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Abstract

This paper describes the implementation and design of multiple linear algebra algorithms
in the data-parallel purely functional array language Futhark. Linear algebra algorithms are
oftentimes used on large datasets and are usually very time consuming due to a large number
of matrices and vector operations. This project aimed to explore and work with data-parallel
functional programming to see how well Futhark handles some of the most used linear alge-
bra functions, including NMF, Cholesky Decomposition, QR Decomposition, and Solving
of linear systems. All the implementations of the linear algebra algorithms in Futhark are
compared in performance to the Python libraries - NumPy and scikit-learn. Our benchmark
results show that our implemented linear algebra programs in Futhark could not always
keep up with the Python libraries. The reason behind this could be that the Python libraries
are highly hand-optimized. However, the reason is likely concerning us not implementing
very optimized versions of these algorithms and the compiler not generating optimal code in
some cases. Nonetheless, from our project results, we still think Futhark and linear algebra
suits each other well.



Contents

Contents 3

1 Introduction 5
1.1 Project objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Report structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Futhark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Basic Linear Algebra Operations 8
2.1 Implementation of vector operations . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Implementation of matrix operations . . . . . . . . . . . . . . . . . . . . . . . 9

3 QR Decomposition 11
3.1 The Gram-Schmidt Process Algorithm . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Householder Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Blocked Householder Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Non-negative matrix factorization 23
4.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Design and implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Cholesky Decomposition 31
5.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Design and implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Matrix Determinant 37
6.1 Dodgson condensation method . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Doolittle LU Decomposition method . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Cholesky Decomposition determinant . . . . . . . . . . . . . . . . . . . . . . 41
6.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Solving Linear Systems 44

3



CONTENTS 4

7.1 Gauss-jordan Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2 Forward- and Back-substitution . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3 Design and implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8 Conclusion and Future Work 50
8.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography 52



Chapter 1

Introduction

Linear algebra is an important branch of mathematics used in various fields to model and
compute data. These algorithms are typically used on large datasets and are often very time-
consuming due to a large number of matrix and vector operations. Some of the most well-known
linear algebra topics are decomposition algorithms, solving equations, inverting matrices, and
computation of determinants, to name a few.

This motivates the use of the data-parallel functional language Futhark, which is designed with
an optimizing compiler able to generate parallel code for massively parallel hardware like GPUs.
Programming in such a language often brings up new design considerations and challenges. In
this paper, we present several implementations in Futhark of some of the most used algorithms
in Linear algebra such as QR, NMF, LU, Cholesky, etc.

1.1 Project objective

This project’s main objective is to explore and work with the data-parallel functional Futhark
and examine whether it is suited for linear algebra programming. We want to find out if three
third-year computer science students with no former experience of data-parallel computing, let
alone purely functional programming, can implement and express some of the most used linear
algebra functions in Futhark. We want to analyze how well these algorithms perform in Futhark
compared to libraries such as NumPy and scikit-learn based on benchmarks. These Python
libraries primarily use subroutines from C and Fortran libraries, such as OpenBLAS1 and LA-
PACK2. OpenBLAS and LAPACK are the ’de facto’ standard of high-performance scientific
computing.

1https://github.com/xianyi/OpenBLAS
2http://www.netlib.org/lapack/
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1.2 Report structure

This project report consists of different chapters concerning the implemented linear algebraic
primitives in Futhark. Each chapter will contain an introduction to the presented algorithm and
the theory behind the algorithm. We then follow this up by discussing our specific implementa-
tion and design of the algorithm in Futhark, followed up by benchmarks comparing to the chosen
Python libraries.

The first chapter will introduce several implementations of small basic linear algebra operations,
which we have used throughout the different algorithms. The reader is not expected to have prior
knowledge of the presented algorithms but should have some familiarity with introductory linear
algebra. Chapter 8 presents future work regarding the project and a comprehensive conclusion
on the results of the project. The report is best read in chronological order. However, we have
attempted to make each individual chapter self-explanatory.

1.3 Futhark

Futhark is a small, purely functional array-based programming language in the ML family, de-
signed with an optimizing compiler that can generate code for the GPU through the OpenCL
or CUDA frameworks. Futhark programs mostly consist of Second-Order Array Combinators
(SOACs) (like map, reduce, filter, and so forth), which can be compiled to parallel code
[EHO18b]. However, it is worth noting that Futhark is not a parallel language per default; it is
the programmer’s job to identify parallelism and use SOACs to implement efficient GPU code.

The Futhark programming language feels similar to other functional programming languages,
and as mentioned, the most essential part of programming in Futhark is array programming with
SOACs. As a small example of a Futhark program, we can compute the dot product

∑
i xsi · ysi

of two vectors with the SOACs: map2 and reduce:

1 let dotprod [n] (xs: [n]f32) (ys: [n]f32): f32 =
2 reduce (+) 0.0 (map2 (*) xs ys)

map2 multiplies each element in the two vectors xs and ys together which produces a single ar-
ray that is reduced with the operator ’+’ and 0.0 as the neutral element. The notation of [n]f32
defines an array of length n as type f32.

Futhark is, as formerly mentioned, a purely functional language but still allows in-place array
updates. This is essential for linear algebra programming since in-place updates are used in
most of the algorithms. A straightforward program introducing an in-place update of an array is
shown in the example below:



CHAPTER 1. INTRODUCTION 7

1 let modify [n] (a: *[n]i64) (i: i64) (x: i64): *[n]i64 =
2 let a[i] = a[i] + x
3 in a

This simple function increases the index i of array a with the value x. Here we also have the
uniqueness type *[n]i32 which we in Futhark use to guarantee that an in-place operation can
be safely computed without requiring additional memory allocation or copying the array to an-
other variable. If we pass an argument as being unique, it will be consumed in the function call,
meaning it can not be used in the function later again.

Nonetheless, Futhark also comes with limitations. For instance, only regular arrays are allowed,
and there is no direct support of recursive functions. However, Futhark still supports sequential
for- and while-loops using the loop construct. The following small example of a for-loop com-
putes the Fibonacci numbers:

1 let fib(n: i32): i32 =
2 let (x, _) = loop (x, y) = (1,1) for i < n do (y, x+y)
3 in x

The use of loops is also an essential functionality for linear algebraic primitives since many of
the presented algorithms can not be defined exclusively by SOACs. Furthermore, many of our
implemented algorithms depend on the input matrix’s size, making it difficult to predict numbers
in advance.

The Futhark language uses a parallel cost model, which we have used throughout the project
report to define and analyze our programs’ efficiency. This cost model is defined by two main
concepts: work and span. Work is the total amount of work from operations in a program, while
span defines the program’s depth in computation where we assume infinite parallelism in SOAC
computations [EHO18a].



Chapter 2

Basic Linear Algebra Operations

The following chapter will describe and present several different linear algebra operations used
throughout the implementation of our presented algorithms. In linear algebra, the most common
operations consist of simple matrix and vector operations; hence this section will not go into
a very detailed explanation of the theory behind the operations but briefly describe the trivial
matrix and vector operations.

2.1 Implementation of vector operations

The most basic and essential vector operation, which is also used in a lot of the matrix oper-
ations, is the dot product:

∑
i xsi · ysi of two vectors, which we also presented briefly in the

introduction to Futhark section.

1 -- Work: O(n)
2 -- Span: O(log(n))
3 let dotprod [n] (xs: [n]f32) (ys: [n]f32): f32 =
4 reduce (+) 0.0 (map2 (*) xs ys)

The dot product of the two input arrays xs and ys with the same length n is computed with the
use of map2, and hereby summing the numbers together with reduce. Another trivial but also
useful operation is vector multiplication scalar, which is easily computed by mapping through
the vector and applying a scalar:

1 -- Work: O(n)
2 -- Span: O(1)
3 let vecmul_scalar [n] (xs: [n]f32) (k: f32): [n]f32 =
4 map (*k) xs

The functions take an array xs of length n and the scalar k, and returns the array after applying
the scalar. This function can easily be modified with another operator, e.g., vector division scalar.

8
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The last vector operation to be presented is the outer product of two vectors xs⊗ ys = A which
produces an m× n matrix A. The matrix is obtained by multiplying each element of vector xs
by each element of ys:

1 -- Work: O(n2)
2 -- Span: O(1)
3 let outer [n][m] (xs: [n]f32) (ys: [m]f32): *[n][m]f32 =
4 map (\x -> map (\y -> x * y) ys) xs

The outer function takes two vectors: xs of length n and ys of length m. The nested map
multiplies the first element of xs with each element in vector ys to get the first row in the
matrix. We do this for every element in the two arrays xs and ys which will give us a matrix of
size m× n which is equal to the outer product of xs⊗ ys.

2.2 Implementation of matrix operations

Matrix operations are the most used operations in linear algebra and can be computed very ef-
ficiently on GPU due to many parallel computations. We can write matrix multiplication as the
dot product of rows and columns in the matrix as: xs · ysT where ysT is the transpose of ys.

1 -- Work: O(n3)
2 -- Span: O(log(n))
3 let matmul [n][p][m] (xss: [n][p]f32) (yss: [p][m]f32): *[n][m]f32 =
4 map (\xs -> map (dotprod xs) (transpose yss)) xss

We use the inner map to multiply a row from xss with a column from yss by transposing the
matrix, the outer map is then used to go through every column and row for the matrices to obtain
the final result.

Matrix multiplication scalar is just an extension of vector scalar; all we need is to add an extra
map to go through both the columns and the rows:

1 -- Work: O(n2)
2 -- Span: O(1)
3 let matmul_scalar [m][n] (xss: [m][n]f32) (k: f32): *[m][n]f32 =
4 map (map (*k)) xss

This implementation can also be easily modified to another operator if we would like to subtract
the matrix with a scalar factor instead of multiplying.

The last function that is important to explain before presenting the different linear algebraic al-
gorithms is the identity function that constructs an n × n identity matrix. An identity matrix is
a square matrix with ones on the diagonal and zeros everywhere else.
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1 -- Work: O(n2)
2 -- Span: O(1)
3 let identity (n: i64): [n][n]f32 =
4 tabulate_2d n n (\i j -> if j == i then 1f32 else 0f32)

Here we use tabulate_2d n n to construct a n × n matrix from a function, which sets the
entry to 1 if we are on the diagonal (i == j), otherwise it is 0. tabulate_2d n n is equivalent
to two nested maps, both with (iota n) as argument.

All the operations presented above, and small modifications will be used throughout the next
chapters when we present the implementation and design of our linear algebra programs. More
specific subroutines used in the algorithms will be presented in the chapters.



Chapter 3

QR Decomposition

QR Decomposition is the decomposition of an m× n matrix, with m ≥ n, that factors a matrix
A into a product of A = QR. Here Q is an m×m orthogonal matrix, and R is an m×n upper
triangular matrix. 

× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

A

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

Q


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×


︸ ︷︷ ︸

R

(3.1)

QR Decomposition is often used for solving linear least-squares problems and as an efficient
tool to compute eigenvalues and eigenvectors. There are numerous methods to compute the QR
Decomposition, and the most famous ones consist of the Gram-Schmidt process, Householder
transformations, and Givens rotations. We implemented both the Gram-Schmidt process and the
Householder transformations algorithms for this project. We decided to omit Givens rotation
since we discovered that it is not well suited for GPU optimization and does not scale well with
large matrix sizes [AR09].

Our primary focus was mainly on the Householder transformation method since we discovered
that it was possible to improve it into a blocked version. The blocked version should work well
on GPUs to improve the performance. The Gram-Schmidt process is also quite numerical un-
stable since the resulting Q can be far from orthogonal, which does not make it as attractive.
We will describe this more in detail later on. However, Gram-Schmidt should still yield faster
results than the Householder reflection method and can still be useful for some applications
[GL13a][Ste98a]. The following chapter will describe the theory and the implementation of the
three QR Decomposition algorithms: Gram-Schmidt, standard Householder QR, and blocked
Householder QR. In the end, we compare them to each other and the Python libraries: NumPy
and scikit-learn.

11
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3.1 The Gram-Schmidt Process Algorithm

The Gram-Schmidt process computes the orthogonal m × m matrix Q, which we can use to
compute the upper triangular matrix R. We do this from the simple matrix multiplication:
R = QTA, where QT denotes the transpose of Q.

The Gram-Schmidt process consists of reconstructing the column vectors of the input matrix A
into orthonormal vectors that we can use to define our orthogonal matrix Q. We do this by trans-
forming the columns into orthogonal vectors and then transforming the orthogonal vectors into
orthonormal vectors to get our final orthogonal matrix Q. We have a set of linearly independent
column vectors {~a1,~a2, ...,~ak} that is a basis for our input matrix A. As mentioned, the goal is
then to use the Gram-Schmidt process to construct an orthonormal basis of A consisting of the
column vectors {~q1, ~q2, ..., ~qk} corresponding to the orthogonal matrix Q [Ste98b]. To construct
the first orthonormal column vector ~q1, we make the first column of A to a unit vector:

~q1 =
~a1
|| ~a1||

(3.2)

For the next column vector ~q2, we have to calculate the projection of ~a2 onto ~q1 and subtract
it from projection ~a2, which gives us the orthogonal vector. We can then make this vector
orthonormal by making it a unit vector. The projection of ~a2 onto ~q1 is equal to:

proj~q1(~a2) =
~a2 · ~q1
~q1 · ~q1

~q1 = (~qT1 ~a2)~q1 (3.3)

We can now compute the column vector ~q2 to:

~q′2 = ~a2 − proj~q1(~a2) ~q2 =
~q′2

||~q′2||
(3.4)

For the next column vector ~q3, we need to calculate the projection of ~a3 onto ~q1 and ~q2, and then
subtract it from ~a3:

~q′3 = ~a3 − (proj~q1(~a3) + proj~q2(~a3)) ~q3 =
~q′3

||~q′3||
(3.5)

We need to do this for every column vector in matrix A which gives us the following formula to
compute every orthonormal vector qk:

~q′k = ~ak −
k−1∑
j=1

proj~qj (~ak) ~qk =
~q′k

||~q′k||
(3.6)

The orthogonal matrix Q is then equal to {~q1, ~q2, ..., ~qk}
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Design and implementation

As formerly mentioned, the Gram-Schmidt process is numerically unstable due to rounding er-
rors when calculating the projection, which means vectors often do not get entirely orthogonal.
However, it is essential to mention a modified Gram-Schmidt process exists that uses an extra
for-loop to stabilize the algorithm and produce smaller errors. This modified algorithm is still not
as stable as the Householder method, so we decided to implement the classical Gram-Schmidt
and focus on the blocked version of Householder transformations.

As shown in the theory section above, we need to reconstruct the column vectors of A into being
orthonormal to define our orthogonal matrix Q. As shown in (3.2), we simply need to calculate
the unit vector for the first column. After this, we loop through the rest of the columns in A
and compute the projection. From the projection, we then calculate the reciprocal unit vector as
shown in (3.6).

The most trivial part of the implementation was to slice the columns of the matrices correctly.
Due to convenience, we decided to slice the column vectors ak of A as 1D arrays, which also
meant we needed to create small operations to multiply a vector and a matrix element-wise to
compute the vector projections. The entire implementation takes an input array A of size m× n
where m ≥ n, and uses Gram-Schmidt to construct Q and R:

1 -- Work: O(n3)
2 -- Span: O(n · log(n))
3 let gram_schmidt [m][n] (A: *[m][n]f32): (*[m][n]f32, *[n][n]f32) =
4 let Q = replicate m (replicate n 0f32)
5 let Q[:,0] = vecdiv_scalar A[:,0] (vector_length A[:,0])
6 let Q =
7 loop Q for i in 1..<n do
8 let q = Q[:,:i]
9 let sum_qA = sum_row (matvecmul_col (transpose q) A[:, i])
10 let sum_qAq = sum_row (matvecmul_col q sum_qA)
11 let q’ = vecmin A[:,i] sum_qAq
12 let Q[:,i] = q’
13 let Q[:,i] = vecdiv_scalar Q[:,i] (vector_length Q[:,i])
14 in Q
15 let R = matmul (transpose Q) A
16 in (Q, R)

First, we allocate Q and calculate the first unit vector (3.2); we then loop through the rest of the
columns in A and compute the orthogonal vector in lines 6-9 from the projections. In the end,
we calculate the orthonormal vector in line 11 and put it in the corresponding column for Q.
The function then returns the constructed orthogonal matrix Q and the triangular matrix R.

The vector length function computes ||~v|| =
√
a2 + b2, which we can do efficiently with

reduce and map:
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1 -- Work: O(n)
2 -- Span: O(log(n))
3 let vector_length [n] (xs: [n]f32): f32 =
4 reduce (+) 0f32 (map(\x -> f32.abs(x)**2) xs) |> f32.sqrt

The rest of the functionalities are basic linear algebraic operations, which were all covered in
chapter 2.

3.2 Householder Algorithm

QR Decomposition with householder transformations computes the two matrices Q and R from
a m× n input-matrix A [AR09]. We do this by applying Householder transformations in-place
to our input-matrix A. The following will show how to compute Q and R for the non-blocked
Householder transformation algorithm; later on, we will present the blocked version.

The orthogonal matrix Q is equitable to the dot product of a sequence of Householder transfor-
mation matrices:

Q = (H1 ·H2...Hn−1) (3.7)

We can define the first Householder transformation as the matrix H1 from the first Householder
vector v1:

H1 = I− 2 · v1 · v
T
1

vT1 · v1
(3.8)

v1 is the first Householder vector for the first column vector a1 from our input matrix A, and I
is our m×m identity matrix equal to QTQ. We can calculate v1 from:

v1 = a1 + sign(a11)||a1||e1 (3.9)

Here ||a1|| is the vector length of the first matrix column in A, the sign function is simply an
extraction of the sign of a number, and e1 is the first column of the identity matrix. With the
different Householder transformation matrices: (H1,H2, ...Hn−1), we can compute our upper
triangular matrix R from:

R = (Hn−1...H2H1A) (3.10)

After overwriting the input matrix with the first Householder transformation: H1 ·A, the first
column will consist of zeros below the diagonal. We then move to the next column and one
row down to repeat the process and compute the next Householder transformation H2. We do
this process for all columns repeatedly on the updated input matrix corresponding to R, for the
number of columns in our input matrix until A is triangularized.
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×[
×
×

]××
×
×


︸ ︷︷ ︸

H2H1A

Figure 3.1: In-place update of A with Householder transformations to compute R

Implementation

The standard algorithm to compute QR decomposition with Householder transformations was
reasonably straightforward to implement. We needed to consistently update our input matrix A
with our new Householder matrices to get the upper triangular matrix R. The orthogonal matrix
Q is equal to the product of the computed Householder transformation matrices as in (3.7). The
main design problem for the implementation was to make in-place updates without consuming
variables. We achieved this safely with the uniqueness type to ensure functions and in-place
updates would not consume values instead of using computational time copying matrix slices.
When computing the Householder vectors, we could not circumvent that we needed to use a
copy of the corresponding column in A to calculate the final householder matrix.

For the implementation, we needed a function to compute the Householder vectors v, where we
could simultaneously compute a part of the Householder transformation β = 2

vT v
:

1 -- Work: O(n)
2 -- Span: O(log(n))
3 let house [n] (x: [n]f32): (*[n]f32, f32) =
4 let dot = dotprod x x
5 let v = copy x with [0] = x[0] - (f32.sqrt dot)
6 let dot’ = dot - x[0]**2 + v[0]**2
7 let beta = if dot’ != 0 then 2.0/dot’ else 0
8 in (v, beta)

As seen in the implementation of the house function, we could not omit the copy of column
vector x, since v is the exact same vector. From equation 3.9, we see that e1 is the first column
of the identity matrix. This column will always consist of a vector with the first element as 1 and
0’s below. Hence, the Householder vector v will only differ from the input vector x for the first
element, which means we only need to compute the first element for the Householder vector.
We can construct the Householder vector by updating the first element from the input vector’s
length. β is then computed and divided by two if it is not equal to 0. In the end, we return both
the Householder vector v and β as a tuple.

For the entire algorithm’s implementation, as seen below, we compute the Householder transfor-
mation matrix from the Householder vector v and β for the corresponding column in matrix A
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as shown in figure 3.1. We go through every column in A and make in-place updates for Q and
A with a for-loop. In the end, we return the matrices in a tuple, where A is the upper triangular
matrix R.

1 -- Work: O(n3)
2 -- Span: O(n · log(n))
3 let householder [m][n] (A: *[m][n]f32): ([m][m]f32, [m][n]f32) =
4 let Q = identity m
5 let (Q,A) =
6 loop (Q,A) for k in 0..<(n) do
7 let (v, B) = house A[k:m,k]
8 let vvT = outer v v
9 let BvvT = matmul_scalar vvT B
10 let BvvTA = matmul BvvT A[k:m,k:n]
11 let BQ = matmul_scalar Q[0:m,k:m] B
12 let BQvvT = matmul BQ vvT
13 let A[k:m,k:n] = matsub A[k:m,k:n] BvvTA
14 let Q[0:m,k:m] = matsub Q[0:m,k:m] BQvvT
15 in (Q, A)
16 in (Q,A)

The for-loop in lines 4-13 runs for the number of columns n in the input matrix A. As formerly
described, we need to go the next column and one row down for every iteration; we do this with
the slice in line 5. Lines 6-12 is the computation of the Householder transformation matrix and
in-place updates of both Q and A. We only update the required parts of the matrices to make as
few computations as possible.

Overall the implementation is not very parallel but mostly consists of parallel matrix and vector
operations, which were described briefly in chapter 2. We could probably have implemented this
standard Householder algorithm with more parallelism, but it was not our focus since we mainly
used it as a stepping stone for the blocked version.

3.3 Blocked Householder Algorithm

The solution to QR-Decomposition presented above is simple and mainly consists of matrix-
vector multiplications, which suits parallel functional programming well. However, it is not
well optimized, and the amount of computation per memory element from global memory is
relatively low [AR09]. It is possible to improve the performance by applying more than one
Householder transformation matrix at a time. This algorithm is called blocked Householder QR
Decomposition, which the next section will describe.

Instead of applying Householder transformations as single column updates to the identity matrix
I as in the non-blocked version above, it is possible to partition the input matrix A into m × r
blocks A =

[
A1 A2 A3

]
[GL13a]. The block-size r is chosen based on the problem size

that conducts the best performance for the given input matrix.
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A =


× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×

 =



× ×
× ×
× ×
× ×
× ×



× ×
× ×
× ×
× ×
× ×



× ×
× ×
× ×
× ×
× ×




︸ ︷︷ ︸
A=

[
A1 A2 A3

]

(3.11)

Figure 3.2: Matrix is partitioned into blocks, i.e. here block-size r is 2

The goal is then to apply Householder transformations to the first block. Instead of moving on
to apply more Householder reflections to the columns of the remaining blocks as before, we
construct two new matrices. Two m × r matrices Y and W that we can use to represent our
Householder matrices as:

Hwy = H1H2...Hr (3.12)

= H+WYT (3.13)

Both W and Y are computed from our Householder vector v and β from the house function
as presented above. With W and Y, we can now compute the in-place updates of Q and A as:

A = A+YWTA (3.14)

Q = Q+QWYT (3.15)

To summarize: for each block k, we need to compute a total amount of r Householder vectors
and the corresponding β’s and update the current block we are working with to triangularize the
columns with Householder transformation matrices. The W and Y matrices are then computed
from the results to apply Hwy = I+WkY

T
k to the remaining blocks of A and to Q as described

above. Overall this approach will yield an algorithm with more matrix multiplications and fewer
vector multiplications, achieving a better GPU performance.

Design and implementation

The design and implementation of the Block Householder QR in Futhark were inspired by a
research paper on QR Decomposition on GPUs using the CUBLAS library in C++ [AR09]. The
entire implementation in Futhark with all the steps to update Q and A as described above is
shown below:
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1 -- Work: O(n3)
2 -- Span: O(n · log(n))
3 let blocked_householder [m][n] (A: *[m][n]f32) (r: i64):
4 ([m][m]f32, [m][n]f32) =
5 let Q = identity m
6 let (Q,A) =
7 loop (Q,A) for k in 0..<(n/r) do
8 let s = k * r
9 let V = replicate m (replicate r 0f32)
10 let Bs = replicate r 0f32
11 -- Compute Householder vectors, betas and
12 -- tranquilize the block
13 let (Bs, V, A) = loop (Bs, V, A) for j in 0..<r do
14 let u = s + j
15 let (v0, B) = house A[u:,u]
16 let V[u+1:,j] = A[u+1:,u]
17 let V[k * r + j:u + 1, j] = [v0]
18 let v = V[k * r + j:, j]
19 let l1 = m-u
20 let l2 = r-j
21 let BvvT =
22 matmul_scalar (outer v v) B :> [l1][l1]f32
23 let BvvTAk =
24 matmul BvvT (A[u:, u:s+r] :> [l1][l2]f32) :> [l1][l2]f32
25 let A[u:, u:s+r] =
26 matsub (A[u:, u:s+r] :> [l1][l2]f32) BvvTAk
27 let Bs[j] = B
28 in (Bs, V, A)
29
30 -- Initialize and compute columns for the Y and W matrices
31 let Y = replicate r (replicate m 0f32)
32 let W = replicate r (replicate m 0f32)
33 let Y[0] = V[:, 0]
34 let W[0] = vecmul_scalar Y[0] (-Bs[0])
35
36 let (Y, W) = loop (Y, W) for j in 1..<r do
37 let v = V[:, j]
38 let WYTv =
39 matvecmul_row (matmul (transpose W[0:j]) Y[0:j]) v
40 let BWYTv = vecmul_scalar WYTv Bs[j]
41 let mbj = vecmul_scalar v (-Bs[j])
42 let z = map2 (-) mbj BWYTv
43 let Y[j] = v
44 let W[j] = z
45 in (Y, W)
46
47 -- In-place update of Q and A
48 let l = m - s
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49 let YWTA = matmul (matmul (transpose Y) W) A[:, s+r:n]
50 let A[:, s+r:n] = matadd A[:, s+r:n] YWTA
51 let WY = (matmul (transpose W[:, s:]) Y[:, s:]) :> [l][l]f32
52 let Q_block = (Q[:, s:]) :> *[m][l]f32
53 let QWY = matmul Q_block WY
54 let Q[:, s:] = matadd Q_block QWY
55 in (Q,A)
56 in (Q,A)

Since the blocked QR Decomposition algorithm works with different matrix sizes depending
on the loop, Futhark required us to manually coerce matrix blocks to the specified size to per-
form matrix operations without getting errors. Our initial approach was to use the same house
function for the first loop, as shown for the standard Householder above. However, as we were
already allocating space for the matrix V on line 7, which should contain the Householder vec-
tors to calculate W and Y, we only needed to compute the first element of the Householder
vector and place it in the matrix with the rest of the column as seen in line 15-16. The modified
house function, which only returns two floats, is shown below:

1 let house [d] (x: [d]f32): (f32, f32) =
2 let dot = dotprod x x
3 let v0 = x[0] - (f32.sqrt dot)
4 let dot’ = dot - x[0]**2 + v0**2
5 let beta = if dot’ != 0 then 2.0/dot’ else 0
6 in (v0, beta)

To compute the matrices Y and W in lines 29-43, we decided upon allocating space for them
before computing them. This solution meant we did not need to use concat to add the vectors z
and v to the matrices, which gave a more elegant and faster solution. Our biggest speed-up came
from optimizing our update of the orthogonal matrix Q; with our initial approach, we simply
updated it with the full-size matrices, as described earlier: Q = Q + IWYT . By recognizing
that we only needed to compute parts of the matrix for each iteration, we could save computation
time by only updating the block size instead of the whole matrix.

In this implementation, the block-size r should be chosen based on the problem size that con-
ducts the best performance for the given input matrix. This solution is not very flexible and
requires either knowledge about the matrix and vector computation or much testing with bench-
marking. A more flexible approach to matrix blocking exists, which uses a divide-and-conquer
approach that should be effective for parallel computation [GL13a]. However, we did not im-
plement this approach since it is recursive, making it complicated to implement in Futhark.

We can easily implement a batched version of the blocked Householder transformations algo-
rithms with the the use of map. We map over a 3D array containing our 2D input arrays for the
algorithm. We can use the same approach as shown below for both the Gram-Schmidt process
and the standard Householder algorithm:
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1 -- Work: O(m · n3)
2 -- Span: O(n · log(n))
3 let qr_batched [m][n] (xsss: [m][n][n]f32) (r:i67)
4 : *[m]([n][n]f32, [n][n]f32) =
5 map (\xss -> block_householder (copy xss) r) xsss

Batched algorithms for linear algebra consists of computing a large number of small indepen-
dent matrices. Batched linear algebra algorithms are not practical for this project but can be very
useful for various important computer science fields. Some of these include, e.g., deep learning,
data mining, and image processing [Azz17]. To name some: Batched versions of QR Decompo-
sition is, for example, used in radar processing [MK12], and a batched version of Cholesky, as
we will present in chapter 5, can be used in computer vision and hyperspectral anomaly detection
[Jos14].

3.4 Benchmarks

This section will compare the performance of our three implemented QR algorithms: The Gram-
Schmidt process, Householder transformations, and the blocked Householder transformations
with QR Decomposition functions from NumPy and scikit-learn. Both NumPy and scikit-learn
make use of the blocked Householder version from LAPACK, which is fully parallel and makes
use of all CPU cores while running. The first table only shows the blocked version of House-
holder to demonstrate how the block-size r affects performance.

All the Futhark benchmarks were conducted using futhark bench1 with CUDA as backend
on Futhark version 0.19, on datasets generated with futhark dataset2. The Python bench-
marks were conducted 10 times in a for-loop where the average run time is shown in the tables
below. The computer used has an an Intel(R) Core(TM) i5-8600K CPU @ 3.60GHz, and an
NVIDIA GeForce GTX 1070 Ti graphics card with 8GB VRAM.

1https://futhark.readthedocs.io/en/latest/man/futhark-bench.html
2https://futhark.readthedocs.io/en/latest/man/futhark-dataset.html

https://futhark.readthedocs.io/en/latest/man/futhark-bench.html
https://futhark.readthedocs.io/en/latest/man/futhark-dataset.html
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Matrix size
Library Futhark

Blocked Householder
2000x2000, r=20 3659.1ms
2000x2000, r=50 3242,3ms
3000x1500, r=30 6150.9ms
3000x1500, r=60 5732.8ms
3000x3000, r=60 10325.5ms
3000x3000, r=20 12201ms
4000x4000, r=50 25058.6ms

4000x4000, r=100 28720.4ms
6000x6000, r=200 157632.4ms

Table 3.1: Benchmarks of blocked Householder, showing how block size r affects performance

Matrix size
Library Futhark

HH
Futhark
B-HH

Futhark
GS NumPy SciPy Speedup

1000x1000 1642.36ms 492.3 129.2ms 38.8ms 29.7ms 0.23x
3000x1500 78175.92ms 5732.8 638.5ms 342.6ms 389.6ms 0.61x
3000x3000 120826.238ms 12201.6ms 2354.3ms 1173.2ms 591.1ms 0.25x
4000x2000 - 15865.1ms 5292.7ms 2722.6ms 1497.6ms 0.28x
5000x5000 - 59938.8ms 11602.5ms 4968.2ms 2707.1ms 0.23x
6000x6000 - 157632.4ms 18756.8ms 8627.7ms 4377.3ms 0.23x

Table 3.2: Benchmark results of QR algorithms. Best Futhark performance is marked with bold
HH = Standard Householder, B-HH = Blocked Householder, GS = Gram-Schmidt process

Speedup is relative, calculated by SciPy time
Futhark GS time

Matrix size
Library Futhark

HH
Futhark
B-HH

Futhark
GS NumPy SciPy Speedup

10k, 10x10 arrays 9.2ms 8.6ms 3.4ms 190.2ms 189.7ms 55.79x
100k, 10x10 arrays 67.2ms 72.5ms 32.8ms 1127.6ms 1098.6ms 33.5x
500k, 10x10 arrays 328.9ms 358.9ms 160.9ms 5266.7ms 5061.3ms 31.46x
1000k, 10x10 arrays 663.7ms 719.0ms 321.9ms 10603.8ms 10167.3ms 31.59x

Table 3.3: Benchmark results of batched algorithms. Best Futhark performance is marked with bold
HH = Standard Householder, B-HH = Blocked Householder, GS = Gram-Schmidt process

Speedup is relative, calculated by SciPy time
Futhark GS time

From the results, we sadly see that the different Futhark implementations of QR decompositions
are relatively slow compared to the Python libraries. The relatively unstable Gram-Schmidt im-
plementation yields the best performance as expected due to a high level of parallelism. The
standard Householder version is very slow, and due to the long run times, we did not benchmark
it on arrays larger than 3000 × 3000. We clearly see that the Blocked version of Householder
improved the performance a lot. However, we still expected much better performance from
the blocked version after looking at the results from a similar implementation in C++ with the
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CUBLAS library [AR09]. The results might be related to our implementation not being as op-
timized as it could possibly be. However, we think the slow results of the blocked Householder
version in Futhark could be related to Futhark compiler optimizations.

The batched versions of the algorithms that calculate the QR Decomposition for many small
matrices of equal size are all much faster than the Python libraries. This is due to the power
of the heavily optimizing Futhark compiler that can compile all of the QR function calls to
be computed in parallel and it will take the contents of the QR-function into account when
optimizing. Python, on the other hand, can only do naive parallelization of the QR-function from
LAPACK, which is hand-optimized for non-batched programs. We implemented the batched-
QR in Python with pool.map from multiprocessing3 to make sure we were using all
CPU cores to make as fair of a comparison as possible.

3https://docs.python.org/3/library/multiprocessing.html

https://docs.python.org/3/library/multiprocessing.html


Chapter 4

Non-negative matrix factorization

Non-Negative matrix factorization (NMF), also often called non-negative matrix approximation,
is an algorithm that projects data into lower-dimensional spaces. It does this by effectively
reducing the number of features while retaining the basis information necessary to reconstruct
original data. It decomposes an input matrix with non-negative components into the product of
two non-negative matrices with lower dimensions. NMF is commonly used in image processing,
text mining, bioinformatics, physics, recommendation systems for movies or online shopping,
and much more.

4.1 The algorithm

Given the input matrix A ∈ Rm×n
+ containing only non-negative coefficients, and a specified

positive integer 1 ≤ k ≤ min(m,n), NMF produces two matrices W ∈ Rm×k
+ and H ∈ Rk×n

+

which also consist of non-negative coefficients. The product of W and H approximates A:

A ≈WH

× × ×
× × ×
× × ×


︸ ︷︷ ︸

A

≈

× ×
× ×
× ×


︸ ︷︷ ︸

W

×
[
× × ×
× × ×

]
︸ ︷︷ ︸

H

(4.1)

We chose the specified integer k so the approximation WH is a compressed form of the origi-
nal data. Each column in A consists of n samples with m features, as an example, if we have
m rows representing pixels and n columns each representing images of faces. NMF will then
produce matrices the W and H, where columns of W are images and H consists of weights in
order to reconstruct an approximation of a given face [Dav02].

There exist many different algorithm variants to compute NMF to get a good approximation of
A. One variant is Multiplicative Update Rules (MU), which is simple, and the most commonly
used algorithm for NMF [LR14]. The algorithm consists of updating the matrices W and H

23
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multiple times till either a threshold or a max number of iterations has been reached.

First of all, we need to initialize W and H as being non-negative and update them for each
iteration:

Hij ← Hij
(WTA)ij

(WTWH)ij
(4.2)

Wij ←Wij

(AH)Tij
(WHHT )ij

(4.3)

The algorithm computes the updates iteratively till the product of W and H yields a stable
approximation of A or till it reaches the user-specified number of max iterations. To maximize
efficiency for the algorithm, we can use divergence to measure the approximation quality. We
do this with the Frobenius norm, which is the square root of the sum of the absolute squares of
all matrix elements:

||A−WH||2 =
∑
i,j

((A)ij − (WH)ij)
2 (4.4)

By exploring the NMF source code from the well-known Python library Scikit-learn, we saw that
they used the same divergence method. i.e., checking the Frobenius norm every tenth iteration
of the loop, which we could use as inspiration for our implementation in Futhark.

4.2 Design and implementation

We decided to implement NMF with the multiplicative update rule and Frobenius norm due to
its simplicity and speed of computational cost per iteration. The multiplicative update rule also
relies heavily on matrix multiplication, which is a significant advantage when we want to utilize
parallel programming speed in Futhark.

To initialize both W and H, we made use of the random number generation library cpprandom1

for Futhark to generate random integers from a normal distribution. With the usage of the nor-
mal distribution, several RNG states are computed and split into different states to generate a
random 2D array. This gives us the following implementation:

1https://github.com/diku-dk/cpprandom

https://github.com/diku-dk/cpprandom
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1 -- Work: O(n)
2 -- Span: O(1)
3 let stream (n: i64) (low: f32) (high: f32) =
4 let rng_state = rng_engine.rng_from_seed [123]
5 let rng_states = rng_engine.split_rng n rng_state
6 let (_,rng) = unzip (map (norm_dist.rand {mean = low,
7 stddev = high})
8 rng_states)
9 in rng
10
11 -- Work: O(n ·m)
12 -- Span: O(1)
13 let stream2d (m: i64) (n: i64) (low: f32) (high: f32) =
14 unflatten m n (stream (n * m) low high)
15
16 -- Work: O(m · k+ n · k)
17 -- Span: O(1)
18 let random_init (m: i64) (n: i64) (k: i64)
19 : (*[m][k]f32, *[k][n]f32) =
20 let W = stream2d m k 1 2
21 let H = stream2d k n 1 2
22 in (W, H)

In lines 5-9, we generate a random state from the seed [123] and then use split_rng to split
it into n states to generate a random 1D array. We generate a random number from a normal
distribution with map for each of these rng states and then return the random 1D array in the end.
For each of these rng states, we generate a random number from a normal distribution with
map and then return the random 1D array in the end. We then transform the 1D array into a 2D
array with the function stream2dwhich splits it into am×n array with the use of unflatten.

To check for divergence, we needed to efficiently compute the Frobenius norm since we had to
compute it for every tenth iteration. As seen in (4.4) we can do this by looping through the ma-
trix and calculating ||aij ||2 for every element. Afterward, we add every element together using
reduce, and then return the square-root from the sum.

In our implementation of the Frobenius norm, we can take advantage of the efficiency of a nested
map in Futhark. We use it here to calculate the absolute value for every element in the matrix
and then use reduce to sum the elements together.

1 -- Work: O(n ·m)
2 -- Span: O(log(n) ·O(log(m))
3 let frob_norm [m][n] (xss: [m][n]f32): f32 =
4 let abs_matrix = map(map (\x -> f32.abs(x)**2)) xss
5 let matrix_sum =
6 reduce (+) 0f32 (map(\xs -> reduce (+) 0f32 xs) abs_matrix)
7 in matrix_sum |> f32.sqrt
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As described above, we compute the absolute square matrix in line 2 by a nested map going
through each row in the matrix, with this summing the matrix row-wise; afterward, we compute
the square root in line 2-3.

Initially, we implemented NMF without divergence, which was a straightforward solution, com-
puted by updating W and H from (4.2) and (4.3) in a for-loop running until we reached the
specified max number of iterations. However, we added divergence for a more tenable solution,
inspired by the NMF source-code from scikit-learn2. W and H have been initialized randomly
from a normal distribution, and for better divergence, we scale by the average mean of the input
matrix.

1 -- Work: O(m · n)
2 -- Span: O(log(m) · log(n))
3 let random_init [m][n] (A: [m][n]f32) (k: i64)
4 : (*[m][k]f32, *[k][n]f32) =
5 let avg = f32.sqrt (matmean A / f32.i64(k))
6 let W = matmul_scalar (stream2d m k 0 1) avg
7 let H = matmul_scalar (stream2d k n 0 1) avg
8 let W_abs = map(map (\x -> f32.abs(x))) W
9 let H_abs = map(map (\x -> f32.abs(x))) H
10 in (W_abs, H_abs)

Here stream2d is the same function as shown earlier, and the function matmean in line 2 is
a simple calculation of the matrix mean, implemented as shown below:

1 -- Work: O(m · n)
2 -- Span: O(log(m) · log(n))
3 let matmean [m][n] (xss: [m][n]f32): f32 =
4 reduce (+) 0 (map (\xs -> reduce (+) 0 xs) xss) / f32.i64(m*n)

First, we calculate the absolute value for each element in the matrices before we return them
to make sure they are non-negative as required. For divergence, we now needed to check if
either the maximum number of iterations has been reached or if the matrices have diverged. We
achieved this using a while-loop and a boolean indicating whether the while-loop should stop
due to divergence or keep iterating. The most critical part of the development was to ensure di-
vergence was done at the correct time and still be efficient. Only checking divergence for every
tenth iteration granted substantially fewer computations. We could possibly scale this up even
more due to working with large matrices - which does not diverge as fast as smaller matrices.
The entire implementation of the NMF algorithm with the multiplicative update rule and Frobe-
nius norm as divergence method is shown below:

2https://github.com/scikit-learn/scikit-learn/blob/42aff4e2e/scikit-learn/
decomposition/_nmf.py#L1096

https://github.com/scikit-learn/scikit-learn/blob/42aff4e2e/scikit-learn/decomposition/_nmf.py#L1096
https://github.com/scikit-learn/scikit-learn/blob/42aff4e2e/scikit-learn/decomposition/_nmf.py#L1096
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1 -- Work: O(l · n3) where l is loop iterations
2 -- Span: O(l · log(n))
3 let nmf [m][n] (A: [m][n]f32)
4 (k: i64)
5 (max_iter: i64)
6 (tol: f32)
7 : ([m][k]f32, [k][n]f32, i64) =
8 let (W, H) = random_init A k
9 let init_norm = frob_norm(matsub A (matmul W H))
10 let prev_norm = init_norm
11 let n_iter = 0
12 let diverged = false
13 let curr_norm = 0.0
14 let (W, H, n_iter, _, _, _) =
15 loop (W, H, n_iter, prev_norm, curr_norm, diverged)
16 while ((n_iter < max_iter) && !diverged) do
17
18 -- Update H
19 let W_TA = matmul (transpose W) A
20 let W_TWH = matmul (transpose W) (matmul W H)
21 let H_update = matdiv_entrywise W_TA W_TWH
22 let H = matmul_entrywise H H_update
23
24 -- Update W
25 let AH_T = matmul A (transpose H)
26 let WHH_T = matmul W (matmul H (transpose H))
27 let W_update = matdiv_entrywise AH_T WHH_T
28 let W = matmul_entrywise W W_update
29
30 -- Check for divergence
31 in if tol > 0 && n_iter % 10 == 0 then
32 let curr_norm = frob_norm(matsub A (matmul W H))
33 in if (prev_norm - curr_norm) / init_norm < tol then
34 let diverged = true
35 in (W, H, n_iter, prev_norm, curr_norm, diverged)
36 else
37 let prev_norm = curr_norm
38 in (W, H, n_iter+1, prev_norm, curr_norm, diverged)
39 else
40 (W, H, n_iter+1, prev_norm, curr_norm, diverged)
41 in (W, H, n_iter)

The implementation consists of two parts, updating H and W (line 16-26) and checking for
divergence every tenth iteration (line 28-37). The functions takes a total of four parameters: the
input matrix A, number of components k, maximum number of iterations before stopping the
loop max iter, and the tolerance for divergence tol.

The update of H and W is based on the equations (4.3) and (4.2), which is efficient since
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it mostly consists of matrix multiplication, and simple matrix operations. For divergence we
initialize the Frobenius norm with the frob-norm function from the input matrix and the ran-
domly initialized matrices W and H from the function random init as shown and described
above.

With the variable prev-norm we check whether the current Frobenius Norm of the matrices
has diverged, i.e., if it is below the specified tolerance as seen in line 31. If the matrices have
not diverged, we update the previous matrix norm as the current norm for the next divergence
check. The function returns the matrices W, H and the integer n iter. n iter contains
useful information regarding when the solution was accepted.

Implementing the Non-Negative Matrix Factorization algorithm without divergence was straight-
forward to implement in the Futhark programming model. However, it did not feel natural to
implement a divergence check in the Futhark language. This was mainly due to the loop syntax
requiring loop parameters to be returned in a tuple for every if, else statement. Futhark also
does not support breaking a loop, which would have been convenient for divergence. As a result
of this, we needed to use a while-loop and a boolean to identify when the algorithm diverged as
explained above.

Finally a batched version of NMF can easily be achieved in Futhark with the use of map as seen
below:

1 -- Work: O(l ·m · n3)
2 -- Span: O(l · log(n))
3 let nmf_batched [m][n] (xsss: [m][n][n]f32) (k: i64)
4 (max_iter: i64) (tol: f32)
5 : *[m]([n][k]f32, *[k][n]f32, i64) =
6 map (\xss -> nmf xss k max_iter tol) xsss

4.3 Benchmarks

This section compares the performance of the implemented Futhark NMF function’s perfor-
mance with the NMF function from scikit-learn. We compared the two algorithms with different
input parameters, testing both large arrays with many components and smaller arrays with a
smaller number of components. Both algorithms are benchmarked with and without divergence
to check if this had any significant performance difference.

The scikit-learn NMF function is designed with different solvers, divergence, and initialization
methods. We used both the same solver, initialization, and divergence method for both Futhark
and scikit-learn to make the comparison fair and viable for the following benchmarks. Most of
the Futhark implementation of NMF consists of matrix multiplication, so we expect it to out-
perform scikit-learn due to the parallelism in Futhark.
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All the Futhark benchmarks were conducted using futhark bench3 with CUDA as backend
on Futhark version 0.19, on datasets generated with futhark dataset4. The Python bench-
marks were conducted 10 times in a for-loop where the average run time is shown in the tables
below. The computer used has an an Intel(R) Core(TM) i5-8600K CPU @ 3.60GHz, and an
NVIDIA GeForce GTX 1070 Ti graphics card with 8GB VRAM.

10 components, 0 tolerance, 500 max iterations

Matrix size
Library

Futhark scikit-learn Speedup

1000x1000 502.3ms 265.8ms 0.53x
3000x3000 2800.6ms 2942.3ms 1.05x
5000x5000 4869.5ms 8364.5ms 1.71x
7000x7000 5951.02ms 16620.7ms 2.79x

Table 4.1: NMF Results with 10 components, no divergence and 500 max iterations
Speedup is relative, calculated by: scikit−learn time

Futhark time

40 components, 0.001 tolerance, 500 max iterations

Matrix size
Library

Futhark scikit-learn Speedup

1000x1000 93.8ms 182.9ms 1.95x
3000x3000 299.9ms 692.4ms 2.31x
5000x5000 599.1ms 1442.2ms 2.41x
7000x7000 961.4ms 2305.4ms 2.40x

10000x10000 1066.2ms 4805.2ms 4.51x

Table 4.2: NMF Results with 40 components, 0.001 divergence tolerance and 500 max iterations
Speedup is relative, calculated by: scikit−learn time

Futhark time

500 components, 0.001 tolerance, 500 max iterations

Matrix size
Library

Futhark scikit-learn Speedup

1000x1000 1778.8ms 2859.4ms 1.61x
3000x3000 11784.7ms 13798.4ms 1.17x
5000x5000 30418.1ms 32709.2ms 1.08x
7000x7000 56262.6ms 66353.8ms 1.18x

Table 4.3: NMF Results with 500 components, 0.001 tolerance and 500 max iterations
Speedup is relative, calculated by: scikit−learn time

Futhark time

3https://futhark.readthedocs.io/en/latest/man/futhark-bench.html
4https://futhark.readthedocs.io/en/latest/man/futhark-dataset.html

https://futhark.readthedocs.io/en/latest/man/futhark-bench.html
https://futhark.readthedocs.io/en/latest/man/futhark-dataset.html
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2 components, 0.001 tolerance, 300 max iterations

Matrix size
Library

Futhark scikit-learn Speedup

10k, 10x10 arrays 43.7ms 3433.1ms 78.56x
100k, 10x10 arrays 359.1ms 33682.4ms 95.7x
100k, 10x10 arrays 1686.0ms - -

1000k, 10x10 arrays 3353.1ms - -

Table 4.4: Batched NMF results with 2 components, 0.001 tolerance and 300 max iterations
Speedup is relative, calculated by: scikit−learn time

Futhark time

The benchmarks results show that scikit-learn is a little faster for smaller size arrays. However,
for 3000×3000 matrices and above, Futhark is significantly faster than scikit-learn. We expected
this due to parallelism and matrix multiplication. Futhark is also way faster for the batched
NMF than a multi-threaded batched NMF function in scikit-learn; we also discussed the reasons
behind this batched QR function in section 3.4. The benchmarks for scikit-learn with more than
100k, 10x10 arrays have been omitted since they would take a lot of time to run.



Chapter 5

Cholesky Decomposition

A Cholesky decomposition is the decomposition of a Hermitian positive-definite matrix A in
the form of:

A = LL∗ (5.1)

L is a lower triangular matrix, and A is a Hermitian matrix meaning it is equal to its own
conjugate transpose. Positive-definite denotes that the scalar zTAz is positive for any non-zero
column vector z. If A only contains real numbers, which is most common, the decomposition
can be written as:

A = LLT =

l11 0 0
l21 l22 0
l31 l32 l33

l11 l21 l31
0 l22 l32
0 0 l33

 (5.2)

From a first glance, one may think that these Hermitian positive-definite matrices rarely emerge
in real-world uses, but this is not the case. It can be used in linear least squares, Kalman filters,
and for matrix inversion. Cholesky has a lot in common with LU-decomposition, but Cholesky
is said to be roughly two times faster.[Pre92]

5.1 The algorithm

There are two variations of this algorithm named Cholesky–Banachiewicz, and Cholesky–Crout.
Cholesky–Banachiewicz proceeds row by row, whereas Cholesky–Crout does it column by col-
umn. We chose Cholesky–Crout for our implementation since its access pattern seemed better
suited for parallel computing.[Rus14] The goal of the algorithm is to achieve:

L =

 √a11 0 0

a21/l11
√
a22 − l221 0

a31/l11 (a32 − l31l21)/l22
√
a33 − l231 − l232

 (5.3)

31



CHAPTER 5. CHOLESKY DECOMPOSITION 32

We can generally express this with the following formulas:

ljj =

√√√√ajj −
j−1∑
k=1

l2jk (5.4)

lij =
1

ljj
(aij

j 1∑
k=1

likljk) for i > j (5.5)

5.2 Design and implementation

For a simple implementation of Cholesky, we need a function that zeros out the elements above
the diagonal:

1 -- Work: O(n2)
2 -- Span: O(1)
3 let tril [n] (A: [n][n]f32): *[n][n]f32 =
4 tabulate_2d n n (\i j -> if j <= i then A[i,j] else 0.0)

As formerly mentioned, we chose to implement the variant of Cholesky that proceeds column
by column. For every iteration of the for-loop below, the diagonal element becomes its square
root. Then the rest of the column is divided by this number. Note that this can not result in
division by zero if the input matrix is Hermitian and positive definite. Then the outer product of
the last part of the column is calculated and subtracted from the remaining rows, as seen in the
implementation below:

1 -- Work: O(n3)
2 -- Span: O(n)
3 let cho [n] (A: *[n][n]f32): [n][n]f32 =
4 tril <| loop A for j in 0..<n do
5 let k = n - j - 1
6 let A[j, j] = f32.sqrt A[j,j]
7 let A[j+1:,j] = map (/A[j,j]) A[j+1:n,j]
8 let v = A[j+1:n,j] :> *[k]f32
9 let op = outer v v :> [k][k]f32
10 let A[j+1:n,j+1:n] = matsub (A[j+1:n,j+1:n] :> [k][k]f32) op
11 in A

It was immediately apparent that the result of this algorithm only depends on the lower trian-
gular part of the matrix, so with the implementation above, we are essentially doing double the
work. We had the idea to convert the algorithm into a version that does all the computation on a
1D array only containing the lower triangular elements of the matrix.

We use the following function to find the indices of the lower triangular elements of the matrix
with dimensions n × n. Since our algorithm mostly operates on the columns, this function re-
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turns the indices in column order starting from the left. As an example, if n = 2, this function
returns ”[(0,0), (1,0), (1,1)]”. These indices are of type i16 since it offered a very good improve-
ment in terms of memory usage as well as run-time as opposed to using i64. However, this also
limits the size of matrices in our Cholesky implementation to be 32767 × 32767 at max. This
is fine for most modern GPU’s because you will run out of memory way before reaching this
threshold. This function’s span can be improved to O(1) with the use of floating-point math, but
this was not needed since this function is only called once in our flat Cholesky implementation.

1 -- Work: O(n)
2 -- Span: O(log(n))
3 let tril_indices (n: i64): *[](i16, i16) =
4 tabulate (n * n) (\x ->
5 let i = i16.i64 (x / n)
6 let j = i16.i64 (x % n)
7 in if j >= i then (j, i) else (-1i16, -1i16)
8 ) |> filter (\ (x, _) -> x != -1)

We can use the indices returned from the above function to compute the lower triangular of the
outer product. This almost halves the constant factors of computing the outer product, resulting
in much better performance for larger matrices.

1 -- Work: O(n2) where n is the length of v
2 -- Span: O(1)
3 let low_outer (v: []f32) (ti: [](i16, i16)): *[]f32 =
4 map (\ x ->
5 let (i, j) = x
6 in #[unsafe] v[i] * v[j]
7 ) ti

With the functions above, we could implement flat Cholesky. tri num n simply returns the
n’th triangle number, and flat cho returns the lower triangular as a 1D-array.

1 -- Work: O(n3)
2 -- Span: O(n)
3 let flat_cho [n] (A: [n][n]f32): []f32 =
4 -- Convert A to 1D array of lower triangular elements
5 let tril_is = tril_indices n
6 let s = length tril_is
7 let A = map (\(i, j) -> A[i, j]) tril_is
8 let m = tri_num n
9 let A = loop A for j in 0..<n-1 do
10 -- Take the square root of the diagonal element
11 let di = (tri_num n) - (tri_num (n - j))
12 let sdi = f32.sqrt A[di]
13 let A[di] = sdi
14
15 -- Division step
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16 let steps = n - j - 1
17 let start = di + 1
18 let stop = start + steps
19 let A[start:stop] = map (/sdi) A[start:stop]
20
21 -- Elimination step
22 let skip_cols = j + 1
23 let rest = n - skip_cols
24 let k = tri_num rest
25 let outer_is = tril_is[s-k:]
26 let outer_is = map (\(a, b) ->
27 let (c, d) = outer_is[0]
28 in (a - c, b - d)
29 ) outer_is
30 let col = A[start:stop] :> *[steps]f32
31 let outer = (low_outer col outer_is) :> [k]f32
32 let A[m-k:] = map2 (\x y -> x - y) (A[m-k:] :> [k]f32) outer
33 in A
34
35 -- Take the square root of the last element
36 let di = m - 1
37 let A[di] = f32.sqrt A[di]
38 in A

Most people would probably prefer to have the lower triangular returned as a matrix instead of
a 1D array. Therefore, we have a function that extracts the rows from the array returned from
flat cho and appends zeros:

1 -- Work: O(n3)
2 -- Span: O(n)
3 let cholesky [n] (A:[n][n]f32): [n][n]f32 =
4 let L = flat_cho A
5 in tabulate n (\x ->
6 let tn = tri_num n
7 let start = tn - (tri_num (n - x))
8 let stop = tn - (tri_num (n - x - 1))
9 in replicate n 0 with [x:] = L[start:stop]
10 ) |> transpose

We can easily achieve a batched variant by wrapping the function with a map.

1 -- Work: O(m · n3)
2 -- Span: O(n)
3 let flat_cho_batched [m][n] (xsss: [m][n][n]f32): [m]([]f32) =
4 let tn = tri_num n
5 in map (\xss -> (flat_cho xss) :> [tn]f32) xsss
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5.3 Benchmarks

In this section, we compare the performance of our Cholesky function flat chowith Cholesky
from NumPy and scikit-learn. NumPy and scikit-learn both use the dpotrf subroutine from
LAPACK to compute the Cholesky factorization.

All the Futhark benchmarks were conducted using futhark bench1 with CUDA as backend
on Futhark version 0.19, on datasets generated with futhark dataset2. The Python bench-
marks were conducted 10 times in a for-loop where the average run time is shown in the tables
below. The computer used has an an Intel(R) Core(TM) i5-8600K CPU @ 3.60GHz, and an
NVIDIA GeForce GTX 1070 Ti graphics card with 8GB VRAM.

Matrix size
Library Futhark

Standard Cho
Futhark
Flat Cho NumPy SciPy Speedup

1000x1000 57.3ms 40.98 ms 8.9 ms 6.0 ms 0.15x
3000x3000 996.9ms 539.04 ms 191.5 ms 149.2 ms 0.27x
5000x5000 4486.9ms 2255.17 ms 463.6 ms 409.9 ms 0.18x
7000x7000 11884.7ms 5951.02 ms 1097.3 ms 943.3 ms 0.16x

10000x10000 35393.2ms 17031.33 ms 2586.2 ms 2413.7 ms 0.14x
12000x12000 66157.9ms 29294.83 ms 4185.8 ms 3912.4 ms 0.13x

Table 5.1: Benchmark of Cholesky. Best Futhark performance is marked with bold
Speedup is relative, calculated by: SciPy time

Futhark flat−cho time

Unfortunately, from the results, the Futhark implementation is quite a bit slower than the Python
libraries. It is worth mentioning that dpotrf is fully parallel and makes use of all CPU cores
while running. dpotrf uses a highly optimized blocked variant of the algorithm. We wanted
to implement a blocked-version ourselves, but we eventually had to give up. Most, if not all,
implementations of blocked Cholesky use recursion and are far from trivial to implement in
Futhark or any other language for that matter. We believe that the reason our implementation is
not as fast or faster than the Python libraries is likely because we do not apply the same number
of highly sophisticated optimizations as LAPACK. We are unsure why the relative difference
gets larger for larger matrices; we think this could be related to compiler optimizations.

One huge benefit of having a Cholesky implementation in Futhark is that we can easily make
a batched version that calculates the Cholesky factorization of many small matrices of equal
size efficiently. Despite utilizing pool.map from multiprocessing3 for a batched Python
implementation, Futhark is much faster, as seen from the results in the table below:

1https://futhark.readthedocs.io/en/latest/man/futhark-bench.html
2https://futhark.readthedocs.io/en/latest/man/futhark-dataset.html
3https://docs.python.org/3/library/multiprocessing.html

https://futhark.readthedocs.io/en/latest/man/futhark-bench.html
https://futhark.readthedocs.io/en/latest/man/futhark-dataset.html
https://docs.python.org/3/library/multiprocessing.html
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Matrix size
Library

Futhark NumPy SciPy Speedup

10k, 10x10 arrays 0.7ms 92.5ms 94.1ms 134.43x
100k, 10x10 arrays 7.0ms 656.4ms 635.5ms 90.81x
500k, 10x10 arrays 37.4ms 3200.0ms 3121.3ms 83.45x
1000k, 10x10 arrays 68.8ms 6485.5ms 7034.1ms 102.2x

Table 5.2: Benchmark of batched flat Cholesky.
Speedup is relative, calculated by: SciPy time

Futhark time



Chapter 6

Matrix Determinant

The determinant is a scalar computed by a square n×nmatrix. It is commonly used in calculus,
calculating the inverse of the matrix or solving systems of linear equations. There are many
equivalent ways to compute the determinant, but we focused on three methods: The Cholesky
decomposition method, the Doolittle LU decomposition method, and the Dodgson condensation
method. We decided to implement all three methods since they are all commonly used. Further-
more, we found it interesting not only to analyze and find the quickest method theoretically but
also practically.

6.1 Dodgson condensation method

The Dodgson condensation method is a method to compute the determinants of a square matrix.
Given an n×n matrix, the method computes an (n− 1)× (n− 1) matrix, an (n− 2)× (n− 2)
matrix, and so forth. When the algorithm arrives at a 1×1 matrix, it terminates, with the only
entry in the matrix being the determinant of the original matrix.

Using the Dodgson condensation algorithm to determine the determinant involves three separate
steps:[Abe07]

1. From the input matrix A, create an (n − 1) × (n − 1) matrix B, which consists of the
determinants of every 2× 2 sub-matrix formed from consecutive rows and columns in A.

2. Perform step 1 on the matrix B to make the (n− 2)× (n− 2) matrix C, and divide each
term in C by the corresponding term in the interior of A

3. We let A = B, and B = C. If we have not found a 1 × 1 matrix, repeat step 2 until this
matrix occurs. The only entry in the 1× 1 matrix is the determinant of matrix A.

In step 2, we use the following definition to compute the determinants of the 2× 2 submatrices:

|A| =
[
a b
c d

]
= ad− bc (6.1)

37
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Although this algorithm seems simple and can compute the determinant of any matrix with the
same procedure, it has a significant flaw - the determinant of any interior matrix cannot be 0
because this would resolve in a division with zero. Sometimes, we can solve this problem by
adding an extra step to the algorithm, including row and column exchanges of the input matrix.
Unfortunately, this solution may not always work [LH17].

It is important to mention an variant of the Dodgson algorithm which always yield the correct
solution does exist [LH17]. However, this is a symbolic algorithm that uses symbols as repre-
sentatives for the elements that cause entries in the interior of A to be zeros, and we assessed
this to be outside our project scope.

The Dodgson algorithm still has a remarkable advantage because it gives the opportunity never
to compute a determinant of order greater than two. We decided to implement this algorithm to
compute the determinant since the computation of the 2×2 can be executed in parallel and were
therefore well suited for our project [HM12].

Design and implementation

Our implementation of the Dodgson condensation algorithm is straightforward. Since the size of
the input matrix M decreases for each iteration, we made the function loop between the steps,
m − 1 times. Afterward, the function terminates, returning a single number. The following
shows the implementation of the algorithm:

1 -- Work: O(n3)
2 -- Span: O(n)
3 let det [m] (A: [m][m]f32): f32 =
4 let (A, _) = loop (A, interior) = (A, A) for i < m-1 do
5 let n = length A
6 let s = n - 1
7 let ass = A[:n-1,:n-1] :> [s][s]f32
8 let bss = A[1:n,:n-1] :> [s][s]f32
9 let css = A[:n-1,1:n] :> [s][s]f32
10 let dss = A[1:n,1:n] :> [s][s]f32
11 in if i != 0 then
12 let ess = interior :> [s][s]f32
13 let mat =
14 map5 (map5 (\a b c d e ->
15 (a * d - b * c) / e)) ass bss css dss ess
16 in (mat, A[1:n-1, 1:n-1])
17 else
18 let mat = map4 (map4 (\a b c d ->
19 a * d - b * c)) ass bss css dss
20 in (mat, A[1:n-1, 1:n-1])
21 in A[0, 0]
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Since most of the calculations happen in the second step of the algorithm (finding the determi-
nant of the submatrices and dividing the elements), we wanted to implement this step as parallel
as possible. In lines 6-9, we split the matrix into 4 submatrices; Figure 1 shows how the subma-
trices to a 3× 3 matrix would be.

Figure 6.1: Visualization of the ass, bss, css, dss submatrices in a 3× 3 matrix

This fragmentation made it possible to calculate every determinant parallel to each other using
nested higher-order function map4 or map5 if a division with the interior is needed. We do this
in lines 10-16.

Be aware that our implementation does not handle the situation where the corresponding term in
the interior of A is zero. We do not have any division with zero handlings, which results in our
program returning the not a number value: f32.nan, if we run into this problem.

Because of this, our primitive version only works if no zeros occur in the interior. We did
this to estimate the lower-bound runtime we could expect if we were to implement a stable
version. Since the primitive version’s benchmarks already had poor benchmarking results (See
section 6.4), and the full version only would be worse, we decided to stop further work with this
algorithm and continued with another determinant algorithm.

6.2 Doolittle LU Decomposition method

This method consists of two steps: Computing the lower triangular matrix and the upper trian-
gular matrix using the Doolittle LU Decomposition algorithm and finding the determinant from
these matrices.

The algorithm

The LU Decomposition or Lower-Upper Decomposition factors the matrix A as the product of
a lower triangular matrix L and an upper triangular matrix U, i.e., A = LU. The method is
very similar to Gaussian elimination and often used to repeatedly solve several equations with
the same left-hand side, inverting a matrix or computing the matrix’s determinant. We decided
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to focus on the Doolittle LU Decomposition since this is a simple algorithm with the same pro-
cedure for any matrix size.

To find the LU matrices using the Doolittle Algorithm, we first take an n × n matrix A and
assume that an LU decomposition exists. We now create the LU matrices where the diagonal
elements of L are 1. As an example if A is a 3×3 matrix, we would have the following matrices:a11 a12 a13

a21 a22 a23
a31 a32 a33

 =

 1 0 0
l21 1 0
l31 l32 1

 ·
u11 u12 u13

0 u22 u23
0 0 u33

 (6.2)

To find the values of the elements, we form equations for each of the unknowns in L and U
defined by multiplying the rows in L with the columns in U and equating them to the corre-
sponding element in A.

When we find the LU matrices, the determinant is equal to the U matrix’s diagonal elements
multiplied together.

Keep in mind that LU decomposition is closely related to Gaussian elimination, which is unsta-
ble in its pure form[Rei14]. Computing the LU matrices may, therefore, not always be possible.
To solve this problem, we can compute permutation matrices that meet the following:

PA = LU (6.3)

We can decompose every square matrix in this form, and it makes the decomposition numeri-
cally stable [TB97][Tab17]. However, since our project’s scope did not include the development
of algorithms to be used in practice; we decided only to implement the Doolittle LU decompo-
sition without pivoting.

Implementation and design

The following shows the implementation of the Doolittle LU Decomposition algorithm:

1 -- Work: O(n3)
2 -- Span: O(n)
3 let lu [n] (A: *[n][n]f32) : ([n][n]f32, [n][n]f32) =
4 let L = identity n
5 let (L, A) = loop (L, A) for k in 0..<n do
6 let L[k+1:n, k] = vecdiv_scalar A[k+1:n,k] A[k,k]
7 let A[k+1:n, :] = matsub A[k+1:n, :] (outer upper A[k,:])
8 in(L,A)
9 in (L,A)

In the algorithm’s implementation, we take advantage of the first row in the U matrix being
equivalent to the first row in A; this means that we do not create U from scratch but use A
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instead. L has ones in its diagonal, so we initialize this to an identity matrix with the size equal
to A (line 2).

The function is primarily a loop since the unknowns in the LU matrices are dependent on each
other. We loop k times, where each iteration involves solving the equations to one column in L
and one row in U, starting from the first column in L and the second row in U (Since the first
row in U is equivalent to the first row in A).

The first column in L is only dependent on the first row in U, making it possible to find the
unknowns in this column in the first iteration. This also allows us to find the unknowns in the
second row of U. We now start the next iteration, finding the unknowns in the second column
in L, and so on.

Another benefit of using U = A is that we can gradually remove terms in the equations once we
find them and update A. This makes it possible to calculate unknowns with the same procedure
for each iteration and removes recalculation of terms.

The unknowns in the L matrix is computed column-wise in lines 4-5. Here we divide each ele-
ment below the diagonal in column k with the diagonal element A[k, k].

Finding the unknowns in the U matrix is a bit more complicated. The vector calculated as
upper is multiplied with the k’th in U row to make a new matrix. We now subtract this matrix
from the submatrix A[k + 1 : n, :] and replace it in A.

When the LU is found, the diagonal is extracted from U with map and multiplied together with
reduce to compute the determinant:

1 -- Work: O(n3)
2 -- Span: O(n)
3 let det [n] (A: *[n][n]f32) : f32 =
4 let (_, U) = lu A
5 let diag = map(\i -> U[i,i]) (iota n)
6 in reduce (*) 1.0 diag

Since we do not use LU decomposition with pivoting, nor any element evaluation, we do not
detect any zero division before it happens. Because of this, our function requires specialized
inputs in the form of a positive definite symmetric matrix or a diagonally dominant matrix, to
compute a usable determinant[RLH04]. However, this gave us an idea of how well the version
with pivoting would perform in benchmarks.

6.3 Cholesky Decomposition determinant

This method uses the same two-step procedure as Doolittle LU: Computing the decomposition
matrices using Cholesky decomposition and computing the determinant from these matrices.
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After the Cholesky decomposition has been made and, the L is found, which is included in
chapter 5, the determinant is just the square of the product of the diagonal elements of the
matrix L.

Implementation and design

Since the flat_cho function was the fastest implemented Cholesky Decomposition, we decided
to use it to compute the L matrix for the determinant. The following shows our implementation
for computing the Cholesky Decomposition determinant.

1 -- Work: O(n3)
2 -- Span: O(n)
3 let det [n] (A: [n][n]f32) =
4 let C = flat_cho A
5 let i = tail (iota(n+1))
6 let rev_i = i[::-1]
7 let index = scan (+) 0 rev_i
8 let di = map (\x -> if x == 0 then 0 else index[x-1]) (iota(n))
9 in reduce (*) 1 (map (\x -> C[x]**2) di)

Since the output matrix of flat_cho is a flat 1× n matrix, we needed some way to extract the
diagonal elements. To do this, we create an array with values equal to the diagonal elements’
indexes (line 3-6). We now extract these elements from the flat L matrix, square them, and mul-
tiply them together (line 7).

We can easily achieve a batched variant of the determinant function by wrapping it with a map:

1 -- Work: O(m · n3)
2 -- Span: O(n)
3 let det_cho_batched [m][n] (xsss: [m][n][n]f32): *[m]f32 =
4 map (\xss -> det_cho xss) xsss

6.4 Benchmarks

The table below shows the performance of our three implemented determinant algorithms: The
Dodgson condensation, the Doolittle LU decomposition determinant, and the Cholesky decom-
position determinant. These are all compared to the NumPy slogdet function, which com-
putes the sign and (natural) logarithm an array’s determinant.

All the Futhark benchmarks were conducted using futhark bench1 with CUDA as backend
1https://futhark.readthedocs.io/en/latest/man/futhark-bench.html

https://futhark.readthedocs.io/en/latest/man/futhark-bench.html
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on Futhark version 0.19, on datasets generated with futhark dataset2. The Python bench-
marks were conducted 10 times in a for-loop where the average run time is shown in the tables
below. The computer used has an an Intel(R) Core(TM) i5-8600K CPU @ 3.60GHz, and an
NVIDIA GeForce GTX 1070 Ti graphics card with 8GB VRAM.

Matrix size
Library Futhark

Dodgson-det
Futhark

Doolittle LU-det
Futhark

Cholesky-det NumPy Speedup

1000x1000 35.6ms 35.7ms 44.5ms 11.2ms 0.25x
3000x3000 904.4ms 679.9ms 532.2ms 152.9ms 0.28x
5000x5000 4150.8ms 3035.5ms 2227.1ms 556.8ms 0.25x
7000x7000 11424.9ms 8241.6ms 5921.3ms 1337.0ms 0.23x

10000x10000 33183.0ms 23358.6ms 16962.7ms 3799.3ms 0.22x

Table 6.1: Benchmark results of determinant algorithms. Best Futhark performance is marked with bold
Speedup is relative, calculated by NumPy time

Futhark Cholesky−det time

The above shows that the Futhark implementations are relatively slow compared to the NumPy
version. However, here it is essential to consider the implementation of the NumPy function.
slogdet uses the LAPACK dgetrf implementation of the LU Decomposition, which is
an optimized blocked version of the LU decomposition. The difference between blocked and
unblocked algorithms is very significant when comparing large matrices’ runtime, as seen in
Householder QR. This meant that the slogdet function already had a notable advantage
against our Doolittle- and Cholesky decomposition determinant versions since computing the
decomposition matrices includes most of the calculations. Unfortunately, we did not have time
to work on blocked versions of the determinant algorithms.

We also implemented a batched Cholesky decomposition determinant version, which gave us
much better benchmarking results. Compared to a batched slogdetwith the use of pool.map,
it was possible to reach above 60 times the speedup on every tested input size:

Matrix size
Library Futhark

Batched Cholesky-det
NumPy Speedup

10k, 10x10 arrays 0.8ms 214.2ms 267.75x
100k, 10x10 arrays 7.0ms 542.4ms 77.5x
500k, 10x10 arrays 32.1ms 2295.0ms 71.5x
1000k, 10x10 arrays 64.4ms 4288.0ms 66.5x

Table 6.2: Benchmark results of batched determinant with Cholesky.
Best Futhark performance is marked with bold.
Speedup is relative, calculated by NumPy time

Futhark time

2https://futhark.readthedocs.io/en/latest/man/futhark-dataset.html

https://futhark.readthedocs.io/en/latest/man/futhark-dataset.html
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Solving Linear Systems

One way of expressing linear systems is Ax = b, where A is a matrix of the coefficients, x is
a vector of the unknowns, and b is a vector of the right-hand side. We can compute the solution
to a linear system in numerous different ways. It is possible to compute it by LU decomposi-
tion, Gauss-Jordan elimination, as well as Cholesky if A is positive definite Hermitian. [GL13b]

Solving equations with Gauss-Jordan
Gauss-Jordan simply does a series of elementary row operations to produce a matrix that is in
reduced row-echelon form. This can be performed by ensuring that each pivot has the value 1
and eliminating values above and below the pivots. In our implementation, we perform partial
pivoting. This is the act of exchanging rows to obtain the largest possible pivot - this makes
it less susceptible to round-off errors. This can be expanded to full pivoting, where both rows
and columns are exchanged to obtain the largest possible pivot, but partial pivoting should be
sufficient for our project’s purpose.

Solving equations with LU- and Cholesky factorization
Once we have computed L and U, we can solve for the right-hand side vector b by a two-step
process. First, we solve Ly = b by forward substitution. Finally, we can compute Ux = y
with back substitution. If we compute L has with Cholesky, we can simply transpose it to get U
and follow the same process to solve the linear system.

Matrix inverse
A n× n matrix A is invertible if there exists a matrix B such that:

AB = BA = In (7.1)

B is the inverse of A, which is commonly denoted as A−1. Matrix inverses have many appli-
cations least squares regression, 3D transformations, etc. We can compute the matrix inverse by
solving the linear system AX = I, for example:
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a11 a12 a13 1 0 0
a21 a22 a23 0 1 0
a31 a32 a33 0 0 1

 −→
1 0 0 x11 x12 x13
0 1 0 x21 x22 x23
0 0 1 x31 x32 x33

 (7.2)

Here X is the inverse. Back-substitution is unnecessary when computing the inverse with
Cholesky because A−1 = (LLT )−1 = (L−1)TL−1 when A is a positive definite Hermitian
matrix. Therefore, we only need to compute the inverse of the lower triangular, which is done
by forward-substitution.

7.1 Gauss-jordan Elimination
1 for i = 1 to n
2 Find largest pivot p in the i’th column
3 if i 6= p then swap row i and p
4 for j = 1 to n
5 Ai = 1

aij
Ai

6 for j = 1 to n
7 if i 6= j then Aj = Aj − aijAi

7.2 Forward- and Back-substitution

Forward substitution is performed by:

yi =

(
bi −

∑i−1
j=1 lijyj

)
lii

for i = 1 to n (7.3)

Similarly, back substitution is performed by:

xi =

(
bi −

∑i−1
j=1 uijyj

)
uii

for i = n to 1 (7.4)

7.3 Design and implementation

In order to find the index of the maximum pivot, we needed an argmax-function. This can be
fairly efficiently expressed in Futhark with the use of reduce comm which is span O(log(n)).

1 -- Work: O(n))
2 -- Span: O(log(n))
3 let argmax (arr: []f32) =
4 reduce_comm (\(a, i) (b, j) ->
5 if a < b
6 then (b, j)
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7 else if b < a then (a, i)
8 else if j < i then (b, j)
9 else (a, i)
10 ) (0, 0) (zip arr (indices arr))

Below is the implementation of partial Gauss-Jordan elimination. The span of this function can
be reduced to O(m) if we used no pivoting since finding the max pivot with argmax is what
makes the iterations O(log(m)) and not O(1). However, with no pivoting, it would be highly
unstable.

1 -- Work: O(min(m,n) ·m · n))
2 -- Span: O(min(m,n) · log(m))
3 let gauss_jordan [m][n] (A:[m][n]f32) =
4 loop A = copy A for i < i64.min m n do
5 -- Find largest pivot
6 let p = A[i:,i] |> map f32.abs |> argmax |> (.1) |> (+i)
7 let A = if p != i then swap i p A else A
8 let irow = map (/A[i,i]) A[i]
9 -- Eliminate entries above and below the pivot
10 in tabulate m (\j ->
11 let scale = A[j,i]
12 in map2 (\x y ->
13 if j != i then y - scale * x else x
14 ) irow A[j]
15 )
16
17 let gauss_solveAB [m][n] (A:[m][m]f32) (B:[m][n]f32) : [m][n]f32 =
18 let AB = gauss_jordan (hStack A B)
19 in AB[:m, m:] :> [m][n]f32
20
21 let gauss_solveAb [m] (A:[m][m]f32) (b:[m]f32) =
22 unflatten m 1 b |> gauss_solveAB A |> flatten_to m

Forward substitution is called for lower triangular matrices L; first, it computes y1, then substi-
tutes that forward into the next equation to solve for y2, and repeats through to yn. For upper
triangular matrices, we work backward, first computing xn, then substituting that back into the
previous equation to solve for xn−1, and repeating through to x1.

1 -- Work: O(n2)
2 -- Span: O(n · log(n))
3 let forward_substitution [n] (L: [n][n]f32) (b: [n]f32): [n]f32 =
4 let y = replicate n 0.0f32
5 in loop y for i in 0..<n do
6 let sumy = dotprod L[i,:i] y[:i]
7 let y[i] = (b[i] - sumy) / L[i,i]
8 in y
9
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10 -- Work: O(n2)
11 -- Span: O(n · log(n))
12 let back_substitution [n] (U: [n][n]f32) (y: [n]f32): [n]f32 =
13 let x = replicate n 0.0f32
14 in loop (x) for j in 0..<n do
15 let i = n - j - 1
16 let sumx = dotprod U[i,i+1:n] x[i+1:n]
17 let x[i] = (y[i] - sumx) / U[i,i]
18 in x

Now we can solve linear systems by back-substitution of U and forward-substitution of L re-
turned from the LU-function. With Cholesky, we obtain U by transposing L. We can solve for
multiple right-hand side vectors B by solving for every b1...bm with the use of a map.

1 let solveLUb [n] (L: [n][n]f32) (U: [n][n]f32) (b: [n]f32) =
2 forward_substitution L b |> back_substitution U
3
4 let lu_solveAb [n] (A: [n][n]f32) (b: [n]f32) =
5 let (L, U) = lu A
6 in solveLUb L U b
7
8 let lu_solveAB [n][m] (A: [n][n]f32) (B: [m][n]f32) =
9 let (L, U) = lu A
10 in map (solveLUb L U) B |> transpose
11
12 let cho_solveAb [n] (A: [n][n]f32) (b: [n]f32) =
13 let L = cholesky A
14 let U = transpose L
15 in solveLUb L U b
16
17 let cho_solveAB [n][m] (A: [n][n]f32) (B: [m][n]f32) =
18 let L = cholesky A
19 let U = transpose L
20 in map (solveLUb L U) B |> transpose

Obtaining the inverse of A (given that A is invertible) is now just a matter of solving the linear
system AX = I using the function above and the identity function. However, when computing
the inverse with Cholesky, we do not need to perform forward-substitution, so we do not use
solveLUb here. Recall that A−1 = (L−1)TL−1 for positive definite Hermitian matrices.

1 let gauss_inv [n] (A: [n][n]f32): [n][n]f32 =
2 gauss_solveAB A (identity n)
3
4 let lu_inv [n] (A: [n][n]f32): [n][n]f32 =
5 lu_solveAB A (identity n)
6
7 let cho_inv [n] (A: [n][n]f32): [n][n]f32 =
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8 let L = cholesky A
9 let Linv = map (forward_substitution L) (identity n) |> transpose
10 in matmul (transpose Linv) Linv

7.4 Benchmarks

In this section, we will compare the performance of our algorithms finding matrix inverse and
solving linear system to np.linalg.inv and np.linalg.solve, respectively. When
comparing the functions for solving linear systems, we have benchmarked for one right-hand
side vector b as well as multiple right-hand side vectors B.

All the Futhark benchmarks were conducted using futhark bench1 with CUDA as backend
on Futhark version 0.19, on datasets generated with futhark dataset2. The Python bench-
marks were conducted 10 times in a for-loop where the average run time is shown in the tables
below. The computer used has an an Intel(R) Core(TM) i5-8600K CPU @ 3.60GHz, and an
NVIDIA GeForce GTX 1070 Ti graphics card with 8GB VRAM.

Matrix size
Library Futhark

Cho-inv
Futhark
LU-inv

Futhark
GJ-inv

NumPy Speedup

1000x1000 87.72ms 123.7ms 104.1ms 29.4ms 0.34x
3000x3000 1042.9ms 1515.2ms 2270.1ms 437.6ms 0.41x
5000x5000 4110.9ms 5987.6ms 10419.0ms 1733.6ms 0.42x
7000x7000 10647.5ms 15507.7ms 28395.0ms 4410.2ms 0.41x

10000x10000 29795.6ms 43063.3ms 82766.6ms 12397.8ms 0.41x

Table 7.1: Benchmark results of inverse matrix algorithms.
GJ = Gauss Jordan. Best Futhark performance is marked with bold

Speedup is relative, calculated by NumPy time
Futhark cho−inv time

Matrix size
Library Futhark

Cho-Ab
Futhark
LU-Ab

Futhark
GJ-Ab

NumPy Speedup

A = 1000x1000, b = 1000x1 90.6ms 82.7ms 73.3ms 11.4ms 0.13x
A = 3000x3000, b = 3000x1 704.4ms 781.0ms 1188.2ms 147.3ms 0.21x
A = 5000x5000, b = 5000x1 2537.9ms 3056.3ms 5232.5ms 532.2ms 0.21x
A = 7000x7000, b = 7000x1 6325.9ms 7976.0ms 14182.6ms 1325.8ms 0.21x

A = 10000x10000, b = 10000x1 17546.2ms 22546.5ms 41261.4ms 4143.6ms 0.24x

Table 7.2: Benchmark results of solving linear systems Ax = b algorithms.
GJ = Gauss Jordan. Best Futhark performance is marked with bold

Speedup is relative, calculated by NumPy time
Futhark cho−Ab time

1https://futhark.readthedocs.io/en/latest/man/futhark-bench.html
2https://futhark.readthedocs.io/en/latest/man/futhark-dataset.html

https://futhark.readthedocs.io/en/latest/man/futhark-bench.html
https://futhark.readthedocs.io/en/latest/man/futhark-dataset.html
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Matrix size
Library Futhark

Cho-AB
Futhark
LU-AB

Futhark
GJ-AB

NumPy Speedup

A = 1000x1000, B = 1000x1000 136.3ms 123.7ms 111.8ms 31.5ms 0.25x
A = 3000x3000, B = 3000x3000 1683.0ms 1561.9ms 2309.5ms 483.8ms 0.31x
A = 5000x5000, B = 5000x5000 6793.5ms 6105.1ms 10313.6ms 1905.4ms 0.31x
A = 7000x7000, B = 7000x7000 17671.0ms 15756.0ms 28077.6ms 4785.3ms 0.30x

A = 10000x10000, B = 10000x10000 49870.9ms 43796.9ms 82399.9ms 14083.5ms 0.32x

Table 7.3: Benchmark results of solving linear systems AX = B algorithms.
GJ = Gauss Jordan. Best Futhark performance is marked with bold

Speedup is relative, calculated by NumPy time
Futhark cho−AB time

Unfortunately, our implementations are slower across-the-board. np.linalg.solve uses
LU decomposition from LAPACK to solve linear systems. Since our LU and Cholesky imple-
mentation are slower than LAPACK, solving linear systems with these functions is inherently
slower. However, it is worth noting that the difference seems to shrink as we solve for more
right-hand side vectors. This is likely because solving for many right-hand side vectors has the
same span as solving for one - we compute all of them in parallel.



Chapter 8

Conclusion and Future Work

This project’s objective was to explore and work with the data-parallel functional programming
language Futhark and examine whether it is suited for programming of linear algebra. During
the project, we have worked on implementations of several different algorithms, including NMF,
Cholesky Decomposition, and QR Decomposition.

We started this project with no knowledge of data-parallel computing and no experience of pure
functional programming, so learning Futhark was exciting but also intimidating at times be-
cause it was so different from what we were accustomed to. Once we understood the basics of
the language, it did not take long before we could implement some of the functions we needed.
The parallel cost model for Futhark was remarkably helpful in gaining an understanding of how
parallel our programs were/are. It is very intuitive, and once you know the cost of the different
constructs in the language, you start thinking differently, which was quite rewarding. However,
we missed print statements for debugging, which are naturally not in the language because of it
being purely functional. That being said, futhark repl was a great help when debugging
as well as futhark test. The profiler (hidden behind the -P flag) was also quite helpful in
finding the most time-consuming parts of our programs. However, it is a bit daunting that you
have to look in the intermediate representation to decipher the results from the profiler. Luckily,
our supervisor, Troels, was super helpful.

On the contrary, all that glitters is not gold. Most of our Futhark programs were not able to
beat respective NumPy and scikit-learn routines. It was not an objective of the project, but we
were optimistic. We see a couple of reasons why we are not beating these libraries. The Python
libraries heavily use LAPACK, a software library for numerical linear algebra, which has been
worked on and optimized for 29 years by some of the world’s leading experts in this field. Lit-
erature[Moa18] suggests that we should be able to beat LAPACK with GPUs. We think that this
would be possible to do with the use of Futhark for some of our algorithms such as (LU and
Cholesky) without further improvements to the optimizing compiler. However, it would require
highly optimized blocked variants of these decomposition-algorithms, and it would be far from
trivial to implement. These blocked-algorithms are often recursively defined, so implementing
them in a language like Futhark that has no recursion would be complicated.
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So do we think that Futhark is suited for linear algebra programming? - Absolutely. We are
convinced that the performance we achieved is a lot better than what we would have achieved
with any other high-level programming language in the same time frame. For the most part, we
could express what we wanted in Futhark, except for recursive blocked algorithms. Futhark was
not only a great language to write these algorithms in, but it was also an excellent learning tool
for data-parallel programming. We beat scikit-learn with the performance of our NMF, and all
of our batched functions were faster than NumPy and scikit-learn by quite a lot. It is clear that
our implementations have the potential to become faster, which could be accomplished through
compiler optimizations and optimizations of the implementations themselves.

8.1 Future work

In terms of future work for this project, there are still many linear algebra algorithms and opti-
mizations that could be explored and implemented in Futhark. Among these are finding eigen-
values and vectors efficiently with QR-Decomposition and explore other blocked algorithm vari-
ants considering that blocked algorithms seem to be most commonly used by other linear alge-
bra libraries. Further optimizations could be achieved by implementing other solvers, algorithm
variants and examining other divergence methods, such as the gradient descent method for non-
negative matrix factorization.

As mentioned in the report, batched versions of the linear algebra algorithms can be used in
various applications, which could be interesting to explore and possibly implement in Futhark.
As discussed and shown from our benchmarks, we see that this could lead to very fast algorithms.
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