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Abstract

Futhark is a data-parallel functional programming language whose compiler is
presently capable of translating to GPGPU code through the OpenCL framework.
This project details the implementation of an additional backend for the Futhark
compiler targeting the CUDA framework. The backend is empirically evaluated
through testing with the Futhark test suite, and by a performance comparison with
the existing OpenCL backend. The results show that the CUDA backend passes
all tests, and that it, for the majority of benchmark programs, performs similarly
to the OpenCL backend. There is, however, a number of benchmark programs for
which the CUDA backend is either significantly faster or slower than the OpenCL
backend, and an exact reason for this difference has not been found.
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1. Introduction and Motivation

Futhark is a data parallel, purely functional programming language that comes
with an optimizing compiler for generating GPGPU code through the OpenCL
framework [2, 1]. Its supported output languages are C through the standard
OpenCL C API, Python through the PyOpenCL library, and C# through the
Cloo library. For each of these languages, the compiler supports the generation
of standalone executables as well as libraries that can be linked against by larger
applications.

This project, as its primary goal, covers the implementation of an additional
backend to the Futhark compiler for generating GPGPU code through the CUDA
framework developed by NVIDIA. There are two main reaons behind choosing to
add a CUDA backend to the compiler:

1. CUDA is more widespread than OpenCL, meaning that there are more
CUDA programs with which to compare the performance of Futhark pro-
grams. Comparing the performance of a Futhark program to the performance
of a CUDA program gives a more accurate result if the Futhark program also
uses the CUDA framework, since this ensures that any performance differ-
ences between OpenCL and CUDA do not factor in.

2. Although most CUDA devices support OpenCL, there are some who do not.
The addition of a CUDA backend would thus expand the range of devices
that Futhark programs can run on.

The project focuses only on outputting C code with CUDA.
An introduction to the CUDA programming model can be found in chapter 2,

while chapter 3 documents the implementation of the backend. In chapter 4, the
backend is tested using the Futhark test suite, and a performance comparison with
the OpenCL backend is performed using the Futhark benchmark suite. Lastly,
chapter 5 summarizes the project and briefly looks at possible future work.
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2. The CUDA Programming Model

This chapter gives a brief introduction to programming with CUDA, and touches
on parts of the framework that are relevant to understanding the most important
choices made in the implementation of the CUDA backend. Fully in-depth infor-
mation on programming with CUDA can be found in the official documentation
[5].

CUDA follows a heterogenous programming model in which a host CPU or-
chestrates the execution of parallel code on one or more CUDA-enabled devices.
CUDA programs are written in C/C++, and various language extensions are used
to, among other things, specify if functions should be located on the host or the
device, and to call device functions from the host. Since the host and the device
each have their own memory, an important part of writing CUDA programs is the
management of device memory (allocation/deallocation) and the copying of data
between the device and host.

Device functions that are callable from the host are called kernels. When a
kernel is called, it is executed in parallel by a number of threads, as specified by
the host when the call is made. These threads are, conceptually, arranged into
3-dimensional blocks, which are again arranged into a 3-dimensional grid. Within
each block, threads can share data with each other through a fast type of memory
called shared memory, and accesses to memory can by made safe through the use
of various synchronization functions.

Representing threads in a multidimensional manner the way CUDA does is
often helpful when writing parallel code, since parallel code is often in problem do-
mains with multidimensional aspects. Examples of such problem domains include
matrix operations and physics simulations.

2.1 An Example Program

Listing 2.1 shows a simple example of a kernel, add_kernel, for adding together
two matrices, and a corresponding wrapper function, add, located on the host.

1 __global__ void add_kernel(float *a, float *b, float *c, int width

, int height)
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2 {

3 int x = blockIdx.x * blockDim.x + threadIdx.x;

4 int y = blockIdx.y * blockDim.y + threadIdx.y;

5 if (x >= width || y >= height) { return; }

6 int idx = y * width + x; // Row -major index

7 c[idx] = a[idx] + b[idx];

8 }

9

10 #define CEIL_DIV(a,b) (((a) + (b) - 1) / (b))

11

12 __host__ float *add(float *a, float *b, int width , int height)

13 {

14 size_t memsize = width * height * sizeof(float);

15 float *d_a = NULL , *d_b = NULL , *d_c = NULL;

16 float *c = (float *) malloc(memsize);

17

18 // Allocate device memory

19 cudaMalloc (&d_a , memsize);

20 cudaMalloc (&d_b , memsize);

21 cudaMalloc (&d_c , memsize);

22

23 // Copy input matrices from host to device memory

24 cudaMemcpy(d_a , a, memsize , cudaMemcpyHostToDevice);

25 cudaMemcpy(d_b , b, memsize , cudaMemcpyHostToDevice);

26

27 // Invoke kernel with 2-dimensional block and grid

28 dim3 block(32, 32, 1);

29 dim3 grid(CEIL_DIV(width , block.x), CEIL_DIV(height , block.y),

1);

30 add_kernel <<<grid , block >>>(d_a , d_b , d_c , width , height);

31

32 // Copy output matrix from device to host memory

33 cudaMemcpy(c, d_c , memsize , cudaMemcpyDeviceToHost);

34

35 cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);

36 return c;

37 }

Listing 2.1: A simple matrix addition kernel with a host wrapper (error
handling omitted for brevity).

The host wrapper performs the following actions:

1. cudaMalloc is used to allocate memory on the device.

2. cudaMemcpy is used to copy the input to the allocated buffers on the device.

3. The block and grid dimensions with which to launch the kernel are calculated.
Specifically, we choose a fixed 2-dimensional block size of 32-by-32, and then
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set the grid dimensions accordingly, in order to have enough threads for each
thread to calculate a single element of the output matrix. Note that if the
height or width of the matrices are not multiples of 32, more threads will be
created than are needed. Choosing a fixed block dimension and setting the
grid dimension accordingly in this way is a commonly used approach when
writing CUDA programs.

4. The add_kernel kernel is launched with the calculated block and grid di-
mensions.

5. The result matrix is copied back to host memory with the cudaMemcpy func-
tion and all allocated device buffers are freed with cudaFree.

It can be seen that the host wrapper makes use of several non-standard C features,
which are CUDA extensions:

• An execution space specifier, ___host___, specifies that the function is to
be located on the host. This is also the default when no specifier is given.

• A dim3 vector type is used for specifying grid and block dimensions.

• A special triple-chevron syntax (<<<...>>>) is used to launch a kernel with
the specified block and grid dimensions.

Now, looking at add_kernel, we can tell that this is indeed a kernel from its
___global___ execution space specifier. Had this specifier instead been
___device___, then the function would be located on the device, but it would not
be a kernel – i.e., it would not be callable from the host. Looking at the body of
the kernel, it can be seen that a number of builtin variables are used. In general
in CUDA device code, the following builtin variables make up important language
extensions:

threadIdx The index of the current thread within its block.

blockIdx The index of the current block within the grid.

blockDim The block dimensions.

gridDim The grid dimensions.

All of these variables are of the vector type dim3, and their elements can be accessed
using the x, y, and z member variables – e.g., threadIdx.x.

With this in mind, we can see that the kernel does the following:

1. The block and thread indices are used to to calculate the x- and y-coordinates
of the element that a thread will be calculating in the output matrix. Due
to the nature of matrix addition, these coordinates also specify the element
that will be read from each of the two input matrices.
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2. Next, a guard is in place that ensures a thread will terminate if its calculated
coordinates are outside the bounds of the matrices. This handles the issue
of more threads than necessary being spawned by the host when the matrix
dimensions are not a multiple of 32.

3. Then, each thread calculates its index into the matrices from the x- and
y-coordinates – assuming row-major order.

4. Lastly, each thread reads an element from each of the two input matrices,
calculates the sum, and then stores the result in the output matrix.

The CUDA toolkit includes the tool nvcc, which can be used for various CUDA-
related translations, including the translation of .cu-files to executable files [3]. If
the code in listing 2.1 is stored in a file add.cu, and an entry point is added to
this file, then this file can be translated to an executable using

1 $ nvcc -o add add.cu

2.2 Compilation of CUDA Programs

In the translation of a .cu-file, the first step taken by nvcc is to invoke a prepro-
cessor that separates the device code and the host code, since these are handled
differently.

The device code is translated into a fat binary that can, depending on options
given to nvcc, contain several different images that are appropriate for different
devices. For the host code, the first step taken is to expand all language extensions
into valid C/C++ code. For kernel launches, for example, this means replacing
the triple-chevron syntax with calls to the appropriate functions from the CUDA
runtime API (see section 2.2.2). Then, the fat binary generated from the device
code is embedded into the C/C++ code, and finally, nvcc calls a general-purpose
C/C++ compiler, such as g++, to compile the source code into an executable file.

2.2.1 Device Code Translation in CUDA

Translating device code to something that can run on a CUDA device is a two-
step process. First, the device code is translated into an intermediate assembly
language, PTX [6], before it is translated into a cubin object – a type of binary
object with machine code that is directly executable by a compatible CUDA device.
When translating CUDA programs, it is often useful to include several different
versions of the device code as both PTX code and cubin objects in the embedded
fat binary. This is because of different compatibility properties of PTX code and
cubin objects.
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In order to identify specifications and features of different devices, NVIDIA
associates a compute capability with every device. The compute capability of a
device is written A.B, where A is its major version number, and B is its minor
version number. NVIDIA uses this to define the compatibility of PTX and cubin
objects: Cubin objects compiled for a target compute capability A.B are only
compatible with devices of compute capability A.C where C ≥ B. PTX, however,
is fully backwards compatible, meaning that PTX compiled for a compute capa-
bility A.B can be compiled to a cubin object of any compute capability equal to
or greater than A.B.

When PTX code is included in a fat binary, it is JIT-translated into a cubin
object by the CUDA driver when it is loaded at runtime. This JIT-translation adds
to the startup time of the program, and is the main disadvantage of using PTX.
The advantage of PTX is, of course, its backward compatibility, which guarantees
that it can always be JIT-translated to a cubin object with any compute capability
equal to or greater than that of the PTX code. It is worth noting, however, that
when PTX is compiled to a cubin object of a higher compute capability, the binary
code may not make use of all features available to that compute capability. This
means that the performance may not be as good as it would have been if the
cubin was compiled from PTX code of a higher compute capability. Including
cubin objects has the advantage of a lower startup time due to not having to
JIT-translate, but the disadvantage of having a narrower compatibility range.

As an example, in the compilation of a CUDA program stored in a file add.cu,
the following nvcc command includes cubin objects for compute capabilities 3.0,
5.0, and 6.0, while also including PTX for compute capability 6.0:

$ nvcc -o add add.cu \

-gencode arch=compute_30 ,code=sm_30 \

-gencode arch=compute_50 ,code=sm_50 \

-gencode arch=compute_60 ,code=[compute_60 ,sm_60]

Runtime compilation with NVRTC

Through the NVIDIA Runtime Compilation (NVRTC) library, CUDA also sup-
ports runtime compilation of device code to PTX for any compute capability [7].
This is useful if an application wants to dynamically control options for PTX code
generation, if the application wishes to modify device code before compiling it, or
if the device code is given to the program from an external source at runtime.

2.2.2 The Driver API and the Runtime API

In the code in listing 2.1, the functions cudaMalloc and cudaMemcpy are func-
tions from the CUDA runtime API. Additionally, when nvcc processes host code,
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the triple-chevron syntax for kernel invocation is expanded to a call to the cu-

daLaunchKernel function, which is also exposed by the runtime API. Using the
runtime API is a convenient way to create handwritten CUDA programs, since a
lot of complexity is hidden, and since a lot of (often boilerplate-like) setup work is
done implicitly.

The driver API is an alternative to the runtime API which has the same func-
tionality, but provides a higher degree of control of how PTX code is loaded and
provides functions for the management of CUDA contexts [4]. A CUDA context is
a representation of a state that must be maintained between calls to different API
functions, and in the runtime API, the creation and management of this context
is handled implicitly. When performing runtime compilation with NVRTC, it is
necessary to use functions from the driver API to load the generated PTX code.

We will now see an example of a simple CUDA program that uses the driver
API.

2.3 Another Example Program

We consider another simple CUDA program. The kernel in this program takes
a list of integers and turns each element into the sum of its original value and
its two neighbors. The device code can be seen in listing 2.2, and the host code
can be seen in listing 2.3. Note that this is a very contrived example, since the
kernel only supports being launched with a single block (i.e., with grid dimensions
(1, 1, 1)), which means only relatively small arrays can be handled.

This example serves to show how shared memory and synchronization can be
used, and to give an impression of how the driver API is used.

1 extern "C" __global__ void neighbor_sum_kernel(int *arr)

2 {

3 extern __shared__ int shared_mem [];

4 int idx = threadIdx.x;

5

6 // Read into shared memory

7 shared_mem[idx] = arr[idx];

8

9 // Wait for all threads to have written to shared memory

10 __syncthreads ();

11

12 // Read an element and its neighbors

13 int left = idx > 0 ? shared_mem[idx - 1] : 0;

14 int here = shared_mem[idx];

15 int right = idx < blockDim.x - 1 ? shared_mem[idx + 1] : 0;

16

17 // Calculate sum and write back to global memory

18 arr[idx] = left + here + right;



CHAPTER 2. THE CUDA PROGRAMMING MODEL 9

19 }

Listing 2.2: sum.cu, device code for a neighborhood sum kernel.

In the device code, a pointer is declared to a shared memory array of integers.
This type of shared memory is called dynamic shared memory in CUDA, since it
is the responsibility of the host to tell CUDA how much shared memory should
be allocated. This allows for the shared memory buffer to change in size between
kernel launches, which can be useful, since allocating too much shared memory
can negatively affect performance (see section 2.3.1). It is only possible for a
kernel to have one dynamic shared memory buffer. CUDA also supports static
shared memory, which can be used when a kernel uses a constant amount of shared
memory.

In the kernel code, each thread copies an element of the array into the shared
memory buffer, and then uses the synchronization function __syncthreads to wait
for all other threads to have written their element to shared memory. Then, each
thread accesses its own element and its neighbors from shared memory, computes
the sum, and stores it in the appropriate element of the global memory array 1.

Note that the kernel is annotated with extern "C" to prevent the name of the
kernel from being mangled when it is translated to PTX.

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <cuda.h>

4 #include <nvrtc.h>

5

6 CUfunction neighbor_sum_kernel;

7 void do_stuff ();

8

9 void neighbor_sum(int *buf , int len)

10 {

11 CUdeviceptr d_buf;

12 cuMemAlloc (&d_buf , len * sizeof(int));

13 cuMemcpyHtoD(d_buf , buf , len * sizeof(int));

14

15 void *args[] = { &d_buf };

16 cuLaunchKernel(neighbor_sum_kernel ,

17 1, 1, 1, // Grid dimensions (1, 1, 1)

18 len , 1, 1, // Block dimensions (len , 1, 1)

19 len * sizeof(int), // Size of dynamic shared memory

20 NULL , // Stream identifier

21 args , // Kernel arguments

22 NULL); // Extra options (not used)

1 As a terminology side note, memory that is allocated on the device by the host with cu-

daMalloc (runtime API) or cuMalloc (driver API) is said to be in global memory. There are
many more details to the memory model of CUDA, but they are not explored in this report.
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23

24 cuMemcpyDtoH(buf , d_buf , len * sizeof(int));

25 cuMemFree(d_buf);

26 }

27

28 int main()

29 {

30 CUcontext ctx; CUdevice dev; CUmodule module;

31

32 cuInit (0); // Initialize driver API

33 cuDeviceGet (&dev , 0); // Get handle for 0th device

34 cuCtxCreate (&ctx , 0, dev); // Create a CUDA context

35 cuModuleLoad (&module , "sum.ptx"); // Load PTX

36 cuModuleGetFunction( // Get function handle

37 &neighbor_sum_kernel , module , "neighbor_sum_kernel");

38 do_stuff (); // Run program

39 cuModuleUnload(module); // Clean up module

40 cuCtxDestroy(ctx); // Clean up context

41 return 0;

42 }

Listing 2.3: main.c, host code for calling the neighborhood sum kernel (error
handling omitted for brevity).

The host code in this example is a standard C file that can be compiled with
any general-purpose C compiler. It contains a wrapper function for invoking the
neighbor_sum_kernel kernel, neighbor_sum, and an entry point that shows (in a
simplified manner) the setup work necessary for being able to invoke kernels when
using the driver API. Looking at the entry point, the following things take place:

1. The driver API is initialized using cuInit. The parameter given to this
function is unused.

2. A device handle for the 0th device is retrieved with cuDeviceGet. This
assumes that there is at least one device available. In a normal application,
a programmer would want to enumerate the available devices to select the
best possible fit according to some criteria. These criteria could be compute
capability, memory size, number of cores, and/or many other things.

3. A CUDA context is created using cuCtxCreate. Note that this context does
not explicitly need to be passed to all following driver API functions, since
CUDA keeps track of which context is current using an internal state. When
creating a new context in this manner, it is automatically set as the current
context internally for the calling thread. 2

2Context management is a complicated feature, and many details are left out here for brevity.
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4. PTX code is loaded from the sum.ptx file using cuModuleLoad. This function
is also capable of loading cubin objects or fat binaries. Had this example used
NVRTC instead of simply loading pre-existing PTX code, this step would be
replaced with calls to the appropriate NVRTC compilation functions, which
would return the PTX code as a char array. This array would then be passed
to cuModuleLoadData instead.

5. A handle to the neighbor_sum_kernel kernel is retrieved using cuMod-

uleGetFunction.

6. Some program logic is called in the do_stuff function (the implementation
of this is not shown in listing 2.3), which is where one or more calls to the
neighbor_sum host wrapper would occur.

7. Lastly, the module initialized from PTX is unloaded with cuModuleUnload,
and the current CUDA context is destroyed with cuCtxDestroy.

In the neighbor_sum host wrapper that invokes the kernel, cuMemAlloc and
cuMemFree are used for memory allocation and freeing, while cuMemcpyHtoD and
cuMemcpyDtoH are used for copying between the host and device. The call to
cuLaunchKernel is the driver API equivalent to the triple-chrevron syntax (which
is expanded to a call to the cudaLaunchKernel function by nvcc). The arguments
to cuLaunchKernel are not surprising: grid dimensions, block dimensions, shared
memory size, and kernel arguments. The stream identifier argument, which is
NULL in this example, can be used to execute several different kernels concurrently
on devices that support it. Setting this identifier to NULL means that a so-called
legacy default stream is used. Details on streams will not be explained further
here, but can be found in the official documentation.

To run the example program, the device code in listing 2.2 needs to be trans-
lated to PTX – which nvcc can do – and the host code in listing 2.3 needs to be
compiled using a general-purpose C compiler while linking against the driver API,
libcuda:

$ nvcc -o sum.ptx -ptx sum.cu

$ gcc -o sum -lcuda main.c

Note that the host code in listing 2.3 does not define the do_stuff function. A
version of the host code that does define this function can be found in appendix A.

2.3.1 Brief Notes on the CUDA Hardware Model

CUDA devices can be said to be made up of a number of streaming multiprocessors
(SMs) and a global memory space. Each SM also has its own memory spaces used
for shared memory and registers.
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When a kernel is launched, its blocks are scheduled across the SMs of the device.
Within each block, threads execute instructions in lockstep in small groups called
warps. An SM is capable of executing several blocks concurrently, but the number
of blocks that can execute concurrently depends on the amount of resources used
by the corresponding kernel, the amount of resources available on the SM, and on
the maximum number of warps that can execute concurrently on an SM. Resources
in this context refer to shared memory usage and the number of registers used.
Since kernels are scheduled on SMs block-wise, and since a greater block size means
a greater number of warps is used, the size of a block also influences the number
of blocks that can execute concurrently on an SM.

The term occupancy refers to the degree to which a kernel is letting SMs launch
as many warps as the hardware allows. If the resource usage of a kernel is too
high, then the number of warps (and thus also the number of blocks) that can be
launched is limited, resulting in bad occupancy. For example, if the block size of a
kernel would result in exactly half of the available warps per SM being launched,
but the block takes up just 51% of the resources of the SM, then only a single block
from this kernel can be scheduled on an SM at a time. This will negatively affect
performance, since the hardware is not being utilized as effectively as it could be.

To improve the occupancy of a kernel, CUDA provides a number of helper func-
tions that can help determine an optimal block size based on the shared memory
usage and register usage of a kernel. It is also possible to set limits on the max-
imum amount of registers a kernel can use when compiling from PTX to binary
code.

2.4 CUDA in relation to OpenCL

To better understand the choices made in the implementation of the CUDA back-
end, we now take a brief look at some of the most important similarities between
CUDA and OpenCL.

OpenCL is an open standard that specifies an API for computing on heteroge-
nous platforms, and it has many similarities with CUDA. The programming model
followed is, much like in CUDA, one in which a single host processor orchestrates
the execution of parallel code on one or more so-called compute devices. An
important difference is that while CUDA is only supported by NVIDIA GPUs,
compute devices in OpenCL include not only other types of GPUs, but also many
other types of devices used for accelerating computations. The memory model in
OpenCL, also as in CUDA, is one in which the host and its compute devices have
disjoint memory spaces, and the host is responsible for managing memory on the
compute devices (including allocation, deallocation, and transfer).

Device code is another area in which there is a great amount of similarity
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between the two frameworks. OpenCL device code is written in an extended
version of C called OpenCL C, which has many similarities with CUDA device
code:

• Functions that are callable from the host are also known as kernels, and
marking a function as a kernel is done with the __kernel qualifier, corre-
sponding to the ___global___ qualifier in CUDA.

• Threads (called work items) are conceptually arranged into 3-dimensional
work groups, which correspond directly to blocks in CUDA. Work groups
are again arranged 3-dimensionally in the same way that blocks are arranged
into a grid in CUDA. The dimensions of the work group and the number of
work groups is specified by the host when a kernel is launched.

• Local memory, corresponding directly to shared memory in CUDA, is a part
of memory that is shared between the work items of a work group, and is
faster than global memory. As with dynamic shared memory in CUDA, the
amount of local memory to be allocated for a kernel is specified by the host
when the kernel is launched. Note that from this point on, OpenCL local
memory will be referred to as simply shared memory.

There is, however, a minor difference in the way this type of memory is
passed to a kernel: in CUDA, dynamic shared memory is accessed through
a single pointer declared as extern in the device code, while in OpenCL,
shared memory is passed to a kernel as pointer arguments.

• In the same way that CUDA device code has builtin variables that allow
threads to access information such as thread and block indices, OpenCL
C has builtin functions that allow work items to access similar informa-
tion. In fact, each of these builtin functions in OpenCL can be expressed
in terms of the CUDA builtin variables, as seen in table 2.1. Note that in
OpenCL, the numbers 0, 1, and 2 are used to denote the x, y, and z dimen-
sions, respectively. For example, get_local_id(2) in OpenCL corresponds
to threadIdx.z in CUDA.
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OpenCL CUDA
get_local_id(d) threadIdx.[x|y|z]

get_group_id(d) blockIdx.[x|y|z]

get_local_size(d) blockDim.[x|y|z]

get_num_groups(d) gridDim.[x|y|z]

get_global_size(d) gridDim.[x|y|z] * blockDim.[x|y|z]

get_global_id(d)
blockIdx.[x|y|z] * blockDim.[x|y|z]

+ threadIdx.[x|y|z]

Table 2.1: OpenCL work item functions expressed using CUDA builtin vari-
ables

One important difference between OpenCL C and CUDA device code is that
OpenCL requires that all pointers are given an address space specifier, denoting
which memory space it points into. For global memory, this specifier is __global

and for shared memory, this specifier is __local. In CUDA, there is no such
requirement for pointers.

As for the host code, the OpenCL interface is conceptually very similar to the
driver API in CUDA. Similarities include concepts like contexts, streams (com-
mand queues in OpenCL), and the dynamic loading of compiled device code from
other sources. In OpenCL, the most common approach is to perform compilation
of device code at runtime, which is an approach that can also be used in CUDA
with the NVRTC library.

2.4.1 Choices for the CUDA Backend in Futhark

The similarity with OpenCL is one of the reasons why, in the Futhark CUDA back-
end, the choice was made to use the driver API with NVRTC. Increased similarity
with the existing OpenCL backend eases the implementation, and possibly makes
maintenance of the backends easier in the future.

The additional features provided by the driver API (compared to the runtime
API) may also become of use in the future. For example, the ability to tell a
Futhark-generated library to use an already existing context may be of interest
to larger applications that make use of other CUDA-accelerated libraries. As for
NVRTC, it is also possible that Futhark will, in the future, make use of device
information obtained at runtime to tune the generation of PTX code, which could
improve performance. Usage of the NVRTC library also necessitates the use of the
driver API, since the runtime API cannot be used to load PTX dynamically.



3. Implementing a CUDA Backend for
Futhark

This chapter documents the implementation of the CUDA backend. Since it is not
relevant to the implementation of a new backend, we will not concern ourselves
with the compilation steps leading up to the backend. Broadly speaking, these
steps can be summed up as:

1. Parsing the source code,

2. type checking the parsed source code,

3. converting the type checked program to the Prog type, which is used as the
internal representation of a Futhark program up until the backend, and then

4. running the Prog through a GPU pipeline of transformations that decide
which parts of the program should be put into kernels and perform a wide
variety of optimizations.

After these steps, the program being processed reaches the backend.

3.1 Backend Design of the Futhark Compiler

We first take a look at the existing backend design of the compiler, focusing espe-
cially on the OpenCL backend targeting the C language. The job of this backend is
to translate the Prog representation to a number of strings with C code, which will,
depending on command line arguments given to the compiler, either be translated
to a single executable or be output as raw source files for use as a library.

The first step in this translation process is to translate the Prog to an imper-
ative intermediate language called ImpCode. The most important type used for
describing ImpCode, Code, can be seen in listing 3.1.

1 -- In module Futhark.CodeGen.ImpCode

2 data Code a = Skip

15
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3 | Code a :>>: Code a

4 | For VName IntType Exp (Code a)

5 | While Exp (Code a)

6 | DeclareMem VName Space

7 | DeclareScalar VName PrimType

8 | DeclareArray VName Space PrimType [PrimValue]

9 | Allocate VName (Count Bytes) Space

10 | Free VName Space

11 | Copy VName (Count Bytes) Space VName

12 (Count Bytes) Space (Count Bytes)

13 | Write VName (Count Bytes) PrimType Space

14 Volatility Exp

15 | SetScalar VName Exp

16 | SetMem VName VName Space

17 | Call [VName] Name [Arg]

18 | If Exp (Code a) (Code a)

19 | Op a -- Custom operation

20 -- Some data constructors not shown

Listing 3.1: ImpCode representation

As it can be seen, ImpCode supports common imperative constructs such as
for-loops, while-loops, function calls, and if-statements. It follows static single
assignment form, and several memory operations are supported, including allo-
cation, deallocation, and various copy operations. With each memory operation,
memory space annotations are associated, indicating which memory space to allo-
cate or deallocate in, or which memory spaces to copy a certain piece of memory
between. The memory spaces Futhark distinguishes between are host memory,
global memory, and shared memory.

It is useful for Futhark to have an imperative IL, since all of its supported
output languages (C, Python, C#) are imperative. This means that a significant
part of the work of translating from the functional Prog representation to an
imperative language can be handled in a single place for all output languages.

An important feature of the imperative language is the support for a custom
operation. In the translation from the Prog representation to ImpCode, the host-
side logic and device-side logic are turned into ImpCode with different custom
operations. For the host-side ImpCode, the custom operation most importantly
allows for the invocation of kernels, while for the device-side ImpCode, the custom
operation allows code to access, among other things, thread and group indices.
The full custom operation type used with device-side ImpCode is described by the
KernelOp type, and can be seen in listing 3.2.

1 data KernelOp = GetGroupId VName Int

2 | GetLocalId VName Int

3 | GetLocalSize VName Int

4 | GetGlobalSize VName Int
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5 | GetGlobalId VName Int

6 | GetLockstepWidth VName

7 | Atomic AtomicOp

8 | Barrier

9 | MemFence

Listing 3.2: Device-side custom operation type.

After translating to ImpCode, the next step is to translate the device-side ImpCode
to OpenCL C code. Futhark has a generic ImpCode-to-C translation module that
performs the majority of this translation, while allowing its caller to implement
the translation of the custom operation. In the case of translating the device-
side ImpCode with the KernelOp operation, this translation involves replacing, for
example, the GetGroupId and GetLocalId constructors with calls to their OpenCL
C equivalents, i.e., get_group_id and get_local_id. The resulting OpenCL C
code is stored as a string and combined with a prelude that defines a number of
mathematical operations.

After this, the final step of the translation process is to translate the host-side
ImpCode to C code with OpenCL API calls. For this, the generic ImpCode-to-
C translation module is used again. The module is given instructions on how
to translate the custom host-side operation, which as its primary goal allows for
the launching of kernels. Translation of the host-side operation involves, for ker-
nel launches, inserting the appropriate calls to the OpenCL API. Additionally,
the generic translation module is given instructions on how to translate memory
operations such as allocation/deallocation on the device, and memory transfers
between the host and device. This also involves inserting appropriate OpenCL
API function calls.

After the host-side ImpCode has been translated, the resulting C code is com-
bined with:

• The OpenCL C device code as a string (with the prelude containing mathe-
matical functions prepended to it).

• A hardcoded runtime system providing a number utilities, including OpenCL
context initialization, functions for performing OpenCL runtime compilation,
and functions for managing memory.

• Boilerplate-like code for initialization of kernels, gathering of useful debug
info during execution, and for configuration of the Futhark program prior to
execution. This configuration code allows users of the Futhark program –
through command line arguments if an executable is produced, and through
exported functions if a library is produced – to configure, for example, the
device to execute device code on, and the default dimensions to use for kernel
work groups.
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After the combination of these parts, the job of the backend is complete, and the
combined C code is either compiled with gcc or output as raw files for use as a
library.

3.2 Adding the CUDA Backend

The CUDA backend implementation is made with the goal of reusing as much
of the existing code as possible. This reduces code duplication and preserves
maintainability.

As discussed in section 2.4, there is a fundamental similarity between program-
ming with CUDA and programming with OpenCL. This similarity means that
there is no need to modify the ImpCode generation, since the custom operations
on both the host and device sides are sufficient for generating CUDA code.

3.2.1 Device Code Generation

As for device code generation, the similarity means that a simple prelude can
perform most of the work necessary to turn OpenCL C into valid CUDA device
code, and this is the approach taken in the CUDA backend. The prelude includes
definitions of functions like get_local_id and get_group_id that evaluate to their
corresponding CUDA expressions, as outlined in table 2.1. For get_local_id, for
example, the definition can be seen in listing 3.3. Since the function is only ever
invoked with a numerical constant, the switch statement is evaluated and reduced
to a single statement at (device code) compile-time, resulting in no additional
overhead in the generated PTX code.

1 static inline int get_local_id(int d)

2 {

3 switch (d) {

4 case 0: return threadIdx.x;

5 case 1: return threadIdx.y;

6 case 2: return threadIdx.z;

7 default: return 0;

8 }

9 }

Listing 3.3: get_local_id for CUDA.

In addition to defining these commonly used functions, the CUDA prelude also
defines:

• Fixed-size integer types such as int8_t. This is necessary since including
stdint.h, the C header that would normally define these types, causes issues
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with NVRTC compilation. In OpenCL C, these definitions are built in.

• Wrapper functions for translating OpenCL C atomic operations to CUDA
atomic operations.

• Empty macro definitions of the address space specifiers that OpenCL C re-
quires all pointers to be annotated with. These specifiers have no direct
equivalent in CUDA.

• The same mathematical operations also included in the OpenCL device code
prelude.

One difference between OpenCL and CUDA device code that cannot be solved
in this prelude is the difference in how shared memory is passed to kernels. As
mentioned in section 2.4, in OpenCL, shared memory buffers are accessed through
pointer parameters given to the kernel, while in CUDA, (dynamic) shared memory
is accessed through a single extern pointer. This pointer can be declared globally,
which is done in the aforementioned prelude, as follows:

extern volatile __shared__ char shared_mem [];

Since dynamic shared memory is accessed as a single buffer in CUDA, special care
needs to be taken when a kernel in a Futhark program requires several shared
memory buffers. To handle this, when generating CUDA kernels, the pointers
that would normally be passed to OpenCL kernels are replaced with integers spec-
ifying offsets into the shared memory buffer. These offsets are then used with the
shared_mem pointer to know where each buffer starts.

To sum up, CUDA device code generation is implemented as a thin layer on top
of the existing OpenCL C generator, with the only difference being the inclusion of
the special CUDA prelude and the change in passing of shared memory to kernels.

3.2.2 Host Code Generation

For host code generation, there is no reuse of code from the existing OpenCL back-
end. As in the OpenCL backend, however, the generic ImpCode-to-C translation
module is used. The module is given instructions on how to translate the custom
operation, which in the host-side ImpCode most importantly covers the invocation
of kernels. In the CUDA backend, such an invocation is translated to a call to
the cuLaunchKernel function from the driver API. Additionally, the module is
given instructions on how to translate various memory operations. For example,
memory copying between host and device, or between memory buffers on the de-
vice, are translated to the appropriate calls to cuMemcpyDtoH, cuMemcpyHtoD, and
cuMemcpy. As in the OpenCL backend, the C code resulting from this translation
is combined with



CHAPTER 3. IMPLEMENTING A CUDA BACKEND FOR FUTHARK 20

• The CUDA device code as a string, i.e., the generated kernels with the CUDA
prelude prepended.

• A hardcoded runtime system providing a number of CUDA-specific utilities,
including context initialization, device code compilation through NVRTC,
device selection, and functions for managing memory.

• Boilerplate-like code for various initialization and configuration functionality.
This code plays the same role as the boilerplate-like code generated in the
OpenCL backend.

Lastly, as in the OpenCL backend, the resulting C code is either compiled with
gcc or output as raw files for use as a library.



4. Empirical Evaluation of the CUDA
Backend

Futhark has an extensive suite of test programs which can be used for testing
the CUDA backend. Running the tests is done with the futhark-test utility as
follows:

$ futhark -test --compiled --compiler=futhark -cuda --exclude=

no_opencl tests/*

At the time of writing, there are valid Futhark programs for which the compiler
cannot generate GPGPU code due to limitations. Since these compiler limitations
occur prior to and during ImpCode generation, they are also present in the CUDA
backend. Passing -exclude=no_opencl prevents running test programs that trig-
ger these limitations.

Running the above command reports that all 1972 test cases run passed. The
same command can be executed on the entire benchmark suite, which reports that
all 400 test cases run passed. Thus, in terms of correctness, this indicates that the
CUDA backend is not (much) worse than the OpenCL backend. We now take a
look at the performance of the CUDA backend.

4.1 Performance Comparison with the OpenCL

Backend

Using the futhark-benchmark tool with the Futhark benchmark suite, the perfor-
mance of the two backends is measured. After this, the results of the benchmarks
are compared using a benchmark comparison tool provided by Futhark:

$ futhark -bench --compiler=futhark -opencl -r 50 \

--exclude=no_opencl --ignore -files=/lib/ \

--json opencl.json futhark -benchmarks /*

$ futhark -bench --compiler=futhark -cuda -r 50 \

--exclude=no_opencl --ignore -files=/lib/ \

--json cuda.json futhark -benchmarks /*

$ cmp -bench -json.py opencl.json cuda.json

21
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The output from the comparison above is a list of benchmarks with their rela-
tive speedups achieved by using the CUDA backend. The full output from this
command can be seen in appendix B. Benchmarks are performed on an NVIDIA
970 GPU, and all benchmark runtimes are an average of 50 runs. The benchmark
results show that about 60% of runtimes are within roughly a 10% range of their
OpenCL equivalents. Of the other runtimes, slightly more than half are faster in
OpenCL than in CUDA.

A useful detail about the OpenCL implementation on NVIDIA GPUs is that
the OpenCL device code is in fact translated to PTX. This means that perfor-
mance differences between CUDA and OpenCL device code can be understood by
comparing the two PTX translations. Additionally, in OpenCL-compiled Futhark
programs, if no kernels in the OpenCL device code use shared memory, then the
generated PTX can be extracted and used directly with the same Futhark program
when compiled with the CUDA backend.

Now, looking at one of the benchmarks that showed a significantly slower run-
time in CUDA than in OpenCL, accelerate/ray/trace.fut with a speedup of
0.47x, this program uses no shared memory. As mentioned, this means that the
OpenCL-generated PTX could be used with the same program when compiled
using the CUDA backend, and when this was attempted, the runtime was roughly
the same as when running the OpenCL-compiled program. This shows that the
cause of this problem – at least for the trace.fut program – is not in the generated
host code, but somewhere in the device code. Specifically, the issue is either with
the definitions in the CUDA prelude, or in the translation of the device code to
PTX itself. Exactly what is to blame has not been determined, but futher analysis
of the two PTX translations would likely do so.



5. Conclusion and Future Work

In terms of correctness, the implementation of the CUDA backend can certainly
be considered a success because of its ability to pass all tests in the comprehensive
Futhark test suite. There is, however, still plenty of possible future work to do on
the backend:

• As discussed in section 2.3.1, the occupancy related CUDA functions could
be used to dynamically determine the ideal block size to launch a kernel
with. This approach would take into account both the resources required by
the kernel, and the specifications of the device it is to be launched on, which
could possibly result in improved performance.

• Adding better configuration options for CUDA contexts. Larger applications
linking to a Futhark library may want to be able to tell the library to use an
already existing context, particularly if the application uses other libraries
that are CUDA-accelerated.

• Looking into the causes behind the difference in performance between OpenCL
and CUDA in some Futhark programs. This will likely require a close look
at the PTX code generated by CUDA and OpenCL.

• Adding support for other languages. Like the OpenCL backend does, it may
be of interest to have the CUDA backend support more than C/C++ output.
For Python, for example, the PyCUDA library could be used.

23
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A. Driver API Example Program

1 #include <stdlib.h>

2 #include <stdio.h>

3 #include <cuda.h>

4 #include <nvrtc.h>

5

6 CUfunction neighbor_sum_kernel;

7 void do_stuff ();

8

9 void neighbor_sum(int *buf , int len)

10 {

11 CUdeviceptr d_buf;

12 cuMemAlloc (&d_buf , len * sizeof(int));

13 cuMemcpyHtoD(d_buf , buf , len * sizeof(int));

14

15 void *args[] = { &d_buf };

16 cuLaunchKernel(neighbor_sum_kernel ,

17 1, 1, 1, // Grid dimensions (1, 1, 1)

18 len , 1, 1, // Block dimensions (len , 1, 1)

19 len * sizeof(int), // Size of dynamic shared memory

20 NULL , // Stream identifier

21 args , // Kernel arguments

22 NULL); // Extra options (not used)

23

24 cuMemcpyDtoH(buf , d_buf , len * sizeof(int));

25 cuMemFree(d_buf);

26 }

27

28 int main()

29 {

30 CUcontext ctx; CUdevice dev; CUmodule module;

31

32 cuInit (0); // Initialize driver API

33 cuDeviceGet (&dev , 0); // Get handle for 0th device

34 cuCtxCreate (&ctx , 0, dev); // Create a CUDA context

35 cuModuleLoad (&module , "sum.ptx"); // Load PTX

36 cuModuleGetFunction( // Get function handle

37 &neighbor_sum_kernel , module , "neighbor_sum_kernel");

25
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38 do_stuff (); // Run program

39 cuModuleUnload(module); // Clean up module

40 cuCtxDestroy(ctx); // Clean up context

41 return 0;

42 }

43

44 void do_stuff ()

45 {

46 int arr[] = { 100, 200, 50, 0, 300, 1 };

47 int n = sizeof(arr) / sizeof(arr [0]);

48

49 for (int i = 0; i < n; i++) { printf("%3d ", arr[i]); }

50 printf("\n");

51

52 neighbor_sum(arr , n);

53

54 for (int i = 0; i < n; i++) { printf("%3d ", arr[i]); }

55 printf("\n");

56 }

Listing A.1: main.c, full host code for calling the neighborhood sum kernel
(error handling omitted).



B. Benchmark results: CUDA vs. OpenCL

Sune -ImageProc/interp.fut

data/fake.in: 1.00x

Sune -ImageProc/interp_cos_plays.fut

data/fake.in: 0.59x

accelerate/canny/canny.fut

data/lena256.in: 1.03x

data/lena512.in: 1.01x

accelerate/crystal/crystal.fut

#0 ("200 i32 30.0 f32 5i32 1i32 1.0f32"): 1.00x

#4 ("2000 i32 30.0 f32 50i32 1i32 1.0f32"): 0.98x

#5 ("4000 i32 30.0 f32 50i32 1i32 1.0f32"): 0.98x

accelerate/fft/fft.fut

data /256 x256.in: 0.93x

data /128 x512.in: 0.92x

data /64 x256.in: 1.09x

data /512 x512.in: 0.99x

data /1024 x1024.in: 1.00x

data /128 x128.in: 1.07x

accelerate/fluid/fluid.fut

benchmarking/medium.in: 0.91x

accelerate/hashcat/hashcat.fut

rockyou.dataset: 0.72x

accelerate/kmeans/kmeans.fut

data/trivial.in: 1.22x

data/k5_n50000.in: 1.09x

data/k5_n200000.in: 1.03x

accelerate/mandelbrot/mandelbrot.fut

#0 ("800 i32 600i32 -0.7f32 0.0f32 3.067 f32 ..."): 0.72x

#1 ("1000 i32 1000 i32 -0.7f32 0.0f32 3.067 f32 ...."): 0.72x

27
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#2 ("2000 i32 2000 i32 -0.7f32 0.0f32 3.067 f32 ...."): 0.71x

#3 ("4000 i32 4000 i32 -0.7f32 0.0f32 3.067 f32 ...."): 0.71x

#4 ("8000 i32 8000 i32 -0.7f32 0.0f32 3.067 f32 ...."): 0.71x

accelerate/nbody/nbody.fut

data /1000- bodies.in: 0.38x

data /10000 - bodies.in: 0.43x

data /100000 - bodies.in: 0.43x

accelerate/pagerank/pagerank.fut

data/small.in: 1.24x

data/random_medium.in: 1.00x

accelerate/ray/trace.fut

#0 ("800 i32 600i32 100i32 50.0 f32 -100.0f32.0f32 1..."): 0.47x

accelerate/tunnel/tunnel.fut

#0 ("10.0 f32 800i32 600i32"): 0.74x

#1 ("10.0 f32 1000 i32 1000 i32"): 0.74x

#2 ("10.0 f32 2000 i32 2000 i32"): 0.74x

#3 ("10.0 f32 4000 i32 4000 i32"): 0.74x

#4 ("10.0 f32 8000 i32 8000 i32"): 0.74x

finpar/LocVolCalib.fut

LocVolCalib -data/small.in: 0.76x

LocVolCalib -data/medium.in: 0.95x

LocVolCalib -data/large.in: 1.03x

finpar/OptionPricing.fut

OptionPricing -data/small.in: 1.32x

OptionPricing -data/medium.in: 0.83x

OptionPricing -data/large.in: 1.06x

jgf/crypt/crypt.fut

crypt -data/medium.in: 1.01x

jgf/crypt/keys.fut

crypt -data/userkey0.txt: 1.34x

jgf/series/series.fut

data /10000. in: 1.38x

data /100000. in: 1.38x

data /1000000. in: 1.38x

misc/bfast/bfast.fut

data/sahara.in: 1.01x

misc/heston/heston32.fut

data /1062 _quotes.in: 1.10x
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data /10000 _quotes.in: 0.95x

data /100000 _quotes.in: 0.89x

misc/heston/heston64.fut

data /1062 _quotes.in: 1.02x

data /10000 _quotes.in: 1.16x

data /100000 _quotes.in: 1.24x

misc/radix_sort/radix_sort_blelloch_benchmark.fut

data/radix_sort_10K.in: 1.13x

data/radix_sort_100K.in: 1.04x

data/radix_sort_1M.in: 1.01x

misc/radix_sort/radix_sort_large.fut

data/radix_sort_10K.in: 1.47x

data/radix_sort_100K.in: 1.08x

data/radix_sort_1M.in: 1.01x

parboil/mri -q/mri -q.fut

data/small.in: 1.07x

data/large.in: 1.03x

parboil/sgemm/sgemm.fut

data/tiny.in: 1.32x

data/small.in: 1.00x

data/medium.in: 0.84x

parboil/stencil/stencil.fut

data/small.in: 1.01x

data/default.in: 1.02x

parboil/tpacf/tpacf.fut

data/small.in: 1.00x

data/medium.in: 1.00x

data/large.in: 1.00x

rodinia/backprop/backprop.fut

data/small.in: 1.07x

data/medium.in: 1.01x

rodinia/bfs/bfs_asympt_ok_but_slow.fut

data /4096 nodes.in: 1.20x

data /512 nodes_high_edge_variance.in: 1.09x

data/graph1MW_6.in: 1.03x

data /64kn_32e -var -1-256-skew.in: 1.05x

rodinia/bfs/bfs_filt_padded_fused.fut

data /4096 nodes.in: 1.10x

data /512 nodes_high_edge_variance.in: 1.05x
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data/graph1MW_6.in: 1.01x

data /64kn_32e -var -1-256-skew.in: 1.01x

rodinia/bfs/bfs_heuristic.fut

data /4096 nodes.in: 1.07x

data /512 nodes_high_edge_variance.in: 1.11x

data/graph1MW_6.in: 1.01x

data /64kn_32e -var -1-256-skew.in: 1.02x

rodinia/bfs/bfs_iter_work_ok.fut

data /4096 nodes.in: 1.03x

data /512 nodes_high_edge_variance.in: 0.98x

data/graph1MW_6.in: 1.01x

data /64kn_32e -var -1-256-skew.in: 1.02x

rodinia/cfd/cfd.fut

data/fvcorr.domn .097K.toa: 0.95x

data/fvcorr.domn .193K.toa: 0.95x

rodinia/hotspot/hotspot.fut

data /64.in: 0.86x

data /512.in: 0.77x

data /1024. in: 0.75x

rodinia/kmeans/kmeans.fut

data /100.in: 0.93x

data /204800. in: 0.91x

data/kdd_cup.in: 0.96x

rodinia/lavaMD/lavaMD.fut

data/3 _boxes.in: 0.78x

data /10 _boxes.in: 0.92x

rodinia/lud/lud -clean.fut

data /16 by16.in: 0.96x

data /64.in: 0.99x

data /256.in: 0.97x

data /512.in: 0.95x

data /2048. in: 0.91x

rodinia/lud/lud.fut

data /16 by16.in: 1.01x

data /64.in: 0.99x

data /256.in: 0.99x

data /512.in: 0.98x

data /2048. in: 0.95x

rodinia/myocyte/myocyte.fut

data/small.in: 0.87x
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data/medium.in: 1.11x

rodinia/nn/nn.fut

data/medium.in: 1.18x

rodinia/nw/nw.fut

data/large.in: 0.99x

rodinia/particlefilter/particlefilter.fut

data /128 _128_10_image_10000_particles.in: 0.97x

data /128 _128_10_image_400000_particles.in: 0.94x

rodinia/pathfinder/pathfinder.fut

data/medium.in: 1.00x

rodinia/srad/srad.fut

data/image.in: 1.02x

Listing B.1: Output from the cmp-bench-json.py tool when comparing
OpenCL benchmark to CUDA benchmark
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