

F ACULTY O F S C I EN CE
U N I V E R S I T Y O F C O P E N H A G E N

Project in Computer Science
Kasper Abildtrup Hansen

FFT Generator in Furthark
A prototype Futhark library using FFTW technniques

Supervisor: Ken Friis Larsen

June 22, 2018

Contents
1 Introduction 2

1.1 Problem Statement . 2
1.2 Limitations and Restrictions . 2

2 FFTW Techniques in Futhark 3
2.1 The Fastest Fourier Transform In The West 3
2.2 FFT Algorithms . 3

3 Implementation 6
3.1 FFTs . 6
3.2 Planner . 7
3.3 Executor . 8
3.4 Additional Files . 8
3.5 Validation Testing . 8

4 Benchmark Tests 9
4.1 Methodology . 9
4.2 Expectations . 9
4.3 Results . 10
4.4 Data Validation . 12

5 Discussion 14

6 Conclusion 15

Abstract
In the end of 20th century Frigo and Johnson presented The Fastest Fourier Trans-

form in the West, which has shown to be a highly successful approach for computing
the discrete Fourier Transform. In this project FFTW techniques are employed to in-
vestigate the possibility of implementing a new FFT library in Futhark, genfft, which
is then compared against the existing radix-2 FFT in Futhark. The results show that
even though genfft is inefficient on datasets sizes involving prime factors, it is faster
than the existing Futhark FFT on large datasets when the dataset sizes involve radices
2, 3 and 4.

1

1 Introduction
Because of its operational efficiency for computing the discrete Fourier Transform (DFT),
the popularity of the fast Fourier Transform (FFT) as well as its capability for inspiring
further research has been continuous since first presented by Cooley and Tukey in 1965. In
the end of 20th century Frigo and Johnson presented a new approach for computing the
DFT named The Fastest Fourier Transform in the West (FFTW), which builds on the idea
of combining efficient FFTs into a composite algorithm to compute the DFT. The approach
has proven to be highly successful and has been included and adopted in several software
libraries including NVIDIAs cuFFT library [3].

Futhark1 is a statically typed, data-parallel, and purely functional array language de-
signed to be compiled to efficient parallel code, which is being developed at the Depart-
ment of Computer Science, University of Copenhagen. Futhark currently only implements
a simple parallel radix-2 FFT library, but an improved FFT library could help prove the
computational strength of Futhark, which is why we in this project explore the possibility
of improving the current FFT library in Futhark using FFTW techniques. The paper is
divided into four parts:

• In the first section the scope of the project is introduced including limitations and
restrictions.

• The second section introduces the primary techniques of FFTW and FFTs to be in-
cluded, and in the third section certain certain aspects of the implementation is pre-
sented.

• The fourth section describes the benchmark testing, where the implementation is com-
pared against the existing FFT library.

• Finally, the results are discussed and a conclusion is reached in sections 5 and 6.

1.1 Problem Statement
In this project we will investigate how techniques from FFTW can be used in a FFT library
for Futhark by implementing and evaluating a prototype, genfft, using these techniques.
The evaluation will be done by comparing run-times against the existing FFT library in
Futhark, /futlib/fft. Because /futlib/fft is a relatively simple radix-2 FFT with only
a few preparatory computations, we only expect to see speedups for genfft compared to
/futlib/fft on large datasets, where the effect of FFTs with larger radices can be increased,
and the slowdown caused by preparatory computations can be minimised.

1.2 Limitations and Restrictions
For simplicity, we have chosen to focus only on 1-D FFTs with complex input. In addition,
since there is no asymptotic time difference between forward or inverse FFTs, and although
all FFTs are capable of computing them both, we keep it simple by only evaluating the
forward FFTs.

1https://futhark-lang.org/

2

2 FFTW Techniques in Futhark
In the following we make a short introduction to the The Fastest Fourier Transform in the
West (FFTW) by Frigo and Johnson [5], and discuss some of the aspects of adopting FFTW
techniques in Futhark. This is followed by a description of the specific FFTs we are using.

2.1 The Fastest Fourier Transform In The West
The FFTW is build on the overall idea of combining several efficient FFT algorithms into a
composite algorithm, which is composed during run-time to specifically compute the DFT
for some arbitrary N . To achieve this the FFTW incorporates three parts: (1) blocks of C
code defining the FFT algorithms (named codelets by Frigo and Johnson), (2) a planner,
which composes a plan pi detailing how to combine the codelets based on a predefined
strategy and the size of input i, and (3) a codelet generator, which given a plan pi combines
the codelets into a specific set of computations designed to efficiently compute the DFT of
i [4, 5].

The codelet generator, genfft, is the main part of FFTW, generating the final code using
four phases of operations: first, a creation phase where genfft produces the first version of
the code based on some known DFT algorithm, (2) a simplifier phase, where it rewrites parts
of the code based on algebraic transformations and common-subexpression elimination, (3)
a scheduler phase, which minimises register spills, and finally (4) an unparsing phase, where
the code is translated to C [4; p 2].

The advantages of adopting FFTW techniques in a FFT library using Futhark, is that
Futhark simplifies certain parts of the process. Specifically, it implicitly handles the three
final phases of the code generating process, leaving us to focus solely on implementing an
efficient computational strategy and the necessary FFT algorithms. On the downside, there
are certain aspects of the planning process, for example, the factorisation of N , which is
foremost a iterative process, and therefore could possibly counteract the parallel capabilities
of Futhark. Another aspect of this, is that there are no publicly known algorithms capable
of integer factorisation in polynomial time, and since factorisation is an important part of
choosing the right strategy, we need to employ an efficient method for doing this. In our case
we may exploit the fact, that since we are implementing a specific set of FFT algorithms,
we only need to granularise the input size to a point, were we are able to decide, which FFT
algorithms to apply.

A recent addition to Futhark is the support for higher-order functions (HOFs), which we
had hoped to employ in a FFTW-like library. But early testing showed that limitations en-
forced by Futhark regarding HOFs prohibited efficient usage. In the end, the show-stoppers
were the limitations prohibiting the use of HOFs as the results of branching or as elements
in an array, which could have proven to be useful in the current context.

2.2 FFT Algorithms
The discrete Fourier Transform (DFT) is defined as

F (y) =
N−1∑
x=0

f(x) e−i2πxy/N ,

where f(x) is a sequence of N elements and i is the imaginary unit satisfying the property
i2 = −1. Computing the DFT is very time consuming and requires O(N2) operations, but

3

symmetries in the DFT recognised by Cooley and Tukey [2] allows for large reductions in
the number of computations. This is represented by the fast Fourier Transform (FFT),
which requires only O(N logN) operations to compute the DFT. The basic idea of the
Cooly-Tukey FFT is that the DFT of a composite N = n1n2 can be expressed using smaller
the DFTs of n1 and n2. Although, the Cooley-Tukey FFT is probably the most famous,
there exist FFT algorithms based on other approaches, most notably Rader’s FFT for prime
sized N [12] and Bluestein’s FFT for arbitrary N [1; pp 124–133], which are both based on
expressing the DFT of N as the convolution of two subsequences.

Based on the fundamental theorem of arithmetic, which states that every integer i > 1
is either a prime number or can be expressed as a composite number of primes, we could
simplify the planning process by only implementing either Rader’s or Bluestein’s FFT. Un-
fortunately, neither is very fast. A way of implementing the convolution needed in both
algorithms are by exploiting the fact that the convolution F(a, b) of subsequences a and b
can be expressed as

F(a, b) = inverse DFT (DFT (a) ·DFT (b)),

where X · Y denotes the element-wise product of sequences X and Y [12]. The asymptotic
number of operations for F(a, b) is O(N logN) when implementing the convolution using
efficient FFT algorithms, but the actual number of operations is larger than the Cooly-Tukey
FFT, since the convolution involves both a forward and an inverse DFT. Because of this, we
obviously need to employ several FFTs to achieve a reasonable efficiency. Since it first was
introduced, the official FFTW library has expanded and version 3.3.8 incorporates several
FFTs and features for optimising the library [7]. Since our goal is to implement a prototype
version of FFTW in Futhark, we instead look at the earlier and more simple version 2.0
[4] as a basis regarding which FFTs to employ. In FFTW verson 2.0 included algorithms
are split-radix algorithms, prime factor algorithms, Rader’s FFT algorithm, as well as FFT
algorithms for some smaller radices.

Radix-2, 3 and 4 FFTs

Govindaraju et al. presents several algorithms for computing the DFT on GPUs, one of
which is a radix-2 FFT algorithm by Stockham. The Stockham FFT is based on the approach
by Cooley-Tukey, but is more efficient and well-suited for parallel computation because it
auto-sorts each stage of the FFT out-of-place [8]. It is also the algorithm used in the
existing FFT library in Futhark, making it an obvious choice for including in a FFTW
Futhark prototype.

Since the approach by Cooley-Tukey only requires N to be a composite, FFT algorithms
for some radix R ∈ N can be composed in a way similar to the FFT of radix-2. There is, of
course, a difference in how the smallest possible R-point DFT is expressed and the number
of reducible computations, which is caused by a difference in the symmetry of the DFT of
a radix-R sequence compared to a radix-2 sequence. Example of an optimised version of a
radix-3 butterfly can be found in Löfgren et al.[11] and an example of a radix-4 butterfly
can be seen in Wu [13].

Rader’s FFT

To ensure that our algorithm is capable of computing all possible sizes, we can exploit the
before-mentioned fundamental theorem of arithmetic and employ Rader’s FFT algorithm
[12] when N is a prime number. It runs in O(N logN) like the Cooly-Tukey FFT, but the

4

actual number of operations are somewhat higher, since it involves two forward FFTs and one
inverse FFT to compute the DFT, as well as permuting the sequences using transformations
involving the primitive root of modulo.

Roughly, this means that if N ′ = N − 1 is highly composite, for example, N ′ = 8 = 23,
the number of operations is more than three times higher than the Cooley-Tukey FFT. If
N ′ is not highly composite, for example, N ′ = 22 = 21 · 111, then the number of operations
is even higher since it requires zero-padding the sequence into a highly composite length.

5

3 Implementation
The goal of this project is to investigate how FFTW techniques can be used in a Futhark
library. To do this, a prototype genfft has been implemented consisting of a planner and
an executor as described in Section 2.1. The implementation is evaluated by comparing it
to the existing Futhark radix-2FFT library /futlib/fft. Since the quality of genfft relies
mainly on the operational speed – not to mention the correctness of the computed DFTs
– benchmark programs capable of measuring the singular parts of genfft have also been
implemented.

This section presents the implementation and validation of the programs. All files are
implemented using Futhark version 0.6.0 (Wed Jun 13 07:31:28 2018 +0200) and can be
found in the project’s GitHub repository [9] or in the included zip-file.

3.1 FFTs
In this version of genfft four FFT algorithms have been implemented: FFTs for radices 2,
3 and 4 and Rader’s FFT algorithm for prime numbers.

Radix-2, 3 and 4 FFTs

The radix-2, 3 and 4 FFTs are implemented using the same module found in generic_fft.fut
as a template, and similar to /futlib/fft, all three FFTs use the Stockham FFT for arbi-
trary radices presented by Govindaraju et al. [8; p. 3] as a reference implementation.

The main structure of the radix-2 FFT found in r2fft.fut is identical to /futlib/fft,
except for the zero-padding functionality.

The radix-3 and radix-4 FFTs, which can be found in r3fft.fut and r4fft.fut, re-
spectively, use the same structure as r2fft.fut, and only differs in how the respective FFT
butterflies are implemented. In case of r3fft.fut the FFT butterfly has been rewritten
slightly compared to the reference [11; Table II in p. 3] to save computations.

In addition, all three FFTs employ the Stockham FFT algorithm, both in case of auto-
sorting the DFT, but also by including entries fft_comp for specifying the structure of the
DFT to be computed. An example is shown in Listing 1, where the structure is defined by
the values factor (equal to how much has been computed before this) and times (equal to
how many times to apply this specific FFT). Together with specific radix these values are
used in computing the NS sequence, which in the Stockham FFT dictates how to compute
and arrange the input data.

1 let fft_comp [n] (forward : bool)
2 (factor : i32)
3 (times : i32)
4 (data: [n](R.t, R.t)) : [n](R.t, R.t) =
5 ...

Listing 1: Entry for specifying the DFT structure.

Rader’s FFT

Rader’s FFT algorithm is implemented in rdfft.fut, and like the three other FFTs, it
employs the Stockham FFT algorithm for auto-sorting the DFT and for specifying the
structure of the DFT to be computed. The current rdfft.fut employs the planner when

6

N ′ is highly composite (i.e. no factors of N ′ are prime) and zero-padding to N ′′ = 2M for
some N ′′ > 2N − 4, when it is not.

Most of the implementation is a straightforward reference to the original article by Rader
[12], although we try employ as much of the parallel capabilities of Futhark as possible. For
example, by applying the forward FFT to the two subsequences using map.

An important part of Rader’s algorithm is the use of number theory, and it requires op-
erations like finding the primitive root of N and checking if a number is prime. All utilitary
functionality needed for Rader’s FFT can be found primes.fut, including an implementa-
tion of the Fast Powering Algorithm [10; pp. 25–26].

3.2 Planner
The planner can be found in planner.fut and takes of care of a two-step process: analyse
the input size N , and create a plan based on the composability of N and a predefined
strategy.

Strategy

With only four available FFTs, planner.fut starts by focusing on the fast FFTs when
decomposing N . Preliminary testing has showed, that r2fft.fut is faster than r4fft.fut
up to data sizes of N = 219, so we only include r4fft.fut for data sizes larger than this.
Additionally, since we have not included the Bluestein FFT, we need to employ rdfft.fut
in a composite FFT, which could potentially be very time consuming. The overall strategy
implemented in planner.fut is:

1. If N > 219 then start by finding the larger possible value of r when dividing N with
4r.

2. If N ≤ 219 or step 1 os done, find the largest possible values of p and q when dividing
N (or the remainder) with 2p and when dividing the remainder with 3q.

3. If the remainder is not a prime, find the remaining prime factors.

Create Plan

After decomposing N using the above strategy, we know which FFTs to use and how many
times to apply them. Creating the plan is then merely a matter of computing the factor
value used for defining the DFT structure (see Section 3.1), which is equal to

factori =
{

If i = 0 then 1
If i > 0 then factori−1 · radixtimesi−1

i−1 ,

where radixi is the radix of the current FFT to apply, and timesi is number of times to apply
the current FFT. For example, if N = 6 = 21 ·31, then factor0 = 1 and factor1 = 1·21 = 2.

For each step in the plan, planner.fut defines these three values, factor, radix and
times. For applying some minor type inference and for ease of reference, the values are
reported using a domain specific type,

plan = {prefactor: i32, radix: i32, times: i32},

which is used in the output of the main entry

make_plan -> i32 -> []plan.

7

The resulting array is used by the executor, but since it is unreadable in standard output,
a function for translating the plan into a readable list of tuples has been implemented in

translate_plan -> []plan -> ([]i32, []i32, []i32).

3.3 Executor
The executor is found in the main file genfft.fut and combines the planner and FFTs into
the prototype library. Besides being implemented as a parametric module, the structure is
simple and includes the possibilities of making and executing a plan based on some floating
point input. Because the computation of the composite DFT is inherently sequential the
execution is implemented using a simple for-loop.

3.4 Additional Files
• For benchmarking the library a set of simple programs has been implemented. All

benchmark programs use the prefix bench_ and should be easy identifiable.

• For testing the correctness of the implemented FFTs a set of files are implemented,
which test the linearity of 64-bit versions of the FFTs. All these files use the prefix
linearity_ and should be easy identifiable. Because certain FFTs differ in precision
(see fx [8]) it is possible for the user to define a certain amount of buffer, when testing
for linearity.

• Finally, a single file, utilities.fut, containing two utilitary functions used by some
of the main files is implemented.

3.5 Validation Testing
All new files except the benchmark programs include test blocks with predefined inputs and
expected outputs, and were tested for validity using Futhark-test.

In addition, to validating the programs using expected outputs, the four FFT programs
were tested for correctness with a linearity test defined in corresponding linearity test files
(see Section 3.4). Before testing for correctness the main linearity test file is validated to
ensure a valid test. Three of the FFT programs, r2fft.fut, r4fft.fut and rdfft.fut
had a 100 percent valid linearity test without any buffer, while r3fft.fut achieved a 100
percent valid linearity test, when not counting the last decimal.

All tests are implemented in the included Makefile.

8

4 Benchmark Tests
In the previous section implementation of the FFTW techniques were presented. In this
chapter we present the conducted benchmark tests.

4.1 Methodology
Since this is a prototype version, it will not be fair to compare it against a fully developed
parallel library like cuFFTW. Instead we use the existing /futlib/fft which is a based on
a radix-2 Stockham FFT as a baseline. The current implementation uses zero-padding to
adjust input sizes to radix-2, but to simplify the test we only benchmark it using radix-2
values. The genfft, on the other hand, will be benchmarked using various sizes to test
the efficiency of the current implementation. In addition, the planner will be benchmarked
independently of genfft, to get an idea of how much time it consumes.

All test programs are compiled to GPU-orientated executables using futhark-opencl,
and run on GPU02 of the DIKU GPU Cluster2 with the following hardware specifications:

• 1 Supermicro SYS-7047GR-TPRF, 4U/Tower barebone LGA2011, 2x1620W PSU,
8x3.5" htswp trays

• 2 Intel Xeon E5-2650v2, 8-core CPU, 2.6GHz, 20MB cache, 8GT/s QPI

• 8 Samsung 16GB DDR3(128GB total) 1866MHz Reg. ECC server module

• 2 nVidia GeForce GTX 780 Ti, 3072MB, 384 bit GDDR5, PCI-E 3.0 16x

• 1 Intel S3500 serie 240GB SATA SSD

• 1 Seagate Constellation ES.3 4TB 7200RPM SATA 6Gb/s 128MB cache 3,5" HDD
After running the tests, the run-times are collected and organised, and the mean, median
and standard deviation values for each of the datasets are compared to validate the test
results. Result of the tests are reported using average mean run-times in microseconds. All
benchmark tests can be run using the included Makefile, and an overview of test scenarios
can be found Table 1.

4.2 Expectations
As described in the problem statement in Section 1.1, the benchmark tests are only expected
to show speedups for genfft compared to /futlib/fft on the largest datasets. On the
smallest datasets, we expect the run-times of the /futlib/fft to be faster genfft. Overall,
we expect to see the following when conducting the benchmark tests:
E1: The genfft to be fastest on the largest datasets. Because it includes FFTs with

different radices, it should be capable of faster computation when the input sizes are
larger, despite of a larger overhead.

E2: The /futlib/fft to be fastest on the smallest datasets. The existing Futhark
FFT is simple and fast, and it is unlikely that the run-times on a prototype of a
more comprehensive genfft can compete against it.

E3: Planning the FFT will slow down genfft. The idea behind the planner is, of course,
to increase run-time. But when compared to a more simple radix-2 FFT, then the
planner can potentially slow down computation.

2See https://di.ku.dk/it/documentation/gpu/

9

https://di.ku.dk/it/documentation/gpu/

Test Program Input Struct Input Type Input sizes
genfft_td1 genfft Radix 2 [N],[N]f32 213 ≤ N ≤ 224

genfft_td2 genfft Radix 2, 3 and 4 comb. [N],[N]f32 9216 ≤ N ≤ 17915904
genfft_td3 genfft Radix 2, 3, 4 and prime comb. [N],[N]f32 7680 ≤ N ≤ 16920576
genfft_td4 genfft Prime sized [N],[N]f32 8191 ≤ N ≤ 16777213
genfft_td5 genfft Comb. of two primes [N],[N]f32 8051 ≤ N ≤ 16777207
genfftmulti_td1 genfft Radix 2 [N],[N]f32 213 ≤ N ≤ 224

fft_td1 /futlib/fft Radix 2 [N],[N]f32 213 ≤ N ≤ 224

fftmulti_td1 /futlib/fft Radix 2 [N],[N]f32 213 ≤ N ≤ 224

gf2_td1 r2fft Radix 2 [N],[N]f32 213 ≤ N ≤ 224

gf3_td6 r3fft Radix 3 [N],[N]f32 38 ≤ N ≤ 315

gf4_td1 r4fft Radix 2 [N],[N]f32 213 ≤ N ≤ 224

gfRd_td6 rdfft Radix 3 [N],[N]f32 38 ≤ N ≤ 315

planner_td1 planner Radix 2 i32 213 ≤ N ≤ 224

planner_td2 planner Radix 2, 3 and 4 comb. i32 9216 ≤ N ≤ 17915904
planner_td3 planner Radix 2, 3, 4 and prime comb. i32 7680 ≤ N ≤ 16920576
planner_td4 planner Prime number i32 8191 ≤ N ≤ 16777213
planner_td5 planner Comb. of two primes i32 8051 ≤ N ≤ 16777207
planner_td6 planner Radix 3 i32 38 ≤ N ≤ 315

Table 1: Benchmarking Test Scenarios

4.3 Results
All benchmarked run-times can be found in the .time-files in the package benchmarks.zip.
Figures 1, 2, 3 and 4 show graphical representations of some of the benchmarks for /futlib/fft
and genfft programs. Results for the genfft_td4, genfft_td5 and gfRd_td6 have not
been included in the figures because of very slow run-times. In addition, genfft_td4 and
gfRd_td6 were only capable of computing the DFT on three of the given datasets, and
genfft_td5 was only capable of computing the first nine datasets. The remaining datasets
for these three programs were not computable because of lack of memory.

Figure 1: Benchmark results
for FFT implementations. As
singular programs the new
FFT implementations all ap-
pear faster than the existing
/futlib/fft, which may not
be surprising since the existing
FFT includes additional func-
tionality compared to the new
ones.

10

Figure 2: Benchmark results
for genfft. Using fft_td1
as a baseline, genfft is only
faster when applied to the
same radix-2 sized datasets,
td1. When applied to datasets
that include prime factors the
execution time is very slow.

Figure 3: Benchmark re-
sults for multiple runs on
same datasets. In accord-
ing with the other results,
it is not surprising to see
that reusing plans allow an
increased speedup of genfft
compared to /futlib/fft.

Figure 4: Benchmark results.
Most noticeable is the amount
of time spend on creating a
plan, when N is the product
of two primes (planner_td5).
To decompose N = 2099501
into two primes, planner.fut
spends around 13.6ms, which is
more than genfft uses to com-
pute the DFT of a complex in-
put sized N = 223. Also, plan-
ning on prime sized input (td3)
appears problematic. Perhaps
less noticeable, is the fact that
planner.fut spends at around
the same amount of time cre-
ating a plan for input sized
N < 217 as /futlib/fft uses
to compute the DFT.

11

4.4 Data Validation
To validate run-times of the benchmark test, the mean, median and standard deviation σ are
computed for each of the 18 benchmark tests. All computed values can be found in the pack-
age benchmarks.zip. Validation of test data are placed in the file benchmarks_val.ods.

Mean and Median

For convenience, Table 2 have been added, and contains a compilation of the mean and
median values for the largest data sets in each test. In all tests the values show very small
deviations when compared to the mean. The largest differences are found in the benchmarks
for the planner, but all are the results of low run-times, most of them below one millisecond.

Test Dataset X Mean X̄ µs Median X̃ µs X̃/X̄ σ µs σ/X̄

genfft_td1 N = 224 21441 21398 0.998 176 0.008
genfft_td2 N = 17915904 29801 29784 0.999 67 0.002
genfft_td3 N = 4230144 28386 28200 0.993 372 0.013
genfft_td4 N = 65537 4266797 4267269 1.000 9623 0.002
genfft_td5 N = 2099501 516776 516154 0.999 1740 0.003
genfftmulti_td1 N = 224 423116 423121 1.000 96 0.000
fft_td1 N = 224 27245 27208 0.999 132 0.005
fftmulti_td1 N = 224 542961 542962 1.000 39 0.000
gf2_td1 N = 224 25333 25261 0.997 172 0.007
gf3_td6 N = 315 20863 20861 1.000 36 0.002
gf4_td1 N = 224 21117 21113 1.000 43 0.002
gfRd_td6 N = 311 4263581 4262477 1.000 9017 0.002
planner_td1 N = 224 235 233 0.991 12 0.051
planner_td2 N = 17915904 569 557 0.979 21 0.037
planner_td3 N = 16920576 725 714 0.985 25 0.035
planner_td4 N = 16777213 3181 3173 0.997 3173 0.016
planner_td5 N = 16777207 135505 135081 0.997 1174 0.009
planner_td6 N = 315 305 302 0.991 16 0.051

Table 2: Mean, Median and Standard Deviation

Standard Deviation

Table 2 also contains the standard deviation σ for each of the selected data sets. No σ values
are larger than 4 percent compared to the mean for all selected data sets except in tests
planner_td1 and planner_td6, both caused by low run-times around 300 microseconds.
Note, that although the shown σ values are fair representations of deviations in the tests,
they are not necessarily the largest σ value of each of the tests. However, no σ values
are large enough to cause concern, and no outliers are deviating enough to cause a major
impact on the mean. The thirty results for each dataset ensures that outliers only have
limited impact on the mean, and as a result, no outliers were removed from the final test
results.

12

Conclusion

As shown, the mean, median and standard deviation show very little deviation in the overall
test results. Based on this we argue that the results are a fair representation of each of the
benchmark tests and therefore valid for comparing.

13

5 Discussion
The results of the benchmark tests proved some of our expectations (see Section 4.2) but
not all.

The expectations regarding run-times on larger datasets (E1) were proven to some extent
by genfft being faster than /futlib/fft on dataset sizes of N > 3.98 · 106 involving the
radix-2, 3 and 4 FFTs. When the datasets involved prime factors genfft showed to be
slower than /futlib/fft, which goes against our expectations. In some cases where prime
factors were involved the DFT was not even computable because of too high memory usage
by genfft.

Looking at the results in Figure 2 also confirms the expectation that /futlib/fft would
be fastest on the smaller sized datasets (E2). Although not visible in the Figure 2 the results
show that /futlib/fft is faster than every benchmark result of genfft on dataset sizes of
N < 3.98 · 106. As mentioned earlier, this is not surprising since so much time is spend on
planning the FFTs.

When looking at the results in Figure 1 and 2 it is evident, that the overhead in genfft
spent on planning slows down the computation (E3). But since the time spent on planning
the FFT for non-prime sized N is almost constant no matter how large, the impact of the
overhead diminishes as the size of N increases.

All in all, the benchmark tests show certain aspects of the prototype genfft. The
results in Figure 1 supports the use of the Stockham FFT algorithm as reference for the
radix-2, 3 and 4 FFTs, although both the radix-3 and 4 FFTs could possibly be optimised for
parallelisation even further. It is also evident that the current support for prime numbers is
not sufficient. The results in Figure 4 suggest looking at the chosen strategy in planner.fut
and the handling of prime numbers in primes.fut. On the smallest datasets in the test
(N < 10000) the run-times t of planner.fut are in the range of 229µs ≤ t ≤ 3135µs, and
though it may prove difficult to improve the minimum, it should be possible to lower the
maximum.

It is evident that the prototype of planner.fut is not efficient enough to compete with
the run-times of /futlib/fft, and even though the new FFTs – not counting Rader – have
shown to be fast, they still have a hard time outrunning /futlib/fft.

14

6 Conclusion
To investigate how techniques from FFTW can be used in a FFT library in Futhark, a
prototype program, genfft, capable of making and executing a plan for computing the
1-D DFT of complex input of arbitrary size N was implemented. The program includes
implementations of radix 2, 3 and 4 parallel FFTs, as well as an implementation of Rader’s
FFT algorithm for prime sized N . The correctness of all implemented FFTs were validated
using expected outputs and tests of linearity.

The new genfft was expected to outperform the existing radix-2 FFT in Futhark,
/futlib/fft, on larger datasets, which was the case except for datasets involving prime
factors. We also expected /futlib/fft to outperform genfft on the smallest datasets,
which proved to be the case. Finally, we expected that the overhead used on planning the
FFT would slow down genfft, which proved to be the case.

Although certain aspects of the current genfft has proven insufficient, the results con-
clude that it is possible to employ FFTW techniques to implement an efficient library in
Futhark. The current version implements Rader’s FFT and is therefore theoretically capable
of computing the DFT for all N > 1. But because it lacks efficiency when prime factors
are involved, there are several obvious steps to take in order to improve the current version.
First, it would be ideally to implement a radix-5 and possibly a radix-7 FFT to increase the
number of composite N computable using Cooley-Tukey FFTs. In addition, the handling of
primes needs to be improved and the strategy needs to be rethought to potentially reduce
planning time without increasing execution time. This could involve only searching for a
specific amount of prime numbers, which has shown to be very time consuming, and would
require implementing, for example, Bluestein’s FFT for arbitrary N . Another improvement
could be to include predefined plans for certain sizes, which may help reduce overhead on
highly composite sizes. This could eventually develop into a feature similar to FFTW’s
wisdom files [6], which contain saved information about how to optimally compute DFTs of
various sizes.

15

References
[1] Eleanor Chu and Alan George. Inside the FFT Black Box: Serial and Parallel Fast

Fourier Transform Algorithms. CRC Press, 1999.

[2] James Cooley and John Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[3] NVIDIA Corporation. cuFFT— CUDA Toolkit Documentation, 2018. Online: [https:
//docs.nvidia.com/cuda/cufft/index.html], accessed 17-June-2018.

[4] Matteo Frigo. A fast fourier transform compiler. In Proceedings of the ACM SIGPLAN
1999 Conference on Programming Language Design and Implementation, PLDI ’99,
pages 169–180, New York, NY, USA, 1999. ACM.

[5] Matteo Frigo and Steven G. Johnson. The fastest fourier transform in the west. Tech-
nical Report MIT/LCS/TR-728, Massachusetts Institute of Technology Laboratory for
Computer Science, 1997.

[6] Matteo Frigo and Steven G. Johnson. FFTW WISDOM manual, 2003. Online: [http:
//www.fftw.org/fftw-wisdom.1.html], accessed 22-June-2018.

[7] Matteo Frigo and Steven G. Johnson. FFTW 3.3.8 — Documentation, 2018. Online:
[http://www.fftw.org/fftw3_doc/], accessed 18-June-2018.

[8] Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and John Manfer-
delli. High performance discrete fourier transforms on graphics processors. In Proceed-
ings of the 2008 ACM/IEEE Conference on Supercomputing, SC ’08, pages 2:1–2:12,
Piscataway, NJ, USA, 2008. IEEE Press.

[9] Kasper Abildtrup Hansen. Github repository: fut_genfft. Online: https://github.
com/diku-dk/fut_genfft.

[10] Jeffrey Hoffstein, Jill Pipher, and J.H. Silverman. An Introduction to Mathematical
Cryptography. Springer Publishing Company, Incorporated, 1 edition, 2008.

[11] J. Löfgren and P. Nilsson. On hardware implementation of radix 3 and radix 5 fft
kernels for lte systems. In 2011 NORCHIP, pages 1–4, Nov 2011.

[12] C. M. Rader. Discrete fourier transforms when the number of data samples is prime.
Proceedings of the IEEE, 56(6):1107–1108, June 1968.

[13] Charles Wu. Implementing the Radix-4 Decimation in Frequency (DIF) Fast Fourier
Transform (FFT) Algorithm Using a TMS320C80 DSP. Technical report, January 1998.
Online: http://www.ti.com/lit/an/spra152/spra152.pdf, accessed 22-June-2018.

16

https://docs.nvidia.com/cuda/cufft/index.html
https://docs.nvidia.com/cuda/cufft/index.html
http://www.fftw.org/fftw-wisdom.1.html
http://www.fftw.org/fftw-wisdom.1.html
http://www.fftw.org/fftw3_doc/
https://github.com/diku-dk/fut_genfft
https://github.com/diku-dk/fut_genfft
http://www.ti.com/lit/an/spra152/spra152.pdf

	Introduction
	Problem Statement
	Limitations and Restrictions

	FFTW Techniques in Futhark
	The Fastest Fourier Transform In The West
	FFT Algorithms

	Implementation
	FFTs
	Planner
	Executor
	Additional Files
	Validation Testing

	Benchmark Tests
	Methodology
	Expectations
	Results
	Data Validation

	Discussion
	Conclusion

