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Abstract

Modern hardware has become more heterogeneous, and with the AI boom, specialized
hardware for especially performing matrix multiplication has become readily available. In
NVIDIA graphical processing units (GPUs), Tensor Cores allow for efficient execution of ma-
trix multiplication routines that can significantly speed up AI and deep learning operations,
as well as other programs containing matrix multiplication.

However, programming for the Tensor Cores is not straightforward, and often requires
adapting code to restrictions and performance guidelines unique to this hardware. The
hardware is made more accessible through application specific libraries such as cuBLAS and
cuDNN, but for more general use specialized CUDA or PTX code targeting the Tensor Cores
must be written. In order to ease the use of Tensor Cores in general, we propose to integrate
the use of Tensor Cores into Futhark, a data parallel array language and highly optimizing
compiler that generates efficient GPU code.

Our main contribution is to allow Futhark programs with matrix multiplication in an
intragroup kernel to use the Tensor Cores. We evaluate the Futhark compiler output against
handwritten CUDA programs using the Tensor Cores and the stock unmodified compiler on
benchmarks such as the matrix multiplication routine from LU-Decomposition in Rodinia
[1], FlashAttention [2] like programs, and other matrix multiplication programs. The results
show that our modified compiler is still considerably slower than handwritten implemen-
tations, but compared to the stock Futhark compiler we see speedups between 1.9× and
60×.
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1 Introduction
Historically, the clock rate at which instructions execute has increased exponentially in the period
1990-2004[3]. Programs designed around a uni-processor architecture would tremendously benefit
from this, with program performance scaling with the clock rate. Often this has been contributed
to a reinterpretation of Moore’s Law:

Compute power doubles every 19-24 months, while the cost effectiveness keeps up.

Cost effectiveness keeping up means that the computational power increase essentially comes for
free at no additional price increase. For some time, this meant that single-core and single-threaded
software could at no additional programming effort benefit from the rapid increase in transistor
count and hardware innovations. The above statement is however not quite the original observation
made by Gordon E. Moore. The original observation more closely states that:

The number of transistors on an integrated circuit doubles every 19-24 months.

The additional transistor count predicted by Moore’s Law was used to increase the clock rate
of single-CPU systems in 1990-2004. This is the so called killer-micro effect[3]. Figure 1 shows
on a log scale the microprocessor trend in the period between 1975-2010. From around 1990 to
2005, the increase in transistor count and single threaded clock frequency and performance are
closely correlated. The period around 2005 turns out to be a paradigm shift. The transistor count
still follows an exponential trend, but the clock frequency can no long keep up, and comes to a
halt. To keep Moore’s Law alive, future architecture must use the additional transistor budget for
some form of massive parallelism [3]. Figure 1 shows how CPU manufacturers implement this by
increasing the core core count of their CPU architectures from around 2005.

Figure 1: Microprocessor hardware trends. Figure taken from [4]

The shift from uni-core processor with ever increasing clock rates to a multi-core design was
prompted by examples such as the power wall and memory wall:

• Power wall: The processor power is proportional to the cube of the frequency. At some
point, further increasing processor frequency therefore becomes impractical from a tempera-
ture and power perspective. Increasing the frequency by 2× requires a power increase about
8×, but increasing the processor count by 2× only increases the power by 2×.
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• Memory wall: Historically, the increase in processor speed has been around 50 %, while
the DRAM speed has only increased by 7 % each year. This made an ever larger gap between
the processor speed and waiting for data. Multi-core systems has rendered the memory wall
obsolete, but at the cost of a bandwidth problem [3].

Both the power- and memory wall are good motivations for moving to parallel systems. GPUs
are a canonical example of a modern massively parallel system. They provide thousands of simple,
small cores, and tens to hundreds of thousands of threads [3], but often times with a lower processor
frequency.

Other ways of using the increased transistor count provided by Moore’s Law is in the realm
of application specific hardware. Examples include the Tensor Cores on modern Nvidia GPUs.
These are specialized cores for computing matrix multiplication. Other examples are custom deep
learning hardware such as Google’s TPUs, and Apple’s Neural Engine. In all cases, the direction
of modern hardware seems to be heterogeneous systems that subsume several level of heteroge-
neous hardware. NVIDIA graphical processing units (GPUs) such as the A100 and H100, also
called Tensor Core GPU s by NVIDIA, provide at least two levels of heterogeneous hardware with
the Tensor Cores, in that: (1) the general-purpose (graphical processing) unit (GPU) is in itself
specialized hardware for accelerating massively parallel computation, but also (2) contains spe-
cialized hardware, namely the Tensor Cores, aimed at accelerating matrix multiplication, which is
an operation at the core of training and inference of neural networks, and other compute intensive
applications. These new computing systems also carry with them a multi-level memory hierarchy
that has to be used efficiently to unlock the performance that the new hardware provides. Open
source libraries such as PyTorch and TensorFlow provide a domain specific language for operating
on multi-dimensional matrices known as tensors that take advantage of the new hardware. Sim-
ilarly, application specific libraries such as cuBLAS and cuDNN also provide interfaces to utilize
the hardware in their respective domains. However, in general use, the increasingly heterogeneous
hardware has tended to also increase the heterogeneity of code used to program it, with languages
or programming models specialized for specific hardware, such as CUDA C++ for programming
NVIDIA GPUs. This brings a need for new programming models that make modern heterogeneous
hardware more generally accessible and easier to program outside of the realm of deep learning
and AI.

In this work we investigate if Futhark, a data parallel array language, can utilize some of
this new hardware by modifying the compiler to use the NVIDIA Tensor Cores. Our focus is on
prototyping the compiler to use the Tensor Cores for matrix multiplication computations, and
we do not try to change the general compiler infrastructure to efficiently use the Tensor Cores.
In doing so, we hope to investigate the constraints and problems related with utilizing this new
specialized hardware in an existing programming language.

1.1 Related work
We start this section with a brief overview of the evolution of compilers and scheduling languages.
This has relevance in the way new heterogeneous hardware is programmed, and we end up dis-
cussing existing compilers and languages for programming the NVIDIA Tensor Cores.

Before the 1990s, compilers were generally seen as black boxes only controlled with optimization
flags and a small set of directives for analysis and optimization [5]. In the 1990s, compiler research
is mostly focused on optimizing locality in caches. It became obvious that the best sequence
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of program transformations is heavily dependent on the architecture and input data. To guide
architecture specific optimization, cache models were developed. As these models got sufficiently
complicated, another idea arouse. The program could be run on different target architectures, and
it can be tuned or adjusted for the best performance on that platform. Automatically Tuned Linear
Algebra Software (ATLAS)[6] introduced the notion of autotuning for linear algebra routines.
Other approaches to tune computation kernels to other domains was developed in the 1990s and
2000s. Simultaneously, iterative compilation compiler infrastructure was developed to explore
alternative sequences of transformations, execute the code on hardware and use this to decide on
the best performing version. The crucial point is that is was still the compilers responsibility to
decide on what to explore. Following this, systems were introduced that allowed the programmer to
express different semantically equivalent program variants, and then leave it to auto tuning to pick
the fastest. Other systems enabled the expert programmer to specify a sequence of transformation
to apply to the code with the specification written either through annotations in the code or by a
separate transformation recipe. Halide [7], a domain specific language (DSL) for image processing,
popularized this idea where a high performance implementation is derived by a two stage approach.
First, a simple high level DSL is used by the domain expert to express the program. Next, in a
separate language, called a scheduling language, a transformation recipe is written by a compiler
expert.

Just as Halide optimizes image processing pipelines, future scheduling languages might also
be used to optimize the data movement needed for heterogeneous hardware such as the Tensor
Cores. Graphene [8] provides scheduling for thread mapping to prepare data for computation on
the Tensor Cores. In similar spirit, CuTe 1, a cuda C++ header only library, provides template
abstractions for describing multidimensional layouts of threads and data directly in the C++ type
system. Although CuTe is not a scheduling language, it still decouples the mapping of threads
and data from the GPU algorithm implementation of linear algebra routines. With CuTe, there is
still a need for tuning the data layout and data movement depending on the architecture for best
performance. Specific types of data movement operations are also hardware specific, and CuTe
also decouples this loosely from the algorithm implementation.

Scheduling languages may also provide a way of specifying hardware specific features. This
could be the specification of matrix multiplication operations using the Tensor Cores for the when
available in the target hardware architectures. While not having a scheduling language, Triton
[9] is a DSL and IR, mostly focused on accelerating deep learning computations, and it also
performs block tiling. Triton will emit Tensor Core operations where possible [10]. The Futhark
compiler also already has a pass that performs block and register tiling [11] whenever it can be
determined that there is an opportunity of optimizing temporal locality. This in turn optimizes
matrix multiplication, but it does not use the Tensor Cores.

Our contributions to the Futhark compiler are mostly similar to Triton in that we emit Tensor
Core operations where possible. The compiler uses CuTe to specify the architecture specific type
of Tensor Core operation as well as data movement and layouts.

1.2 Terminology
We will frequently use the below terms and notation. The terms will be explained whenever they
are first used, but they are also stated here for quick reference.

1Cutlass and Cute is hosted at: https://github.com/NVIDIA/cutlass
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• Intragroup kernel refers to the collection of threads in a CUDA block that collectively
performs a computation in parallel or a SegOp at the level of threads in a CUDA block.

• A an uppercase bold calligraphic letter corresponds to an entire array.

• Amk corresponds to a slice of an array A with size m× k.

• f16 and f32 are 16-bit half precision and 32-bit single precision floating point numbers
respectively.

2 Background
In this section we set out to give an overview of the relevant background information needed to
provide support for Tensor Cores in the Futhark compiler. This starts by a discussion of NVIDIA
GPUs and how they differentiate from CPUs. We briefly cover the GPU hardware and memory
hierarchy and then go into how GPUs can be programmed in CUDA C++. Next, we show common
GPU optimizations that are especially important for fast matrix multiplication using Tensor Cores,
but are generally applicable for a variety of GPU programs.

We finish off with an introduction to the Futhark programming language and compiler. This
introduces programs that are relevant for discussion about how they might take advantage of
Tensor Cores and perhaps use the GPU optimizations that were introduced.

2.1 GPUs
The Graphics Processing Unit (GPU) is a massively parallel computation unit very different
from a Central Processing Unit (CPU). Where the CPU has higher clock rates and excels at
processing a sequence of instructions, the GPU provides thousands of simple ”cores” that require
the programmer to use tens to hundreds of thousands of threads, and excels in parallel processing.
This lets the GPU achieve higher instruction throughput and bandwidth than a CPU at a similar
price and power [12].

Figure 2 shows how the transistor resources are used between CPUs and GPUs. For the CPU,
a large chunk of the transistors are spend on caches and control units. In comparison, fewer
transistors are used for the arithmetic logical unit (ALU) that performs computation. A GPU
will on the other hand allocate a much larger portion of the transistor count to raw computation
(the ALU).

This lets the GPU hide the additional memory latency caused by having less cache, by overlap-
ping memory transfers with computation. In other words, whenever a group threads stall waiting
for data, it is more than likely that another group of threads can do some computation in the
meantime. This in comparison to the CPU which instead relies on various cache layers to ensure
memory can be accessed faster.

It has to be mentioned that not all GPUs are the same. Some of the big GPU manufacturers
are AMD, NVIDIA, and Apple, and they each provide their own type of GPU with a different
programming model, although these models typically overlap in some aspects. Therefore, in order
to dive deeper into the hardware and how it can be utilized we have to scope the types of GPUs.
For this work, we are fousing on NVIDA GPUs, and we will use the NVIDIA terminology to
describe the GPU hardware and programming model in more detail.
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Figure 2: CPU architecture (left) and GPU architecture (right). The illustration was created by
NVIDIA[12].

2.1.1 Hardware

Computation on NVIDIA GPUs is performed by a number of streaming multiprocessors (SMs),
shown for the NVIDIA A100 in Figure 3. An A100 has 108 such SMs, which share a common,
on-chip L2-cache, and have access to the same off-chip device memory. Each SM has its own
L1-cache, and can be further subdivided into 4 units that can execute different instructions in
parallel. Each of these units further use SIMD (Same Instruction - Multiple Data) execution to
achieve even more parallelism. As shown in the schematic, each unit also has acess to a Tensor
Core, which is what we make use of in this work.
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Figure 3: Streaming multiprocessor for the NVIDIA A100. The illustration was created by
NVIDIA[13].

2.1.2 Thread hierarchy

The programming model for Nvidia GPUs organizes its threads in a hierarchy. This organization
defines how individual threads can communicate with one another, and what hardware resources
they share.

At the lowest level of the hierarchy are the individual threads. This is the smallest unit of
execution. Each thread has its own registers and program counter2.

2for NVIDIA Volta and newer architectures
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Threads are grouped together in groups of 32 to form a warp. Warps execute in lockstep, which
means all active threads in a warp execute a single common instruction in parallel. However,
since each thread has its own registers and program counter, threads in a warp can diverge in
their execution path if a conditional evaluates differently across the threads in the warp. If this
occurs, each taken branch of the conditional will be executed in sequence by the whole warp,
with threads not on each path disabled. This means that for maximum performance, conditionals
should evaluate equally across each warp. A number of primitives exist allowing more efficient
communication and cooperation between threads in the same warp than is possible across threads
of different warps. One such primitive is the family of mma PTX instructions, which will be
described in more detail below.

Warps of threads are grouped together in blocks. The number of threads per block can be
decided by the programmer, up to a maximum of 1024 threads for current architectures. Threads
within a block can access a common chunk of shared memory, and use this for communication and
cooperation. Additionally, threads within a block can synchronize their execution to avoid race
conditions, using the __syncthreads() primitive.

Blocks of threads are organized in a grid. A grid of thread blocks all execute the same kernel,
but individual thread blocks cannot communicate with one another, and must be able to run in
any order. A kernel is a special type of function that runs asynchronously on the GPU.

NVIDIA Compute Capability 9.0, introduces an additional, optional, level of organization,
such that thread blocks can be grouped in thread block clusters, which are then organized in a
grid. We have not used this in our work. [12][14]

2.1.3 Memory hierarchy

Threads in a CUDA kernel cannot access ordinary host memory (RAM), and must instead use
memory resident on the GPU. There are a number of different spaces of memory on the GPU. These
spaces are organized in a hierarchy closely related to the hierarchy of threads. Each individual
thread has exclusive access to its own registers and its own local memory. All threads in a thread
block can access the same chunk of shared memory. Finally, all threads across all blocks can
access the same global memory. All threads in all blocks can also access some additional read-
only memory spaces called constant, texture and surface memory, which are optimized for special
access patterns often used in graphics. We have not used these read-only memory spaces, and will
therefore not address them further here.

Data coming from host code, i.e. code running on the CPU must initially be moved to global
memory in order to be used on the GPU. When a variable e.g. an array is declared in device
code, i.e. code running on the GPU, it can can be explicitly declared to be in global or shared
memory, using just the __device__ or __shared__ specifiers, respectively. If neither is used,
the variable will typically reside in registers. However, for various reasons this is not always
possible. In such cases the variable will instead reside in local memory. Typical reasons for this is
register spilling, variables simply being too large to fit in registers, or arrays that are not always
accessed by static indexes. For example, an array indexed by a loop variable in a for loop which
is not unrolled, would have to reside in local memory.

Other than the registers, shared memory offers the fastest access times, since it resides on-chip.
However, it is fairly limited in size. In fact, for all architectures so far, the maximum total size of
the register file for a thread block has been larger than the maximum amount of shared memory
available to a thread block. Shared memory can be seen as a form of programmable cache, and in
fact shares its hardware resources with the L1 cache2.
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Both local and global memory resides in off-chip device memory, and is thus much slower than
shared memory, but offers much more abundant space. To make up for the slower speed, both
local and global memory are cached in on-chip memory. This caching consists of an L2 cache
shared by all SMs, and an additional L1-cache for each individual SM. [12]

2.1.4 Tensor Cores

GPUs have been used to accelerate a variety of computational problems. One of the largest use
cases has been to train large deep neural networks (DNN). A key operation when either training
or running inference on a DNN is matrix multiplication. This is such a common operation that
modern NVIDIA GPUs are equipped with a new hardware component called the Tensor Core that,
for matrices of specific, relatively small, sizes, can perform in-hardware matrix multiplication and
accumulate (MMA) operations of the form:

D = AB + C (1)

Using tiling as explained in subsubsection 2.2.5, these basic operations can be used repeatedly
to implement MMA for larger matrices. The operations can also be used to implement other
operations containing matrix multiplication, such as generalized matrix multiplication (gemm) of
the form:

D = αAB + βC (2)

The MMA operation is often performed with a mixed precision of 16-bit (f16) and 32-bit
(f32) floating point numbers. I.e. when performing the matrix multiplication C = AB with
matrices of size M ×K and K ×N respectively, the multiplication aikbkj is done using f16 and
the accumulation

cmn =
K�

k=0

amkbkn

is done with f32 precision. Since the accumulation step is done with f32, the precision loss
is minimized.

The first NVIDIA architecture to introduce Tensor Cores was the Volta series of GPUs. The
architecture has 8 Tensor Cores per SM , and each can perform 64 f16/f32 mixed precision fused
multiply and add (FMA) per clock[13]. The more recent Ampere and Hopper architectures only
have 4 Tensor cores per SM, but each Tensor Core can perform more FMAs per clock. Depending
on the NVIDIA architecture, the tensor cores are used slightly differently:
For Volta, 4 groups of 8 threads, called quad pairs, each perform their own MMA operation of
size M ×N ×K = 8× 8× 4.
In Ampere, the entire warp instead collaborates to do the MMA. The size computed by the warp
is 16 × 8 × 16 as a single warp-wide result. The programmer must, however, still coordinate the
work to be done between warps in a block for a block level result.
For Hopper, an entire warpgroup of four warps can perform the MMA operation.
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Besides producing different output tiles, the Tensor Cores also expect the input matrices to
be in a very specific format depending on the architecture. In general, the input matrices must
be in registers, but Hopper also allows them to be in shared memory. The details of this is listed
in [14]. To combat the issue that every architecture is programmed differently, NVIDIA provides
helper libraries to abstract these details away. This is further discussed in section 2.1.5.

With proper tiling strategy and optimization, Tensor Cores can be used to speed up matrix
multiplication, as indicated by Table 1. This speedup is even greater if one takes into account
the ability of the Tensor Cores to effeciently do mixed-precision computations, using e.g. f16
for multiplication and f32 for accumulation, with the same throughput of full f16 computation.
The general and simple matrix multiplication algorithm should be compute bound since O(N 3)
multiplications and additions are performed compared to O(N 2) memory reads and writes. How-
ever, since the Tensor Cores have such a high computational throughput, almost all programming
effort ends up being used in optimizing the memory pipeline to feed the Tensor Cores with data.
In section 3 we show a matrix multiplication program using Tensor Cores, while subsection 2.2
details the optimizations used to keep the Tensor Cores occupied with data.

GPU Peak FP16 [TFLOPS] Peak FP16 Tensor Core [TFLOPS] Speedup
NVIDIA A100 78 312 4x
NVIDIA H100 133.8 989.4 7.4x

Table 1: Theoretical peak performance for the A100 and H100 using FP16, with and without use
of Tensor Cores[13][15].

2.1.5 CUDA

A simple CUDA program
For NVIDIA GPUs, CUDA is the programming model used to write thread parallel programs. It
defines the thread hierarchy described in section 2.1.2, the memory hierarchy described in section
2.1.3, synchronization mechanisms between threads and groups of threads (thread blocks) and a
CUDA runtime API. The CUDA program programs themselves are written in CUDA C++, a set
of language extensions to C++. CUDA programs are split into code that runs on the CPU called
host code, and code that runs asynchronously on the GPU called device- or kernel code.

To demonstrate the different aspects of the CUDA programming interface, the host code for a
small CUDA program is written below. The special <<<grid, block>>> syntax is one of the
CUDA language extensions to C++. It defines a kernel launch. This is special type of function
call that tells the CUDA runtime to execute the do_square_gpu function on the GPU[12]. In
this case, the launch is specified to run on a kernel grid with size 128 · 128× 121× 1 and each grid
node consists of a thread block of 256 threads. In case the block size exceeds the maximum 1024
threads, the kernel fails to launch.
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Listing 1: Host code to launch a CUDA kernel

1 void square()
2 {
3 int *host_array = // filled by the cpu somewhere
4 size_t n = 128 * 128 * 256; // number of elements on host_array
5 int *device_array;
6 cudaMalloc(&device_array, n);
7 cudaMemcpy(device_array, host_array, n, cudaMemcpyHostToDevice);
8 dim3 grid(128 * 128, 1, 1);
9 dim3 block(256, 1, 1);

10 do_square_gpu<<<grid, block>>>(device_array, n);
11 cudaDeviceSynchronize();
12 cudaMemcpy(host_array, device_array, n, cudaMemcpyDeviceToHost);
13 }

The example also demonstrates how the CUDA runtime API handles synchronization and
memory between the host (CPU) and the device (GPU). To copy a block of memory to the device,
the memory is generally first allocated by the host and filled with data. Before any memory can be
copied to the GPU, memory must first be allocated on the GPU as well. The CUDA runtime API
defines a malloc equivalent called cudaMalloc to allocate memory on the device. Likewise, a
memcpy equivalent called cudaMemcpy exists to then copy the host data to the device.
As previously mentioned, the kernel runs asynchronously on the GPU, and the function call to
do_square_gpu returns immediately. To wait for the result, a synchronization primitive must
therefore be used. In this case cudaDeviceSynchronize is used. This will block, waiting for
the kernel to finish execution and the result can be copied back to the CPU.

The actual kernel code for do_square_gpu is also written in CUDA C++, and the imple-
mentation can even be written in the same file as the host code. Below, the corresponding kernel
code is given:

Listing 2: Kernel code to square elements of an array.

1 __global__ void square(int* array, int n) {
2 int blockOffset = blockDim.x * blockIdx.x;
3 int tid = blockOffset + threadIdx.x;
4 if (tid < n) // only compute on in bounds elements
5 array[tid] = array[tid] * array[tid];
6 }

A CUDA kernel is denoted with the __global__ declaration specifier. This allows it to be
called by the host using the <<<>>> syntax, and tells the compiler that this should run on
the GPU. The input array has 128 · 128 · 256 elements, and therefore the kernel was launched
with a grid and block size such that each thread needs to compute exactly one element of the
input. This is a very typical way to program GPUs. Instead of having a loop iterating with
dimensions proportional to the problem size, a kernel is simply launched with enough threads to
do the computation in one go.

The kernel code above has some logic for computing an offset. Recall that threads are
organized into blocks in a kernel grid. Each thread must therefore compute an offset into the
array where the block should start its computation, and then a local offset within the block. As
shown above, the threads in a CUDA block can access their thread index in the block by the
threadIdx dim3 variable. For this kernel launch, the block was specified to have threads only
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in the x dimension, and therefore we have blockDim.x=256. To compute the block offset, each
thread needs to use the blockDim and blockIdx variables to get the dimensions of the block
and the index of the block in the CUDA grid.

The NVCC compiler
The above program will get compiled by the nvcc CUDA compiler into both assembly and an as-
sembly like code called PTX (Parallel Thread Execution) for the host and kernel code respectively.
Not all PTX instructions supported by the GPU can necessarily be expressed by CUDA C++
programs. This sometimes requires one to resort to using inline PTX assembly instead. Using
Tensor Cores is one such case where it can become preferable to include inline PTX assembly.
The CUDA C++ standard library does expose a warp level Tensor Core API known as wmma.
This is however a poor API since it gives bad control over the memory layout and quickly leads
to performance issues. Therefore, for maximal performance, it is necessary to use the mma family
of PTX instructions. For the Ampere series of GPUs, a 16× 8× 16 mixed precision mma can be
performed. The instruction can be wrapped into a function that can be called by each thread:

Listing 3: Wrapper function to call a 16× 8× 16 Tensor Core operation.

1 __forceinline__ __device__ void mma_m16n8k16(
2 uint32_t d[4], uint32_t a[4], uint32_t b[2], uint32_t c[4]) {
3 asm volatile("mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32
4 {%0, %1, %2, %3},
5 {%4, %5, %6, %7},
6 {%8, %9},
7 {%10, %11, %12, %13};"
8 : "=r"(d[0]), "=r"(d[1]), "=r"(d[2]), "=r"(d[3])
9 : "r"(a[0]), "r"(a[1]), "r"(a[2]), "r"(a[3])

10 , "r"(b[0]), "r"(b[1])
11 , "r"(c[0]), "r"(c[1]), "r"(c[2]), "r"(c[3]));
12 }

The __device__ qualifier tells the NVCC compiler that this a GPU only function, and it
can therefore only be called by kernel code. The instruction included in the body of the function is
fairly complicated to use and it has strict requirements for its inputs. We will do a brief overview
of the instruction as a motivation for why an abstraction for using the Tensor Cores is needed,
and also to demonstrate the difficulty required to use the instruction.
As it was mentioned earlier, for Ampere GPUs, the entire warp of 32 threads collectively performs
the MMA. For a 16× 8× 16 mixed precision MMA of the form C += AB, the warp will provide
a 16 × 16 matrix for A and a 16 × 8 matrix for B with each element being f16 and residing
in registers. For matrix A, the warp is responsible for 16 · 16 · 2 = 512 bytes of input data and
each thread is responsible for a 16-byte slice. This fits with the function signature where the
input a is an array of 4 uint32_t elements, corresponding to 16 bytes of data supplied by each
thread. For f16 input matrices 8 f16 elements per thread are thereby supplied. Figure 4 shows
the mapping from matrix elements to registers for this kind of MMA operation. Thread 0 is
denoted as T0 in the figure. We see that thread 0 has to load two elements from each of the
indices (0,0), (0,8), (8,0) and (8,8) for a total of 8 elements. The elements are stored in the same
order in the uint32_t[4] input. This mapping is perhaps a bit unexpected since each thread
does not load contiguous elements from the source matrix. If the source matrix is not loaded into
registers exactly as specified in figure 4, the instruction computes the wrong result. The mapping
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of threads to values for matrix B is equally convoluted, and uses a column-major layout. In short,
to effectively use one of the mma instructions requires a very careful arrangement of the source
elements into registers. The exact arrangement will also depend on the input element type, since
the Tensor Cores can also work with other data types than f16. Handling this mapping across
different architectures and data types correctly is a very tedious process that can easily lead to
unexpected and hard to debug errors.
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Figure 4: Mapping of elements into registers of the 32 threads in the warp for 16× 8× 16 mixed
precision MMA. The left shows the mapping for matrix A of a C = AB matrix multiplication, the
top right shows B and the lower left shows C Each thread holds 8 elements of A, and 4 elements
of B and C.
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2.2 GPU Optimizations
This section sets out to describe a set of optimizations a CUDA kernel can implement in order
to come close to the peak performance for matrix multiplication kernels. These optimizations are
all implemented in our prototype matrix multiplication kernel, and some of them also make their
way into the futhark compiler when adding Tensor Core support.

2.2.1 Coalesced Global Memory Access

Global memory is accessed via naturally aligned 32-, 64-, or 128-byte memory transactions. That
is, 32 consecutive bytes, starting at an address which is a multiple of 32, can be accessed in a
single transaction, and similarly for 64 and 128. When a warp executes an instruction accessing
global memory, the memory accesses of all the threads in the warp are coalesced into a number of
transactions of this size. If, for example, each thread in a warp accesses a separate 4 byte value,
each in a different 128 byte chunk of memory, this would then result in 32 separate transactions.
Additionally at least 32 * 32B = 1024B of data would be transferred, when only 32 * 4B = 128B
was really needed. This kind of access pattern causing excessive transfers is called uncoalesced
memory access, and results in inefficient execution. If, on the other hand, the 32 threads accessed
32 consecutive 4 byte values, starting at a 32B aligned address, only a single 128B transaction
would be needed, resulting in optimal performance, and the access would be said to be fully
coalesced. Due to the high latency of global memory accesses, it is very important for performance
to ensure that accesses to global memory are coalesced, so that the total number and size of
transactions is kept at a minimum. [12]

The figures below show some examples in which each of the 32 threads in a warp access a
distinct 4 byte word in global memory. Each arrow represents an access by a thread.

Figure 5: Fully coalesced access resulting in a single 128B transaction.
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Figure 6: Unaligned access requiring 2 separate 64B transactions.

Figure 7: Unaligned access causing 3 separate transactions and excessive movement of data.
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Figure 8: Strided access causing excessive movement of data. It should be noted that larger strides
would result in even more transactions and excessive movement of data, even worse if combined
with misalignment.

2.2.2 Avoiding Shared Memory Bank Conflicts

Shared memory is divided into 32 memory banks3 of equal size, which can be accessed simultane-
ously by each thread in a warp. The addresses of of shared memory are divided in 4 byte words,
with consecutive 4 byte words residing in consecutive banks. If each thread in a warp accesses
addresses of memory in separate banks, all accesses can be serviced simultaneously, and the re-
quest is said to be bank conflict free. This is also the case even if some threads access data within
the same 4 byte word, within the same bank3. However, if multiple threads within a warp access
addresses in distinct 4 byte words within the same bank, this is a bank conflict, and these accesses
must be serialized. Bank conflicts only occur within warps. [12]

For optimal performance, one must therefore be mindful to avoid bank conflicts. When working
with multidimensional data, bank conflicts can often result from ”naive” code. This is in part due
to the fact that it can often be desirable to use 2 or more distinct access patterns for the same data
in shared memory. For example one might want to write data to shared memory in a row-major
order, but read it in a column-major order.

A prime example, which is not at all far fetched from our uses, is that data in shared memory
is stored in a row-major 2D array with a width which is a multiple of 128B, so that consecutive
columns are in consecutive banks. This is illustrated in Figure 9.

In this case, a warp can access distinct elements of a single row of data without bank conflicts.
However, if a warp accesses distinct elements of a single column, this will result in a 32-way bank
conflict. This means that the 32 accesses made by the threads in the warp must be fully serialized,
rather than being able to run in parallel. In fact, any access of data from less than 32 distinct
columns by a warp must necessarily result in bank conflicts, which means we also cannot access
sub-arrays without bank conflicts.

3for NVIDIA Maxwell and newer architectures
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Figure 9: Naive layout for a 32 x 32 row-major array of 4 byte elements, with each cell showing
the index of the memory bank in which the corresponding element will reside.

One way to reduce the number of bank conflicts is padding the leading dimension of multi-
dimensional arrays in shared memory. If the goal is to be able to read columns without bank
conflicts, a single element can be used for padding. In the previous example of a 128B multiple
width array, it is easy to see from figure Figure 10 that padding with a single 4 byte element
would ensure bank conflict free access to both single rows and single columns. The fact that single
row access also remains bank-conflict free is important if the data is stored row-major in global
memory, since data can then be transferred between global and shared memory in a row-major
fashion, ensuring both fully coalesced accesses to global memory, and bank conflict free access to
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shared memory, while also allowing bank conflict free column major access in shared memory.

Figure 10: Single element padded layout for a 32 x 32 row-major array of 4 byte elements, with
each cell showing the index of the memory bank in which the corresponding element will reside.
Note the additional column.

An alternative method for preventing bank conflicts is permutation of indices, or swizzling.
With this technique, data in shared memory is permuted rather than padded, which means no
space is wasted. Additionally, this technique is very flexible, and can allow bank conflict free
access for many different sets of access patterns. Finding permutations that allow bank conflict
free access for a given set of access patterns in general requires the solving of a sudoku-like problem
and can have many or no solutions.
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A common technique for permutation of row-major arrays is to only permute the row-index of
each element, calculating the new column-index by using an XOR operation between some of the
bits of the column-index and the same number of bits from the row-index. Using this technique
allows permuted indices to be calculated efficiently using fast bit-level operations. Which bits to
use depends on the access pattern one wishes to remove bank conflicts from.

Figure 11 shows how one might compute a swizzled flat index from a given row-major flat
index of the example 32 x 32 array in Figure 9. Since the width of the array is a power of 2, the
bits of the flat index can be split such that the 5 least significant bits represent the column index,
while the 5 most significant bits represent the row index. The XOR of these 2 sequences of bits is
then used in place of the 5 least significant bits, i.e. as the new column index.

Figure 11: Example of computing a swizzled flat index using XOR, denoted as ⊕. Top: original
index. Bottom: swizzled index.

It is clear that this transformation preserves the row index of every element. Additionally, it
should clear that any 2 distinct elements that originally had the same column index, but distinct
row indexes, i.e. 2 distinct elements from the same column, now also have distinct column indexes,
since a different row index was then used in the XOR operation with the same column index. This
means that a warp can now access both single rows and single columns of the original layout
without bank conflicts using the new layout. The full result of this permutation can be seen in
Figure 12.
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Figure 12: Example of a swizzled layout for a 32 x 32 row-major array of 4 byte elements, with
each cell showing the index of the memory bank in which the corresponding element will reside.

The flexibility of swizzling also allows achieving bank conflict free access to sub-arrays. If, for
example, each warp must access a 8 x 4 sub-array of the 32 x 32 array of the previous examples,
the permutation shown in Figure 13 can be used. It should be clear that this permutation allows
bank conflict free access to both entire rows and 8 x 4 sub-arrays.
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Figure 13: Second example of a swizzled layout for a 32 x 32 row-major array of 4 byte elements,
with each cell showing the index of the memory bank in which the corresponding element will
reside.

The computation used to calculate swizzled indexes in this case is shown in Figure 14.
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Figure 14: Second example of computing a swizzled flat index using XOR, denoted as ⊕. Top:
original index. Bottom: swizzled index.

In this case, the 2 least significant bits and the 2 most significant bits are left unchanged.
This means that sequences of 22 = 4 consecutive elements will remain consecutive after the
permutation, and that the overall pattern will repeat itself every 25−2 = 8 rows. Similarly to the
previous pattern, the intuition as to why this computation allows bank conflict free access to 8
x 4 sub-arrays, is that elements of distinct rows in such a sub-array will also have distinct bits
in the positions marked blue in Figure 14. Meanwhile, the bits in green will be the same for all
sub-array elements. Therefore elements of distinct rows within the same sub-array will also have
distinct bits resulting from the XOR operation. Additionally, elements of distinct columns within
the sub-array will also have distinct bits in the 2 least significant positions, and as such there is
bank conflict free access to all 8 x 4 sub-arrays.

The fact that sequences of 4 consecutive indexes, i.e. groups as large as the sub-array width,
are still consecutive in the permutation, also allows for vectorized accesses, as will be described
below.

In order to ensure bank conflict free access to sub-arrays of a given width using padding
instead, one would have to use an amount of padding equal to this width, which could result in
large amounts of wasted space.

2.2.3 Vectorized Loads and Stores

Vectorized loads and stores are another important optimization to ensure good performance. The
concept is simple. Instead of having each thread request a single element from global memory at
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a time, the threads will instead requests multiple elements simultaneously. In Figure 15, a slice
of 8 elements of a larger array is to be loaded from global memory. The top of Figure 15 shows a
scalar load with each thread reading one element. Meanwhile, at the bottom, each thread requests
four elements to be loaded, and only two threads are therefore needed to copy 8 elements.

The transformation is most useful when each thread needs to access more than one element
anyway, and would do so using multiple sequential scalar accesses. If this is not the case, the
amount parallelism would have to be reduced in order to use the transformation, which may not
always be beneficial for performance.

Figure 15: Top: Scalar load using 8 threads to load 8 elements. Bottom: Vectorized load with
2 threads loading 4 elements each.

Figure 16 shows a very contrived example demonstrating scalar and vectorized loads in CUDA
C++. Each thread block has to copy 4 · 1024 elements into shared memory, and then needs to
do some additional work on the elements in shared memory. Note that the__shared__ qualifier
makes the memory be allocated as shared. The kernel on the left uses scalar loads with coalesced
access to global memory. Since the kernel needs to copy more elements than the block size, it has
to sequentially copy the elements to shared. In the end, each thread copies 4 elements to shared
memory using four load instructions. The kernel on the right instead performs a pointer cast for
the global and shared memory pointers with the reinterpret_cast<float 4*> statement.
In effect, each thread loads a float4 of 16 bytes into shared memory. This forces the compiler to
generate vectorized loads from global memory and a vectorized store into shared shared memory.
As a result, only a single global memory load instruction is needed while each thread of the
kernel still copies 4 elements from global memory to shared. The __syncthreads() is a CUDA
intrinsic function used for block level synchronization. It acts as a barrier, forcing all threads in
the block to reach this point before they can continue execution.

__global__ void scalar_load(float* gmem, int n){
int tid = blockDim.x * blockIdx.x + threadIdx.x;
__shared__ float smem[4 * 1024];
for(int i = 0; i < 4; i++){

int offset = i * 1024;
smem[offset + tid] = gmem[offset + tid];

}
__syncthreads();
// do some more work in shared memory

}

__global__ void vector_load(float* array, int n){
int tid = blockDim.x * blockIdx.x + threadIdx.x;
__shared__ float smem[4 * 1024];
float4 *vec_gmem = reinterpret_cast<float4 *>(
array);

float4 *vec_smem = reinterpret_cast<float4 *>(
smem);

vec_smem[tid] = vec_gmem[tid];
__syncthreads();
// do some more work in shared memory

}

Figure 16: The left and right CUDA snippets show a copy from global to shared memory. The
left uses scalar loads and the right shows vectorized loads.

Another form of ”vectorized load” is the ldmatrix family of PTX instructions, which allows
loading up to four 8 x 8 matrices of 16-bit elements from shared memory to registers using a single
instruction, which can result in significant speedups.
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2.2.4 Pipelining

Most arithmetic instructions in CUDA have a latency of 4 clock cycles. Comparatively, the latency
of global memory accesses is in the hundreds of clock cycles[12]. Hiding this latency, by interleaving
memory transfers with computation, is therefore an important step to ensuring efficient execution.
A common method for achieving this is double buffering, or more generally pipelining.

A common pattern is that, in a loop, data is transferred from some slower memory into a
faster ”buffer”, after which the data in the buffer is then used in some computation. In CUDA,
one example of this could be moving data from host memory to device memory, and then using
it for computation on the device. Another example is moving data from global memory to shared
memory, and then using it for a computation within the thread block. The same ideas can even
be applied when moving data from shared memory to registers, and then doing computation with
the data in registers, with the registers taking the role of the ”buffer”.

Note that these examples can and will often be nested, such that an outer loop first moves
data from host to device, and then runs a computation on the device, that in a loop moves data
from global to shared memory, and then runs a computation in each thread that in a loop moves
data from shared memory to registers and runs a computation using these. Additionally, data will
often also have to be moved back to slower memories. Such cases are omitted here for simplicity,
but similar optimizations as the ones described below can also be used for these transfers.

Below, a simple code snippet exhibiting the pattern of data transfer followed by computation
in a simple single-threaded setting is given:

Listing 4:

1 for (i = 0; i < N; i++) {
2 X = Y[i];
3 f(X);
4 }

It should be clear that there is a read-after-write dependence from the statement on line 2 to
the statement on line 3 within each loop iteration, which means the two statements cannot run in
parallel.

Additionally, if we assume that X refers to the same ”resource” i.e. register or memory location
in all loop iterations, there are also cross iteration dependencies, which means the individual loop
iterations also cannot run in parallel.

Figure 17 shows a simplified view of how a single buffer implementation like the code snippet
above will be executed, with no interleaving of data transfers and computation.

Figure 17: Single buffer loop.

Double buffering involves using 2 buffers instead of the single buffer from the previous example.
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With 2 buffers, we can start by writing into one buffer outside a loop, and then let each loop
iteration write into one buffer while reading from the buffer written into in the previous iteration.

The transformation of the previously shown code snippet using this optimization is shown
below:

Listing 5:

1 X0 = Y[0]
2

3 for (i = 1; i < N; i++) {
4 if (i % 2 == 1) {
5 X1 = Y[i];
6 f(X0);
7 } else {
8 X0 = Y[i];
9 f(X1);

10 }
11 }
12

13 if ((N - 1) % 2 == 1) {
14 f(X1);
15 } else {
16 f(X0);
17 }

Since the writing and reading of each loop iteration uses separate buffers, the data transfer
and computation within each loop iteration can now be run in parallel. It should, however, be
clear that there are still cross-iteration dependencies, since each iteration reads data written in the
previous iteration, giving a read-after-write dependency. Additionally, each iteration also writes to
the same buffer that was read from in the previous iteration, giving a write after read dependency.
Therefore, distinct loop iterations still cannot be run in parallel.

Figure 18 illustrates how execution of the double buffered program could progress. This shows
that in a best case scenario, with no overhead, fully parallel execution, and equal time required
for data transfer and compute, it is theoretically possible to achieve doubled throughput after the
first data transfer, by using double buffering.

Figure 18: Double buffered loop (2-stage pipeline).

Double buffering can be generalized to n-stage pipelining. This is especially useful when the
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data transfer has a much higher latency than the computation in each loop iteration. Figure 19
illustrates the execution of a triple buffered loop, in which which the latency of the data transfer is
twice the latency of the compute operations. Note that exactly one compute operation takes place
at any point in time after the initial data transfers, which means that no 2 computation operations
need to run in parallel, so each will have full access to the computational units of the processor.
Also note that all operations are still initiated at the same rate as in the double buffered example,
corresponding to a single data transfer and compute operation per loop iteration.

Figure 19: Triple buffered loop (3-stage pipeline) with doubled latency of data transfers.

In general, parallel execution of the data transfer and compute for each iteration could be
achieved using instruction level parallelism. However, in the context of CUDA, each data transfer
could be a copy from global to shared memory done by a group of threads, that all need access to
this data for a computation operation afterwards. In this case, double buffering can also enable
thread level parallelism. The listing below shows a naive CUDA implementation without double
buffering, largely resembling the previous single buffered code snippet:

Listing 6:

1 __shared__ int S[blockDim.x];
2

3 for (int i = 0; i < N; i++) {
4 S[threadIdx.x] = G[i * blockDim.x + threadIdx.x];
5 __syncthreads();
6 f(S, threadIdx.x);
7 __syncthreads();
8 }

Note that the first __syncthreads() is needed due to the intra-iteration read-after-write
dependency, while the second is needed due to cross-iteration dependencies, as described in the
previous single buffer example. It is therefore clear that neither instruction-level parallelism nor
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thread-level parallelism can be used to interleave data transfer and computation within a thread
block in this example.

Similarly to the previous example we can rewrite this example to use 2 separate buffers, as
shown below:

Listing 7:

1 __shared__ int S[2][blockDim.x]];
2

3 S[0][threadIdx.x] = G[0 * blockDim.x + threadIdx.x];
4

5 for (int i = 1; i < K; i++) {
6 int writeBuffer = i % 2;
7 int readBuffer = (i + 1) % 2;
8

9 S[writeBuffer][threadIdx.x] = G[i * blockDim.x + threadIdx.x];
10 f(&S[readBuffer], threadIdx.x);
11 __syncthreads();
12 }
13

14 f(&S[(K - 1) % 2], threadIdx.x);

One __syncthreads() statement has now been removed, allowing both thread-level and
instruction-level parallelism within each loop iteration, allowing the interleaving of data transfer
and computation.

As noted previously, it can be beneficial to generalize this optimization to n-stage pipelining.
However, the use of __syncthreads() requires all memory writes to complete before that point
in each iteration[12], which prevents having multiple data transfers in-flight during each iteration.
One can get around this by explicitly first reading from global memory to registers, then writing
from registers to shared memory in the iteration where the data is needed in shared memory.

A better solution, also for simple double buffering, available for the NVIDIA Ampere architec-
ture and newer, is to use asynchronous copies from global to shared memory. These instructions
have the benefit of not using any intermediate registers for data transfers, and their comple-
tion can be explicitly waited for when it is needed, instead of having to complete at the use of
__syncthreads().

2.2.5 Block-(Warp)-Register Tiling

Block tiling is a very general transformation that can be used for optimizing temporal locality of
reference [3]. It is general in the sense that it is not a transformation that is unique to matrix
multiplication, but such programs are often good illustrative examples of the transformation. We
use this as the base transformation for achieving good performance on our matrix multiplication
using Tensor Cores prototype in section 3. Therefore, we choose to show the transformation can
be applied on a matrix multiplication program, and then in section 3 show how the transformation
can be adapted to handle Tensor Cores. The walkthrough of the transformation is based on the
work in [3].

Loop stripmining is a basic transformation needed for block tiling. It is always safe to do
and it looks like the following:
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for(i = 0; i < N; i++){
//loop_body

}
⇒

for(ii = 0; ii < N/T; ii += T){
for(i = ii; i < min(ii + T, N); i++) {

//loop_body
}

}

Figure 20: Loop stripmining of a normalized loop.

The transformation splits up a normalized loop into two loop nests with the outer loop having
stride T and the inner loop with stride 1. A normalized loop is a loop starting from 0 going to
some variable bound N with stride 1.

Block tiling does loop stripmining on consecutive loops in a perfect loop nest and then
performs loop interchange inwards on the resulting loops of stride 1. The transformation is safe if
loop interchange is safe. Below we show a matrix multiplication program in C-like pseudo code.
forall denotes parallel loops and for denotes sequential loops. We use matrix multiplication
as the illustrative example of the full block register tiling transformation:

Listing 8: Capttion
1 forall(i = 0; i < N; i++) {
2 forall(j = 0; j < M; j++) {
3 float c = 0
4 for(k = 0; k < K; k++){
5 c += A[i,k] * B[k, j]
6 }
7 C[i,j] = c
8 }
9 }

We can notice that matrix A is invariant to the j loop and B is invariant to the i loop.
This makes it possible to optimize the temporal locality of the program. We can also use that
parallel loops are always safe to interchange inwards [3], and that the two outer loops of matrix
multiplication are parallel loops in a perfect loop nest. The program then meets the requirements
for block tiling, and we can apply the transformation with a stripmining factor of T on the two
outer loops, and we can also do loop stripmining on the k loop with a factor of T:

Listing 9: Capttion
1 forall(ii = 0; ii < N; ii += T) { //grid.y
2 forall(jj = 0; kj < M; jj += T) { // grid.x
3 forall(i = ii; i < ii + T; i++) { //block.y
4 forall(j = jj; j < jj + T; j++) { //block.x
5 float c = 0
6 forall(kk = 0; kk < K; kk += T){
7 // shared memory copy
8 //...
9 // shared memory copy done

10 forall(k = kk; k < kk + T; k++){
11 c += A[i,k] * B[k, j]
12 } }
13 C[i, j] = c
14 } } } }

On the transformed program, a comment indicates how the parallel loops can be mapped to
the threads in a CUDA program. We can spawn a N/T × M/T grid of blocks, with each block
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consisting of a 2D group of T × T threads. Now we can reason about the access patterns of the
threads in a CUDA block. Within the inner loop of index k, each thread in the T × T block does
2T accesses to global memory to load the values from A and B. Across all threads, this a total
of 2T 3 accesses to global memory. By inspecting the indexing and the loop bounds for the loop
variable i, j, k we can see that we only read T 2 distinct elements from A and B. With this in mind,
we can copy the T 2 distinct elements of A and B into shared memory just before the k loop, and
instead use shared memory to read the values of A and B in the innermost loop. This has a reuse
factor of T and temporal locality has thereby increased by reducing the number of accesses to
global memory.

As previously mentioned in subsubsection 2.1.3 there is an additional layer of on chip memory
for GPUs; namely the thread local registers. This allows for an additional level of tiling for better
register reuse. The exact tiling strategy will however depend on whether the Tensor Cores are
used and also which type of Tensor Core to use. For the sake of simplicity. we will show how
register tiling can be applied a the thread level without Tensor Cores, and adapt the strategy to
handle Tensor Cores later on. Instead of stripmining the two outer parallel loops with a tiling
factor T we will instead double stripmine them with a tile size T · R and stride R and then by a
tile of size R and stride 1. The stride 1 loops are then interchanged inwards. Just as before, T
denotes the block tile size and R denotes the register tile size. Similarly, the sequential k loop in
Listing 8 is also double stripmined with the same tile and stride sizes. The result becomes:

Listing 10: Capttion
1 forall(iii = 0; iii < N; iii += T*R) { //grid.y
2 forall(jjj = 0; jjj < M; jjj += T*R) { // grid.x
3 forall(ii = iii; ii < iii + T*R; ii += R) { //block.y
4 forall(jj = jjj; jj < jjj + T*R; jj += R) { //block.x
5 forall(i = ii; i < ii + R; i++) {
6 forall(j = jj; j < jj + R; j++) {
7 float c = 0
8 forall(kkk = 0; kkk < K; kkk += T*R){
9 forall(kk = kkk; kk < kkk + T*R; kk += R){

10 forall(k = kk; k < kk + R; k++){
11 c += A[i,k] * B[k, j]
12 } } }
13 C[i,j] = c
14 } } } } } }

To complete the block register tiling transformation, we need to distribute all, but the parallel
grid, loops across its statements and perform array expansion for the accumulator c. The final
result of the transformation is shown in Listing 11. Notice that the stripmined loops with indices
i, j have been sequentialized, and that the indexing to A is invariant to the j loop. We could
therefore hoist the indexing into A out of the j loop into a register variable float a = A[i,k],
and then compute float c_ = a * B[k,j]. The sequentialization of the two innermost loop
makes each thread compute a register tile of size R × R as part of the final output. Also notice
that as a side effect of register tiling, each thread has to load R elements into shared memory. This
copy could therefore benefit from vectorized loads and stores as described in subsubsection 2.2.3.
As a last side note, the copy to shared can also be subject to pipelining in conjunction with
vectorization as a way to hide the memory load latency with overlapping compute. The details of
this will be discussed in section 3.
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Listing 11: Caption
1 forall(iii = 0; iii < N; iii += T*R) { //grid.y
2 forall(jjj = 0; jjj < M; jjj += T*R) { // grid.x
3 float c[T][T][R][R]
4 forall(ii = iii; ii < iii + T*R; ii += R) { //block.y
5 forall(jj = jjj; jj < jjj + T*R; jj += R) { //block.x
6 for(i = ii; i < ii + R; i++) {
7 for(j = jj; j < jj + R; j++) {
8 c[ii - iii][jj - jjj][i - ii][j - jj] = 0
9 forall(ii = iii; ii < iii + T*R; ii += R) { //block.y

10 forall(jj = jjj; jj < jjj + T*R; jj += R) { //block.x
11 forall(kkk = 0; kkk < K; kkk += T*R){
12 // Copy to shared here. Could use vectorization.
13 forall(kk = kkk; kk < kkk + T*R; kk += R){
14 for(k = kk; k < kk + R; k++){
15 for(i = ii; i < ii + R; i++) {
16 for(j = jj; j < jj + R; j++) {
17 float c_ = A[i,k] + B[k,j]
18 c[ii - iii][jj - jjj][i - ii][j - jj] =

c_
19 } } } } } } }
20 forall(ii = iii; ii < iii + T*R; ii += R) { //block.y
21 forall(jj = jjj; jj < jjj + T*R; jj += R) { //block.x
22 forall(i = ii; i < ii + R; i++) {
23 forall(j = jj; j < jj + R; j++) {
24 C[i,j] = c[ii - iii][jj - jjj][i - ii][j - jj]
25 } } } } } }

Especially when using Tensor Cores, it makes sense to add an additional layer of tiling between
blocks and threads, namely warp tiling. This is analogous to the other forms of tiling, and it is used
to ensure reuse of the values stored in the registers of each thread participating in the warp-level
Tensor Core operations.

2.2.6 Tuning for Occupancy

Occupancy is measured as the ratio between active warps on an SM and the maximum number of
active warps running on the SM [16]. According to [16], a warp is considered active from the time
its threads begin execution to the time they have all finished execution. The theoretical maximum
amount of active warps depends on the compute capabilities of the hardware and can be found in
[12]. It was mentioned in subsection 2.1 that GPUs can hide latency with compute. This might
however not be possible if the occupancy is low, since there may be no warps eligible to hide the
latency incurred by dependent instructions. For instance, a warp could be waiting for some data
to arrive, but due to poor occupancy, there is no other warp that can run and thereby hide the
latency.

On the other hand, the ability to have multiple thread blocks resident on a single SM can
potentially allow latency hiding not possible with a single blocks per SM. For example, in cases
like Listing 6, having a single block per SM would allow no parallelism between data movement
and compute within the SM. However, having multiple blocks per SM would allow thread-level
parallelism between threads of different blocks within the SM, since blocks are independent of
each other by definition. Running multiple blocks per SM is not always possible, however, as it
requires limiting resource usage.

Each SM has a limit on the number of blocks that can reside on it, the number of threads/warps
that can reside on it, the register file size, and the amount of shared memory. These limits are
shown for the NVIDIA A100 in Table 2.
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Thread Blocks Threads/Warps Register file size Shared memory size
32 2048/64 262144 B 167936 B

Table 2: Resource limits for a single SM on an NVIDIA A100[12].

These resources are shared between the threads in the thread block(s) running on the SM, and
these restricted resources can therefore limit the achieved occupancy of a given kernel launch. For
example, to achieve 100% occupancy on the A100, there must be 64 active warps per SM. Since
there is a limit of 32 warps per thread block, this can be achieved by having e.g. 2 thread blocks of
32 warps resident on a single SM. These thread blocks must then use at most 167936B/2 = 83968B
of shared memory, and each thread must use at most 262144B/2048 = 128B bytes of the register
file, corresponding to 32 32-bit registers. Note that using more than 48 KB of shared memory in
a single block requires the use of dynamic shared memory, which has to be requested explicitly at
the kernel launch.

In most cases, configuring a kernel launch to achieve 100% occupancy does not guarantee
that this configuration also achieves the best performance, since this severely limits the resources
available to each thread, and could for example require register spilling. Instead, there is often a
trade-off between achieving higher occupancy, and doing work more efficiently in each thread.

For example, when doing block-register tiling as described above, increasing the size of block
tiles increases the amount of shared memory reuse, but also increases the amount of shared memory
used per thread block, which can limit the amount of thread blocks that can reside on each SM.
Similarly, increasing the size of the register tile increases the amount of register reuse, but also
increases the amount of registers used per thread, which limits the amount of threads that can
run on a single SM without spilling. The pipelining optimization discussed earlier also comes with
this kind of trade-off, as it also increases the amount of shared memory per block or registers per
thread.

These kinds of trade-offs means that in order to achieve maximal performance in CUDA, the
launch configurations for a given program must be fine tuned to the resources available on the
GPU it will be run on. Although it is fairly straightforward to calculate theoretical occupancy,
finding optimal configurations in terms of overall performance is often best done by simply running
different configurations and benchmarking these, similar to what is done by futhark autotune.
However, understanding the hardware limits allows quickly ruling out some configurations, and
can help explain why some configurations perform better than others.

2.3 Futhark
This section aims to demonstrate both Futhark the language and the underlying compiler. We
will show how parallelism is expressed in Futhark, and introduce a few small example programs
that will later be reused to show how the parallel constructs can take advantage of tensor cores.
A brief overview of the compiler is also given.

2.3.1 The language

Futhark is a statically typed, data parallel and purely functional array language [17]. It is in the ML
family of languages, and in many aspects feel very similar to languages like SML, OCaml, Haskell or
similar. All parallelism is made explicit by means of second order array combinators (SOACS) that
have implicit parallel semantics. The compiler will not try to automatically parallelize something
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that could be run in parallel, such as loops. This skeleton based approach of expressing parallelism
by SOACS enables simple, elegant, and optimized code generation such as single pass scan [18]
or the multi-histogram implementation [19]. We will later see how a matrix multiplication routine
can be written in Futhark using these parallel building blocks. Below, all the SOACS are given
together with a brief and informal algorithmic overview of their semantics. Although reduce and
scan might look similar to a fold from the ML languages, they are very different as they have
parallel semantics and require that the binary operator is associative and has a neutral element,
and fold has sequential semantics with no restrictions on the operator. reduce_by_index
puts further restrictions on the operator and requires it to be commutative.

• reduce ⊕ e [xs]: (α → α → α) → α → [n]α → α computes a generalized reduction
using the associative binary operator ⊕ with neutral element e. In C-like pseudo-code using
addition as the operator it computes:

Listing 12: Caption
1 int res = e
2 for(i = 0; i < n; i++) {
3 res = res + xs[i]
4 }

• map f [xs]: (α → β) → [n]α → [n]β applies its function f to each element of the input array.
This is like in any functional language, but f is required to be pure4.

• scan⊕ e [xs]: (α → α → α) → α → [n]α → [n]α computes a generalized prefix sum. Again,
instantiating the associative binary operator with addition, scan computes the prefix sum:

Listing 13: Caption
1 int res[n]
2 for (i = 0; i < n; i++) {
3 if (i == 0)
4 res[i] = e + xs[i]
5 else
6 res[i] = res[i-1] + xs[i]
7 }

• reduce_by_index [dest] ⊕ e [is] [xs]:
∗[m]α → (α → α → α) → α → [n]i32 → [n]α → ∗[m]α
At a first glance, reduce_by_index looks like an unusual operator. It is a generalized
histogram computation, where the elements in xs are reduced into the m distinct buckets
using the indices is with out of bounds indices being discarded. Using addition as the
commutative binary operator, reduce_by_index does a histogram computation:

Listing 14: Caption
1 int dest[m] = {e} // all elements of outputs initialized to e
2 for (i = 0; i < n; i++){
3 int index = is[i]
4 int x = xs[i]
5 if (index < m && index > 0)
6 dest[index] = dest[index] + x
7 }

4Futhark is a pure language, and this requirement is therefore trivial.
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2.3.2 Writing Futhark Programs

Parallel programs written in Futhark are made up of a nested compositions of data parallel op-
erators like scan, reduce and map as introduced previously. Futhark programs are much more
high level than CUDA - there is no direct manipulation of memory as the language uses reference
counting and automatically manages memory on the host and device. In fact, the notion of mem-
ory is introduced in very late compilation stages together with related memory optimizations [20].
The language also guarantees that data races do not exist by construction of all parallelism being
expressed through SOACS. This makes writing a matrix multiplication routine almost trivial in
futhark through a map-reduce composition:

Listing 15: caption
1 let dotproduct [n] (x: [n]f32) (y: [n]f32) =
2 map2 (*) x y |> reduce (+) 0
3 let matmul [m][n][q] (A: [m][q]f32) (B: [q][n]f32) : [m][n]f32 =
4 map (\ Arow ->
5 map (\Bcol ->
6 dotproduct Arow Bcol)
7 (transpose B)
8 ) A

The program expresses matrix multiplication as the dot product between each row of A with
each column of B. Notice that the reduction uses the monoid5 (+, 0) to reduce the mapped result
to a single f32 result. The Futhark compiler is a highly optimizing compiler, and it is up to
the compiler to generate as efficient code as possible given a program using SOACs to express all
parallelism. For this program, the compiler applies a block register tiling transformation like the
one described in subsubsection 2.2.5.
Below we give a slightly different program. It uses the Futhark loop construct. This is a sequential
loop that iteratively accumulates a result similar to tail recursive functions, where the result of
each loop iteration is the input to the next iteration. The program is similar to flash attention in
that matrix multiplication is repeatedly computed in a loop:

Listing 16:
1 def attention_like [q] (A: [m][k]f16) (B: [q][k][n]f16) : [m][n]f32 =
2 let acc_init : *[m][n]f32 = replicate (m * n) 0.0f32 |> unflatten in
3 loop (acc : *[m][n]f32) = (acc_init: *[m][n]f32) for i < q do
4 let C' = matmul A B[i]
5 in map2(map2 (+)) acc C'
6 def main [q][p] (A: [p][m][k]f16) (B: [p][q][k][n]f16) =
7 #[incremental_flattening(only_intra)]map2 attention_like A B

The program has a special attribute, namely #[incremental_flattening(only_intra)],
instructing the compiler on the flattening strategy to use. The futhark compiler makes use of regu-
lar flattening [21] to map regular nested parallelism efficiently to the different layers of parallelism
on the GPU. It was therefore a simplification to say that matrix multiplication programs automat-
ically are subject to block register tiling. In fact, the block register version is one manifestation
of the program that takes advantage of the two levels of parallelism on a GPU: An outer map
over the blocks on the kernel grid and an intragroup kernel computing a block register tile. By
intragroup kernel, we refer to the the parallel operation being mapped to the threads in a cuda
thread block. These can often be executed efficiently since the threads has accessed to shared

5A monoid is the pair of an associative operator ⊕ with neutral element e.
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resourced such as shared memory. For the full tiling strategy generated by the compiler see [11].
A fully flattened version is also created that fully exploits all parallelism in the program. Full
flattening will ruin any hopes of good locality, but it might be beneficial if the two levels of par-
allelism cannot saturate the GPU. For this reason, the Futhark runtime system will choose the
version to execute depending on the size information of the input arrays. There is much more to
be said about flattening and how it is implemented in Futhark. We refer to [21] for more details
about flattening, and [22] for the background about how Futhark uses autotuning to select the
most appropriate program version at runtime.

In the attention like Futhark program above, the annotation tells the compiler to only generate
the version where the parallelism inside the attention_like function is exploited using blocks
of threads. This way, the outer map2 is mapped to the CUDA kernel grid and the parallelism
inside the attention_like function becomes an intragroup kernel mapped to the CUDA block
that does matrix multiplication. Since the attention_like function will execute at the block
level, we can reason that if the dimensions of the arrays for matmul are exactly those required
for a Tensor Core matrix multiplication, so the compiler could map the computation directly to
the Tensor Cores.

2.3.3 A quick compiler overview

The Futhark compiler has a very typical compiler architecture consisting of three main parts: the
frontend, middle-end and a backend. Figure 21 gives an overview of the different stages of the
compiler when compiling a GPU program.

Figure 21: Overview of the Futhark compiler stages. The red square boxes correspond to passes
that were added to the middle-end or new code generation in the backend. Named arrows show
the current IR representation.

Frontend
The frontend is responsible for parsing and type checking a Futhark source program. An internali-
sation is then performed that turns the source program into core IR. The core IR is parameterized
over a representation and, depending on the compilation pipeline, this representation will gener-
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ally get transformed into other kinds of representation. In all cases however, the output of the
frontend is Futhark core IR on the SOACS representation.

Middle-end
Most optimizations of the compiler take place in the middle-end. Multiple passes on the IR can
be composed into a pipeline. Figure 21 shows two pipelines for generating GPU code: a GPU
pipeline on the GPU representation and a GPU pipeline that adds memory information using the
GPUMem representation. We refer to [20] for details about the memory representation in Futhark
IR.

Backend
The backend takes an IR program with memory information such as GPUMem and eventually
converts it to a C-program for the host code and CUDA program for device code. As a stepping
stone for code generation, the backend first converts the GPUMem IR program to a high level
imperative code form, ImpCode, through the ImpGen pass.

3 Prototypes
Before beginning to modify the Futhark compiler, we wanted to write, by hand, a prototype
demonstrating efficient matrix multiplication using Tensor Cores in CUDA. The main purpose of
this was to first of all get first-hand experience with programming the Tensor Cores, and through
this learn the tricks and optimizations required to use them to their full potential. We also wanted
to identify a set of core ”components” or ”primitives” that could be inserted by a compiler, enabling
it to flexibly and efficiently use the Tensor Cores in its output code.

3.1 Pure CUDA
The first prototype was done in ”pure” CUDA, i.e. no non-core libraries. One of the first challenges
with this approach was that many Tensor Core specific operations are not exposed by the CUDA
API.

In particular, the swizzling optimization mentioned in subsubsection 2.2.2 cannot be used in
combination with the only function exposed by the CUDA API for loading Tensor Core arguments,
load_matrix_sync, corresponding to the wmma.load family of PTX instructions. This is due
to the fact that these instructions require a constant stride between the rows of the matrix being
loaded, which is not the case after swizzling.

The ldmatrix family of PTX instructions are much more flexible in this regard, since they
take as arguments a pointer to each row of the matrix to be loaded. However, these instructions
are not exposed by the CUDA API, thus requiring the use of inline PTX.

The mma_sync function is the only function exposed by the CUDA API that uses the Ten-
sor Cores for matrix multiplication. This function takes as arguments objects initialized by
load_matrix_sync, and the exact representation of these objects is opaque according to the
documentation[12]. Therefore, to use mma_sync, it is necessary to also use load_matrix_sync
and we cannot load the registers to use in the mma computation using regular loads. Therefore,
we again had to resort to inline PTX and use the mma family of PTX instructions.

We also ran into some unexpected performance issues when using asynchronous copies for
transferring data from global to shared memory, as described in subsubsection 2.2.4. Through
some testing and debugging, we were able to fix these issues by removing some conditionals
around the asynchronous copies related to bounds checking.

38



As far as we can tell, the performance issues were due to the fact that the conditionals prevented
the asynchronous copies from being fully coalesced, even though synchronous copies with the same
conditionals and access patterns were fully coalesced. It may be the case that this is simply a
restriction one must keep in mind when using these asynchronous copies, however if this is the
case, these restrictions are not well documented in [12].

The cp.async family of PTX instructions does provide alternatives to regular bounds check-
ing, perhaps due to the exact performance issues described above. However, these alternatives
are not accessible through the memcpy_async API available in CUDA, and one must instead
use the special primitive __pipeline_memcpy_async, which provides limited access to this
functionality with an interface more closely resembling the PTX instructions. Alternatively, we
can again use inline PTX to gain full access to this functionality.

In the end, we did manage to get a working and fairly efficient implementation in pure CUDA,
but in order to achieve this high performance, the code ended up being quite complex, which
would in turn make it more complex to generate similar code in the compiler. The complexity
was in part due to the use of inline PTX as described above. Much of the complexity also came
from index calculations, which were especially complicated by the use of the tiling and swizzling
optimizations described earlier. For these reasons, we decided to implement another prototype,
this time using NVIDIA’s open source library Cutlass.

The full implementation of the pure CUDA prototype can be seen at https://github.
com/caymand/mma/blob/main/src/cuda_prototype/matmul-tensor.cuh.

3.2 Cutlass/CuTe
Cutlass contains full implementations of matrix multiplication using e.g. a whole device, thread
block, or warp. However it also contains CuTe, a ”sub-library” of abstractions for working with
multidimensional data in CUDA, and in particular also for programming Tensor Cores. This
library is used to provide building blocks for many of the linear algebra program implementations
in Cutlass.

Using this library allows us to write much simpler code, since it abstracts away much of the
complicated index calculations and calling of inline PTX. Additionally, the library’s rich usage
of template arguments makes it easier to parameterize our code over things like types, sizes, and
architectures, which might otherwise require a lot of code to enable support for each possible
option. It also gives us a higher level of control and flexibility, and allows us to better modularize
our code, compared to using a full standalone implementation. These features are very useful, if
not necessary, when we want to generate code like this in the Futhark compiler.

Apart from using a full matrix multiplication implementation, the simplest way to do tiled
matrix multiplication using CuTe, is to use a main loop like the one shown below.
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Listing 17: Simple main loop for tiled matrix multiplication using CuTe

1 for (int k_tile = 0; k_tile < k_tile_max; k_tile++)
2 {
3 // Copy global -> shared
4 copy(global_shared_tiled_copy_A, tAgA(_,_,_,k_tile), tAsA);
5 copy(global_shared_tiled_copy_B, tBgB(_,_,_,k_tile), tBsB);
6 __syncthreads();
7

8 // Tiled matrix multiplication with input in shared memory,
9 // accumulated in registers

10 gemm(tiled_mma, tCsA, tCsB, tCrC);
11 __syncthreads();
12 }

Here, A_global_shared_tiled_copy and B_global_shared_tiled_copy, and
tiled_mma are special CuTe structs that define how copying from global to shared, and matrix
multiplication is done, respectively. The structs define both the PTX instructions to use for
copying and matrix multiplication, and the mapping of threads and values. copy and gemm
are CuTe functions that use these definitions to actually perform the operations using the given
arguments.

The variables starting with a lower case ”t” are all CuTe tensors, which are defined by a pointer
to an array, and a layout of this array. The use of this tensor interface greatly simplifies indexing
and tiling.

The main complexity in the above implementation is not shown in the code snippet, but in-
volves initializing the tensors, and the copy and mma structs in a way that is both valid and allows
for optimal performance. As a part of this initialization, we can apply most of the optimizations
described in subsection 2.2. By configuring the copy structs and the layout of the tensors rep-
resenting shared memory, we can use swizzling, and ensure fully coalesced and bank conflict free
memory accesses. In a similar manner we can also make the kernel use both vectorized and asyn-
chronous loads. If asynchronous loads are used, these also need to be committed and awaited,
which can be done using the CuTe functions cp_async_fence and cp_async_wait, which
simply calls the corresponding PTX instructions using inline PTX.

Listing 18 shows how the kernel can be configured to use a swizzled layout for A in shared,
and to use asynchronous, vectorized copies from global to shared, using 16 · 8 = 128 threads to
copy 64× 64 elements.
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Listing 18:

1 TiledCopy copyA_global_shared = make_tiled_copy(
2 Copy_Atom<SM80_CP_ASYNC_CACHEGLOBAL<uint128_t>, half_t>{},
3 Layout<
4 Shape<_16, _8>,
5 Stride<_8, _1>
6 >{},
7 Layout<Shape<_1, _8>{}
8 );
9

10 auto sA_layout = tile_to_shape(
11 composition(
12 Swizzle<3,3,3>{},
13 Layout<
14 Shape <_16, _64>,
15 Stride<_64, _1>
16 >{}
17 ),
18 make_shape(shared_M, shared_K)
19 );
20

21 Tensor sA = make_tensor(make_smem_ptr(smemA), sA_layout);
22

23 ThrCopy thr_copyA_global_shared = copyA_global_shared.get_slice(threadIdx.x);
24

25 Tensor tAgA = thr_copyA_global_shared.partition_S(gA);
26 Tensor tAsA = thr_copyA_global_shared.partition_D(sA);

It is also clear that Listing 17 resembles the code snippets shown in subsubsection 2.2.4, which
means we can rewrite the main loop and apply the pipelining optimization, in order to hide the
large latency of the loads from global memory.

Another possible optimization is to implement the copying of data from shared memory ex-
plicitly, and call gemm with elements of A and B in registers rather than in shared memory. This
allows explicit pipelining of the movement of data from shared memory to registers, and allows
using the ldmatrix family of PTX instructions to ”vectorize” the loads from shared memory to
registers.

Listing 19 shows how tiled_mma can be instantiated using templating, and used to create
some of the tensors used in Listing 17. The code shown defines a TiledMMA struct that uses the
PTX instruction mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 to perform
mixed precision matrix multiplication. The 2 x 2 x 1 Layout is the layout of warps that will be
performing the instruction in parallel, i.e. a total of 4 warps or 128 threads in this case. The 32
x 32 x 16 Tile defines the total size of the tile in terms of elements in each dimension. It should
be noted here that if each of the 2 x 2 x 1 warps only ran the mma instruction once the size of the
computed tile would only be 32 x 16 x 16. The Tile parameter causes the mma instruction to
instead be run 2 times in the N dimension in each warp, so that the total size of the computed
tile is instead 32 x 32 x 16. This ensures that we can use the largest vectorized load possible for
elements of both A and B, i.e. the version of ldmatrix that loads 16 x 16 elements in each
warp. The matrix elements will be distributed into thread registers of each warp similarly to what
is shown in Figure 4, except that this pattern will be extended in the N dimension so each warp
computes a 16 x 16 tile of C.
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Listing 19:

1 TiledMMA tiled_mma = make_tiled_mma(
2 MMA_Atom<SM80_16x8x16_F32F16F16F32_TN>{},
3 Layout<Shape<_2,_2,_1>>{},
4 Tile<_32, _32, _16>{}
5 );
6

7 ThrMMA thr_mma = tiled_mma.get_slice(threadIdx.x);
8

9 Tensor tCgC = thr_mma.partition_C(gC);
10 Tensor tCrC = thr_mma.make_fragment_C(tCgC);
11

12 Tensor tCsA = thr_mma.partition_A(sA);
13 Tensor tCsB = thr_mma.partition_B(sB);

The full implementation of the prototype using CuTe can be seen at https://github.
com/caymand/mma/tree/main/src/cuda_prototype. For the CuTe prototype we used
3 different kernels corresponding to 3 different main loops, these are in matmul-cutlass-
simple.cuh, matmul-cutlass-sync.cuh, and matmul-cutlass.cuh in this repository.

3.3 Evaluation

Figure 22: Achieved performance in TFLOPS using mixed precision tensor core operations on an
NVIDIA A100 for the best configurations of our 2 prototypes, compared to cuBLAS. All results are
averaged over 20 runs. Left: Performance in TFLOPS for matrix multiplication of size n×n×n, as
a function of n. Right: Performance in TFLOPS for matrix multiplication of size 4096×4096×k,
as a function of k.

Figure 22 compares the performance of our 2 prototype programs. The performance of cuBLAS
is shown as a state-of-the-art reference. It should be noted that the performance shown for our
programs is for the best configuration we were able to find manually for the given problem size.
We did not explore the entire search space, so it is possible that better configurations exist for
some problem sizes. The cuBLAS function used selects the configuration automatically based on
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problem size and type, which could incur a very small runtime overhead. However, this overhead
should be negligible for larger problem sizes.

Our pure CUDA implementation achieves 62-69% of the performance of cuBLAS, while the
version using CuTe reaches 94-100%, and even beats cuBLAS for some problem sizes. In addition
to the added performance, the implementation using CuTe allowed for both less, and much more
readable code, compared to the pure CUDA implementation. This is mainly due to the fact
that much of the index calculations and calls to PTX instructions are abstracted away. However,
understanding all of the building block provided by CuTe did take some time, and although most
where well documented, it was still not trivial to combine the building blocks into a solution with
performance close to that of cuBLAS.

There is no precompiled ”magic” in CuTe, as it is a fully open-source header-only library, so
it should of course be possible to have a pure CUDA implementation reach similar performance.
We believe there are multiple reasons why our pure CUDA version does not achieve this. For one,
we can see from compiler output that the pure CUDA version generally uses more registers than
the CuTe version even when using the same configuration in terms of block and shared memory
buffer size. This means that some configurations cannot run without spilling registers, which is
very bad for performance. This discrepancy could probably be removed by further optimizing the
pure CUDA version to make more efficient use of registers.

The compiler output also shows that the pure CUDA version has many more instructions that
are not directly used for data movement or MMA, compared to the CuTe version. For comparison
the length of the SASS6 program generated by the compiler is 1612 instructions for the pure
CUDA version, while only 606 for the CuTe version, even though the number of instructions used
for MMA are roughly the same. This could perhaps be caused by inefficient index calculations, or
insufficient use of static calculations in the pure CUDA version.

In order to get an understanding of the effects of our various optimizations, we also ran simple
benchmarks for different variations of our CuTe prototype. The benchmarks simply consisted
of measuring the execution time for a number of matrix multiplications between relatively large
matrices. The time used to move data to the GPU and back was not included. We convert the
measured time into floating point operations per second (FLOPS) by dividing the total number
of floating-point operations in the calculation, i.e. 2 ·M ·N ·K per matrix multiplication, by the
execution time. Figure 23 shows an excerpt of these benchmarks.

6An even lower-level assembly language than PTX, which compiles to the binary microcode run natively on
NVIDIA GPUs.
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Figure 23: Comparison of performance in TFLOPS, i.e. 1012 FLOPS using various optimizations.
The performance is averaged over 20 runs of mixed-precision matrix multiplication with M =
N = K = 4096. The benchmarks were run on an NVIDIA A100. The performance of cuBLAS
is shown as a state-of-the-art reference. Note that the optimizations shown are incremental, such
that each version uses all optimizations listed to the left of it. The order was chosen by at each
step applying the single optimization that improved performance the most. The baseline version
uses a main loop very similar to the one shown in Listing 17. All versions use 256 threads per
block and shared memory buffers with m = 128 n = 256 and k = 64.

The above plot can be used as a form of step-by-step guide on how to best improve performance
of matrix multiplication using Tensor Cores, and the performance to be expected at each step.
However, it is of course possible, and could also be beneficial, to implement the optimizations in
a different order, or only use a subset of optimizations not shown in the graph. For example, our
benchmarks showed that the combination of swizzling, vectorized copies from global to shared,
and asynchronous copies resulted in almost the same performance as the version labeled ”Double
buffering” in the plot, while still allowing it to use the very simple main loop from Listing 17.
The reason why this is relatively efficient even without double buffering is likely that the use of
asynchronous copies frees up some registers which can result in better occupancy, and prevent
register spilling,
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It should be noted that occupancy optimization is not taken fully into account in the above
plot, and some versions did perform slightly better with different sizes of blocks and shared memory
buffers. However, we tried to pick a size for the blocks and shared memory buffers that generally
performed well for all versions, and prevented large amounts of register spilling. The best way
to do this sort of benchmarking would probably be to find the best configuration of each version
under some resource constraints and compare these to each other. However, as noted earlier, this
sort of optimization can be very tedious and require lots of trial and error.

4 Compiler Modifications
To investigate the feasibility for Tensor Core operations in the CUDA backend of the Futhark
Compiler, we try to implement the least amount of modifications to the compiler. The general
strategy is to have the compiler recognize matrix multiplication inside of an intragroup kernel, and
replace the matrix multiplication code with special function calls that are opaque to the compiler.
Instead of having the compiler generate code for our special functions, we include a header file
with their implementation. To gauge the feasibility of such a solution our first step was to perform
these code transformations by hand on the Futhark IR. After this had shown promising results,
we continued with modifying the compiler.
In the next subsection we start by giving an overview of how we have modified the compiler to
support operations using tensor cores. Afterwards, the remaining subsections go into details about
the added compiler passes and modifications.

4.1 Code Generation Strategy
At a very hight level, our compiler modifications take the following approach to utilizing the Tensor
Cores:

1. Make the compiler recognize matrix multiplications that are suitable to execute on the
Tensor Cores.

2. Transform the IR to make use of special functions that abstract out hardware specific Tensor
Core operations.

3. Massage the compiler to accept the new special functions.

4. Have the code generation step generate CUDA code utilizing Tensor Cores within the special
functions.
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Figure 24: Overview of the compilation pipeline for a GPU program.

The first and second part is most conveniently done on a high level IR program representation
without any notion of memory. In the compiler, this IR is known as the GPU IR. We implement
a new module called TensorCores with a pass named extractTensorCores working on the
high level GPU IR. See the corresponding pass in Figure 24. The pass pattern matches intragroup
kernels7, checking if they correspond to matrix multiplication, and transforms the intrgroup kernel
into code that uses the Tensor Cores by calling special functions. Whenever the pattern match
fails, the code is left unmodified. We go into more detail about how we recognize possible tensor
core operations in subsection 4.3 and subsection 4.3 shows each step of our transformation.

Later stages of the Futhark compiler work on an IR representation with memory information.
This IR is called GPUMem (see Figure 24), and it is at this stage of the compiler that memory
allocations are added. For the third part about massaging the compiler into accepting our special
functions, the generated functions are opaque to the compiler, and the memory allocations might
therefore be suboptimal. As an example, it might happen that the compiler allocates the argu-
ments for our special functions in global memory instead of shared memory. This happens because
the compiler does not know where our special functions are being called from, and conservatively
the arguments are allocated in global memory. We however know exactly how our special functions
are to be used, and we can therefore implement another pass tensorCoreMemFixup in the same
TensorCores module that tries to fix up the memory problems created by the compiler. This
pass works on the GPUMem representation of the IR, and it will run in the GPU memory pipeline
of Figure 24. We describe this pass in more detail in subsection 4.4.

For generating code utilizing Tensor Cores, we mostly rely on CUDA C++ templating to
generate code for specific problem instances, rather than implementing this part of the code gen-
eration in Haskell, as is done in the rest of the Futhark compiler. We do this by adding a CUDA
header file with the implementation of three special template functions, and we can then compile
this together with the rest of the generated code. Our only modification to the code generation is
simply to ignore any function definition with the same name as one of our special functions. Imple-

7Code that runs at the level of threads in a CUDA block
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menting this part of the code generation using CUDA C++ templating rather than Haskell allows
for easier integration with the templating used in CuTe, while still allowing us to parameterize our
code generation over e.g. matrix and block sizes determined by our the pattern matching of our
initial compiler pass. In subsection 4.2 we discuss the implemented header library in more detail.

We will be using the below code listing as a running example to show our code transformations
and the transformation criteria we use. The program represents a batched matrix multiplication
with an outer map containing an intragroup kernel corresponding to matrix multiplication. As
a brief reminder, when we mention an intragroup kernel, we simply refer to a parallel operation
executed by the threads in a CUDA block.

Listing 20:
1 let dotproduct x y =
2 map2 (*) x y |> map f32.f16 |> reduce (+) 0
3 let matmul [m][n][k] (A: [m][k]f16) (B: [k][n]f16) =
4 map (\ Arow ->
5 map (\Bcol ->
6 dotproduct Arow Bcol)
7 (transpose B)
8 ) A
9 def matmul_intra [q] (A: [q][16][16]f16) (B: [q][16][16]f16) =

10 #[incremental_flattening(only_intra)]map2 matmul A B

4.2 Tensor Core Header Library
Using our prototype implementations as a reference, we created 3 functions that could be used in
the CUDA code output by the Futhark compiler, allowing it to take advantage of the Tensor Cores.
One function for copying data from global to shared memory using special PTX instructions, one
function for performing matrix multiplication on the data in shared memory using Tensor Cores
and accumulating the result in registers through another PTX instruction, and one for copying
the results from registers to shared memory. Figure 25 shows where in the backend the special
functions are implemented.
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Figure 25: Depiction of where the header library is implemented in the compiler.

The purpose of the copy functions is to allow us to manage the layouts of registers and
shared memory using CUDA/CuTe code rather than Futhark IR. This makes it easier to han-
dle architecture- and type specific register layouts, such as the one shown in Figure 26, as well as
swizzled shared memory layouts, which would be more complex to do in the Futhark IR. Addi-
tionally the copy functions give us full control over the optimizations applied when copying.

Figure 26: Layout of threads and values in registers after 16 × 8 × 16 f16 or f16/f32 mixed
precision mma computation.
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When composed, the 3 functions can be used to efficiently implement a range of different pro-
grams containing matrix multiplication, including both batched matrix multiplication of relatively
small matrices and tiled matrix multiplication of larger matrices. The functions can apply many
of the optimizations listed in subsection 2.2, but pipelining and block tiling cannot be performed
from within these functions, and must instead be done in the calling code.

In addition to the 3 special functions, the header library also contains some templated structs,
used for selecting configurations at compile time, based on the available information of e.g. types
and sizes. As an example, Listing 21 shows how the type of TiledMMA used is instantiated for
f16/f32 mixed precision mma computations. This configuration is specific for the types used in
the computation, but general in the size of the output matrix, SizeM × SizeN and the layout
of warps used in the computation, which is WarpsM × WarpsN.

Listing 21: Mixed precision mma configuration

1 template<class SizeM, class SizeN, class WarpsM, class WarpsN>
2 struct get_mma_config<half_t, half_t, float, SizeM, SizeN, WarpsM, WarpsN>{
3 using MMATraits = MMA_Traits<SM80_16x8x16_F32F16F16F32_TN>;
4 using ACopyOpSharedRegisters = SM75_U32x4_LDSM_N;
5 using BCopyOpSharedRegisters = SM75_U16x8_LDSM_T;
6 using MMATile = Tile<Int<16 * WarpsM{}>, Int<16 * WarpsN{}>, _16>;
7 using TiledMMA = TiledMMA<
8 MMA_Atom<MMATraits>,
9 Layout<Shape<WarpsM,WarpsN,_1>>,

10 MMATile
11 >;
12 };

The implementation of the functions is otherwise very similar to the code shown in subsec-
tion 3.2, but uses this additional templating in an attempt to make it general in the size and
types of matrices. Below, we give an overview of the type signatures for our special functions and
discuss how they are to be called by the generated C code.

4.2.1 CuTe Copy from Global to Shared

Listing 22: Copy global to shared memory

1 template<class ElmTypeIn,
2 class SizeY, class SizeX, class WarpsM, class WarpsN>
3 FUTHARK_FUN_ATTR void futrts_copyGlobalShared(
4 unsigned char **mem_out_p, // alias for shared_mem pointer
5 unsigned char *global_mem, unsigned char *shared_mem, int64_t offset,
6 // Satically known type information needed to use CuTe
7 ElmTypeIn, SizeY, SizeX, WarpsM, WarpsN);

We implement copying from global to shared with the CUDA C++ function shown in List-
ing 22. The first template arguments is used to get the element type of the array and the SizeX
and SizeY is used to get the statically known sizes for the matrix to copy. The WarpM and
WarpsN are parameters dictating the layout of the warps used and thereby also the number of
warps used. In Listing 19 these values would be WarpsM=WarpsN=2 for 4 total warps, or 128
threads. These template parameters are all that is needed in order to have the function implement
copying from global to shared using structs similar to the ones presented in Listing 18.
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For the function parameters, the first argument, mem_out_p, is used for the return value of
the function. The function writes to the buffer pointed to by shared_mem in-place, and the value
of the shared_mem pointer will be written to the memory location pointed to by mem_out_p.
The global_mem pointer argument points to the array in global memory to read from, while
offset is the offset within this array that the thread block must load its data from. Note that the
remaining function arguments have no parameter names, but are simply the types of the template
list. This is because we are only interested in the static type information stored in these types.
When the Futhark code generator needs to generate a call to this function it will still pass these
function arguments, and the templates are thereby deduced. This means we do not have to modify
the code generator with any code that adds explicit template instantiation.

In this function we make use of asynchronous, vectorized copies, and swizzle the layout of
the shared memory buffers. This allows fully coalesced access to global memory, and conflict free
access to shared memory, using the minimal number of transactions and registers. Both the use
of asynchronous copies and a swizzled layout means that code generated by other parts of the
compiler cannot use the output of this function. It is therefore implicitly assumed that the result
is only used by our special tensorMMM function that will be introduced next. It is the job of our
compiler passes to make sure that this assumption is adhered to.

4.2.2 Matrix Multiplication

Listing 23:

1 template<class ElmTypeAIn, class ElmTypeBIn, class ElmTypeCIn,
2 class SizeM, class SizeN, class SizeK, class WarpsM, class WarpsN,
3 class ASwizzled, class BSwizzled, int numRegs>
4 FUTHARK_FUN_ATTR void futrts_tensorMMM(
5 ElmTypeCIn (*mem_out_p)[numRegs], unsigned char *A_mem,
6 unsigned char *B_mem, ElmTypeCIn (&C_mem)[numRegs],
7 // Type information needed to use CuTe
8 ElmTypeAIn, ElmTypeBIn, SizeM, SizeN, SizeK, WarpsM, WarpsN,
9 ASwizzled, BSwizzled);

The CuTe matrix multiplication function takes more template arguments than the global to
shared memory copy. Now the the element type of the input matrices Amk and Bkn has to be
known as well as the type of the output matrix Cmn. The corresponding types are stored in the
first three template arguments. Next, the SizeM, SizeN and SizeK template arguments are
the statically known sizes m,n and k from the input matrices. We again take two arguments,
WarpsM and WarpsN, for the tiling strategy of the warps in the block. The ASwizzled and
BSwizzled arguments are used as statically known boolean arguemnts, indicating if the Amk and
Bkn arrays, respectively, have a swizzled layout. Finally, we take a numRegs argument, storing
the number of results computed by each thread.

The arguments follow a similar pattern as the global to shared copy function. The first ar-
gument, mem_out_p is is used to output the output memory buffer. The output memory buffer
will be the C_mem input argument, which is used to store the matrix multiplication result. The
A_mem and B_mem arguments are pointers to the shared memory buffers storing Amk and Bkn.
The remaining arguments are again simply used to infer the template arguments. Again, the
function implementation looks similar to the example given in Listing 19.

In this function, warp and register tiling is performed on the data in shared memory. Addi-
tionally, assuming the Amk and Bkn matrices contain elements of type f16, the ldmatrix PTX
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instruction is used to load data from shared memory to registers efficiently. If the input arguments
use a swizzled layout, i.e. are the result of the copyGlobalShared function, as indicated by
the ASwizzled and BSwizzled arguments, loads from shared memory are bank conflict free.

4.2.3 Cute Copy Registers Shared

Listing 24: Copy shared memory to registers

1 template<class ElmTypeAIn, class ElmTypeBIn, class ElmTypeCIn,
2 class SizeM, class SizeN, class WarpsM, class WarpsN, int numRegs>
3 FUTHARK_FUN_ATTR void futrts_copyRegistersShared(
4 unsigned char **mem_out_p, ElmTypeCIn (&registers_mem)[numRegs],
5 unsigned char *shared_mem, ElmTypeAIn,
6 ElmTypeBIn, SizeM, SizeN, WarpsM, WarpsN)

The type signature for our copy from registers to shared is given in Listing 24. The template
list includes first the element type for all matrices that were involved in the mma. At first, this
might seem a bit strange, since the element type of Amk and Bkn should not have anything to do
with writing the result back to shared memory. However, in order for each thread to write back its
result in shared memory at the correct location, we need to rebuild the thread to value mapping.
This requires us know the element type of Amk and Bkn in addition to Cmn. An example of this
thread-value mapping was shown in Figure 26. Note that not all values for each thread are stored
consecutively, which makes it hard to express this pattern in Futhark IR.

Note that the thread to value mapping is encoded in C++ template types and it is therefore
completely statically known with no runtime overhead. The remaining template arguments are
statically known sizes of the output matrix, the layout of warps needed for the mma calculation and
the number of registers per thread used. The first argument is again a pointer for where to store
the output memory buffer. Similar to the other copy function, this will be set to the value of the
shared_mem argument pointing to an allocated shared memory buffer. The registers_mem
is the per thread result in registers. Like the previous copy function from global to shared,
the remaining function arguments have no parameter name because we are only interested in
automatically deducing the template arguments.

This function makes use of vectorized copies to shared memory, but does not use a swizzled
layout, which means it will result in bank conflicts. The reason we do not swizzle the layout is to
ensure that the result can be used by code generated by other parts of the Futhark compiler.

4.3 High Level IR transformations
For convenience, the compiler overview is shown again in Figure 27 below. As mentioned in the
initial roadmap, we pattern match an intragroup kernel corresponding to matrix multiplication
on the high level IR representation without memory. Figure 27 highlights that the transformation
criteria runs within a new extractTensorCores pass on the GPU representation of the IR.
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Figure 27: Compiler pass implementation within the compiler.

To understand how the pattern match for the transformation criteria works, and what our
code transformations look like, it is necessary to have an understanding of the Futhark IR. At
this stage of compilation, all parallelism is expressed in terms of four flat segmented operations
(SegOps) shown below:

Listing 25:

1 data SegOp lvl rep
2 = SegMap lvl SegSpace [Type] (KernelBody rep)
3 | SegRed lvl SegSpace [SegBinOp rep] [Type] (KernelBody rep)
4 | SegScan lvl SegSpace [SegBinOp rep] [Type] (KernelBody rep)
5 | SegHist lvl SegSpace [HistOp rep] [Type] (KernelBody rep)
6 deriving (Eq, Ord, Show)

Each SegOp is a perfect nest of maps with some bottommost computation like a scalar compu-
tation or a reduction, scan or reduce by index. Consider again the matrix multiplication program
below. The matmul function has two outer maps with a reduce using addition as the associative
operator on a row of A and a column of B.

This will be represented in the IR as a SegRed where the SegSpace encodes the outer maps,
the [SegBinOp] list will be addition, the [Type] will be the returned type of each thread (a
single f32 in this case) and the KernelBody corresponds to the map2 computation and type
conversion. The two levels of parallelism on the GPU (blocks and threads) is represented by the
lvl of the SegOp. When the matmul function is an intragroup kernel, the lvl will be threads
in a block. This SegRed will then be in the body of a block-level SegMap corresponding to the
map2 in the matmul_intra function.
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Listing 26:

1 let matmul [m][n][k] (A: [m][k]f16) (B: [k][n]f16) =
2 map (\ Arow ->
3 map (\ Bcol ->
4 -- dot product
5 map2 (*) Arow Bcol |> map f32.f16 |> reduce (+) 0
6 (transpose B)
7 ) A
8 def matmul_intra [q] (A: [q][16][16]f16) (B: [q][16][16]f16) =
9 #[incremental_flattening(only_intra)]map2 matmul A B

A pretty printed version of the GPU IR code is shown in Listing 27. We will use this in
conjunction with the Futhark source program to show the transformation and pattern matching
done by our extractTensorCores pass.

Listing 27:

1 let {mmm_intra_result : [q][16i64][16i64]f32} =
2 #[incremental_flattening(only_intra)]
3 segmap(block; ; grid=q; blocksize=4096i64)
4 (gtid_block < q) (~phys_tblock_id) : {[16i64][16i64]f32} {
5 let {intragroup_result : [16i64][16i64]f32} =
6 -- SegRed
7 segred(inblock; )
8 (gtid_thrd_m < 16i64, gtid_thrd_n < 16i64, gtid_thrd_k < 16i64)
9 (0.0f32, f32.add) -- binary operator and neutral element

10 {
11 -- Kernel body
12 let {a : f16} =
13 A[gtid_block, gtid_thrd_m, gtid_thrd_k]
14 let {b : f16} =
15 B[gtid_block, gtid_thrd_k, gtid_thrd_n]
16 let {mul_res : f16} =
17 fmul16(a, b)
18 let {conversion : f32} =
19 fpconv f16 mul_res to f32
20 return {returns conversion}
21 }
22 return {returns intragroup_result}
23 }
24 in {mmm_intra_result}

We can reason that for some SegOp to match matrix multiplication, it must have a reduction
over the k dimension of a Cmn = AmkBkn matrix multiplication as the bottommost computation8.
When pattern matching a SegOp we can therefore restrict our attention to all SegRed at the
thread in block level with addition as the only binary operator. The implementation code for the
pattern match is given below. Note that this is exactly the case for the IR code above. There is
a SegRed running at the threads in blocks with an outer map with over the CUDA blocks.

8Recall that a SegOp is a perfect nest of maps with some bottommost computation (scalar, reduce, scan or
histogram computation)
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Listing 28:

1 innerOpMatch :: Scope GPU -> Op GPU -> Maybe InnerMMAMatch
2 innerOpMatch scope
3 ( SegOp
4 (SegRed (SegThreadInBlock _) space segBinOps _ts kernelbody)
5 )
6 -- checks this is addition with neutral element 0.0f16 or 0.0f32
7 | Just ne <- segBinOpsMatch segBinOps =
8 -- implementation body

Next, we need to look into the KernelBody of the SegRed to make sure that the reduced
arrays were a result of multiplying the row and columns of two matrices. We do this through a
backwards traversal of the statements in the KernelBody starting at the kernel result. For us
to match matrix multiplication, we then require of the kernel body that:

1. the kernel body result is of type f16, or the result of a conversion from f16 to f32.

2. the result comes from a product of the form a * b

3. both a and b are the result of indexing into some arrays A and B respectively

4. The indices into A and B are variant to exactly two dimensions of the SegSpace in the
SegRed

5. The indices into A and B are variant to one common dimension (the reduction dimension)
of the SegRed

6. The indices into A and B are each invariant to exactly one parallel dimension of the SegSpace
in the SegRed.

7. Matrix B is transposed such that true matrix multiplication Cij =
�

k AikBkj is computed.

Since we are focusing on matrix multiplication in intragroup kernels, we allow the arrays to be
indexed by potentially arbitrarily many outer indices. In the running Futhark example above in
Listing 26, these outer indices would be used to index into the q dimension of A and B to slice
out the Amk and Bkn sub arrays used in matrix multiplication. We also see this is reflected in the
IR code where both arrays are indexed by the gtid_block as the outermost index. The kernel
body of the Listing 26 also meets all other requirements for our match since:

1. The result is a conversion from f16 to f32

2. the result was a product of the two variables a * b

3. a and b are variables resulting by indexing arrays A and B respectively

4. a is variant to tid_thrd_m, gtid_thrd_k and b is variant to gtid_thrd_k, tid_thrd_m

5. both A and B are indexed by gtid_thrd_k and they are thereby variant to a common
dimension of the SegRed.

6. A and B are both indexed by the outer index, gtid_block, making them variant to the
outer most map over the q dimension.
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7. We also see that B must be transposed due to the indexing into B. That is gtid_thrd_k
appears as the second last indexing into B.

We further restrict the inner dimensions m,n, k of Amk and Bkn to be specific, statically know
small sizes. This restriction is made in order to make sure that all matrices can fit in shared
memory, and can be perfectly partitioned to fit in the Tensor Cores. Finally, this all means that
a SegRed running at the level of threads in a block has to be done using:

• mixed precision matrix multiplication of f16 and f32.

• or purely f16 matrix multiplication is performed.

• statically known dimensions ds.

• each dimension d ∈ ds must be a multiple of 16 in the range 16 ≤ d ≤ 128.

Note that in the IR example, all bounds of the SegRed are 16 and the intragroup matrix
multiplication therefore matches all of our requirements.

In the implementation of our pattern matching function innerOpMatch the result is a Maybe
InnerMMAMatch. In case our match succeedes, the function returns a Just InnerMMAMatch
with information about how the SegRed can be transformed to utilize Tensor Cores, and Nothing
if any of the above criteria did not match. For instance, if one of the dimensions is not statically
known, we do no transformations to utilize the tensor cores. The InnerMMAMatch record has
the following fields:

Listing 29:

1 data InnerMMAMatch = InnerMMAMatch
2 {
3 kernelBodyMatch :: KernelBodyMatch,
4 ne :: SubExp,
5 sizeM :: Int,
6 sizeN :: Int,
7 sizeK :: Int
8 }

The KernelBodyMatch record is a helper type containing indexing information about how
the A and B arrays were indexed. This together with the three size fields lets us reconstruct a
semantically equivalent program using Tensor Cores.

After having successfully found matrix multiplication in an intragroup kernel, we need some
way of transforming the high level GPU IR into code that uses the Tensor Cores. One possible
way is to add a new type of GPU operation. Different IR representations of the compiler support
different operations, and the new Tensor Core GPU operation would simply be another operation
supported by the GPU representation of the IR.

One of our goals is however to find the simplest and most minimally invasive way to intro-
duce Tensor Cores to the compiler. In cases where we have to add something to the compiler,
we ideally want this to be isolated and not interact with other parts of the compiler. Adding
compiler passes fits within these goals, since they are isolated code to code transformations. Intro-
ducing a new GPU operation seems to fall out of line with these goals as this entails potentially
modifying many parts of the compiler. For this reason, we choose to add Tensor Core support
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through special function calls. The compiler cannot optimize these functions calls away in later
passes as they appear as opaque constructs. There is nothing inherently special about these new
functions. They have a uniquely defined name that we rely on at code generation, and a signature
that allows us to implement everything related to Tensor Cores in a separate CUDA header file.
Generating these function calls happens immediately after successful pattern matching and in the
same extractTensorCores pass.

Returning to the example in Listing 27, the transformation needs to replace the inner SegRed
with semantically equivalent code that makes use of our special functions. Such a transformation
could look like IR code in Listing 30. This transformation has replaced the SegRed with function
calls that:

1. copies matrix Amk and Bkn to shared memory.

2. perform the Tensor Core matrix multiplication

3. copy the result back into shared memory from registers.

The transformation is however not always as straightforward as the code in Listing 30. We go
into more detail in the next subsections about how each of the three steps are implemented.

Listing 30:
1 let matmul_intra_result : [q][16i64][16i64]f32} =
2 #[incremental_flattening(only_intra)]
3 segmap(block; ; grid=q; blocksize=32i64)
4 (gtid < q) (~phys_tblock_id) : {[16i64][16i64]f32} {
5 --
6 -- segmap that zero initializes registers here
7 ---
8 let {aCopied : [16i64][16i64]f16} =
9 apply copyGlobalShared(...)

10 : {*[16i64][16i64]f16}
11 let {bCopied : [16i64][16i64]f16} =
12 apply copyGlobalShared(...)
13 : {*[16i64][16i64]f16}
14 let {inBlockMMAres : [32i64][8i64]f32} =
15 segmap(inblock; )
16 (ltid < 32i64) (~ltid_flat) : {[8i64]f32} {
17 let {threadMMAres : [8i64]f32} =
18 apply tensorMMM(...)
19 : {*[8i64]f32}
20 return {returns (private) threadMMAres_6494}
21 }
22 let {cCopied : [16i64][16i64]f32} =
23 apply copyRegistersShared(...) : {*[16i64][16i64]f32}
24 return {returns cCopied}
25 }

4.3.1 Copy global to shared

It might not in all cases be necessary, or even correct, to copy from global to shared. The SegRed
might be preceded by some code1 that contains more intrablock kernels with result A�

mk and
B�

kn. Consider this in the below example:
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Listing 31: Intragroup matmul sorrounded by code1 and code2

1 map2 (\A B ->
2 let A' = map f A -- code 1
3 let C = matmul A' B -- SegRed matrix multiplication
4 in map g C -- code 2
5 ) As Bs

The matrix multiplication uses A�
mk, and since code 1 will be an intragroup kernel, it is very

likely that the compiler allocates A�
mk in shared memory. In such a case it would be inefficient

and wasteful of shared memory to do a new copy of A�
mk into a new shared memory buffer. At the

GPU representation of the IR, there is however no notion of memory and it is unknown if A�
mk is

allocated in shared memory. For this reason, we always allocate a shared memory buffer for Amk

and Bkn, and then rely on a later pass on the GPUMem representation to fix and remove the copy
to shared. We expand upon this in subsection 4.4.

Below we give the fully generated code for copying from global memory to shared for matrix
Amk, including allocating the shared memory buffers of the running example:

Listing 32:
1 -- shared memory allocation
2 let {aScratch : [16i64][16i64]f16} = scratch(f16, 16i64, 16i64)
3 let {aCopied : [16i64][16i64]f16 } =
4 copyGlobalShared(A, *aScratch, offsetA, 0.0f16, 16i64, 16i64, 1i64, 1i64

)
5 : {*[16i64][16i64]f16}

The arguments to the function call will match the correspondingly generated CUDA C++
template function that was shown earlier. In order the arguments are

1. The entire array A

2. Allocated shared memory buffer,

3. Offset into A for each thread block to use

4. Place holder zero element to store the element type of the array.

5. Size m of the Amk matrix

6. Size n

7. Warps in the m dimension of the output

8. Warps in the n dimension of the output.

The return type of the function is a [16i64][16i64]f16 array corresponding to the copied
result. We make sure that the returned result will use the same memory as aScratch, such that
any usage of the result variable aCopied uses the copied shared memory buffer.
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4.3.2 Setting the Block Size for Matrix Multiplication

For the element types supported by our transformation, the Tensor Cores operate on 16× 8× 16
matrices using 32 threads. The IR code in Listing 27 has a block size of 16 · 16 · 16 = 4096, since
the SegSpace of the SegRed goes over 3 parallel dimensions each of size 16. This is many more
threads than required to do the matrix multiplication with Tensor Cores, and also more than
the maximum for a single CUDA block. Also note that for 16 × 8 × 16 matrix multiplication,
each thread computes 4 output elements. Therefore, even for the simple program in Listing 26,
we have to handle the excess number of threads. Since we only need 32 threads for the matrix
multiplication in this example, we can simply set the block size to 32. This is safe for the program
in Listing 26 because there is only one nested SegOp corresponding to matrix multiplication. In
other cases it might however not always be safe to do so. Consider the futhark program below.
Some code1 precedes the matrix multiplication and some code2 follows it. If either code1 or
code2 needs more than 32 threads, then shrinking the block size will result in wrong results.
However, if both code1 and code2 needs 32 or fewer threads, then changing the block size is
safe because the block size was bounded by the threads required for matrix multiplication.

Listing 33:
1 #[incremental_flattening(only_intra)]
2 map2 (\A B ->
3 let A' = map f A -- code 1
4 let C = matmul A' B -- SegRed matrix multiplication
5 in map g C -- code 2
6 ) As Bs

Depending on the size of the matrix multiplication, we might need more than 32 threads to
efficiently use the Tensor Cores. When benchmarking our different prototypes, we found that each
thread in general needs to do a relatively large amount of work. Typically, each thread needs to
compute 64 or 128 output results to achieve the best performance. With this in mind, our pass
first calculates the optimal block size for matrix multiplication as

blk∗ =
�m · n
4096

�
· 32 (3)

Here 128 · 32 = 4096 corresponds to the optimal number of elements per warp. Note we know
that m,n are bounded in 16 ≤ m,n ≤ 128, due to the criteria for our match. As a result, the
max block size needed for matrix multiplication is 128. We can use the IntraMMAMatch record
to get the sizing information needed to calculate the above result.

After finding the optimal block size, blk∗, we adjust the block size of the outer SegOp as
max(blokSize(code1), blk∗, blokSize(code2)). In case more than blk∗ threads are need by code1
or code2 we attempt to also make use of these threads in the matrix multiplication, even though
this may be more than the optimal number of threads for the matrix multiplication in isolation.
There is, however, a limit to how many threads we can make use of, since the Tensor Cores require
a minimum amount of sequentialization. As a consequence, in some cases, some threads may be
idle during the matrix multiplication.

Ideally, both the matrix multiplication and the surrounding code should use the same number
of threads, and this should also be the number of threads giving the best possible performance.
However, the exact amount of threads that gives the best overall performance can be hard to
figure out, and depends very much on the surrounding code. Additionally, while we can fairly
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easily control the amount of sequentilization in our matrix multiplication code, it is not trivial
to sequentialize arbitrary pieces of code in a general way. This means that in order to get the
very best performance, the programmer may need to sequentialize code1 and code2 by hand,
in order to get an optimal amount of parallelism.

Some work has already been put into doing this sort of general sequentialization automatically
in the compiler [23], but including that into this work is out of scope.

In order to change the block size, we need all the intragroup kernels (meaning code1 and
code2) to also have parallel dimensions of statically known sizes, otherwise, we cannot statically
change the block size. Therefore, with the presence of some code1 and code2, our transformation
only triggers if everything has static sizes.

Once we have decided on a block size, we must also decide how to divide the matrix multipli-
cation between the threads, i.e. decide which threads compute what part of the resulting matrix.
When there is no other code to take into account this can simply be done using a calculation like
the one shown in Equation 3. However, it gets slightly more complicated if we want to try to use
the same amount of threads as the surrounding code. In this case, we must find the best way
to divide an m × n matrix into W submatrices, where W is the number of warps available for
the calculation, since Tensor Core matrix multiplication is done at the warp level. We do this by
choosing the pair of numbers (Wm,Wn) such that Wm ·Wn = W , for which the ratio Wm

Wn
is as close

as possible to m
n

. We then split the result matrix into Wm equal parts along the m dimension, and
Wn equal parts along the n dimension, and assign a warp to each submatrix in this grid. If it is
not possible to divide both dimensions evenly into parts that are multiples of 16, we decrement
the number of active warps and try again.

4.3.3 Tensor Core Matrix Multiplication

Recall the usage of the mma ptx instruction: All threads in a warp calls the mma instruction
supplying a slice of Amk and Bkn in registers and a set of registers for the output Cmn. Similarly
to this, we want each thread in the block to call a Tensor Core matrix multiplication function,
supplying a set of registers for the per thread output of Cmn. We can implement this by a SegMap,
with a parallel dimension equal to the chosen block size This is shown in Listing 30, where the
block size is 32, for a 16× 16× 16 matrix multiplication, and the SegMap has a matching parallel
dimension. Also note that the per thread result of the map is [8]f32, because each thread
computes 16 · 16/32 = 8 output elements.

Listing 34 shows what the fully generated IR function call for matrix multiplication would
look like in Listing 26. Each thread supplies the full copy in shared memory of the slice Amk and
Bkn to use, the registers that the thread result should be stored in, 0.0f16 for the element type
of the two matrices, and at last the matrix dimensions and required number of threads to use.
The result of the function call is simply the supplied threadCregs. The CUDA implementation
of tensorMMM is responsible for loading a slice Amk and Bkn into registers. Our transformation
allocates enough registers to hold the entire Cm matrix in registers, and we can therefore use these
registers directly in our function call. In the future it might be possible to reuse these registers
instead of having to write the register result to shared memory after each matrix multiplication.
This is further discussed in section 6.
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Listing 34:
1 let {thrd_MMA_res: [8i64]f32} =
2 tensorMMM(aCopied, bCopied, *threadCregs, 0.0f16, 0.0f16, 16i64, 16i64, 16

i64, 32i64)

4.3.4 Storing the Result in shared memory

Finally, our transformation copies the per thread results in registers to shared memory. For the
running example in Listing 27, the function call looks as follows:

Listing 35:
1 copyRegistersShared(inBlockMMAres, *cScratch, 0.0f16, 0.0f16, 16i64, 16i64,

32i64)

The inBlockMMARes is the per thread result in registers, and cScratch is the shared
memory buffer to copy into. This will also be the result of the function call. The remaining argu-
ments are as usual used for type information, matrix dimensions and the number of threads to use.

One benefit of always copying to shared memory is that the compiler will automatically copy
the shared memory buffer back to global memory as part of the outermost SegMap result. It can
also be beneficial when some code2 follows the matrix multiplication and uses its result, since
the compiler would otherwise very likely copy the result to shared memory either way. In case
the matrix multiplication result was needed in global memory, then an indirect copy to shared
memory first has a relatively small performance cost. The disadvantage with this approach is that
writing to shared memory is much slower than directly using the in-register matrix multiplication
result. As an example, consider the attention like program in Listing 36. The result of the matrix
multiplication is immediately afterwards used to update an accumulator. This map2 code will
need to load the matrix multiplication result back from shared memory to registers, even though
we might have been able to avoid it.

Listing 36: Flash attention like program

1 def attention_like [q] (A: [m][k]f16) (B: [q][k][n]f16) : [m][n]f32 =
2 let acc_init : *[m][n]f32 = replicate (m * n) 0.0f32 |> unflatten in
3 loop (acc : *[m][n]f32) = (acc_init: *[m][n]f32) for i < q do
4 let C' = matmul A B[i]
5 in map2(map2 (+)) acc C'
6 def main [q][p] (A: [p][m][k]f16) (B: [p][q][k][n]f16) =
7 #[incremental_flattening(only_intra)]map2 attention_like A B

Although the map2 might have been possible to compute without loading the matrix mul-
tiplication result from shared memory, doing so is not straightforward. Consider the layout of
values (in registers) and threads of the result matrix C in Figure 28. The matrix multiplication
result in registers has a permuted layout between threads and values where the per thread result
is scattered around. If the map2 were to directly use this layout of values in registers, then the
acc array should have the same layout of values in registers. For this reason, we always do a
write back to shared memory.
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Figure 28: Layout of threads and values of the result matrix C from a 16 × 8 × 16 matrix
multiplication.

4.4 Transformations on IR With Memory
After the high level GPU IR representation, the Futhark compiler transforms the code into a new
GPUMem IR representation that has a notion of memory. Figure 29 shows that the conversion from
GPU IR to the more lower level GPUMem IR happens within the very first pass of the GPUMem
pipeline that adds allocations. Since our special functions are opaque to the compiler, the allo-
cated memory is often suboptimal either because it is allocated as global memory when it could
have been shared memory or because a redundant copy takes place. We implement a new pass
tensorCoreMemFixup that reduces the number of memory copies, see Figure 29, and also mod-
ify the ”Add Allocations” pass to treat our functions differently from all other function calls. We
describe these two modifications in the following subsections.
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Figure 29: New compiler pass added for the GPUMem representation is highlighted in dark red.
The add allocations pass will also be slightly modified.

4.4.1 Modifying the Default Allocation Space

The Futhark compiler does not do any form of analysis to determine where a function can be
called from. As a consequence, all kernel functions must have their arguments in global memory
such that they can be called either from host or device code. This is however problematic for
our special functions. Consider the type signature for copyGlobalShared generated by the
compiler when the program is transformed from IR on the GPU representation into IR on the
GPUMem representation:

Listing 37:
1 fun copyGlobalShared (
2 global_mem : mem@device,
3 shared_mem : mem@device,
4 global : [16i64][16i64]f16 @ global_mem -> {lmad_info1},
5 shared : *[16i64][16i64]f16 @ shared_mem -> {lmad_info2},
6 offset: i64, elmTypeA: f16, Y : i64, X : i64, blockSize : i64)
7 -> {mem@device, lmad_info3}

The two first arguments global_mem and shared_mem represent the underlying memory
for the arrays in argument global and shared. The special mem@device denotes where the
memory block has been allocated, and the [16i64][16i64]f16 @ global_mem denotes that
the backing memory for the array is found in the global_mem memory block. This shows that
the compiler as expected has put all array argument into global memory.

For this particular function, this compiler limitation can be fixed by implementing a new pass
on the GPUMem IR. The pass needs to both fix the type signature of the function definitions, and
all function calls to copyGlobalShared such that the shared_mem argument is given a shared
memory buffer. We did successfully implement such a pass that fixed all our special functions and
function calls, but later found cases where compilation still fails due to mismatch in the expected
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memory space and actual memory space. In particular, programs that have some intragroup ker-
nel, code2, that uses the result of matrix multiplication will never work. The generated GPUMem
IR code for code2 was generated under the assumption that the matrix multiplication result is in
global memory. If we only fix the memory space for our special functions, then there will be a type
mismatch between the expected memory space of code2 and the actual memory space after the
memory fixup. For this reason, we found it necessary to slightly modify the allocation algorithm
to handle our special functions differently. When memory has to be allocated for code2, the
memory allocator can use that the matrix multiplication result is in shared memory to correctly
allocate the memory needed to execute code2.

The allocation pass is modified in two places: function definitions, and function call expres-
sions. Below we show how we modify the compiler to handle allocations differently for our special
functions. Instead of always putting the arguments in some default space (global memory for
the GPU representation) we match the function name against our special functions. In case the
function name matches, we modify the memory space for the application appropriately. Specif-
ically, we know that the first argument is a memory block that holds the entire A array, and it
should therefore be forced to device space (line 5). The second argument is a memory block for
the Amk to be copied into shared. We force this argument to be in shared shared memory on
line 6. The remaining arguments are unchanged, be making them Nothing. Line 7 also specifies
that the function returned memory block must also be in shared memory. The helper function
funCallArgs, checks whetther there is a Just forcedSpace for each argument, in which
case it uses the forced memory space instead of the default space. The approach to fix function
definitions is very similar.

Listing 38:

1 -- Allocations needed to handle function application
2 allocInExp (Apply fname args rettype loc) = do
3 space <- askDefaultSpace -- default space is global memory
4 (forced_arg_spaces, retSpace) <-
5 if MMM.copyGlobalSharedName `MMM.isPrefixOfName` fname then
6 pure ( [Just $ Space "device",
7 Just $ Space "shared"]
8 <> replicate (length args - 2) Nothing
9 , Space "shared")

10 else if -- any other special function match
11 else -- default case
12 pure (replicate (length args) Nothing, space)
13 -- Create new function arguments possibly using a forced memory space
14 args' <- funcallArgs args forced_arg_spaces

4.4.2 Reduce memory copies

Modifying the allocation spaces for our generated special functions does not solve all memory
related problems. We frequently see that the allocation pass produces A_desired_form =
manifest(A) operations that copy A into A_desired_form. We see memory manifestations
in two cases:

1. Copy from global to shared

2. Copy from registers to shared
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Recall in Listing 37, the input array in global memory had the type [16i64][16i64]f16
@ global_mem -> lmad_info1. The lmad_info1 type describes a linear-memory accessor
descriptor (LMAD) [20] with information about the array offset and for each dimension a stride
and shape. When we generate the copyGlobalShared call, we do not supply the entire A
and B arrays as we have otherwise shown. Instead we generate code that slices out the subarray
corresponding to the Amk and Bnk matrices:

Listing 39:
1 -- slice out a matrix from A
2 let {slicedA : [16i64][16i64]f16} = A[gtid_block * 256, :, :]
3 let {aCopied : [16i64][16i64]f16 } =
4 copyGlobalShared(slicedA, *aScratch, offsetA, 0.0f16, 16i64, 16i64, 32

i64) : {*[16i64][16i64]f16}

The slicing notation A[gtid_block * 256, :, :] is not real IR syntax, but a much
more convenient notation that is also used in Futhark the language and Python. Slicing an array
can be a free operation only requiring re-indexing by the compiler. However, when given as a
function argument, this requires that the sliced array is row major with zero offset. Our imple-
mentation slices out a matrix at an offset corresponding to gtid_block * 256, thereby forcing
the compiler to generate a redundant copy.

A similar issue occurs when calling the
copyRegistersShared(inBlockMMAres, *cRegs,...) function. Recall from subsec-
tion 4.3 that each thread in a parallel map calls a special function corresponding to Tensor Core
matrix multiplication, storing the result in registers. This unfortunately also causes a redundant
copy to another set of registers before calling copyRegistersShared.

All these redundant memory copies can luckily be reduced by our tensorCoreMemFixup
pass. For reference, see Figure 29 for the placement of the pass in the compiler. The pass
iterates over the statements of the program, and fore every A_desired_form = manifest(A)
statement, the relation that array A_desired_form is a copy of array A is recorded in a hash
map H. Similarlly, the underlying memory block that holds A_desired_form and A is also
recorded in H.

The hash map is then used to change the arguments for all of our special function calls that
uses the A_desired_form and its underlying memory block. Consider the below pretty printed
GPUMem IR code generated by our compiler:

Listing 40:
1 let {slicedA : [16i64][16i64]f16 @ mem_slicedA -> lmad} = A[gtid_block *

256, :, :]
2 let {slicedA_desired_form : [16i64][16i64]f16 @ mem_slicedA_desired_form ->

lmad } =
3 manifest(slicedA) -- copies slicedA
4 let {aCopied : [16i64][16i64]f16 } = copyGlobalShared(
5 slicedA_desired_form, *aScratch, offsetA, 0.0f16, 16i64, 16i64, 32i64) :

{*[16i64][16i64]f16}

The code shows that slicedA is copied into slicedA_desired_form with
mem_slicedA_desired_form as the backing memory. When calling the copyGlobalShared
function, the hash map H will therefore hold the following relation:
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H =

�
mem_slicedA_desired_form → mem_slicedA
slicedA_desired_form → slicedA

Using this hash map, the parameters for copyGlobalShared can now be replaced, and slicedA
and mem_slicedA is used directly:

Listing 41:

1 let {slicedA : [16i64][16i64]f16 @ mem_slicedA -> lmad} =
2 A[gtid_block * 256, :, :]
3 -- Downstream compiler pass has removed the manifest stement
4 let {aCopied : [16i64][16i64]f16 } = copyGlobalShared(
5 slicedA, *aScratch, offsetA, 0.0f16, 16i64, 16i64, 32i64) : {*[16i64][16i64]f16}

The pass works the same for all our special functions, and we rely on a downstream pass to
recognize that slicedA_desired_form and its corresponding memory block
mem_slicedA_desired_form are unused and can safely be removed.

With this small memory fixup, there is no wasted memory resulting from using the Tensor
Cores through calls to special functions.

4.5 Using the Modified Compiler
The full modified compiler can be found at https://github.com/caymand/futhark/tree/
intragroup-mmm. Additionally the core files for our added passes can be seen in Appendix A.
However, it should be noted that these are not the only changes made to the compiler.

Compiling a Futhark program requires the user to specify a compilation action. Possible actions
include cuda, opencl, c or even python. For Futhark utilties such as futhark test and
futhark bench, these action are chosen using the -backend option. Instead of having our
changes as part of the cuda action, we choose to make a new compilation action named cudatc
that runs the cuda pipeline and our passes. This is the exact compilation pipeline we presented
in Figure 24. Programs compiled compiled with the existing cuda action will thereby not use any
of our new passes and the Tensor Cores are therefore not used in this case. Not all NVIDIA GPUs
have Tensor Cores, and we therefore put the responsibility of checking the GPU requirements on
the user. Compiling a Futhark program with Tensor Core support can be done with the below
command:

futhark cudatc program.fut

This generates a compiled program called program. When a Futhark program is compiled with
the cuda or cudatc actions, the CUDA kernels will at runtime be compiled through NVRTC,
a runtime CUDA compilation library. Directly running this program with ./program will fail
because NVRTC cannot find the appropriate Cutlass header files. The user must pass a flag to
the compiled program with the include path of Cutlass:

./program --nvrtc-option=-I<Cutlass include path>

We found this to be another good reason to make our changes part of a different compilation
pipeline. Benchmarking or testing futhark program compiled with the cudatc action requires
the user to supply the Cutlass include path. This can be done with:
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futhark test --pass-option=--nvrtc-option=-I<Cutlass include path> \
program.fut

5 Experimental Evaluation
This section sets out to describe how the modified compiler has been tested and benchmarked.
We first describe the overall testing and benchmarking setups, and subsequently go into more
detail and show results for a selection of Futhark programs used as case studies. We detail why
the individual Futhark programs have special interest for our implementation and discuss the
strengths and weaknesses of our compiler modifications for these programs.

5.1 Testing Methodology
Testing of the implementation has been done through blackbox testing of programs that have an
intragroup kernel corresponding to matrix multiplication. The programs are compiled with the
cudatc compilation action, and validation is performed by comparing the result to the result
of the sequential C compilation action. The tests can be found in the futhark testing suite at
tests/tensor-cores at the git repository https://github.com/caymand/futhark/
tree/intragroup-mmm. The tests are straightforwardly run with the command:

futhark test --backend=cudatc \
--pass-option=--nvrtc-option=-I<Cutlass include path> \
tests/tensor-cores

All the programs that were used for benchmarking are included in our testing suite. In the next
sections we describe the programs that are used as for benchmarking of our implementation. Test-
ing showed that the custom attention like benchmark program does not validate. We investigated
the issue and found that the error is not caused by our compiler modifications, but it is caused by
a bug in the memory block merging pass that runs on the IR with memory information (GPUMem).
Disabling this pass makes all tests pass. The details of this bug is discussed in subsubsection 5.4.2.

5.2 Benchmark Methodology and Hardware
All benchmarks are run on the NVIDIA A100 GPU. We use the futhark bench command
to get the running time of our benchmark programs. All benchmark programs can be found at
https://github.com/caymand/mma/tree/main/src/fut_programs.

For all the comparisons with the Futhark cuda action, we used autotuning beforehand to
ensure the best possible scenario for the cuda action. We use the same compiler for the comparison
of the cuda and cudatc actions and it can be found and compiled at https://github.com/
caymand/futhark/tree/intragroup-mmm. The Tensor Cores does mixed precision matrix
multiplication between single precision and half precision floating point values at no overhead. In
normal CUDA code, the cast from half precision to single precision does not come for free since the
two floating point formats have different sizes for the exponent, and cannot simply be truncated.
For this reason, all our benchmarks of the cuda action use either only f32 or f16 such that the
conversion between data types is not penalized.
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5.3 Benchmark Limitations
Benchmarking our implementation is limited to programs that match our transformation criteria.
In short, this means we can only benchmark programs that:

1. Have an intragroup kernel corresponding to matrix multiplication

2. Matrix multiplication uses f16 or mixed precision floating point numbers

3. The matrix sizes are statically known with a size that fits in shared memory
We found that some programs that one might expect match our transformation not always

do so, because of the flattening approach chosen by the compiler. Sometimes this can be fixed
by using more Futhark attributes related to incremental flattening. In all cases, since there is a
chance that the transformation has not run when we expect it to, we also manually verify that all
compiled benchmark programs have indeed been instrumented with our special functions.

For the existing Futhark cuda action we use the settings -default-tile-size=16 and
-default-reg-tile-size=4, since these gave better or similar results compared to the de-
fault values for all our benchmarks. Other than this, we did not manually tune these parameters
for each problem and type. Similarly we also did not tune parameters for our modified action. It
is therefore possible that the original cuda action could gain som additional performance through
manual tuning of parameters not set by autotuning. On the other hand, this may also be the case
for our modified backed, where especially the amount of requested threads for matrix multiplica-
tion was found to have a large influence on performance.

5.4 Benchmark Results
In this subsection we present different case studies of Futhark programs that contain matrix mul-
tiplication as an intragroup kernel. All these programs have been verified to trigger our transfor-
mation and therefore use Tensor Cores. We discuss the strengths or weaknesses for each program,
and thereafter present the benchmarking result compared to the f16 and f32 performance of the
cuda action.

5.4.1 Batched matrix multiplication

One of the simplest uses of our compiler modifications is batched matrix multiplication, as shown
in the program below. This was also the program we used as the running example when demon-
strating our transformations in section 4.

Listing 42: Batched matrix multiplication

1 def matmul [m][n][k] (A: [m][k]f16) (B: [k][n]f16) : [m][n]f32 =
2 map (\Arow ->
3 map (\Bcol ->
4 map2 (*) Arow Bcol
5 |> map f32.f16
6 |> reduce (+) 0.0
7 ) (transpose B)
8 ) A
9

10 def batchedMMM [q][m][n][k] (A: [q][m][k]f16) (B: [q][k][n]f16) : [q][d][d]f32 =
11 #[incremental_flattening(only_intra)]map2 matmul A B
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The benchmarking shows essentially identical performance for the cudatc action and a hand-
written implementation without pipelining, likely due to the fact that the generated code is essen-
tially the same. It should, however, be noted, that a program like this could potentially benefit
from pipelining global memory reads, as this is likely a bottleneck. Both results are very far from
the peak performance of Tensor Cores, likely for this reason, but still far outperform the existing
cuda action.

Figure 30: Performance in TFLOPS for batched matrix multiplications of size n × n × n, as a
function of n.

5.4.2 Custom attention like

Below we show a custom attention like program. It closely resembles the custom attention program
from the ”Comparing Functional Array languages” benchmark found at (https://github.
com/diku-dk/CFAL-bench/blob/main/FlashAttention/futhark/custom-alg1-opt.
fut), but it misses the softmax calculation. The matmul_f16 is a 16-bit matrix multiplication
function equivalent to any of the previously shown matrix multiplication programs.
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Listing 43: Custom attention like program

1 def oneIter [d] (K: [d][d]real) (V: [d][d]real) (Qi: [d][d]real) =
2 let P_block = matmul_f16 Qi K
3 -- To be real attention we would need to do: Let P_block = softmax P_block
4 in matmul P_block V
5 def flashAttention [m][d]
6 (Q: [m][d][d]real)
7 (K: [d][d]real)
8 (V: [d][d]real) =
9 map (oneIter K V) Q

10 entry run16 [m] (Q: [m][16][16]real) (K: [16][16]real) (V: [16][16]real) =
11 #[incremental_flattening(only_intra)]flashAttention Q K V

As we previously mentioned, this program does not validate in our testing suite, and the
incorrectness of the program is not caused by any of our compiler modifications, but is due to a
bug in the memory block merging pass. Shared memory on the GPU is scarce, and memory block
merging tries to reuse shared memory where possible. This optimization however seems to not
track aliasing information for memory blocks across function calls, causing memory still in use to
be overwritten by subsequent operations. For the above program, we saw that the matrix V is
being stored in the same memory as the result of the first matrix multiplication, P_block. The
compiler has previously aggressively inlined functions, which may explain why this problem has
not been discovered. Turning off the pass makes the test pass.

The program has high computational throughput. One of the reasons for this may be that
P_block is kept in shared memory, which means there is a relatively larger amount of computation
per global memory read compared to e.g. batched matrix multiplication. Additionally, the first
matrix multiplication loads all the data from global memory, and the layout will therefore be
swizzled and no bank conflicts will occur. However, the second matrix multiplication will have
bank conflicts when it reads P_block from shared to registers, since this layout is not swizzled.
Different CUDA blocks will also need to load the same K and V matrices, likely leading to a
high L2-cache hit-rate. We report below the result on our modified compiler with memory block
merging disabled (no MBM) and with memory block merging enabled. Since enabling memory
block merging produces the wrong results, we choose to show both cases.
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Figure 31: Attention like example similar to custom-alg1.fut from https://github.com/
diku-dk/CFAL-bench. The results of turning memory block merging (MBM) off is also shown
- indicated by the ”no MBM”. The plot shows performance in TFLOPS for the program with
matrix multiplications of size n× n× n, as a function of n.

The program shows good performance, and it also beats the A100 f16 peak performance
without Tensor Cores of 78 TFLOPS. Without using the Tensor Cores, a hand written CUDA
program could therefore never achieve this performance. The peak performance of the first flash
attention algorithm was stated to be 124 TFLOPS on the A100 by the original author in [2].
Although our program is only similar to flash attention, this still shows promising results.

Disabling memory block merging does produce slightly worse results. This is likely caused
by a lower degree of occupancy due to higher shared memory usage. We inspected the program
generated with MBM enabled and observed that the bug can be fixed without allocating additional
memory. The program should therefore be able to validate and give same performance if the MBM
pass is fixed.

The performance of the stock cuda action seems unreasonably low. This may be caused by
register spilling or excessive use of global memory in the place of shared memory or registers. Such
issues could likely be mitigated by careful optimization of the input Futhark program by hand, in
order to give performance more similar to what was seen for batched matrix multiplication and
possibly even better.
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5.4.3 Attention Like Program

Listing 44:

1 def attention_like [q][m][n][k] (A: [m][k]f16) (B: [q][k][n]f16) : [m][n]f32 =
2 -- Below code makes A' be copied to shared in each iteration of the loop
3 let A'= if q > 1 hen copy A else replicate (m * k) 0.0f16 |> unflatten
4 -- Alternative variant results in no copy
5 -- let A' = a
6 let acc_init : *[m][n]f32 = replicate (m * n) 0.0f32 |> unflatten in
7 loop (acc : *[m][n]f32) = (acc_init: *[m][n]f32) for i < q do
8 let B': *[k][n]f16 = B[i]
9 let C : *[m][n]f32 = matmulf32 A' B':

10 in copy C
11 entry run_attention [q][p] (A: [p][16][16]f16) (B: [p][q][16][16]f16) =
12 #[incremental_flattening(only_intra)]map2 attention_like A B

We benchmark another attention like program shown above. The if-statement is a ”compiler-
hack”, which forces the compiler to allocate the result of the branch in shared memory, and in effect
does a copy from global to shared memory. Matrix A is then reused multiple times to repeatedly do
matrix multiplication with new matrices from B. Recall, that in a futhark loop, the last statement
becomes the accumulator for the next iteration. We choose not to update the accumulator acc
with the result C because it would require an efficient sequentialization of the accumulation code
to become efficient. Instead the accumulator for the next iteration simply becomes the C that
was computed in the current loop iteration. The copy C statement will not manifest a copy, but
it is simply required for the program to type check, and avoid writing to global memory in each
iteration.

Since A’ will already be in shared memory, our pass will not copy A’ from global and A’
will therefore not have a swizzled memory layout. This means that although A’ is reused, all the
matrix multiplication computations will have shared memory bank conflicts. The matrices loaded
from the B array on the other hand are loaded from global memory to shared memory. This will
use our special global to shared memory copy and the layout of B’ will therefore be swizzled. No
bank conflicts therefore occur from using B’. We also tested a version where A is not copied to
shared memory outside the loop. This is indicated by the reassignment of A to A’ in a comment.
This will test whether it can be beneficial to always load a matrix from global memory because it
results in a swizzled memory layout.

The benchmarking results of this program are given below. For the cuda action, we only
report the results when A was copied to shared using the if-statement. Without A being copied
to shared outside the loop, the cuda action produces much worse results. Please note that the
program that copies A outside the loop is not benchmarked for n = 128. This is because the
non-statically known branch causes the compiler to allocate an additional shared memory buffer,
causing the program to run out of shared memory. Surprisingly, we see that the version that
repeatedly does a copy from global to shared memory inside the loop performs best.

After the first time that A is copied from global to shared it will be cached in the L2 cache.
All subsequent copies of A in the loop will therefore only have to load from the L2 cache. When
profiling the generated CUDA code, we also observe a near 50% L2 cache hit rate. This is expected
because each loop iteration uses a new B’ matrix, which will always result in a cache miss, and
we therefore almost always find 1 out of 2 matrices in the L2 cache. This, in combination with
the swizzled layout of A seems to beat copying A to shared memory once and reusing it q times.
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Figure 32 also shows the performance of a hand written implementation using CuTe without
pipelining. The implementation is similar to what our compiler generates except that the hand-
written version keeps results in registers, rather than writing to shared memory in each iteration.
Additionally A is also only loaded to shared memory once outside the loop using a swizzled layout.
This difference seems to result in around a 2× speedup on the largest dataset. Again this program
is likely bottlenecked by global memory reads, and would likely benefit greatly from pipelining.

Figure 32: Program similar to flash attention that does matrix multiplication in a loop. The plot
shows performance in TFLOPS for the program with matrix multiplications of size n× n× n, as
a function of n.

5.4.4 Rodinia LUD matrix multiplication

As the final benchmarking program, we took inspiration from the LU-decomposition program
from the Rodinia [1] benchmark suite. The program computes the matrix multiplication part of
LUD from Rodinia. The seq_acc helper function subtracts the two matrices mm and mat_blk
from each other using r as the sequentialization factor. The sequentialization code is somewhat
complicated, but it allows almost arbitrary levels of per thread sequentialization. We however
found that the only sequentialization factor that works in practice is whenever r=b, and the
sequential accumulation from large matrix multiplication in subsubsection 5.4.5 could therefore
directly have been used instead. We refer to this implementation for a simple way of sequentializing
code in Futhark.
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Listing 45: Matrix multiplication from LUD

1 def ludMult [m][b] (r: i64)
2 (top_per: [m][b][b]f16, lft_per: [m][b][b]f16, mat_slice: [m][m][b][b]f32) =
3 #[incremental_flattening(only_inner)]
4 map (\ (mat_arr: [m][b][b]f32, lft: [b][b]f16) ->
5 #[incremental_flattening(only_intra)]
6 map (\ (mat_blk: [b][b]f32, top: [b][b]f16) ->
7 let mm = matmulf32 lft top
8 in seq_acc r (-) (copy mat_blk) (copy mm)
9 ) (zip mat_arr top_per)

10 ) (zip mat_slice lft_per)

In the original Rodinia LUD, the matrix multiplication and subtraction kernels would be fused
together. This has better locality, but our transformation would not trigger. In the above code, we
have applied loop fission to get two intragroup kernels (matrix multiplication and subtraction). In
the benchmarks below, the cuda results uses the original LUD program where subtraction is fused
with the matrix multiplication kernel. Although we beat the cuda action, it is to a much lesser
extent than the two attention like programs. This is likely due to the sequentialization approach
used for the seq_acc kernel. It causes the CUDA block to have more threads than what is ideal
for matrix multiplication. Otherwise the program is similar to the attention like program, since
this program also does matrix multiplication in a loop (the second map), and the likely culprit
for performance loss is therefore the seq_acc kernel. Similarly to the large matrix multiplication
program, the ideal solution would be to keep results in registers, and do the subtraction on the
data in registers. Again, this is not possible with the current implementation, as described in
section 6.

73



Figure 33: Matrix multiplication kernel from the Rodinia LUD benchmark. The plot shows
performance in TFLOPS for the program with matrix multiplications of size n × n × n, as a
function of n.

5.4.5 Large matrix multiplication

The program shown below is an attempt at demonstrating the use of our compiler modifications
for large matrix multiplication, similar to the prototypes of section 3. The program takes as input
2 large matrices which have already been partitioned into tiles fitting in shared memory. The
reduction over tiles in the outer K dimension has been fully sequentialized, while the addition
of C with the accumulated result has been partly sequentialized. This is not a natural way of
expressing matrix multiplication in Futhark, but it ensures that the pattern matching of our pass
will succeed, and that a not far from optimal block size will be used.
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Listing 46: Large matrix multiplication program

1 def matAdd [m][n] (X: *[m][n]f32) (Y: [m][n]f32): [m][n]f32 =
2 loop acc: *[m][n]f32 = (X : *[m][n]f32) for i < m do
3 acc with [i, :] = map2 (+) acc[i] Y[i]
4

5 def handleKBlocks[K][m][n][k] (Arow: [K][m][k]f16) (Bcol: [K][k][n]f16)
6 : [m][n]f32 =
7 let acc_init : *[m][n]f32 = replicate (m * n) 0.0f32 |> unflatten in
8 loop (acc: *[m][n]f32) = acc_init for K_i < K do
9 let C = matmul Arow[K_i] Bcol[K_i]

10 in matAdd acc C
11

12 def run [M][K][N][m][n][k] (A: [M][K][m][k]f16) (B: [K][N][k][n]f16)
13 : [M][N][m][n]f32 =
14 #[incremental_flattening(only_inner)]map (\Arow ->
15 #[incremental_flattening(only_intra)]map (\Bcol ->
16 handleKBlocks Arow Bcol
17 ) (transpose B)
18 ) A

For a more fair comparison with the unmodified Futhark compiler we use the the program
shown below with m� = M ·m, n� = N · n, and k� = K · k. This program is much simpler, and a
much more natural way to express matrix multiplication in Futhark. Additionally, it should allow
the unmodified compiler to apply incremental flattening and block-register tiling more freely.

Listing 47: Simplified large matrix multiplication program

1 def matmulf16 [m'][n'][k'] (A: [m'][k']f16) (B: [k'][n']f16) : [m'][n']f16 =
2 map (\Arow ->
3 map (\Bcol ->
4 map2 (*) Arow Bcol
5 |> reduce (+) 0.0
6 ) (transpose B)
7 ) A

The benchmarking results for large matrix multiplication are a bit disappointing. We do beat
the cuda action, but only by around a factor of 2×. The results are very far from what our
prototype implementations could achieve. There are multiple of reasons for why the performance
is worse, the main one likely being that results are not accumulated in registers, but instead loaded
in and out of shared memory. We discuss this further in section 6. As shown for our prototypes,
this program could also benefit from pipelining global memory reads.
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Figure 34: Large matrix multiplication. The cuda results are from a standard idiomatic Futhark
matrix multiplication program, while the cudatc results use ”pre-tiled” inputs, with tiles of size
128×128×64. The plot shows performance in TFLOPS for matrix multiplications of size n×n×n,
as a function of n.

6 Future Work
Much of the future work is related to better utilizing the Tensor Cores. This is in terms of sup-
porting more data types and architectures, but also in more optimizations such as better register
usage to unlock more performance. Using the Tensor Cores should also be even more accessible to
Futhark programmers by better integrating our changes with the incremental flattening strategy
of the compiler. We finish by discussing all this in the next subsections.

6.1 Accumulation in registers
One of the main reasons why the large matrix multiplication benchmark of our compiler modifi-
cations severely underperforms compared to our prototypes, is that results are repeatedly loaded
in and out of registers. The compiler output for this program is shown in Listing 48. For brevity,
some parts of the code has been replaced by pseudocode in comments surrounded by <>.
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Listing 48: Compressed compiler output

1 FUTHARK_KERNEL_SIZED(run_square_xlzisegmap_intrablock_9369_dim1, 1, 1)
2 void run_square_xlzisegmap_intrablock_9369(
3 // <Args>
4 )
5 {
6 // <Variable declarations and initializations>
7 // <Zero initialization of global memory>
8 barrier(CLK_LOCAL_MEM_FENCE);
9 for (int64_t K_i_9376 = 0; K_i_9376 < (int64_t) 128; K_i_9376++) {

10 // <Variable declarations and initializations>
11 // <Zero initialization of registers>
12 barrier(CLK_LOCAL_MEM_FENCE);
13 futrts_copyGlobalShared(
14 &ext_mem_10678, A_mem_10652, color_10738,
15 offsetA_10267, (f16) 0.0F, Int<(int64_t) 128>{},
16 Int<(int64_t) 64>{}, Int<(int64_t) 2>{}, Int<(int64_t) 2>{}
17 );
18 futrts_copyGlobalShared(
19 &ext_mem_10681, B_mem_10653, color_10737,
20 offsetB_10270, (f16) 0.0F, Int<(int64_t) 64>{},
21 Int<(int64_t) 128>{}, Int<(int64_t) 2>{}, Int<(int64_t) 2>{}
22 );
23 futrts_tensorMMM(
24 &ext_mem_10682, ext_mem_10678, ext_mem_10681,
25 mem_10673, (f16) 0.0F, (f16) 0.0F, Int<(int64_t) 128>{},
26 Int<(int64_t) 128>{}, Int<(int64_t) 64>{}, Int<(int64_t) 2>{},
27 Int<(int64_t) 2>{}, Int<(int64_t) 1>{}, Int<(int64_t) 1>{}
28 );
29 for (int64_t i_0 = 0; i_0 < (int64_t) 128; i_0++) {
30 mem_10689[i_0] = ext_mem_10682[i_0];
31 }
32 barrier(CLK_LOCAL_MEM_FENCE);
33 futrts_copyRegistersShared(
34 &ext_mem_10693, mem_10689, color_10737,
35 (f16) 0.0F, (f16) 0.0F, Int<(int64_t) 128>{},
36 Int<(int64_t) 128>{}, Int<(int64_t) 2>{}, Int<(int64_t) 2>{}
37 );
38 barrier(CLK_LOCAL_MEM_FENCE);
39 // <Addition of C result in shared mem with acc in shared mem>
40 }
41 // <Copy of accumulated result from shared memory to global memory>
42 barrier(CLK_LOCAL_MEM_FENCE);
43 }

In each iteration of the sequential loop over the outer K dimension, the generated code first
zero initializes the C registers, and uses them to hold the result of matrix multiplication. Then
they are used to store the result in shared memory, only to load this result back to registers
in order to add the current iterations result to the accumulated values. A much more efficient
solutions would be to initialize the registers to zero before entering the sequential loop, and then
accumulating the result in registers, which is done ”for free” as a part of the mma operation. This
is also what is done in our prototypes.

As a simple proof of concept for this, we tried performing these optimizations by hand on
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the compiler output from our modified version of the Futhark compiler. This was done by simply
moving some code outside the sequential loop, and exchanging some variables. These modifications
are illustrated in Listing 49. Changes are highlighted using comments with **.

Listing 49: Modified compiler output

1 FUTHARK_KERNEL_SIZED(run_square_xlzisegmap_intrablock_9369_dim1, 1, 1)
2 void run_square_xlzisegmap_intrablock_9369(
3 // <Args>
4 )
5 {
6 // * Added declarations for variables now used outside loop: *
7 // <Variable declarations and initializations>
8 // * Zero initialization of global memory removed *
9 // * Moved outside loop: *

10 // <Zero initialization of registers>
11 barrier(CLK_LOCAL_MEM_FENCE);
12 for (int64_t K_i_9376 = 0; K_i_9376 < (int64_t) 128; K_i_9376++) {
13 // * Removed declarations for variables now used outside loop: *
14 // <Variable declarations and initializations>
15 futrts_copyGlobalShared(
16 &ext_mem_10678, A_mem_10652, color_10738,
17 offsetA_10267, (f16) 0.0F, Int<(int64_t) 128>{},
18 Int<(int64_t) 64>{}, Int<(int64_t) 2>{}, Int<(int64_t) 2>{}
19 );
20 futrts_copyGlobalShared(
21 &ext_mem_10681, B_mem_10653, color_10737,
22 offsetB_10270, (f16) 0.0F, Int<(int64_t) 64>{},
23 Int<(int64_t) 128>{}, Int<(int64_t) 2>{}, Int<(int64_t) 2>{}
24 );
25 futrts_tensorMMM(
26 &ext_mem_10682, ext_mem_10678, ext_mem_10681,
27 mem_10673, (f16) 0.0F, (f16) 0.0F, Int<(int64_t) 128>{},
28 Int<(int64_t) 128>{}, Int<(int64_t) 64>{}, Int<(int64_t) 2>{},
29 Int<(int64_t) 2>{}, Int<(int64_t) 1>{}, Int<(int64_t) 1>{}
30 );
31 for (int64_t i_0 = 0; i_0 < (int64_t) 128; i_0++) {
32 mem_10689[i_0] = ext_mem_10682[i_0];
33 }
34 barrier(CLK_LOCAL_MEM_FENCE);
35 // * Addition of C result and accumulator in shared memory removed *
36 }
37 // * Moved outside loop: *
38 futrts_copyRegistersShared(
39 &ext_mem_10693, mem_10689, color_10737,
40 (f16) 0.0F, (f16) 0.0F, Int<(int64_t) 128>{},
41 Int<(int64_t) 128>{}, Int<(int64_t) 2>{}, Int<(int64_t) 2>{}
42 );
43 barrier(CLK_LOCAL_MEM_FENCE);
44 // * Changed to copy from result of copyRegistersShared *
45 // <Copy of accumulated result from shared memory to global memory>
46 barrier(CLK_LOCAL_MEM_FENCE);
47 }

Making these changed alone increased the performance in the benchmark on 8192×8192×8192
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matrix multiplication from around 24 TFLOPS to 105 TFLOPS. This is, however, still quite far
from the expected performance according to our experiments with the prototype. The main
reason for this is that a very large amount of shared memory is requested for the kernel, since the
generated code originally used 2 separate shared memory buffers for the iteration result and the
accumulator. With the hand modifications, only one of these buffers is used.

If we modify the amount of requested shared memory in the generated C code by hand, and
change the shared memory buffers used in the generated CUDA code accordingly, we can reach
162 TFLOPS on the 8192 × 8192 × 8192 benchmark. Our prototype with similar optimizations
applied, i.e. without double-buffering or pipelining reaches about 160 TFLOPS, so is actually
narrowly beat by the modified Futhark program. This result was surprising, but profiling revealed
that it is likely due to the fact that the different data layout of the Futhark implementation, caused
by the input being ”pre-tiled”, results in a greater L2-cache hit-rate.

Making the compiler produce code that accumulates in registers when possible would require
some additional analysis of the input programs, in order to determine if values can actually be
kept in registers and are not accessed by other threads.

Perhaps a simple first implementation of this could simply extend our pattern match of matrix
multiplication between matrices of statically known sizes that fit in shared memory to matrix
multiplication between matrices of all sizes, and then perform block-tiling in order to get tiles
that fit in shared memory. The sequential loop over block tiles would then be generated by the
compiler, and results could then easily be accumulated in registers throughout this loop.

However, the ideal solution should be more general, and cover more cases than just large matrix
multiplication. Ideally it could perhaps even allow general fusing with other kernels over the input
or output of matrix multiplication. This could then be used to efficiently implement GEMM of
the form D = αAB+ βC, or linear transformations followed by activation functions, as commonly
used in neural networks.

6.2 Double-buffering or pipelining
Another reason why the code generated by the cudatc action is not able to achieve as good
performance as our handwritten large matrix multiplication prototypes is the lack of pipelining.
As described in subsection 2.2, this is an optimization that could benefit a wide range of programs,
since this allows the interleaving of data movement and computation. A pass performing double
buffering already exists in the compiler, so this could potentially be modified to also work with
our modifications. Additionally, it may be useful to generalize this pass to n-stage pipelining.

6.3 Interoperability with incremental flattening and autotuning
Currently, making use of our compiler modifications generally requires using expression attributes
to ensure that kernels of the right form are produced by the initial ”extract kernels” stage of
the compiler middle-end. Additionally, since our passes do not update the conditionals generated
by incremental flattening to choose different code versions, these conditionals often end up being
nonsensical if they are present, potentially leading to the branch containing the code generated
by our pass not being taken at runtime, even if it would give better performance. For this reason,
the programs we have tested and benchmarked generally use the expression attributes to ensure
that only a single version of the code is generated by incremental flattening, and that this version
matches the format expected by our passes.
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An obvious first step would be to update these conditionals whenever block sizes are changed.
Additionally, it should ideally be ensured that code matched by our passes is produced whenever
possible, without the user needing to use expression attributes. However, this would likely break
the monotonicity assumption of the autotuning[22] used to select the optimal version of the code
produced by incremental flattening, since different versions of the code would then not only exploit
different amounts of parallelism, but also use different hardware.

Finally, being able to use some form of autotuning to find the optimal amount of threads to
use for the tensor matrix multiplication would also be a very nice feature, but would likely also
not conform to the monotonicity requirement, similarly to tile sizes.

6.4 Better integration of swizzling
With the current implementation, we do not use our special function for copying to shared in
cases where an argument to matrix multiplication is loaded into shared memory outside of the
code pattern matched by our compiler pass. Instead we simply use the data in shared memory
as is, which leads to bank conflicts when the data is loaded into registers, as no swizzling is then
applied. Ideally, this should be avoided. If the data has been loaded from global memory to shared
memory at another point in the program, and is not used anywhere else, we could simply find this
load and replace it by our function. However, if the data is used elsewhere, we cannot just apply
swizzling, as the other code would not be expecting a swizzled layout. Similarly, we would also
not be able to easily apply swizzling if the argument in shared memory was the result of another
computation.

This issue could potentially be solved by making a swizzled copy of the data, before it is used
in our function for matrix multiplication. However, this would double the shared memory usage
of this data, and also require additional reads and writes of shared memory. We did some simple
experiments with our prototype implementation in an attempt to figure out if these trade-offs
would be worth it, but this did not seem to be the case.

A better, but much more involved solution, would be to have support for swizzled layouts
in the memory annotated Futhark IR, similarly to the ComposedLayout of CuTe. Such a
capability could be useful for more than just matrix multiplication, since compiler passes could
then potentially in general detect access patterns leading to bank conflicts and apply swizzling as
needed in these cases.

6.5 Avoiding bank conflicts when writing matrix multiplication results
(C arrays)

Currently, the copyRegistersShared function, used to write matrix multiplication results (C
arrays) to shared memory, causes 4-way bank conflicts in the worst case when the result is of type
f32. This is due to the fact that the rows of the result in the mma operation, which we recall in
Figure 35, contain 8 consecutive elements that can be written in parallel using vectorized stores.
This means only 8 distinct banks are accessed in each row, which is only 1

4
of the 32 availible

banks.
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Figure 35: Layout of threads and values in registers after mma computation.

One possible solution to this would be to swizzle the layout of C matrices in shared memory.
However, due to the challenges of integrating swizzled layouts with the rest of Futhark as mentioned
above, this may not be the best solution.

A better solution, at least in some cases, may be to write directly to global memory whenever
possible, i.e. when the result in shared would be written directly back to global memory anyway.
Writing directly to global memory can be done fully coalesced with f32 results, since 8 such
elements, i.e. a row from the mma result, corresponds to 32 B which is the minimum global
memory transaction size. This could be achieved by implementing a copyRegistersGlobal
function, very similar to copyRegistersShared, and inserting this as a part of the high-level
IR transformations when possible, and modifying the memory annotated IR accordingly.

A final, more complex, solution may be to use the fact that each warp typically performs
multiple mma operations with a layout as the one shown in Figure 35. This means that for each of
these operations, the values residing in the registers of a thread could potentially reside in different
banks. Therefore it may be possible to modify layouts and the order of memory accesses in a way
that ensures that each time a warp stores data, all threads access distinct banks, even though the
shared memory layout is not swizzled. This is, however, far from trivial to implement, especially
due to the intrinsic architecture constraints that all threads in a warp must execute the exact
same code, and that data in registers can only be accessed using static indexing. In fact, these
restrictions may well mean that this solution is impossible to implement.

6.6 Generalizing the Solution
There are a number of ways in which our solution could be generalized. Some of these are detailed
below.
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6.6.1 Supporting other matrix multiplication-like patterns

Our compiler modifications currently only targets matrix multiplication where each resulting ele-
ment is calculated as shown below:

cmn =
K�

k=0

amkbkn

The 3 patterns shown below are very similar, except for the order of indexes:

cmn =
K�

k=0

amkbnk, cmn =
K�

k=0

akmbkn, cmn =
K�

k=0

akmbnk

In Futhark, these 4 distinct patterns correspond to different combinations of transposing or
not transposing the A and B arrays shown in Listing 50, with the one shown corresponding to the
pattern we currently match.

Listing 50: Matrix multiplication in Futhark

1 map (\a ->
2 map (\b ->
3 map2 (*) a b
4 |> reduce (+) 0.0
5 ) (transpose B)
6 ) A

Supporting the other patterns would be fairly straightforward. The pattern matching would
simply have to be extended, and the instructions used for loading data into registers in the
tensorMMM9 function would have to be changed depending on the pattern.

6.6.2 Supporting more data types

In our work we have focused on f16 and f16/f32 mixed precision tensor core operations. There
are, however, versions of these operations that operate on other data types. The most relevant for
Futhark is probably the f64 operations and the i8/i32 and u8/i32 mixed precision operations,
since the other operations use types that are not yet available in futhark.

Adding support for these would require generalizing the pattern matching, finding optimal
configurations in terms of swizzling and elements calculated per thread for these data types, and
adding these to the CUDA prelude.

6.6.3 Supporting and optimizing for more architectures

Our solution is optimized for the NVIDIA Ampere architecture, and only works for this and newer
architectures. The preceding Volta and Turing architectures also have Tensor Cores, but require
the use of different PTX instructions. Similarly, the newer Hopper architecture also adds new
Tensor Core operation that are not available on older architectures[14]. Therefore, even though

9The function name of the special function that performs matrix multiplication
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our solution is still compatible with the Hopper architecture, it is likely that these new operations
would have to be used in order to achieve the best possible performance on this newer architecture.

Making optimal use of these other tensor core operations in Futhark would mostly require
changing the CUDA and CuTe prelude, and finding optimal configurations for these new oper-
ations. Modifying the CuTe configuration code should be fairly simple and not require a major
rewrite of the CUDA code.

Additionally a way of selecting target architecture would have to be added. This could be done
either automatically at runtime based on available hardware, or manually during compilation.

7 Conclusion
In this work, we have shown how use of the NVIDIA Tensor Cores can be integrated into the
Futhark compiler. We started out by writing and testing prototype implementations of matrix
multiplication using the Tensor Cores, achieving around the same performance as cuBLAS. This
led us to identify 3 functions that the Futhark compiler could emit to use the Tensor Cores and
abstract away most implementation details related to using the Tensor Cores. Two passes were
then implemented in the compiler: (1) for recognizing code suitable for execution using the Tensor
Cores and emitting the three Tensor Core related functions and (2) a pass that fixes memory
related issues caused by calling special functions.

The modified compiler is implemented as its own cudatc action, and the cuda compiler
action has been left unmodified. Futhark programmers must therefore opt in to using the Tensor
Cores by using the new cudatc action. Programs with an intragroup kernel corresponding to
matrix multiplication can now take advantage of the Tensor Cores. Compared to hand writing
CUDA programs with PTX instructions, this makes the Tensor Cores more accessible to high
performance computing.

The work presented is mostly a proof of concept, and there are many opportunities for gener-
alizing and optimizing the Tensor Core usage and leverage more performance. The benchmarking
results are however promising, and in all the cases tested, the implementation using Tensor Cores
beats the existing compiler implementation. The speedup compared to the stock Futhark compiler
is given in Table 3.

Batched Custom Attention Attention Rodinia LUD Large
Relative to stock f16 4.6× 60.1× 9.0× 2.9× 1.9×
Relative to stock f32 5.7× 167.5× 8.9× 3.5× 1.9×

Table 3: Speedup for the largest array size for all benchmarks, relative to the stock cuda action
on f16 and f32 programs.

This speedup is, however, not only caused by using the Tensor Cores, but also the other
optimizations that are hidden in the implementation of our special functions, such as vectorized
loads and swizzling. There is also more work left in making the Tensor Cores more accessible in
Futhark, including making incremental flattening work with the Tensor Cores. We leave these
optimizations as future work, and conclude that this thesis has succeeded in showing that new
and more heterogeneous hardware can be utilized in Futhark.
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A Source Code
A.1 preludeTensorCores.cu

1 using namespace cute;
2

3 template<class TypeIn>
4 struct convert_type {
5 using TypeOut = TypeIn;
6 };
7

8 template<>
9 struct convert_type<f16> {

10 using TypeOut = half_t;
11 };
12

13 template<class ElmTypeAIn, class ElmTypeBIn, class ElmTypeCIn, class SizeM, class
SizeN, class WarpsM, class WarpsN>�→

14 struct get_mma_config {};
15

16 // TODO: use FMA when Tensor Cores not available?
17
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18 template<class SizeM, class SizeN, class WarpsM, class WarpsN>
19 struct get_mma_config<half_t, half_t, half_t, SizeM, SizeN, WarpsM, WarpsN> {
20 // TODO: should depend on architecture available
21 using MMATraits = MMA_Traits<SM80_16x8x16_F16F16F16F16_TN>;
22 using ACopyOpSharedRegisters = SM75_U32x4_LDSM_N;
23 using BCopyOpSharedRegisters = SM75_U16x8_LDSM_T;
24

25 using MMATile = Tile<Int<16 * WarpsM{}>, Int<16 * WarpsN{}>, _16>;
26 using TiledMMA = TiledMMA<
27 MMA_Atom<MMATraits>,
28 Layout<Shape<WarpsM,WarpsN,_1»,
29 MMATile
30 >;
31 };
32

33 template<class SizeM, class SizeN, class WarpsM, class WarpsN>
34 struct get_mma_config<half_t, half_t, float, SizeM, SizeN, WarpsM, WarpsN>{
35 // TODO: should depend on architecture available
36 using MMATraits = MMA_Traits<SM80_16x8x16_F32F16F16F32_TN>;
37 using ACopyOpSharedRegisters = SM75_U32x4_LDSM_N;
38 using BCopyOpSharedRegisters = SM75_U16x8_LDSM_T;
39

40 using MMATile = Tile<Int<16 * WarpsM{}>, Int<16 * WarpsN{}>, _16>;
41 using TiledMMA = TiledMMA<
42 MMA_Atom<MMATraits>,
43 Layout<Shape<WarpsM,WarpsN,_1»,
44 MMATile
45 >;
46 };
47

48 template<class SizeY, class SizeX, class Swizzle, class Majorness, int shift_len>
49 struct get_layout_config {};
50

51 template<class SizeY, class SizeX, int shift_len>
52 struct get_layout_config<SizeY, SizeX, _1, LayoutRight, shift_len>{
53 using SharedLayout = ComposedLayout<Swizzle<3, 3, shift_len>, _0,

Layout<Shape<SizeY, SizeX>, Stride<SizeX, _1»>;�→

54 };
55

56 template<class SizeY, class SizeX, int shift_len>
57 struct get_layout_config<SizeY, SizeX, _0, LayoutRight, shift_len>{
58 using SharedLayout = Layout<Shape<SizeY, SizeX>, Stride<SizeX, _1»;
59 };
60

61 template<class SizeY, class SizeX, int shift_len>
62 struct get_layout_config<SizeY, SizeX, _1, LayoutLeft, shift_len>{
63 using SharedLayout = ComposedLayout<Swizzle<3, 3, shift_len>, _0,

Layout<Shape<SizeY, SizeX>, Stride<_1, SizeY»>;�→

64 };
65

66 template<class SizeY, class SizeX, int shift_len>
67 struct get_layout_config<SizeY, SizeX, _0, LayoutLeft, shift_len>{
68 using SharedLayout = Layout<Shape<SizeY, SizeX>, Stride<_1, SizeY»;
69 };
70

71 template<class ElmTypeIn, class SizeY, class SizeX, class WarpsM, class WarpsN>
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72 FUTHARK_FUN_ATTR void futrts_copyGlobalShared(unsigned char **mem_out_p, unsigned
char *global_mem, unsigned char *shared_mem, int64_t offset, ElmTypeIn,
SizeY, SizeX, WarpsM, WarpsN)

�→

�→

73 {
74 *mem_out_p = shared_mem;
75

76 int flatThreadIdx = threadIdx.z * blockDim.y * blockDim.x + threadIdx.y *
blockDim.x + threadIdx.x;�→

77

78 if (flatThreadIdx < WarpsM{} * WarpsN{} * 32) {
79 using ElmType = typename convert_type<ElmTypeIn>::TypeOut;
80

81 using CopyOpGlobalShared = SM80_CP_ASYNC_CACHEGLOBAL<uint128_t>;
82

83 constexpr int elmsPerLoad = 16 / sizeof(ElmType);
84 constexpr int threadsX = SizeX{} / elmsPerLoad;
85 constexpr int threadsY = (WarpsM{} * WarpsN{} * 32) / threadsX;
86

87 constexpr unsigned int sizeXunsigned = SizeX{};
88 constexpr unsigned int shift_len = max(bit_width(sizeXunsigned) - 4, _3{});
89

90 using LayoutConfig = get_layout_config<SizeY, SizeX, _1, LayoutRight,
shift_len>;�→

91 typename LayoutConfig::SharedLayout s_layout;
92

93 auto g_layout = make_layout(Shape<SizeY, SizeX>{}, LayoutRight{});
94

95 TiledCopy copy_global_shared =
make_tiled_copy(Copy_Atom<CopyOpGlobalShared, ElmType>{},�→

96 make_layout(Shape<Int<threadsY>, Int<threadsX»{}, LayoutRight{}),
97 Layout<Shape<_1,Int<elmsPerLoad»>{}
98 );
99

100 Tensor s = make_tensor(make_smem_ptr(reinterpret_cast<ElmType
*>(shared_mem)), s_layout);�→

101 Tensor g = make_tensor(make_gmem_ptr(&reinterpret_cast<ElmType
*>(global_mem)[offset]), g_layout);�→

102

103 ThrCopy thr_copy_global_shared =
copy_global_shared.get_slice(flatThreadIdx);�→

104 Tensor tAgA = thr_copy_global_shared.partition_S(g);
105 Tensor tAsA = thr_copy_global_shared.partition_D(s);
106

107 copy(copy_global_shared, tAgA, tAsA);
108

109 cp_async_fence();
110 }
111

112 // Assuming the copied data is only used in futrts_tensorMMM, we do not need
to wait for it here�→

113 // cp_async_wait<0>();
114 // __syncthreads();
115 }
116

117 template<class ElmTypeAIn, class ElmTypeBIn, class ElmTypeCIn, class SizeM, class
SizeN, class WarpsM, class WarpsN, int numRegs>�→
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118 FUTHARK_FUN_ATTR void futrts_copyRegistersShared(unsigned char **mem_out_p,
ElmTypeCIn (&registers_mem)[numRegs], unsigned char *shared_mem, ElmTypeAIn,
ElmTypeBIn, SizeM, SizeN, WarpsM, WarpsN)

�→

�→

119 {
120 *mem_out_p = shared_mem;
121

122 int flatThreadIdx = threadIdx.z * blockDim.y * blockDim.x + threadIdx.y *
blockDim.x + threadIdx.x;�→

123

124 if (flatThreadIdx < WarpsM{} * WarpsN{} * 32) {
125 using ElmTypeA = typename convert_type<ElmTypeAIn>::TypeOut;
126 using ElmTypeB = typename convert_type<ElmTypeBIn>::TypeOut;
127 using ElmTypeC = typename convert_type<ElmTypeCIn>::TypeOut;
128

129 using MMAConfig = get_mma_config<ElmTypeA, ElmTypeB, ElmTypeC, SizeM,
SizeN, WarpsM, WarpsN>;�→

130 typename MMAConfig::TiledMMA tiled_mma;
131

132 auto s_layout = make_layout(Shape<SizeM, SizeN>{}, LayoutRight{});
133

134 ThrMMA thr_mma = tiled_mma.get_slice(flatThreadIdx);
135

136 auto r_layout = partition_shape_C(thr_mma, s_layout.shape());
137 Tensor tCrC = make_tensor(make_rmem_ptr(reinterpret_cast<ElmTypeC

*>(registers_mem)), r_layout);�→

138

139 Tensor s = make_tensor(make_smem_ptr(reinterpret_cast<ElmTypeC
*>(shared_mem)), s_layout);�→

140 Tensor tCsC = thr_mma.partition_C(s);
141

142 copy(AutoVectorizingCopy{}, tCrC, tCsC);
143 }
144 __syncthreads();
145 }
146

147 template<class ElmTypeAIn, class ElmTypeBIn, class ElmTypeCIn, class SizeM, class
SizeN, class SizeK, class WarpsM, class WarpsN, class ASwizzled, class
BSwizzled, int numRegs>

�→

�→

148 FUTHARK_FUN_ATTR void futrts_tensorMMM(ElmTypeCIn (*mem_out_p)[numRegs], unsigned
char *A_mem, unsigned char *B_mem, ElmTypeCIn (&C_mem)[numRegs], ElmTypeAIn,
ElmTypeBIn, SizeM, SizeN, SizeK, WarpsM, WarpsN, ASwizzled, BSwizzled)

�→

�→

149 {
150 int flatThreadIdx = threadIdx.z * blockDim.y * blockDim.x + threadIdx.y *

blockDim.x + threadIdx.x;�→

151

152 using ElmTypeA = typename convert_type<ElmTypeAIn>::TypeOut;
153 using ElmTypeB = typename convert_type<ElmTypeBIn>::TypeOut;
154 using ElmTypeC = typename convert_type<ElmTypeCIn>::TypeOut;
155

156 using MMAConfig = get_mma_config<ElmTypeA, ElmTypeB, ElmTypeC, SizeM, SizeN,
WarpsM, WarpsN>;�→

157 typename MMAConfig::TiledMMA tiled_mma;
158

159 constexpr unsigned int sizeKunsigned = SizeK{};
160 constexpr unsigned int shift_lenK = max(bit_width(sizeKunsigned) - 4, _3{});
161
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162 constexpr unsigned int sizeNunsigned = SizeN{};
163 constexpr unsigned int shift_lenN = max(bit_width(sizeNunsigned) - 4, _3{});
164

165 using ALayoutConfig = get_layout_config<SizeM, SizeK, ASwizzled, LayoutRight,
shift_lenK>;�→

166 using BLayoutConfig = get_layout_config<SizeN, SizeK, BSwizzled, LayoutLeft,
shift_lenN>;�→

167 typename ALayoutConfig::SharedLayout sA_layout;
168 typename BLayoutConfig::SharedLayout sB_layout;
169

170 auto sC_layout = make_layout(Shape<SizeM, SizeN>{}, LayoutRight{});
171

172 ThrMMA thr_mma = tiled_mma.get_slice(flatThreadIdx);
173

174 auto rC_layout = partition_shape_C(thr_mma, sC_layout.shape());
175 Tensor tCrC = make_tensor(make_rmem_ptr(reinterpret_cast<ElmTypeC *>(C_mem)),

rC_layout);�→

176

177 Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<ElmTypeA *>(A_mem)),
sA_layout);�→

178 Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<ElmTypeB *>(B_mem)),
sB_layout);�→

179

180 TiledCopy copyA_shared_registers = make_tiled_copy_A(Copy_Atom<typename
MMAConfig::ACopyOpSharedRegisters, ElmTypeA>{}, tiled_mma);�→

181 TiledCopy copyB_shared_registers = make_tiled_copy_B(Copy_Atom<typename
MMAConfig::BCopyOpSharedRegisters, ElmTypeB>{}, tiled_mma);�→

182

183 Tensor tCrA = thr_mma.partition_fragment_A(sA);
184 Tensor tCrB = thr_mma.partition_fragment_B(sB);
185

186 auto smem_thr_copy_A =
copyA_shared_registers.get_thread_slice(threadIdx.x);�→

187 Tensor tCsA = smem_thr_copy_A.partition_S(sA);
188 Tensor tCrA_copy_view = smem_thr_copy_A.retile_D(tCrA);
189

190 auto smem_thr_copy_B =
copyB_shared_registers.get_thread_slice(threadIdx.x);�→

191 Tensor tCsB = smem_thr_copy_B.partition_S(sB);
192 Tensor tCrB_copy_view = smem_thr_copy_B.retile_D(tCrB);
193

194 // Wait for data copied asynchronously by futrts_copyGlobalShared
195 cp_async_wait<0>();
196 __syncthreads();
197

198 constexpr int K_BLOCK_MAX = size<2>(tCrA);
199 CUTE_UNROLL
200 for (int k_block = 0; k_block < K_BLOCK_MAX; ++k_block)
201 {
202 // Copy shared->registers
203 copy(copyA_shared_registers, tCsA(_,_,k_block),

tCrA_copy_view(_,_,k_block));�→

204 copy(copyB_shared_registers, tCsB(_,_,k_block),
tCrB_copy_view(_,_,k_block));�→

205

206 // Perform mma on k_block in registers
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207 gemm(tiled_mma, tCrA(_,_,k_block), tCrB(_,_,k_block), tCrC);
208 }
209

210 for (int32_t i = 0; i < numRegs; i++)
211 (*mem_out_p)[i] = C_mem[i];
212 }

A.2 TensorCores.hs
1 module Futhark.Optimise.TensorCores
2 (tensorCoreMemFixup, extractTensorCores)
3 where
4

5 import Control.Monad
6 import Futhark.Pass
7 ( Pass (..),
8 intraproceduralTransformationWithConsts,
9 )

10 import Futhark.IR.GPU
11 import Futhark.IR.GPUMem
12 import Futhark.Pass.Simplify
13 import Futhark.Optimise.TensorCores.ExtractTensorCores (transformProg)
14 import Futhark.Optimise.TensorCores.TensorCoreMemFixup (fixFuns)
15

16

17 -- | Transforms intragroup kernels corresponding to matrix multiplication into
18 -- function calls that use the Tensor Cores.
19 extractTensorCores :: Pass GPU GPU
20 extractTensorCores =
21 Pass
22 "tensor-mma"
23 "Extracts NVIDIA tensor core MMA operations"
24 transformProg
25

26 -- | Fixes up the memory allocation caused by inserting function calls for
27 -- tensor core operations.
28 tensorCoreMemFixup :: Pass GPUMem GPUMem
29 tensorCoreMemFixup =
30 Pass
31 "mma-fixup"
32 "Extracts NVIDIA tensor core MMA operations"
33 $ intraproceduralTransformationWithConsts pure fixFuns
34 >=> passFunction simplifyGPUMem

A.3 ExtractTensorCores.hs
1 module Futhark.Optimise.TensorCores.ExtractTensorCores
2 (transformProg)
3 where
4

5 import Control.Monad
6 import Control.Monad.RWS.Strict
7 import Control.Monad.Reader
8 import Control.Monad.State.Strict
9 import Control.Monad.Writer
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10 import Data.Bits
11 import Data.Foldable (toList)
12 import Data.List (elemIndex, intersect, partition)
13 import Data.Loc (Loc (NoLoc), SrcLoc (SrcLoc))
14 import Data.Map.Strict qualified as M
15 import Data.Semigroup
16 import Data.Set (difference, fromList)
17 import Futhark.Analysis.SymbolTable qualified as ST
18 import Futhark.Builder
19 import Futhark.Construct
20 import Futhark.IR.GPU
21 import Futhark.IR.GPUMem
22 import Futhark.Optimise.Simplify.Rep
23 import Futhark.Optimise.TensorCores.Utils
24 import Futhark.Optimise.TileLoops.Shared
25 import Futhark.Pass (PassM)
26 import Prelude hiding (lookup)
27

28

29 -- | Divide and round up.
30 divUp :: Int -> Int -> Int
31 divUp x y = (x + y - 1) `div` y
32

33

34

35

36 -- Tensor core functions emitted (gemm, copy global shared, copy registers
shared)�→

37 type TcFunDef = (MMMSignature, FunDef GPU)
38

39 type TcFuns = [TcFunDef]
40

41 data ExtractTcEnv = ExtractTcEnv
42 { envScope :: Scope GPU,
43 envBlockSize :: Maybe Int
44 }
45

46 -- | Monad that the tensor core match and GPU IR code transformations runs
within.�→

47 type TensorCoreM = RWS ExtractTcEnv TcFuns VNameSource
48

49 instance HasScope GPU TensorCoreM where
50 askScope = asks envScope
51

52 instance LocalScope GPU TensorCoreM where
53 localScope extension = local $
54 \env -> env {envScope = M.union extension $ envScope env}
55

56 askBlockSize :: TensorCoreM (Maybe Int)
57 askBlockSize = asks envBlockSize
58

59 localBlockSize :: (Maybe Int -> Maybe Int) -> TensorCoreM a -> TensorCoreM a
60 localBlockSize f = local $ \env -> env {envBlockSize = f $ envBlockSize env}
61

62 runBuilderMMM :: Builder GPU a -> Scope GPU -> TensorCoreM (a, Stms GPU)
63 runBuilderMMM m s =
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64 modifyNameSource $ runState $ runBuilderT m s
65

66

67 -- | Create the gemm function defintion.
68 mkGemmFun ::
69 (MonadFreshNames m) =>
70 PrimType ->
71 PrimType ->
72 PrimType ->
73 Int ->
74 Int ->
75 Int ->
76 Int ->
77 m TcFunDef
78 mkGemmFun elmTypeA elmTypeB elmTypeC sizeM sizeN sizeK sizeRegs = do
79 let typeA =
80 Array
81 elmTypeA
82 (Shape [mkInt64Const sizeM, mkInt64Const sizeK])
83 Nonunique
84 typeB =
85 Array
86 elmTypeB
87 (Shape [mkInt64Const sizeK, mkInt64Const sizeN])
88 Nonunique
89 typeCin =
90 Array
91 elmTypeC
92 (Shape [mkInt64Const sizeRegs])
93 Unique
94 typeCout =
95 [ ( Array
96 elmTypeC
97 (Shape [Free $ mkInt64Const sizeRegs])
98 Unique,
99 RetAls [] []

100 )
101 ]
102

103 aParam <- newParam "A" typeA
104 bParam <- newParam "B" typeB
105 cParam <- newParam "C" typeCin
106 aElmTypeParam <- newParam "elmTypeA" $ Prim elmTypeA
107 bElmTypeParam <- newParam "elmTypeB" $ Prim elmTypeB
108 mParam <- newParam "M" $ Prim int64
109 nParam <- newParam "N" $ Prim int64
110 kParam <- newParam "K" $ Prim int64
111 mWarpsParam <- newParam "mWarps" $ Prim int64
112 nWarpsParam <- newParam "nWarps" $ Prim int64
113 aSwizzledParam <- newParam "aSwizzledParam" $ Prim int64
114 bSwizzledParam <- newParam "bSwizzledParam" $ Prim int64
115

116 fName <- fmap (nameFromString . prettyString) $ newName $ VName gemmName 0
117 let funParams =
118 [ aParam,
119 bParam,
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120 cParam,
121 aElmTypeParam,
122 bElmTypeParam,
123 mParam,
124 nParam,
125 kParam,
126 mWarpsParam,
127 nWarpsParam,
128 aSwizzledParam,
129 bSwizzledParam
130 ]
131 pure
132 ( GemmSignature elmTypeA elmTypeB elmTypeC sizeM sizeN sizeK sizeRegs,
133 FunDef Nothing mempty fName typeCout funParams $
134 resultBody [Var $ paramName cParam]
135 )
136

137 -- | Create the copy global shared function definition.
138 mkCopyGlobalShared :: (MonadFreshNames m) => PrimType -> Int -> Int -> m TcFunDef
139 mkCopyGlobalShared elmType sizeY sizeX = do
140 let arrShape =
141 Shape
142 [ mkInt64Const sizeY,
143 mkInt64Const sizeX
144 ]
145

146 globalParam <- newParam "global" $ Array elmType arrShape Nonunique
147 sharedParam <- newParam "shared" $ Array elmType arrShape Unique
148 offsetParam <- newParam "offset" $ Prim int64
149 elmTypeParam <- newParam "elmTypeA" $ Prim elmType
150 yParam <- newParam "Y" $ Prim int64
151 xParam <- newParam "X" $ Prim int64
152 mWarpsParam <- newParam "mWarps" $ Prim int64
153 nWarpsParam <- newParam "nWarps" $ Prim int64
154

155 fName <-
156 fmap (nameFromString . prettyString) $ newName $ VName copyGlobalSharedName 0
157

158 let sharedOut =
159 [ ( Array elmType (fmap Free arrShape) Unique,
160 RetAls [] []
161 )
162 ]
163 let funParams =
164 [ globalParam,
165 sharedParam,
166 offsetParam,
167 elmTypeParam,
168 yParam,
169 xParam,
170 mWarpsParam,
171 nWarpsParam
172 ]
173 pure
174 ( CopyGlobalSharedSignature elmType sizeY sizeX,
175 FunDef Nothing mempty fName sharedOut funParams $
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176 resultBody [Var $ paramName sharedParam]
177 )
178

179 -- | Create the copy from registers to shared memory definition.
180 mkCopyRegistersShared ::
181 (MonadFreshNames m) =>
182 PrimType ->
183 PrimType ->
184 PrimType ->
185 Int ->
186 Int ->
187 Int ->
188 Int ->
189 m TcFunDef
190 mkCopyRegistersShared elmTypeA elmTypeB elmTypeC sizeM sizeN sizeRegs blockSize =

do�→

191 registersParam <-
192 newParam "registers" $
193 Array
194 elmTypeC
195 (Shape [mkInt64Const blockSize, mkInt64Const sizeRegs])
196 Nonunique
197 sharedParam <-
198 newParam "shared" $
199 Array
200 elmTypeC
201 (Shape [mkInt64Const sizeM, mkInt64Const sizeN])
202 Unique
203 aElmTypeParam <- newParam "elmTypeA" $ Prim elmTypeA
204 bElmTypeParam <- newParam "elmTypeB" $ Prim elmTypeB
205 mParam <- newParam "M" $ Prim int64
206 nParam <- newParam "N" $ Prim int64
207 mWarpsParam <- newParam "mWarps" $ Prim int64
208 nWarpsParam <- newParam "nWarps" $ Prim int64
209

210 fName <-
211 nameFromString . prettyString
212 <$> newName (VName copyRegistersSharedName 0)
213

214 let sharedOut =
215 [ ( Array
216 elmTypeC
217 (Shape [Free $ mkInt64Const sizeM, Free $ mkInt64Const sizeN])
218 Unique,
219 RetAls [] []
220 )
221 ]
222 let funParams =
223 [ registersParam,
224 sharedParam,
225 aElmTypeParam,
226 bElmTypeParam,
227 mParam,
228 nParam,
229 mWarpsParam,
230 nWarpsParam
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231 ]
232 pure
233 ( CopyRegistersSharedSignature elmTypeC sizeM sizeN sizeRegs blockSize,
234 FunDef Nothing mempty fName sharedOut funParams $
235 resultBody [Var $ paramName sharedParam]
236 )
237

238 -- | Create some shared (scratch) memory of the specified type and shape.
239 scratchMem :: PrimType -> [Int] -> Exp GPU
240 scratchMem elmType dims = BasicOp $ Scratch elmType $ map mkInt64Const dims
241

242 -- | Rebuild the matrix multiplication computation. The SegRed will be
243 -- replae by calls to three tensor core related functions.
244 buildMMM :: VName -> Int -> TensorCoreMatch -> Builder GPU TcFuns
245 buildMMM
246 resName
247 actualBlockSize
248 match@(TensorCoreMatch kernelBodyMatch ne sizeM sizeN sizeK) = do
249 -- Get the best tile of warps given the block size.
250 let (warpsM, warpsN) = getOptimalWarps actualBlockSize match
251 let blockSize = warpsM * warpsN * 32
252 let cValsPerThread = sizeM * sizeN `div` blockSize
253

254 let elmTypeC = typeC kernelBodyMatch
255 elmTypeB = typeB kernelBodyMatch
256 elmTypeA = typeA kernelBodyMatch
257 gemmFun <- mkGemmFun elmTypeA elmTypeB elmTypeC sizeM sizeN sizeK

cValsPerThread�→

258 copyGlobalSharedFunA <- mkCopyGlobalShared (typeA kernelBodyMatch) sizeM
sizeK�→

259 copyGlobalSharedFunB <- mkCopyGlobalShared (typeB kernelBodyMatch) sizeK
sizeN�→

260 copyRegistersSharedFun <-
261 mkCopyRegistersShared -- Maybe too much formatting
262 elmTypeA
263 elmTypeB
264 elmTypeC
265 sizeM
266 sizeN
267 cValsPerThread
268 blockSize
269 let addedFuns =
270 [ gemmFun,
271 copyGlobalSharedFunA,
272 copyGlobalSharedFunB,
273 copyRegistersSharedFun
274 ]
275

276 let thrdInBlock = SegThreadInBlock SegNoVirt
277 cRegs_list <-
278 segMap1D "cRegs" thrdInBlock ResultPrivate (mkInt64Const blockSize) $ \_ ->

do�→

279 cScratch <- letExp "cScratch" $ scratchMem elmTypeC [cValsPerThread]
280 cLoop <- forLoop (mkInt64Const cValsPerThread) [cScratch] $ \i [cMerge]

-> do�→

281 cZeroed <- update "cZeroed" cMerge [i] ne
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282 resultBodyM [Var cZeroed]
283 pure [varRes cLoop]
284 let [cRegs] = cRegs_list
285 aScratch <- letExp "aScratch" $ scratchMem elmTypeA [sizeM, sizeK]
286 bScratch <- letExp "bScratch" $ scratchMem elmTypeB [sizeK, sizeN]
287

288 let innerIndecesASlice =
289 [ DimSlice (mkInt64Const 0) (mkInt64Const sizeM) (mkInt64Const 1),
290 DimSlice (mkInt64Const 0) (mkInt64Const sizeK) (mkInt64Const 1)
291 ]
292 innerIndecesBSlice =
293 [ DimSlice (mkInt64Const 0) (mkInt64Const sizeK) (mkInt64Const 1),
294 DimSlice (mkInt64Const 0) (mkInt64Const sizeN) (mkInt64Const 1)
295 ]
296 slicedA <-
297 letExp "slicedA" $
298 BasicOp $
299 Index (arrA kernelBodyMatch) $
300 Slice $
301 fmap DimFix (outerIndecesA kernelBodyMatch) <> innerIndecesASlice
302 slicedB <-
303 letExp "slicedB" $
304 BasicOp $
305 Index (arrB kernelBodyMatch) $
306 Slice $
307 fmap DimFix (outerIndecesB kernelBodyMatch) <> innerIndecesBSlice
308

309 -- Need to pass this explicitly as LMAD info is lost on function call
310 let pe64DimsA =
311 fmap pe64 $
312 outerDimsA kernelBodyMatch
313 <> [mkInt64Const sizeM, mkInt64Const sizeK]
314 pe64IndiciesA =
315 fmap pe64 $
316 outerIndecesA kernelBodyMatch
317 <> [mkInt64Const 0, mkInt64Const 0]
318 pe64DimsB =
319 fmap pe64 $
320 outerDimsB kernelBodyMatch
321 <> [mkInt64Const sizeK, mkInt64Const sizeN]
322 pe64IndiciesB =
323 fmap pe64 $
324 outerIndecesB kernelBodyMatch
325 <> [mkInt64Const 0, mkInt64Const 0]
326

327 flatIndexAExp <- toExp $ flattenIndex pe64DimsA pe64IndiciesA
328 offsetA <- letExp "offsetA" flatIndexAExp
329 flatIndexBExp <- toExp $ flattenIndex pe64DimsB pe64IndiciesB
330 offsetB <- letExp "offsetB" flatIndexBExp
331

332 let copyArgsA =
333 [ (Var slicedA, ObservePrim),
334 (Var aScratch, Consume),
335 (Var offsetA, ObservePrim),
336 (Constant $ blankPrimValue $ typeA kernelBodyMatch, ObservePrim),
337 (mkInt64Const sizeM, ObservePrim),
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338 (mkInt64Const sizeK, ObservePrim),
339 (mkInt64Const warpsM, ObservePrim),
340 (mkInt64Const warpsN, ObservePrim)
341 ]
342 copyRetsA =
343 [ ( Array
344 (typeA kernelBodyMatch)
345 (Shape [Free $ mkInt64Const sizeM, Free $ mkInt64Const sizeK])
346 Unique,
347 RetAls [] []
348 )
349 ]
350

351 copyArgsB =
352 [ (Var slicedB, ObservePrim),
353 (Var bScratch, Consume),
354 (Var offsetB, ObservePrim),
355 (Constant $ blankPrimValue $ typeB kernelBodyMatch, ObservePrim),
356 (mkInt64Const sizeK, ObservePrim),
357 (mkInt64Const sizeN, ObservePrim),
358 (mkInt64Const warpsM, ObservePrim),
359 (mkInt64Const warpsN, ObservePrim)
360 ]
361 copyRetsB =
362 [ ( Array
363 (typeB kernelBodyMatch)
364 (Shape [Free $ mkInt64Const sizeK, Free $ mkInt64Const sizeN])
365 Unique,
366 RetAls [] []
367 )
368 ]
369

370 aCopied <-
371 letExp "aCopied" $
372 Apply
373 (funDefName $ snd copyGlobalSharedFunA)
374 copyArgsA
375 copyRetsA
376 (Safe, SrcLoc NoLoc, [])
377

378 bCopied <-
379 letExp "bCopied" $
380 Apply
381 (funDefName $ snd copyGlobalSharedFunB)
382 copyArgsB
383 copyRetsB
384 (Safe, SrcLoc NoLoc, [])
385

386 let blksize = mkInt64Const blockSize
387 inBlockMMAres_list <-
388 segMap1D "inBlockMMAres" thrdInBlock ResultPrivate blksize $ \thread_idx ->

do�→

389 threadCregs <- index "threadCregs" cRegs [thread_idx]
390 let mmmArgs =
391 [ (Var aCopied, ObservePrim),
392 (Var bCopied, ObservePrim),
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393 (Var threadCregs, Consume),
394 (Constant $ blankPrimValue $ typeA kernelBodyMatch, ObservePrim),
395 (Constant $ blankPrimValue $ typeB kernelBodyMatch, ObservePrim),
396 (mkInt64Const sizeM, ObservePrim),
397 (mkInt64Const sizeN, ObservePrim),
398 (mkInt64Const sizeK, ObservePrim),
399 (mkInt64Const warpsM, ObservePrim),
400 (mkInt64Const warpsN, ObservePrim),
401 (mkInt64Const 1, ObservePrim),
402 (mkInt64Const 1, ObservePrim)
403 ]
404 let mmmRets =
405 [ ( Array
406 (typeC kernelBodyMatch)
407 (Shape [Free $ mkInt64Const cValsPerThread])
408 Unique,
409 RetAls [] []
410 )
411 ]
412 threadMMAres <-
413 letExp "threadMMAres" $
414 Apply
415 (funDefName $ snd gemmFun)
416 mmmArgs
417 mmmRets
418 (Safe, SrcLoc NoLoc, [])
419 pure [varRes threadMMAres]
420 let [inBlockMMAres] = inBlockMMAres_list
421

422 cScratch <- letExp "cScratch" $ scratchMem elmTypeC [sizeM, sizeN]
423 let copyArgsC =
424 [ (Var inBlockMMAres, ObservePrim),
425 (Var cScratch, Consume),
426 (Constant $ blankPrimValue $ typeA kernelBodyMatch, ObservePrim),
427 (Constant $ blankPrimValue $ typeB kernelBodyMatch, ObservePrim),
428 (mkInt64Const sizeM, ObservePrim),
429 (mkInt64Const sizeN, ObservePrim),
430 (mkInt64Const warpsM, ObservePrim),
431 (mkInt64Const warpsN, ObservePrim)
432 ]
433 let copyRetsC =
434 [ ( Array
435 (typeC kernelBodyMatch)
436 (Shape [Free $ mkInt64Const sizeM, Free $ mkInt64Const sizeN])
437 Unique,
438 RetAls [] []
439 )
440 ]
441 cCopied <-
442 letExp "cCopied" $
443 Apply
444 (funDefName $ snd copyRegistersSharedFun)
445 copyArgsC
446 copyRetsC
447 (Safe, SrcLoc NoLoc, [])
448
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449 letBindNames [resName] $ BasicOp $ SubExp $ Var cCopied
450 pure addedFuns
451

452 -- Functions for traversing the input program and transforming the relevant
453 -- statement to use tensor cores.
454 transformProg :: Prog GPU -> PassM (Prog GPU)
455 transformProg (Prog opaqueTypes consts funs) = do
456 (transformedFuns, mmmFuns) <-
457 modifyNameSource $
458 (\(a, s, w) -> ((a, w), s)) . runRWS (mapM transformFunDef funs) init_env
459 let (_, addedFuns) = unzip mmmFuns
460 pure $ Prog opaqueTypes consts (addedFuns <> transformedFuns)
461 where
462 init_env = ExtractTcEnv (scopeOf consts) Nothing
463

464 transformFunDef :: FunDef GPU -> TensorCoreM (FunDef GPU)
465 transformFunDef funDef@(FunDef entry attrs name retType params body) =
466 FunDef entry attrs name retType params <$> inScopeOf funDef (transformBody

body)�→

467

468 transformStms :: Stms GPU -> TensorCoreM (Stms GPU)
469 transformStms = mapStmsWithScope transformStm
470

471 transformStm :: Stm GPU -> TensorCoreM (Stms GPU)
472 transformStm stm@(Let (Pat [PatElem resName _]) _ e) = do
473 scope <- askScope
474 maybeBlockSize <- askBlockSize
475 case (innerSegOpExpMatch scope e, maybeBlockSize) of
476 (Just match, Just blockSize) -> do
477 (mmmFuns, stms) <- runBuilderMMM (buildMMM resName blockSize match) scope
478 tell mmmFuns
479 pure stms
480 _ -> transformStmDefault stm
481 transformStm stm = transformStmDefault stm
482

483 transformStmDefault :: Stm GPU -> TensorCoreM (Stms GPU)
484 transformStmDefault (Let pat aux e) = do
485 e' <- transformExp e
486 pure $ oneStm $ Let pat aux e'
487

488 -- TODO: match WithAcc?
489 transformExp :: Exp GPU -> TensorCoreM (Exp GPU)
490 transformExp (Match subExps cases body matchDec) =
491 Match subExps
492 <$> mapM transformCase cases
493 <*> transformBody body
494 <*> pure matchDec
495 transformExp (Loop params form body) =
496 localScope (scopeOfFParams (map fst params) <> scopeOfLoopForm form) $ do
497 newBody <- transformBody body
498 pure $ Loop params form newBody
499 transformExp (Op op) = Op <$> transformOp op
500 transformExp e = pure e
501

502 transformCase :: Case (Body GPU) -> TensorCoreM (Case (Body GPU))
503 transformCase (Case pat body) = Case pat <$> transformBody body
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504

505 transformBody :: Body GPU -> TensorCoreM (Body GPU)
506 transformBody (Body dec stms res) =
507 Body dec
508 <$> transformStms stms
509 <*> pure res
510

511 transformOp :: Op GPU -> TensorCoreM (Op GPU)
512 transformOp (SegOp sOp) = SegOp <$> transformSegOp sOp
513 transformOp op = pure op
514

515 -- | First we match an out SegMap to get the block size. Later we
516 -- try to set the block size dependent on the matrix multiplication dims.
517 transformSegOp :: SegOp SegLevel GPU -> TensorCoreM (SegOp SegLevel GPU)
518 transformSegOp
519 sOp@( SegMap
520 ( SegBlock
521 SegNoVirt
522 (Just (KernelGrid (Count numBlocks) (Count _blockSize)))
523 )
524 space@(SegSpace _ _)
525 ts
526 body@(KernelBody _ stms _)
527 ) = do
528 scope <- askScope
529 case execWriter $ runReaderT (maxBlockSizeStms stms) scope of
530 Known (Max maxBlockSize) -> do
531 transformedBody <-
532 localBlockSize (const $ Just maxBlockSize) $
533 transformKernelBody body
534 let blocks = Count numBlocks
535 let blocksize = Count $ mkInt64Const maxBlockSize
536 let grid = KernelGrid blocks blocksize
537 pure $ SegMap (SegBlock SegNoVirt (Just grid)) space ts transformedBody
538 Unknown ->
539 transformSegOpDefault sOp
540 transformSegOp sOp = transformSegOpDefault sOp
541

542 transformSegOpDefault :: SegOp SegLevel GPU -> TensorCoreM (SegOp SegLevel GPU)
543 transformSegOpDefault (SegMap level space ts body) =
544 SegMap level space ts
545 <$> transformKernelBody body
546 transformSegOpDefault (SegRed level space ops ts body) =
547 SegRed level space ops ts
548 <$> transformKernelBody body
549 transformSegOpDefault (SegScan level space ops ts body) =
550 SegScan level space ops ts
551 <$> transformKernelBody body
552 transformSegOpDefault (SegHist level space ops hist body) =
553 SegHist level space ops hist
554 <$> transformKernelBody body
555

556 transformKernelBody :: KernelBody GPU -> TensorCoreM (KernelBody GPU)
557 transformKernelBody (KernelBody desc stms res) =
558 KernelBody desc
559 <$> transformStms stms
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560 <*> pure res
561

562 -- | Do we know the block size or not?
563 data KnownUnknown a = Known a | Unknown
564 deriving (Show, Eq, Ord)
565

566 instance (Monoid a) => Monoid (KnownUnknown a) where
567 mempty = Known mempty
568

569 instance (Semigroup a) => Semigroup (KnownUnknown a) where
570 Known a <> Known b = Known $ a <> b
571 _ <> _ = Unknown
572

573 type MaxBlockSizeM = ReaderT (Scope GPU) (Writer (KnownUnknown (Max Int)))
574

575 -- | Find the max block size required for the intragroup kernels.
576 -- This is needed in case more threads are needed than what is ideal for
577 -- matmul using the tensor cores.
578 maxBlockSizeWalker :: Walker GPU MaxBlockSizeM
579 maxBlockSizeWalker =
580 (identityWalker @GPU)
581 { walkOnOp = maxBlockSizeOp,
582 walkOnBody = maxBlockSizeBody
583 }
584

585 maxBlockSizeStms :: Stms GPU -> MaxBlockSizeM ()
586 maxBlockSizeStms = mapStmsWithScope maxBlockSizeStm
587

588 maxBlockSizeStm :: Stm GPU -> MaxBlockSizeM ()
589 maxBlockSizeStm (Let _ _ e) = maxBlockSizeExp e
590

591 maxBlockSizeExp :: Exp GPU -> MaxBlockSizeM ()
592 maxBlockSizeExp = walkExpM maxBlockSizeWalker
593

594 maxBlockSizeOp :: Op GPU -> MaxBlockSizeM ()
595 maxBlockSizeOp op = do
596 scope <- askScope
597 case (innerOpMatch scope op, op) of
598 (Just match, _) -> do
599 tell $ Known $ Max $ getOptimalBlockSize match
600 (_, SegOp sOp)
601 | (SegThreadInBlock _) <- segLevel sOp ->
602 tell $ foldl prodKnownSegDim (Known 1) $ unSegSpace $ segSpace sOp
603 _ -> pure ()
604

605 maxBlockSizeBody :: Scope GPU -> Body GPU -> MaxBlockSizeM ()
606 maxBlockSizeBody scope (Body _ stms _) = localScope scope $ maxBlockSizeStms stms
607

608 prodKnownSegDim ::
609 KnownUnknown (Max Int) ->
610 (VName, SubExp) ->
611 KnownUnknown (Max Int)
612 prodKnownSegDim (Known (Max acc)) (_, Constant (IntValue n)) =
613 Known $ Max $ acc * valueIntegral n
614 -- TODO: should lookup if variable dimension?
615 -- Currently we do not match if any dimensions are not statically known integers.
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616 -- The only reason a lookup might be relevant is if the variable is bound to a
617 -- statically known variable. This might already be handled by constant folding.
618 prodKnownSegDim _ _ = Unknown
619

620 getFactorPairs :: Int -> [(Int, Int)]
621 getFactorPairs n = [(x, n `div` x) | x <- [1 .. n], n `mod` x == 0]
622

623 getRatio :: Int -> Int -> Float
624 getRatio m n = fromIntegral m / fromIntegral n
625

626 -- Note: This should in the future depend on the type.
627 -- F64 might require a different warp layout than f16 for best performance.
628 getOptimalWarps :: Int -> TensorCoreMatch -> (Int, Int)
629 getOptimalWarps blockSize (TensorCoreMatch _ _ sizeM sizeN _) =
630 -- warp tiles will be as close to square as possible, which should maximize

register reuse�→

631 let Arg _ (warpsM, warpsN) = minimum $ map ratioDifference usedfactorPairs
632 in (warpsM, warpsN)
633 where
634 minValsPerThread = 8
635 maxBlockSize = (sizeM * sizeN) `div` minValsPerThread
636 usedBlockSize = min blockSize maxBlockSize
637 targetRatio = getRatio sizeM sizeN
638 -- Minimum values per thread used for f16 MMA Atom
639 usedfactorPairs = helper $ usedBlockSize `divUp` 32
640 ratioDifference (x, y) = Arg (abs $ targetRatio - getRatio x y) (x, y)
641 helper 0 = error "Could not find appropriate number of warps"
642 helper numwarps =
643 let factorPairs = getFactorPairs numwarps
644 in if not $ any (\(x, y) -> (sizeM `div` 16) `mod` x == 0 && (sizeN `div`

16) `mod` y == 0) factorPairs�→

645 then
646 helper $ numwarps - 1
647 else
648 factorPairs
649

650 -- NOTE: In the future the optimal block size should depend on:
651 -- 1. The array element type (f16 or f64)
652 -- 2. Architecture
653 -- 3. Type of program. Sometimes more threads can be good.
654 -- The current estimate might not be optimal in all cases.
655 getOptimalBlockSize :: TensorCoreMatch -> Int
656 getOptimalBlockSize (TensorCoreMatch _ _ sizeM sizeN _sizeK) =
657 let optimalElmsPerWarp = 4096
658 in ((sizeM * sizeN) `divUp` optimalElmsPerWarp) * 32
659

660 -- Pattern matching
661

662 data TensorCoreMatch = TensorCoreMatch
663 { kernelBodyMatch :: KernelBodyMatch,
664 ne :: SubExp,
665 sizeM :: Int,
666 sizeN :: Int,
667 sizeK :: Int
668 }
669 deriving (Show, Eq, Ord)
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670

671 -- NOTE: The only type currently supported is f16 for A and B and f16/f32 for C.
672 -- Future work should also support f64 or maybe even mixed u8/s32.
673 data KernelBodyMatch = KernelBodyMatch
674 { innerIndecesA :: [VName],
675 innerIndecesB :: [VName],
676 outerIndecesA :: [SubExp],
677 outerIndecesB :: [SubExp],
678 outerDimsA :: [SubExp],
679 outerDimsB :: [SubExp],
680 arrA :: VName,
681 arrB :: VName,
682 m :: VName,
683 n :: VName,
684 k :: VName,
685 typeA :: PrimType,
686 typeB :: PrimType,
687 typeC :: PrimType
688 }
689 deriving (Show, Eq, Ord)
690

691 innerSegOpExpMatch :: Scope GPU -> Exp GPU -> Maybe TensorCoreMatch
692 innerSegOpExpMatch scope (Op op) = innerOpMatch scope op
693 innerSegOpExpMatch _ _ = Nothing
694

695 innerOpMatch :: Scope GPU -> Op GPU -> Maybe TensorCoreMatch
696 innerOpMatch
697 scope
698 ( SegOp
699 segRed@(SegRed (SegThreadInBlock _) space segBinOps _ts body)
700 )
701 | Just ne <- segBinOpsMatch segBinOps =
702 do
703 let (dimVars, segDims) = unzip $ unSegSpace space
704 let freeVars = freeIn segRed
705 bodyMatch <- inBlockKernelBodyMatch dimVars freeVars body scope
706 constSegDims <- mapM constantValueMatch segDims
707 case constSegDims of
708 [m, n, k]
709 | all sizeMatches constSegDims ->
710 Just (TensorCoreMatch bodyMatch ne m n k)
711 _ -> Nothing
712 innerOpMatch _ _ = Nothing
713

714 -- NOTE: This should definitely depend on the element type when more types are
715 -- supported. The current bounds fit within the shared memory when using f16
716 -- on the A100.
717 sizeMatches :: Int -> Bool
718 sizeMatches x =
719 x `mod` 16 == 0
720 && 0 < x
721 && x <= 128
722 -- Check if x is power of 2
723 && popCount x == 1
724

725 constantValueMatch :: SubExp -> Maybe Int
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726 constantValueMatch (Constant (IntValue v)) = Just $ valueIntegral v
727 constantValueMatch _ = Nothing
728

729 -- Does the list of indexing variables only have a single dimension?
730 singleDim :: [d] -> Maybe d
731 singleDim [v] = Just v
732 singleDim _ = Nothing
733

734 hasCorrectMatMulOperandType :: Type -> PrimType -> Bool
735 hasCorrectMatMulOperandType (Array typ _ _) pt = typ == pt
736 hasCorrectMatMulOperandType _ _ = False
737

738 -- The indexVars corresponds to the variables from the SegSpace
739 inBlockKernelBodyMatch ::
740 [VName] ->
741 Names ->
742 KernelBody GPU ->
743 Scope GPU ->
744 Maybe KernelBodyMatch
745 inBlockKernelBodyMatch
746 indexVars@[_, _, indexVar3]
747 freeVars
748 (KernelBody _ stms [Returns _ _ (Var res)])
749 scope = do
750 let f16_type = FloatType Float16
751 let sTable = ST.insertStms (informStms stms) $ ST.fromScope $ addScopeWisdom

scope�→

752 (resExp, _) <- ST.lookupExp res sTable
753 -- Check that the result is optionally converted from f16->f32.
754 -- In case it is not, then since the program type checks and the
755 -- arrays are asserted to be f16, then all operators must be f16
756 resWithoutConversion <- case resExp of
757 BasicOp (ConvOp (FPConv Float16 Float32) (Var converted)) -> do
758 (convertedExp, _) <- ST.lookupExp converted sTable
759 pure convertedExp
760 notConvertedExp ->
761 pure notConvertedExp
762 (mulArg1, mulArg2) <- matchesMul $ removeExpWisdom resWithoutConversion
763 (mulArg1Exp, _) <- ST.lookupExp mulArg1 sTable
764 (mulArg2Exp, _) <- ST.lookupExp mulArg2 sTable
765 (arr1, slice1) <- matchesMulArg $ removeExpWisdom mulArg1Exp
766 (arr2, slice2) <- matchesMulArg $ removeExpWisdom mulArg2Exp
767

768 -- For now we only support mixed f16/f32 tensor core operations.
769 -- Therefore the array operands A and B in C = A @ B must be f16.
770 arr1Type <- ST.lookupType arr1 sTable
771 arr2Type <- ST.lookupType arr2 sTable
772 guard $ hasCorrectMatMulOperandType arr1Type f16_type
773 guard $ hasCorrectMatMulOperandType arr2Type f16_type
774

775 resType <- ST.lookupType res sTable
776 slice1' <- mapM dimFix $ unSlice slice1
777 slice2' <- mapM dimFix $ unSlice slice2
778 let seIndexVars = map Var indexVars
779 let (seInnerIndeces1, outerIndeces1) = partition (`elem` seIndexVars) slice1'
780 let (seInnerIndeces2, outerIndeces2) = partition (`elem` seIndexVars) slice2'
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781 let outerIndeces = outerIndeces1 <> outerIndeces2
782 innerIndeces1 <- mapM getIndexVar seInnerIndeces1
783 innerIndeces2 <- mapM getIndexVar seInnerIndeces2
784 -- Check that each array has one unique (n or m) and one commen (k) dimension
785 -- as the inner dimensions of the intragroup kernel
786 k <- singleDim $ innerIndeces1 `intersect` innerIndeces2
787 n <- singleDim $ toList $ fromList innerIndeces1 `difference` fromList

innerIndeces2�→

788 m <- singleDim $ toList $ fromList innerIndeces2 `difference` fromList
innerIndeces1�→

789 -- TODO: Do we maybe want to allow something that is not matrix
multiplication?�→

790 -- It would just require us to "not" transpose B in CuTe
791 -- In the meantime, this checks where in the indexing slice k appears.
792 -- For B it must be [n, k] and for A it must be [k, n]
793 elemIndex k innerIndeces1 »= guard . (== 1) -- [m, k] matrix
794 elemIndex k innerIndeces2 »= guard . (== 0) -- [k, n] matrix
795 case (arr1Type, arr2Type, resType) of
796 (Array type1 (Shape arr1Dims) _, Array type2 (Shape arr2Dims) _, Prim

resTypePrim)�→

797 | k == indexVar3 && all (`subExpFreeIn` freeVars) outerIndeces ->
798 let arr1OuterDims = take (length arr1Dims - 2) arr1Dims
799 in let arr2OuterDims = take (length arr2Dims - 2) arr2Dims
800 in Just
801 ( KernelBodyMatch
802 innerIndeces1
803 innerIndeces2
804 outerIndeces1
805 outerIndeces2
806 arr1OuterDims
807 arr2OuterDims
808 arr1
809 arr2
810 m
811 n
812 k
813 type1
814 type2
815 resTypePrim
816 )
817 _ -> Nothing
818 inBlockKernelBodyMatch _ _ _ _ = Nothing
819

820 getIndexVar :: SubExp -> Maybe VName
821 getIndexVar (Var v) = Just v
822 getIndexVar _ = Nothing
823

824 -- A bit weird, but we also count constants as free
825 subExpFreeIn :: SubExp -> Names -> Bool
826 subExpFreeIn (Constant _) _ = True
827 subExpFreeIn (Var v) names = v `nameIn` names
828

829 matchesMul :: Exp GPU -> Maybe (VName, VName)
830 matchesMul (BasicOp (BinOp (FMul _) (Var arg1) (Var arg2))) = Just (arg1, arg2)
831 matchesMul _ = Nothing
832
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833 matchesMulArg :: Exp GPU -> Maybe (VName, Slice SubExp)
834 matchesMulArg (BasicOp (Index v s)) = Just (v, s)
835 matchesMulArg _ = Nothing
836

837 segBinOpsMatch :: [SegBinOp GPU] -> Maybe SubExp
838 segBinOpsMatch [SegBinOp Commutative lambda nes _]
839 | lambdaMatch lambda = nesMatch nes
840 segBinOpsMatch _ = Nothing
841

842 lambdaMatch :: Lambda GPU -> Bool
843 lambdaMatch (Lambda [Param _ arg1 _, Param _ arg2 _] _ body) =
844 lambdaBodyMatch arg1 arg2 body
845 lambdaMatch _ = False
846

847 lambdaBodyMatch :: VName -> VName -> Body GPU -> Bool
848 lambdaBodyMatch arg1 arg2 (Body _ stms [SubExpRes _ (Var v)]) =
849 any (lambdaStmMatch arg1 arg2 v) stms
850 lambdaBodyMatch _ _ _ = False
851

852 lambdaStmMatch :: VName -> VName -> VName -> Stm GPU -> Bool
853 lambdaStmMatch
854 arg1
855 arg2
856 v
857 ( Let
858 (Pat [PatElem v' _])
859 _
860 ( BasicOp
861 (BinOp (FAdd _) (Var arg1') (Var arg2'))
862 )
863 ) =
864 v == v' && arg1 == arg1' && arg2 == arg2'
865 lambdaStmMatch
866 arg1
867 arg2
868 v
869 ( Let
870 (Pat [PatElem v' _])
871 _
872 (BasicOp (BinOp (Add _ _) (Var arg1') (Var arg2')))
873 ) =
874 v == v' && arg1 == arg1' && arg2 == arg2'
875 lambdaStmMatch _ _ _ _ = False
876

877 nesMatch :: [SubExp] -> Maybe SubExp
878 nesMatch [s@(Constant v)] | zeroIsh v = Just s
879 nesMatch _ = Nothing

A.4 TensorCoreMemFixup.hs
1 module Futhark.Optimise.TensorCores.TensorCoreMemFixup
2 (fixFuns)
3 where
4

5 import Control.Monad
6 import Control.Monad.RWS.Strict
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7 import Data.List (lookup)
8 import Data.Semigroup
9 import Futhark.IR.GPU

10 import Futhark.IR.GPUMem
11 import Futhark.Optimise.TensorCores.Utils
12 import Futhark.Pass (PassM)
13 import Prelude hiding (lookup)
14

15

16 type FixEnv = Scope GPUMem
17

18 data SpaceType = Device | Shared | Scalar
19

20 type FixState = [(VName, (VName, Bool))]
21

22 -- The monad the memory fixup runs within.
23 type FixM a = RWST FixEnv () FixState PassM a
24

25 fixFuns :: Stms GPUMem -> FunDef GPUMem -> PassM (FunDef GPUMem)
26 fixFuns consts fun
27 | gemmName `isPrefixOfName` funDefName fun =
28 pure $
29 fun
30 { funDefParams = fixParamsGemmFun $ funDefParams fun,
31 funDefRetType = fixRetType Scalar $ funDefRetType fun
32 }
33 | copyGlobalSharedName `isPrefixOfName` funDefName fun =
34 pure $
35 fun
36 { funDefParams = fixParamsCopyGlobalShared $ funDefParams fun,
37 funDefRetType = fixRetType Shared $ funDefRetType fun
38 }
39 | copyRegistersSharedName `isPrefixOfName` funDefName fun =
40 pure $
41 fun
42 { funDefParams = fixParamsCopyRegistersShared $ funDefParams fun,
43 funDefRetType = fixRetType Shared $ funDefRetType fun
44 }
45 | otherwise = do
46 let initScope = scopeOf consts <> scopeOfFParams (funDefParams fun)
47 let body = funDefBody fun
48 stms' <- fixStmtsWithScope initScope . bodyStms $ body
49 pure $ fun {funDefBody = body {bodyStms = stms'}}
50

51 fixParamsCopyGlobalShared :: [FParam GPUMem] -> [FParam GPUMem]
52 fixParamsCopyGlobalShared
53 ( Param attrs1 vName1 (MemMem (Space "device"))
54 : Param attrs2 vName2 (MemMem (Space "device"))
55 : rest
56 ) =
57 Param attrs1 vName1 (MemMem (Space "device"))
58 : Param attrs2 vName2 (MemMem (Space "shared"))
59 : rest
60 fixParamsCopyGlobalShared params = params
61

62 fixParamsCopyRegistersShared :: [FParam GPUMem] -> [FParam GPUMem]

107



63 fixParamsCopyRegistersShared
64 ( Param attrs1 vName1 (MemMem (Space "device"))
65 : Param attrs2 vName2 (MemMem (Space "device"))
66 : p3@(Param _ _ (MemArray t shp _ (ArrayIn _ _)))
67 : rest
68 ) =
69 Param attrs1 vName1 (MemMem space)
70 : Param attrs2 vName2 (MemMem (Space "shared"))
71 : p3
72 : rest
73 where
74 space = ScalarSpace (drop 1 $ shapeDims shp) t
75 fixParamsCopyRegistersShared params = params
76

77 fixParamsGemmFun :: [FParam GPUMem] -> [FParam GPUMem]
78 fixParamsGemmFun
79 ( Param attrs1 vName1 (MemMem (Space "device"))
80 : Param attrs2 vName2 (MemMem (Space "device"))
81 : Param attrs3 vName3 (MemMem (Space "device"))
82 : p4
83 : p5
84 : p6@(Param _ _ (MemArray t shp _ (ArrayIn _ _)))
85 : rest
86 ) =
87 Param attrs1 vName1 (MemMem (Space "shared"))
88 : Param attrs2 vName2 (MemMem (Space "shared"))
89 : Param attrs3 vName3 (MemMem space)
90 : p4
91 : p5
92 : p6
93 : rest
94 where
95 space = ScalarSpace (shapeDims shp) t
96 fixParamsGemmFun params = params
97

98 fixRetType ::
99 SpaceType ->

100 [(RetType GPUMem, RetAls)] ->
101 [(RetType GPUMem, RetAls)]
102 fixRetType
103 spaceType
104 [ (MemMem (Space "device"), als1),
105 (MemArray t shp u (ReturnsNewBlock (Space "device") n lmad), als2)
106 ] =
107 -- TODO: check if ReturnsInBlock is preferred
108 [ (MemMem newSpace, als1),
109 (MemArray t shp u (ReturnsNewBlock newSpace n lmad), als2)
110 ]
111 where
112 getNewSpace Device = Space "device"
113 getNewSpace Shared = Space "shared"
114 getNewSpace Scalar = ScalarSpace (fmap extToSubExp (shapeDims shp)) t
115 newSpace = getNewSpace spaceType
116 fixRetType _ rets = rets
117

118 extToSubExp :: ExtSize -> SubExp

108



119 extToSubExp (Ext n) = mkInt64Const n
120 extToSubExp (Free se) = se
121

122 fixStmtsWithScope :: Scope GPUMem -> Stms GPUMem -> PassM (Stms GPUMem)
123 fixStmtsWithScope scope stms = do
124 (res, _, _) <- runRWST (fixStmts stms) scope []
125 pure res
126

127 fixStmts :: Stms GPUMem -> FixM (Stms GPUMem)
128 fixStmts = mapStmsWithScope fixStmt
129

130 fixStmt :: Stm GPUMem -> FixM (Stms GPUMem)
131 fixStmt
132 stm@( Let
133 (Pat [PatElem resName (MemArray _ _ _ (ArrayIn resMem _))])
134 _
135 (BasicOp (Manifest _ inputName))
136 ) = do
137 info <- lookupInfo inputName
138 case info of
139 LetName (MemArray _ _ _ (ArrayIn inputMem _)) -> do
140 modify ([(resName, (inputName, False)), (resMem, (inputMem, False))] <>)
141 defaultFixStm stm
142 _ -> defaultFixStm stm
143 fixStmt
144 ( Let
145 ( Pat
146 [ PatElem vName1 _,
147 PatElem vName2 (MemArray t2 shp2 u2 (ArrayIn mName2 lmad2))
148 ]
149 )
150 aux
151 (Apply fName args rets info)
152 ) | gemmName `isPrefixOfName` fName = do
153 let space = ScalarSpace (shapeDims shp2) t2
154 let newRets = fixRetType Scalar rets
155 -- For each argument we
156 (replacedArgs, removedCopy) <- mapAndUnzipM replaceArg args
157 let (removedAcopy : removedBcopy : _) = removedCopy
158 -- If these are true, and a manifest copy was removed, we can do swizzling,
159 -- otherwise the arrays are already in shared and we cannot swizzle them.
160 let removedAorB =
161 [ (mkInt64Const $ boolToInt $ not removedAcopy, ObservePrim),
162 (mkInt64Const $ boolToInt $ not removedBcopy, ObservePrim)
163 ]
164 let newArgs = take (length replacedArgs - 2) replacedArgs <> removedAorB
165 pure $
166 oneStm $
167 Let
168 ( Pat
169 [ PatElem vName1 (MemMem space),
170 PatElem vName2 (MemArray t2 shp2 u2 (ArrayIn mName2 lmad2))
171 ]
172 )
173 aux
174 (Apply fName newArgs newRets info)

109



175 fixStmt
176 ( Let
177 ( Pat
178 [ PatElem vName1 _,
179 PatElem vName2 (MemArray t2 shp2 u2 (ArrayIn mName2 lmad2))
180 ]
181 )
182 aux
183 (Apply fName args rets info)
184 ) | copyGlobalSharedName `isPrefixOfName` fName = do
185 let space = Space "shared"
186 -- TODO: check if need to handle uniqueness/consumption
187 let newRets = fixRetType Shared rets
188 (newArgs, _removedCopy) <- mapAndUnzipM replaceArg args
189 let ((Var srcMemMem, _) : _ : (Var srcArray, _) : _restArgs) = newArgs
190 srcMemInfo <- lookupInfo srcMemMem
191 case srcMemInfo of
192 LetName (MemMem srcMemSpace)
193 | srcMemSpace == space ->
194 -- Array is already in shared. Therefore, the copyGlobalShared call
195 -- should be removed and we return removedCopy=True.
196 modify ([(vName2, (srcArray, True)), (vName1, (srcMemMem, True))] <>)
197 _ ->
198 pure ()
199 pure
200 $ oneStm
201 $ Let
202 ( Pat
203 [ PatElem vName1 (MemMem space),
204 PatElem vName2 (MemArray t2 shp2 u2 (ArrayIn mName2 lmad2))
205 ]
206 )
207 aux
208 $ Apply fName newArgs newRets info
209 fixStmt
210 ( Let
211 ( Pat
212 [ PatElem vName1 _,
213 PatElem vName2 (MemArray t2 shp2 u2 (ArrayIn mName2 lmad2))
214 ]
215 )
216 aux
217 (Apply fName args rets info)
218 ) | copyRegistersSharedName `isPrefixOfName` fName = do
219 let space = Space "shared"
220 let newRets = fixRetType Shared rets
221 (newArgs, _removedCopy) <- mapAndUnzipM replaceArg args
222 pure $
223 oneStm $
224 Let
225 ( Pat
226 [ PatElem vName1 (MemMem space),
227 PatElem vName2 (MemArray t2 shp2 u2 (ArrayIn mName2 lmad2))
228 ]
229 )
230 aux
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231 (Apply fName newArgs newRets info)
232 fixStmt stm = defaultFixStm stm
233

234 defaultFixStm :: Stm GPUMem -> FixM (Stms GPUMem)
235 defaultFixStm (Let pat aux e) = do
236 e' <- fixExp e
237 pure $ oneStm $ Let pat aux e'
238

239 boolToInt :: Bool -> Int
240 boolToInt True = 1
241 boolToInt False = 0
242

243 -- TODO: this may be too aggressive
244 -- For each argument to a tensor core function call, replace the argument
245 -- if it comes from a manifest statement
246 -- Consider the generated call to tensorMMM that performs the GEMM on Tensor

Cores:�→

247 -- let A' = manifest(A, 0)
248 -- let C = tensorMMM A' ...
249 -- We would insted pass:
250 -- let C = tensorMMM A ...
251 -- We do this because A' is manifested in global memory, but we want the

arguments�→

252 -- to be in shared, because we know this function can only be called fromExp
253 -- kernel code!!!.
254 -- In case the argument was not caused by a manifest statement, it might already
255 -- be in shared memory. The removedCopy indicates if a manifest was removed.
256 replaceArg :: (SubExp, Diet) -> FixM ((SubExp, Diet), Bool)
257 replaceArg (Var v, d) = do
258 manifestMap <- get
259 case lookup v manifestMap of
260 Just (v', removedCopy) ->
261 pure ((Var v', d), removedCopy)
262 Nothing ->
263 pure ((Var v, d), False)
264 replaceArg a = pure (a, False)
265

266 fixExp :: Exp GPUMem -> FixM (Exp GPUMem)
267 fixExp (Match subExps cases body matchDec) =
268 Match subExps
269 <$> mapM fixCase cases
270 <*> fixBody body
271 <*> pure matchDec
272 fixExp (Loop params form body) =
273 localScope (scopeOfFParams (map fst params) <> scopeOfLoopForm form) $ do
274 newBody <- fixBody body
275 pure $ Loop params form newBody
276 fixExp (Op op) = Op <$> fixOp op
277 fixExp e = pure e
278

279 fixCase :: Case (Body GPUMem) -> FixM (Case (Body GPUMem))
280 fixCase (Case pat body) = Case pat <$> fixBody body
281

282 fixBody :: Body GPUMem -> FixM (Body GPUMem)
283 fixBody (Body dec stms res) = Body dec <$> fixStmts stms <*> pure res
284

111



285 fixOp :: Op GPUMem -> FixM (Op GPUMem)
286 fixOp (Inner hostOp) = Inner <$> fixHostOp hostOp
287 fixOp op = pure op
288

289 fixHostOp :: HostOp NoOp GPUMem -> FixM (HostOp NoOp GPUMem)
290 fixHostOp (SegOp op) = SegOp <$> fixSegOp op
291 fixHostOp op = pure op
292

293 fixSegOp :: SegOp SegLevel GPUMem -> FixM (SegOp SegLevel GPUMem)
294 fixSegOp (SegMap level space ts body) =
295 SegMap level space ts <$> fixKernelBody body
296 fixSegOp (SegRed level space ops ts body) =
297 SegRed level space ops ts <$> fixKernelBody body
298 fixSegOp (SegScan level space ops ts body) =
299 SegScan level space ops ts <$> fixKernelBody body
300 fixSegOp (SegHist level space ops hist body) =
301 SegHist level space ops hist <$> fixKernelBody body
302

303 fixKernelBody :: KernelBody GPUMem -> FixM (KernelBody GPUMem)
304 fixKernelBody (KernelBody desc stms res) =
305 KernelBody desc <$> fixStmts stms <*> pure res

A.5 Utils.hs
1 module Futhark.Optimise.TensorCores.Utils
2 ( gemmName,
3 copyGlobalSharedName,
4 copyRegistersSharedName,
5 isTCName,
6 isPrefixOfName,
7 getTCName,
8 MMMSignature (..),
9 mkInt64Const,

10 mapStmsWithScope
11 )
12 where
13

14 import Data.List (find, isPrefixOf)
15 import Futhark.IR
16

17 data MMMSignature
18 = GemmSignature
19 { elmTypeAGemm :: PrimType,
20 elmTypeBGemm :: PrimType,
21 elmTypeCGemm :: PrimType,
22 sizeMGemm :: Int,
23 sizeNGemm :: Int,
24 sizeKGemm :: Int,
25 sizeRegsGemm :: Int
26 }
27 | CopyGlobalSharedSignature
28 { elmTypeCPGS :: PrimType,
29 sizeYCPGS :: Int,
30 sizeXCPGS :: Int
31 }
32 | CopyRegistersSharedSignature
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33 { elmTypeCPRS :: PrimType,
34 sizeMCPRS :: Int,
35 sizeNCPRS :: Int,
36 sizeRegsCPRS :: Int,
37 blockSizeCPRS :: Int
38 }
39 deriving (Show, Eq, Ord)
40

41 gemmName :: Name
42 gemmName = "tensorMMM"
43

44 copyGlobalSharedName :: Name
45 copyGlobalSharedName = "copyGlobalShared"
46

47 copyRegistersSharedName :: Name
48 copyRegistersSharedName = "copyRegistersShared"
49

50 isPrefixOfName :: Name -> Name -> Bool
51 isPrefixOfName prefix name = nameToString prefix `isPrefixOf` nameToString name
52

53 funNames :: [Name]
54 funNames = [gemmName, copyGlobalSharedName, copyRegistersSharedName]
55

56 isTCName :: Name -> Bool
57 isTCName name = any (`isPrefixOfName` name) funNames
58

59 getTCName :: Name -> Maybe Name
60 getTCName name = find (`isPrefixOfName` name) funNames
61

62

63 -- Helper functions
64

65 -- | Creates an i64 SubExp
66 mkInt64Const :: Int -> SubExp
67 mkInt64Const = Constant . IntValue . intValue Int64
68

69 -- | Map a function over stmts and update the scope for each stmt.
70 mapStmsWithScope ::
71 (Monoid a, LocalScope rep f) =>
72 (Stm rep -> f a) ->
73 Stms rep ->
74 f a
75 mapStmsWithScope f stms =
76 case stmsHead stms of
77 Nothing -> pure mempty
78 Just (stm, stms') -> do
79 stm' <- f stm
80 stms'' <- inScopeOf stm $ mapStmsWithScope f stms'
81 pure $ stm' <> stms''
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