

F A C U L T Y O F S C I E N C E
U N I V E R S I T Y O F C O P E N H A G E N

Parallel implementations of machine learning
algorithms

Gradient boosted decision trees

Kristian Høi
KU-ID:tcw684

supervisor: Cosmin Eugen Oancea

March 1, 2021

Abstract

Over the last decade, the popularity of GPUs has steadily increased. Now,
all popular machine learning frameworks use the GPU to accelerate their perfor-
mance. The Gradient Boosted Decision Trees(GDBT) is one of the popular machine
learning algorithms which benefits from the power of the GPU. This requires an
implementation in a low-level GPU programming language. Many of these imple-
mentations only target a specific platform. An alternative is to use a high-level
GPU programming language to write the algorithm and rely on a compiler to gen-
erate efficient GPU code. Futhark is a high-level functional programming language
specializing in compiling parallel array operations into efficient GPU code.
This thesis describes the algorithm for creating a GBDT model and translates the
algorithm into using parallel building blocks. The parallel algorithm is created to
fit the constraints of Futhark and flattening is used to achieve the maximum par-
allelism available. The Futhark implementation is compared to one of the most
popular GDBT frameworks, XGBboost. It is shown the implementation achieves
similar accuracy as the XGBoost. The XGBoost histogram-based implementation
is x2 times faster than the futhark implementation. As Futhark is under devel-
opment and is improving The Futhark implementation supports also the OpenCL
platform whereas most GDBT frameworks only support CUDA.

Contents
1 Introduction 1

2 Background 3
2.1 Futhark . 4

2.1.1 Segmented operations . 6

3 Decision trees 8
3.1 Creating a decision tree . 9
3.2 Decision trees ensembles . 10
3.3 Gradient boosting . 11

4 Gradient boosting decision tree 13
4.1 Algorithm overview . 16

5 Translating algorithms to parallel constructs 21

6 Implementation of exact gradient boosted decision trees 27
6.1 Decision tree layout . 27
6.2 Finding best split . 29
6.3 Segmented partition . 31

7 Searching using histograms 34
7.1 Finding and mapping feature values to bins 35
7.2 Histogram implementation overview . 41
7.3 Histogram creation . 44

8 Experimental evaluation 46
8.1 Accuracy . 46
8.2 Training time . 47
8.3 OpenCL backend . 49

9 Conclusion and future work 50

1 Introduction
Gradient boosted decision trees (GBDT) is a highly popular and successful machine learn-
ing algorithm. It is frequently used in winning solutions for Kaggle competitions either
as the standalone model or combined with other machine learning models. As Big Data
continues to grow the demand for faster algorithms rises. The increasing amount of data
processing required forces the need for faster implementations. Currently, the CPU takes
a long time to create a decision tree for large datasets. To do create trees faster the
algorithm translated so it supports parallel execution on the GPU.
The levels of a decision tree are built one level at a time making the algorithm an ideal
candidate for parallel execution when creating the level. The question rises of how to
translate the sequential algorithm so it uses parallel operations and how to implement
this in a high-level programming GPU language compared to implementing the algorithm
in a low-level GPU programming language.

In this thesis we present an implementation of the XGBoost algorithm used for cre-
ating gradient boosted decision trees. We present how this can be translated for parallel
execution and is implemented in Futhark.
The specific contributions of this thesis is:

1. The mathematical theory behind gradient boosting and the XGBoost algorithm is
derived. Using the mathematical theory an algorithmic framework is presented for
finding the optimal decision tree.

2. The algorithm is translated into pseudo-Futhark using the parallel building blocks.
These building blocks allows to achieve the maximum parallelism available.

3. Using flattening of the irregular parallelism is removed, so the algorithm can be
implemented in futhark. This allows the compiler to generate code maximum the
parallelism used.

4. The implementation is further improved by using histograms to build the trees.
This allows for further elimination of irregular parallel and increases the speed of
implementation

5. An empirical evaluation of the implementation and an comparison with the XG-
Boost framework

This thesis builds on the previous work of [1–3] which has been of great help in under-
standing the main algorithmic steps and the mathematical theory behind them. I would
further like to acknowledge [1] for the development of the XGBoost framework.

Thesis structure
chapter 2: Background information about GPU programming and the challenges it

presents. The chapter presents the high-level GPU programming lan-
guage Futhark and the parallel building blocks it uses to maximise per-
formance.

1

chapter 3: Gives an introduction to decision trees and how the are used. The chap-
ter also shows how decision trees can be used with gradient boosting
further improve their predictive strength.

chapter 4: Introduces algorithm for creating an gradient boosted decision tree. Herein
it is shown the mathematical background for finding optimal decision
tree and the GBDT algorithm is presented.

chapter 5: This chapter presents the parallel translation of the GDBT algorithm
and how the parallel constructs from futhark is used. The usage of ir-
regular parallelism is highlighted and how the implementation mitigates
it by using flattening.

chapter 6: The Futhark implementation details for finding the optimal decision tree
is presented. Herein implementation details about how decision trees
are implemented and how flattening is used to create segmented parallel
operations maximizing performance.

chapter 7: This chapter presents an improvement to the algorithm by using his-
tograms when finding the optimal decision tree. These histograms re-
duces the time it takes to crease a decision tree.

chapter 8: shows the results of empirical evaluation on a large dataset. The ac-
curacy and speed is compared against the popular XGBoost framework
and the implementations performance using CUDA and OpenCL is dis-
cussed.

The code for the implementations presented in this thesis is made available on Github
and be accessed by the following url: https://github.com/KristianMH/FutharkGBDT.

2

https://github.com/KristianMH/FutharkGBDT

2 Background
General-purpose computing on graphics processing units (GPGPU) is increasing in pop-
ularity. The growth in single-core frequencies for CPUs has halted and programmers
cannot rely on them to solve problems faster. The advance of Big Data has programmers
turning their attention towards GPU programming to accelerate the performance of their
algorithms. A GPU delivers thousands of computing cores running at a lower frequency
than CPUs. This allows the GPU to execute many smaller operations in parallel to pro-
duce results faster. This gives massive speedup on tasks where the computations is done
in parallel e.g. matrix multiplication.
The performance of matrix multiplication has a huge impact on neural networks as they
rely heavily on matrix multiplication. Therefore every neural network requires a GPU to
get a good performance.

Writing a GPU program is different than sequential programming on the CPU. The most
common challenge is to avoid GPU memory becoming the bottleneck. Two primary plat-
forms for GPU programming: CUDA and OpenCL.
CUDA provides an API for parallel computing on Nvidia GPUs. This platform is devel-
oped by Nvidia and proprietary. Programs written in CUDA can only be executed on a
Nvidia GPU. OpenCL is an open-source API for parallel programming and is supported
by the two major GPU vendors Nvidia and AMD. Programs written in OpenCL can be
run on either hardware vendor.

Most algorithms use the GPU to accelerate the computation heavy tasks and the CPU
doing the rest of the tasks. As the CUDA API is proprietary most frameworks have had
to chose which platform they decide to use in their implementation.
Updates to CUDA might cause the algorithm implementation to rely on an unsupported
operation. Now the programmer has to choose either to use a deprecated CUDA version
or change to the OpenCL API. To convert the program to OpenCL may require to rethink
the implementation to fit the API. Is it often easier to adopt the implementation to the
updates instead.
Therefore most machine algorithm implementations target the CUDA platform. This
includes popular frameworks such as XGBoost, Tensorflow, and PyTorch. Users of these
algorithms are forced to obtain a Nvidia GPU to use the GPU accelerated implementa-
tions.

An alternative approach for GPU programming is to rely on a compiler to generate effi-
cient GPU code. The programs can now be executed on any platform supported by the
compiler.
Futhark is a high-level programming language with a compiler generating GPU code for
CUDA and OpenCL [4]. The performance is now heavily reliant on the compiler to gen-
erate efficient GPU code but the algorithm is no longer limited to the CUDA API.

3

2.1 Futhark
Programs using the CUDA or OpenCL API are written in a low-level language and
requires extensive knowledge of GPUs to create efficient programs. The GPU and CPU
have different memory spaces so a copy is needed from CPU to GPU. the derives uses its
own memory space for the computations

The GPU program receives input data from the host(CPU) and computes a result
sending before it back to the host. It is difficult to transfer the data between host and
device(GPU) efficiently and make sure the computations are done efficiently on the de-
vice.
To this, the programmer must know the pitfalls of data transfers and write optimal code
for both the host and the device. Memory is often a performance bottleneck and using
the right memory access to the cache is crucial to prevent this.

The goal of Futhark is to hide the difficulties of GPU programming: memory manage-
ment and programming model. This reduces the burden of GPU programming from the
programmer onto the compiler.
Futhark is a statically typed, data-parallel, and purely functional array language with
a heavily optimized ahead-of-time compiler [4, 5]. The ahead-of-time compiler generates
GPU code using calls to the CUDA or the OpenCL API. The language focuses on ac-
celerating parallel array computations e.g. matrix computation. Futhark is inspired by
Guy Blellochs’ NESL [6] and focuses on achieving performance from nested parallelism
and parallel building blocks.

Data-parallelism is when the application of a function to each member of a collection is
done in parallel.
A flat data-parallel language does apply the function on the collection in parallel and
the function is executed sequentially. A nested data-parallel language also applies the
function in parallel for every member and the function is executed in parallel. This is
useful in matrix multiplication as it is often implemented using three for-loops.

1 let matmul [N][M][L] (X: [N][M]i32) (Y:[M][L]i32) : [N][L]i32 =
2 map (\ xrow ->
3 map (\ ycol ->
4 reduce (+) 0 (map2 (*) xrow ycol)
5) (transpose Y)
6) X

Figure 1: Matrix multiplication in Futhark

line 1: Function declaration of the function matmul. It takes two matrices as input and
returns a single matrix. The [N][M][L] annotation is used to specify the sizes of
input arrays. This allows the compiler to optimize the allocation in GPU memory.

line 2-5 The map operation operates on every row of X in parallel. The nested map operation
operations on every column on Y. The dot product of the row and the column are
done in parallel using map and reduce on line 4.

4

Second-Order Array Combinators (SOACs) are the most important building blocks of
Futhark. They are highlighted with red in code examples. SOACs mirrors the behavior
of higher-order functions found in other functional languages. They will have sequential
semantics but parallel execution.
A list of important SOACs used in this thesis:

• map f xs : (a→ b)→ [n]a → [n]b.
The map operation takes a two arguments: a function f and an array. map applies
f to each element in the array in parallel returning a new array of type b. This
operator is commonly used for array transformations.

• reduce op ne xs : (a→ a→ a)→ a→ [n]a→ a
The reduce operation takes three arguments as inputs: an operator ⊕, neutral
element ne, an array. The operation returns ne ⊕ xs[0] ⊕ xs[1] ⊕ ... ⊕ xs[n] in
parallel.
In order to do the aggregation in parallel the operator must be associative and it
has a neutral element ne.

• scan op ne xs: (a→ a→ a)→ a→ [n]a→ [n]a
The scan operation is also called generalised prefix sum. The reduce operation
only produces one result for the input array. A scan operation produces the result
for every prefix of the input array. A common use for the scan operation is to cal-
culate the a cumulative sum: scan (+) 0 [1,2,3] = [0+1, 0+1+2, 0+1+2+3]=
[1,2,6].

• scatter xs is vs: [m]a→ [n]i64→ [n]a→ [m]a
scatter is used for in-place updates in parallel. is gives the write indices and vs
is values to be written in the array xs. scatter [1,1,1] [1,2] [2,3] returns the result
[1,2,3]. Here value 2 is written to index 1 and value 3 is written to index 2.

• partition f xs: (a→ bool)→ [n]a→ ([]a, []a)
The partition operation evaluates the function f on every element in xs in parallel.
All elements where f(x) is true are returned in the first array. The elements where
f(x) is false are returned in the second array.

• Reduce_by_index xs f ne is vs : [m]a→ (a→ a→ a)→ a→ [n]i64→ [n]a→
[m]a
Reduce_by_index can be thought of a combination of scatter and reduce. The
input is and vs are used as in scatter. Values written to same index are now
aggregated using the function f. A common use of this SOAC is to calculate his-
tograms [7]. Assume we have an array of [4,3,5,5] and would like to calculate a
histogram counting the number of each values. The important operation is to find
is such all elements with same value are written to same index.
The command creating the histogram is:
reduce_by_index [0, 0, 0] (+) 0 [0,1,2,2] [1,1,1,1] = [0+1, 0+1, 0+1+1] = [1,1,2].

5

2.1.1 Segmented operations

The compiler cannot flatten expressions using irregular nested parallelism, so every array
in Futhark must be regular. For multi-dimensional arrays, this means all inner arrays
must have the same shape. For example [[1,2,3], [4,5,6], [7,8,9]] is a valid array but the
array [[1,2], [3,4,5], [6,7,8,9]] is not a valid array. The multi-dimensional array is instead
represented using a shape array and the original data in a flat array [1,2,3,4,5,6,7,8,9].
The previous illegal matrix has shape [2,3,4]. This means the first two elements are the
flat array is the first row of the multi-dimensional array.

Segmented operations allows for the use of SOACs on flat arrays. A segmented reduce
will give the reduction of each entry : [1,2,3,4,5,6,7,8,9] with shape [2,3,4] and operator
+ returns [0+1+2, 0+3+4+5, 0+6+7+8+9] = [3, 12, 30]. Similarly a segmented scan
will return [1,3,3,7,12,6,13,21,30]
To use the parallel construct on each segment, segmented functions take a flag array as
input. The flag array for previous example is [T,F,T,F,F,T,F,F,F]. Here true represents
the start of a new segment.

1 let segmented_scan [n] 't (op: t -> t -> t) (ne: t)
2 (flags: [n]bool) (as: [n]t): [n]t =
3 let xs = zip flags as --combine elements and segment flag
4 -- define segmented operator which takes two elements as entries
5 -- it applies x op y if y flag is false i.e. same segment
6 --- else y i.e. start of new segment
7 let f (x_F , x) (y_F , y) =
8 (x_F || y_F , if y_F then y else x `op ` y)
9 let res = scan f (false , ne) xs
10 in
11 (unzip res).1

Figure 2: implementation of segmented scan

line 1: The function now takes the additional flag array as input. The rest of the input is
the same as scan.

line 3: Here the segment flags and array entries are combined. This is done so the seg-
mented scan is done with a single scan operation.

line 7-8: f is a function which takes two elements as input. Each element is an array entry
and segment flag. If the segment flag for the second element is true i.e. start of new
segment then y is returned. If the second flag is false then we are still in a segment
and x ⊕ y must be calculated.

line 9: The segmented scan is done using scan operation where the function now support
segments. The neutral element is now (false, ne).

line 11: unzip the tuple array and returns the result of the segmented scan.

6

Indexing into to tuples are done with the dot notation in Futhark.
Consider a tuple: let x =(3,4). To first element is accessed by x.0 and the second by
x.1. Tuples are zero indexed. Figure 3 shows the important helper function for creating
an flag array.

1 let mkFlagArray 't [m] (shp: [m]i64) (zero: t)
2 (flag_val : t) (r: i64) : [r]t =
3 let shp_ind = scanExc (+) 0 shp
4 let vals = replicate m flag_val
5 in
6 scatter (replicate r zero) shp_ind vals

Figure 3: Function for creating the flag array based on the input shape

line 1: The function takes the shape of the irregular array is input. The zero and flag value
are used in the resulting flag array. r denotes the length of the flag array.

line 3: The indices of where each segment starts are calculated with an exclusive scan
operation. This correspond the exclusive prefix sum.

line 4: Allocate the number of flag values to be written

line 6: Write the segment flags into the locations given from the exclusive prefix sum.

It should be noted mkFlagArray function does not support representation of segments
with no elements e.g. a shape array with [2,4,0,3]. For this array the created flagArray
would be wrong as the zero element segment is marked to have a single element.

7

3 Decision trees
The decision tree learning method is a supervised machine learning strategy. Given a
series of training instances and target values a model is created. The model will predict
the target value based on the training instance. The prediction is obtained by traversing
until a leaf(end-node) is reached. The traversal consists of the decisions made at the
inner-nodes starting at the root.
A node within a decision tree consists of an index to the feature dimension and a split
value. This could for example be height and 190. Here the values in the feature dimension
named height are compared to 190. Based on the evaluation of the statement either left
or right child is visited. The leaves of the tree contain the output value (prediction) of
the model and their value depends on the learning objective.

Instance id Age Income Plays football
0 15 10.000 0
1 54 512.000 1
2 42 320.000 1
3 30 423.000 0
4 65 1.000.000 0
5 80 80.000 0
6 25 50.000 1

Table 1: Example training instances

Figure 4: Example decision tree matching data in table 1

Figure 4 shows a decision tree based on the data in table 1. The tree does predict for each
instance whether the instance plays football or not. This is represented with a binary
variable 0 or 1, thus the tree is a classification tree.

8

To classify instance 0, the traversal starts at the root and compares the age (15) to the
split value (60). As 15 is less than 60, the left child node is visited. Here the age is below
36 so the left child is visited again. The income of instance 0 is 10.000 which is less than
35.000, so the traversal ends in the left child leaf giving the prediction 0.

Two types of decision trees are commonly used in practice: classification and regression
trees:

• Classification tree refers to the case an training instance is assigned to the predicted
class. Consider an instance with age 20 and an income of 40.000. This instance will
be classified to play football based on the traversal of the tree in figure 4

• Regression tree is when the predicted value is a real number.

The goal is to create a decision tree with achieves the lowest error based on the training
instances. For classification trees, the error is typically a measure of the number of
misclassifications.

3.1 Creating a decision tree
Creating a decision tree requires finding all the nodes and leaves. This process starts at
the root and continues until every path ends in a leaf or a stop criteria is met. A common
stop criteria is to limit the depth of the tree.
The tree in figure 4 is created by starting at the root and assign all training instances to
it. A tree with only a root node will predict the same value all instances For a classifica-
tion tree the prediction of a leaf is the most frequent class in the node. This means the
root will predict class 0(Does not play football). The goal is the find a dimension index
and split value such, by splitting the node the tree gets a lower prediction error. The
training instances have two feature dimensions; age and income. Either feature can be
used for splitting the instances, so all splits in each dimension has to be considered.
First, all the possible splits of instances by age is considered. The first possible split
sends instance 0 to the left child and the rest to the right child. The tree then classifies
instance 0 correctly. A split value for this split is chosen to between 15-25. Next split
uses a split value between 25-30 and this sends instances 0 and 6 to the left child and rest
to the right child. The best split found is Age < 60 as the tree then classifies instances
4 and 5 correctly. These instances are sent to the right child. It would not be beneficial
to split the right child as both instances are of class 0. Therefore the node is turned into
a leaf with prediction value 0.
The left child contains instances 1,2,3 and 6. Here the best split is found to Age < 36 as
it will classify instance 1 and 2 correctly. This method of finding splits is used on every
subset created from splitting a node.

The choice of an optimal split is hard to evaluate. Choosing a sub-optimal one may yield
a better split in the next level of the tree improving the overall performance. Choosing an
optimal split requires enumeration of every possible sub-tree created from the instances at
a node. The number of possible trees are large and often infeasible to compute for larger
datasets. Tree algorithms typically chose splits greedily. The split achieving the highest

9

quality is greedily chosen at every node. Depending on the objective task many different
split quality measures can be used. For example, Gini impurity is for classification which
gives the likelihood of misclassifying an instance. Here splits with the lowest Gini impurity
value are chosen.
The values belonging to every feature are sorted and every split is enumerated within
each feature. Assuming that n training instances with d features are assigned to a node
and ∀i = 1..n, the split quality is evaluated by splitting at each instance i. This gives
each feature n · d possible splits.

The decision tree model consists of a single decision tree and tends not to achieve
good performance when trained on a large number of instances. The model may create
a highly complex tree that overfits the training data and will have bad performance on
validation data. Another reason is the locally optimal split chosen does not give a globally
optimal tree. These disadvantages are typically mitigated by using an ensemble.

3.2 Decision trees ensembles
An ensemble is a collection of trees "collectively" improving the accuracy and robustness of
the model. Each tree contributes to the final prediction allowing each tree to fit different
patterns of the data. The two most commonly used ensemble methods for decision trees
are; boosted trees and bootstrap aggregated trees.

• The bootstrap aggregated trees method builds multiple decision trees. Each tree
trains on a random subset of the data allowing them to learn different patterns. This
will result in different trees giving different predictions. The single over-complex tree
might get a prediction wrong for an instance where the ensemble will have different
predictions for the same instance. As the final prediction is done collectively, other
ensemble members can "correct" the prediction made by the tree who learned the
same pattern as the complex single tree.

• The boosted trees method builds an ensemble iteratively. The first tree will have
some erroneous predictions and the next tree created tries to correct these predic-
tions. The same approach is used for the third tree and so on. Combining the
predictions from all trees will correct the errors from the predictions of the first
tree.

Figure 5: Illustration of predictions for instance x in the ensemble

10

Figure 5 shows how the prediction of each member in the ensemble is obtained. All the
predictions are used for the collective prediction. The input instance x traverses through
every tree to obtain a prediction. The traversal through each tree given by the red path
in the figure.
For a bootstrap aggregated ensemble solving a regression task the collective prediction is
5+2−1

3 = 2. For classification tasks the collective prediction is typically the majority vote
between predicted classes. The prediction for a boosted trees ensemble differs as each
tree corrects the erroneous predictions from the previous tree. For figure 5 the ensemble
would predict 5 + 2− 1 = 6 for regression.

3.3 Gradient boosting
Gradient boosting combines weak "learners" into a single strong leaner in an iterative fash-
ion. The goal is to "teach" the model F(x) to predict target values. Here the strong learner
F(x) is an ensemble and the individual trees are the "weak" learners. A weak learner is
a tree that performs poorly and is considered slightly better than random guessing. The
problem of creating an ensemble is represented as gradient descent. Each iteration of gra-
dient descent we create tree which minimizes the given loss function. The loss function
must be differentiable and it measures the performance of the model(ensemble) on the
training set.
The boosting algorithm executes T boosting iterations to learn the strong learner F(x)
which gives predictions F(x) = ŷ minimising the loss function L(y, ŷ)

xi training instance i
yi target value for training instance i
ŷi predicted value for training instance i
ft tree created at iteration t during boosting
Ft Ensemble of trees created up to boosting iteration t

Table 2: Notation used in the following sections

At each iteration a new estimator ft(x) is added to correct the prediction y for all training
instances:

Ft+1(x) = Ft(x) + ft(x) = ŷ ⇒ ft(x) = y − Ft(x)

This will fit the model ft(x) to the residuals y−Ft(x) for the current boosting iteration.
ft(x) is the decision tree approximating the residuals.

This iterative process applies gradient descent by adding the prediction from tree ft.
Assuming the loss function used is squared error:

L(y, ŷ) = L(y,F(x)) = 1
2(y − F(x))2

The loss over all training instances is given by:

E =
n∑
i=0

L(yi,F(xi))

11

Each iteration seeks to minimize E by adjusting F(xi). The gradient for xi is given by:

∂E

∂F(xi)
= ∂L(yi,F(xi))

∂F(xi)
= Ft(xi)− yi

Gradient descent will add the negative gradient in each iteration:

−∂L(y,F(x))
∂F(x) = −(Ft(x)− y) = y − Ft(x) = ft(x)

So by adding the prediction from a decision tree ft approximating the residuals corre-
sponds to taking the gradient step.

For figure 5 each tree will correspond to the approximation of the gradient step. Assume
a instance x has the target value y. The ensemble is created by finding the tree ft at each
iteration. Initially ŷ0 = 0.
The first tree f1 is created to approximate the residual y−F0(x) = y. The prediction for
the first tree f1(x) = 5. Next tree created now approximates the residual y − F1(x) =
y − (5 + 0). This gives prediction f2(x) = 2.
The output of the ensemble is ŷ = ŷ0 +∑

t ft(x) = 0 + (5 + 2− 1) = 6 and since each tree
approximates the gradient step, the ensemble implements gradient boosting.

12

4 Gradient boosting decision tree
In this section, the mathematical background for XGBoost algorithm [1,2] is derived for
creating a gradient boosting decision tree ensemble (GDBT) and a algorithmic overview
is presented.
The XGBoost algorithm shows how to build each tree ft during boosting. Instead of
optimizing squared error, an objective function L with two parts l and Ω is used. l is
the function measuring the ensemble performance on the individual training instance. Ω
is the regularization term penalizing the complexity of the ensemble. The regularized
objective is:

L(X) =
n∑
i=0

l(yi,F(xi)) +
E∑
t=0

Ω(ft), ft ∈ F (1)

where Ω(f) = γM + 1
2λwTw

• X is the set of training instances {x0...xn | x ∈ Rd}

• F is the ensemble with prediction F(x) = ŷ. The ensemble has size E.

• M is the number of leafs in the tree ft. For each tree ft the vector wt holds the
predictions of ft. Each entry in wt corresponds to prediction from a leaf.

• γ, λ is regularization parameters chosen by the user. γ increases the penalty of
adding leaves to tree ft.
λ is used to penalize extreme weights i.e extreme predictions. These parameters
allows the user to reduce the potential overfitting by the ensemble on the training
instances.

• ft is an ensemble member. We define the traversal of the tree ft as ft(x) = wq(x).
where q(x) : Rd →M,w ∈ RM . q is a function which takes an input instance x and
returns the leaf index of traversing the tree ft. This is index is used to obtaining
the prediction for ft by using it as an index to wt

• l is a differential convex loss function and the total loss for the ensemble is the
sum of the element-wise loss between target value y and prediction ŷ. For example
sqaured error: 1

2(y − F(x))2

The idea of this regularized objective is to obtain a model where each tree is as simple
and predictive as possible. At each boosting iteration, it is the goal to find a minimal
complex tree that simultaneously minimizes l(yi, ŷi).
The objective function at iteration t in T boosting rounds is given by:

L(t) =
n∑
i=0

l(yi, ŷi(t−1) + ft(xi)) + Ω(ft) (2)

Recall ŷit−1 is the prediction from the ensemble at the previous iteration. At iteration t
we add the gradient step ft, so the goal is find the tree ft which minimizes the objective
function most.

13

Using Taylor expansion allows for optimization of the objective function in a general
setting:

L(t) '
n∑
i=0

[
l(yi, ŷi(t−1)) + gift(xi) + 1

2hif
2
t (xi)

]
+ Ω(ft) (3)

where by definition of Taylor series

gi = ∂

∂ŷ(t−1) l(yi, ŷi
(t−1)) (4)

hi = ∂2

∂
ˆ

y
(t−1)
i

2 l(yi, ŷi
(t−1)) (5)

Equation 4 and 5 returns the values of evaluating value from the first and second-order
derivative evaluated at y and ŷ. The user chooses l, the first and second order derivative.
For squared error we have: gi = 2(y − ŷ) and hi = 2. gi and hi is evaluated for each
instance using yi and ŷi.
As we optimize with respect to ft, the loss from ensemble predictions are constant and
can be ignored. The complexity of all previous trees in the ensemble is also constant and
is ignored. This gives the simplified objective:

L̃(t) =
n∑
i=0

[
gift(xi) + 1

2hif
2
t (xi)

]
+ Ω(ft) (6)

Recall wt is the vector of leaf predictions from the tree ft with length M
Let Ij = {i | q(xi) = j, i ∈ {1...n}} be the set of training instances mapped to leaf j,
j ∈ [0..M].
All training instances in Ij have prediction wj. By expanding the complexity term Ω(ft)
from equation 1, the objective function is rewritten to sum over number of leaves M.

L̃(t) =
n∑
i=0

[
gi · wq(xi) + 1

2hi · w
2
q(xi)

]
+ γM + 1

2λ
M∑
j=1

w2
j (7)

=
M∑
j=0

∑
i∈Ij

gi

wj + 1
2

∑
i∈Ij

hi + λ

w2
j

+ γM (8)

=
M∑
j=0

[
Gjwj + 1

2(Hj + λ)w2
j

]
+ γM (9)

where

Gj =
∑
i∈Ij

gi Hj =
∑
i∈Ij

hi

Gj and Hj is the sum of all first and second derivatives for all instances assigned to leaf
j.

14

Now we need to find the weight w∗j that for each leaf j minimizes the objection function.
The optimal weight is given by taking the derivative of equation 9 and setting it to zero.

0 = ∂

∂wj
L̃(t) = Gj + (Hj + λ)w∗j (10)

0 = Gj + (Hj + λ)w∗j (11)

w∗j = −Gj

Hj + λ
(12)

Using w∗j in equation 9 the objective function for finding the best tree ft becomes:

L̃t =
M∑
j=0

[
Gj · −

Gj

Hj + λ
+ 1

2 · (Hj + λ) +
(−G
H + λ

)2]
+ γM (13)

=
M∑
j=0

[
−

G2
j

Hj + λ
+ 1

2
G2
j

(Hj + λ)2 · (Hj + λ)
]

+ γM (14)

= −1
2

M∑
j=0

G2
j

Hj + λ
+ γM (15)

Equation 15 gives the objective value for a tree. For a large number of training instances
is it infeasible to create every possible tree and calculate equation 15. Therefore the tree
ft is created greedily.

Figure 6: Growing the tree ft

Figure 6 shows the growing strategy. We start with a root node meaning our tree structure
has a single leaf. Using equation 15 to measure the objective value of a single leaf:

L̃j
(t) = −1

2
G2
j

Hj + λ
+ γ (16)

If we split the root Ij = IjL∪IjR where IjL and IjR are the index sets of training instances.
IjL is the instances sent to left child and IjR is the instances to right child. The objective
function if we split leaf j is:

L̃(t)
js = −1

2

(
G2
jL

HjL + λ
+

G2
jR

HjR + λ

)
+ 2γ (17)

15

Thus we check if a split at leaf j decreases the objective function by combining equations
16 and 17 (L̃(t)

j − L̃
(t)
js):

Qj = −1
2

G2
j

Hj + λ
+ γ −

(
−1

2

(
G2
jL

HjL + λ
+

G2
jR

HjR + λ

)
+ 2γ

)
(18)

= −1
2

G2
j

Hj + λ
+ 1

2

(
G2
jL

HjL + λ
+

G2
jR

HjR + λ

)
− γ (19)

= 1
2

(
G2
jL

HjL + λ
+

G2
jR

HjR + λ
−

G2
j

Hj + λ

)
− γ (20)

Now we can use equation 20 to measure the quality of a split. Recall we have to consider
every possible split of training instances in each leaf. Therefore the quality is calculated
for every possible split of the root in figure 6.
This is done for each feature dimension of the training instances. First all the instances
are sorted according to the feature value. The split operator is used < and by sorting we
can check all possible split in a linear search. The first possible split sends 1 value to the
left child and the rest to the right child. The next possible split sends two instances to
the left and the rest to right.
This allows us to calculate the values GjL and HjL as a cumulative sum. Value GjR is
found using the property Gj = GjL+Gna+GjR ⇒ GjR = Gj+GjL+Gna. The analogous
holds for HjR.
This allows for efficient calculation of the split quality in equation 20.

Once the best split is found, the root is split if the quality is positive. This gives two new
leaves (2 and 3) and splits are searched within the children. Figure 6 shows the strategy
and which leaves are searched for splits for each level. We continue to grow the tree while
splits with a positive quality are found. This strategy gives the tree ft which minimizes
the objective function i.e. the gradient step.

4.1 Algorithm overview
This section presents the algorithm for creating a GDBT ensemble. The algorithm 1 does
creates the ensemble over T boosting iterations. In each iteration the optimal tree ft is
found. To find the optimal tree ft algorithm 2 is used. Algorithm 2 describes process of
how ft is created.
Algorithm 1 returns the GDBT ensemble from T boosting iterations

16

Algorithm 1: Gradient Boosting training
Input: Training data X = {x1.....xn}

1 Target Labels Y = {y1.....yn}
2 Regularization parameters λ, γ, η
3 Maximum depth of trees D
4 Maximum number of iterations T
5 Objective function L : l and Ω

Output: Ensemble of ft minimizing the objective L over T iterations
6 Ŷ ← {0.5..0.5} /* Each instance has initial prediction of 0.5 */
7 for t ← 1 to T do
8 G ← Gradients(Y , Ŷ) /* Equation 4 for each instance */
9 H ← Hessians(Y , Ŷ) /* Equation 5 for each instance */

10 ft ← FindOptimalTree(X , G,H, λ, γ,D)
11 Ŷ ← Ŷ + η · Predict(ft,X) /* add gradient step */
12 end
13 return ∑T

t ft

line 6: The algorithm assigns 0.5 as the initial prediction for each instance. This is used for
calculating the first and the second-order derivative values for ŷi0 for every i ∈ [0..n]

line 8: Gradients calculates the first-order derivative value by evaluating equation 4 for
each instance.

line 9: Hessians calculates the second-order derivative value by evaluating equation 5 for
each instance

line 10: FindOptimalTree finds the optimal tree ft at boosting iteration t. It uses algo-
rithm2 which uses the method described in section 4.

line 11: Adds the new predictions from the tree to each instance prediction. The Predict
function does the tree traversal for each instance calculating ft(x).
η is a user variable used for controlling the loss convergence. A too high η value will
result in stepping past to optimal objective value and a too low value will result in
slow convergence.

Algorithm 2 builds the decision tree ft using the method described in section 4. The
algorithm loops over each level of the tree until the maximum depth is reached or no
leaves can be split. For each level, every leaf is searched for a split using equation 20 and
if the split quality is positive the leaf is split.
Many implementations of GBDT allow for the provision of missing values in the training
instances. They are given with a NaN value. These values cannot be used as a split
candidate. Algorithm 2 does calculate the split quality of either sending the missing
values to the left or right child. This is done by adding Gna and Hna to left and right
gradient/hessian sum respectively. Gna and Hna is the sum of gradient/hessian values for
instances with a Nan value The direction for missing values is represented with a boolean
flag: true for the left child and false for the right child.

17

Algorithm 2: FindOptimalTree: Finding the optimal tree structure ft
Input: Training data X = {x1.....xn}

1 gradients G = {g1.....gn}, hessians H = {h1.....hn}
2 Regularization parameters λ, γ
3 Maximum depth of tree D

Output: Optimal tree ft structure minimizing the objective Lt
4 I ← [{1.....n}] /* Assign all instances to root */
5 m← 0 /* number of leaves found */
6 (S, Sn)← ({0}, ∅) /* S:leaves at current level, Sn:leaves at next level */
7 Nodes ← ∅, Leaves ← ∅
8 while d <= D ∧ S 6= ∅ do
9 for j ∈ S do

10 Xj ← {xi | i ∈ I[j]} /* instances in leaf j */
11 Gj ←

∑
i∈Ij

gi, Hj ←
∑
i∈Ij

hi
12 (d∗, v∗, f lag∗)← (−1, 0, False) /* optimal split so far */
13 foreach feature d do
14 GL ← 0, HL ← 0
15 Ina ← {i ∈ I[j] | is_NaN(xi[d])}/* missing value instances */
16 Gna ←

∑
i∈Ina

gi, Hna ←
∑
i∈Ina

hi
17 K ← sort the set {k | k ∈ I[j] \ Ina} by the corresponding value xk[d]
18 for i ∈ K do
19 GL ← GL + gi, HL ← HL + hi /* cumulative sum */
20 GR ← Gj −GL −Gna, HR ← Hj −HL −Hna

21 Qj(d, v, T)← 1
2

[
(GL+Gna)2

HL+Hna+λ + G2
R

HR+λ −
G2

H+λ

]
− γ /* Equation 20 */

22 Qj(d, v, F)← 1
2

[
G2

L

HL+λ + (GR+Gna)2

HR+Hna+λ −
G2

H+λ

]
− γ

/* Check if we should update optimal split */
23 if Qj(d, v, T rue) > Qj(d∗, v∗, f lag∗) then
24 (d∗, v∗, f lag∗)← (d, v, T rue)
25 else if Qj(d, v, False) > Qj(d∗, v∗, f lag∗) then
26 (d∗, v∗, f lag∗)← (d, v, False)
27 end
28 end
29 end
30 if Qj(d∗, v∗, f lag∗) > 0 then
31 Ina ← {i ∈ I[j] | is_NaN(i[d∗])}, IL ← {i ∈ I[j] | xi[d∗] < v∗}
32 IR ← I[j] \ (IL ∪ Ina)
33 if flag* then
34 I[m+ 1]← IL ∪ Ia, I[m+ 2]← IR
35 else
36 I[m+ 1]← IL, I[m+ 2]← IR ∪ Ina
37 end
38 Sn ← Sn∪{m+ 1,m+ 2}, Nodes← Nodes∪{(d∗, v∗, f lag∗)}, m← m+ 2
39 else
40 Leaves ← Leaves ∪ −Gj

Hj+λ /* add prediction weight by equation 12 */
41 end
42 d← d+ 1, S ← Sn, Sn ← ∅
43 end
44 end
45 return tree (Nodes, Leaves)

18

lines 1-3: The FindOptimalTree algorithm takes the set of training instances and the
set of gradient values and hessian values as input. For instance i the gradient
and hessian value are given by gi and hi where i ∈ [0..n]. Regularization
parameters λ and γ are set by the user to reduce overfitting the training
instances. D is the maximum depth of tree created.

lines 4-7: I is a vector, where each entry holds the indices of instances assigned to the
node. For the root, I[0] holds the indices for all instances. The variable m is
used to count the number of leaves so far. This is initially set to 0.
S is the set of leaf indices for a level in the tree. This set is used when searching
for splits. Sn is the set of leaf indices for the next level. Here entries are added
as we split leaves at the current level. At the end of each level S = Sn and
Sn = ∅.
Nodes is the set of decision nodes created for the tree ft. Leaves is the set of
leaf predictions for ft.

line 8 Start of the while-loop going over each level in the tree. This is done until
the maximum depth is reached. It also terminates if there is no leaves left to
split. This happens if S = ∅.

line 9 Start of the for-loop that checks every leaf at the current level and split them
if is beneficial according to equation 20.

lines 10-13: Xj is the index set for all the instances in leaf j. Gj and Hj are the sum of
gradient/hessian values for all the instances the leaf.
(d∗, v∗, f lag∗) is the optimal split information found so far for leaf j. d∗ is the
optimal feature to split, v∗ is the best split value for feature d∗. flag∗ is the
best direction for instances with missing values in dimension d∗.
They are reset to (-1, 0, False) for every leaf j. This default value correspond
to no split found since we defined Q(−1, 0, False) = −∞

line 13 Start of the for-loop going over each feature of the values in X. This loop
searches for the optimal split in every feature d.

lines 14-17: The GL and HL is the variable for cumulative sum of gradient/hessian values
for the left child for every split.
Ina is the set of instances with a missing value in feature d. The is_NaN
function checks if the dimensional value is a NaN value. Gna and Hna is the
gradient/hessian sums for instances with a missing value. These are used for
determining the optimal direction for missing values as their value cannot be
used as a split value.
Line 17 creates the index set by sorting instances according to their feature
value. This is needed as we would like to enumerate every possible split in a
linear search. Indices to instances with a NaN value are removed for this set:
I[j] \ Ina.

lines 18-27: Calculates the quality of every split of instances in leaf j for dimension d. As
the instances are sorted, splits are done between each instance left to right.

19

Therefore GL and HL is given by a cumulative sum.
GR and HR is calculated using property GR = Gj −GL −Gna.
Qj(d, v, T) represents the quality of the split on feature d with split value v
and sending missing values to the left child. The quality is given by using
equation 20.
The If-statements at lines 23-27 updates our optimal split information if we
found a better one by comparing the quality of each split.

lines 30-41: Now the best split for leaf j is found and has the values (d∗, v∗, f lag∗). If the
quality of the split Qj(d∗, v∗, f lag∗) is positive we split the node otherwise we
add the prediction from equation 12 to the leaves set.
If the node the is split, the index sets IL, Ina, IR is calculated. Depending on
the flag the index set for missing values are either added to the left or right
child.
The index set for left child is written to I[m+ 1] where m is the total number
of leaves found so far. The index set for the right child is written to I[m+ 2].
Indices m+1 and m+2 is added to Sn and the split information is added to
the set of decision nodes. This means leaves m+1 and m+2 is added to Sn
and we add the split information to nodes.

line 45: Returns the decision tree ft made up of decision nodes and the leaves pre-
dictions. Section 6.1 explains the actual implementation of decision trees and
how leaves and nodes are added to the tree.

Algorithm 2 is defined to be exact since it considers every possible split within each
feature. This requires a huge amount of computations when a large number of training
instances is in each leaf. This dominates the amount of work required to find the best
split and thereby the time to create the tree ft.
Another approach is to only use a subset of training instances when searching for a split.
This gives a speed increase as only a subset of possible splits is considered, but it reduces
the accuracy of the ensemble predictions.

20

5 Translating algorithms to parallel constructs
The challenge of implementing GBDT in futhark is to leverage as many of the SOACs
as possible to utilize the maximum parallelism available. In this section, we describe the
process of translating algorithms 1 and 2 into pseudo Futhark to get an overview of how
the parallel constructors are used while ensuring the algorithm correctness for creating
the ensemble.

1 let gradient_boost [n][d] (X: [n][d]f32) (Y: [n]f32) (T: i32)
2 (g: f32 -> f32 -> f32) (h: f32 -> f32 -> f32) =
3 let Y_hat= replicate n 0.5
4 Loop (Y_hat , F) for t < T do
5 let gradients = map2 g Y Y_hat
6 let hessian = map2 h Y Y_hat
7 let ft = FindOptTree X gradients hessian
8 let preds = map (\xi -> predict ft xi) X
9 let Y_hat = map2 (+) Y_hat new_preds
10 let F = F ∪ ft -- saves the tree in the ensemble .
11 in
12 (Y_hat , F)

Figure 7: Pseudo Futhark of algorithm 1

line 1: Gradient boosting takes input instances X, target values Y, first-order derivative g
and second-order derivative function h as inputs.

line 2: Set initial prediction to 0.5 for every instance.

lines 4-12: Sequential loop doing T boosting iterations. Each boosting iteration is done se-
quentially as iterations depends the predictions from the previous.

line 5: Calculates the individual first-order derivative value for each instance. This is done
in parallel using a map2 operation.

line 6: Calculates the individual second-order derivative value for each instance. This is
done in parallel using a map2 operation.

line 7: Finds the optimal tree ft using algorithm 2. The parallel translation of algorithm
2 is shown in figure 8

line 8: Calculates new predictions for each instance. Predict does the tree traversal ob-
taining the prediction. This is done in parallel with a map operation since each
instance traverses the tree independently. It takes a training instance and a tree as
input. Section 6.1 explains the implementation.

line 9: Adds the new predictions in parallel with a map operation

line 10: Saves the found tree ft to the ensemble F. How this is done is described in section
6.1.

21

In order to achieve full parallelism every for-loop in algorithm 2 should be implemented
using parallel constructs. Figure 8 shows the pseudo Futhark of the translation. This
translation relies on irregular nested parallelism.

1 let findOptTree [n][d] (X: [n][d]f32) (G: [n]f32) (H: [n]f32)
2 -- all instances are assigned to root.
3 let (X, G, H) = ([X], [G], [H])
4 loop (X, G, H, l, N, L) for l <= D and !(null X) do
5 -- irregular nested parallelism , each entry in X differs in size
6 let splits = map3 (\Xj Gj Hj ->
7 let (q, d, v, flag) = search_best_split Xj Gj Hj
8 in (q, d, v, flag)
9) X G H
10
11 -- irregular partition : split_info =(q,d,v,flag)
12 let (active_data , terminal_data) =
13 partition (\(split_info , _, _, _) -> split_info .0 > 0)
14 (zip4 splits X G H)
15 let (_, _, terminal_G , terminal_H) = unzip4 terminal data
16 -- irregular map calculating prediction weights .
17 let L = L ++ map2 weight terminal_G terminal_H
18 let (act_splits , act_X , act_G , act_H) = unzip4 active_data
19 let N = N ++ act_splits
20 -- irregular partition , returns the irregular distribution

of points in the new level
21 let X, G, H = map4 split_leaf act_splits act_X act_G act_H

|> flatten |> unzip3
22 in
23 (X, G, H, l+1, N, L)
24 in
25 (N, L)

Figure 8: Pseudo-implementation of algorithm 2

line 1: The function takes the training instances X, gradient value G and hessian values
H as input. Each instance have corresponding gradient/hessian value so all arrays
have length n.

line 3: Initializes the irregular 2D arrays of instances assigned to each leaf at the level. At
first all instances are assigned to the root. The irregular arrays for the instance
distribution over leaves is initialized. For the root only a single leaf exists. For
each level, we have X = [X1, ..XM] where M is number at leaves at current level.
X1..XM may differ in size thus the array is irregular. Same holds for G and H.
In the implementation these are flattened to use a flat representation. A shape
array gives the number of instances in each leaf.

line 4: The sequential loop runs over each level of the tree and all the leaves at current
level is processed in one iteration. The variables N and L corresponds to the deci-
sion nodes and leaf predictions found so far. The loops runs over each level until
maximum depth or no more leaves with possible splits exists.

22

lines 6-9: An irregular map over the leaves at current level. The function search_best_split
searches in parallel for the best split over all features. This function is shown in
figure 11. The map returns the best split information for every leaf.
The map contains nested irregular parallelism should be flattened. To flatten this
requires the use of segmented operations. The search_best_split function uses
radix_sort for sorting. The sorting function should be lifted so it becomes a
segmented sort, but this process is too tedious and not done in this thesis. Therefore
this map3 operation is implemented as a sequential loop over the leaves at the current
level.

lines 11-14: Irregular partition over each leaf. This returns an active part and a terminal part.
The active part contains the instances and gradient/hessian values for leaves which
are split. The terminal part contains the instances and gradient/hessian values for
leaves that are not split.

lines 17: The prediction value for terminal leaves are calculated using a map with the function
weight on the terminal gradient/hessian values. The weight function is shown in
figure 9. It calculates the prediction weight for the leaf.

line 21: The irregular map operation does the split of active leaves at the current level. This
returns two new leaves for each entry. The function split_leaf is used to do the
partition. This returns the instances sent to the left and to the right child. The
function split_leaf returns a irregular 2D array containing the left and the right
child. The result of map operation is flattened into a 2D array where each entry
correspond to the new leaf introduces. Figure 10 shows the split_leaf function.
This map operation contains irregular nested parallelism and cannot be efficiently
flattened by the compiler. In the implementation X, G and H will be represented
using a shape array and flat arrays. To get efficient GPU code the irregular map
and split_leaf is flattened into a segmented partition. Section 6.3 shows the
flattened implementation.

1 let weight [m] (G: [m]f32) (H: [m]f32) (lambda : f32) : f32 =
2 let G_sum = reduce + 0 G
3 let H_sum = reduce + 0 H
4 in -G_sum /(H_sum+ lambda)

Figure 9: Calculates the weight for a leaf using equation 12

23

1 let split [n][d] (act_splits : (f32 ,i64 ,f32 ,bool) (act_X: [n][d]f32)
2 (G: [n]f32) (H: [n]f32) : [2][]([d]f32 , f32 , f32)
3 let (_, d, v, flag) =
4 let (left , right) =
5 partition (\e ->
6 let (xi , gi , hi) = e
7 in xi[d] < v || (f32.isnan xi[d] && flag)
8 (zip3 X G H)
9 in [left , right]

Figure 10: Splits each leaf based on the split value

line 1: The function takes the split information for an leaf, the instances in the leaf and
their corresponding gradient/hessian value.

lines 4-8: Apply partition to split the leaf into a left and right child. The split is given by the
split information found when searching for the optimal split. This sends instances
with a feature value less than the split value to left child. f32.isnan is used to
check for NaN value and let the boolean flag determine to correct child for instances
with a NaN value.

line 9: The function returns a 2D irregular array for the entries to the left and to right
child.

24

Figure 11 shows the pseudo-code used to search for the best split within each leaf. All
input arrays are fully regular and every parallel operation contains regular nested paral-
lelism. The regular nested parallelism is efficiently optimized by the Futhark compiler.

1 let search_best_split [m][d] (X: [m][d]f32) (G: [m]f32) (H: [m]f32)
2 : (f32 , i64 , f32 , bool) =
3 let dim_splits =
4 map (\ feature_vals ->
5 let (missing , rest) = partition (\x -> f32.isnan x.0)

(zip3 feature_vals G H)
6 let (_, missing_G , missing_H) = unzip3 missing
7 let G_na = sum missing_G
8 let H_na = sum missing_H
9 let sorted = radix_sort rest
10 let (sorted_V , sorted_G , sorted_H) = unzip3 rest
11 let GLs = scan (+) 0 sorted_G
12 let HLs = scan (+) 0 sorted_H
13 -- map calculates equation 20 returns (Quality , flag)
14 let Qs =
15 map2 (\gl hl -> quality gl hl (sum G) (sum H) G_na

H_na) GLs HLs
16 let opt_i = arg_max Qs
17 let (best_quality , v, flag) =
18 (Qs[opt_i].0, sorted_V [opt_i], Qs[opt_i].1)
19 in
20 (best_quality , v, flag)
21) transpose X
22 let dim = arg_max dim_splits
23 let (q, v, f) = dim_splits [dim]
24 in
25 (q, dim , v, f) -- best split over all dimensions

Figure 11: Pseudo implementation of search_best_split

line 1: The function takes m training instances as input and returns the best split between
all m instances over all features. This returns the quality, feature dimension index,
split value and missing flag for the optimal split within the leaf.

line 3-22: The map operation finds the best split within each feature in parallel. This is a done
on fully regular arrays as missing values are represented with a NaN value.

lines 5-8: The partition operation is used to separate instances with a missing value into
a separate array. Line 7 and 8 calculate the gradient/hessian sum for all these
instances.

lines 9-12: Instances are sorted according to their feature value. Radix_sort are used to sort
in parallel. In the implementation the unique values are found, since only consider
possible splits between unique values. In this pseudo code we abstract way from
the finding of unique values and accumulating the gradient/hessian values for all
instances. The code and details regarding this is given in section 6.2.

25

In one parallel scan operation we can calculate every GL and HL sum for every
split. The quality of every possible split is now calculated using a map operation.
The function quality returns the quality and optimal direction for missing values
in the split by using equation 20. GR and HR is found using GR = G−GL −Gna.

lines 17-21: The best split information is found from the best split by using arg_max on the
quality measures calculated.

lines 23-26: Returns the best split over all features. arg_max on the result dim_splits gives
the dimension index for the optimal split.

26

6 Implementation of exact gradient boosted decision
trees

This section describes the implementation details of the pseudo-code given in in figures
7 and 8.
Section 6.1 explains how the ensemble of decision trees is implemented and how trees
are added to the ensemble. The search for best split over all features is done in parallel
and explained in detail in 6.2. The implementation of segmented partition is explained
in section 6.3.

The irregular map on lines 6-9 in figure 8 is not flattened due to no segmented sorting
function. So the map operation is converted into a sequential loop over the leaves at the
current level. The consequence of the sequential loop is some potential parallelism is not
utilized in the implementation.
The introduction of the loop for the code in figure 8 results in moving calculation of leaf
weights into the loop. The calculation of leaf weights was done using a irregular map,
but is easier to inside the loop once the split for the single leaf is found.

6.1 Decision tree layout
The decision trees are represented using a flat array. Each entry consists of a dimension
index, split value, missing direction flag, and an integer i giving the location for the left
child. The right child is at i+ 1. Leaves are represented by setting the index to -1. The
flat representation allows minimal memory usage of the tree found in algorithm 2.
The number of nodes/leaves depends on the maximum depth of the tree. Typically users
choose a maximum depth between 5-14. To accommodate different sizes of trees found
from algorithm 2 a buffer of 10.000 entries is used. This ensures we do not allocate un-
necessary number of entries. The buffer is doubled if it becomes full during findOptTree
in figure 8.

1 let new_entries =
2 map2 (\x i -> -- x = (d, v, flag)
3 let (dim_id , value) = (x.0, x.1)
4 let child = offset + num_nodes_in_level +i*2
5 in
6 (dim_id , value , x.2, child)
7) active_splits (indices act_idxs)

Figure 12: Node entries in the decision tree

Figure 12 shows how the node entries are created. This entries correspond to the decision
nodes in the tree and are done for every node that is split.
The child indices are then given at offset+num_nodes+2i. Offset is the number of entries
written into the tree so far and num_nodes is the number of entries to be written for the
current level.
The value i used for the relative ordering between node children. The first leaf split will

27

have a left child index at offset+num_nodes+2 · 0. The index for the left child of the
second leaf split is given at offset+num_nodes+2 · 1.
The trees found from algorithm 2 for each boosting iteration may differ in size, so for the
ensemble a flat representation is used. The sizes of the individual trees are given by the
shape array. A pre-allocated number of node entries is used and expanded using the same
technique in tree creation. The trees will be saved into ensemble by using the scatter
operation.
The trees created from algorithm 2 will have the wrong indices for the children. Using
the same technique as in figure 12, all decision-nodes have their children index corrected
by adding an offset. The offset is the total size of all trees in the ensemble which is the
sum of the shape array. Figures 13 show how the prediction is obtained from a decision
tree and figure 14 shows the prediction of an ensemble is implemented.

1 let predict [d][m] (x: [d]f32) (tree: [m](i64 , f32 , bool , i64))
2 (start: i64) : f32 =
3 let (_, res , _) =
4 loop (i, value , at_node)=(start , 0, true) while at_node do
5 let (dim , v, missing_flag , child) = tree[i]
6 in
7 if child >= 0 then
8 if x[dim] < v || (f32.isnan x[d] && missing_flag) then
9 (child , value , at_node)
10 else
11 (child +1, value , at_node)
12 else
13 (i, v, false)
14 in
15 res

Figure 13: Predict function returning ft(x)

line 1: The function takes a tree of size m and a d-dimensional input instance. The start
index is used for ensemble predictions. In that case, the tree is the whole ensemble
and the start is the index where the tree starts.

line 4: Start of tree traversal. The loop starts at the root and traverses the left or right
subtree depending on the split value. The traversal terminates once a leaf is reached.

line 5: The split information for node i.

lines 7-13: The first if statement checks whether it is a leaf and stops the termination returning
the value v which is the final prediction. Line 8 checks whether the left or the right
child is visited.
If x[dim] is a NaN value then the statement x[dim] < v will return false and
f32.isnan used to ensure the direction for missing values is determined by the
boolean flag.

28

1 let predict_all [n][d][l][m] (X: [n][d]f32)
2 (trees: [m](i64 ,f32 ,bool ,i64)) (shape: [l]i64) (bias: f32)
3 : [n]f32 =
4 let pred_trees = map (\xi ->
5 map (\i -> predict xi trees i) shape
6 |> reduce (+) 0.0)
7 X
8 in
9 map (+ bias) pred_trees

Figure 14: Segmented prediction

line 1: The function takes four inputs: the instances X, the flat ensemble, a shape array,
and a bias as input. The bias input is the initial prediction 0.5 used when training
the ensemble.

lines 4-7: The ensemble prediction for each instance is obtained with a map operation. For
each instance, the prediction of each ensemble member is obtained with the inner
map operation over the shape array. It calls predict with the offset to the root of
each tree. The final prediction is calculated with a reduce operation.

line 8: Adds the initial prediction to the ensemble prediction for each instance.

6.2 Finding best split
The search_best_split function finds the best split between instances in the leaf. For
each feature dimension, every possible split quality is evaluated between every unique
value. A split can not happen between two instances with the same value since we use <
as the split operator. The gradient/hessian values are accumulated for each unique value
using segmented reduce.

1 let (sorted_data , sorted_gis , sorted_his) =
2 radix_sort_float_by_key (.0) f32. num_bits f32. get_bit rest
3 |> unzip3
4 let unique_seg_starts = map2 (!=) sorted_data (rotate (-1)

sorted_data)
5 let l = map i64.bool unique_seg_starts |> i64.sum
6 let unique_gis = segmented_reduce (+) 0f32 unique_seg_starts

sorted_gis l
7 let unique_his = segmented_reduce (+) 0f32 unique_seg_starts

sorted_his l

Figure 15: Finding unique values and their aggregating gradient/hessian values.

lines 1-3: Sorts the feature values, the gradient values and the hessian values according the
feature value. This is done with Radix sort by key. (.0) denotes the key i.e. feature
value.

29

line 4: Finds the start of each segment of unique values. For an sorted array of [1,1,2,2,3]
this will return [T,F,T,F,T]. This is used as the flag array for segmented reduction.

line 5: Finds the number of unique values used for segmented reduction.

lines 6-7: Segmented reduce to calculate gradient sum and hessian sum. These sums are used
for GL and HL with a scan operation.

In algorithm 2 the gradient sum for the left child at each value is calculated as:

GL,0 =
∑

{i∈Ij | foreachuniquefeaturevaluexi[d]<v1}
gi

GL,1 = GL,0 +
∑

{i∈Ij | v1<xi[d]<v2}
gi

...
GL,n = GL,n−1 +

∑
{i∈Iaj | vn−1<xi[d]<vn}

gi

Here v1 represents the value used for the first possible split and GL0 is the gradient sum
for the left child in the first split.
The gradient sum for second split, is GL0 plus the sum of gradient values for training
instances satisfying v1 < xi[d] < v2 where v2 is the split value for the second split.
This sum corresponds exactly to the second entry in unique_gis as only instances with
the second-lowest feature value satisfy the constitution. A parallel scan will then give the
calculation of gradient sums for the left child required algorithm 1. The same argument
holds for HL.
Lines 3-23 in figure 8 returns the best split for each feature. argmax finds the optimal
index i to split the values. As the scan operation is inclusive scan the split value must
be between vi and vi+1. The actual split value is vi+vi+1

2 and the XGBoost [1] uses same
calculation of split value

30

6.3 Segmented partition
This section describes how to flatten the irregular map used for splitting leaves in figure 8.
The split_leaf function partitions of each leaf by the dimension and split value. The
distribution of instances over the leaves at the current level are given by a shape array.
Consider a the distribution in the flat array: [1,4,2,3,2,5,6,1] and with shape [5,3]. This
means the first leaf contains 5 instances and the second one contains 3. The first leaf
should be split with the value 2.5 and the second with the value 3.5. This will give the
new array: [1,2,2,4,3,1,5,6]. The new shape is now [3,2,1,2].
Figure 16 shows the implementation of lifting the partition so it becomes segmented
applying splits to each segment in parallel.

1 let partition_lifted_by_vals [n][l][d] 't
2 (conds: [l](i64 , t, bool)) (ne: t) (op: t -> t -> bool)
3 (isnan: t -> bool)(shp: [l]i64)
4 (X: [n][d]t) (G: [n]f32) (H: [n]f32)
5 : ([n][d]t, [n]f32 , [n]f32 , [l]i64) =
6 let flag_arr = mkFlagArray shp 0 1 n
7 let seg_offsets_idx = scan (+) 0 flag_arr |> map (\x -> x -1)
8 let cs = map2 (\xi i ->
9 let (dim , cond_val , flag) = conds[i]
10 in op xi[dim] cond_val || (isnan xi[dim] && flag)
11) X seg_offsets_idx
12 let true_ints = map i64.bool cs
13 let false_ints = map (\x -> 1-x) true_ints
14 let bool_flag_arr = map bool.i64 flag_arr
15 let true_offsets = segmented_scan (+) 0 bool_flag_arr true_ints
16 let false_offsets = segmented_scan (+) 0 bool_flag_arr

false_ints
17 let seg_offsets = scanExc (+) 0 shp
18 let num_true_in_segs = segmented_reduce (+) 0 bool_flag_arr

true_ints l
19 let true_val_offsets = map2 (\x i -> x + seg_offsets [i])
20 true_offsets seg_offsets_idx
21 let false_val_offsets =
22 map2 (\x i -> x + seg_offsets [i] + num_true_in_segs [i])
23 false_offsets seg_offsets_idx
24 let idxs = map3 (\c iT iF -> if c then iT -1 else iF -1)
25 cs true_val_offsets false_val_offsets
26 in
27 (scatter2D (replicate n (replicate d ne)) idxs X,
28 scatter (replicate n 0f32) idxs G,
29 scatter (replicate n 0f32) idxs H,
30 num_true_in_segs)

Figure 16: segmented partition: does the split of instances on X, G and H

lines 1-5: The function does apply segmented partition to X, G and H. The input conds is
the split dimension, split value and missing direction flag of each split for every
leaf. The input operator op set to be < in the implementation. The function isnan
determines whether the feature value is a NaN value. shp is the distribution of

31

instances for the current level. X, G and H is the flat representation of instance,
gradient and hessian values.

line 6: Creates the flag array representing the segment start. Here 0 and 1 are used as flag
values . This array is later used for calculating segment indices as it can be done
using a scan operation. In the running example this would be [1,0,0,0,0,1,0,0].

line 7: Creates the array where each entry correspond to the segment they belong to e.g.
[0,0,0,0,0,1,1,1] meaning the first five elements belong to first segment and the last
three belongs to the second segment.

lines 8-9: Calculates the boolean array where each entry determines if the instance is sent to
the left or the right child. This uses the segment indices for each element to access
the correct split value and dimension for the operator. For example running this
would be [T,F,T,F,T,F,F,T].

lines 12-14: These arrays are used for calculating the writing indices of instances within each
leaf. The boolean flag array is used for the segmented scan and reduce.

line 15: This gives an array of indices. The indices are used when writing the instances
which evaluated true within in each node.
For the running example: [1,1,2,2,3,0,0,1].

line 16: The array giving the write indices for instances which evaluated to false in line 8.
For the running example: [0,1,1,2,2,1,2,2].

line 17-18: Calculates the segment offsets and the number of true evaluations for each node.
For the running example: [0, 5] and [3, 1]

line 19: Calculates the writing indices for all the instances sent to left child for every node.
The write index is segment offset given by line 14 + internal write index given by
line 12. For the running example: [1,1,2,2,3,5,5,6]

line 21: It is analogous of line 19. Since it is for false evaluations we must also add the num-
ber of true evaluations for each leaf. This ensures the instances sent to right child are
written after instances in the left child. For the running example: [3,4,4,5,5,7,8,8].

line 24: Depending on the evaluation of the split condition the write index for the instance
is chosen from either true_val_offset or false_val_offsets. This gives the
indices used for scatter For the running example: [0,3,1,4,2,6,7,5]

lines 27-30: Writes the distribution of instances for next level. scatter2D is used for 2D in-
stances for better performance by ensure coalesced writing. num_true_in_segs is
number of true evaluations for each node. This is used for calculating the new shape
for the distribution. For the running example, scatter using the indices above and
values [1,4,2,3,2,5,6,1] will return [1,2,2,4,3,1,5,6].

As segmented partition is a permutation of the individual leaf, a gather2D was tried
out instead of scatter2D. The idea is gather2D would save the cost of calling replicate
and perform a little faster. Scatter2D does benefit from coalesced writing and gather2D

32

should benefit from coalesced reading. Gather2D did not yield the expected performance
increase. The usage of scatter2D gave an overall speed increase of 10% compared to
gather2D. The overall running time is how long T boosting iterations takes, so a 10%
increase is significant.

33

7 Searching using histograms
It is expensive and repetitious to check every possible split of training instances when
searching for the best split within a leaf. For large datasets, this requires multiple ex-
pensive sorting operations for every leaf we check for splits. The steps needed for finding
the best split for a dimension within a leaf is simplified to:

• Sort the feature values

• Find all unique feature values

• Aggregate gradient/hessian values for instances with same value

• scan to calculate the cumulative sum of GL and HL

These steps are required before we can calculate the quality of every possible split of the
training instances for a single dimension in a leaf.
This process becomes very expensive on a large number of training instances. This can
be optimized using histograms [3].

The idea is to partition the sorted instances into a number of intervals and we only
calculate the split quality of splitting between these intervals. This reduces the number
of possible splits and seeks to eliminate the sorting operation resulting in a speed gain.
This approach does affect the accuracy slightly as the best split is now an approximation.
By assigning instances to each interval we can aggregate the gradient/hessian values for
every interval using a histogram. The scan operation is now used over the histogram
entries giving the cumulative sum of GL and HL. For the new approach, the following
steps are required when searching for the best split within a feature dimension:

• Calculate the feature histogram of instances

• The gradient/hessian value sums are entries in the histogram

• scan operation on the histogram to calculate the cumulative sum of GL and HL

Now the number of splits considered is limited to the size of the histogram. The expen-
sive process of sorting and finding unique values is removed. The size of each histogram
is controlled by the user allowing them control the accuracy. A higher number of bins
results in more possible splits and a better approximation to the exact split is found
giving higher accuracy.

In order to use this histogram approach a preprocessing step is required. For each feature
dimension we need to assign every feature value to an interval. These intervals will
correspond to the indices in the histogram.
For each dimension d we need to find a series of intervals (vl, vu): xi[d] ∈ [vl...vu]. Here
vl is the lower bound of the interval and vu is the upper bound of the interval. The goal
is to find intervals such the training instances are evenly distributed over the intervals.

To find the intervals, the training instances are sorted and partitioned into n
b
parti-

tions. Here n is the number of training instances and b is the number of intervals/bins. For

34

each interval we must find vl and vu. Using these boundaries we can assign every feature
value to an index. This index corresponds to the histogram bin where the gradient/hes-
sian values of instances should be aggregated. For each dimension, we map every feature
value to the bin index for the feature histogram and we can use Reduce_by_index to effi-
ciently calculate the histogram for the gradient and hessian sums. The interval boundary
values are referred to as bin boundaries in the context of histograms. The process of
finding the bin boundaries and how they are used to map feature values to bin indices are
described in section 7.1. Section 7.2 gives an overview of the parallel constructs used for
implementation the histogram based searching approach. Section 7.3 describes how the
histograms for gradient/hessian values are efficiently calculated using Reduce_by_index.

7.1 Finding and mapping feature values to bins
The usage of histograms requires feature values to be replaced with the bin index the
feature value belongs to. For each feature dimension, a histogram has to be calculated.
The goal is to create an equal frequency histogram of the values in each dimension. Figure
17 shows an example of a equal frequency histogram.

Figure 17: An example of equal frequency histogram

Figure 17 shows how 100 feature values have been assigned to 10 bins. Each bin has
exactly 10 entries. The boundaries for each bin are given on the x-axis. The first bin has
a lower bound value of -1.9 and an upper bound value of -1.3. To create the histogram
we must find the bin boundary for each bin.

A boundary value vb for a bin b is defined, so instances xi ends up in the bin where the
following holds: vb−1 < xi[d] < vb. vb−1 is the boundary for the previous bin. For the
first bin f32.lowest is used as lower bound.
Recall we can only split between unique values so the number of occurrences for each value

35

is found. From the number of occurrences, we have to find the bin boundaries resulting
in a equal frequency histogram. The resulting histogram will be an approximation of the
perfect equal frequency show in figure 17.

Figure 18: Splits chosen when creating the bins

Figure 18 shows the approach for finding the bin boundaries. The first array shows the
values and the number of occurrences in the feature dimension.
The second array is the result of a scan operation over the number of counts. The goal
is to split this array into b bins where each bin has the same amount of counts. Here we
search for the splits giving 10 instances in each bin. The red partitions show the optimal
bin sizes and the blue partitions show which bin sizes we choose.
The first bin will have 9 instances. The second bin will have 12 instances etc.

The unique values are found using radix sort as in figure 15. The count of each occurrence
is calculated using a segmented reduce. If the number of bins is greater than the number
of unique values then the boundaries are given by vi+vi+1

2 . Here i is the index of every
unique value. The boundary value is also the split value that is used for the decision
tree. The median value is chosen so we can expect similar behavior when instances tra-
verses the tree. This also ensures new instances with values between vi and vi+1 is sent
distributed evenly between the two bins.
If the number of unique values are greater than the number of bins, we need to find
the indices for blue partitions in figure 18. This is done using a linear search over the
cumulative sum of occurrences.

The average bin size b̄ is 10 in the example. We start the linear search with one bin
and then filling it by adding entries of the array from left to right. Every time we have
b̄ · n ≤ arr[i] we have filled up a bin. n is the number of bins found so far and is set to
n = 1 at the beginning and incremented as we split the counts array. The first bin is full
when we arrive at the second entry(arr[1]).
Now we have two possibilities either we split using the green or the blue partition in
figure 18. We chose the index i where the value is closest to b̄ ·n. Here arr[0] is closest as

36

|10−9| < |15−10|. n is now incremented to 2 and the search for next bin split continues.
The next bin is filled once we reach the third entry. Here we compare the distance
between the optimal partition and the ones we can those. We choose to partition at i=2
since |15 − 20| > |22 − 20|. This continues until n=b. The indices found corresponds
to the indices we split the sorted unique values. The bin boundary is vi+vi+1

2 . For the
last bin multiply the boundary value with two. For figure 18 we split at the indices [0,
2, 4, 5, 6] and this gives the bin boundaries: [1.5, 3.5, 5.5, 6.5, 14]. Figure 19 shows
the implementation of findBounds. This function finds the bin boundaries for a feature
dimension.

1 let findBounds [n][m] (vals: [n]f32) (num_bins : i64) (dest: *[m]f32)
2 : [m]f32 = -- input vals are sorted
3 let (_, rest) = partition (f32.isnan) vals
4 let num_vals = length rest
5 -- flag array with true entries gives an unique segment start
6 let unique_start = map2 (!=) rest (rotate (-1) rest)
7 let distinct_values = zip rest unique_start |> filter (\x -> x.1)
8 |> unzip |> (.0)
9 let num_unique = length distinct_values
10 let bins_left = num_bins -1
11 let boundary_vals = if num_unique <= bins_left then
12 map2 (\v i -> if i == num_unique -1 then
13 v*2
14 else
15 (v+ distinct_values [i+1]) /2.0
16) (iota num_unique) distinct_values
17 else
18 search_bounds distinct_vals bins_left unique_start
19 in
20 scatter dest (indices boundary_vals) boundary_vals
21 with [m -1]= f32.nan

Figure 19: Function for finding bin boundaries.

line 1: findBounds function takes the sorted feature values, number of bins and array to
write the values to as input. It returns the bin boundaries required to create an
equal frequency histogram of the feature values.

line 4: Instances with a missing value will be assigned to the last bin. Therefore the last
bin of the histogram correspond to the gradient/hessian sum for instances with a
missing value for the given dimension. For finding the boundary values they are
ignored.

line 6: Finds the flag array for unique segments. This is used in search_bounds for calcu-
lating the number of occurrences of each unique value.

lines 7-9: Finds the number of unique values and the array of unique values.

lines 11-18: The boundary values for the bins are found. If the number of unique elements is
less than the number of bins, the boundary values are found using a map2 operation

37

calculating the value. The function search_bounds finds the bin boundaries when
we have more unique values than bins. This function is shown in figure 20 and uses
the methods described in figure 18.

line 20: Writes the found bin boundaries the the array dest. The last value is set to f32.nan.

.

1 let search_bounds [n][l] (unique_vals : [l]f32) (num_bins : i64)
2 (unique_start : [n]bool) : [num_bins]f32 =
3 let one_arr = replicate n 1
4 let counts = segmented_reduce (+) 0 unique_start one_arr l
5 let mean_bin_size = f32.i64 n / num_bins
6 let sum_counts = scan (+) 0 counts |> map i64.f32
7 let bin_changes = map (\v -> f32.floor(v/ mean_bin_size))

sum_counts
8 let pos_splits = map (\i ->
9 if i == 0 then false
10 else i == l-1 then true
11 else bin_changes [i] != bin_changes [i -1]
12) (indices bin_changes)
13 let opt_bin_counts = map f32.bool pos_splits |> scan (+) 0 |>

map (* mean_bin_size)
14 let splits_to_check =
15 filter (\i -> pos_splits [i]) (indices pos_splits)
16 let best_choices =
17 map (\(_,i) -> -- i==0 is not present , removed in filter
18 let opt_count = opt_bin_counts [i]
19 let dist_right = f32.abs opt_count - counts [i]
20 let dist_left = f32.abs opt_count - counts [i -1]
21 in if dist_left < dist_right then
22 i-1 else i
23) splits_to_check
24 let split_vals = map (\i ->
25 if i == l-1 then unique_vals [i]*2
26 else (unique_vals [i]+ unique_vals [i+1]) /2
27) best_choices
28 in
29 split_vals

Figure 20: finds bin boundary values for the optimal histogram

line 1: The function search_bounds takes the unique values, number of bins and the
flag_array of unique segments as input. The function returns the bin boundaries
for the optimal equal frequency histogram.

lines 3-4: Calculates the number of occurrences of each unique value. This is done using a
segmented reduce on an array of ones using the flag_array.

lines 5-7: The average number of entries in each bin. This is used for determine if we should
partition the array as in figure 18. By dividing each cumulative sum count with the
average bin size we simulate the process filling bins. Each time the value change in

38

bin_changes we have filled a bin and we need to partition the cumulative sum of
counts and use a new bin. For the example in figure 18 this will give [0, 1, 2, 2, 3,
3, 4, 5].

lines 8-12: Each time the value changes in bin_change we have the situation described in
figure 18. This creates an flag array: [F, T, T, F, T, F, T, T].

line 13: Calculate the optimal accumulated counts for the bins

line 14: Removes all the false entries in pos_splits. Here we do not partition the instances
and are ignored.

lines 16-25: The map operation finds the optimal indices where to split the data. It uses the
cumulative sum of counts at the index i and at i−1. These two sums are compared
against the optimal sum and the best index which is closest is chosen. For the
example in figure 18 this gives : [0, 2, 4, 5, 6].

lines 24-27: The optimal split indices are now converted into split values using vi+vi+1
2 or if it

the last unique value then it is multiplied with 2. This gives the resulting bin
boundaries: [1.5, 3.5, 5.5, 6.5, 14].

Figure 21 combines the functions for finding bin boundaries and maps features values to
bin indices. 21.

1 let binMap [n] (vals: [n]f32) (num_bins : i64)
2 : ([n]u16 , [num_bins]f32) =
3 let dest = replicate num_bins f32. highest
4 let s_vals = radix_sort_float f32. num_bits f32. get_bit vals
5 let new_bounds = findBounds s_vals num_bins dest
6 let num_bins = u16.i64 num_bins
7 let mapped = map (\v -> value_to_bin v new_bounds num_bounds) vals
8 in
9 (mapped , new_bounds)

Figure 21: The function which finds bin and maps the feature values

line 1: The function binMap takes the feature values and number of bins as input. It
returns the array of mapped features values with type u16 and the bin boundary
for each bin.

line 3: allocate the array for the bin boundaries. This is done as findBins writes the
boundaries found into this array.

line 4: Sorts the feature values, this is done for finding the unique values in findBins

line 5: The new bounds are found using findBins. This function finds the bin boundaries
using the method as described earlier in the section.

line 7: The map uses value_to_bin to find the bin indices for each feature value. value_to_bin
uses the bin boundaries to find which bin the feature value belongs to. Note the
map operation is used on the original input of feature value to keep the ordering.

39

All the functions shown at figures 19, 20 and 21 all uses regular parallelism and no flat-
tening is needed. The transformation of the whole dataset is then performed using a
map operation over each dimension. For large datasets, this operation over each feature
dimension calling binMap will result in high memory usage, since additional d sorted
arrays of size n are created. Therefore it is implemented using a sequential loop over each
dimension.The binMap function fully saturates the GPU for large datasets.

The input dataset is a [n][d]f32 matrix and is now converted into [n][d]u16 as a result of
mapping to bin indices. The conversion does reduce the memory usage but the usages of
u16 enforce an upper bound on the number of bins. An optimization would be to make
type parametric, such it depends on the number of bins. If the user only wants to use
255 bins the dataset should be of type u8.

40

7.2 Histogram implementation overview
The introduction of histograms does change the futhark translation of algorithm 2. It is
adjusted to creates the histogram for the feature values and searches them for the best
split. In the implementation the processing step of mapping values to bins is added. This
is done before starting the gradient boosting using binMap on every dimension. Figure
22 shows the futhark translation of algorithm 2 where histograms is used for searching.

1 let findOptTree [n][d][b] (X: [n][d]u16) (G: [n]f32) (H: [n]f32)
2 (bin_bounds : [d][b]f32)
3 -- all instances are assigned to root.
4 let(X, G, H) = ([X], [G], [H])
5 loop (X, G, H, l, N, L) for l <= D and !(null X) do
6 let histograms = create_histograms X G H shape
7 let splits = map (\ dim_hists -> --[d][b](f32 ,f32)
8 let (q, d, v, flag) = best_hist_split dim_hists bin_bounds
9 in (q, d, v, flag)
10) histograms
11 -- irregular partition : split_info =(q,d,v,flag)
12 let (active_data , terminal_data) =
13 partition (\(split_info , _, _, _) -> split_info .0 > 0)
14 (zip4 splits X G H)
15 let (_, _, terminal_G , terminal_H) = unzip4 terminal data
16 -- irregular map calculating prediction weights .
17 let L = L ++ map2 weight terminal_G terminal_H
18 let (act_splits , act_X , act_G , act_H) = unzip4 active_data
19 let N = N ++ act_splits
20 -- irregular partition , returns the irregular distribution

of points in the new level
21 let X, G, H = map4 split_leaf act_splits act_X act_G act_H
22 |> flatten |> unzip3
23 in
24 (X, G, H, l+1, N, L)
25 in
26 (N, L)

Figure 22: Pseudo code for histogram based version of algorithm 2
.

lines 1-2: The inputs are similar to findOptTree in figure 8, but the findOptTree now uses
training instances where the values have bin mapped to bin indices. The bin indices
are 0 ≤ i ≤ b. For each bin, the corresponding boundary value is provided in the
bin_bounds input. It has shape [d][b] as every dimension have a histogram of size
b. The boundary value is the split value written into the decision nodes.

lines 5-23: The loop over levels in the tree built. Here the X G H is updated as splits are
introduced into the leaves.

lines 6: The function create_histograms creates the histograms for each dimension for
every segment. This function uses the irregular arrays X, G, Y.
This function is flattened to remove the irregular parallelism by creating a seg-
mented histogram for each dimension. A segmented histogram contains the all the

41

histograms for each segment in a single one. The size of the segmented histogram
is s · b for each dimension where s is the number of segments and b is the number
of bins. The first b entries is the histogram for the first segment. The next b is
for the second segment. This is segmented histograms is made into a [s][b] matrix.
This gives a total of [d][s][b] histogram which now a fully regular arrays and the
search for split is now nested regular parallelism which is flattened by the compiler.
Section 7.3 explains the implementation of create_histograms

lines 7-10: The map operation over the irregular array containing the histograms. Each his-
togram entry is a [d][b](f32,f32) which gives the gradient/hessian sums for each bin
in every dimension and best_hist_split will operate on fully regular arrays.
best_hist_split now searches for the best split between each histogram bin over
all dimensions. The search is simplified as the gradient/hessian sums for splits is
given by the histogram. A scan over the histograms obtains the cumulative sum
of GL and HL and the best splits are found similar to search_best_split. The
details for function best_hist_split is shown in figure 23.

lines 12-20: Same lines of code as in 8. We partition the instances into an active and a terminal
part. The terminal part is used for calculation of prediction values. The calculation
of leaves predictions are now done by flattening the map on line 17. This is done by
lifting the function in figure 9 into using segmented reduction and calculating the
predictions for every terminal leaf at the current level.

line 21: The irregular map operation is flattened into a segmented partition for splitting
the leaves at the current level. The implementation uses the segmented partition
described in section 6.3.

line 23: Calculates the new shape array based on the splits applied to the active leaves.

42

1 let best_hist_split [d][b] (G_hists : [d][b]f32) (H_hists : [d][b]f32)
(bounds : [d][b]f32) : (f32 , i64 , f32 , bool) =

2 let best_split_dim =
3 map3 (\ g_hist h_hist bin_bounds ->
4 let Gls = scan (+) 0 g_hist
5 let Hls = scan (+) 0 h_hist
6 let G_na = last Gls
7 let H_na = last Hls
8 let Qs = map2 (\gl hl -> gain gl hl (sum Gls) (sum Hls) G_na

H_na)
9 GLs [:b -1] HLs [:b -1]
10 let opt_i = arg_max Qs
11 let(best_q , v, flag) =
12 (Qs[opt_i].0, bin_bounds [opt_i], Qs[opt_i].1)
13 in
14 (best_q , v, flag)
15) G_hists H_hists bounds
16 let d = arg_max best_split_dim
17 let (q, v, flag) = best_split_dim [d] |> unzip3
18 in
19 (q, d, v, flag)

Figure 23: Pseudo code for finding the best split using histograms

line 1: The function takes the two histograms as input: the gradient sums and the hessian
sums. The histograms are given in a 2D matrix with shape [d][b]. The boundary
values for each dimension are used to get the split value.

lines 2-15: Finds the best split within each dimension. This is done with a map3 operation
on G_hists, H_hists and bounds. This searches each dimension for the best split
between the b possible ones.

lines 4-5: Calculates the sums GL and HL with a scan operation over each histogram. The
properties explained in section 6.2 also holds when using histograms.

lines 6-7: The missing values are aggregated in the last bin of the histogram. This means the
sums Gna and Hna are given by the last histogram entry. The layout of histograms
are described in section 7.1.

line 8: Calculates the split quality of splitting between each bin. This is done using equa-
tion 20 and the function returns the quality and best direction for missing values
for every split possible.

line 10-12: Finds the optimal split value. The value is given by the boundary value for bin
opt_i.

line 16: Finds the optimal dimension to split the leaf.

43

7.3 Histogram creation
This section describes how the segmented histogram for each dimension is created. The
idea is so use Reduce_by_index to create the histogram for a leaves. This will mean
the histogram for a single dimension has s · b entries. Here s is the number of leaves
and b is the number of bins. By using a map over each feature dimension where all the
mapped feature values are processed at once. The use of Reduce_by_index reduces the
n feature values to s · b histogram entries. Figure 24 shows how the segmented histogram
is calculated for every dimension.

1 let create_histograms [n][d][s] (X: [n][d]u16) (G: [n]f32) (H: [n]
f32)

2 (flag_arr : [n]i64) (num_segs : i64) (num_bins : i64)
3 : ([d][num_segs][num_bins]f32 , [d][num_segs][num_bins]f32) =
4 let seg_offsets = scan (+) 0 flag_arr |> map (\x -> x -1)
5 |> map (\x -> x * num_bins)
6 in
7 map (\ dim_bins ->
8 let g_hist_entry = replicate (num_segs * num_bins) 0.0
9 let h_hist_entry = replicate (num_segs * num_bins) 0.0
10 let idxs = map i64.u16 dim_bins |> map2 (+) seg_offsets
11 let g_seg_hist = reduce_by_index g_hist_entry (+) 0.0 idxs G
12 let h_seg_hist = reduce_by_index h_hist_entry (+) 0.0 idxs H
13 in (unflatten num_segs num_bins g_seg_hist
14 , unflatten num_segs num_bins h_seg_hist)
15) (transpose X) |> unzip

Figure 24: Fully regular histogram calculation given data points, gradient and hessian values

lines 1-3: The function takes the three data arrays as inputs: X, G and H. The flag_arr gives
the distribution of points over the segments. num_segs is the number of segments
at the current level. num_bins is the number of bins in each histogram.
Every histogram is regular and the histograms are returned in a 3D matrix with
shape [d][num_segs][num_bins]. This allows for searching for splits using nested
regular map operations.

lines 4-5: The segment index for every instance is calculated using the scan over the flag
array. Every segment index is then multiplied with b giving the indices of where
each segment in the histogram starts. For example a segmented histogram with 3
bins they segment offsets are [0,0,0,0 3,3,3, 6,6,6,6].

lines 7-15 Calculates the segmented histogram for each dimension in parallel. Reduce_by_index
takes the bin indices + segment offsets as aggregation indices and uses the gradient
values to create the segmented histogram of gradient values for a single dimen-
sion. The map operation operates on the feature bins. This operation returns
[d][num_segs][num_bins]

lines 8-9: Allocates the segmented histogram entry for the dimension. Each segmented his-
togram has the flat length of num_segs · num_bins.

44

line 10: Adds the segments offsets to aggregation indices for every training instance.

lines 11-12: Calculates the segmented histograms for the dimension. Each entry in idxs cor-
respond to the bin where the gradient/hessian value for the instance should be
aggregated. As we want to gradient/hessian sum we use (+) as our aggregation
function.

lines 13-14: The segment histograms are transformed into two a 2D matrices with type:
’[num_segs][num_bins]f32.

45

8 Experimental evaluation
In this section the two implementations are tested on a common benchmarking dataset
used for gradient boosted decision trees. The Higgs dataset 1 is for classifying a signal
process which produces Higgs bosons and a background process which does not.
The dataset is created through Monte carlo simulations. It contains 11 million instances
each with 28 features. This dataset is commonly used for benchmarking a GDBT frame-
work. [1, 3, 8]
The performance and accuracy of the two implementations is compared against release
1.21 of XGBoost 2. The GPU hardware used is a Nvidia geforce RTX 2080 with 12 GB
memory running Turing architecture with CUDA 11.0.

XGBoost is typically used in python however python introduces a overhead when doing
function timings. Instead the XGBoost c-api3 is used for measuring performance as it
has minimal overhead.

8.1 Accuracy
The loss function used is logistic binary classification. For binary classification the pre-
dictions are compared to a threshold typically 0.5. If prediction is greater than 0.5 is
belongs to class 1 otherwise zero Since the Higgs dataset has an imbalanced class distri-
bution AUC(area under the ROC curve) is used an evaluation metric. The ROC curve
shows the classification performance at every possible threshold for the predictions. AUC
provides an aggregate measure of performance across all possible classification thresholds.
If the model has 100% correct classifications an AUC score of 1 is achieved and 100%
misclassifications gives 0.

500 boosting iterations are performed and the maximum depth of single tree is set to 6.
λ is set to 0.5 giving it a slight regularization penalty. For gradient step, η 0.1 is used as
higher values causes the model to over-fit. The number of bins is set to 256.

1https://archive.ics.uci.edu/ml/datasets/HIGGS
2https://github.com/dmlc/xgboost/releases/tag/v1.2.1
3https://xgboost.readthedocs.io/en/latest/dev/c__api_8h.html

46

https://archive.ics.uci.edu/ml/datasets/HIGGS
https://github.com/dmlc/xgboost/releases/tag/v1.2.1
https://xgboost.readthedocs.io/en/latest/dev/c__api_8h.html

Figure 25: Auc score between XGBoost and futhboost, higher is better

Figure 25 shows the convergence of the AUC score for each boosting iteration. The
futhark histogram and exact implementation both starts with a score of 0.5, since it is
the base prediction and quickly convergences so it achieves similar performance as the
xgboost histogram.
As the accuracy is identical between the exact and histogram implementations the his-
togram implementation have become the go to method for creating a GDBT ensemble.

8.2 Training time
The timings of XGBoost in C by is done by starting a timer before start of training. The
timer is stopped as the training of the ensemble is done. Timings are done in µs but
converted to seconds as the full model training takes several seconds.

The execution time for the Futhark implementation is measured using the futhark bench
command. This command measures the actual processing time on the GPU by excluding
the transfer time of data from RAM to GPU memory.
5 million data points are used and we do 100 boosting iterations to create our ensemble.
The futhark implementation took on average 17.4s while the XGBoost library took on
average 9.4s. Both implementations used 256 bins. The difference in execution time is a
factor two for XGBoost and futhark when comparing over different numbers of training
instances.

By profiling the execution we observe the implementation spends most of the time cre-
ating histograms. This is expected as the histograms were introduced to eliminate the
need for sorting and finding unique values. 60% of the total time is spent on creating
histograms. Smaller trees cause the segmented histograms to fit the local memory by
reduce_by_index and no histogram aggregation is done in global memory. For trees
with a larger depth, the segmented histogram is not guaranteed to fit local memory, and

47

access to global memory is required impacting the total execution time.
The cost of mapping feature values to bins is around 0.8s which is low compared to over-
all training time. It is unknown if XGBoost does the feature value mapping when the
training data matrix is created with XGDMatrixCreateFromFile or if they are mapped
just as the training of the ensemble begins.

If the user values better accuracy a higher number of bins is required. This will give a
better approximation of the best exact split. The overall training time increases with the
number of bins as larger histograms are needed and more possible splits are checked.

Figure 26: Training time different number of bins, notice y-axis starts at 9 seconds

Figure 26 shows the overall training time over 100 boosting iterations with a varying
number of bins. The training data has 5 million training instances. The number of bins
increases the time spent creating histograms. For 2048 bins 66% of time is spent creating
histograms. The performance gap between XGBoost and futhark implementation reduces
significantly as the number of bins increases.

The exact implementation were also benchmarked using 5 million data points. As there
are many more possible splits than the histogram-based to consider we report the execu-
tion time per boosting iteration. The time per boosting iteration is an average over 100
boosting iterations.
The GPU version of the exact implementation uses 8.4 seconds per boosting iteration.
The multi-core CPU version of XGBoost framework uses 3.3 seconds per boosting itera-
tion. The timing is done using a Intel Xeon E5-2650 CPU with 32 cores and is an average
over 100 iterations.
The performance difference between the GPU and CPUis a consequence of not flattening
the irregular map over leaves at line 6 in figure 8. Close to the maximum depth, the
leaves left is likely to contain a fraction of the original number of training instances. This

48

fraction results in the implementation does not fully saturate the GPU and will cause
a decrease in performance. The XGBoost framework did support an implementation of
the GPU exact version [2] but was later removed as the multi-core CPUs did outperform
the GPU version on large datasets [3]. Therefore most GDBT frameworks focuses on the
histogram based algorithm for benchmarking and practical use.

8.3 OpenCL backend
Currently all the performance benchmarks are done with CUDA backend. This is be-
cause the atomic_add operations which considerably speeds up the histogram creation
in CUDA compared to OpenCL.

Figure 27: Timing histogram creation with different backend.

Figure 27 show the time used for calculating histograms with a varying number of training
instances and segments. The timings are done using the CUDA and OpenCL backend.
When the number of instances is above 1 million the CUDA backend starts to outperform
the OpenCL. Here the missing atomic_add opertion causes additional global memory ac-
cesses for hte OpenCL backend resulting in a significant slowdown.

When replicating the timings from section 8.2, the implementation using the OpenCL
backend is significantly slower. All the difference happens when the histograms are cre-
ated. The rest of the implementation has timings similar to the CUDA backend but
the histogram creation takes 0.95% of the total running time. Upgrades to the OpenCL
backend will translate directly into a performance upgrade of the implementation.

49

9 Conclusion and future work
We have presented the XGBoost algorithm for creating gradient boosted decision trees
and shown the mathematical basis for the decision tree created is the gradient step.
A algorithmic framework for finding the decision tree is shown and how it is translated into
Futhark using parallel building blocks. As Futhark does not support irregular parallelism
the flattening is used to fully utilize all the parallelism is available. The serach for the best
split is further optimized using histograms and a parallel implementation is provided.
We benchmarked our implementations against the XGBoost framework on the Higgs
dataset. We demonstrate the two implementations achieve similar accuracy and loss
convergence as the XGBoost framework. The training speed was tested on 5 million
training instances and the histogram-based implementation is found to x2 times slower
than XGBoost implementation. We also have shown as the number of bins increases the
gap between the two implementation decreases.

Future work:

• The radix sort should be lifted so it can sort segments in parallel. This will allow
the exact implementation to fully utilize all parallelism available in findOptTree.
This will result in better performance as the implementation will fully saturate the
GPU for large trees.

• As mentioned in 6.1 the type of the mapped dataset should depend on number of
bins chosen by the user. This will require translating the histogram-based imple-
mentation to be type polymorphic. This will require the use of module types.

• Further various techniques for creating gradient boosted trees can be explored:
Sampling data points based on the gradient values as it is likely a split happens
between two values with large gradient values.

The growth strategy of trees is to grow level-wise. This means we search all leaves
in the current level for the best split before moving onto next. Another strategy is
to use leaf-wise growth. Here the leaf with the best split quality is chosen and split.
Then the subtree is grown until no splits are left before growing the other subtree
at the first split.

50

References
[1] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. CoRR,

abs/1603.02754, 2016.

[2] Rory Mitchell and Eibe Frank. Accelerating the XGBoost algorithm using GPU
computing. PeerJ Computer Science, 3:e127, July 2017.

[3] Huan Zhang, Si Si, and Cho-Jui Hsieh. Gpu-acceleration for large-scale tree boosting,
2017.

[4] Troels Henriksen. Design and Implementation of the Futhark Programming Language.
PhD thesis, 2017.

[5] Troels Henriksen, Frederik Thorøe, Martin Elsman, and Cosmin Oancea. Incremen-
tal flattening for nested data parallelism. In Proceedings of the 24th Symposium on
Principles and Practice of Parallel Programming, PPoPP ’19, page 53–67, New York,
NY, USA, 2019. Association for Computing Machinery.

[6] Guy E. Blelloch. Nesl: A nested data-parallel language (version 2.6). Technical report,
USA, 1993.

[7] Troels Henriksen, Sune Hellfritzsch, Ponnuswamy Sadayappan, and Cosmin Oancea.
Compiling generalized histograms for gpu. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC ’20.
IEEE Press, 2020.

[8] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei
Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30,
pages 3146–3154. Curran Associates, Inc., 2017.

51

	Introduction
	Background
	Futhark
	Segmented operations

	Decision trees
	Creating a decision tree
	Decision trees ensembles
	Gradient boosting

	Gradient boosting decision tree
	Algorithm overview

	Translating algorithms to parallel constructs
	Implementation of exact gradient boosted decision trees
	Decision tree layout
	Finding best split
	Segmented partition

	Searching using histograms
	Finding and mapping feature values to bins
	Histogram implementation overview
	Histogram creation

	Experimental evaluation
	Accuracy
	Training time
	OpenCL backend

	Conclusion and future work

