
U N I V E R S I T Y  O F  C O P E N H A G E N
F A C U L T Y  O F  S C I E N C E

Master’s thesis

Kasper Unn Weihe PXH755

Convex Optimization and Parallel Computing
for Portfolio Optimization

Supervisor: Martin Elsman

Handed in: July 3, 2023



Abstract

This thesis proposes a parallel portfolio optimization strategy that integrates en-
vironmental, social, and corporate governance (ESG) factors, while also balanc-
ing risk and return. Convex optimization techniques, particularly for constrained
problems, form the basis for addressing this challenge.

To efficiently compute multi-dimensional frontiers, symbolizing optimal portfo-
lios, the high-performance parallel programming language, Futhark [1], is uti-
lized. The research addresses the high computational demands inherent in solving
a large grid of convex optimization problems or a single, very large problem, har-
nessing general-purpose graphics processing units (GPGPUs). Different parallel
computing strategies are investigated to enhance computational efficiency. The
investigation seeks to develop a data parallel method to solve convex optimization
problems, with a focus on portfolio optimization. The research aims to investigate
how convex optimization can be parallel and applied to portfolio management.

The findings of this research are anticipated to provide valuable contributions to
the domains of finance and computer science, presenting insights into the appli-
cation of convex optimization techniques and parallel computing for investment
strategies. The relevance of solving large multi-dimensional optimization prob-
lems extends beyond portfolio optimization and can be applied to a multitude
of problems in diverse fields. Additionally, this thesis examines the efficacy of
Futhark as a high-performance parallel programming language for solving convex
optimization problems. Three Futhark modules are presented; the first one is for
solving linear systems of equations, which is used as a building block for the sec-
ond module, a convex optimization module, capable of solving multi-dimensional
optimization problems, while the third is a portfolio optimization module, tailored
to optimize portfolios based on various constraints, which is implemented using
the aforementioned convex optimization module.

Keywords: Convex optimization, Portfolio Optimization, Futhark

2



Contents

1 Introduction 5
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Thesis Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Data-Parallel Programming and Futhark 7
2.1 Introduction to Futhark . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 A Parallel Cost Model for Futhark Programs . . . . . . . 8
2.1.2 Auto-differentiation in Futhark . . . . . . . . . . . . . . . 9
2.1.3 Modularity in Futhark . . . . . . . . . . . . . . . . . . . 10

3 Portfolio Optimization 11

4 Convex Optimization 14
4.1 Convex Optimization Problem . . . . . . . . . . . . . . . . . . . 16
4.2 Unconstrained Convex Optimization . . . . . . . . . . . . . . . . 16

4.2.1 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Newton’s method . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Equality constrained convex optimization . . . . . . . . . . . . . 21
4.4 Inequality constrained convex optimization . . . . . . . . . . . . 22

4.4.1 Barrier method . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.2 Alternating direction method of multipliers . . . . . . . . 24

5 Solving Linear Systems 27
5.1 Gaussian elimination . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 LU decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Cholesky decomposition . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Conjugate gradient method . . . . . . . . . . . . . . . . . . . . . 31

6 Design and Implementation 33

3



6.1 Linear Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.1.1 Gaussian Elimination . . . . . . . . . . . . . . . . . . . . 34
6.1.2 LU decomposition . . . . . . . . . . . . . . . . . . . . . 35
6.1.3 Cholesky decomposition . . . . . . . . . . . . . . . . . . 37
6.1.4 Conjugate gradient method . . . . . . . . . . . . . . . . . 40

6.2 Convex Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.1 Auto differentiation . . . . . . . . . . . . . . . . . . . . . 41
6.2.2 Gradient descent . . . . . . . . . . . . . . . . . . . . . . 42
6.2.3 Newton’s method . . . . . . . . . . . . . . . . . . . . . . 43
6.2.4 Newton’s method with equality constraints . . . . . . . . 45
6.2.5 Barrier method . . . . . . . . . . . . . . . . . . . . . . . 46
6.2.6 Alternating direction method of multipliers . . . . . . . . 48

6.3 Portfolio module . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Benchmarking and testing 53
7.1 Linear Module Evaluation . . . . . . . . . . . . . . . . . . . . . 53

7.1.1 Cholesky . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.1.2 LU Decomposition . . . . . . . . . . . . . . . . . . . . . 55
7.1.3 Solving the system (Ax = b) . . . . . . . . . . . . . . . . 57

7.2 Portfolio Optimization . . . . . . . . . . . . . . . . . . . . . . . 58
7.2.1 Unconstrained . . . . . . . . . . . . . . . . . . . . . . . 59
7.2.2 Equality Constrained . . . . . . . . . . . . . . . . . . . . 60
7.2.3 Inequality Constrained . . . . . . . . . . . . . . . . . . . 62

7.3 Test on S&P500 . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8 Conclusion and Future work 66
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4



Chapter 1

Introduction
There is a growing interest in incorporating environmental, social, and gover-
nance (ESG) factors into investment decisions. Many exchange traded funds
(ETFs) and mutual funds are now incorporating ESG factors into their invest-
ment strategies [2]. This thesis aims to explore the application of convex opti-
mization techniques and the data parallel programming language Futhark [1] for
solving convex optimization problems, focusing on portfolio optimization as a
case study. The research emphasizes the importance of parallel computing strate-
gies, leveraging many-core general-purpose graphics processing units (GPGPUs)
to optimize computational efficiency. Solving optimization problems can be com-
putationally expensive, especially when dealing with a large number of variables
or a large number of optimization problems. The research aims to investigate how
we can use parallelization to solve portfolio/convex optimization problems more
efficiently. Furthermore, the study aims to evaluate the effectiveness of Futhark as
a high-performance parallel programming language for solving multi-dimensional
optimization problems. Optimization is not only used for portfolio optimization
but also for many other problems in all kinds of fields. The findings should be
transferable to other fields.

1.1 Related Work
Convex optimization problems are common and can be tackled using a variety
of mathematical techniques and algorithms. Fundamental to these are Newton’s
Method and Gradient Descent. Additionally, more advanced techniques, such as
the Alternating Direction Method of Multipliers (ADMM), exist. ADMM is an
advanced optimization technique that breaks down complex or large-scale convex
problems into smaller, easier-to-solve subproblems. It is a form of decomposition
coordination technique that has seen widespread application in various areas due

5



to its ability to handle problems efficiently.

Several software libraries and frameworks, such as CVXPY [3], facilitate the ap-
plication of these methods to solve optimization problems. CVXPY, an embedded
Python modeling language designed specifically for convex optimization prob-
lems, leverages these mathematical techniques to achieve solutions.

Thus, while CVXPY will be utilized as a baseline for convex and portfolio opti-
mization, it is important to acknowledge that it essentially encapsulates and ap-
plies mathematical techniques such as ADMM to provide optimized solutions.

1.2 Thesis Objective
The primary objective of this thesis is to develop data-parallel strategies aimed at
solving large convex optimization problems. The thesis will focus on portfolio
optimization with ESG data as a case study. As such, we will investigate how
the efficiency of a convex optimizer written in Futhark compares to established
optimizers such as CVXPY for solving many optimization problems in parallel or
a single optimization problem with a large number of variables.

1.3 Thesis Structure
Chapter 2 provides a comprehensive overview of the data-parallelism concept and
introduces Futhark. Moving forward to Chapter 3, the principles underpinning
portfolio optimization are discussed. In Chapter 4, we delve into convex opti-
mization, discussing its theory and various algorithms that effectively tackle con-
vex optimization issues.

Chapter 5 pivots to detail different algorithms devised to address linear systems,
forming an integral foundation for solving convex optimization problems. Subse-
quently, Chapter 6 unveils the design and implementation of three distinct Futhark
modules: the first aimed at solving linear systems of equations, the second dedi-
cated to resolving convex optimization problems, and the third devoted to portfo-
lio optimization.

Chapter 7 contains benchmarking and tests of these modules with CVXPY. Bring-
ing this thesis to a close, Chapter 8 presents the conclusion, summarizing the find-
ings and suggesting areas for potential future research.

6



Chapter 2

Data-Parallel Programming and
Futhark

Data parallelism is a type of parallel computing where the same set of operations
are performed simultaneously on multiple processing units or cores, each with a
different subset of the data. This technique is particularly useful when processing
large datasets, as it splits the data across different cores, allowing computations to
be done in parallel, potentially leading to faster execution times. In this chapter,
we will introduce the data-parallel programming language Futhark, which is used
to implement the methods presented in this thesis. It is worth noting that Futhark
is a tool for expressing data-parallel programs. As such, the parallelization tech-
niques presented in this thesis are not limited to Futhark but can be applied to
other data-parallel programming languages as well. The goal of this thesis is to
investigate the parallelization of convex optimization problems, using Futhark as
a tool to express parallelism.

2.1 Introduction to Futhark
Futhark is a data-parallel functional programming language designed to be com-
piled to efficient parallel code through OpenCL or CUDA to run on GPUs [4].
However, Futhark can also run on other hardware, such as multicore CPUs. Futhark
is a pure functional and statically typed programming language in the ML family.
The programs consist primarily of Second-Order Array Combinators (SOACs)
such as map, reduce, and scan. It is worth noting that Futhark is not parallel by
default. The programmer has to explicitly construct the programs to be parallel.

As mentioned, Futhark uses SOACs to express parallelism. SOACs are higher-

7



order functions that perform bulk operations on one or more arrays. The most
common SOACs are map, reduce, and scan. Map applies a function to each el-
ement of an array. Reduce applies a binary associative operator/function to ele-
ments of an array. Scan is similar to reduce, but it returns an array of intermediate
results. Using these SOACs, we can implement functions for dot product and
matrix multiplication.

1 def dotproduct [n] (u: [n]f64) (v: [n]f64): f64 =
2 reduce (+) 0.0 (map2 (*) u v)
3
4 def matmul [n][p][m] (xss: [n][p]t) (yss: [p][m]t): *[n][m]t =
5 map (\xs -> map (dotprod xs) (transpose yss)) xss

Listing 2.1: Futhark code for dot product and matrix multiplication

The [n][p][m] preceding the value parameters (xss and yss) are referred to as size
specifiers, which allow us to specify the dimensions of the value parameters. For
example, for matrix multiplication, we must have that the number of columns in
the first matrix is equal to the number of rows in the second matrix. The size pa-
rameter lets us express this constraint in the type of the function and the constraint
is checked at compile time [5].

Futhark has a series of rules that enable it to generate efficient code while main-
taining correctness. For instance, irregular arrays are prohibited in the language
using size constraints, and the operator used in a reduce and scan operation must
be associative to ensure that the result is independent of the order of the operations
when parallelized.

In order to reduce and scan in parallel the operator must be associative and have a
neutral element.

It is the responsibility of the developer to ensure that the operator used in a reduce
and scan operation is associative. If the operator is not associative, the result of
the operation will likely not be what the developer intended because "the order"
of the operations is not guaranteed.

2.1.1 A Parallel Cost Model for Futhark Programs
An algorithm’s dependencies between operations can be effectively represented
using a directed acyclic graph (DAG), where each computational unit is illus-
trated as a node, and the directional arcs demonstrate their dependencies [6]. This
representation results in a connected, acyclic tree structure where the root node
represents the output of the algorithm, and its child nodes symbolize dependen-
cies. Each layer of this tree, denoted by nodes, allows for concurrent computation

8



of operations, as no computation within the same layer depends on another. How-
ever, operations across different layers are unable to run in parallel due to their
dependencies. The execution of the algorithm begins sequentially from the leaves
of the tree, which are free of prior dependencies and progresses toward the root
node.

The Futhark programming language utilizes a parallel cost model to estimate a
program or an algorithm’s runtime, which is based on the algorithm’s work and
span [7]. The work, equivalent to the number of nodes in the DAG, is the cumula-
tive count of primitive operations executed by the program, and it proportionally
impacts the total execution time. On the other hand, the span of a program sig-
nifies the length of the longest dependency chain between primitive operations,
forming a theoretical lower bound on the program’s execution time, irrespective
of the number of processors. The span is crucial because regardless of the proces-
sor count, the program cannot complete faster than this span as these dependent
operations must be executed sequentially. If T1, Tp, and T∞ are the execution
times of a program on a single processor, p processors, and an infinite number of
processors, respectively, then using Brent’s theorem, we can express the execution
time of a program as follows [6]:

T1

p
≤ Tp ≤

T1

p
+ T∞ (2.1)

Given that T1

p
is optimal, it becomes evident that T∞ indeed provides a valuable

perspective on the extent to which our algorithm’s performance deviates from
the optimal version of the parallel algorithm. Essentially, T∞ can be viewed as
a metric to gauge the level of parallelism in an algorithm. Observe Listing 2.1
where we take the dot product of two vectors u and v of size n. For each element
in the vectors u and v, we multiply them together and add the result to the sum
variable. This operation is repeated n times, and thus the work isO(n). However,
all of the operations of a map are independent of each other, and thus the span of
the map is O(1). However, the analysis of reduce is a little more involved. The
reduce operation is a tree reduction, where the tree is constructed by repeatedly
applying the associative operator to pairs of elements. The height of the tree is
O(log n), and thus the span is O(log n) and is efficiently parallelized in Futhark.
Furthermore, Futhark applies all sorts of optimizations to the programs, such as
loop fusion, loop tiling, and loop interchange [1].

2.1.2 Auto-differentiation in Futhark
Auto-differentiation is a technique for automatically computing the derivative of a
function. It is relatively new in Futhark and is still under active development as the
rest of the language [8]. Futhark has two modes of auto-differentiation, forward

9



mode, and reverse mode, through the built-in functions jvp and vjp, respec-
tively. Forward mode uses forward accumulation to compute the derivative of a
function. Reverse mode uses reverse accumulation to compute the derivative of a
function. Reverse mode should be more efficient than forward mode for functions
with many inputs and few outputs and vice versa for forward mode. This is useful
for computing the gradient, Hessian, or jacobian of a function. Which we will use
extensively in this thesis for solving optimization problems. The performance of
the auto-differentiation will be compared to the performance of the hand-written
derivatives in chapter 7. Here is a short example of auto-differentiation of the
sqrt function in Futhark.

1 def f x = f64.sqrt x
2 def f’ x = jvp f x 1
3 > f’ 2f64
4 0.353553f64

In this example, we compute the derivative of the sqrt function at x = 2. The
result is 0.353553. jvp can be exchanged with vjp to compute the derivative of
the function using reverse accumulation.

2.1.3 Modularity in Futhark
Futhark has an ML-style higher-order module system [9]. It features module types
that allow us to define what a module contains. These include detailed type de-
scriptions of what should be implemented within a module. We can, for instance,
define a module type M as follows:

1 module type M = {
2 type t
3 val add: t -> t -> t
4 }

It specifies a type t and a function add that takes two values of type t and returns
a t. Futhark has parametric modules, which can take other modules as arguments,
and thus we define a module m that takes a module of type real as argument:

1 module m (R: real): M = {
2 type t = R.t
3 def add (a: t) (b: t): t = a R.+ b
4 }

Here we use the + operator of the real module to implement the add function.
The real module is a builtin module for real numbers (f32, f64, etc.) in Futhark.
We can then use the module m as follows:

1 import "m"
2 module m64 = m f64
3 > m64.add 1.0f64 2.0f64

10



Chapter 3

Portfolio Optimization

Portfolio optimization is a concept in financial theory focusing on the maximiza-
tion of expected return for a given level of risk or the minimization of risk for a
given level of expected return. This chapter dives into the theory of portfolio op-
timization, examining its theoretical foundations, practical applications, and the
role of computational techniques in facilitating such optimizations.

In 1952 Harry Markowitz published a paper on portfolio selection in The Journal
of Finance, which laid the foundations for modern portfolio theory [10], which
he was later awarded the Nobel Prize in Economics for in 1990 [11]. The paper
presents a mathematical framework for selecting a portfolio of investments that
maximizes expected return while minimizing risk. Markowitz divides the process
of portfolio selection into two stages. The first stage is forming relevant beliefs
about the future of securities based on observations of the past, and the second
stage is the optimization of the portfolio based on those beliefs. The paper focuses
on the second stage, which is the optimization of the portfolio. This aspect is also
the focus of this thesis.

Markowitz introduces the concept of efficient portfolios, also known as the effi-
cient frontier. An efficient portfolio is a portfolio that maximizes expected return
for a given level of risk or minimizes risk for a given level of expected return. The
efficient frontier is the set of all efficient portfolios.

Imagine Y is a variable whose value is determined randomly, and it can only be
one of several specific values (y1 to yN ). Each of these values has a probability
(p1 to pN ). The average (or mean) of Y is the sum of each value multiplied by
its probability. The variance of Y is a way to measure how spread out the values
are. It is the sum of the square of the difference between each value and the mean,
each multiplied by its probability.

11



Now, suppose we have a set of random variables: R1, . . . , Rn and R is a weighted
sum of the Ri, and hence, is also a random variable. ai is the weight of Ri in the
sum.

R = a1R1 + a2R2 + . . .+ anRn (3.1)

However, the variance of R is more complex and involves the concept of ’co-
variance,’ which measures how two variables change together. Covariance can be
expressed in terms of the correlation coefficient ρij , a measure of the strength and
direction of the relationship between two variables. We define the covariance of
Ri and Rj as:

σij = ρijσiσj (3.2)

σi and σj are the standard deviations of Ri and Rj respectively. The variance of
the weighted sum is then:

V (R) =
N∑
i=1

N∑
j=1

aiajσij (3.3)

Now, if we let Ri represents the return on the i’th security and Xi is the percentage
of assets allocated to that security, the total return R is the sum of the returns on
each security multiplied by their allocation.

R =
n∑

i=1

RiXi (3.4)

n∑
i=1

Xi = 1 (3.5)

The expected return of the portfolio is the sum of the expected returns on each
security, each multiplied by their allocation. The variance (risk) of the portfolio is
the sum of the covariances of each pair of securities, each pair multiplied by their
respective allocations. Let µi be the expected return of Ri and σii be the variance
of Ri. The expected return and variance of the portfolio are then:

E =
N∑
i=1

Xiµi (3.6)

V =
N∑
i=1

N∑
j=1

σijXiX (3.7)

12



Given a set of fixed probability beliefs represented as (µi, σij), the investor has
the ability to select different combinations of expected return (E) and variance
(V ) by varying the composition of the portfolio weights X1, . . . , XN . We assume
no short selling (negative weights) and no borrowing, so the sum of the weights
must be 1. Imagine that all possible combinations of (E, V ) are illustrated in
Figure 1. The EV principle suggests that the investor ought to choose one of
those portfolios which are represented as efficient (red) in the figure [10]. That is,
the portfolios that offer the least variance V for a given or higher expected return
E, or the portfolios which provide the highest expected return E for a given or
lower variance V .

Figure 3.1: The black dots represent random portfolios. The red line represents
the efficient frontier. The black outline is a rough sketch of the set of all possible
portfolios.

In this thesis, we will focus on the optimization of the portfolio weights
X1, . . . , XN , given a set of fixed probability beliefs represented as (µi, σij), but
we also want to take into account other parameters such as the ESG score of the
involved companies. The ESG score is a measure of the sustainability and ethical
impact of a company. The ESG score is a number between 0 and 100, where 0 is
the worst possible score, and 100 is the best possible score. Instead of maximizing
the expected return at a given level of risk, we want to maximize the expected
return at a given level of risk and ESG score. The optimization problem can be
formulated as a convex optimization problem.

13



Chapter 4

Convex Optimization

Convex optimization, a specialized branch of mathematical optimization, focuses
on minimizing convex functions within the boundaries of convex sets [12]. The
concepts of ’convex function’ and ’convex set’ are essential to grasp this idea.
Specifically, in a real vector space, a set is considered convex if it encompasses
the entire line segment joining any two points within the set. Similarly, A function
is convex if, for any two points in its domain, the function evaluated at any point
on the line segment joining these two points is less than or equal to the weighted
average of the function values at the two points [12]. In other words, a function is
convex if, for any two points x and y in its domain and for any t in the range [0, 1],
the following condition is satisfied:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (4.1)

This property can be represented graphically as the function lying below the line
segment connecting the points (x, f(x)) and (y, f(y)) for all x and y in the domain
of the function. If this condition is satisfied for a function, it is said to be convex.
Conversely, if the inequality is reversed, the function is said to be concave.

14



Figure 4.1: A convex and a concave function. The convex function lies below
the line segment connecting the points (x, f(x)) and (y, f(y)) for all x and y in
the domain of the function. The concave function lies above the line segment
connecting the points (x, f(x)) and (y, f(y)) for all x and y in the domain of the
function. This generalizes to higher dimensions.

Convexity gives the function a ’bowl-shaped’ or ’U-shaped’ curve, which facil-
itates efficient optimization because there is only one local minimum, which is
also the global minimum. Convex optimization problems can be visualized as the
problem of finding the lowest point in a landscape where it is such that if you start
at any point and move downhill, you are guaranteed to arrive at the lowest point.
This property makes convex optimization problems particularly appealing, as they
avoid the problem of local minima that plague many optimization problems. In
the realm of practical applications, convex optimization plays an essential role in
several disciplines, such as machine learning, computer science, statistics, finance,
engineering, economics, and more. Algorithms for convex optimization include
gradient descent and its variants, Newton’s method, interior-point methods, and
others [12].

However, not all optimization problems are convex. Many non-convex optimiza-
tion problems can be approximated or reformulated as convex ones, making con-
vex optimization a very important tool in the field of optimization. Also, convex
optimization problems constitute a broad class of problems that include linear
programming problems and least-squares problems [12].

15



4.1 Convex Optimization Problem
A convex optimization problem is a problem of the form:

minimize f0(x) (4.2)
subject to fi(x) ≤ 0, i = 1, . . . ,m (4.3)

hi(x) = 0, i = 1, . . . , p (4.4)

where x ∈ Rn is the optimization variable, f0 : Rn → R is the objective function,
fi : Rn → R are the inequality constraint functions, and hi : Rn → R are the
equality constraint functions. The following requirements must be met for the
problem to be a convex optimization problem [12]:

• The objective function f0 must be convex.

• The inequality constraint functions fi must be convex.

• The equality constraint functions hi must be affine (hi(x) = ax + b), for
some a and b.

4.2 Unconstrained Convex Optimization
An unconstrained convex optimization problem is a convex optimization problem
of the form:

minimize f(x) (4.5)

where f : Rn → R is a convex function. These problems are relatively easy to
solve since there are no constraints to take into account. The solution (if one such
exists) to the problem is the global minimum of the function f . This solution
can be identified by finding the point where the gradient of the function is zero
or approximately zero. Consequently, the minimum of such a function is located
at the point where the first derivative, often referred to as the gradient, equals
zero. This criterion marks the position where the rate of change of the function
transitions from negative to non-negative, thereby establishing a minimum.

16



4.2.1 Gradient Descent
Descent methods are a class of algorithms for solving unconstrained convex opti-
mization problems. The idea is to start at an initial point x(0) and then iteratively
move in the direction of the negative gradient. At each iteration, we calculate a
new point x(k+1) by moving in the direction of the negative gradient of the func-
tion f at the current point x(k). This is represented as:

x(k+1) = x(k) + t(k)∆x(k)

Here, ∆x(k) is a vector indicating the direction we should move, also called the
’search direction’. The t(k) is a number that tells us how far to move in that di-
rection, which we call the ’step size’. We always want this number to be positive
unless we have already found the optimal point.

Now, the aim is to find the smallest value of a function f(x). The method is
working as expected if the function value at our new point, f(x(k+1)), is less than
the function value at our previous point, f(x(k)). In other words, we want to keep
moving to points where the function value is decreasing unless we have found the
optimal point. A common choice for the search direction is the negative gradient
of the function, −∇f(x(k)). The resulting algorithm is called gradient descent:

Algorithm 1 Gradient Descent Method
1: Given a starting point x ∈ dom f .
2: repeat
3: ∆x := −∇f(x)
4: Line search. Choose step size t via exact or backtracking line search.
5: x := x+ t∆x
6: until stopping criterion is satisfied

The stopping criterion is usually that the norm of the gradient is less than some
small number ϵ, i.e., |∇f(x)| ≤ ϵ. This means that the algorithm will stop when
the gradient is close to zero, that is when we are close to the optimal point [12].
Notice that the algorithm requires a line search. This selection of the step size t
determines where along the line {x+ t∆x | t ∈ R+} the next iterate will be. If
the step size is too small, the algorithm will take a long time to converge. If the
step size is too large, it might overshoot the minimum and end up with a larger
function value than before, potentially leading to non-termination as visualized in
Figure 4.2.

17



Figure 4.2: Gradient descent with a step size that is too large. The algorithm
overshoots and ends up with a larger function value than before (marked with a
red line). This can lead to non-termination or slow convergence.

In Algorithm 1, we use backtracking line search, which is a simple and effective
line search method to find a suitable step size t:

Algorithm 2 Backtracking Line Search
1: Given α ∈ (0, 0.5), β ∈ (0, 1).
2: Input x ∈ dom f .
3: Input ∆x ∈ Rn with∇f(x)T∆x < 0.
4: Input t := 1.
5: while f(x+ t∆x) > f(x) + αt∇f(x)T∆x do
6: t := βt
7: end while
8: return t.

The aim of backtracking line search is to find a step size t that satisfies the Armijo-
Goldstein condition, which ensures sufficient decrease in the function value [13].
The condition is:

f(x+ t∆x) ≤ f(x) + αt∇f(x)T∆x (4.6)

f(x+ t∆x) represents the value of the function f at a new point which is a step t ·
∆x away from the current point x. The right-hand side of this inequality represents
a linear approximation to the function f at the point x, scaled by a factor of t
along the direction given by ∆x. The parameter α is a constant that controls the
sufficient decrease level.

18



Figure 4.3: Backtracking line search: Lower and upper dashed lines represent f ’s
linear extrapolation and a slope smaller by α respectively. f must fall under the
upper dashed line, with 0 ≤ t ≤ t0.

The Armijo-Goldstein condition ensures the function value at a new point is no
greater than the original point’s function value, offset by a parameter α. Constant
α indicates the sufficient decrease level, while β controls step size reduction if the
condition isn’t satisfied. Starting from step size t = 1, the algorithm reduces t by
β until the condition is met, then returns this t.

4.2.2 Newton’s method
Newton’s method is an iterative algorithm used to find the roots or minima of a
function. It involves calculating the Newton step and updating the current approx-
imation to minimize the function, guided by a specific search direction and a stop-
ping criterion. The Newton step, ∆xnt, for a function f at a point x is given by the
equation ∆xnt = −∇2f(x)−1∇f(x). This step can be seen as a descent direction
unless x is already optimal [1]. It is calculated by minimizing the second-order
Taylor approximation (also known as the quadratic model) of f at x [14]. ∇f(x)
is the gradient of f at x, and∇2f(x) is the Hessian matrix of f at x. The gradient
of f at x is the vector of partial derivatives of f at x, and the Hessian matrix is the
matrix of second-order partial derivatives of f at x:

∇f(x) =


∂f
∂x1
∂f
∂x2...
∂f
∂xn

 (4.7)

19



∇2f(x) =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
... . . . ...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n

 (4.8)

When the Newton method is applied to a twice differentiable function, the Newton
step provides a very good estimate for the minimizer of the function if the function
is approximately quadratic around the point x [14].

A key component of Newton’s method is the Newton decrement, λ(x), which is
calculated as λ(x) =

(
∇f(x)T∇2f(x)−1∇f(x)

)1/2. This quantity is significant
in the analysis of Newton’s method and provides a stopping criterion for the algo-
rithm. The value of λ2/2 is an estimate of how far the function value at the current
approximation x is from the optimal value of the function, p∗ [14]. The Newton
method can be represented by the following algorithm:

Algorithm 3 Newton’s Method
1: Given a starting point x ∈ dom f , tolerance ϵ > 0.
2: repeat
3: Compute the Newton step and decrement.
4: ∆xnt := −∇2f(x)−1∇f(x); λ2 := ∇f(x)T∇2f(x)−1∇f(x).
5: Stopping criterion. quit if λ2/2 ≤ ϵ.
6: Line search. Choose step size t by backtracking line search.
7: Update. x := x+ t∆xnt.
8: until stopping criterion is satisfied

These steps are repeated until the stopping criterion is met [14]. Newton’s method
often has faster convergence than gradient descent because it takes into account
the curvature of the function. The downside of Newton’s method is that it can
be computationally expensive, particularly in high-dimensional spaces. This is
because it requires calculating and inverting the Hessian matrix, which can be
costly both in terms of memory and compute time.

The convergence rate for gradient descent depends on many factors, but it has
been proven to have sublinear convergence under the assumption that f is convex
[15]. Newton’s method, on the other hand, has quadratic convergence for con-
vex functions, which means that the error reduces by a constant factor squared at
each iteration. This means that Newton’s method will likely converge with many
fewer iterations than gradient descent, but each step is also more computationally
expensive [12].

20



4.3 Equality constrained convex optimization
An equality-constrained convex optimization problem presents a unique type of
optimization challenge. Specifically, this problem format is expressed as follows:

minimize f(x) (4.9)
subject to Ax = b (4.10)

Here, f : Rn → R is a convex function, A ∈ Rp×n denotes a matrix, and b ∈ Rm

symbolizes a vector. The matrix A has a rank of m with the condition m ≤ n,
thereby implying that the quantity of constraints does not exceed the number of
variables. To solve such a problem, one may utilize Newton’s method, incorpo-
rating the constraints into the calculation. The initial step involves defining the
Newton step for an unconstrained optimization situation:

∆xnt = −∇2f(x)−1∇f(x) (4.11)

However, when constraints are present, as in our case with the Ax = b stipulation,
a direct application of the Newton step, as is done in unconstrained optimization,
is insufficient. Instead, the Newton step, when subjected to the equality constraint,
is defined by the following system of equations:[

∇2f(x) AT

A 0

] [
∆xnt

w

]
=

[
−∇f(x)

0

]

In this system, w represents a vector of Lagrange multipliers. In this context, the
Lagrange multipliers w act as indicators for the ’tightness’ of the constraints. They
provide valuable information about the solution: if a multiplier associated with a
constraint is zero, then that constraint is nonbinding at the solution; that is, it does
not actively constrain the solution. On the other hand, if a multiplier is non-zero,
the corresponding constraint is binding at the solution, meaning it actively shapes
the solution [12].

This system of equations is known as the Karush-Kuhn-Tucker (KKT) system,
which is an essential condition for attaining optimality. As a system of linear
equations, the KKT system can be solved using various methods, such as Gaus-
sian elimination or LU decomposition. Detailed analysis and discussion on these
methods will be provided in Chapter 5. The resulting algorithm is called Newton’s
method with equality constraints:

21



Algorithm 4 Newton’s Method for Equality Constrained Minimization
1: Given starting point x ∈ dom f with Ax = b, tolerance ϵ > 0.
2: repeat
3: Compute the Newton step and decrement ∆xnt, λ(x).
4: Stopping criterion. quit if λ2/2 ≤ ϵ.
5: Line search. Choose step size t by backtracking line search.
6: x := x+ t∆xnt

7: until Stopping criterion is met

The algorithm starts with a starting point x and a tolerance ϵ. It then computes the
Newton step and decrement, which are used to determine whether the algorithm
should stop. If the algorithm should not stop, it then performs a line search to
determine the step size t to take. The algorithm then updates the current point x
by adding the Newton step multiplied by the step size t. The algorithm repeats
this process until the stopping criterion is met. The algorithm, as described here,
is a feasible descent method, meaning that the initial point x must satisfy Ax = b
and all subsequent iterates must satisfy Ax = b, with f(x(k+1)) < f(x(k)) unless
x(k) is optimal [12].

4.4 Inequality constrained convex optimization
An inequality constrained convex optimization problem is a convex optimization
problem of the form:

minimize f0(x) (4.12)
subject to fi(x) ≤ 0, i = 1, . . . ,m (4.13)

Ax = b, (4.14)

where f0, . . . , fm : Rn → R are convex functions, A ∈ Rp×n is a matrix, and
b ∈ Rp is a vector. The rank of A is p and p ≤ n, meaning that the number of
constraints is less than or equal to the number of variables.

4.4.1 Barrier method
Interior point methods are a class of algorithms for solving inequality-constrained
convex optimization problems. The Barrier method is an interior point method
that solves the problem by solving a sequence of equality-constrained problems

22



by making the inequality constraints implicit in the objective function. The loga-
rithmic barrier method solves the following sequence of problems:

minimize tf0(x) + ϕ(x) (4.15)
subject to Ax = b (4.16)

where t > 0 is a parameter that determines how close to the boundary of the
feasible region the solution will be and ϕ(x) is the logarithmic barrier function:

ϕ(x) = −
m∑
i=1

log (−fi(x)) (4.17)

As t approaches infinity, the solution approaches the solution of the original prob-
lem. The logarithmic barrier method solves this sequence of problems using New-
ton’s method with equality constraints, which was discussed in the previous sec-
tion. The algorithm is represented as:

Algorithm 5 Barrier Method
1: Given strictly feasible x, t := t(0) > 0, µ > 1, and tolerance ϵ > 0.
2: repeat
3: Centering step. Compute x⋆(t) by minimizing tf0+ϕ, subject to Ax = b,

starting at x.
4: Update. x := x⋆(t).
5: Stopping criterion. Quit if m/t < ϵ.
6: Increase t. t := µt.
7: until stopping criterion is satisfied

Here t is increased by a factor of µ at each iteration. The stopping criterion is
satisfied when the duality gap is less than ϵ. The duality gap is defined as m/t,
where m is the number of inequality constraints. The duality gap is a measure
of how far the current solution is from the optimal solution. As t increases, the
duality gap decreases, and the solution approaches the solution of the original
problem. µ is a parameter that determines how quickly t increases. With a larger
value of µ, we will expect fewer iterations of the outer loop but more iterations of
the inner loop and vice versa for a smaller value of µ.

The barrier method is a feasible descent method, meaning that the initial point x0

must be feasible, that is. It must satisfy all of the constraints. When such a point
is not known, the barrier method is preceded by a phase I method, which finds a

23



strictly feasible point, that is, a point that satisfies all of the constraints strictly.
We form the following optimization problem to find a strictly feasible point:

minimize s (4.18)
subject to fi(x) ≤ s, i = 1, . . . ,m (4.19)

Ax = b (4.20)

Where s is a slack variable, this problem is feasible only if the original problem is
feasible. We can solve this problem using the barrier method, and if the optimal
value of s is zero or negative, then the original problem is feasible. If the optimal
value of s is positive, then the original problem is infeasible. In this case, we can
use the optimal value of x as a strictly feasible point for the original problem.
This problem also needs a strictly feasible starting point, which can be found
by solving Ax = b for x to get x(0) and setting s to any number greater than
maxi=1,...,m fi

(
x(0)

)
.

4.4.2 Alternating direction method of multipliers
The Alternating Direction Method of Multipliers (ADMM) is an algorithm that
is commonly used to solve optimization problems with equality constraints. The
general form of the problem that ADMM is aimed at solving is expressed as fol-
lows [16]:

minimize f(x) + g(z) (4.21)
subject to Ax+Bz = c (4.22)

Where x ∈ Rn and z ∈ Rm are variables, A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp.
Here f and g are assumed to be convex. This problem is set up with the objective
function separable across the splitting of the variable [16]. The method of ADMM
uses the augmented Lagrangian for the problem:

Lρ(x, z, u) = f(x) + g(z) + uT (Ax+Bz − c) + (ρ/2)∥Ax+Bz − c∥22
(4.23)

Where ρ > 0 is the augmented Lagrangian parameter. The algorithm then consists
of alternating minimization steps with respect to x and z, and a dual variable u
[16]:

x(k+1) := arg|min|
x

Lρ

(
x, z(k), u(k)

)
(4.24)

z(k+1) := arg|min|
z

Lρ

(
x(k+1), z, u(k)

)
(4.25)

u(k+1) := u(k) + ρ
(
Ax(k+1) +Bz(k+1) − c

)
, (4.26)

24



ADMM can also be applied to solve optimization problems with inequality con-
straints. The approach involves transforming the inequality constraint into an
equality constraint by introducing a penalty function and using variable substi-
tution [17]. For instance, a constraint of the form Ax ≥ 0 can be rewritten as
Ax− z = 0 where z ≥ 0. The constraint is hereby incorporated into the objective
function, and the ADMM procedure is then applied as usual. The transformed
problem can be expressed as [17]:

argmin
x,y

f(x) + I(z) (4.27)

Ax− z = 0 (4.28)

where I(z) is an indicator function that takes the value +∞ for z < 0 and 0 for
z ≥ 0. The inequality constrained problem is then converted into an augmented
Lagrangian (primal-dual) problem and solved using ADMM [17]. In the case of
inequality constraints, the solution to the first primal descent step, also known as
the x-update step, can be obtained using a Newton update. This update uses the
gradient and Hessian of the original objective function, which are assumed to be
known, and the current values of z and u [17]. The Newton update is given by
[17]:

xk+1
Newton =

(
h+ ρATA

)−1 (
g + ρAT

(
Axk − zk + uk

))
(4.29)

where h and g are the Hessian and gradient of the original objective function,
respectively. It is important to note that the Newton update step typically assumes
the function f(x) is twice differentiable and convex. The algorithm for ADMM
with inequality constraints (Ax ≥ 0) is given in Algorithm 6, applying Newton
updates for the primal variable x:

Algorithm 6 ADMM with Newton Update
1: Initialization: k ← 0, xk ← 0, zk ← 0, uk ← 0
2: repeat
3: Primal Descent 1 (Newton Update).
4: xk+1

Newton ←
(
h+ ρATA

)−1 (
g + ρAT

(
Axk − zk + uk

))
5: Primal Descent 2. zk+1 ← max

(
0, Axk+1 + uk

)
6: Dual Ascent. uk+1 ← uk + Axk+1 − zk+1

7: Update. x∗ ← xk

8: Increase k. k ← k + 1
9: until convergence is reached

In conclusion, ADMM is a flexible method that can be applied to solve a wide
range of constrained optimization problems, including those with inequality con-

25



straints. ADMM does not require a strictly feasible starting point, unlike the bar-
rier method. It alternates between updating the primal and dual variables and uses
methods such as the Newton update to efficiently compute these updates when
additional information about the problem, such as the gradient and Hessian of the
cost function, is available [16][17].

26



Chapter 5

Solving Linear Systems

Solving linear systems in a common subproblem in convex optimization. In this
chapter, we will discuss different methods for solving linear systems. We will
discuss Gaussian elimination, LU decomposition, Cholesky decomposition, and
the conjugate gradient method. All of these methods can be used to solve linear
systems, but they have different properties and are suited for different problems.
We will discuss the properties of each method and when they are suited to be used.

5.1 Gaussian elimination
Gaussian elimination is a simple method for solving linear systems. It is a di-
rect method, signifying that it provides an exact solution within a finite number
of steps, assuming that there are no rounding errors due to computer arithmetic.
Gaussian elimination is a method for solving linear systems of the form Ax = b,
where A is a square matrix and b is a vector [15]. Gaussian elimination works by
transforming the system into an upper triangular system, which can be solved by
back substitution.

27



Algorithm 7 Gaussian elimination
1: Given A ∈ Rn×n and b ∈ Rn.
2: for k = 1, . . . , n− 1 do
3: for i = k + 1, . . . , n do
4: lik :=

aik
akk

5: aik := 0
6: for j = k + 1, . . . , n do
7: aij := aij − likakj
8: end for
9: bi := bi − likbk

10: end for
11: end for

In certain cases, Gaussian elimination can be unstable due to the division by akk
in the algorithm. This issue can be resolved by using pivoting. Pivotting is a tech-
nique that swaps rows and columns in the matrix to avoid numerical instability.
There are different types of pivoting, such as simple partial pivoting, scaled par-
tial pivoting, and full pivoting [15]. In this thesis, we will only discuss simple
partial pivoting. However, it is worth noting that there are other types of pivoting
that can be better at avoiding numerical instability [15]. Partial pivoting works by
swapping rows to ensure that the diagonal element is the largest element in the
column. It is performed by finding the largest element in the column and swap-
ping the rows. The algorithm for Gaussian elimination with partial pivoting is
given in Algorithm 8.

Algorithm 8 Partial Pivoting Gaussian Elimination
1: Input A ∈ Rn×n, b ∈ Rn.
2: for k = 1 to n− 1 do
3: p := argmaxi≥k |aik|
4: if p ̸= k then
5: Swap rows k, p in A, b
6: end if
7: for i = k + 1 to n do
8: lik :=

aik
akk

, aik := 0, bi− = likbk
9: for j = k + 1 to n do

10: aij− = likakj
11: end for
12: end for
13: end for

28



Once the matrix A has been transformed into an upper triangular matrix, the sys-
tem can be solved by back substitution. Back substitution is a method for solving
upper triangular systems. It works by solving the last equation for the last variable,
then substituting the value of the last variable into the second-to-last equation and
solving for the second-to-last variable. This process is repeated until all variables
have been solved for. Back substitution is represented by:

Algorithm 9 Back substitution
1: Input A ∈ Rn×n, b ∈ Rn.
2: xn := bn

ann

3: for i = n− 1 to 1 do
4: xi :=

bi−
∑n

j=i+1 aijxj

aii
5: end for

5.2 LU decomposition
The LU decomposition is a practical algorithm for solving linear systems of equa-
tions. Regarded as a direct method, it operates by breaking down a square matrix
A into two components: a lower triangular matrix L and an upper triangular ma-
trix U . This technique is applied for linear systems written as Ax = b, where A is
the aforementioned square matrix and b signifies a vector.

The matrix decomposition transforms the initial system into the equivalent LUx =
b. Solving this revised system is achieved in two steps. First, we solve the equa-
tion Ly = b to determine y, followed by resolving Ux = y to find the value of
x. LU decomposition provides benefits over Gaussian elimination in solving sys-
tems of linear equations. Once the LU decomposition is performed, the resulting
triangular matrices can be used to solve for different right-hand side vectors more
efficiently, as they bypass the need for repeated Gaussian elimination. This is es-
pecially useful when solving systems of equations with multiple right-hand side
vectors, as the LU decomposition can be performed once and then used to solve
for each vector [15]. The representation of the LU decomposition is as follows:

29



Algorithm 10 LU Decomposition
1: Given A ∈ Rn×n.
2: Initialize L = In and U = A.
3: for i = 1, . . . , n do
4: for j = i+ 1, . . . , n do
5: Lji :=

Uji

Uii

6: for k = i, . . . , n do
7: Ujk := Ujk − Lji · Uik

8: end for
9: end for

10: end for
11: Return L and U .

As with Gaussian elimination, the LU decomposition can be unstable due to the
division by Uii in the algorithm, and the issue can be resolved by using pivoting
[15]. We will not discuss pivoting for the LU decomposition in this thesis. When
we have performed LU decomposition, we can solve the system Ax = b by first
solving Ly = b for y and then solving Ux = y for x. Solving Ly = b for y is
done by forward substitution, and solving Ux = y for x is done by a backward
substitution. Back substitution has already been discussed in algorithm 9, and
forward substitution is given by:

Algorithm 11 Forward substitution
1: Given L ∈ Rn×n and b ∈ Rn.
2: y1 := b1/l11
3: for i = 2, . . . , n do
4: yi :=

(
bi −

∑i−1
j=1 lijyj

)
/lii

5: end for

5.3 Cholesky decomposition
Cholesky decomposition is also a direct method for solving linear systems. Chole-
sky decomposition is a method for solving linear systems of the form Ax = b,
where A is a symmetric (i.e., A = AT ) and positive definite matrix (i.e., xTAx > 0
for all x ̸= 0) and b is a vector. Cholesky decomposition works by decomposing
the matrix A into a lower triangular matrix L and its transpose LT . The system
Ax = b can then be written as LLTx = b. We can then solve the system by first
solving Ly = b for y and then solving LTx = y for x. The Cholesky decomposi-
tion is given by:

30



Algorithm 12 Cholesky Decomposition
1: Given A ∈ Rn×n.
2: Initialize L as zero matrix of size A.
3: for i = 1 to n do
4: for j = 1 to i do
5: s :=

∑j−1
k=1 LikLjk

6: Lij :=
1

Ljj
(Aij − s) if i ̸= j else

√
Aii − s

7: end for
8: end for

If matrix A is both symmetric and positive definite, it can be more efficiently de-
composed into an LLT form, which is referred to as the Cholesky decomposition.
If LLT ̸= A, then A we know that A is not symmetric and positive definite.

This process requires roughly half the computational effort and storage compared
to an LU decomposition. When we have performed Cholesky decomposition, we
can solve the system Ax = b by first solving Ly = b for y and then solving
LTx = y for x. Solving Ly = b for y can be done by forward substitution, and
solving LTx = y for x can be done by a backward substitution.

5.4 Conjugate gradient method
The conjugate gradient method is not a direct method. It is an iterative method,
meaning that it gradually improves an initial guess for the solution at each step.
The conjugate gradient method is a method for solving linear systems of the form
Ax = b, where A is a symmetric and positive definite matrix and b is a vector
[15]. The conjugate gradient method is represented as:

31



Algorithm 13 Conjugate Gradient Method
1: Given A ∈ Rn×n, b ∈ Rn, and an initial guess x(0) ∈ Rn.
2: Compute r(0) := b− Ax(0), set p(0) := r(0).
3: for k = 0, 1, 2, . . . until convergence do
4: Compute α(k) := r(k)

T
r(k)

p(k)
T
Ap(k)

.

5: Update x(k+1) := x(k) + α(k)p(k).
6: Compute r(k+1) := r(k) − α(k)Ap(k).
7: if ||r(k+1)||2 < ε (a small tolerance) then
8: Break
9: end if

10: Compute β(k) := r(k+1)T r(k+1)

r(k)
T
r(k)

.
11: Update p(k+1) := r(k+1) + β(k)p(k).
12: end for

This method begins with a rough guess for the solution. Then, it calculates the
difference between our guess and the real solution. This difference is used to
guide the first step of the process.

Each step of the process moves in a certain direction to reduce the gap between
our guess and the actual solution. It does this by finding the best length for each
step. This length then helps to improve our guess [18].

Next, the process calculates a new difference value, which will be perpendicu-
lar (or "orthogonal") to all previous ones. This step is crucial to keep the errors
orthogonal. The process then combines the new difference with the previous di-
rection to create a new direction. The new direction is kept orthogonal to the pre-
vious ones using certain coefficients. This way, the orthogonality of differences is
maintained even after this update [18].

The process keeps repeating these steps until the differences, or errors, become
small enough to ignore. When this happens, the process considers the latest guess
as the solution. The advantage of the conjugate gradient method is that it will, in
some cases, be able to provide an approximate solution in very few iterations.
Therefore, the conjugate gradient method can potentially be faster than direct
methods for some problems. The maximum number of iterations that the conju-
gate gradient method theoretically requires corresponds to the number of distinct
eigenvalues of matrix A; that is, it is capped at n. This characteristic renders the
conjugate gradient method appealing for handling large cases [18].

32



Chapter 6

Design and Implementation

In this chapter, we delve into the design and implementation aspects of our project,
highlighting three key modules: Linear, Convex, and Portfolio.

• LinearModule: This module is designed to tackle linear systems of equa-
tions. It houses a collection of functions that work together to solve these
systems efficiently and accurately.

• Convex Module: This module centers around solving convex optimiza-
tion problems. It incorporates numerous functions, each designed to handle
different aspects of the optimization process, thereby providing robust solu-
tions.

• Portfolio Module: Tailored for the specific needs of portfolio optimiza-
tion, this module encapsulates an array of functions that help solve complex
portfolio optimization problems.

In the following sections, we will delve into the design choices and implementa-
tion details of the algorithms encompassed within these modules. This in-depth
exploration aims to foster a comprehensive understanding of the mechanics pow-
ering these computational tools and the intricate design principles they embody.
It is worth noting that all of the modules utilize the official linear algebra module
for Futhark, a module I have previously contributed to [19]. This linear algebra
module consists of a variety of functions dedicated to matrix and vector operations
within the realm of linear algebra.

33



6.1 Linear Module
The Linear module contains functions for solving linear systems of equations
with the following methods: LU decomposition, Cholesky decomposition, Gaus-
sian elimination, and the conjugate gradient method. The module implements the
following API:

1 local module type linear = {
2 type t
3 val solve_Ab_gauss [n] : [n][n]t -> [n]t -> [n]t
4 val solve_Ab_gauss_np [n] : [n][n]t -> [n]t -> [n]t
5 val solve_Ab_lu_blocked [n] : [n][n]t -> [n]t -> [n]t
6 val solve_Ab_lu [n] : [n][n]t -> [n]t -> [n]t
7 val solve_Ab_lu_seq [n] : [n][n]t -> [n]t -> [n]t
8 val solve_Ab_seq_seq [n] : [n][n]t -> [n]t -> [n]t
9 val solve_Ab_flat_cholesky [n] : [n][n]t -> [n]t -> [n]t
10 val solve_Ab_cholesky_dot [n] : [n][n]t -> [n]t -> [n]t
11 val solve_Ab_cholesky_outer [n] : [n][n]t -> [n]t -> [n]t
12 val solve_Ab_cg [n] : [n][n]t -> [n]t -> [n]t
13 -> t -> i64 -> [n]t
14 }

While these functions are at the core of the Linear module, the module also
contains a number of other functions, such as functions solving linear systems
with multiple right-hand sides and functions for computing the inverse of a matrix.
These functions are not discussed in this report, but they are available in the source
code and exported in the API. The following sections will discuss the design and
implementation of the aforementioned functions.

6.1.1 Gaussian Elimination
In the pseudocode in Algorithm 7 (page 28), we have three nested loops, and in-
side each loop, we perform roughly n operations, and on average (n/2) arithmetic
operations [15]. Therefore, the work complexity of the algorithm is O(n3). The
span complexity is O(n), since we can update the matrix in parallel for each row.
The algorithm is, therefore work-efficient, but not span-efficient. This gives rise
to the following implementation, where we perform the elimination in parallel for
each row:

1 def gauss_np [m][n] (A:[m][n]t) =
2 loop A = copy A for i < i64.min m n do
3 let irow = map (T./A[i,i]) A[i]
4 in tabulate m (\j ->
5 let scale = A[j,i]
6 in map2 (\x y -> if j != i then y T.- scale T.* x else x) irow A[j]
7 )

34



tabulate is a simple function that performs a map operation on a range of
numbers. It is implemented as follows:

1 def tabulate ’a (n: i64) (f: i64 -> a): *[n]a =
2 map1 f (iota n)

The span of tabulate is O(S(f)) where S(f) is the span of f . Therefore, we
have that the span of the loop body isO(1) and the span of the loop isO(n), which
is the span of the algorithm. The implementation is therefore span-efficient. For
partial pivoting we need to find the largest element in the column with argmax,
which can be done in parallel, although not with a span of O(1). The argmax
function involes a reduce operation, which has a span of O(log n). Therefore,
the span of the function becomes O(n log n). The implementation is shown be-
low:

1 def gauss [m] [n] (A:[m][n]t) =
2 loop A = copy A for i < i64.min m n do
3 let p = A[i:,i] |> map T.abs |> argmax |> (.1) |> (+i)
4 let A = if p != i then swap i p A else A
5 let irow = map (T./A[i,i]) A[i]
6 in tabulate m (\j ->
7 let scale = A[j,i]
8 in map2 (\x y -> if j != i then y T.- scale T.* x else x) irow A[j]
9 )

6.1.2 LU decomposition
In the pseudocode in algorithm 10 (page 30), we have 3 nested loops and inside
each loop and each loop performs O(n) operations. Therefore, the work com-
plexity of the algorithm is O(n3). The span complexity is O(n), since we can
update the matrix in parallel for each row, but each row depends on updates from
the previous row. A simple sequential implementation can be written as follows:

1 def seq_lu [n] (A: [n][n]t): ([n][n]t, [n][n]t) =
2 let L = linalg.eye n
3 let U = copy A
4 in loop (L, U) for i in 0..<n do
5 let (L, U) = loop (L, U) for j in (i+1)..<n do
6 let Lji = U[j,i] T./ U[i,i]
7 let L[j,i] = Lji
8 let (L, U) = loop (L, U) for k in i..<n do
9 let Ujk = U[j,k] T.- (Lji T.* U[i,k])
10 let U[j,k] = copy Ujk
11 in (L, U)
12 in (L, U)
13 in (L, U)

35



While this implementation may be effective for small matrices, it is not efficient
for large matrices since the algorithm is not parallel. In the sequential version,
the outer loop goes over each row of the matrix, and the inner loops adjust the
elements in the lower and upper matrices based on the pivot (diagonal) element.
These adjustments are made using scalar operations and nested loops, which are
not parallelized.

When we convert this to use parallel matrix and vector operations, the goal is
to replace the scalar operations and loops with operations that can be vectorized
and run more efficiently on parallel hardware. The key observation is that the
operations performed on each row in the inner loops are linear operations (addition
and multiplication), which can be expressed as matrix and vector operations. This
allows us to take advantage of the fact that Futhark can perform these operations
in parallel.

Instead of dividing each element in a row by the pivot element, we can divide the
entire row by the pivot. This insight allows us to replace a loop with a parallel
operation. Instead of updating each element in a row one at a time, we can update
the entire row in one operation. This is done by subtracting the product of the
pivot row and the scaling factor from the current row. Again, we replace a loop
with a vector operation.

1 def lud [n] (A: [n][n]t): ([n][n]t, [n][n]t) =
2 let L = linalg.eye n
3 let U = copy A
4 in loop (L, U) for j in 0..<(n-1) do
5 let factor = map (T./ U[j, j]) U[j+1:, j]
6 let L[j+1:, j] = factor
7 let U[j+1:] = map (\i ->
8 map2 (T.-) U[j+1+i] (map (T.*factor[i]) U[j])
9 ) (0..<(n - j - 1))
10 in (L, U)

The implementation is span-efficient, since the span of the loop body is O(1) and
the span of the loop is O(n).

The linalg library in Futhark incorporates an LU decomposition function, ada-
pted from a Rodinia benchmark [20]. Utilizing a blocked algorithm, this func-
tion is poised to deliver better efficiency when dealing with large matrices. The
blocked LU decomposition method operates by subdividing the matrix into blocks
and applying LU decomposition to each individual block. Although this does not
present superior span complexity compared to the lud function, it exhibits in-
creased parallelism and superior cache locality for large matrices. This function
is also accessible through the linear module, albeit with a different interface.
The function is designed to relieve the user from the task of determining the block

36



size, as it computes it automatically based on the matrix size. While not always
delivering the optimal block size, the implementation suffices for most scenarios.
The definition of the function is as follows:

1 def blocked_lud [n] (A: [n][n]t): ([n][n]t, [n][n]t) =
2 let block_size = i64.max 1 (i64.min 32 (n / 4))
3 in lu.lu2 block_size A

The blocksize has been chosend based on the results of the benchmarks. Once
we have decomposed the matrix into lower and upper triangular matrices, we
can solve the system of equations using forward and backward substitution. The
solveLUb function below performs forward and backward substitution:

1 def forward_substitution [n] (L: [n][n]t) (b: [n]t): [n]t =
2 let y = linalg.veczeros n
3 in loop y for i in 0..<n do
4 let sumy = linalg.dotprod L[i,:i] y[:i]
5 let y[i] = copy (b[i] T.- sumy) T./ L[i,i]
6 in y
7 def back_substitution [n] (U: [n][n]t) (y: [n]t): [n]t =
8 let x = linalg.veczeros n
9 in loop (x) for j in 0..<n do
10 let i = n - j - 1
11 let sumx = linalg.dotprod U[i,i+1:n] x[i+1:n]
12 let x[i] = copy (y[i] T.- sumx) T./ U[i,i]
13 in x
14 def solveLUb [n] (L: [n][n]t) (U: [n][n]t) (b: [n]t) =
15 forward_substitution L b |> back_substitution U

6.1.3 Cholesky decomposition
The Cholesky function used by algorithm 12 (page 31) has 2 nested loops. How-
ever, we also have a summation inside the inner loop, which is essentially another
loop. Therefore, the work complexity of the algorithm is O(n3). The span is
O(n), since we can update the matrix in parallel for each row, but each row de-
pends on updates from the previous row, similar to the LU decomposition. A
simple sequential implementation of Cholesky decomposition is as follows:

1 def cholesky_banachiewicz [n] (A: [n][n]f64): [n][n]f64 =
2 let L = replicate n (replicate n 0.0)
3 in loop L for i in 0..<n do
4 loop L for j in 0...i do
5 let sum = loop sum = 0.0 for k in 0..<j do
6 L[i,k] * L[j,k] + sum
7 in if i == j then
8 let L[i,j] = f64.sqrt (A[i,i] - sum)
9 in L
10 else
11 let L[i,j] = (1.0 / L[j,j] * (A[i,j] - sum))
12 in L

37



This implementation employs the Banachiewicz algorithm, a variant of the Chol-
esky decomposition algorithm that initiates from the upper left corner and pro-
ceeds by calculating the matrix row by row [21]. Alternatively, we can employ
the Cholesky-Crout algorithm, which allows us to proceed column by column
[21]. This method is also available in Futhark and is implemented in the linear
module. While these sequential implementations may excel for smaller matrices,
their efficiency diminishes for larger matrices. However, we can circumvent this
limitation as the algorithm allows parallelization, primarily because most calcula-
tions have no dependencies. Bearing this in mind, we can design a parallel version
of the algorithm as detailed below:

1 def cholesky [n] (A: [n][n]t): [n][n]t =
2 let A = loop A = copy A for j in 0..<n do
3 let A[j,j] = T.sqrt (copy A[j,j])
4 let A[j+1:,j] = map (T./A[j,j]) A[j+1:n,j]
5 let m = n - j - 1
6 let v = A[j+1:n,j] :> [m]t
7 let outer_product = outer v v :> [m][m]t
8 let mat = A[j+1:n,j+1:n] :> [m][m]t
9 let A[j+1:n,j+1:n] = linalg.matsub mat outer_product
10 in A
11 in tril A

All of the operations in the loop body are span O(1). The outer function is
implemented using two nested maps, and the span of the rest of the operation can
be trivially inferred. The span of the loop is O(n), since each iteration depends
on the previous one. Therefore, we have that the span complexity of the imple-
mentation is O(n). While it should be much faster than the sequential version
for large matrices, it is still not optimal. We are only reading and writing to the
lower triangular part of the matrix, but we are still performing calculations on the
upper triangular part, and the memory access pattern is not optimal. We also offer
a more direct parallelization of the sequential algorithm in the linear module,
but it is not span efficient because it computes dot products in the loop body. We
can improve the implementation above by flattening the matrix and only keeping
the lower triangular part in memory. This is a good idea because we can reduce
the memory footprint of the algorithm by half. We can map the lower triangular
part of the matrix to a 1D array using the tril_indices below:

38



1 def tri_num (n: i64): i64 = n * (n + 1) / 2
2 def index_to_ij (k: i64) (n: i64): (i64, i64) =
3 let kp = n * (n + 1) / 2 - k - 1
4 let p = i64.f64 ((f64.sqrt (f64.i64 (1 + 8 * kp)) - 1) / 2)
5 let i = n - (kp - p * (p + 1) / 2) - 1
6 let j = n - p - 1
7 in (i, j)
8 def tril_indices (n: i64): *[](i64, i64) =
9 let l = (tri_num n)
10 in map (\k -> index_to_ij k n) (iota l)

tril_indices a formula derived in [22]. We could achieve the same with
a map running for i ∈ [0, n2), and perform filter on the resulting array to
only keep the indices that correspond to the lower triangular part of the matrix.
However, this would be less efficient because the span of the filter operation
is O(log n) and the tril_indices implementation above has span O(1). We
can now implement the parallel version of the Cholesky decomposition algorithm
as follows, by first mapping the lower triangular part of the input matrix A to a 1D
array and then performing the Cholesky decomposition on the 1D array:

1 def flat_cholesky [n] (A: [n][n]t): []t =
2 let t_i = tril_indices n
3 let l = length t_i
4 let L = map (\(i, j) -> A[i, j]) t_i
5 let m = tri_num n
6 let L = loop L for j in 0..<n-1 do
7 let di = m - (tri_num (n - j))
8 let sdi = T.sqrt (copy L[di])
9 let L[di] = sdi
10 let st = n - j - 1
11 let st_i = di + 1
12 let end = st_i + st
13 let L[st_i:end] = map (T./sdi) L[st_i:end]
14 let s_c = j + 1
15 let r = n - s_c
16 let k = tri_num r
17 let o_i = t_i[l-k:]
18 let o_i = map (\(a, b) -> let (c, d) = o_i[0] in (a - c, b - d)) o_i
19 let c = L[st_i:end] :> *[st]t
20 let o = (low_outer c o_i) :> [k]t
21 let L[m-k:] = map2 (\x y -> x T.- y) (L[m-k:] :> [k]t) o
22 in L
23 let di = m - 1
24 let L[di] = T.sqrt (copy L[di])
25 in L

Once we have performed the Cholesky decomposition on the 1D array, we can
map the array back to a 2D array using the inverse of the index_to_ij func-
tion.

39



1 def i_j_to_index (i: i64) (j: i64) (n: i64): i64 =
2 let p = n - j - 1
3 let kp = p * (p + 1) / 2 + (n - i - 1)
4 let k = n * (n + 1) / 2 - kp
5 in k - 1
6 def cholesky_unflat [n] A: [n][n]t =
7 let m = tri_num n
8 let L = flat_cholesky A
9 in map (\i ->
10 map (\j ->
11 if i < j then (T.f64 0.0) else L[i_j_to_index i j m]
12 ) (0..<n)
13 ) (0..<n)

Another way we could enhance this algorithm’s performance is through a block-
wise approach, splitting the matrix into blocks for separate Cholesky decomposi-
tions. This method potentially minimizes cache misses and could offer a higher
degree of parallelism [23].

6.1.4 Conjugate gradient method
The conjugate gradient method is an iterative method for solving systems of linear
equations where the matrix is symmetric and positive definite. We can implement
Algorithm 13 (page 32) in Futhark as follows:

1 def solve_Ab_cg [n] (A: [n][n]t) (b: [n]t) (x0: [n]t) (tol: t) (max_iter: i64)
=

2 let r = map2 (T.-) b (linalg.matvecmul_row A x0)
3 let rs_old = linalg.dotprod r r
4 let p = r
5 let x = x0
6 let i = 0
7 let running = true
8 let res = loop (x, p, r, rs_old, i, running) while running && i < max_iter

do
9 let i = i + 1
10 let Ap = linalg.matvecmul_row A p
11 let alpha = rs_old T./ linalg.dotprod p Ap
12 let x = map2 (T.+) x (map (alpha T.*) p)
13 let r = map2 (T.-) r (map (alpha T.*) Ap)
14 let rs_new = linalg.dotprod r r
15 in if T.sqrt rs_new T.< tol then
16 (x, p, r, rs_old, i, false)
17 else
18 let p = map2 (T.+) r (map ((rs_new T./ rs_old)T.*) p)
19 in (x, p, r, rs_new, i, running)
20 in res.0

The function begins by initializing several variables. The residual vector r is
calculated by subtracting the matrix-vector product of A and x0 from b. The
scalar rs_old is the dot product of r with itself. Vector p is initialized to r, x is

40



initialized to x0, the iteration count i is set to zero, and a boolean flag running
is set to true. Following the initialization, the main iterative loop of the function
begins. This loop runs until either the maximum number of iterations is reached
or the running flag is set to false. In each iteration, the function calculates
several values. First, it computes Ap as the matrix-vector product of A and p.
The scalar alpha is calculated as the ratio of rs_old to the dot product of p
and Ap. Then, x and r are updated. x is incremented by alpha times p, while
r is decremented by alpha times Ap. The scalar rs_new is computed as the
dot product of the updated r with itself. If the square root of rs_new is greater
than tol, the running flag remains true; otherwise, it is set to false. Next, p is
updated by adding r to the product of the ratio rs_new/rs_old and p. The old
rs_old value is replaced with rs_new, and the iteration count i is incremented
by one. The loop returns a tuple containing x, p, r, rs_old, i, and running.
Finally, the function returns the first element of this tuple, x, which represents the
solution to the system of linear equations.

6.2 Convex Module
The Convex modules contains functions for solving convex optimization prob-
lems using the following methods: gradient descent, Newton’s method, barrier
method, ADMM, and more. The module implements the following API (some
function have been omitted for brevity):

1 local module type solver = {
2 type t
3 gradient_descent
4 newtons_method
5 newton_equality
6 barrier_method
7 admm
8 grad_jvp
9 grad_vjp
10 hess_jvp
11 hess_vjp
12 solve_qp
13 }

6.2.1 Auto differentiation
Auto differentiation is very useful for solving optimization problems. It can be
used to compute the gradient and Hessian of functions. Finding and implementing
the gradient and Hessian of a function by hand can be very tedious and error-
prone, but with auto differentiation, it is straightforward for the user. We use the

41



built-in functions jvp and vjp (explained in 2.1.2) to compute the gradient and
Hessian of a function.

1 -- Compute gradient of f at x
2 def grad_jvp [n] (f: [n]t -> t) (x: [n]t) =
3 map (\i ->
4 let X = veczeros n
5 let X[i] = T.f64 1.0
6 in jvp f x X
7 ) (iota n)
8
9 -- Compute Hessian of f at x
10 def hess_jvp [n] (f: [n]t -> t) (x: [n]t) =
11 map (\i ->
12 map (\j ->
13 let X = veczeros n
14 let X[i] = T.f64 1.0
15 let Y = veczeros n
16 let Y[j] = T.f64 1.0
17 in jvp (\w -> jvp f w X) x Y
18 ) (iota n)
19 ) (iota n)

We can also implement functions for gradient and Hessian using vjp. Although
jvp cannot just be replaced by vjp in the above code, because vjp does not take
a one hot seed vector as input.

1 let f x = reduce (+) 0.0 (map (**2.0) x)
2 let g = grad f x
3 let h = hess f x

1 g = [2.0, 4.0, 6.0]
2 h = [[2.0, 0.0, 0.0],
3 [0.0, 2.0, 0.0],
4 [0.0, 0.0, 2.0]]

We will examine the performance impact of using these functions in chapter 7.
The impact will be evaluated for these functions using jvp and vjp, and gradient
and Hessian functions derived and implemented by hand. We expect that vjpwill
be faster for our purposes, as it is most efficient for functions that have more inputs
than outputs [8].

6.2.2 Gradient descent
We need to implement backtracking line search for gradient descent. We use the
Armijo-Goldstein condition to determine the step size in gradient descent. In the
Futhark code we introduce an extra parameter to algorithm 2 called max_iter.
This parameter is used to prevent the algorithm from running forever if the condi-
tion is never satisfied.

42



1 def armijo f x delta_x grad alpha t =
2 let left t = f (map2 (+) x (map (*t) delta_x))
3 let right t = f x + alpha * t * linalg.dotprod grad delta_x
4 in left t <= right t
5
6 def line_search f x delta_x grad alpha beta max_iter =
7 let (t, _) = loop (t, i) = (1.0, 0) while i <= max_iter && !(armijo f x

delta_x grad alpha t) do
8 (t * beta, i + 1)
9 in t

Backtracking line search can be fairly elegantly implemented in Futhark. We use
a while loop to iterate until the condition is satisfied or the maximum number of
iterations is reached. Even though the Armijo function can be executed in parallel
with a span ofO(log(n) ·S(f(x))), the while loop is executed sequentially, so the
span of the line search algorithm is the span of the armijo function multiplied
by the number of iterations until the condition is satisfied. We can improve it
by testing multiple values of t in parallel using a map and then selecting the first
value that satisfies the condition (using reduce). Then we can remove the while
loop and only perform the line search for a select number of t values.

1 def parallel_line_search [n] f x delta_x grad alpha beta n_ts =
2 let ts = map (\i -> 1.0 / (beta ** (f64.i64 i))) (iota n_ts)
3 let conds = map (\t -> (t, armijo f x delta_x grad alpha t)) ts
4 in (reduce (\(t1, b1) (t2, b2) -> if b1 then (t1, b1) else (t2, b2)) (0.0,

false) conds).0

Now gradient descent can be implemented as follows.

1 def gradient_descent [n] f f_grad x0 alpha beta max_iter =
2 let (x, _) = loop (x, i) = (x0, 0) while i <= max_iter do
3 let grad = f_grad x
4 let delta_x = map (*(-1.0)) grad
5 let t = parallel_line_search f x delta_x grad alpha beta 10
6 let x’ = map2 (+) x (map (*t) delta_x)
7 in (x’, i + 1)
8 in x

As a result, we no longer have sequential equation of a loop for backtracking line
search.

6.2.3 Newton’s method
Newton’s method has a similar structure to gradient descent, but instead of using
the gradient to determine the direction of the next step, it uses the inverse of the
Hessian. We use the same backtracking line search as in gradient descent or unit
step size. The version shown below is with unit step size for simplicity. Newton’s

43



method should not be as sensitive to the step size as gradient descent [14]. The
implementation of Newton’s method is shown below.

1 def newtons_method f_grad f_hess x0 epsilon max_iter =
2 let res = loop (x, i, r) = (x0, 0, true) while r && i < max_iter do
3 let grad = f_grad x
4 let hess = f_hess x
5 let step = linear.solveAb_cholesky hess (map (T.neg) grad)
6 let x = map2 (T.+) x step
7 let r = linalg.vecnorm step T.< epsilon
8 in (x, i + 1, r)
9 in res.0

We may use the same backtracking line search as in gradient descent. We use the
norm of the step vector to determine if the algorithm has converged. This is not a
very good measure of convergence but should be sufficient for our purposes.

Notice that we do not invert the Hessian as we did in the mathematical description
of the algorithm (page 20). Instead, we use the linear solver linear.solveAb_
cholesky to solve the linear system Hx = −∇f(x). This amounts to the same
thing as inverting the Hessian and multiplying it with −∇f(x), but it is more ef-
ficient. Inverting the matrix would require us to solve the linear system Hx = I ,
where I is the identity matrix. This is equivalent to solving n linear systems
Hxi = ei, where ei is the i’th column of the identity matrix. These equations
can be solved in parallel, but it is still more efficient to solve the linear system
Hx = −∇f(x) directly because we only need to solve one linear system instead
of n.

A large part of this algorithm is the computation of the linear system Hx =
−∇f(x). If the function f is convex, then the Hessian is symmetric positive
definite, which means that we can use the Cholesky and conjugate gradient to
solve the linear system. However, we can also use LU decomposition or Gauss
elimination. We will compare and examine these in chapter 7.

44



6.2.4 Newton’s method with equality constraints
We extend Newton’s method to handle equality constraints. We construct the KKT
matrix using the Futhark slicing syntax. The KKT system cannot be solved using
Cholesky decomposition or conjugate gradient, because the KKT matrix is not
guaranteed to be symmetric positive definite. Instead, we use LU decomposition
or Gaussian elimination to solve the linear system. The performance of these two
algorithms is compared in chapter 7.

1 def newton_equality f f_grad f_hess A b x0 max_iter =
2 let f_grad = grad f
3 let f_hess = hess f
4 let (x, r) = loop (x, i, r) = (x0, 0, true) while i < max_iter && r do
5 let grad_val = f_grad x
6 let Hessian_val = f_hess x
7 let KKT = matzeros (n + m) (n + m)
8 let rhs = veczeros (n + m)
9 let KKT[:n, :n] = Hessian_val
10 let KKT[:n, n:] = transpose A
11 let KKT[n:, :n] = A
12 let rhs[:n] = map T.neg grad_val
13 let rhs[n:] = map2 (T.-) b (matvecmul_row A x)
14 let delta_x_lam = solve_Ab_lu_blocked KKT rhs
15 let delta_x = delta_x_lam[:n]
16 let x_new = map2 (T.+) x (map (T.*t) delta_x)
17 in if vecnorm delta_x T.< epsilon then
18 (x, false)
19 else
20 (x_new, true)
21 in x

In the code above, we apply unit step size to the direction/step vector. We can also
use a line search to determine the step size. We will not implement this here. We
use the norm of the step vector to determine if the algorithm has converged. This
method is not a very good measure of convergence but should be sufficient for our
purposes. Depending on the problem, one might want to use more sophisticated
stopping criteria, for instance, a relative decrease in the objective function value
or a decrease in the duality gap.

One must be cautious about the initialization of the algorithm. The initial guess
x0 can significantly affect the convergence of the algorithm and may even prevent
convergence if it is chosen poorly. The algorithm is a feasible descent method,
which means that it will only converge if the initial guess is feasible. The method
also assumes that the constraints are linear. Nonlinear constraints can be linearized
using a Taylor series expansion, but this can introduce additional complexity and
may require multiple iterations to achieve an acceptable level of accuracy [12].

45



6.2.5 Barrier method
The barrier method is an extension of Newton’s method with equality constraints.
It uses a barrier function to approximate the inequality constraints. The barrier
function is defined as follows, where fi are the inequality constraints:

1 let phi x = T.neg (reduce (+) 0.0 (map (T.log <-< T.neg) (fi x)))

The barrier function is then added to the objective function and Newton’s method
with equality constraints is used to minimize the objective function. Then we min-
imize this new objective function with Newton’s method with equality constraints.
This process is repeated until the solution converges. We have that it converges
when m/t < ϵ, where m is the number of inequality constraints, ϵ is the toler-
ance, and t is a parameter that controls the scaling of the barrier function. The
approximation parameter t is scaled by µ at each iteration. Since m, µ, and ϵ are
constants; we can compute the number of iterations required to converge before
running the algorithm. This can potentially speed up the program because Futhark
may be able to unroll the loop. We solve the following inequality for i, where i is
the iteration number:

m/(t · µi) < ϵ

m < ϵ · t · µi

m/(ϵ · t) < µi

logµ(m/(ϵ · t)) < i

log(m/(ϵ · t))
log(µ)

< i

Therefore, we can compute the number of iterations iters required to converge
as follows:

1 let iters = i64.f64 ((f64.log (m / (epsilon * t))) / (f64.log (mu)))

46



The barrier method is implemented as follows:

1 def barrier f0 f0_grad f0_hess phi phi_grad phi_hess mm A b x x0 t0 mu eps =
2 let iters = T.to_i64 (T.log (T.i64 mm T./ (eps T.* t0)) T./ T.log mu T.+ T.

f64 1.0)
3 let res = loop (x, t) = (x0, t0) for i < iters do
4 let f x = t T.* (f0 x) T.+ phi x
5 let f_grad x = map (T.* t) (f0_grad x) |> map2 (T.+) (phi_grad x)
6 let f_hess x = map (map (T.* t)) (f0_hess x) |> map2 (map2 (T.+)) (

phi_hess x)
7 let x_new = newton_equality_nan f f_grad f_hess A b x max_iter
8 in (x_new, t T.* mu)
9 in res.0

This function takes many arguments. The arguments f0, f0_grad, and
f0_hess are the objective function, its gradient, and its Hessian matrix, respec-
tively. The arguments phi, phi_grad, and phi_hess are the barrier function,
its gradient, and its Hessian matrix, respectively. The argument mm is the number
of inequality constraints. The arguments A and b are the equality constraints. The
argument x0 is the initial guess. The argument t0 is the initial value of t, used
to scale the barrier function. The argument mu is the scaling factor for t. The
argument eps is the tolerance. The function returns the solution vector x. In the
module we also offer a function barrier_auto, which automatically computes
the gradient and Hessian matrix of the barrier function.

We see that the span of this function is largely influenced by the span of Newton’s
method with equality constraints, and this, in turn, is primarily influenced by the
span of solving the linear system, so if we want to reduce the span of this function
further, we would have to focus on reducing the span of solving the optimization
problem with equality constraints.

In order to find a feasible point, we solve the optimization problem described in
section 4.4.1. We use the barrier method to solve this problem. We also provide
a function solve_qp that finds and feasible point and solves the optimization
problem.

1 def find_feasible_point [n][m] (fi: [n]t -> []t) (A: [m][n]t) (b: [m]t): [n]t
=

2 let x = least_squares A b -- Solving Ax = b
3 -- Compute s, an upper bound for the maximum constraint violation
4 let s = (fi x |> reduce T.max (T.f64 0.0)) T.+ (T.f64 0.001)
5 let n’ = n + 1
6 let x = x ++ [s] :> [n’]t
7 let A = transpose ((transpose A) ++ [veczeros m]) :> [m][n’]t
8 let f [n’] (x: [n’]t): t = x[n’-1] -- New objective function
9 let fi_new [n’] (x: [n’]t): []t = -- Define the modified constraint function
10 let s = x[n’-1]
11 let x = x[0: n’-1] :> [n]t
12 in map (\x’ -> x’ T.- s) (fi x)
13 let x = barrier_method_default fi_new f A b x
14 in x[0: n] :> [n]t

47



We can wrap the barrier method with a map to solve a batch of problems. We can
also do this for Newton’s method with and without equality constraints and the
gradient descent method. However, we cannot do this when the implementation
uses the blocked LU decomposition because the Futhark compiler has rejected
this with the message "Cannot handle un-sliceable allocation size. Likely cause:
irregular nested operations inside parallel construct". This is a current compiler
limitation and will hopefully be fixed in the future.

6.2.6 Alternating direction method of multipliers
The admm function utilizes the Alternating Direction Method of Multipliers (AD-
MM) algorithm that solves optimization problems by dividing them into small-er,
easier subproblems (see page 24). ADMM is particularly useful in large-scale
optimization and distributed computation because we can split each subproblem
into many subproblems that can be solved in parallel. However, for this imple-
mentation, we only parallelize the computation of each subproblem. We alternate
between updating the variables x, z, and u. The variable x is the variable we want
to optimize. We do this by minimizing the augmented Lagrangian function with
respect to x:

1 let update_x (x: [n]t) (z: [m]t) (u: [m]t) =
2 let Ax = linalg.matvecmul_row A x
3 let g1 = f_grad x
4 let Ax_z = map2 (T.-) Ax z
5 let Ax_z_u = map2 (T.+) Ax_z u
6 let At_t = linalg.matvecmul_row (transpose A) Ax_z_u
7 let g2 = map (rho T.*) At_t
8 let gradient = map2 (T.+) g1 g2
9 let h1 = f_hess x
10 let At_A = linalg.matmul (transpose A) A
11 let h2 = map (map (rho T.*)) At_A
12 let Hessian = map2 (map2 (T.+)) h1 h2
13 (veczeros n) (T.f64 1e-8) n
14 let delta_x = linear.solve_Ab_cholesky Hessian gradient
15 in map2 (T.-) x delta_x

We see that we use Newton’s method to compute the update for x. Cholesky de-
composition is used to solve the linear system because the Hessian matrix is sym-
metric and positive definite. Therefore, we can also use all of the other methods
that we have implemented for solving linear systems. When x has been updated,
we update z and u as follows:

1 let update_z (x: [n]t) (u: [m]t) =
2 let Ax = linalg.matvecmul_row A x
3 let zu = map2 (T.+) Ax u
4 in map2 T.max b zu

48



And finally, we update u as follows:

1 let update_u x z u =
2 let Ax = linalg.matvecmul_row A x
3 let Ax_z = map2 (T.-) Ax z
4 in map2 (T.+) u Ax_z

In the function’s implementation, it alternates between updating x, z, and u. Each
update represents one part of the overall optimization and leverages data from
the other components to adjust its own value, which in turn influences the other
elements’ updates in the next iteration. The updates are derived based on the
nature of the problem and the structure of the constraints, leveraging gradient and
Hessian of the objective function and the system matrix A.

The initial inputs for x, z, and u are defined outside the main iteration loop. For
x, the initial point is provided by the user, while z and u are initialized to zero.

The function continues updating these values until either a maximum iteration
count max_iter is reached or the convergence criterion is met. Convergence is
measured as the relative change in x and is considered achieved if it falls below
a specified tolerance level (tol). It is a typical convergence measure in iterative
methods ensuring the result is sufficiently close to the true solution.

It is important to note the role of the rho parameter, which is a user-specified
penalty parameter. This value can greatly impact the efficiency of the method and
may need to be tuned depending on the problem at hand. A large value of rho
will put more emphasis on the constraint violation, which may be useful if the
constraints are particularly important. The result of the algorithm is largely influ-
enced by rho, so it is important to choose a good value. For this implementation,
we use a fixed value of rho, but more advanced schemes exist for choosing rho
dynamically [24].

49



6.3 Portfolio module
The portfolio module contains functions for solving portfolio optimization
problems. The module implements the following API:

1 local module type portfolio = {
2 type t
3 val efficient_return [n] : t -> [n]t -> [n][n]t -> [n]t
4 val efficient_risk [n] : t -> [n]t -> [n][n]t -> [n]t
5 val min_volatility [n] : [n][n]t -> [n]t
6 val efficient_return_and_esg [n] : t -> t -> [n]t -> [n]t
7 -> [n][n]t -> [n]t
8
9 }

We see that the module contains functions for solving the efficient return, efficient
risk, and minimum volatility problems. The module also contains a function for
solving the efficient return and ESG problem. This amounts to the following
optimization problem:

Minimize xTΣx (6.1)

Subject to µTx ≥ r (6.2)

esgTx ≥ e (6.3)
x ≥ 0 (6.4)

n∑
i=1

xi = 1 (6.5)

where:

• µ is a vector in Rn of expected returns.

• Σ is an n× n covariance matrix of returns.

• x is the vector in Rn that we’re solving for.

• r is a scalar parameter that represents the minimum expected return.

• esg is a vector in Rn of ESG scores.

• e is a scalar parameter that represents the minimum ESG score.

Solving this problem will give use the portfolio with minimum volatility with
expected return greater than r and expected ESG score greater than e, where we
allow no short selling (x ≥ 0) and require that the sum of the weights is equal to
one (

∑n
i=1 xi = 1).

50



The following function can be used to find the portfolio with minimum volatility
for minimum expected return and minimum expected ESG score.

1 def efficient_return_and_esg [n]
2 (target_return: t)
3 (target_esg: t)
4 (mus: [n]t)
5 (esg: [n]t)
6 (covs: [n][n]t) =
7 -- Inequality constraints
8 let fi (x: []t) =
9 in [-- expected_esg >= target_esg
10 target_esg T.- (expected_esg x esg)
11 -- expected_return >= target_return
12 target_return T.- (expected_return x mus)
13 -- x >= 0
14 ] ++ map (T.neg) x
15 -- Equality constraints
16 -- sum(x) = 1
17 let A = [replicate n (T.f64 1.0)]
18 let b = [(T.f64 1.0)]
19 -- Objective function
20 let f0 (x: [n]t) = expected_risk x covs
21 -- Solve the problem
22 in convex.solve_qp f0 fi A b

We have the following three functions to compute the expected return, expected
risk, and expected ESG score:

1 let expected_risk x Sigma = linalg.dotprod x (linalg.matvecmul_row Sigma x)
2 let expected_return x mus = linalg.dotprod x mus
3 let expected_esg x esg = linalg.dotprod x esg

efficient_return_and_esg is a simple example of how the convexmod-
ule can be used with minimum effort. The inequality constraints are defined in the
function fi. The inequality constraints are expressed as a list of expressions
that must evaluate to a non-negative value. If n is the number of assets, then we
have n + 2 inequality constraints. The first n constraints are the non-negativity
constraints. The other two constraints are the minimum expected return and min-
imum expected ESG score. The equality constraints are defined as A and b. The
objective function is defined in the function f0.

51



An important note, is that we can exhibit much better (as shown in Chapter 7)
than this simple example by deriving the derivatives by hand and passing them to
the convex module. We can calculate the derivatives of the objective functions
a follows:

∇(xTΣx) = (Σ + ΣT )x

= 2Σx (since Σ is symmetric)

∇2(xTΣx) = ∇(2Σx)
= 2Σ

1 let f x = linalg.dotprod x (linalg.matvecmul_row Sigma x)
2 let g x = map (*2) (linalg.matvecmul_row Sigma x)
3 let h _ = map (map (*2)) Sigma

We can do the same for the barrier function ϕ (this is a bit more involved, but the
idea is the same). We would then use the derived functions to solve the same prob-
lem. The performance of manually derived derivatives will be evaluated against
the auto-differentiation detailed in Chapter 7.

52



Chapter 7

Benchmarking and testing

This chapter addresses the benchmarking and performance testing of the Futhark
implementation. We will solve different portfolio optimization problems and com-
pare the performance of the Futhark implementation against the Python imple-
mentation. We will also compare the performance of the Futhark implementation
against Python libraries for solving linear systems. The modules have been in-
stantiated with f64 for all of the benchmarks, but it is trivial to switch the type to
f32 or any other real type due to Futhark’s polymorphic module system.

Every Futhark benchmark has been conducted using futhark bench and with
CUDA as the backend. The GPU leveraged is an NVIDIA A100 with 40GB
of VRAM. The CPU used for the benchmarks is an AMD EPYC 7352 24-Core
Processor, equipped with 527 GB of RAM. The versions of Futhark and Python
utilized are 0.22.3 and 3.10, respectively. The Python libraries used are NumPy
(version 1.23.3), scipy (version 1.9.3), and CVXPY (version 1.3.0).

7.1 Linear Module Evaluation
This section focuses on the evaluation of the linearmodule, where we will con-
trast the performance of Cholesky and LU decomposition and the effectiveness of
solving a linear system of equations represented as Ax = b. This entails bench-
marking the performance of the Futhark implementations against Python libraries
such as numpy and scipy. We will also gauge the performance when solving
linear systems in a batched manner, a distinct feature of Futhark that proves bene-
ficial for handling large-scale problems and distributed computation. Optimizing
batched performance is also crucial for the convex optimization algorithms when
aiming to solve multiple problems in parallel.

53



7.1.1 Cholesky
In this section we will compare the performance of the Cholesky implementa-
tions, batched and non-batched. We will compare the performance of the Futhark
implementation against the Python implementation.

Method
Dim

100x100 500x500 1000x1000 5000x5000 10000x10000

Flat 2251µs 13116µs 28696µs 649778µs 4720386µs
Crout/Seq 562549µs 68469887µs - - -

Banachiewicz/Seq 550646µs 67851051µs - - -
Outer 2295µs 11501µs 23247µs 1128661µs 9725639µs
Dot 2578µs 13024µs 28017µs 267419µs 1323244µs

NumPy 63µs 1693µs 7939µs 499338µs 2788463µs

Table 7.1: Benchmark results of different Cholesky methods and NumPy. Time
in µs is reported. "-" indicates that the method exceeded the maximum time limit
of 10 minutes.

The Crout and Banachiewicz methods are noticeably slower in comparison to
other techniques. The reason for this is their lack of parallelization and naive se-
quential implementation. The NumPy method proves to be the most efficient for
matrices that are smaller than 1000x1000. This can be attributed to the fact that
NumPy leverages a highly optimized C implementation of the Cholesky decom-
position, and we benefit more from the parallelization as the matrix size increases.

The flat version of Cholesky is almost double the speed of the implementation
is was derived from (the outer product version). Surprisingly, we see that the
"dot-version" derived directly from Banachiewicz is very fast for large matrices
and is the only method that outperforms NumPy for the 5000x5000 matrix and
10000x10000. This is surprising because it has a span of O(n log n) because
it computes dot products in the body of the outer loop. The "outer" and "flat"
versions have a span ofO(n), but scale worse in practice. I suspect this is because
the "dot" version has a better memory access pattern and thus benefits more from
the cache, but it could also be that Futhark makes some unfortunate optimizations
for the "outer" and "flat" versions.

Next, we’ll delve into the batched versions of the Cholesky decomposition. This
means we’ll examine and compare the performance when executing the Cholesky
decomposition on a large set of matrices

54



Method
Dim 1000000x

5x5
1000000x

10x10
100000x

20x20
10000x
50x50

1000x
100x100

100x
500x500

Flat 5265µs 45702µs 35286µs 56711µs 240236µs 29102880µs
Crout/Seq 1942µs 10400µs 4565µs 11628µs 43709µs 7973984µs
Banachiewicz/Seq 1800µs 9672µs 4254µs 6238µs 22206µs 2105505µs
Outer 6495µs 60511µs 51839µs 131924µs 537358µs 58620970µs
Dot 7152µs 56095µs 42474µs 125089µs 533273µs 58408621µs
NumPy 1841378µs 2033527µs 325007µs 98811µs 85831µs 165973µs

Table 7.2: Benchmark results of different batched Cholesky methods. Time in µs
is reported.

We observe numerous interesting trends within this table. The flat version con-
sistently outperforms all of the other parallel methods, yet the sequential versions
(Crout and Banachiewicz) prove to be the fastest, with Banachiewicz taking the
lead. They display impressive speed when dealing with small matrices, but the
results for larger matrices are intriguingly peculiar. It appears that the sequential
implementations can compute 100 matrices of size 500x500 faster than a single
matrix of the same size in the non-batched benchmark. This oddity remains un-
explained, but I speculate that when it is not encapsulated by a map function, the
Futhark compiler might make some unfortunate optimizations.

Interestingly, the NumPy implementation is the fastest for the 500x500 matrices.
All of the parallel implementations seem to experience significant scaling issues
when encapsulated by a map. This is evident as the runtime for the "dot" version
with 1000x100x100 exceeds the runtime of a single 100x100 (as shown in table
7.1) multiplied by 1000. The same observation applies to 100x500x500 for all of
the parallel versions, hinting that we might as well run the map sequentially for
large matrices.

7.1.2 LU Decomposition
In this section, we will compare the performance of both batched and non-batched
LU implementations. We’ll assess the performance of the Futhark implementation
in contrast to the LU decomposition from SciPy. SciPy employs LAPACK for LU
decomposition, a highly optimized Fortran implementation by Intel.

55



Method
Matrix

100x100 500x500 1000x1000 5000x5000 10000x10000

LUD 1705µs 9165µs 20163µs 1584932µs 11885985µs
Seq LUD 960931µs 111392020µs - - -

Blocked LUD 2356µs 5958µs 12995µs 216774µs 1112225µs
SciPy 27320µs 29859µs 41966µs 717490µs 4905548µs

Table 7.3: Benchmark results of different LU decomposition methods. Time in µs
is reported.

We observe that the sequential LUD is exceptionally slow in comparison to other
methods. Its performance is so slow that it couldn’t compute matrices larger than
500x500 within 10 minutes, hence its exclusion from the benchmark. This can
be attributed to its non-parallel, naive sequential implementation. Conversely, the
blocked version outperforms in all matrices larger than 100x100, demonstrating
superior performance.

Surprisingly, SciPy performs quite poorly compared to Cholesky in NumPy (a lot
more than 2x slower). Cholesky should only have half the number of operations
as LU, so we expected it to be faster. We definitely don’t expect it to be more than
100 times slower in some instances, but that turned out to be the case.

The blocked LU decomposition exhibits impressive speed for matrices exceeding
100x100 when compared to the other methods. This high-speed implementation,
translated from a Rodinia benchmark [20], has been a benchmark component for
Futhark for some time. As such, it is probable that any regressions that this im-
plementation has experienced during Futhark’s development have been caught.
Additionally, the implementation has likely received considerable attention re-
garding compiler optimizations. We will now benchmark the LU implementations
for solving multiple matrices in parallel.

Method
Matrix 1000000x

5x5
1000000x

10x10
100000x
20x20

10000x
50x50

1000x
100x100

100x
500x500

LUD 4237µs 23685µs 15110µs 19187µs 14703µs 161251µs
Seq LUD 2127µs 12636µs 6033µs 19407µs 112546µs 13716390µs
Blocked LUD 16703µs 42849µs 22863µs 26905µs 3654µs 23886µs
SciPy 4980473µs 7842934µs 1141277µs 305864µs 415662µs 547019µs

Table 7.4: Benchmark results of different batched LU decomposition. Time in µs
is reported.

From the batched benchmarks, we observe that the sequential version is exceed-
ingly fast for matrices under 50x50. We suspect this speed is due to the overhead
of the parallel constructs, such as map and reduce, being too significant for small

56



matrices. In these benchmarks, the compiler is unaware of the matrices’ sizes at
compile time, thus hindering it from performing optimizations accordingly. The
straightforward parallel LUD implementation is quickest for a batch of matrices
sized 50x50. However, for matrices of 100x100 and 500x500, the blocked ver-
sion proves to be the fastest. Similar to Cholesky, we note that the sequential
implementation is actually computes 1000x100x100 faster than a single 100x100
matrix. This unusual occurrence leads us to suspect that the compiler may have
conducted some unfortunate optimizations. As expected, the SciPy implementa-
tion is considerably slow, but this outcome aligns with our expectations.

7.1.3 Solving the system (Ax = b)
In this section, we will compare the performance of various methods used for
solving a single vector equation. For our benchmarking, we will gauge the perfor-
mance of Futhark implementations against the NumPy implementation numpy.
linalg.solve. The methods that will be benchmarked include: sequential and
parallel Cholesky, sequential and blocked LU decomposition, Gauss-Jordan elim-
ination, and the Conjugate Gradient method. We will also assess the performance
of the batched versions of these methods. Given that we are benchmarking both
Cholesky and Conjugate Gradient, it is required that A is symmetric positive def-
inite. Accordingly, we will generate a random symmetric positive definite matrix
A for each benchmark and a random vector b.

Method
Matrix

100x100 500x500 1000x1000 5000x5000 10000x10000

Cholesky Dot 4019µs 20123µs 43868µs 351368µs 1493065µs
LU Blocked 4261µs 11726µs 25118µs 297169µs 2543884µs

Gauss 5949µs 29988µs 59787µs 1687173µs 12111056µs
Gauss NP 1251µs 5717µs 14226µs 1508537µs 11739530µs

CG 5531µs 31212µs 70790µs 1090442µs 6805977µs
NumPy 414µs 1861µs 10192µs 595741µs 4100007µs

Table 7.5: Benchmark results of different linear equation solver methods. Time in
µs is reported.

We did not include the sequential versions of LU and Cholesky for the bench-
mark shown in table 7.5. This is because they are very slow for large matrices, as
we have seen in the previous benchmarks. We see that Guass elimination with-
out pivoting is the fastest Futhark method for 100x100 although still slower than
NumPy. For matrices 500x500 and larger the blocked LU implementation is the
fastest, except for 10000x10000, where Cholesky pulls ahead. Conjugate gradient

57



(CG) is also fairly fast, but is not able to beat any of the other methods for any of
the sizes. In our tests, the conjugate gradient method has been shown to use a lot
more iterations for larger matrices. For matrices smaller 100x100 (n = 100), it
often converges to a good solution with much less than n iterations, but this is not
the case for larger matrices.

Method
Matrix 1000000x

5x5
1000000x

10x10
100000x

20x20
10000x
50x50

1000x
100x100

100x
500x500

Cholesky Dot 16490µs 134174µs 112757µs 128873µs 542807µs 76504121µs
Cholesky Banachiewicz/Seq 3277µs 16538µs 6785µs 13612µs 47305µs 8005949µs
LU Blocked 22105µs 121299µs 55674µs 19744µs 16670µs 165624µs
LU Seq 4287µs 23794µs 10142µs 22631µs 115883µs 13773200µs
Gauss 4136µs 30050µs 21799µs 134416µs 551759µs 59807991µs
Gauss NP 3498µs 18227µs 11890µs 16575µs 13325µs 155387µs
CG 2343µs 13164µs 9343µs 8986µs 9072µs 117261µs
NumPy 2397694µs 2734681µs 1036028µs 373783µs 140247µs 202333µs

Table 7.6: Benchmark results for the different linear algebra methods.

We did not include the sequential versions of LU and Cholesky in the benchmark
presented in table 7.5. This is due to their sluggish performance with large ma-
trices. We observed that Gauss elimination without pivoting is the fastest Futhark
method for 100x100 matrices, although it is still slower than NumPy. For matrices
sized 500x500 and larger, the blocked LU implementation proves to be the fastest,
except for 10000x10000 matrices, where Cholesky takes the lead. The Conjugate
Gradient (CG) method is also relatively quick, but it cannot outperform any of the
other methods for any of the given sizes. In our testing, the CG method was found
to require significantly more iterations for larger matrices. For matrices smaller
than 100x100 (n = 100), it often converges to a satisfactory solution with less
than n iterations. However, this is not the case for larger matrices. It is worth
noting that for the optimization algorithms, we are likely to have a better start-
ing point for the conjugate method. This is because we can utilize the solution
from the previous iteration as a starting point for the next iteration. For these
benchmarks, we simply selected a starting point of all zeros.

7.2 Portfolio Optimization
In this section, we will look at the benchmarks for solving various portfolio opti-
mization problems. We will look at the different optimization algorithms and how
they perform for different sizes of the problem and with different methods for
solving the linear systems of equations. The results will be compared to CVXPY.

58



7.2.1 Unconstrained
For the unconstrained problem we will look at the following mean-variance prob-
lem:

Minimize λµTx− xTΣx (7.1)

where:

• λ is a scalar parameter that balances return and risk.

• µ is a vector in Rn of expected returns.

• Σ is an n× n covariance matrix of returns.

• x is the vector in Rn that we’re solving for.

Solving this problem amounts to finding an efficient portfolio, but we have no
constraints on the sum of the weights, and we allow negative values. This means
that we can short-sell and leverage as much as we want. We will benchmark
Newton’s method and gradient descent with and without parallel backtracking.

Method
Dim

100x100 500x500 1000x1000 5000x5000 10000x10000

LU Blocked 4238µs 12118µs 26513µs 398021µs 3339618µs
LU Blocked LS 4382µs 11984µs 26384µs 397840µs 3337620µs

LU Blocked Par-LS 4331µs 12324µs 27367µs 401075µs 3347706µs
Cholesky Dot 4395µs 22026µs 43337µs 444724µs 2280493µs

CVXPY 301778µs 1030464µs 9981167µs - -

Table 7.7: Benchmark results of Newtons method with different linear equation
solvers compared to CVXPY. Time in µs is reported. "-" indicates the method
exceeded the time limit of 10 minutes. LS indicates that it used backtracking
line search and Par-LS indicates that it used parallel backtracking line search. All
other methods use fixed step size of 1.

Table 7.7 displays the results of the benchmark. It is evident that we can solve
the problem significantly faster than CVXPY for all sizes. Newton’s method con-
verges incredibly quickly for this problem. Within 2-3 iterations, it delivers a
solution that falls below the tolerance of 1e−8. We see that the performance im-
pact of line search is not very big, but the parallel version is actually slower than
the sequential version. This is likely because the sequential version rarely needs
to backtrack, so the overhead of the parallel version is not worth it.

Even though the underlying implementation for the default solver (OSQP) in
CVXPY is written in C/C++, the user defines the problem in Python. Conse-

59



quently, the performance is subject to the considerable overhead of the Python in-
terpreter. Moreover, OSQP is a general-purpose solver, considerably more robust
than our specialized solver. It is likely to provide a more accurate solution. This
is possibly why we are able to surpass CVXPY by such a large margin. CVXPY
could not produce a solution for 5000x5000 and 10000x10000 matrices within the
time limit of 10 minutes. We observe the same trends as in the previous bench-
marks for solving linear systems of equations. The blocked LU implementation
proves to be the fastest for all matrices, excluding 10000x10000.

Method
Matrix 1000000x

5x5
1000000x

10x10
100000x

20x20
10000x
50x50

1000x
100x100

100x
500x500

Cholesky Banachiewicz/Seq 1840µs 26570µs 21636µs 17048µs 38656µs 6820933µs
Cholesky Banachiewicz/Seq LS 2277µs 25879µs 15691µs 16761µs 38950µs 5603183µs
Cholesky Banachiewicz/Seq Par-LS 4575µs 41468µs 18845µs 24962µs 126396µs 7935806µs
Cholesky Dot 4010µs 11145µs 18422µs 39673µs 64009µs 13008815µs
CG 3318µs 22163µs 16825µs 50623µs 285931µs 30334389µs
Cvxpy 1654617786µs 1724611043µs 200374889µs 55150985µs 313039350µs 122469816µs

Table 7.8: Benchmark results of Newtons method solving a batch of problems
with different linear equation solvers. Time in µs is reported. LS indicates that it
used backtracking line search and Par-LS indicates that it used parallel backtrack-
ing line search. All other methods use fixed step size of 1.

As previously mentioned in section 6.2.5, we can not use the blocked LU decom-
position because this is rejected by the compiler. We achieve very good results
with the sequential Cholesky implementation. CVXPY has no fair chance here,
as it is not designed to solve many small problems in parallel.

7.2.2 Equality Constrained
For the equality constrained problem we will look at the following mean-variance
problem:

Minimize xTΣx (7.2)

µTx = e (7.3)

where:

• µ is a vector in Rn of expected returns.

• Σ is an n× n covariance matrix of returns.

• x is the vector in Rn that we’re solving for.

• e is a scalar parameter that represents the expected return.

60



This problem is similar to the unconstrained problem, but we have a constraint that
the expected return of the portfolio is equal to a given value e. We will benchmark
Newton’s method with equality constraints against CVXPY.

Method
Dim

100x100 500x500 1000x1000 5000x5000 10000x10000

Blocked LU 10099µs 23710µs 50771µs 596213µs 7645244µs
LU 6916µs 35543µs 74481µs 3364351µs 37224828µs

CVXPY 290593µs 3208202µs 12529201µs - -

Table 7.9: Benchmark results of Newtons method for equality constraints with
Blocked LU and normal parallel LU. Time in µs is reported. "-" indicates that the
problem was not solved within 10 minutes.

We see that we are still able to beat CVXPY with a sizeable margin for all problem
sizes. However, the margin has decreased compared to the unconstrained problem.
Blocked LU still offers superior performance.

Method
Matrix 1000000x

5x5
1000000x

10x10
100000x
20x20

10000x
50x50

1000x
100x100

100x
500x500

Seq LU 5874µs 29754µs 17829µs 46418µs 211924µs 21089124µs
Cvxpy 1506617546µs 1538765192µs 172541308µs 52582622µs 277966309µs 112454667µs

Table 7.10: Benchmark results of Newtons method for equality constraints solving
a batch of problems. Time in µs is reported.

Again, we are not able to use the blocked LU decomposition because of compiler
limitations, but we see very good results with the sequential Cholesky implemen-
tation. CVXPY still has no fair chance, as it is not designed to solve many small
problems at once.

61



7.2.3 Inequality Constrained
For the inequality constrained problem we will look at the following mean-variance
problem:

Minimize xTΣx (7.4)

µTx ≥ r (7.5)

esgTx ≥ e (7.6)
x ≥ 0 (7.7)

n∑
i=1

xi = 1 (7.8)

where:

• µ is a vector in Rn of expected returns.

• Σ is an n× n covariance matrix of returns.

• x is the vector in Rn that we’re solving for.

• r is a scalar parameter that represents the minimum expected return.

• esg is a vector in Rn of ESG scores.

• e is a scalar parameter that represents the minimum ESG score.

This problem is similar to the equality constrained problem, but we have addi-
tional constraints that the expected return of the portfolio is greater than or equal
to a given value r, the ESG score of the portfolio is greater than or equal to a given
value e, and that the portfolio is long only. We will benchmark the barrier method
and ADMM against CVXPY.

Method
Dim

100x100 500x500 1000x1000 5000x5000 10000x10000

Barrier Blocked LU 118998µs 281977µs 657501µs 11423628µs 98800274µs
Barrier Blocked LU JVP 216995µs 17840563µs - - -
Barrier Blocked LU VJP 405230µs 29044586µs - - -

ADMM Blocked LU 1197242µs 3704565µs 8030992µs 124910869µs -
ADMM CG 1767997µs 10400217µs 19616014µs - -

CVXPY 333689µs 1039506µs 12988537µs - -

Table 7.11: Benchmark results of barrier method and ADMM with different linear
equation solver. Time in µs is reported. "-" indicates the problem was not solved
within 10 minutes or ran out of memory.

62



We see that we are still able to beat CVXPY for all sizes, but the margin has
decreased again. We also see that the ADMM method is not able to solve the larger
problems within 10 minutes. This is because the ADMM method requires a lot of
iterations to converge, although each iteration is very fast. It is very susceptible
to the choice of its parameter ρ and the stopping criteria. The barrier method
is able to solve larger problems, but it is also very sensitive to the choice of its
parameter µ. A µ of 3 has been chosen for these benchmarks, but a larger value
would likely cause it not to converge. The barrier method converges after roughly
21 iterations of its outer loop. A lower value would cause it to have a higher
number of iterations and thus be slower. We also benchmarked with the use of the
built-in functions for auto-differentiation jvp and vjp. We ran out of memory
with the jvp function for the 1000x1000 problem. This is likely a bug within the
compiler. vjp exceeded the 10-minute time limit for problems above 500x500,
and we see that jvp actually performs better (more comments on this below).

Method
Matrix 1000000x

5x5
1000000x

10x10
100000x
20x20

10000x
50x50

1000x
100x100

100x
500x500

Barrier 381133µs 1823316µs 552519µs 879378µs 3281759µs 282061036µs
Barrier JVP 920946µs 4887080µs 5974507µs 15708619µs 27219190µs -
Barrier VJP 275395µs 1320658µs 725943µs 1402458µs 4266512µs -
ADMM LU 2507170µs 10113011µs 4766267µs 37977384µs 139446494µs -
ADMM CG 3664286µs 17110162µs 9227441µs 51621440µs 344393814µs -
Cvxpy 2034657001µs 2039673566µs 220676279µs 57815551µs 304475522µs 167484545µs

Table 7.12: Benchmark results of different batched LU decomposition methods.
Time in µs is reported.

We see that the barrier method is incredibly fast at solving many small optimiza-
tion problems in parallel. ADMM is quite a lot slower than the barrier method,
but it is still faster than CVXPY. ADMM is slower than the barrier method be-
cause it requires more iterations to converge. The barrier method was the only out
of the Futhark implementations able to provide a solution within 10 minutes for
100 optimization problems with 500 variables/securities (100x500x500). Also, it
is clear from table 7.11 that 500x500 problems should just be solved sequentially
because the barrier method is more than 100 times faster at solving one 500x500
than 100 of them in a map.

We see that the effect on performance for jvp and vjp is much smaller for small
problem sizes. We would expect vjp to be faster for our implementation than
jvp, because vjp should be most efficient for functions that have more inputs
than outputs [8]. This is also what we are seeing and is actually faster than hand-
derived derivatives for smaller matrices. For the unbatched benchmarks, we saw
the opposite, and the reason remains unknown.

63



7.3 Test on S&P500
The S&P500 is a stock market index that measures the stock performance of 500
of the largest companies listed on stock exchanges in the United States. It is
one of the most commonly followed equity indexes. In this section, we will test
our implementation on the S&P500 index along with ESG scores, aiming to find
the portfolios with the lowest risk for a certain level of return and ESG. The esg
provider is Apex ESG Enterprise [25]. This data spans a period of 5 years, from
2013 to 2018. The ESG values range from 537 to 1699, with higher values being
better. Similarly, the return values range from −0.69 to 0.79, with higher being
better. The return values indicate the anual mean return.

We will tackle two problems. The first is to find the portfolio with the lowest risk
but with a return and ESG higher than 0.30 and 1000, respectively. The second
problem is to solve a grid of optimization problems optimizing for risk at different
levels of return and ESG and display the results as a 3D plot. We will solve for
40000 different combinations of return and ESG, but we will only include 20
stocks in the portfolio. The results will then be compared to those obtained using
CVXPY. For the first problem, we present the following results:

Measurement CVXPY Futhark
ESG 1115.816 1113.103

Return 0.3 0.3
Risk 0.001466 0.001442

Weight Sum 1.000000 1.000003

Ticker and Weight (Largest 5)

’SO’: 0.034953
’HLT’: 0.096116
’DXC’: 0.141200
’DWDP’: 0.141894
’APTV’: 0.426892

’SO’: 0.034755
’HLT’: 0.097354
’DXC’: 0.141700
’DWDP’: 0.142108
’APTV’: 0.421119

Table 7.13: S&P500 Portfolio with lowest risk for return and ESG higher than
0.30 and 1000 respectively.

We can see that we actually achieve a lower risk than CVXPY while still satisfying
the constraints. This is surprising, but the differences are minor. The weights
appear very similar. The second task is to efficiently solve a grid of optimization
problems, each with varying levels of return and ESG, and display the results as
a 3D scatter plot. We will solve for 40,000 different combinations of return and
ESG. Observe the figures below:

64



Figure 7.1: CVXPY Figure 7.2: Futhark

The results are once again very similar. The overall shape of the surfaces is the
same, but we see some noise in different places for both solutions. We observe
that the noise occurs around the edges of the surfaces, which indicates that those
portfolios are likely not optimal or feasible. The results serve as a good confi-
dence boost in the Futhark implementation’s ability to solve these problems at a
satisfactory level of precision.

The Futhark implementation is also much faster than CVXPY, taking only 2.3
seconds to solve all 40,000 problems, while CVXPY takes 2 minutes on CPU.

65



Chapter 8

Conclusion and Future work

8.1 Conclusion
The objective of this thesis was to explore the parallelization of convex optimiza-
tion for portfolio optimization problems. This investigation led to the introduction
of three new Futhark libraries. The first library offers techniques for solving lin-
ear systems of equations. The second library leverages the first to solve convex
optimization problems with various types of constraints, using Newton’s method,
the barrier method, and ADMM. The third library utilizes the second for solving
portfolio optimization problems.

It effectively compiles efficient GPU code, and benchmarks indicate that it in
some cases outperforms CVXPY, a renowned Python library for solving convex
optimization problems. The Futhark implementation particularly shines in han-
dling numerous small optimization problems in parallel or problems with an ex-
tensive number of variables.

Tested on S&P500 data, the implementation’s results align closely with those
achieved via CVXPY. Although portfolio optimization served as the case study
for this work, the implementation is versatile and can be applied to other convex
optimization problems, extending its utility to various fields.

Futhark’s high-level language properties make it an excellent tool for prototyping
and developing data-parallel algorithms for convex optimization problems. The
insights from this thesis can serve as foundational knowledge for future research
in the realm of parallel convex optimization.

66



8.2 Future Work
The work presented in this thesis can serve as a basis for further investigations into
parallel convex optimization. Here are several suggestions for continued research:

• Explore alternative methods for addressing convex optimization problems,
such as the application of the primal-dual interior-point method.

• Enhance the robustness of the implementation by incorporating additional
checks for infeasibility and unboundedness.

• Assess the potential for a blocked Cholesky decomposition approach to
solving linear equation systems.

• Consider the use of infeasible-start Newton’s method as a means to find a
feasible starting point for the barrier method.

• Contemplate partitioning the ADMM subproblems into smaller components
and parallelizing their solutions.

• Examine the influence of the builtin auto-differentiation on performance
and seek explanations for any observed decline in performance when it is
employed.

• Explore the potential application of the module to other convex optimization
problems.

67



Bibliography

[1] T. Henriksen, N. G. W. Serup, M. Elsman, F. Henglein, and C. E. Oancea,
“Futhark: Purely functional gpu-programming with nested parallelism and
in-place array updates”, in Proceedings of the 38th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, ser. PLDI
2017, Barcelona, Spain: ACM, 2017, pp. 556–571, ISBN: 978-1-4503-4988-
8. DOI: 10.1145/3062341.3062354. [Online]. Available: http:
//doi.acm.org/10.1145/3062341.3062354.

[2] ETF Database, Socially responsible etf list, https://etfdb.com/
esg-investing/social-issues/, Accessed May 15, 2023.

[3] Welcome to CVXPY 1.3 2014; CVXPY 1.3 documentation — cvxpy.org,
https://www.cvxpy.org/, [Accessed 15-May-2023].

[4] Why Futhark? — futhark-lang.org, https://futhark-lang.org/
index.html, [Accessed 15-May-2023].

[5] T. Henriksen and M. Elsman, “Towards size-dependent types for array pro-
gramming”, in Proceedings of the 7th ACM SIGPLAN International Work-
shop on Libraries, Languages and Compilers for Array Programming, ser. AR-
RAY 2021, Virtual, Canada: Association for Computing Machinery, 2021,
1âC“14, ISBN: 9781450384667. DOI: 10.1145/3460944.3464310.
[Online]. Available: https://doi.org/10.1145/3460944.
3464310.

[6] R. Zadeh. “Cme 323: Distributed algorithms and optimization, lecture 1:
Overview, models of computation, brent’s theorem”. Scribed by Andreas
Santucci. (Apr. 3, 2017), [Online]. Available: https://stanford.
edu/~rezab/dao/notes/lecture01/cme323_lec1.pdf.

[7] M. Elsman, T. Henriksen, and C. E. Oancea, “Parallel programming in
futhark”, in Parallel Programming in Futhark — futhark-book.readthedocs.io,
ch. 6. A Parallel Cost Model for Futhark Programs. [Online]. Available:
https://futhark- book.readthedocs.io/en/latest/
index.html# (visited on 05/15/2023).

[8] R. Schenck, O. RÃ¸nning, T. Henriksen, and C. E. Oancea, “Ad for an ar-
ray language with nested parallelism”, in 2022 SC22: International Confer-

68



ence for High Performance Computing, Networking, Storage and Analysis
(SC) (SC), Los Alamitos, CA, USA: IEEE Computer Society, Nov. 2022,
pp. 829–843. [Online]. Available: https://doi.ieeecomputersociety.
org/.

[9] M. Elsman, T. Henriksen, D. Annenkov, and C. E. Oancea, “Static interpre-
tation of higher-order modules in futhark: Functional gpu programming in
the large”, Proc. ACM Program. Lang., vol. 2, no. ICFP, 97:1–97:30, Jul.
2018, ISSN: 2475-1421. DOI: 10.1145/3236792. [Online]. Available:
http://doi.acm.org/10.1145/3236792.

[10] H. Markowitz, “Portfolio selection*”, The Journal of Finance, vol. 7, no. 1,
pp. 77–91, 1952. DOI: https://doi.org/10.1111/j.1540-
6261.1952.tb01525.x. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1111/j.1540-6261.1952.tb01525.
x. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1111/j.1540-6261.1952.tb01525.x.

[11] The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred
Nobel 1990 — nobelprize.org, https://www.nobelprize.org/
prizes/economic-sciences/1990/press-release/, [Ac-
cessed 16-May-2023].

[12] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university
press, 2004.

[13] J. Nocedal and S. J. Wright, Numerical Optimization, 2e. New York, NY,
USA: Springer, 2006.

[14] S. Boyd and L. Vandenberghe, “Convex optimization”, in Cambridge uni-
versity press, 2004, ch. 9.5, pp. 484–487.

[15] G. Garrigos and R. M. Gower, Handbook of Convergence Theorems for
(Stochastic) Gradient Methods. Paris, France: Université Paris Cité and
Sorbonne Université, CNRS, Laboratoire de Probabilités, Statistique et Mod-
élisation; Center for Computational Mathematics Flatiron Institute, New
York, Jan. 2023.

[16] S. Boyd, Distributed optimization and statistical learning via the alternat-
ing direction method of multipliers, 2010. DOI: 10.1561/9781601984616.

[17] Z. Liu, An ADMM-Newton method for inequality constrained optimiza-
tion — towardsdatascience.com, https://towardsdatascience.
com/an-admm-newton-method-for-inequality-constrained-
optimization-37a470c58a5c, [Accessed 21-May-2023].

[18] A. Roberts, A. Shi, and Y. Sun, Conjugate gradient methods, [Online; ac-
cessed 28-May-2023], 2021. [Online]. Available: https://optimization.
cbe.cornell.edu/index.php?title=Conjugate_gradient_
methods.

69



[19] K. U. Weihe, K. Q. Hansen, and P. K. Larsen, “Linear algebra in futhark”,
Department of Computer Science, University of Copenhagen, Tech. Rep.,
Feb. 2021.

[20] K. Wang, S. Che, and K. Skadron, Rodinia benchmark suite 3.1, https:
//github.com/yuhc/gpu-rodinia, Contact: kw5na@virginia.edu,
sc5nf@cs.virginia.edu, skadron@cs.virginia.edu, 2023.
[Online]. Available: https://github.com/yuhc/gpu-rodinia.

[21] Wikipedia, Cholesky decomposition, (Accessed on May 30, 2023), 2023.
[Online]. Available: https://en.wikipedia.org/wiki/Cholesky_
decomposition.

[22] M. Angeletti, J.-M. Bonny, and J. Koko, “Parallel euclidean distance ma-
trix computation on big datasets”, HAL, Tech. Rep. ffhal-02047514f, 2019.
[Online]. Available: https://hal.archives- ouvertes.fr/
ffhal-02047514f.

[23] J. H. Jung, “Cholesky decomposition and linear programming on a gpu”,
Scholarly Paper Directed by Dianne P. O’Leary, 2023.

[24] Y. Xu, M. Liu, Q. Lin, and T. Yang, “Admm without a fixed penalty param-
eter: Faster convergence with new adaptive penalization”, 2023.

[25] Apex esg enterprise, https://www.esgenterprise.com, Ac-
cessed: 2023-07-03, 2023. [Online]. Available: https://www.esgenterprise.
com.

70


