Koch curve, p. 10 (d) (j) Koch curve, p. 10 (e)

(k) Koch curve, p. 9 (b) (l) Quadratic Koch island, p. 9 (a)

(m) Sierpinski gasket, p. 11 (b) (n) Sierpinski triangle, Wikipedia

Figure 8.3: Time to generate symbols for different L-systems with references to their descriptions:
Wikipedia page about L-systems (Wikipedia, n.d.) or Prusinkiewicz and Lindenmayer,
2004. The graph cX uses strategy number X.
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