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Abstract

Having a systematic way of inferring the types of expressions is a well-known
benefit of having a Hindley-Milner type system in a programming language, yet
there exist various approaches to solving the type inference problem. Futhark
uses an offline approach where all constraints of an expression are inferred first
and then solved afterwards; however, the constraint solver is not currently im-
plemented in an optimal way.
This thesis explores a common approach of solving type constraints that uses an
underlying union-find data structure along with heuristics like path compression
and union-by-weight to provide a good asymptotic running time, andwe propose
a new implementation of the constraint solver in Futhark using this approach.
To evaluate this updated implementation, we benchmarked programs and com-
pared our implementation with the existing implementation. Our initial results
show that our implementation does not generally provide a better running time
in practice, but despite this, we argue that we have laid the groundwork for doing
type inference in a more efficient manner than the current approach.
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1 Introduction
Originally, Damas and Milner [1] proposed the so-called Algorithm W as a way
to infer types of expressions in the original Hindley-Milner type system. Algo-
rithm W uses an online approach where the process of generating constraints
from expressions is intertwined with the process of solving them. An alternative
approach, which Futhark has also switched to use, is an offline approach where
all constraints generated by an expression are inferred first and only solved af-
terwards. Futhark’s current implementation, however, is much less efficient than
it potentially could be.

In this thesis, we explore the theoretical foundation of solving constraints
with an offline approach, as well as how it can be done in an efficient way using
a union-find data structure with heuristics like path compression and union-by-
weight. Our aim is then to provide an implementation that uses these optimiza-
tions to make the constraint solver more efficient.

As we will outline, our updated implementation does not currently yield a
better performance, in general, than the original implementation. Despite this,
our hope is that our contributions have laid the groundwork for solving type
constraints in an efficient way.

All the code for our proposed implementation is based on the automap branch
in the original Futhark repository1. Our proposed implementation, benchmarks,
and tests can be found in the following GitHub repository:

https://github.com/jacobgummer/futhark/tree/automap-tysolve-optim

1https://github.com/diku-dk/futhark/tree/automap
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2 Background

2.1 Solving Type Constraints
There are different ways of solving the type inference problem in programming
languages with a Hindley-Milner type system. One approach is to intertwine the
process of generating constraints and solving them, that is, an online approach.
For this project, we take a different approach where every constraint that can be
inferred from a given expression is generated first and then solved afterwards.
In other words, our focus is on presenting an offline algorithm for solving type
constraints.

2.1.1 Types

To build up the theoretical foundation for how type constraints can be solved, we
start by considering a small language, similar to the Damas-Milner (or Hindley-
Milner) type system originally proposed in Damas and Milner [1], with its types
being defined by the grammar

τ ::= int | τ1 → τ2 | α

int simply denotes the integer type, τ1 → τ2 denotes function types, and α
denotes type variables which are just placeholders for types. In the following
sections, we let T be the set of all types, and we let α, β , and γ range over type
variables.

2.1.2 Type Constraints

Formally, we define a type constraint c as

c ::= τ1 ≡ τ2

where τ1 and τ2 are both types, while a constraint set C is a set of such equal-
ities. For our purposes, we do not concern ourselves with how constraints are
generated/inferred, only that they are inferred from expressions and that they
must be solvable (as explained in section 2.1.4) for an expression to be typable.

2.1.3 Type Substitutions

To be able to solve a constraint, we also introduce type substitutions. Informally, a
type substitution S is a mapping from type variables to types. However, formally
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we define a substitution S : T → T mapping types to types as follows:

S(int) = int

S(τ1 → τ2) = S(τ1) → S(τ2)

S(α) =

¨

τ if (α 7→ τ) ∈ S
α otherwise

We can also extend the notion of substitution to constraints and sets of con-
straints in the following manner:

S(τ1 ≡ τ2) = S(τ1) ≡ S(τ2)
S(C) = {S(c) | c ∈ C}

Note that all substitutions are performed simultaneously: For instance, given the
substitution S = [α 7→ int,β 7→ int → α], applying S to β doesn’t yield the
type int → int but int → α.

Further, given two substitutions S and S′, we write S ◦S′ to denote composi-
tion of the two substitutions such that (S ◦ S′)(τ) = S(S′(τ)).

2.1.4 Unification

We say that a type substitution S unifies, or solves, the constraintτ1 ≡ τ2 if S(τ1)
is syntactically2 equal to S(τ2), as originally described in Robinson [4]. Extend-
ing the notion of solvability to constraint sets, a type substitution S solves a con-
straint set C if S solves every type constraint in C ; we call such a substitution S
a solution or unifier for C .

As there might be multiple unifiers for a constraint set [5], we define U(C) to
be the set of all unifiers for C . Furthermore, a type substitution ρ is called amost
general unifier (MGU) of a set of type constraints C if ρ ∈ U(C) and for every
S ∈ U(C) there exists a type substitution S′ such that S = S′ ◦ ρ. An MGU ρ
can thus be interpreted as the simplest substitution that solves a type constraint
(or a set of them) since any other unifier is simply a refinement of ρ. Note that
there can also be multiple MGUs: For instance, if both α and β are type variables,
ρ = [α 7→ β] and ρ′ = [β 7→ α] are both MGUs of the constraint set {α ≡ β}.

The are different reasons for why we’re interested in amost general unifier of
some constraint (set). Evidently, we don’t want to limit what type a type variable
might represent. The constraint α ≡ β could also be solved with the substitution
S = [α 7→ int,β 7→ int] but with this substitution, we have constrained these

2There also exists a notion of equational unification where one is interested in finding a sub-
stitution that makes types equal modulo some equational theory E [2]. This is relevant for sum
types, as Schenck [3, p. 21] describes, but we won’t cover it in this section.
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type variables to be of type int even though there is no need to do so. It might
even make it impossible to solve a set of constraints if, say, the set also contained
the constraints α ≡ γ and γ ≡ int → int since we cannot unify the types int
and int → int.

In type systems that include type schemes, that is, type systems that thus al-
low (parametric) polymorphism, finding an MGU of a constraint set also relates
to finding a principal type scheme [1], that is, the most "general" type, of an ex-
pression. Wewon’t cover the details of what this means since the unification pro-
cess, in itself, is the same with or without type schemes, but with type schemes,
MGUs are even more crucial. As an example, consider the Haskell expression

let id = \x -> x in (id "foo", id True)

which should generate a tuple with type (String, Bool). If the constraints
generated by this expression are not solved carefully, that is, if each constraint
isn’t solved with an MGU, the type checker might infer id to have a type that
makes it impossible to apply both strings and booleans (or arguments of any
other type) to it. This is an example of let-polymorphism where we need to infer
a principal type of the first expression in let-expressions to make sure that it can
be used polymorphically, but it also applies to expressions in general when the
underlying type system includes type schemes – and to infer a principal type of
an expression, we also need a most general unifier of the constraints generated
by the expression.

Summarizing what we’ve covered so far, to solve a set of constraints C we
must find a substitution S that solves C , and an expression e that produces the
constraint set C is typable if and only if there exists a solution for C .

2.1.5 A Unification Algorithm

In order to find a (most general) unifier, that is, a unifying substitution S, of a
constraint – if one exists – we’d like to have a (partial) function unify : τ ×
τ * S that can achieve this. Such a function can be described in an algorithmic
manner as outlined below:

1 unify τ1 τ2 =
2 case (τ1, τ2) of
3 (τa → τb, τc → τd) →
4 S = unify τa τc

5 S′ = unify S(τb) S(τd)
6 return S′ ◦ S
7 (α,τ) → bind α τ
8 (τ,α) → bind α τ
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9 (τ,τ′) →
10 if τ = τ′ then
11 return []
12 else
13 fail "types do not unify"
14

15 bind α τ =
16 if α = τ then
17 return []
18 else if α /∈ τ then
19 return [α 7→ τ]
20 else
21 fail "occurs check fails"

Here, α /∈ τ means that α does not occur in τ (often referred to as the ’occurs
check’ in the literature). To be precise, in this type system, a type variable α
occurs in a type τ if and only if τ is a function type on the form τ′ → τ′′ and
either 1) α is equal to either τ′ or τ′′, or 2) α occurs in either τ′ or τ′′ [6].

In the two cases where either of the types is a type variable α, the check of
whether α occurs in τ is necessary since we might otherwise create an infinite
type [7] which we aren’t able to represent with the simple type system we’re
basing the unification algorithm on.

The idea is then to call this algorithm for every constraint c in a constraint set
C and gradually build up a composition of substitutions. The following algorithm
more accurately captures the idea:

unifySet ; = return []
unifySet {τ1 ≡ τ2} ∪ C ′ =

S = unify τ1 τ2

return (unifySet S(C ′)) ◦ S

It’s important that, for every constraint we solve which results in some substitu-
tion S, we must apply S to the rest of the constraint set C ′ since we might have
obtained new information that affects how the remaining constraints need to be
handled.

Even though this is a valid way to solve type constraints, it should also be
evident why it isn’t an optimal approach: We have to continually compose and
apply substitutions which can be very expensive computationally. In the next
subsection, we will thus explore a different approach that uses an underlying
data structure well-suited for the unification problem.
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2.2 Constraint-Solving Using Union-Find
In offline constraint-solving, the underlying data structure of the constraint solv-
ing algorithm is important, since each type variable might be accessed many
times based on how often it occurs in the given constraints. As we shall see, the
union-find data structure is an efficient data structure for constraint-solving al-
gorithms since it allows for fast lookups of nodes when implemented optimally
[8, p. 538]. It is particularly useful for applications that require the grouping of
multiple distinct elements into disjoint sets [8, p. 520] as it is the case for type
variables being divided into disjoint equivalence classes.

2.2.1 The Union-Find Data Structure

Union-find is a data structure that manages a collection of disjoint sets, meaning
that a unique element can be part of exactly one set. Each set has an associated
representative which is an element of the given set. The data structure supports
three basic operations: Make(x), Find(x) and Union(x,y).

Make(x) creates a set where x is the representative.
Find(x) returns the representative of the set that x is part of.
Union(x,y) is the most "complex" operation as it first finds the represen-

tatives of the sets that x and y are part of, Sx and Sy , by calling Find(x) and
Find(y). Then, a new set, S, is created containing all the elements in both Sx

and Sy yielding S = Sx ∪ Sy . The representative of S can be chosen arbitrarily
among the elements in S or chosen by some property or heuristic.

These are the most basic operations that must be supported by a union-find
data structure. However, as we shall see, the specific implementation is also
important as it has a significant impact on the time complexity of the operations.

2.2.2 Disjoint-Set Forests and Heuristics

Known implementations of the union-find data structure uses linked-lists or
disjoint-set forests. The latter allows for a faster runtime by using two essential
heuristics [8, p. 527]; therefore, we will only describe this way of implementing
the data structure. When using the disjoint-set forest representation, each tree
represents a set. Nodes corresponds to elements in the sets, and each node also
points to a node. A representative of a set is the root of a tree, and it is thus its
own parent.

Now, the operation of making a set creates a new tree with one single node
pointing to itself. The finding of a set follows the parent pointers of the given el-
ement until the root is reached. Finally, the union of two sets changes the parent
of one of the roots to point to the other root. This implementation is no better
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than the linked list implementation. However, by introducing two new heuris-
tics, namely union-by-weight and path compression, an optimal implementation
of the union-find data structure can be achieved. [8, sec. 19.3]

Union-by-weight is a heuristic, that makes the smallest tree point to the larger
tree during union. To adhere to this heuristic, each root must keep track of the
number of nodes in its tree/set, which we will refer to as the weight of the tree.
An example of this heuristic can be seen in figure 1.

Figure 1: An example of the union-by-weight heuristic. (a) shows two trees, the
one on the left has weight four, and the one on the right has weight 2. (b) shows
the resulting tree after calling Union(a,e).

Path compression is the heuristic ensuring that the path to the root is as short
as possible after visiting a node. This means that the find operationmust traverse
the path to the root two times. In the first pass, it discovers what node is the
root, and in the second pass, it changes the parent pointers of the nodes being
traversed to point to the root. Thereby, the path to the root has been compressed,
since the traversed nodes are now pointing directly at the root. Figure 2 shows
an example of this heuristic.

2.2.3 Implementation of Union-Find Operations

In the previous section, the union-find data structure has been described, and
the heuristics a union-find data structure must abide by to achieve an optimal
implementation have also been described. The following will show how such
a data structure could be implemented by slightly modifying the pseudocode
provided by [8, p. 530].

The first operation of making a set is very simple and could be implemented
as in listing 1. Here, x .p denotes the parent pointer contained in a given node,
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Figure 2: An example of the path compression heuristic. The parent pointer
of the roots have been omitted for simplicity. (a) shows a tree before Find(d)
is called. The triangles represent subtrees with the shown nodes as roots. (b)
shows the resulting tree after calling Find(d).

and x .w is the weight of the tree.

1: procedureMake(x)
2: x .p = x
3: x .w = 1
4: end procedure

Listing 1: Make algorithm for union-find data structure.

Finding the root given a node in a tree can be done by simply checking if the
given node is a root, and if not recursively find the root and make it the parent
of the input node. Lastly, it should return the root. The pseudocode for this is
shown in listing 2.

The union of two trees has to ensure that the smaller tree, that is, the tree
with the smallest weight, is set to point to the larger tree, as in listing 3.
As the next section will show, the pseudocode provided in this section provides
a very good asymptotic running time for the union-find operations.

2.2.4 Time Complexity of Union-Find Operations

The three operations introduced previously form the basis of an implementa-
tion of the union-find data structure. A single Make operation trivially takes
time O(1), that is, constant time. The running times of the two other operations
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1: procedure Find(x)
2: if x .p ̸= x then
3: x .p = Find(x .p)
4: end if
5: return x .p
6: end procedure

Listing 2: Find algorithm for union-find data structure.

1: procedure Union(x , y)
2: x r = Find(x)
3: yr = Find(y)
4: if x r .w > yr .w then
5: yr .p = x r

6: x r .w = x r .w+ yr .w
7: else
8: x r .p = yr

9: yr .w = yr .w+ x r .w
10: end if
11: end procedure

Listing 3: Union algorithm for union-find data structure.

are not as simple, though: With the union-by-weight heuristic alone, the run-
ning time becomes O(m lg n) for a sequence of m operations in total of which
n are calls to Make [8, p. 530]. Further, by only applying the path compression
heuristic, the worst-case running time becomes Θ(n+ f · (1+ log2+ f/n n)) [8, p.
530]. However, combining both heuristics yields a worst-case running time of
O(mA(n)) where A(n) is a function that grows very slowly. In a strictly math-
ematical sense, O(mA(n)) is a superlinear running time, but in any conceivable
application of a disjoint-set data structure, including unification, A(n) ≤ 4 [8, p.
530], meaning that using both heuristics guarantees a running time that is practi-
cally linear in the total number of union-find operations. Furthermore, this gives
an amortized running time of O(A(n)) for each Find operation performed [8, p.
5.39], which, again, is practically constant time.

2.2.5 Union-Find for Unification

As hinted in the beginning of this section, the union-find data structure is an ef-
ficient data structure for offline constraint-solving. Section 2.1.5 provided pseu-
docode for a unification algorithm that returned the substitutions necessary to
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solve the given constraints. In Listing 4, a similar unification algorithm, now
using the union-find data structure, is provided:

1 unify τ1 τ2 =
2 τ′1 = findType τ1

3 τ′2 = findType τ2

4 case (τ′1,τ
′
2) of

5 (α,β) → if α ̸= β then unionTyVars α β
6 (α,τ) → bindUF α τ
7 (τ,α) → bindUF α τ
8 (τa → τb,τc → τd) →
9 unify τa τc

10 unify τb τd

11 (int,int) → do nothing
12 otherwise → fail "types do not unify"

Listing 4: Unification algorithm using union-find data structure.

As with the function outlined in section 2.1.5, unify is called on each constraint
in the constraint set. However, before the first call to unify, we go through each
type variable in the constraint set and make a new tree for each of them in the
underlying union-find data structure. In the following, we’ll also sometimes use
the term equivalence class to denote that every node in the same tree represents
the same thing. Conceptually, in this context, one can picture an equivalence
class as a set of types with at most one non-type variable in it, and if an equiv-
alence class contains a non-type variable, this is the (sole) type associated with
the equivalence class; otherwise, an arbitrary type variable in the equivalence
class can be chosen to be the representative and, hence, the type associated with
this equivalence class.

The root in each tree then contains information such as the weight of the tree
as well as a pointer to the parent node. Each root is initialized with its weight set
to 1, pointing to itself, and letting the type of the equivalence class represented
by this tree simply be the type variable that this root node represents.

Now, for each type in a given constraint, the first thing we do is to call
findType on it: The findType function should work such that, when given a
non-type variable as input, it works like the identity function and returns the
type itself. If it is, instead, some type variable α, it should return the type associ-
ated with the equivalence class that α is part of. Furthermore, to help obtain the
asymptotic running time described in the previous subsection, findType must
perform path compression whenever it is given a type variable as input.
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After this, the different cases are similar to the ones in the pseudocode out-
lined in section 2.1.4. A noteworthy first difference is that this now has a case
for when τ′1 and τ′2 are both type variables since, if they’re not the same type
variable, we need to join their equivalence classes. To do this this in an optimal
way, we need unionTyVars to use the union-by-weight heuristic, too.

If, instead, exactly one of the types in the constraint is a type variable, we
must call bindUF: The goal for bindUF is to ensure that any future call to findType
with α as its input returns τ. bindUF must also perform the occurs check and
it is thus crucial that if τ is a function type, that is, a composite type, every
inner type variable α′ in τ must be substituted with findType α′. An exam-
ple of how it might go wrong otherwise could be to have the small constraint
set {β ≡ α,α ≡ β → int}: After processing the first constraint, we’ll have an
equivalence class with both α and β in it, and if its corresponding tree has α’s
node as root, we’ll have τ′1 = α and τ

′
2 = β → intwhen processing the second

constraint. If we don’t substitute β with α inside τ′2, we’ll miss that the occurs
check should fail since we’re essentially going to create a cyclic substitution oth-
erwise.

The three final cases are then practically identical to how they’re handled
in the unification algorithm in section 2.1.5, with the only real difference being
that this function doesn’t output anything itself. This also means that, to find
out what a type variable should (possibly) be substituted with when we’re done
processing the constraints, one would need to look in the union-find data struc-
ture and resolve the type this way instead, essentially by calling findType α for
each type variable α in the constraint set.

Given the favorable asymptotic bounds described in the previous subsection,
this pseudocode thus describes an efficient implementation of a unification al-
gorithm by using an underlying union-find data structure with the union-by-
weight and path compression heuristics.

2.3 Practical Complications
In practice, many languages include features that introduce complications to how
constraints should be solved, some of which we find worth briefly mentioning
since they also play a role in Futhark’s constraint solving process.

2.3.1 Overloading

Many languages include overloaded (or, ad hoc polymorphic) operators, that is,
operators that are defined for multiple (though not arbitrary) types [9, p. 192].
Consider, for instance, the small Futhark program

def f x y = x + y
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What type should f be inferred to have in this case? Since the +-operator is
overloaded, x, y, and the return type of f could be any numeric type supported in
Futhark.3 In this case, we could just default f to have type i32 -> i32 -> i32; in
other cases, however, it might not be sensible to default the type of some variable
or formal parameter, for instance, if you’re using it as if it’s a record without
specifying which type of record it must be. In a more general context, we handle
this complication by constraining which types a type variable can be substituted
with whenever this type variable represents a type used in an expression with
an overloaded operator. With the concrete example above, during the unification
process, we must make sure that x and y can only be substituted with numeric
types.

2.3.2 Levels and Scope Violations

When programmers have the ability to annotate expressions with types in their
programs, we must also keep track of which scope a given type variable was
introduced in. To understand why, consider the Futhark program

def f x = let g 't (y: t) = [x, y] in g

Here, we define a function in a let-expression whose argument must have some
type t. But since g returns an array containing its argument as well as f’s argu-
ment x, x and ymust be of the same type, yet where x is specified in the program,
the type parameter t hasn’t been introduced yet. Conclusively, the type param-
eter t is bound at a deeper scope than the type variable representing x, and the
program is therefore ill-typed.4

The way to identify such an error is, as mentioned above, to associate with
each type variable and type parameter an integer representing the level (or depth)
of the scope in which it was introduced. Whenever a type variable is constrained
to have the same type as some type parameter appearing in the program, wemust
check if the type parameter has a higher level than the type variable and, if that
is the case, report a scope violation. This can be handled in different ways in the
unification process, either by "allowing" a type variable to be substituted with
a type parameter no matter what and then checking afterwards if an erroneous
substitution has been made, or just by checking continuously.

2.3.3 Liftedness

Finally, it’s alsoworthmentioning the concept of liftedness constraints in Futhark:
When a programmer uses a type parameter to specify the type of some expres-

3https://futhark.readthedocs.io/en/stable/language-reference.html#
x-binop-y.

4Note that the program wouldn’t be ill-typed if the explicit t parameter hadn’t been used.
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sion, they can also specify whether a type (parameter) is unlifted (no constraints),
size-lifted (possibly contains existential sizes) or fully lifted (possibly contains
functional types). In the part of the type checker that we’re focusing on in this
project, it only has the implication that whenever a constraint involves two type
variables that are completely unconstrained in terms of what types they may be
substituted with but where their liftedness constraints differ, both type variables
should now have the least "strict" constraint among the two: Informally, the or-
der of strictness is unlifted < size-lifted < fully lifted. Further, when
we’re done solving constraints, we must also return a list of all the type variables
that occur in the constraint set but shouldn’t be substituted with anything, along
with the liftedness constraint they’ve been inferred to have.
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3 Implementation
This section covers the optimizations we implemented in Futhark’s type checker,
which is written in the programming language Haskell. At first, we’ll exam-
ine the ST monad and how it can be used to implement algorithms and/or data
structures that benefit from having some kind of updatable state. Next, we’ll go
through how a union-find data structure with path compression and union-by-
weight, an inherently imperative data structure, can be implemented in Haskell,
a purely functional programming language. Finally, we’ll cover how we’ve up-
dated the code for solving type constraints to utilize the benefits of having an
efficient union-find data structure.

3.1 The STMonad
In purely functional languages like Haskell, values are immutable: Whenever a
variable, array element, record field, or something similar has been initialized to
some value, it cannot be changed afterwards [9, p. 122]. A common challenge
in such languages is thus to implement algorithms or data structures in which
mutability seems to play a crucial role. In an attempt to address and solve this
problem (inHaskell), the STmonadwas introduced and described by Launchbury
and Peyton Jones [10].

3.1.1 States and References

The "ST" stands for "state transformer" which is anotherway of writing "a stateful
computation"; essentially, it is a computation that takes one state and transforms
it into another [10]. A value of type ST s a is then a computation which trans-
forms a state "indexed" by some (abstract) type s – typically referred to as the
"state thread" – and delivers a value of type a [10].

But what is meant, conceptually, by a "state", then? As Launchbury and Pey-
ton Jones [10] outline, "part of every state is a finite mapping from references
to values" (along with other components), and a reference can be thought of as
the name identifying a variable, that is, an updatable location in the state that is
capable of holding some value. Hence, we would also like some kind of way to
create new references, read existing ones, and write new values into them; this is
achieved in the actual implementation [11] with the following three operations:

newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

The newSTRef function is responsible for creating a new reference in the cur-
rent state "thread", readSTRef is used to read the value store in a reference, and
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writeSTRef is used to write a new value at the location the reference points to.
Notice, again, that they are all parametrized by a state thread s which, in some
sense, identifies a specific state thread.

3.1.2 Encapsulation

Two natural questions arise now: 1) how do we use state transformers as part of
a larger program that doesn’t manipulate state at all, and 2) how do we ensure
that a reference from one thread is not used in another thread? A possible an-
swer to both question lies in constructing a function, runST, that takes a state
transformer and returns the final result computed by the state transformer. As
an initial attempt, we could try giving this function the following type:

runST :: ∀s,a. ST s a -> a

The idea here would be to let runST take a state transformer as input, build an
initially empty state, apply the state transformer to the empty state, and return
the result while discarding the final state. However, with this type, we do not
solve the problem implied in question 2. For instance:

let v = runST (newSTRef True) in runST (readSTRef v)

Allowing an expression like this would be bad because we are allocating a refer-
ence in one thread and then reading it in another thread, and reads in one thread
are not sequenced with respect to writes in the other [10]; hence, this would in-
troduce nondeterministic behavior. Instead, whenever we call runST, what we
really want is to not make any assumptions about the initial state, that is, what
has already been allocated in the initial state: runST "should work regardless of
what initial state it is given" [10]. To express this on the type level, runST is
specified to have the following type:5

runST :: ∀a. (∀s. ST s a) -> a

Letting runST have this type, the let-expression above is now ill-typed: Firstly,
readSTRef v has type ST s Bool and this cannot be generalized to∀s. ST s Bool
[10] so the in-part of the expression is ill-typed. Secondly, a reference won’t even
be able to escape the thread in which it was created in the first place: The call
runST (newSTRef True) would be ill-typed as well since the return type of
newSTRef includes a "specific" s whereas runST demands that the s in the ar-
gument must be arbitrary. As such, it is guaranteed that references created in a
thread are safely encapsulated from the outside world. Moreover, runST answers

5This is an example of rank-2 polymorphism; we won’t cover the details of what this implies
but it makes it easier to describe how to make runST fulfill the requirements we need it to.
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the first question proposed at the beginning of this section since we can use it
to "escape" the state transformer and retrieve the result it computes – as long as
this result doesn’t contain any references (or, in general, is a result produced by
using one of the three functions for manipulating references).

3.1.3 Implementation

To actually implement state transformers, Launchbury and Peyton Jones [10]
propose an implementation framework where

· the state of each encapsulated state thread is represented by a collection of
objects allocated on the heap,

· a reference is represented by the address of an object in heap-allocated stor-
age (similar to the concept of pointers in a language like C),

· a read operation returns the current content(s) of the object whose refer-
ence is given, and

· a write operation overwrites the contents of the specified object.

In the actual implementation6, the ST type has been defined (essentially) as fol-
lows:

newtype ST s a = ST (State# s -> (# State# s, a #))

As Launchbury and Peyton Jones [10] describe, one should think of a value of
type State# s, for some type s, that is, a primitive state, as a "token" that repre-
sents the state of the heap: The implementation doesn’t need to actually inspect
a primitive state value, it’s just passed to and returned from every primitive state
transformer operation to maintain the idea of having a single "state thread".

It’s also worth noting that by making ST a monad, we can use the bind func-
tion (>>=) to chain states together in the sense that the result and updated state
of some stateful computation can be given as input to another stateful computa-
tion; without this functionality, it would be hard to imitate updatable states in a
purely functional language like Haskell.

Conclusively, when implementing algorithms or data structures in which in-
place updates are crucial, the ST monad is ideal since it can be used in a manner
that doesn’t result in impure code and since it makes it possible to have in-place
updates directly in memory.

6https://hackage.haskell.org/package/ghc-internal-9.1201.0/docs/src/GHC.
Internal.ST.html#ST
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3.2 Union-Find in Haskell
The union-find data structure introduced in section 2.2.3 relies on some kind
of mutability when performing certain operations, such as the Find operation
where path compression will change the parent pointers of nodes in the tree,
and the Union operation which must change the weight associated with a given
root node when the union-by-weight heuristic is used.

To implement these operations and heuristics in Haskell, an obvious way
would thus be to use the ST monad and how it can be used to have in-place
(memory) updates with STRef.

3.2.1 Representing Nodes in the Disjoint-Set Forest

One way of representing nodes in a disjoint-set forest in a generic manner is
outlined below:

newtype Node s a = Node (STRef s (NodeInfo s a))

data NodeInfo s a
= Link (Node s a)
| Repr ReprInfo

data ReprInfo a = ReprInfo { weight :: Int, info :: a }

With this representation, every node is, at its core, a reference to a value with
type NodeInfo. A value of type NodeInfo is then either linked (that is, points)
to another node, or it’s a Repr containing a value of type ReprInfo. Values of
type ReprInfo then have a weight field to make it possible to use the union-by-
weight heuristic, and a field called info which can be used to contain any kind
of information relevant to the concrete application of the data structure.

It’s worth noting that this representation differs in some notable ways from
howwe presented nodes in section 2.2.3: With the representation outlined above,
nodes do not have a uniform representation since not every node has an asso-
ciated weight and parent pointer. Instead, there is just a single node in each
equivalence class describing the entire equivalence class, including its current
weight/size, but this is also all we need: The concept of having an equivalence
class is based on every element in it being (or, at least, representing) the same
thing so we only need one element to "carry the burden" of containing the rele-
vant information about the class.
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3.2.2 Implementing find

The find operation can then be implemented in a reminiscent but not completely
equivalent way with regards to how we described it in section 2.2.3. Concretely,
it looks like this:

find :: Node s a -> ST s (Node s a, ReprInfo)
find node@(Node node_info_ref) = do

node_info <- readSTRef node_info_ref
case node_info of
-- Input node is representative.
Repr repr_info -> pure (node, repr_info)

-- Input node points to another node.
Link parent -> do

a@(repr, _) <- find parent
when (repr /= parent) $

-- Performing path compression.
writeSTRef node_info_ref $ Link repr

pure a

As expected, it takes a Node as input, but since a node is a wrapper for a reference,
we need to first read the contents pointed to by this reference, using readSTRef.
This content may then be a Link to a parent node, and if that’s the case, we re-
cursively call find with this parent to find the representative. Also, whenever
this parent isn’t also the representative, we perform path compression by over-
writing the content pointed to by the input node’s reference with a Link directly
to the representative node.

Other operations might also want to easily extract the information from any
of the fields in the representative so we also make sure to return the ReprInfo
encapsulated in the root node along with the node itself.

3.2.3 Implementing union

As in Listing 3, the implementation of union starts by finding the representatives
of the input nodes with the find operation. Then, to avoid spending unnecessary
time reading and writing references, we check if the nodes are already in the
same equivalence class. If that’s not the case, the node representing the class
with the least number of elements among the two is set to point to the other
node. Concretely, it looks like this:

if w1 >= w2
then do
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writeSTRef root_info_ref2 $ Link root1
writeSTRef root_info_ref1 $ Repr $ ReprInfo (w1 + w2) info'

else do
writeSTRef root_info_ref1 $ Link root2
writeSTRef root_info_ref2 $ Repr $ ReprInfo (w1 + w2) info'

w1 and w2 refer to the weight/size of the input nodes’ respective trees, and root_-
info_refN is the reference to input node N’s root: The corresponding value of
this reference can be overwritten with a value constructed with the Link con-
structor when it must point to a new root, or with a new ReprInfowhen it must
hold new information about the (joined) equivalence class. Also, info' is the
information that should be associated with the resulting equivalence class; this
could just come from either of the roots, or it could be new information provided
as input to the union function.

3.3 Solving Type Constraints
Now, we move on to describe the module where the different constraints are ac-
tually solved, namely in TySolve.hs. This module is only responsible for solving
type constraints, that is, size constraints7 and rank constraints8 are not handled
in this module.

3.3.1 The SolveMMonad

As described in the previous section, we need the STmonad to be able to perform
path compression and union-by-weight in an efficient way. Additionally, instead
of explicitly passing around themapping from type variable names to their nodes
in the disjoint-set forest, we’ve used the ReaderT monad (transformer). Finally,
we’d also like to be able to handle type errors in a proper way which the ExceptT
monad (transformer) is well-suited for. Thus, we end up with a monadic stack
on the form

newtype SolveM s a = SolveM { runSolveM :: ExceptT TypeError
(ReaderT (SolverState s) (ST s)) a },→

The SolverState s is simply a wrapper for the mapping from type variable
names to their corresponding node described in section 3.2 and is parametrized
by the state thread s because every node in the mapping is also parametrized by
this state thread.

7https://futhark.readthedocs.io/en/stable/language-reference.html#
size-types

8As described in Schenck, Hinnerskov, Henriksen, et al. [12].
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3.3.2 Type Variable Solutions

When we’re done unifying constraints, we have to be sure that the final solution
is sound in the sense that, if we conclude that a type variable should be sub-
stituted with some specific type, it must also actually be possible for this type
variable to be resolved to this type. To do this, during the unification process,
we distinguish between three types of type variables: 1) solved type variables, 2)
unsolved but possibly constrained type variables, and 3) type parameters which
are a type variables that appear in an explicit type annotation in the source code
from which the constraints were generated.

When a type variable is either solved or is a type parameter, we’ll refer to it
as being rigid to accentuate that it cannot be assigned another type (anymore).
Contrastingly, we’ll call a still unsolved type variable flexible although it might
be constrained in terms of how it must be solved.

3.3.3 The Solution map

Ultimately, what we want to achieve (if the constraints can be solved) is a sub-
stitution that solves the constraint set. In the code, we represent this as

type Solution = M.Map TyVar (Either [PrimType] (TypeBase ()
NoUniqueness)),→

Similar to the disjoint-set forest, this is a mapping from type variable names
(TyVar) to the type they should be instantiated with. More precisely, the Either
monad is used to distinguish between whether a type has numerous possible
(primitive) types it can be instantiated with or whether it must be instantiated
with a specific type. As we mentioned in section 2.3, the reason a type can be
ambiguous is because of overloading; we’ll come back to this issue and how it’s
solved when we discuss how constraints are actually solved, but an expression
that uses an overloaded operator will generate type variables that can only be
substituted with a specific range of types – that is, it will generate flexible but
constrained type variables.

A takeaway from this is also that this isn’t a substitution in the exact same
sense thatwe discussed in section 2 and, hence, it isn’t necessarily anMGUeither:
It is only (or, at least, should be) an MGU if every unique type variable occurring
in the constraint set can be resolved to a non-ambiguous type.

3.3.4 Representing Type Variables

In order to start solving constraints, we must first store the type variables and
parameter in the union-find data structure. Therefore, each type variable and pa-
rameter are placed in a TyVarNode as a Repr (described in section 3.2), meaning
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that theywill each represent their own equivalence class. However, a representa-
tive should also contain information about the class andwe store this information
in fields added to the Repr constructor. Concretely, in our implementation, the
Repr constructor contains the following fields:

1. The weight of the equivalence class in order to utilize the union-by-weight
heuristic described in section 2.2.2.

2. The key, which is the name (called TyVar in the previous subsection) of
the type variable or parameter that is the representative of the equivalence
class.

3. The solution of the equivalence class. This field contains the information
about what kind of type variable the the representative is, that is, if the type
variable is solved, unsolved or a type parameter as described in section 3.3.2.

Now, after putting each type variable or parameter in its own equivalence class
along with the proper information about the representative, we have initialized
the union-find data structure, and we can thus begin the process of solving the
constraints.

3.3.5 Normalization of Types

When we process a constraint, the first thing we do is to normalize each type
occurring in the constraint. Normalizing a type t can be divided into three cases:

1. If t is a solved type variable, we substitute it with the type we’ve assigned
to it;

2. if t is an unsolved type variable (or parameter), we find the key (that is,
the name) of the representative type variable of the equivalence class, and
substitute it with this type variable;

3. otherwise, we just return t itself.

Sticking to the notation used in section 2, an example where this might be rele-
vant could be the constraint set

{α ≡ int,β ≡ int → int,α ≡ β}

If these constraints are processed from left to right, the last constraint will be
converted to the constraint int ≡ int → int. By doing this, we avoid an at-
tempt to re-solve a type variable in a possibly illegitimate way. In this concrete
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example, it means that we discover early in the process thatα and β are not unifi-
able since the constraint int ≡ int → int is unsolvable, that is, there exists no
substitution S that would make S(int) equal to S(int → int).

In the first two cases, it’s also important that normalization involves path
compression, similar to how we described findType in Listing 4 should work, to
get the favorable asymptotic running time described in section 2.2.4.

3.3.6 Solving the Constraints

If a given constraint doesn’t involve any type variables, we must check if it is
unifiable and if it emits any new constraints that must hold. For instance, since
Futhark is a functional language, arrays must be homogeneous, that is, all of its
elements must be of the same type, so when we encounter a constraint involving
two array types, a new constraint involving the element types is emitted.

However, if a given constraint does involve type variables, we must consider
several cases to solve it. The goal is to either bind a type variable to a concrete
type (that is, a type that isn’t a type variable), union the equivalence classes of
two type variables if they’re both flexible, or conclude that they’re non-unifiable
if they’re both rigid and non-equal.

In the case where the constraint involves exactly one type variable α and if
α is flexible, we must bind the type variable to the given type t . However, before
performing this binding, we need to substitute any type variable occurring in the
type with the type that this variable is bound to (if it’s bound to anything). We
have to do so because we have to perform the so-called occurs check mentioned
in section 2.1.4, and if we don’t fully substitute the type variables occurring in t ,
the occurs check might miss that we’re about to create a cyclical type.

However, if the occurs check doesn’t fail, we naively update the type of the
α to t before checking if the binding is valid (a type error will be thrown if not).
If the type variable is rigid, however, we must instead check if the type that the
type variable is bound to is unifiable with the type specified by the constraint, as
we did when unifying two types without type variables.

The same approach is taken when the given constraint contains two type
variables, one of which is rigid. Here, we bind the flexible type variable to either
the type of the rigid type variable (if it’s solved) or the type variable itself (if it’s a
parameter). If the given type variables are both rigid but not equal, the constraint
cannot be solved. Finally, if the two type variables are equal, the constraint is
trivially solvable by doing nothing.

If the constraint contains two flexible type variables (after normalization), we
must union them. In this case, we naively union the equivalence classes of the
type variables before checking if it is valid to do so. For instance, even though
they’re both flexible, one or both of them could have constraints on how they
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must be solved, potentially making them non-unifiable.
When all constraints have been solved as described above, we iterate through

the original list of type variables in the solveTyVar function. During each iter-
ation, we check for ambiguities which arise when a type variable initialized to
be flexible but not free remains unsolved. A type variable is free when it can be
bound to any type. Contrastingly, a non-free flexible type variable is classified
as unsolved as described in section 3.3.2 but constrained in terms of how it must
be solved. For instance, a type variable might be constrained to only be able to
be unified with a record that includes a given set of fields, meaning that it is
flexible but not free since it can only be unified with a record type. But if it is
never unified with a record type, its type is (too) ambiguous. More precisely, we
throw a type error whenever a flexible type variable constrained to be either a
sum type or a record hasn’t been assigned a solution in the end. If a type variable
which must be unified with a primitive type hasn’t been assigned a type in the
end, this isn’t considered an error since later parts of the type checking process
can choose a type to default it to.

Whenwe’re done solving constraints, we also do a scope and a liftedness check
for each free, flexible type variable. As we described in section 2.3, the scope
check ensures that no type variables have been unified with a type parameter
bound at a deeper scope than where the type variable is bound, whereas the
liftedness check ensures that the liftedness constraint of free type variables is set
to the least restrictive liftedness constraints of any free type variable they have
been unified with.

Finally, we extract the type of every type variable by looking in the union-
find data structure. If the solution found in the representative is a value of
type Solved t, we make a mapping from the name of the given type variable to
the type t that it’s been assigned. If the representative instead represents either
a flexible type variable or a type parameter, we must check if the name of the
given type variable and the key of the root is the same: If they’re the same, that
is, it shouldn’t be substituted with anything, this variable shouldn’t be included
in the final Solution but we still make sure to note that it’s unconstrained since
it might be relevant to the other parts of the type checker. If they’re not the same,
the type variable must be substituted with the type variable with the same name
as the key found in the root.
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4 Evaluation
This section aims to evaluate our new implementation of the constraint solver
described in the previous section. We evaluate its correctness bymaking and run-
ning unit tests but also using predefined tests. The performance is evaluated by
benchmarking on two suites of benchmarks that we have created and converted
from existing Futhark programs. Lastly, we attempt to identify bottlenecks in
our implementation using profiling.

During the initial development of our implementation, we relied primarily on
testing to ensure the correctness as it is difficult and nonsensical to benchmark an
implementation that does not work as intended. Therefore, we created some very
simple tests that served as milestones for our implementation, and we gradually
added more whenever a milestone was reached until we were fairly certain that
our implementation was mostly correct.

Now, having a mostly correct implementation, we began profiling the imple-
mentation to identify the parts of our code that used the most amount of time
to execute. For instance, we found out early in the process that we had imple-
mented the occurs check in a very inefficient way which we then updated to
make it quicker.

Next, when we had removed the obvious bottlenecks, we wanted to evaluate
the execution time of our implementation against the old implementation to see
how we compared. For this purpose, we used benchmarking where, in the be-
ginning, we simply used hyperfine9 to run the futhark check command on a
Futhark program. However, later on we developed the aforementioned suite of
benchmarks.

This sums up the workflow that we used to develop the implementation, that
is, iterating through the stages of developing, testing, profiling, and benchmark-
ing. The remainder of this section will describe each of these stages and the final
results thereof in depth. All graphs presented in this section can be found in an
enlarged version in appendix A.2.

4.1 Testing
To evaluate the correctness of our implementation, we used unit tests in com-
bination with a suite of tests (that we didn’t make ourselves) of the entire type
checker. The unit tests can be found in the TySolveTests module, and the suite
of tests can be found in the tests directory at the root of our repository.

The unit tests cover simple edge cases, such as discovering infinite types,
scope violations, differently sized tuples, records, and more. These were devel-

9https://github.com/sharkdp/hyperfine
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oped to test some of the very basic types and scenarios arising from the type
system. The unit tests can be run using the following command: cabal run
unit -- -p Unsized. Our implementation passes all the unit tests we’ve made.
However, it’s worth mentioning that we were unable to test sum types in our
unit tests since the parsing of constraints does not support sum types. But as we
shall see, some tests containing sum types were still resolved correctly.

The second approach was using the tests provided in the aforementioned
tests directory. We ran these tests using the command: futhark test -t
tests/. This suite tests a wide variety of programs usingmore than 2000 Futhark
programs as test cases. Our implementation was hereby also tested on sum types
as some of these programs use them. Working from an experimental branch,
that is, the automap branch, was sometimes challenging as we on rare occasions
ran into bugs that were not only present in our implementation. These bugs
were fixed, however, the test suite contains 20 programs that fail even with the
original implementation from the automap branch. We did not attempt to solve
these since they were related to other parts of the type checker, and, as such, our
implementation also fails the same 20 test cases.

However, even with both these approaches, we can not be completely sure
that our implementation is correct since theremight be cases that are not covered
by these tests. But also because the TypeChecker.Terms.Unsized module calls
the solve function of our implementation and uses the results. This means that
even if we were to return an incorrect solution, it is not certain that the incorrect
part of the solution will be used by the type checker.

Although, we still find that the described testing is sufficient to evaluate the
correctness of our implementation, and determine that it is sufficiently correct
compared to the old implementation as it passes the same tests as the old imple-
mentation.

4.2 Benchmarking
The purpose of benchmarking our implementation was to evaluate whether it
has improved the performance of the type constraint solver of the type checker.
As described in section 2.2.4, the union-find data structure can provide a prac-
tically linear (in the number of type variables) running time implemented with
the heuristics described in section 2.2.2. Therefore, we were interested in bench-
marking the execution time of our implementation to discover if this new data
structure would improve the execution time.

Many approaches can be taken to benchmark this metric but we chose two
different approaches. The first approachwas to convert a set of real-world Futhark
programs to a set of benchmarks to be evaluated. We chose this approach since
it was a way to see the effect of our implementation on the runtime on actual
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programs written in Futhark.
The second approach we chose was to create a list of benchmarks that sim-

ulated a scenario where we hypothesized that the path compression heuristic
should be particularly advantageous to the execution time of our implementa-
tion. This is also a scenario where we believed that the previous implementation
should have a significantly worse performance. This approach was chosen in
addition to the other in order to evaluate whether our implementation would
perform better than the old in this scenario as that is what we expected.

For both of these approaches, we wanted to evaluate the impact of the heuris-
tics on the execution time of our implementation. Consequently, we tested this
by running the benchmarks using our implementation, firstly with both heuris-
tics enabled, secondly with path compression enabled and union-by-weight dis-
abled, and lastly with both heuristics disabled.

4.2.1 Running the Benchmarks

To run all the benchmarks, we used a laptop with an Intel Core i7-13700H and
16GB of RAM running FedoraWorkstation 42. The implementation of the bench-
marks in Haskell can be found in the TySolveBenchmarksmodule and was done
using the package criterion10. This criterion package is a reputable tool that
ensures that the measurements of the execution time are more accurate by utiliz-
ing regression analysis and cross-validation to distinguish the actual data from
noise [13].

In order to benchmark our implementation and the old, we put each imple-
mentation in their own module. Our implementation was placed in the TySolve
module11, and the old implementation was placed in the TySolveOldmodule12. It
is the solve function that we are benchmarking since that is the exported func-
tion called by the remaining parts of the Futhark compiler when constraints are
to be solved. To distinguish between the old and the new solve function, we
created two new solve functions in the TySolveBenchmarksmodule, solveOld
and solveNew. These functions are wrappers as they simply pass on given argu-
ments to their respective solve function.
Now, a benchmark consists of the following three elements:

1. A list of constraints.

2. A map with mappings of type parameters to their respective information.

3. A map with mappings of type variables to their respective information.
10https://hackage.haskell.org/package/criterion
11https://github.com/jacobgummer/futhark, commit c948040.
12https://github.com/jacobgummer/futhark, commit c9a9261.
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By passing these three elements as arguments, the implementations can be eval-
uated by calling the one (or both) of the aforementioned solve functions. Before
such a benchmarkwas run, we had to place it in the TySolveBenchmarksmodule.
Next, to run the benchmark and save the generated data to a CSV file alongside
a report formatted in HTML, we ran the following command:

cabal bench
--benchmark-options="--csv results.csv --output report.html",→

4.2.2 Benchmarking of Futhark Programs

As mentioned in the beginning of section 4.2, this approach to benchmarking
seek to evaluate the effect on the “real-life execution time” of our implementa-
tion. To achieve this, we need a reasonably sized suite of Futhark programs to
convert to benchmarks as these programs will serve as a representation of aver-
age real-life programs.

While the synthetic benchmarks described in further detail in the next section
seek to evaluate a synthetic scenario, these benchmarks seek to provide a more
realistic measure of the performance impact of our implementation.

Converting Futhark Programs to Benchmarks
To obtain the aforementioned suite of Futhark programs, we had to look no fur-
ther than at the futhark-benchmarks repository13 included as a submodule in
the futhark repository.

Inside the futhark-benchmarks repository is 12414 Futhark programs in the
form of .fut files. To extract the constraints, type variables, and type parameters
from a Futhark program, the following command can be run:

FUTHARK_LOG_TYSOLVE=0 futhark check <Futhark program>.fut

The environment variable FUTHARK_LOG_TYSOLVE enables logging of the TySolve
module during the (type)check of the given Futhark program. During this check,
the solve function is called many times since its output is used for many pur-
poses, including to check the type of each function in the given program individ-
ually. Thus, the logging consists of the following block of output repeated for
each call to the TySolve.solve function:

13https://github.com/diku-dk/futhark-benchmarks, commit 7d97653.
14Excluding the .fut files found in (sub)directories named lib to avoid duplicate benchmarks,

as these files are primarily imports from other repositories and are often repeated.
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# TySolve.solve
## constraints
"t\8322" ~ "a"
## typarams
["(\"a\",(0,Unlifted,NoLoc))"]
## tyvars
[("t\8322",(6,TyVarFree NoLoc Lifted))]
## solution
([], [("t\8322",Right "a")])

Figure 3: An example of a block from the output generated during a type check,
if logging is enabled.

Each block is a problem that can be converted to a benchmark since it con-
tains the three elements mentioned in section 4.2.1. The solution field is thus
ignored since it is not needed to create a benchmark.

Any Futhark program generates a lot15 of blocks, since a block is logged each
time the solve function is called during a type check. However, 832 of these
calls are actually done to type check the built-in Prelude16. Since the Prelude
is implicitly imported in all Futhark programs, and thus introduce a constant
amount of work, we decided to exclude the first 832 blocks generated by each
file.

Now, excluding the first 832 blocks of each file, more than 6000 blocks were
generated by the 124 files. Since each block is converted to a benchmark, this
would result in an equal number of benchmarks. Running this many benchmarks
would take an infeasible amount of time and thus, we decided to exclude some
of these blocks. To ensure that the included blocks yielded the most insightful
results, we wanted to include the blocks with the highest complexity in the sense
that they result in the highest execution time, and because blocks with higher
complexity hopefully increase the possibility of revealing significant differences
in performance between the old and new implementation.

However, predicting the complexity of a given block is difficult to do system-
atically without doing a deeper analysis of the constraints, type parameters, and
variables in the given block. We decided to use the number of constraints as a
proxy for the complexity of a given block, that is, the more constraints the higher
the complexity. This choice is founded on the fact that each constraint represents
a relationship between two types that must be resolved. A higher number of con-

15As an example it is called more than 1000 times for the rodinia/myocyte/myocyte.fut file,
generating a block of output for each call.

16https://futhark-lang.org/docs/prelude/
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straints must therefore increase the number of potentially complex relationships
to resolve, thereby also increasing the execution time of the constraint solver.

As we shall see, this proxy is by no means perfect as there can still exist
blocks with a low number of constraints and high complexity and vice versa.
But excluding such edge cases, this proxy still guides us towards the problems
that are more likely to challenge the efficiency of the implementations and thus
reveal insightful results.

Having chosen the number of constraints as the proxy for the complexity
of a block, the question as to how many constraints a given block must contain
in order to be sufficiently complex was still open. However, we decided to base
this threshold on the (in)feasibility of running the remaining number of blocks
as benchmarks. We was found that a threshold of 30 constraints resulted in 59817
remaining blocks from 105 different files which is a feasible number of bench-
marks to run18.

These blocks then had to be converted into benchmarks. To achieve this, a
new Generated.AllFutBenchmarks module was created. Each file also got its
own submodule named after the path of the file, for example the rodinia/myo
-cyte/myocyte.fut got a submodule called Generated.AllFutBenchmarks-
.Rodinia.Myocyte.Myocyte. All the blocks generated by the given file were
placed inside this submodule.

However, before placing a block in its submodule, it must first be converted
to a benchmark as it is not as simple as taking the output from a block and di-
rectly placing it in the submodule. As described in 4.2.1, a benchmark requires a
list of constraints, a map with type parameters, and a map with type variables.
This information is available in the block, as seen in figure 3 but it must first be
formatted correctly. As an example, backslashes in type variables cannot be used
in benchmarks19, instead they must be replaced with underscores.

When formatting is completed, the information from the block is finally ready
to be inserted into its corresponding submodule. All the submodules use the same
template. An example of the block in figure 3 using the template is shown below.
module Generated.AllFutBenchmarks.Example (benchmarkDataList)

where,→

-- Imports ...
(~) :: TypeBase () NoUniqueness -> TypeBase () NoUniqueness ->

CtTy (),→

17The actual number was 631, but we had to exclude 33 blocks due to errors. Two entire files
were also excluded due to errors. We expect that these errors are caused by the lack of support
in the SyntaxTests module for parsing strings to sum types.

18It takes approximately 40 minutes to run the 598 benchmarks.
19The conversion and parsing of a string to the CtType type is done in the SyntaxTestsmod-

ule which requires the strings to be formatted in a certain way.
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t1 ~ t2 = CtEq (Reason mempty) t1 t2

type BenchmarkCaseData = ([CtTy ()], TyParams, TyVars ())

benchmarkDataList :: [BenchmarkCaseData]
benchmarkDataList =

[ (
[
"t_8322" ~ "a_1",
],
M.fromList [("a_1",(0,Unlifted,NoLoc))],
M.fromList [("t_8322",(0,TyVarFree NoLoc Unlifted))]

), -- Remaining blocks, if any.
]

Finally, when all blocks have been converted to benchmarks, they are im-
ported into one complete list in the Generated.AllFutBenchmarksmodule. This
list is then imported to the TySolveBenchmarks module which iterates through
each benchmark in the list when the benchmarks are run as described in section
4.2.1.

Results
As briefly mentioned in the beginning of this section, our implementation was
evaluated against both the old implementation but also against our own imple-
mentation with different combinations of heuristics enabled. This suite of bench-
marking was thus run 4 times, yielding 4 different datasets to be analyzed. The
implementation used to generate the datasets are summarized below along with
their shorthand name used in the graphs in this section. More detailed informa-
tion about the datasets, such as the average mean execution time and more, will
be referenced in the following and can be found in appendix A.1.

Implementation used to generate dataset Shorthand name
Old implementation solveOld
New implementation solveNew
New implementation without union-by-weight solveNew w/o ubw
New implementation with no heuristics solveNew w/o heuristics

The first graph shown in figure 4 does not seem to show a correlation be-
tween the number of constraints and the mean execution time (MET) to solve
these constraints. It can also be seen that the vast majority of the benchmarks
have between 30 and 400 constraints. The relative performance graph shows that
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the solveNew implementation seems to have a higher MET than the solveOld
implementation on average. This is backed up by the fact that the mean of the
relative performance is −0.22 across all benchmarks, and also that the average
MET of the solveOld implementation was 16.4% lower than that of solveNew.

Figure 4: A graph of the number of constraints against the mean execution time
(in nanoseconds) to solve the given number of constraints for both solveOld and
solveNew. The green graph shows the number of constraints against the relative
performance of the two solvers.

As the previous graph did not reveal a clear correlation between the number
of constraints and the mean execution time, we decided to focus more on the
relative performance between implementations. Figure 5 shows that solveOld
had a lowerMET in 535 of the the total 598 benchmarks, which further underlines
the fact that solveNew is slower than solveOld in this suite of benchmarks.
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Figure 5: A graph showing the relative performance between solveOld and
solveNew. The diagonal red line is the line of equality where y = x . If a data
point is above the red line, solveNew had a lower (that is, better) MET than
solveOld in the given benchmark, and vice versa. There are 63 data points above
the red line and 535 below.

In figure 6, wewanted to examine the effect of the heuristics of the union-find
data structure on the MET of solveNew. Therefore we constructed two graphs:
figure 6a shows the relative performance between solveNew and solveNewwith-
out union-by-weight, and figure 6b shows the relative performance between solveNew
and solveNew without heuristics.

Figure 6a shows that solveNew with or without union-by-weight perform
almost equally as the data points are all very close to the diagonal line. This can
also be inferred by looking at their average MET where solveNew w/o ubw has
an average MET of 1333.25 ns that is less than 0.5% lower than solveNew.

However, when disabling path compression also, it seems that the perfor-
mance improves a little since the number of benchmarks where solveNew w/o
heuristics are faster than solveNew increases from 331 when still using union-
by-weight to 535 when using no heuristics. This is furthermore observed in the
average MET that decreases by 2.18% from 1333.25 ns to 1304.12 ns when com-
pared to solveNew.
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(a) There are 267 data points above the red
line, and 331 below.

(b) There are 63 data points above the red
line, and 535 below.

Figure 6: The diagonal red line is the line of equality, where y = x . If a data
point is below the red line, the dataset represented on the y-axis had a lower
MET than the dataset represented on the x-axis in the given benchmark.

4.2.3 Benchmarking of Synthetic Scenario

In this approach to benchmarking, we wanted to evaluate whether our new im-
plementation would have a lower execution time in a constructed synthetic sce-
nario where we believe that it should benefit from the path compression of the
union-find data structure. This approach is interesting as it will reveal whether
our implementation is efficient enough to outperform the old implementation in
a scenario that is well-suited for the union-find data structure using path com-
pression.

The scenario consists of the following the constraint set.

{αi ≡ αi+1 | 0 ≤ i ≤ n− 1} ∪ {αn ≡ int}

Assuming that each constraint solely involving type variables is solved by letting
the node representing the left-hand type variable point to the right-hand type
variable – which is practically what happens in the old implementation – we
might end up with a chain of length n of type variables before we reach the last
constraint α j ≡ int. The last constraint then essentially constrains every type
variable in the chain to be substituted with int. This means that, when we must
eventually determine what each type variable should be substituted with, we
must take n − i "steps" through the chain to resolve the type of αi, 0 ≤ i ≤ n,
and since Σn

i=0 i = Θ(n2), resolving the type of every type variable in the chain
would take time Θ(n2). Contrastingly, with path compression and union-by-
weight, resolving the type of a type variable will have an amortized O(A(n)) cost
(with n again being the number of times a new node is created in the union-find
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structure) which is less than or equal to 4 for any conceivable number of n, as
we argued in section 2.2.4, and, hence, practically constant.

As previously, we also wanted to evaluate whether our new implementation
would perform worse without using any of the heuristics described in section
2.2.2. This should be particularly interesting as we hypothesize that the path
compression heuristic should improve the execution time in this synthetic sce-
nario.

Constructing the Scenario as a Benchmark
To construct the scenario, we had to find a way to generate a list of constraints
of length n as described above. For that purpose we created the function genera
teConstraints and placed it in the TySolveBenchmarksmodule. This function
starts by generating a list of n free type variables. Next, the list of constraints
needed to create the ’chain’ of type variables is created. Lastly, one single con-
straint, an ≡ int, is concatenated to this list. As described above, we hypothe-
sized that this scenario should scale much better with the new implementation.

We generated 50 benchmarks, with the number of variables (n) starting at 20
and increasing by steps of 20 up to 1000. As we shall see, this range of bench-
marks is sufficient to reveal the differences in the performances of the imple-
mentations. As in section 4.2.2, the metrics and shorthand names of datasets
generated by this suite of benchmarks can be found in appendix A.1.

Results
Figure 7 presents the MET for the solveNew, solveOld, solveNew W/o ubw and
solveNew w/o heuristics implementations across the aforementioned range
of type variables (n). As anticipated, the solveNew implementation shows the
lowest execution time, indicating that path compression reduces the MET. This
is also futher confirmed by the solveNew w/o ubw implementation, as that seems
to be almost equal with solveNew. TheMET of these appears to grow slowlywith
n, indicating that the time complexity is linear.

The solveOld implementation shows a noticeably higherMET than solveNew.
Its execution time increases at amuch faster rate as n grows. Looking at the graph
it seems to have the hypothesized Θ(n2) running time.

As we expected, solveNew w/o heuristics performs the worst when com-
paring the four implementations. ItsMET is higher than that of solveOld through-
out all the benchmarks. It seems that they scale exactly the same, however,
solveNew w/o heuristics performs worse by a constant factor. This might
indicate that solveNew w/o heuristics has to do the same amount of traver-
sals as solveOld but it uses a constant amount of time more on each traversal
than solveOld.
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The graph suggests that using the heuristics described in section 2.3 provides
a great optimization that improves the time complexity of our implementation
in this synthetic scenario.

Figure 7: A graph of the number of type variables in the ’chain’ against the MET
of the solveNew, solveOld, solveNew w/o ubw and solveNew w/o heuristics
implementations.

4.3 Profiling
To try to gain information about which parts of our new implementation of
the TySolve module acted as performance bottlenecks, we have profiled some
benchmarks, since this allows us to profile the TySolvemodule in isolation. This
is preferable, as the runtime of TySolve is easily overshadowed by the runtime
of other modules, making it harder to identify what parts of TySolve are inef-
ficient. We only focused on profiling the execution time of our implementation
and not the memory usage as it is the execution time that we aimed to improve.

Profiling in Haskell with the GHC compiler20 is done by compiling with pro-
filing enabled and enabling the +RTS -p flags. This generates a profiling report
in the form a .prof file with a Cost Centre Module. A cost is the CPU time (and
memory) used by the Haskell code to evaluate a given expression. GHC will cre-
ate a call tree of costs which allows one to identify the inherited percentage of
the total costs as shown below21.

20https://downloads.haskell.org/ghc/latest/docs/users_guide/profiling.html
21The MODULE and SRC columns have been omitted for brevity.
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individual inherited
COST CENTRE no. entries %time %alloc %time %alloc
solve 1628 31401 0.8 1.0 98.6 98.3
solveCt 1648 2041065 0.5 0.5 6.1 10.8

The sample shows that the solve function calls the solveCt function. The
cost of the solve function individually is 0.8% of the total time, but all its chil-
dren’s costs, that is, the inherited cost, takes up 98.6% of the total time which is
expected since the solve function is the exported function that runs the con-
straint solver.

However, it can be difficult to analyze such a .prof file by hand as it can con-
tain thousands of lines. Therefore we used profiteur22 to vizualize the .prof
file.

We chose to profile the two slowest benchmarks from the suite of benchmarks
converted from Futhark programs as described in section 4.2.2, since this would
allows us to examine what parts of our implementation use the most time to
evaluate. These were block 1 and 3 from the accelerate/hashcat/hashcat.f
ut and accelerate/julia/julia.fut files, respectively.

Figure 8 visualises the profiling of the benchmark from block 1 of the hashc
at.fut program. It shows that the solve function inherits a substantial amount
of costs from calls to solveEq.sub (20.4%time and 19.8%time23), unionTyVars
(19.4%) and the monadic bind operation >>= (19%time), totaling 78.6%time from
these operations alone.

This informs us that an optimization or less use of these operations, would
improve the execution time of this benchmark. The visualization also allows
us to see what calls inside these functions are costly by examining the children
costs. As an example the unionTyVars inherits 7.4%time of the total 19%time
from the unionTyVars.pts function.

22https://github.com/jaspervdj/profiteur
23The reason why solveEq.sub appears twice in the visualization might be because the GHC

compiler chose to inline calls to this function.
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Figure 8: Visualisation of the profiling of the benchmark
accelerate/hashcat/hashcat.fut (Block 1/5) containing 68 constraints.

The second visualization of the profiling of block 3 of the accelerate/julia/ju
lia.fut file is shown in figure 9. It shows that a significant amount of cost comes
from solveEq.sub (14%time and 11%time), bindTyVar (9.5%time), getSolution
(9%time), and the monadic bind operation >>= (19.4%time). This shows that an
optimization of the solveEq.sub function would improve the runtime of both
profiled benchmarks. Interestingly, no calls are made to unionTyVars function
which used 19%time in the previous profiling. However, this might be expected
if the list of constraints in the block contains no constraints that results in the
union of two type variables.
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Figure 9: Visualisation of the profiling of the benchmark
accelerate/julia/julia.fut (Block 3/8) containing 65 constraints.

4.4 Discussion and Possible Improvements
In terms of improving our implementation, we would definitely add more unit
tests to ensure that it remains correct. We already have a reasonable amount of
unit tests but there could be more, and, moreover, there could be more tests that
don’t necessarily involve type variables or type parameters to ensure that these
types of constraint are also handled in an correct manner.

Our project was also focused on improving the running time of the constraint
solver, so, naturally, weweren’t focusing that much onmaking sure that the error
messages provided to the user when a type error occurs are actually helpful.
Hence, although it’s a completely different scope, ensuring that error messages
are correct and helpful would also be worth looking into in future work with the
constraint solver.

The data gained from the suite of benchmarks converted from Futhark pro-
grams provided two important insights. The first being that our new implemen-
tation is measurably slower than the previous. We believe that the overhead
introduced by the many reads and writes to STRefs in our implementation could
be responsible for part of heightened execution time. This is backed up by the
profiling that we have done, since its shows that functions such as solveEq.sub
use a significant amount of time to evaluate (up to 40%). This particular function
is called on every type in the constraints, and if the type is a type variable with a
corresponding mapping to its node, the solution of the given node is looked up
causing a read (and potentially a write, due to path compression) from an STRef.
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The second important insight from the benchmarking of converted Futhark
programs is that using path compression and union-by-weight in the implemen-
tation of our union-find data structure does not have the expected impact on
the performance of our implementation; if anything, the impact is slightly nega-
tive resulting in a higher execution time compared to the implementation using
these heuristics. We believe that some of this negative impact stems from the
additional reads and writes of the STRefs that path compression, in particular,
introduces, although more work should be done to identify more precisely what
causes our implementation to be slower in general.

In contrast, the data from the benchmarking of the synthetic scenario suggest
that the heuristics do indeed provide a substantial performance improvement in
this specific scenario since it scales in a way more preferable manner than the
old implementation.

The question of whether to use the heuristics or not naturally arises now. We
argue that the performance degradation of using heuristics is so small that it is
worth implementing them since the performance improvement in the synthetic
scenario shows that the heuristics work. This performance improvement alone,
should not be the reason for using heuristics but we argue that there is no rea-
son to believe that removing the heuristics would provide a better asymptotic
running time; the analyses we made in section 2.2.2 should justify this.

On the contrary, we believe that the improved performance seen by disabling
the heuristics is a symptom of a structurally inefficient implementation of them.
In addition, by using heuristics we can guarantee the theoretical O(A(n)) amor-
tized time complexity for union-find operations.

As a final note, apart from improving the current logic used in our imple-
mentation, there are other things worth looking into to optimize the constraint
solver even further.

First of all, a more efficient way of finding the corresponding node of a type
variable in the union-find data structure could help in a better asymptotic run-
ning time, at the very least. A possible solution would be to replace the Map
structure, which has O(lg n) lookup time, with a hash table, which in the best
case has O(1) (amortized) lookup time [14]. Existing Haskell implementations
of hash tables, like Data.Hashtable.Class [14], also use the ST monad to achieve
this efficient time used for lookups (among other operations, like insertion and
deletion), so it wouldn’t be difficult to introduce this to our implementation.

Second of all, the occurs check is potentially quite slow, at least when dealing
with composite types thatmight contain type variables that should be substituted
with types that then should be substituted with other types and so on. To make
this check more efficient, Kiselyov [15] propose postponing this check by uti-
lizing the levels of type variables to make unification of two free type variables
take constant time. However, to actually implement this, one would need to as-
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sign levels to composite types and not just type variables, meaning that it would
require a substantial modification of the current, underlying type system used
in Futhark. The benefits would most likely be significant but it would probably
also require a project similar in size, or even bigger, compared to ours.
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5 Conclusions and Future Work
We have described the theory underlying the process of solving constraints, how
a union-find data structure and heuristics like path compression and union-by-
weight provide a good asymptotic running time of unification, and how we up-
dated Futhark’s current constraint solver to utilize this data structure in hopes
of making it more efficient.

Theoretically, we explored how to unify, that is, solve type constraints from
a small type system we introduced. One approach to the problem of unification
was based on continually applying and composing substitutions, but since this
approach is inherently computationally expensive, we looked at how a union-
find data structure using the aforementioned heuristics could be used to make
unification have a good asymptotic running time. However, we noted that the
operations provided by the union-find data structure are inherently difficult to
implement in purely functional languages like Haskell. To address this, we took a
look at the STmonad which can be used to have in-place updates in memory and,
hence, make it possible to make an efficient implementation of the union-find
data structure. With this, we thus explored how to actually implement the data
structure in Haskell as well as how it was used in our updated implementation
of Futhark’s constraint solver.

To evaluate the correctness of our implementation, we constructed a small
suite of unit tests that we had to (and did) pass. In addition to these tests, we
utilized an already existing suite of Futhark programs as test cases. Our im-
plementation passed the same amount of tests as the previous implementation,
indicating that our new implementation is as correct as the existing implemen-
tation.

Our evaluation of the performance of our proposed implementation showed
that it, in general, performs worse than the current implementation, demonstrat-
ing that there is room for improvements. We argued that a better implementation
of the heuristics of the union-find data structure in combination with a post-
poned occurs check, and a more efficient replacement for the current Map data
structure, such as a hash table, should significantly improve the performance of
our implementation.

In conclusion, we have contributed with a large suite of benchmarks, a thor-
ough theoretical walkthrough of how to do efficient constraint-solving using a
purely functional programming language such as Haskell, but, perhaps most im-
portantly, we have contributed with the foundation of a more efficient imple-
mentation of a constraint solver than the current.
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A Appendix

A.1 Metrics From Datasets Generated During Benchmarking

Datasets generated during Benchmarking of Futhark Programs
Origin Shorthand name Mean Median Standard Deviation
Old implementation solveOld 1119.31 651.24 1427.19
New implementation solveNew 1338.78 862.17 1738.25
New implementation without union-by-weight solveNew w/o ubw 1333.25 853.21 1732.29
New implementation with no heuristics solveNew w/o heuristics 1304.12 843.34 1708.98
Relative performance between solveOld and solveNew relative -0.2214 -0.2322 0.1975

Datasets generated during Benchmarking of Synthetic Scenario
Origin Shorthand name Mean Median Standard Deviation
Old implementation solveOld 2191.62 1381.88 2202.46
New implementation solveNew 239.02 239.71 145.54
New implementation with no heuristics solveNew w/o heuristics 2837.69 2074.04 2582.98

All metrics are calculated from the Mean Execution Time, and the time unit is thus nanoseconds, except for the relative
dataset as it represents the relative performance between solveOld and solveNew.
All metrics are rounded to nearest 2 decimals, except for the relative dataset which is rounded to nearest 4 decimals.
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A.2 Enlarged Graphs
A.2.1 Figure 4

A.2.2 Figure 5
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A.2.3 Figure 6a

A.2.4 Figure 6b
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A.2.5 Figure 7
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A.2.6 Figure 8
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A.2.7 Figure 9
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A.3 AI declaration

 

Deklaration for anvendelse af generative AI-værktøjer (studerende) 
 
 
☒ Jeg/vi har benyttet generativ AI som hjælpemiddel/værktøj (sæt kryds) 
 
☐ Jeg/vi har IKKE benyttet generativ AI som hjælpemiddel/værktøj (sæt kryds) 
 
Hvis brug af generativ AI er tilladt til eksamen, men du ikke har benyttet det i din opgave, 
skal du blot krydse af, at du ikke har brugt GAI, og behøver ikke at udfylde resten. 
 
Oplist, hvilke GAI-værktøjer der er benyttet, inkl. link til platformen (hvis muligt): 
 
ChatGPT https://chatgpt.com/ 
Claude.ai https://claude.ai/login?returnTo=/? 
Google Gemini https://gemini.google.com/app 
 
Beskriv hvordan generativ AI er anvendt i opgaven:  
 
1) Formål (hvad har du/I brugt værktøjet til) 

Vi har brugt GAI til kilde- og litteratursøgning, men også som en slags ekstra vejleder 
til f.eks. at forklare kode eller teori for os. Vi har også i mindre grad brugt det til at 
give forslag til strukturering af vores afsnit i rapporten. 
 

2) Arbejdsfase (hvornår i arbejdsprocessen har du/I brugt GAI) 
Vi har brugt GAI i mere eller mindre alle dele af arbejdsprocessen, dvs. både ift. 
litteratursøgning, forklaring af eksisterende kode samt rapportskrivning (som nævnt 
ovenfor ved at få hjælp til strukturering af afsnit). 
 

3) Hvad gjorde du/I med outputtet (herunder også, om du/I har redigeret outputtet og 
arbejdet videre med det) 
Vi har læst outputtet, og i nogle tilfælde har vi yderligere udspurgt den om noget, f.eks. 
for at få en mere dybdegående forklaring af noget. 

 
 
 
 
 
 
 
 
 
 
 
NB. GAI-genereret indhold brugt som kilde i opgaven kræver korrekt brug af citationstegn og 
kildehenvisning. Læs retningslinjer fra Københavns Universitetsbibliotek på KUnet. 
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