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Abstract

General-purpose massively parallel processors, such as modern GPUs,
have become common, but the difficulty of programming these machines
is well known. Pure functional programming provides some reassurance
that the situation can be improved, by guaranteeing referential trans-
parency and providing useful combinators for expressing data-parallel
computations. Unfortunately, one of the main features of functional
programming, namely higher-order functions, cannot be efficiently im-
plemented on GPUs by the usual means. In this thesis, we present a
defunctionalization transformation that relies on type-based restrictions
on the use of functions to be able to completely eliminate higher-order
functions in all cases, without introducing any branching. We prove
the correctness of the transformation and discuss its implementation in
Futhark, a data-parallel functional language that generates GPU code.
The use of these restricted higher-order functions has no impact on run-
time performance and we argue that we gain many of the benefits of
general higher-order functions without being hindered by the restrictions
in most cases in practice.
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Chapter 1

Introduction

Higher-order functions are ubiquitous in functional programming. They en-
able programmers to write abstract and composable code, which enables the
development of modular programs [20]. Functional languages are often consid-
ered well-suited for parallel programming, because of the presence of referential
transparency and the lack of shared state and side effects, which helps prevent
issues such as race conditions. Data-parallel programming, in particular, arises
from the inherently parallel nature of many of the typical operations from
functional languages, including map, reduce, and scan.

Modern hardware is increasingly parallel. While the previous exponential
growth in single-thread performance of computing hardware has been flattening
over the last decade, the number of individual processing units continues to
grow. This development has transformed the subject of parallel programming
from a research topic focusing on super-computers to a practical necessity to
enable the efficient use of modern hardware.

The emergence of graphics processing units (GPUs) that allow for general-
purpose programming has exacerbated the need for developing practical tech-
niques for programming parallel hardware. In recent years, the theoretical
peak performance of GPUs has grown to be much higher than that of CPUs.
This disparity is due to the fundamentally different design philosophy of the
massively parallel processors that GPUs have evolved into, driven by the de-
mand for high-definition 3D computer graphics. However, programming GPUs
to harness efficiently all the potential parallel performance for general-purpose
computations is notoriously difficult, since GPUs offer a significantly more re-
stricted programming model than that of CPUs.

We would like for the benefits of higher-order functions to be made available
for functional GPU programming. Unfortunately, GPUs do not readily allow
for higher-order functions to be implemented because they have only limited
support for function pointers.

If higher-order functions cannot be implemented directly, we may instead
opt to remove them by means of some program transformation that replaces
them by a simpler language mechanism that is easier to implement. The canon-
ical such transformation is defunctionalization, which was first described by
Reynolds [26, 27] in the context of so-called definitional interpreters, that is,
interpreters that mainly serve to define a language. Reynolds’s defunctional-
ization represents each functional value by a uniquely tagged data value and

1
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each application is replaced by a call to an apply function, which performs a
case dispatch over all the possible tags and essentially serves as an interpreter
for the functional values in the original program.

One of the major problems with this kind of transformation in the context
of generating code for GPUs is that it introduces a large amount of branching
into the transformed program. The most basic version of defunctionalization
will add a case to the apply function for every function abstraction in the source
program. This amount of branching is very problematic for GPUs because of
the issue of branch divergence. Since neighboring threads in a GPU execute
together in lockstep, a large amount of branching will cause many threads to
be idle in the branches where they are not executing instructions.

Ideally, we want to eliminate higher-order functions without introducing
an excessive amount of branching into the program. Clearly, we cannot in
general determine the form of the applied function at every application site in
a program, since this may depend on dynamic information that is only available
at run-time. Consider, for example, a conditional of function type that depends
on a dynamic condition or an array of functions indexed by a dynamic value.

By restricting the use of functions in programs, we are able to statically de-
termine the form of the applied function at every application. Specifically, we
disallow conditionals and loops from returning functional values, and we disal-
low arrays from containing functions. By enforcing these restrictions, we can
translate a program using first-class and higher-order functions into a com-
pletely first-order program by specializing each application to the particular
form of function that may occur at run-time. The result is essentially equivalent
to completely inlining the apply function in a program produced by Reynolds-
style defunctionalization. Notably, the transformation does not introduce any
more branching than was already present in the original program.

We have used the Futhark [18] language to demonstrate this idea. Futhark
is a data-parallel, purely functional array language with the main goal of gener-
ating high-performance parallel code. Although the language itself is hardware-
agnostic, the main focus is on the implementation of an aggressively optimizing
compiler that generates efficient GPU code via OpenCL.

To illustrate the basic idea of our defunctionalization transformation, we
show a simple Futhark program in Figure 1.1a and the resulting program after
defunctionalization in Figure 1.1b (simplified slightly for the sake of presenta-
tion). The result is a first-order program which explicitly passes around the
closure environments, in the form of records capturing the free variables, in
place of the first-class functions in the source program.

1.1 Contributions

The principal contributions of this thesis are the following:

• A defunctionalization transformation expressed on a simple data-parallel
functional array language, with a type system that moderately restricts
the use of first-class functions to allow for defunctionalization to effec-
tively remove higher-order functions in all cases, without introducing any
branching.
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let twice (g: i32 -> i32) = \x -> g (g x)

let main =
let f = let a = 5

in twice (\y -> y+a)
in f 1 + f 2

(a) Source program.

let g’ (env: {a: i32}) (y: i32) =
let a = env.a
in y+a

let f’ (env: {g: {a: i32}}) (x: i32) =
let g = env.g
in g’ g (g’ g x)

let main =
let f = let a = 5

in {g = {a = a}}
in f’ f 1 + f’ f 2

(b) Target program.

Figure 1.1: Example demonstrating the defunctionalization transformation.

• A correctness proof of the transformation: a well-typed program will
translate to another well-typed program and the translated program will
evaluate to a value, corresponding to the value of the original program,
or fail with an error if the original program fails.

• An implementation of defunctionalization in the compiler for the high-
performance functional language Futhark, and a description of various
extensions and optimizations.

• An evaluation of the implementation with respect to the performance of
the compiled programs and the usefulness of the restricted higher-order
functions.

• A description of how the restrictions on functions can be loosened to allow
more programs to be defunctionalized, while only introducing minimal
branching.

The work presented in this thesis has been condensed and submitted as an
article to the symposium on Trends in Functional Programming (TFP) and
will be presented at the event in Gothenburg in June 2018, in the form:

Anders Kiel Hovgaard, Troels Henriksen, and Martin Elsman. High-
performance defunctionalization in Futhark. Trends in Functional
Programming, 2018.
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1.2 Report outline

The remainder of this thesis is organized as follows. In the next chapter, we
briefly cover some preliminary topics. In Chapter 3, we define the language on
which the defunctionalization transformation will operate, including the type
system restrictions that are essential to the effectiveness of the transformation.
In Chapter 4, we define the defunctionalization transformation itself. In Chap-
ter 5, we present the metatheory of the system, namely proofs of type sound-
ness, termination and typing preservation of defunctionalization, and meaning
preservation of defunctionalization. In Chapter 6, we discuss the implemen-
tation in the Futhark compiler and the various extensions and optimizations
that were made. In Chapter 7, we evaluate our implemented defunctionaliza-
tion technique in practice, in terms of run-time performance and the usefulness
of our restricted higher-order functions. In Chapter 8, we discuss how we could
loosen the type restrictions and, in particular, allow function-type conditionals.
Finally, in Chapter 9, we discuss related work, mention a few ideas for future
work, and conclude.

1.3 Notation

We use the metanotation (Zi)i∈1..n to denote a sequence of objects Z1, . . . ,Zn,
where each Zi may be a syntactic object, a derivation of a judgment, etc.

We may sometimes write D :: J to give the name D to the derivation of
the judgment J so that we can refer to it later.



Chapter 2

Background

In this chapter, we briefly cover a number of preliminary topics that will serve
as background and help set the context for the remainder of the report. More
background and related work will be discussed in Section 9.1.

2.1 Reynolds’s defunctionalization

As mentioned earlier, the basic idea of defunctionalization was first described
by John Reynolds [26]. In his seminal paper, Reynolds classified higher-order
languages, defined via definitional interpreters, according to whether the defin-
ing language uses higher-order functions and whether the evaluation order of
the defined language depends upon the evaluation order of the defining lan-
guage. As part of this investigation, Reynolds informally described a defunc-
tionalization method for converting a higher-order interpreter to a first-order
equivalent, by representing each λ-abstraction occurring in the original pro-
gram by a tagged record that captures the free variables in the function and
replacing each application by a call to an apply function that interprets the
record expressions representing the original functions.

Defunctionalization is similar to closure conversion in that it makes the
environments explicit in programs, but unlike closure conversion which rep-
resents the code part of closures by a pointer to the code, defunctionalization
simply stores a tag that uniquely identifies a function. Each application is then
translated to a case dispatch on these tags rather than an indirect jump.

We now show a simple example to illustrate this kind of defunctionalization
transformation. Consider the following Haskell program:

main = let a = 1
f = \x -> x+a
g = \x -> \y -> f x + y

in g 3 5

We encode the λ-abstractions in the program as data using an algebraic data
type F, with one value constructor for each abstraction, with the free variables
of that abstraction attached to it. For instance, we represent the abstraction
(\y -> f x + y) with the data value F3 f x, where f has itself been encoded.

data F = F1 Int | F2 F | F3 F Int

The program is then translated as follows:

5
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apply h z =
case h of F1 a -> z+a

F2 f -> F3 f z
F3 f x -> apply f x + z

main = let a = 1
f = F1 a
g = F2 f

in apply (apply g 3) 5

Notice that the apply function is actually ill-typed, although the program is
still safe and semantically equivalent to the original program. The same is true
for the apply function in the original presentation by Reynolds and this issue
has been treated in multiple later works. We will mention some of those in our
discussion of related work in Section 9.1.

2.2 Graphics processing units

Modern graphics processing units (GPUs) are massively parallel processors
with a programming model that differs significantly from that of traditional
sequential and even multi-core CPUs. Mainstream CPUs are characterized
by high sequential performance, flexible control flow, and low-latency memory
access through the use of a large cache hierarchy. On the other hand, GPUs
focus on high total throughput, dedicating more transistors to processing units
and less to caches and control logic, while sacrificing sequential performance
and low memory access latency. GPUs support very high bandwidth memory
access, assuming specific memory access patterns (coalesced memory access).

A GPU consists of a number of multiprocessors, each of which consists of
a number of streaming processors. Each streaming processor has a number
of hardware-supported threads, which execute together in so called warps of
usually 32 threads, which is the basic unit of scheduling in streaming processors.
The threads in a warp execute in a single instruction multiple data (SIMD)
fashion, that is, each thread executes the same instruction at any given time in
lockstep on different parts of the data. If some threads of a warp take different
branches in a conditional, each branch is executed one after the other with
some threads being inactive in one branch and the other threads being inactive
in another branch. This kind of branch divergence can cause much inefficiency
if many warps suffer from this problem.

A large number of threads is usually needed to expose a sufficient amount
of parallelism on a GPU. This significantly limits the amount of memory that
is available to each thread. In particular, threads do not have a stack as we
know from CPUs. While stacks can be emulated at some cost in efficiency,
they can only have a very limited size because of this.

Because of the lockstep execution of neighboring threads and because of the
limited amount of memory available to each thread, GPUs do not offer efficient
support (if any) for function pointers and recursion. Thus, the usual approach
to implementing higher-order functions, by some method based on closure con-
version and function pointers, is not feasible on GPUs. While Reynolds-style
defunctionalization could circumvent the issue with lack of proper support for
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function pointers, the transformation introduces too much branching into the
program, which would most likely be very inefficient when executed on a GPU.

This work is primarily concerned with the implementation of higher-order
functions on GPUs, although other accelerator devices exist.

2.3 Data parallelism and the Futhark language

Data parallelism is a model of parallel execution where multiple threads ex-
ecute the same operation on different parts of the data. This is in contrast
to task parallelism where multiple threads execute different instructions, inde-
pendently, on different pieces of data. Data-parallel programming maps well
to execution on GPUs because of their massively parallel architecture and the
SIMD style lockstep execution of warps, as mentioned before. This thesis is
exclusively concerned with data-parallel programming.

Futhark [18, 17] is a data-parallel, purely functional array language. In
Futhark, parallelism is expressed through the use of second-order array com-
binators (SOACs), such as map, reduce, scan, and filter, which resemble
the higher-order functions found in conventional functional languages. These
SOACs have sequential semantics, but the Futhark compiler can exploit them
for generating parallel code. Futhark also supports nested parallelism. As
mentioned, GPUs do not properly support stacks, so for this reason Futhark
does not support recursion. Instead, Futhark offers a few different sequential
looping constructs, corresponding to certain tail-recursive functions.

Before the work of this thesis, Futhark was a first-order language, only
allowing partially applied functions and λ-abstractions as arguments to the
built-in SOACs and no other places.

Futhark makes use of a higher-order module system [14, 15] with mod-
ules and parametric modules being eliminated at compile time through static
interpretation. Modules can be used to encode certain classes of higher-order
functions, but they are quite restricted compared to real higher-order functions
and do not allow for the representation of first-class functions in general.

Futhark has a heavily optimizing compiler that generates OpenCL code op-
timized for GPU execution. The compiler uses a first-order intermediate lan-
guage representation, which provides another motivation for removing higher-
order functions early on, so that we do not have to modify a large part of the
existing compilation pipeline and since many optimizations are likely simpler
to perform on a first-order language. Furthermore, the OpenCL interface does
not allow function pointers.



Chapter 3

Language

To be able to formally define and reason about the defunctionalization transfor-
mation, to be presented in Chapter 4, we define a simple functional language on
which the transformation will operate. Conceptually, the transformation goes
from a source language to a target language, but since the target language
will be a sublanguage of the source language, we shall generally treat them as
one and the following definitions will apply to both languages, unless stated
otherwise.

The language is a λ-calculus extended with various features to resemble the
Futhark language, including records, arrays with in-place updates, a parallel
map, and a sequential loop construct. In the following, we define its abstract
syntax, type system, and operational semantics.

3.1 Syntax

The set of types of the source language is given by the following grammar. The
metavariable ` ∈ Lab ranges over record labels.

τ ::= int | bool | τ1 → τ2 | {(`i : τi)i∈1..n} | [ ]τ

Record types are considered identical up to permutation of fields.
The abstract syntax of expressions of the source language is given by the

following grammar. The metavariable x ∈ Var ranges over variables of the
source language. We assume an injective function Lab : Var→ Lab that maps
variables to labels. Additionally, we let n ∈ Z.

e ::= x | n | true | false | e1 + e2 | e1 ≤ e2

| if e1 then e2 else e3

| λx : τ. e0 | e1 e2 | let x = e1 in e2

| {(`i = ei)
i∈1..n} | e0.`

| [(ei)i∈1..n] | e0[e1] | e0 with [e1]← e2 | length e0

|map (λx. e1) e2

| loop x = e0 for y in e1 do e2

8
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Expressions are considered identical up to renaming of bound variables. Array
literals are required to be non-empty in order to simplify the rules and relations
in the following and in the metatheory. Empty arrays can be supported fairly
easily, for example by annotating arrays with the type of their elements.

The syntax of expressions of the target language is identical to that of the
source language except that it does not have λ-abstractions and application.
Similarly, the types of the target language does not include function types.1

We define a judgment, τ orderZero, given by the rules in Figure 3.1, assert-
ing that a type τ has order zero, which means that τ does not contain any
function type as a subterm.

τ orderZero

int orderZero bool orderZero

(τi orderZero)
i∈1..n

{(`i : τi)i∈1..n} orderZero

τ orderZero
[ ]τ orderZero

Figure 3.1: Judgment asserting that a type has order zero.

3.2 Type system

The typing rules for the language are mostly standard except for restrictions
on the use of functions in certain places. Specifically, a conditional may not
return a function, arrays are not allowed to contain functions, and a loop may
not produce a function. These restrictions are enforced by the added premise
of the judgment τ orderZero in the rules for conditionals, array literals, parallel
maps, and loops. Aside from these restrictions, the use of higher-order functions
and functions as first-class values is not restricted and, in particular, records are
allowed to contain functions of arbitrarily high order. It is worth emphasizing
that we only restrict the form of the results produced by conditionals and
loops, and the results of expressions contained in arrays; the subexpressions
themselves may contain definitions and applications of arbitrary functions.

A typing context (or type environment) Γ is a finite sequence of variables
associated with their types:

Γ ::= · | Γ, x : τ

The empty context is denoted by ·, but is often omitted from the actual judg-
ments. The variables in a typing context are required to be distinct. This
requirement can always be satisfied by renaming bound variables as necessary.

The set of variables bound in a typing context is denoted by dom Γ and
the type of a variable x bound in Γ is denoted by Γ(x) if it exists. We write
Γ,Γ′ to denote the typing context consisting of the mappings in Γ followed by
the mappings in Γ′. Note that since the variables in a context are distinct, the
ordering is insignificant. Additionally, we write Γ ⊆ Γ′ if Γ′(x) = Γ(x) for all
x ∈ dom Γ.

1In the actual implementation, the target language does include application of first-order
functions, but in our theoretical work we just inline the functions for simplicity.
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The typing rules for the language are given in Figure 3.2.

Γ ` e : τ

T-Var: (Γ(x) = τ)
Γ ` x : τ

T-Num:
Γ ` n : int

T-True:
Γ ` true : bool

T-False:
Γ ` false : bool

Γ ` e1 : int Γ ` e2 : int
T-Plus:

Γ ` e1 + e2 : int

Γ ` e1 : int Γ ` e2 : int
T-Leq:

Γ ` e1 ≤ e2 : bool

Γ ` e1 : bool Γ ` e2 : τ Γ ` e3 : τ τ orderZero
T-If:

Γ ` if e1 then e2 else e3 : τ

Γ, x : τ1 ` e0 : τ2
T-Lam:

Γ ` λx : τ1. e0 : τ1 → τ2

Γ ` e1 : τ2 → τ Γ ` e2 : τ2
T-App:

Γ ` e1 e2 : τ

Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ
T-Let:

Γ ` let x = e1 in e2 : τ

(Γ ` ei : τi)
i∈1..n

T-Rcd:
Γ ` {(`i = ei)

i∈1..n} : {(`i : τi)
i∈1..n}

Γ ` e0 : {(`i : τi)
i∈1..n}

T-Proj: (1 ≤ k ≤ n)
Γ ` e0.`k : τk

(Γ ` ei : τ)
i∈1..n

τ orderZero
T-Array:

Γ ` [e1, . . . , en] : [ ]τ

Γ ` e0 : [ ]τ Γ ` e1 : int
T-Index:

Γ ` e0[e1] : τ

Γ ` e0 : [ ]τ Γ ` e1 : int Γ ` e2 : τ
T-Update:

Γ ` e0 with [e1]← e2 : [ ]τ

Γ ` e0 : [ ]τ
T-Length:

Γ ` length e0 : int

Γ ` e2 : [ ]τ2 Γ, x : τ2 ` e1 : τ τ orderZero
T-Map:

Γ `map (λx. e1) e2 : [ ]τ

Γ ` e0 : τ Γ ` e1 : [ ]τ ′ Γ, x : τ, y : τ ′ ` e2 : τ τ orderZero
T-Loop:

Γ ` loop x = e0 for y in e1 do e2 : τ

Figure 3.2: Typing rules.

Note that we do not require the annotated type in λ-abstractions to be well-
formed, that is, to not contain any function types within array types. This is
not an issue for the translation or the metatheory, since such a function will
still translate to a well-typed expression of order zero and if the function is ever
applied, then the typing rules ensure that the expression is not well-typed.
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3.3 Operational semantics

The operational semantics of the source (and target) language could be defined
in a completely standard way, but for the sake of the metatheory and the
connection with the defunctionalization transformation to be presented later,
we choose to define an operational semantics with an evaluation environment
and function closures rather than using simple β-reduction for evaluation of
applications. The semantics is given in a big-step style for the same reasons.

Evaluation environments Σ and values v are defined mutually inductively as
follows. A function closure is a value that captures the environment in which
a λ-abstraction was evaluated and is denoted by:

clos(λx : τ. e0,Σ)

The values of the source language are as follows:

v ::= n | true | false | clos(λx : τ. e0,Σ) | {(`i = vi)
i∈1..n} | [(vi)i∈1..n]

The values of the target language are the same, but without function closures.
An evaluation environment Σ is a mapping from variables to values and has the
same properties and notations as the typing context with regards to extension,
variable lookup, and distinctness of variables:

Σ ::= · | Σ, x 7→ v

Because the language involves array indexing and updating, a well-typed
program may still not evaluate to one of the above values, in case an attempt
is made to access an index outside the bounds of an array. To be able to
distinguish between such an out-of-bounds error and a stuck expression that
is neither a value nor can evaluate to anything, we introduce the special term
err to denote an out-of-bounds error and we define a result r to be either a
value or err:

r ::= v | err

The big-step operational semantics for the language is given by the deriva-
tion rules in Figure 3.3. In case any subexpression evaluates to err, the entire
expression should evaluate to err, so it is necessary to give derivation rules for
propagating these error results. Unfortunately, this error propagation involves
creating many extra derivation rules and duplicating many premises. We show
the rules that introduce err; however, we choose to omit the ones that prop-
agate errors and instead just note that for each of the non-axiom rules below,
there are a number of additional rules for propagating errors. For instance,
for the rule E-App, there are additional rules E-AppErr{1, 2, 0}, which prop-
agate errors in the applied expression, the argument, and the closure body,
respectively.

The rule E-Loop refers to an auxiliary judgment form, defined in Figure 3.4,
which performs the iterations of the loop, given a starting value and a sequence
of values to iterate over. Like the main evaluation judgment, this one also has
rules for propagating err results, which are again omitted.
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Σ ` e ↓ r

E-Var: (Σ(x) = v)
Σ ` x ↓ v E-Num:

Σ ` n ↓ n E-True:
Σ ` true ↓ true

Σ ` e1 ↓ n1 Σ ` e2 ↓ n2
E-Plus:

Σ ` e1 + e2 ↓ n1 + n2

E-False:
Σ ` false ↓ false

Σ ` e1 ↓ n1

Σ ` e2 ↓ n2E-LeqT: (n1 ≤ n2)
Σ ` e1 ≤ e2 ↓ true

Σ ` e1 ↓ n1

Σ ` e2 ↓ n2E-LeqF: (n1 > n2)
Σ ` e1 ≤ e2 ↓ false

Σ ` e1 ↓ true Σ ` e2 ↓ v
E-IfT:

Σ ` if e1 then e2 else e3 ↓ v
Σ ` e1 ↓ false Σ ` e3 ↓ v

E-IfF:
Σ ` if e1 then e2 else e3 ↓ v

E-Lam:
Σ ` λx : τ. e0 ↓ clos(λx : τ. e0,Σ)

Σ ` e1 ↓ clos(λx : τ. e0,Σ0)

Σ ` e2 ↓ v2 Σ0, x 7→ v2 ` e0 ↓ v
E-App:

Σ ` e1 e2 ↓ v

Σ ` e1 ↓ v1

Σ, x 7→ v1 ` e2 ↓ v
E-Let:

Σ ` let x = e1 in e2 ↓ v

(Σ ` ei ↓ vi)i∈1..n

E-Rcd:
Σ ` {(`i = ei)

i∈1..n} ↓ {(`i = vi)
i∈1..n}

Σ ` e0 ↓ {(`i = vi)
i∈1..n}

E-Proj: (1 ≤ k ≤ n)
Σ ` e0.`k ↓ vk

(Σ ` ei ↓ vi)i∈1..n

E-Array:
Σ ` [(ei)

i∈1..n] ↓ [(vi)
i∈1..n]

Σ ` e0 ↓ [(vi)
i∈1..n]

Σ ` e1 ↓ k
E-Index: (1 ≤ k ≤ n)

Σ ` e0[e1] ↓ vk
Σ ` e0 ↓ [(vi)

i∈1..n] Σ ` e1 ↓ k
E-IndexErr: (k < 1 ∨ k > n)

Σ ` e0[e1] ↓ err

Σ ` e0 ↓ [(vi)
i∈1..n] Σ ` e1 ↓ k Σ ` e2 ↓ v′k

E-Update: (1 ≤ k ≤ n)
Σ ` e0 with [e1]← e2 ↓ [(vi)

i∈1..k−1, v′k, (vi)
i∈k+1..n]

Σ ` e0 ↓ [(vi)
i∈1..n] Σ ` e1 ↓ k

E-UpdateErr: (k < 1 ∨ k > n)
Σ ` e0 with [e1]← e2 ↓ err

Σ ` e0 ↓ [(vi)
i∈1..n]

E-Length:
Σ ` length e0 ↓ n

Σ ` e2 ↓ [(v′i)
i∈1..n]

(Σ, x 7→ v′i ` e1 ↓ vi)i∈1..n

E-Map:
Σ `map (λx. e1) e2 ↓ [(vi)

i∈1..n]

Σ ` e0 ↓ v0 Σ ` e1 ↓ [(vi)
i∈1..n]

Σ;x = v0; y = (vi)
i∈1..n ` e2 ↓ v

E-Loop:
Σ ` loop x = e0 for y in e1 do e2 ↓ v

Figure 3.3: Big-step operational semantics.
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Σ;x = v0; y = (vi)
i∈1..n ` e ↓ r

EL-Nil:
Σ;x = v0; y = · ` e ↓ v0

Σ, x 7→ v0, y 7→ v1 ` e ↓ v′0 Σ;x = v′0; y = (vi)
i∈2..n ` e ↓ v

EL-Cons:
Σ;x = v0; y = (vi)

i∈1..n ` e ↓ v

Figure 3.4: Auxiliary judgment for the semantics of loops.



Chapter 4

Defunctionalization

We now define the defunctionalization transformation which translates an ex-
pression in the source language to an equivalent expression in the target lan-
guage that does not contain any higher-order subterms or use of first-class
functions.

The definitions of translation environments and static values are given by
mutually inductive definitions as follows. A translation environment (or de-
functionalization environment) E is a finite sequence of mappings from vari-
ables to static values:

E ::= · | E, x 7→ sv

We assume the same properties as we did for typing contexts and evaluation
environments, and we use analogous notation. Static values are defined as
follows:

sv ::= Dyn τ

| Lam x e0 E

| Rcd {(`i 7→ sv i)
i∈1..n}

| Arr sv0

As the name suggests, a static value is essentially a static approximation of the
value that an expression will eventually evaluate to. This resembles the role
of types, which also approximate the values of expressions, but static values
posses more information than types. As a result of the restrictions on the
use of functions in the type system, the static value Lam that approximates
functional values, will contain the actual function parameter and body, along
with a defunctionalization environment containing static values approximating
the values in the closed-over environment.

The defunctionalization translation takes place in a defunctionalization en-
vironment, as defined above, which mirrors the evaluation environment by
approximating the values by static values, and it translates a given expression
e to a residual expression e′ and its corresponding static value sv . The residual
expression resembles the original expression, but λ-abstractions are translated
into record expressions that capture the values in the environment at the time of
evaluation. Applications are translated into let-bindings that bind the record
expression, the closed-over variables, and the function parameter.

14
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As with record types, we consider Rcd static values to be identical up to
reordering of the label-entries. Additionally, we consider Lam static values to
be identical up to renaming of the parameter variable, as for λ-abstractions.

The transformation is defined by the derivation rules in Figure 4.1 and
Figure 4.2.

E ` e 〈e′, sv〉

D-Var: (E(x) = sv)
E ` x 〈x, sv〉

D-Num:
E ` n 〈n,Dyn int〉

D-True:
E ` true 〈true,Dyn bool〉 (equivalent rule D-False)

E ` e1  〈e′1,Dyn int〉
E ` e2  〈e′2,Dyn int〉

D-Plus:
E ` e1 + e2  〈e′1 + e′2,Dyn int〉

(similar rule D-Leq)

E ` e1  〈e′1,Dyn bool〉
E ` e2  〈e′2, sv〉 E ` e3  〈e′3, sv〉

D-If:
E ` if e1 then e2 else e3  〈if e′1 then e′2 else e′3, sv〉

D-Lam:
E ` λx : τ. e0  

〈
{(Lab(y) = y)y∈domE},Lam x e0 E

〉
E ` e1  〈e′1,Lam x e0 E0〉

E ` e2  〈e′2, sv2〉 E0, x 7→ sv2 ` e0  〈e′0, sv〉
D-App:

E ` e1 e2  〈e′, sv〉
where e′ = let env = e′1 in (let y = env .Lab(y) in)

y∈domE0

let x = e′2 in e′0

E ` e1  〈e′1, sv1〉 E, x 7→ sv1 ` e2  〈e′2, sv〉
D-Let:

E ` let x = e1 in e2  〈let x = e′1 in e′2, sv〉

Figure 4.1: Derivation rules for the defunctionalization transformation.

In the implementation, the record in the residual expression of rule D-Lam
only captures the free variables in the λ-abstraction. Likewise, the defunc-
tionalization environment embedded in the static value is restricted to the free
variables. This refinement is not hard to formalize, but it does not add anything
interesting to the development, so we have omitted it for simplicity.

Notice how the rules include aspects of both evaluation and type checking,
in analogy to how static values are somewhere in-between values and types. For
instance, the rules ensure that variables are in scope, and that a conditional
has a Dyn Boolean condition and the branches have the same static value.
Somewhat curiously, this constraint on the static values of branches actually
allows for a conditional to return functions in its branches, as long as the
functions are α-equivalent. The same is true for arrays and loops.

This transformation is able to translate any order zero expression into an
equivalent expression that does not contain any higher-order functions. Any
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E ` e 〈e′, sv〉

(E ` ei  〈e′i, sv i〉)
i∈1..n

D-Rcd:
E ` {(`i = ei)

i∈1..n} 
〈
{(`i = e′i)

i∈1..n},Rcd {(`i 7→ sv i)
i∈1..n}

〉
E ` e0  

〈
e′0,Rcd {(`i 7→ sv i)

i∈1..n}
〉

D-Proj: (1 ≤ k ≤ n)
E ` e0.`k  〈e′0.`k, svk〉

(E ` ei  〈e′i, sv〉)
i∈1..n

D-Array:
E ` [e1, . . . , en] 〈[e′1, . . . , e′n],Arr sv〉

E ` e1  〈e′1,Arr sv〉 E ` e2  〈e′2,Dyn int〉
D-Index:

E ` e1[e2] 〈e′1[e′2], sv〉
E ` e0  〈e′0,Arr sv〉

E ` e1  〈e′1,Dyn int〉 E ` e2  〈e′2, sv〉
D-Update:

E ` e0 with [e1]← e2  〈e′0 with [e′1]← e′2,Arr sv〉
E ` e0  〈e′0,Arr sv〉

D-Length:
E ` length e0  〈length e′0,Dyn int〉

E ` e2  〈e′2,Arr sv2〉 E, x 7→ sv2 ` e1  〈e′1, sv1〉
D-Map:

E `map (λx. e1) e2  〈map (λx. e′1) e′2,Arr sv1〉

E ` e0  〈e′0, sv〉 E ` e1  〈e′1,Arr sv1〉
E, x 7→ sv , y 7→ sv1 ` e2  〈e′2, sv〉

D-Loop:
E ` loop x = e0 for y in e1 do e2

 〈loop x = e′0 for y in e′1 do e′2, sv〉

Figure 4.2: Derivation rules for the defunctionalization transformation (cont.).

first-order expression can be translated by converting the types of its parame-
ters (which are necessarily order zero) to static values and including these as
bindings for the parameter variables in an initial translation environment. This
conversion is straightforwardly defined as follows:

int = Dyn int

bool = Dyn bool

{(`i : τi)i∈1..n} = Rcd {(`i 7→ τi )i∈1..n}

[ ]τ = Arr τ

By a relatively simple extension to the system that has been presented so
far, it is possible to support any number of top-level function definitions that
take parameters of arbitrary type and can have any return type, as long as the
designated main function is first-order.



Chapter 5

Metatheory

In this chapter, we show type soundness and argue for the correctness of the
defunctionalization transformation presented in Chapter 4. We show that the
transformation of a well-typed expression always terminates and yields another
well-typed expression. Finally, we show that the meaning of a defunctionalized
expression is consistent with the meaning of the original expression.

5.1 Type soundness and normalization

We first show type soundness. Since we are using a big-step semantics, the
situation is a bit different from the usual approach of showing progress and
preservation for a small-step semantics. One of the usual advantages of using
a small-step semantics is that it allows distinguishing between diverging and
stuck terms, whereas for a big-step semantics, neither a diverging term nor a
stuck term is related to any value. As we shall see, however, for the big-step
semantics that we have presented, any well-typed expression will evaluate to a
result that is either err or a value that is, semantically, of the same type. Thus,
we simultaneously establish that the language is strongly normalizing, which
comes as no surprise given the lack of recursion and the bounded number of
iterations of loops.

To this end, we first define a relation between values and types, given by
derivation rules in Figure 5.1, and extend it to relate evaluation environments
and typing contexts. We can also view this relation as a logical predicate on
values indexed by types, or as a semantic typing judgment on values.

We then state and prove type soundness as follows. We only show a couple
of cases. The proof of termination and preservation of typing for defunctional-
ization is fairly similar and we go into more detail in that proof, in Section 5.2.

Lemma 1 (Type soundness). If Γ ` e : τ (by T ) and � Σ : Γ (by R), for
some Σ, then Σ ` e ↓ r, for some r, and either r = err or r = v, for some v,
and � v : τ .

Proof. By induction on the typing derivation T .
In most cases we simply apply the induction hypothesis to each subderiva-

tion, in turn, and reason on whether the result is err or a value. In multiple
cases, we relate an extended typing context and evaluation environment using

17
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� v : τ

� n : int � true : bool � false : bool

∀v1. � v1 : τ1 =⇒ ∃r. Σ, x 7→ v1 ` e0 ↓ r ∧ (r = err ∨ (r = v2 ∧ � v2 : τ2))

� clos(λx : τ1. e0,Σ) : τ1 → τ2

(� vi : τi)
i∈1..n

� {(`i = vi)
i∈1..n} : {(`i : τi)

i∈1..n}
(� vi : τ)

i∈1..n

� [(vi)
i∈1..n] : [ ]τ

� Σ : Γ

� · : ·
� Σ : Γ � v : τ
� (Σ, x 7→ v) : (Γ, x : τ)

Figure 5.1: Relation between values and types, and evaluation environments
and typing contexts, respectively.

assumption R and relations obtained from the induction hypothesis, to allow
for further applications of the induction hypothesis.

In the case for T-Loop, in the subcase where the first two subexpressions
evaluate to a value and an array of values, respectively, we proceed by an inner
induction on the structure of the corresponding sequence of values for the
loop. If the sequence is empty, we get the necessary derivation of the auxiliary
judgment for loop iteration directly by axiom. In the inductive case, we apply
the outer induction hypothesis on the subderivation for the loop body. If the
result is err, it is again just propagated. If it is a value, we can relate the value
with the type of the loop and then apply the inner induction hypothesis.

We show just a few representative cases.

• Case T = (Γ(x) = τ)
Γ ` x : τ

.

Since � Σ : Γ and Γ(x) = τ , we must have a subderivation of � v : τ , for
some Σ(x) = v. Then by rule E-Var, Σ ` x ↓ v, as required.

• Case T =

T0

Γ, x : τ1 ` e0 : τ2
Γ ` λx : τ1. e0 : τ1 → τ2

.

By rule E-Lam, we have that Σ ` λx : τ1. e0 ↓ clos(λx : τ1. e0,Σ).

Now, assume some value v1 such that � v1 : τ1. Since � Σ : Γ by
assumptionR, we have by definition also � (Σ, x 7→ v1) : (Γ, x : τ1). Then
by the induction hypothesis on T0 with this, we get Σ, x 7→ v1 ` e0 ↓ r0

and either r0 = err, or r0 = v0 and � v0 : τ2. Thus, by definition of the
relation, we get � clos(λx : τ1. e0,Σ) : τ1 → τ2.

• Case T =

T1

Γ ` e1 : τ2 → τ

T2

Γ ` e2 : τ2
Γ ` e1 e2 : τ

.

By the induction hypothesis on T1 with R, we get Σ ` e1 ↓ r1 and
either r1 = err or r1 = v1, for some v1 with � v1 : τ2 → τ . In the
former case, Σ ` e1 e2 ↓ err by E-AppErr1. In the latter case, by
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inversion we must have that v1 = clos(λx : τ2. e0,Σ0) for some x, e0,
and Σ0, and by definition of the relation, if � v′ : τ2 for any v′, then
∃r. Σ0, x 7→ v′ ` e0 ↓ r and either r = err or r = v with � v : τ .

By the induction hypothesis on T2 with R, we get Σ ` e2 ↓ r2 and either
r2 = err or r2 = v2 with � v2 : τ2. In the former case, Σ ` e1 e2 ↓ err by
E-AppErr2. In the latter case, by the implication from previously, we
get that there exists r such that Σ0, x 7→ v2 ` e0 ↓ r and either r = err
or r = v for some v with � v : τ . In the former case, Σ ` e1 e2 ↓ err by
E-AppErr0. In the latter, we get Σ ` e1 e2 ↓ v by rule E-App.

• Case T =

T2

Γ ` e2 : [ ]τ2

T1

Γ, x : τ2 ` e1 : τ τ orderZero

Γ `map (λx. e1) e2 : [ ]τ

.

By the induction hypothesis on T2 with R, we get Σ ` e2 ↓ r2 and
either r2 = err, or r2 = v2 with � v2 : [ ]τ2. In the former case, also
Σ ` map (λx. e1) e2 ↓ err. In the latter case, by inversion on the
relation, v2 = [v′1, ..., v

′
n] and � v′i : τ2, for each i ∈ 1..n.

For each i ∈ 1..n, we construct � (Σ, x 7→ v′i) : (Γ, x : τ2) and by the
induction hypothesis on T1 with this, we get Σ, x 7→ v′i ` e1 ↓ ri. If
ri = err for any i, then Σ ` map (λx. e1) e2 ↓ err. Otherwise, if all
ri = v′′i , for some v′′i with � v′′i : τ , then Σ `map (λx.e1) e2 ↓ [(v′′i )i∈1..n]
and we construct � [(v′′i )i∈1..n] : [ ]τ .

5.2 Translation termination and preservation of typing

In this section, we show that the translation of a well-typed expression always
terminates and that the translated expression is also well-typed, in a typing
context that can be obtained from the defunctionalization environment and
with a type that can be obtained from the static value.

We first define a mapping from static values to types, which shows how
the type of a residual expression can be obtained from its static value, as will
become evident later:

JDyn τ Ktp = τ

JLam x e0 E Ktp = {(Lab(y) : J svy Ktp)(y 7→svy)∈E}
q
Rcd {(`i 7→ sv i)

i∈1..n}
y

tp
= {(`i : J sv i Ktp)i∈1..n}

JArr sv Ktp = [ ](J sv Ktp)

This is extended to map defunctionalization environments to typing contexts,
by mapping each individual static value in an environment:

J · Ktp = ·
JE, x 7→ sv Ktp = JE Ktp , x : J sv Ktp

In order to be able to show termination and preservation of typing for de-
functionalization, we first define a relation, � sv : τ , between static values and
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types, similar to the previous relation between values and types, and further
extend it to relate defunctionalization environments and typing contexts. This
relation is given by the rules in Figure 5.2.

� sv : τ

� Dyn int : int � Dyn bool : bool

∀sv1. � sv1 : τ1 =⇒ ∃e′0, sv2. E0, x 7→ sv1 ` e0  〈e′0, sv2〉
∧ � sv2 : τ2 ∧ JE0, x 7→ sv1 Ktp ` e

′
0 : J sv2 Ktp

� Lam x e0 E0 : τ1 → τ2

(� sv i : τi)
i∈1..n

� Rcd {(`i 7→ sv i)
i∈1..n} : {(`i : τi)

i∈1..n}
� sv : τ τ orderZero

� Arr sv : [ ]τ

� E : Γ

� · : ·
� E : Γ � sv : τ
� (E, x 7→ sv) : (Γ, x : τ)

Figure 5.2: Relation between static values and types, and defunctionalization
environments and typing contexts, respectively.

By assuming this relation between some defunctionalization environment E
and a typing context Γ for a given typing derivation, we can show that a well-
typed expression will translate to some expression and additionally produce a
static value that is related to the type of the original expression according to
the above relation. Additionally, the translated expression is well-typed in the
typing context obtained from E with a type determined by the static value.
This strengthens the induction hypothesis to allow the case for application to go
through, which would otherwise not be possible. This approach is quite similar
to the previous proof of type soundness and normalization of evaluation.

In order to be able to prove the main result in Theorem 1, we state a number
of lemmas in the following.

We first prove an auxiliary lemma about the above relation between static
values and types, which states that for types of order zero, the related static
value is uniquely determined. This property is crucial to the ability of defunc-
tionalization to uniquely determine the function at every application site, and
it is used in the proof of Theorem 1 in the cases for conditionals, array literals,
array updates, and loops.

Lemma 2. If � sv : τ , � sv ′ : τ , and τ orderZero, then sv = sv ′.

Proof. By induction on the derivation of � sv : τ .

The following lemma states that if a static value is related to a type of order
zero, then the static value maps to the same type. This property is used in
Corollary 1 to establish that the types of order zero terms are unchanged by
defunctionalization. It is also used in the cases for conditionals, array literals,
loops, and maps in the proof of Theorem 1.

Lemma 3. If � sv : τ and τ orderZero, then J sv Ktp = τ .
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Proof. By induction on the structure of sv .

We then state the usual weakening lemma for typing derivations.

Lemma 4 (Weakening). If Γ ` e : τ and Γ ⊆ Γ′, then also Γ′ ` e : τ .

Proof. By induction on the structure of the expression e.

Using this, we show the following lemma which allows a sequence of as-
sumptions in a typing context to be “folded” into an assumption of a record
type variable, containing the same types, where the expression in turn “unfolds”
the variables by a sequence of nested let-bindings.

Lemma 5. If Γ,Γ0 ` e : τ , then

Γ, env : {(Lab(x) : τx)(x:τx)∈Γ0} ` (let x = env .Lab(x) in)
x∈dom Γ0 e : τ ,

where env is a fresh variable not in dom Γ,Γ0.

Proof. By Lemma 4 on the assumed typing derivation, we get a derivation of
Γ, env : {(Lab(x) : τx)(x:τx)∈Γ0},Γ0 ` e : τ . We then proceed by induction on
the shape of Γ0.

The following lemma is used in the case for application in the proof of type
preservation and termination, and is extracted into its own lemma in order to
simplify the main proof.

Lemma 6. If

T1 :: Γ ` e1 : JLam x e0 E0 Ktp ,

T2 :: Γ ` e2 : τ2, and
T0 :: JE0 Ktp , x : τ2 ` e0 : τ

then Γ ` let env = e1 in (let y = env .Lab(y) in)
y∈domE0

let x = e2 in e0 : τ .

Proof. By a direct proof.
By definition, JLam x e0 E0 Ktp = {(Lab(y) = J svy Ktp)(y 7→svy)∈E0}. By

weakening (Lemma 4) on T0 and by renaming of bound variables as necessary,
we get T ′0 of Γ, JE0 Ktp , x : τ2 ` e0 : τ . By weakening on T2 and renaming as
necessary, we get T ′2 of Γ, JE0 Ktp ` e2 : τ2. By rule T-Let on T ′2 and T ′0 , we
get Γ, JE0 Ktp ` let x = e2 in e0 : τ . By Lemma 5 on this, we get T ′ of:

Γ, env : {(Lab(y) : τy)(y 7→τy)∈JE0 Ktp} ` (let y = env .Lab(y) in)y∈domJE0 Ktp

let x = e2 in e0 : τ

By definition, {(Lab(y) : τy)(y 7→τy)∈JE0 Ktp} = {(Lab(y) : J svy Ktp)(y 7→svy)∈E0}
and dom JE0 Ktp = domE0. Then by rule T-Let on T1 and T ′, we get the
required derivation.

Finally, we can state and prove termination and preservation of typing for
the defunctionalization translation as follows:
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Theorem 1. If Γ ` e : τ (by T ) and � E : Γ (by R), for some E, then
E ` e 〈e′, sv〉, � sv : τ , and JE Ktp ` e′ : J sv Ktp, for some e′ and sv .

Proof. By induction on the typing derivation T .
We show a number of representative cases.

• Case T = (Γ(x) = τ)
Γ ` x : τ

.

Since � E : Γ, by the assumption R, and Γ(x) = τ , by the side condi-
tion, we must have that E(x) = sv , for some sv , and R must contain
a subderivation of � sv : τ . By rule D-Var, we get E ` x  〈x, sv〉.
By definition, JE Ktp (x) = J sv Ktp and then by rule T-Var, we get the
required JE Ktp ` x : J sv Ktp.

• Case T = Γ ` n : int .

By rule D-Num, E ` n 〈n,Dyn int〉. By axiom, � Dyn int : int. By
rule T-Num, JE Ktp ` n : int and by definition, JDyn int Ktp = int.

• The cases for T-True and T-False are analogous.

• Case T =
Z :: τ orderZero
T1 :: Γ ` e1 : bool

T2 :: Γ ` e2 : τ

T3 :: Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

.

By the induction hypothesis on T1 with R, we get derivations D1 of
E ` e1  〈e′1, sv1〉, R1 of � sv1 : bool, and T ′1 of JE Ktp ` e′1 : J sv1 Ktp.
By inversion on R1, sv1 = Dyn bool, so by definition J sv1 Ktp = bool.

For each i ∈ {2, 3}, by the induction hypothesis on Ti with R, we get Di
of E ` ei  〈e′i, sv i〉, Ri of � sv i : τ , and T ′i of JE Ktp ` e′i : J sv i Ktp.

By Lemma 2 on R2, R3, and Z, we get that sv2 = sv3. Thus, by
rule D-If on D1, D2, and D3, we get E ` if e1 then e2 else e3  
〈if e′1 then e′2 else e′3, sv2〉 and we already know that � sv2 : τ .

By Lemma 3 on R2 and Z, we have that J sv2 Ktp = τ . Then, by rule
T-If on T ′1 , T ′2 , T ′3 , and Z, we get the required typing derivation.

• The cases for T-Plus and T-Leq are similar.

• Case T =

T0

Γ, x : τ1 ` e0 : τ2
Γ ` λx : τ1. e0 : τ1 → τ2

.

By rule D-Lam,

E ` λx : τ1. e0  
〈
{(Lab(y) = y)y∈domE},Lam x e0 E

〉
,

so e′ = {(Lab(y) = y)y∈domE} and sv = Lam x e0 E.

Now, assume sv1 such that � sv1 : τ1. Then, by definition, we also have
� (E, x 7→ sv1) : (Γ, x : τ1) and so by the induction hypothesis on T0

with this, we get E, x 7→ sv1 ` e0  〈e′0, sv2〉 and � sv2 : τ2, and a
derivation of JE, x 7→ sv1 Ktp ` e′0 : J sv2 Ktp, for some e′0 and sv2. Thus,
by definition of the relation, � Lam x e0 E : τ1 → τ2.
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By definition, J sv Ktp = {(Lab(y) : J svy Ktp)(y 7→svy)∈E}. For each map-
ping (y 7→ svy) ∈ E, we have by definition JE Ktp (y) = J svy Ktp, and by
rule T-Var, we have a derivation Ty of JE Ktp ` y : J svy Ktp. Then by
T-Rcd on these Ty derivations, we get the required JE Ktp ` e′ : J sv Ktp.

• Case T =

T1

Γ ` e1 : τ2 → τ

T2

Γ ` e2 : τ2
Γ ` e1 e2 : τ

.

By the induction hypothesis on T1 with R, we get D1 of E ` e1  
〈e′1, sv1〉, R1 of � sv1 : τ2 → τ , and T ′1 of JE Ktp ` e′1 : J sv1 Ktp, for some
e′1 and sv1. Similarly, by the induction hypothesis on T2, we get D2 of
E ` e2  〈e′2, sv2〉, R2 of � sv2 : τ2, and T ′2 of JE Ktp ` e′2 : J sv2 Ktp, for
some e′2 and sv2.

By inversion on R1, sv1 = Lam x e0 E0, for some x, e0, and E0.

Since � Lam x e0 E0 : τ2 → τ and � sv2 : τ2, we have by definition of the
relation, a derivation D0 of E0, x 7→ sv2 ` e0  〈e′0, sv〉, R0 of � sv : τ ,
as required, and T ′0 of JE0, x 7→ sv2 Ktp ` e′0 : J sv Ktp. By definition,
JE0, x 7→ sv2 Ktp = JE0 Ktp , x : J sv2 Ktp.

Then, by rule D-App on D1, D2, and D0, we get the required:

E ` e1 e2  〈let env = e′1 in ( let y = env .Lab(y) in )
y∈domE0

let x = e′2 in e′0, sv〉

By Lemma 6 on T ′1 , T ′2 , and T ′0 , we get the required typing derivation.

• Case T =

T0

Γ ` e0 : {(`i : τi)
i∈1..n}

(1 ≤ k ≤ n)
Γ ` e0.`k : τk

.

By induction hypothesis on T0 with R, we get D0 of E ` e0  〈e′0, sv0〉,
R0 of � sv0 : {(`i : τi)

i∈1..n}, and T ′0 of JE Ktp ` e′0 : J sv0 Ktp. By
inversion on R0, sv0 = Rcd {(`i 7→ sv i)

i∈1..n} and � sv i : τi by some Ri,
for each i ∈ 1..n. By definition, J sv0 Ktp = {(`i : J sv i Ktp)i∈1..n}.
By rule D-Proj onD0 with the side condition from T , we get the required
E ` e0.`k  〈e′0.`k, svk〉. We have that � svk : τk, by Rk. By T-Proj
on T ′0 with the side condition from T , we get JE Ktp ` e′0.`k : J svk Ktp.

• Case T =
(Ti :: Γ ` ei : τ)

i∈1..n Z :: τ orderZero

Γ ` [e1, . . . , en] : [ ]τ
.

For each i ∈ 1..n, by the induction hypothesis on Ti with R, we get Di
of E ` ei  〈e′i, sv i〉, Ri of � sv i : τ , and T ′i of JE Ktp ` e′i : J sv i Ktp.

By pairwise application of Lemma 2 to each of the Ri together with Z,
we get that sv1 = · · · = svn. Let sv = sv1. Then by D-Array on the
Di derivations, we get E ` [e1, . . . , en] 〈[e′1, . . . , e′n],Arr sv〉.
Since � sv : τ (by any of the Ri), by Lemma 3 together with Z, we have
that J sv Ktp = τ . Then by T-Array on the T ′i derivations and Z, we get
that JE Ktp ` [e′1, . . . , e

′
n] : [ ]τ and, by definition JArr sv Ktp = [ ] J sv Ktp.

Since � sv : τ and τ orderZero, we get � Arr sv : [ ]τ .
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• Case T =

T0

Γ ` e0 : [ ]τ

T1

Γ ` e1 : int

T2

Γ ` e2 : τ

Γ ` e0 with [e1]← e2 : [ ]τ

.

By the induction hypothesis on T0 with R, we get D0 of E ` e0  
〈e′0, sv0〉, R0 of � sv0 : [ ]τ , and T ′0 of JE Ktp ` e′0 : J sv0 Ktp. By inversion
onR0, we have that sv0 = Arr sv ′0, R′0 of � sv ′0 : τ , and Z of τ orderZero.
By definition, J sv0 Ktp = [ ](J sv ′0 Ktp).

By the induction hypothesis on T1 with R, we get derivations D1 of
E ` e1  〈e′1, sv1〉, R1 of � sv1 : int, and T ′1 of JE Ktp ` e′1 : J sv1 Ktp.
By inversion on R1, sv1 = Dyn int, so J sv1 Ktp = int. By the induction
hypothesis on T2 withR, we get D2 of E ` e2  〈e′2, sv2〉, R2 of � sv2 : τ ,
and T ′2 of JE Ktp ` e′2 : J sv2 Ktp. By Lemma 2 on R′0, R2, and Z, we have
that sv ′0 = sv2. Then by D-Update on D0, D1, and D2, we get:

E ` e0 with [e1]← e2  〈e′0 with [e′1]← e′2,Arr sv ′0〉

Clearly also J sv ′0 Ktp = J sv2 Ktp. Then by T-Update on T ′0 , T ′1 , and T ′2 :

JE Ktp ` e
′
0 with [e′1]← e′2 : [ ](J sv ′0 Ktp)

• Case T =

T2

Γ ` e2 : [ ]τ2

T1

Γ, x : τ2 ` e1 : τ
Z

τ orderZero

Γ `map (λx. e1) e2 : [ ]τ

.

By the induction hypothesis on T2 with R, we get D2 of E ` e2  
〈e′2, sv2〉, R2 of � sv2 : [ ]τ2, and T ′2 of JE Ktp ` e′2 : J sv2 Ktp, for some e′2
and sv2. By inversion on R2, sv2 = Arr sv ′2 with R′2 of � sv ′2 : τ2 (and
τ2 orderZero), and by definition, J sv2 Ktp = [ ](J sv ′2 Ktp).

Using R′2, we construct � (E, x 7→ sv ′2) : (Γ, x : τ2). Then by the
induction hypothesis on T1, we get D1 of E, x 7→ sv ′2 ` e1  〈e′1, sv1〉,
R1 of � sv1 : τ , and T ′1 of JE, x 7→ sv ′2 Ktp ` e′1 : J sv1 Ktp, for some e′1
and sv1. By definition, JE, x 7→ sv ′2 Ktp = JE Ktp , x : J sv ′2 Ktp. Then by
rule D-Map on D2 and D1, we get the required derivation of:

E `map (λx. e1) e2  〈map (λx. e′1) e′2,Arr sv1〉

Since � sv1 : τ , byR1, and τ orderZero, by Z, we have � Arr sv1 : [ ]τ , as
required. By Lemma 3 on R1 and Z, we have J sv1 Ktp = τ . Then by rule
T-Map on T ′2 , T ′1 , and Z, we get a derivation of JE Ktp `map (λx.e′1) e′2 :
[ ]τ and we already have that JArr sv1 Ktp = [ ](J sv1 Ktp) = [ ]τ .

• The case for T-Loop is similar to the case for T-Map.

5.3 Preservation of meaning

In this section, we show that the defunctionalization transformation preserves
the meaning of expressions in the following sense: If an expression e evaluates to
a value v in an environment Σ, then the translated expression e′ will evaluate to
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a corresponding value v′ in a corresponding environment Σ′, and if e evaluates
to err, then e′ will evaluate to err in the environment Σ′ as well.

The correspondence between values in the source program and target pro-
gram, and their evaluation environments, will be made precise shortly, but
intuitively, we replace each function closure in the source program by a record
containing the values in the closure environment.

We first define a simple relation between source language values and static
values, given in Figure 5.3, and extend it to relate evaluation environments
and defunctionalization environments in the usual way. Note that this relation
actually defines a function from values to static values.

� v : sv

� n : Dyn int � true : Dyn bool � false : Dyn bool

� Σ : E
� clos(λx : τ. e0,Σ) : Lam x e0 E

(� vi : sv i)
i∈1..n

� {(`i = vi)
i∈1..n} : Rcd {(`i 7→ sv i)

i∈1..n}
(� vi : sv)

i∈1..n

� [(vi)
i∈1..n] : Arr sv

� Σ : E

� · : ·
� Σ : E � v : sv

� (Σ, x 7→ v) : (E, x 7→ sv)

Figure 5.3: Relation between values and static values, and evaluation environ-
ments and defunctionalization environments, respectively.

Next, we define a mapping from source language values to target language
values, which simply converts each function closure to a corresponding record
expression that contains the converted values from the closure environment:

J v Kval = v , for v ∈ {n, true, false}
J clos(λx : τ. e0,Σ) Kval = {(Lab(y) = J vy Kval)

(y 7→vy)∈Σ}
q
{(`i = vi)

i∈1..n}
y

val
= {(`i = J vi Kval)

i∈1..n}
q

[(vi)
i∈1..n]

y
val

= [(J vi Kval)
i∈1..n]

As we have seen with a number of previous definitions, the case for arrays is
actually moot, since arrays will never contain function closures.

We extend this mapping homomorphically to evaluation environments:

J · Kval = ·
J Σ, x 7→ v Kval = J Σ Kval , x 7→ J v Kval

The following lemma states that if a value is related to a type of order zero,
according to the previously defined relation between values and types (defined
in Figure 5.1) used in the proof of type soundness, then the value is mapped
to itself, that is, values that do not contain function closures are unaffected by
defunctionalization:
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Lemma 7. If � v : τ and τ orderZero, then J v Kval = v.

Proof. By induction on the derivation of � v : τ .

Before we can show preservation of meaning, we need a few auxiliary lem-
mas. The following lemma allows the derivation of an evaluation judgment to
be weakened by adding unused assumptions, similar to the weakening lemma
for typing judgments (Lemma 4).

Lemma 8. If Σ ` e ↓ r and Σ ⊆ Σ′, then also Σ′ ` e ↓ r.

Proof. By induction on the structure of the expression e.

Similar to Lemma 5 and Lemma 6, which are used in the case for application
in the proof of Theorem 1, we define analogous lemmas for the evaluation of a
translated application.

Lemma 9. If Σ,Σ0 ` e ↓ r, then

Σ, env 7→ {(Lab(x) = vx)(x7→vx)∈Σ0} ` (let x = env .Lab(x) in)
x∈dom Σ0 e ↓ r .

where env is a fresh variable not in dom Σ,Σ0.

Proof. By induction on the shape of Σ0.

Lemma 10. If

Σ ` e1 ↓ J clos(λx : τ. e0,Σ0) Kval ,

Σ ` e2 ↓ v2, and
J Σ0 Kval , x 7→ v2 ` e0 ↓ v

then Σ ` let env = e1 in (let y = env .Lab(y) in)
y∈dom Σ0

let x = e2 in e0 ↓ v .

Proof. By a direct proof using Lemma 8 and Lemma 9.

We are now ready to prove the following theorem, which states that the
defunctionalization transformation preserves the meaning of an expression that
is known to evaluate to some result, where the value of the defunctionalized
expression and the values in the environment are translated according to the
translation from source language values to target language values given above.

Theorem 2 (Semantics preservation). If Σ ` e ↓ r (by E), � Σ : E (by R),
and E ` e  〈e′, sv〉 (by D), then if r = err, then also J Σ Kval ` e′ ↓ err and
if r = v, for some value v, then � v : sv and J Σ Kval ` e′ ↓ J v Kval.

Proof. By structural induction on the big-step evaluation derivation E .
We show a few of the more interesting cases:
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• Case E = (Σ(x) = v)
Σ ` x ↓ v , so e = x and r = v.

D must be an instance of rule D-Var, so e′ = x and E(x) = sv . Since
� Σ : E, by assumption R, and Σ(x) = v, by the side condition, R must
contain a subderivation of � v : sv , as required.

By the side condition from E and by definition of the mapping on values,
J Σ Kval (x) = J v Kval, so we directly get the required derivation by E-Var:

(J Σ Kval (x) = J v Kval)J Σ Kval ` x ↓ J v Kval

• Case E =
Σ ` n ↓ n , so e = n and r = v = n.

D must use rule D-Num, so e′ = n and sv = Dyn int. We have the
required � n : Dyn int by axiom. Since Jn Kval = n, we directly get the
required evaluation derivation by rule E-Num.

• The cases for E-True and E-False are analogous.

• Case E =

E1
Σ ` e1 ↓ true

E2
Σ ` e2 ↓ v

Σ ` if e1 then e2 else e3 ↓ v
.

D must have the following shape:

D1 :: E ` e1  〈e′1,Dyn bool〉
D2 :: E ` e2  〈e′2, sv〉 D3 :: E ` e3  〈e′3, sv〉

E ` if e1 then e2 else e3  〈if e′1 then e′2 else e′3, sv〉

By the induction hypothesis on E1 with R and D1, we get derivations R1

of � true : Dyn bool and E ′1 of J Σ Kval ` e′1 ↓ J true Kval and by definition
J true Kval = true. Similarly, by the induction hypothesis on E2 with D2,
we get R2 of � v : sv , as required, and E ′2 of J Σ Kval ` e′2 ↓ J v Kval.

Thus, by rule E-IfT on E ′1 and E ′2, we get the required derivation of:

J Σ Kval ` if e′1 then e′2 else e′3 ↓ J v Kval

• The case for E-IfF is analogous.

• Case E =
Σ ` λx : τ. e0 ↓ clos(λx : τ. e0,Σ)

, so e = λx : τ. e0.

D must be an instance of rule D-Lam, so e′ = {(Lab(y) = y)y∈domE}
and sv = Lam x e0 E. By assumption R, we have that � Σ : E, so by
definition, � clos(λx : τ. e0,Σ) : Lam x e0 E, as required.

By definition, J clos(λx : τ. e0,Σ) Kval = {(Lab(y) = J vy Kval)
(y 7→vy)∈Σ},

and domE = dom Σ. For each mapping (y 7→ vy) ∈ Σ, we have by
definition J Σ Kval (y) = J vy Kval and, by E-Var, that J Σ Kval ` y ↓ J vy Kval
by some Ey. Thus, by rule E-Rcd on the Ey derivations, we can construct
the required derivation of:

J Σ Kval ` {(Lab(y) = y)y∈dom Σ} ↓ {(Lab(y) = J vy Kval)
(y 7→vy)∈Σ}
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• Case E =

E1 :: Σ ` e1 ↓ clos(λx : τ. e0,Σ0)

E2 :: Σ ` e2 ↓ v2 E0 :: Σ0, x 7→ v2 ` e0 ↓ v
Σ ` e1 e2 ↓ v

,

so e = e1 e2 and r = v. Then D must have the following shape:

D1 :: E ` e1  〈e′1,Lam x e0 E0〉
D2 :: E ` e2  〈e′2, sv2〉 D0 :: E0, x 7→ sv2 ` e0  〈e′0, sv〉

E ` e1 e2  〈e′, sv〉

where e′ = let env = e′1 in (let y = env .Lab(y) in)
y∈domE0

let x = e′2 in e′0 .

By the induction hypothesis on E1 with R and D1, we get derivations
R1 of � clos(λx : τ. e0,Σ0) : Lam x e0 E0 and E ′1 of J Σ Kval ` e′1 ↓
J clos(λx : τ. e0,Σ0) Kval. By inversion on R1, we get R0 of � Σ0 : E0 and
by definition, dom Σ0 = domE0. By the induction hypothesis on E2 with
R and D2, we get R2 of � v2 : sv2 and E ′2 of J Σ Kval ` e′2 ↓ J v2 Kval.
From R0 and R2, we can construct R′0 of � (Σ0, x 7→ v2) : (E0, x 7→ sv2).
Then, by the induction hypothesis on E0 with R′0 and D0, we get � v : sv ,
as required, and a derivation E ′0 of J Σ0, x 7→ v2 Kval ` e′0 ↓ J v Kval. By
definition, J Σ0, x 7→ v2 Kval = J Σ0 Kval , x 7→ J v2 Kval.
Finally, by Lemma 10 on E ′1, E ′2, and E ′0, we get the required derivation.

• Case E =

E0
Σ ` e0 ↓ [(vi)

i∈1..n]

E1
Σ ` e1 ↓ k (k < 1 ∨ k > n)

Σ ` e0[e1] ↓ err
,

so e = e0[e1] and r = err. D must have the following shape:

D0

E ` e0  〈e′0,Arr sv〉
D1

E ` e1  〈e′1,Dyn int〉
E ` e0[e1] 〈e′0[e′1], sv〉

By the induction hypothesis on E0 with R and D0, we get E ′0 of J Σ Kval `
e′0 ↓

q
[(vi)

i∈1..n]
y

val
and by definition

q
[(vi)

i∈1..n]
y

val
= [(J vi Kval)

i∈1..n].
By the induction hypothesis on E1 with R and D1, we get E ′1 of J Σ Kval `
e′1 ↓

q
k

y
val

and by definition
q
k

y
val

= k. Then by E-IndexErr on E ′0
and E ′1 with the side condition from E , we get that J Σ Kval ` e′0[e′1] ↓ err.

• The case for E-UpdateErr is very similar.

• Case E =
E ′2 :: Σ ` e2 ↓ [(vi)

i∈1..n] (Ei :: Σ, x 7→ vi ` e1 ↓ v′i)
i∈1..n

Σ `map (λx. e1) e2 ↓ [(v′i)
i∈1..n]

,

so e = map (λx. e1) e2 and r = v = [(v′i)
i∈1..n]. D must be like:

D2

E ` e2  〈e′2,Arr sv2〉
D1

E, x 7→ sv2 ` e1  〈e′1, sv1〉
E `map (λx. e1) e2  〈map (λx. e′1) e′2,Arr sv1〉

By the induction hypothesis on E ′2 with R and D2, we get derivations R2

of � [(vi)
i∈1..n] : Arr sv2 and E ′′2 of J Σ Kval ` e′2 ↓

q
[(vi)

i∈1..n]
y

val
.
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By definition,
q

[(vi)
i∈1..n]

y
val

= [(J vi Kval)
i∈1..n]. By inversion on R2, we

get (R′i ::� vi : sv2)i∈1..n.

For each i ∈ 1..n, from R and R′i, we construct R′′i of � (Σ, x 7→ vi) :
(E, x 7→ sv2). By the induction hypothesis on Ei with R′′i and D1, we get
R′′′i of � v′i : sv1 and E ′′′i of J Σ, x 7→ vi Kval ` e′1 ↓ J v′i Kval.

From (R′′′i )i∈1..n, we construct � [(v′i)
i∈1..n] : Arr sv1, as required.

By definition, J Σ, x 7→ vi Kval = J Σ Kval , x 7→ J vi Kval. Then by E-Map
on E ′′2 and (E ′′′i )i∈1..n, we get the required:

J Σ Kval `map (λx. e′1) e′2 ↓ [(J v′i Kval)
i∈1..n]

• Case E =

E0 :: Σ ` e0 ↓ v0 E1 :: Σ ` e1 ↓ [(vi)
i∈1..n]

EL :: Σ;x = v0; y = (vi)
i∈1..n ` e2 ↓ v

Σ ` loop x = e0 for y in e1 do e2 ↓ v
.

The derivation D must have the following shape:

D0 :: E ` e0  〈e′0, sv〉 D1 :: E ` e1  〈e′1,Arr sv1〉
D2 :: E, x 7→ sv , y 7→ sv1 ` e2  〈e′2, sv〉

E ` loop x = e0 for y in e1 do e2

 〈loop x = e′0 for y in e′1 do e′2, sv〉

By the induction hypothesis on E0 with R and D0, we get derivations R0

of � v0 : sv and E ′0 of J Σ Kval ` e′0 ↓ J v0 Kval. Again, by the induction
hypothesis on E1 with R and D1, we get R1 of � [(vi)

i∈1..n] : Arr sv1 and
E ′1 of J Σ Kval ` e′1 ↓

q
[(vi)

i∈1..n]
y

val
. By inversion onR1, we get � vi : sv1

for each i ∈ 1..n. By definition,
q

[(vi)
i∈1..n]

y
val

= [(J vi Kval)
i∈1..n].

By an inner induction on the length of a sequence of values (v′i)
i∈1..n, we

show that if Σ;x = v′0; y = (v′i)
i∈1..n ` e2 ↓ v′ (by EL′), � v′0 : sv (by R′0),

and � v′i : sv1 (by R′i), for each i ∈ 1..n, then J Σ Kval ;x = J v′0 Kval ; y =
(J v′i Kval)

i∈1..n ` e′2 ↓ J v′ Kval and � v
′ : sv .

– In case the sequence is empty, the derivation EL′ must be an instance
of rule EL-Nil, so in this case we must have that v′ = v′0. Then by
rule EL-Nil, we get that J Σ Kval ;x = J v′0 Kval ; y = · ` e′2 ↓ J v′0 Kval

and by assumption we already have � v′0 : sv .

– Case (v′i)
i∈1..n. In this case, the derivation EL′ must be like:

E2
Σ, x 7→ v′0, y 7→ v′1 ` e2 ↓ v′′0

EL′′

Σ;x = v′′0 ; y = (v′i)
i∈2..n ` e2 ↓ v′

Σ;x = v′0; y = (v′i)
i∈1..n ` e2 ↓ v′

From R, R′0, and R′1, we construct a derivation of � (Σ, x 7→
v′0, y 7→ v′1) : (E, x 7→ sv , y 7→ sv1). By the outer induction hy-
pothesis on E2 with this relation and D2, we get R2 of � v′′0 : sv
and E ′2 of J Σ, x 7→ v′0, y 7→ v′1 Kval ` e′2 ↓ J v′′0 Kval and by definition,
J Σ, x 7→ v′0, y 7→ v′1 Kval = J Σ Kval , x 7→ J v′0 Kval , y 7→ J v′1 Kval. Then
by the inner induction hypothesis on EL′′ with R2 and (R′i)i∈2..n,
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we get EL′′′ of

J Σ Kval ;x = J v′′0 Kval ; y = (J v ′i Kval)
i∈2..n ` e′2 ↓ J v′ Kval

and � v′ : sv , as required. By EL-Cons on E ′2 and EL′′′, we get:

J Σ Kval ;x = J v′0 Kval ; y = (J v′i Kval)
i∈1..n ` e′2 ↓ J v′ Kval

Taking v′i to be vi, for i ∈ 0..n, and v′ to be v, in the above argument,
we get the required � v : sv and a derivation EL0 of:

J Σ Kval ;x = J v0 Kval ; y = (J vi Kval)
i∈1..n ` e′2 ↓ J v′ Kval

Then by rule E-Loop on E ′0, E ′1, and EL0, we get the required derivation.

• Case E =

E1
Σ ` e1 ↓ err

Σ ` e1 + e2 ↓ err
, so e = e1 + e2 and r = err.

The derivation D must use rule D-Plus and contain a subderivation D1

of E ` e1  〈e′1,Dyn int〉. By the induction hypothesis on E1 with R
and D1, we get E ′1 of J Σ Kval ` e′1 ↓ err. Then by rule E-PlusErr1 on
E ′1, we get the required derivation of J Σ Kval ` e′1 + e′2 ↓ err.

• The other cases that propagate err are similar.

Note that we did not assume the source expression to be well-typed. As
mentioned previously, this is because the translation rules inherently perform
some degree of type checking. For example, an expression like

if b then (λx : int. x+ n) else (λx : int. x+m)

is not well-typed since the branches have order 1, but it will not translate to
anything either, since the constraint in the rule D-If, that the static value of
each branch must be identical, cannot be satisfied.

5.4 Correctness of defunctionalization

To summarize the previous properties and results relating to the correctness of
the defunctionalization transformation, we state the following corollary which
follows by type soundness (Lemma 1), normalization and preservation of typing
for defunctionalization (Theorem 1), and semantics preservation of defunction-
alization (Theorem 2), together with Lemma 3 and Lemma 7.

Corollary 1 (Correctness). If ` e : τ and τ orderZero, then ` e ↓ r, for some
r, ` e 〈e′, sv〉, for some e′ and sv , and ` e′ : τ and ` e′ ↓ r as well.
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Implementation

The defunctionalization transformation that was presented in Chapter 4 has
been implemented in the Futhark compiler, which is developed in the open on
GitHub and publicly available at https://github.com/diku-dk/futhark.

The primary contribution of the implementation work of this thesis is the
defunctionalization compiler pass, which was implemented from scratch. Ad-
ditionally, a monomorphization pass was also added to the compiler pipeline.1
The type checker was extended to work for higher-order programs and re-
fined with the type restrictions that we have presented. Furthermore, the type
checker was also generalized to better handle the instantiation of polymor-
phic functions, which served as a starting point for the implementation of type
inference, although this extension was not implemented by the author.

In this chapter, we discuss various aspects of the implementation of defunc-
tionalization in Futhark. We discuss how our implementation diverges from the
theoretical description and present a few optimizations that have been made.
As Futhark is a real language with a fairly large number of syntactical con-
structs, as well as features such as uniqueness types for supporting in-place
updates and size-dependent types for reasoning about the sizes of arrays, it
would not be feasible to do a formal treatment of the entire language.

Futhark supports a small number of parallel higher-order functions, such
as map, reduce, scan, and filter, as compiler intrinsics. These are specially
recognized by the compiler and exploited to perform optimizations and gener-
ate parallel code. User-defined parallel higher-order functions are ultimately
defined in terms of these. As a result, the program produced by the defunction-
alizer is not exclusively first-order, but may contain fully saturated applications
of these built-in higher-order functions.

6.1 Overview

In the Futhark compiler, defunctionalization is implemented as a whole-program,
source-to-source transformation. Specifically, defunctionalization takes an en-
tire monomorphic, module-free source language program as input and produces
another well-typed, first-order Futhark program as output. Note that the in-

1These passes are implemented in the Futhark.Internalise.Defunctionalise module
and in the Futhark.Internalise.Monomorphise module, respectively.
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put must be monomorphic. We will explain this, and the interaction between
defunctionalization and polymorphism, in more detail in Section 6.2.

The relevant parts of the compilation pipeline are as follows. First, after
lexical analysis and parsing, the source program is type checked. Second, static
interpretation of the higher-order module language is performed to yield a com-
plete Futhark program without any modules. Third, polymorphic functions are
specialized to concrete types to yield a completely monomorphic program and
type synonyms are removed. Fourth, the module-free, monomorphic Futhark
program is defunctionalized. After this, the first-order, monomorphic, module-
free Futhark program is transformed to an intermediate language representa-
tion and the remainder of the compilation back end proceeds.

6.2 Polymorphism and defunctionalization

Futhark supports parametric polymorphism in the form of let-polymorphism
(or ML-style polymorphism). The defunctionalizer, however, only works on
monomorphic programs and therefore, programs are monomorphized before
being passed to the defunctionalizer. To achieve this, a monomorphization pass
has been implemented. This pass simply records all polymorphic functions
occurring in a given program and specializes each of them for each distinct
set of type instantiations, as determined by the applications occurring in the
program. The type checker has been extended to attach the instantiated types
to every variable, which makes monomorphization a fairly simple procedure.

An alternative approach would have been to perform defunctionalization
directly on polymorphic programs, but since the monomorphization itself is
relatively simple, the current approach was chosen to allow the defunctional-
ization transformation to be as simple as possible.

Since the use of function types should be restricted as described earlier, it
is necessary to distinguish between type variables which may be instantiated
with function types, or any type of order greater than zero, and type variables
which may only take on types of order zero. Without such distinction, one
could write an invalid program that we would not be able to defunctionalize,
for example by instantiating the type variable a with a function type in the
following:

let ite ’a (b: bool) (x: a) (y: a) : a =
if b then x else y

To prevent this from happening, we have introduced the notion of lifted type
variables, written ’^a, which are unrestricted in the types that they may be
instantiated with, while the regular type variables may only take on types of
order zero. Consequently, a lifted type variable must be considered to be of
order greater than zero and is thus restricted in the same way as function types.
The regular type variables, on the other hand, can be treated as having order
zero and may be used freely in conditionals, arrays, and loops.

6.3 Optimizations

In the theoretical presentation of defunctionalization, the translation rule for
application, D-App, will insert a copy of the translated body of the applied
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function at every application site. Effectively, this means that all functions
will be inlined, which is also evident from the fact that function applications
are actually completely eliminated by the translation. Inlining all functions
can produce very large programs if the same functions are called in multiple
locations. In the implementation, we instead perform a variant of lambda lift-
ing [21], where a new top-level function is created, which takes as arguments
the record corresponding to the closure environment, that is, the defunction-
alized applied expression, and the original defunctionalized argument of the
application. This lifted function accesses the values of the environment (via a
record pattern in the environment parameter) and has the translated body of
the function that was originally applied as its body. The original application
is then replaced by a call to this function.

The basic defunctionalization algorithm only considers functions that take
a single argument. For example, if a curried function f of type τ1 → τ2 → τ3
is applied to arguments e1 and e2 as f e1 e2, then this will be treated as a
partial application f e1, followed by another application of this partially ap-
plied function to e2. This simple approach results in the creation of many
trivial lifted functions, which simply take an environment and a single argu-
ment and repackages them in a new environment. For each partial application,
a new function will be created. Only the function that accepts the final argu-
ment to fully saturate the original function will perform anything interesting.
For fully-applied calls to first-order functions, in particular, this is completely
unnecessary and will cause the translation of existing first-order programs to
significantly increase the size of the programs for no reason.

To remedy this excess creation of trivial lifted functions, we have extended
the notion of static values in the implementation with a dynamic function:

sv ::= · · · | DynFun 〈e, sv〉 sv

A dynamic function can be viewed as a functional analogue to a dynamic value.
In particular, the application of a dynamic function is allowed to remain in the
defunctionalized program, although partial application of dynamic functions
needs to be handled specially, as will be detailed shortly.

A DynFun is essentially a list of closures, where each element 〈e, sv〉 consists
of an expression e representing the closure environment and a static value sv for
the code part of the closure. Element i in the list (counting from 0) corresponds
to the closure obtained by partially applying the dynamic function to its first
i arguments. The final static value of the list is the static value for the result
of fully applying the dynamic function.

To illustrate this idea, consider the following function:

let f (x: i32) (y: i32) (g: i32 ->i32) : i32 =
g x + y

Even though this function is not first-order, we can still transform it, as follows,
to allow applications of the function to its first two arguments to remain in the
transformed program:

let f (x: i32) (y: i32) = {x=x, y=y}
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This function will be represented by a static value of the following form:

DynFun 〈{},Lam x (λy : i32. λg : i32→ i32. g x+ y) ·〉
(DynFun 〈{x = x},Lam y (λg : i32→ i32. g x+ y) (·, x 7→ Dyn i32)〉

(Lam g (g x+ y) (·, x 7→ Dyn i32, y 7→ Dyn i32)))

When transforming a function application, we keep track of the depth of
application. If we eventually find that the applied expression is a variable that
denotes a dynamic function, then if the function is fully applied, that is, if the
depth of application corresponds to the length of the DynFun list, then the
application is left in place and only the arguments are transformed. The static
value at the end of the DynFun list becomes the static value for the entire
application. However, if the dynamic function is only partially applied with i
arguments, then we create a new function with the first i parameters and the
expression at position i of the DynFun static value as body. Then the applied
function variable is replaced with the name of the new function and the static
value of the entire partial application becomes the static value at position i.

For instance, the application f 1 will translate to f’ 1, where f’ is a new
lifted function of the form

let f’ (x: i32) = {x=x}

and the static value of the application becomes the following:

Lam y (λg : i32→ i32. g x+ y) (·, x 7→ Dyn i32)

Despite these improvements, defunctionalization may still produce a large
number of rather trivial lifted functions. The optimizations performed later
in the compilation pipeline will eliminate all of these trivial functions (we will
discuss this in more detail in Chapter 7), but this can significantly increase
compilation times. To further reduce the number of trivial functions produced,
the defunctionalizer immediately inlines certain simple functions, in particular
those that just contain a record expression or a single primitive operation.

6.4 Array shape parameters

Futhark employs a system of runtime-checked size-dependent types, where ar-
ray types have the symbolic sizes of their dimensions attached to them. The
programmer may give shape declarations in function definitions to express in-
variants about the shapes of arrays that a function takes as arguments or
returns as result, and these shapes may be used as term-level variables as well.
Shape annotations may also be used in type ascriptions.

If a function that expresses an invariant about the shapes of its array param-
eters is partially applied or contains another parameter of function type, the
defunctionalizer will create a new function that captures the array argument
in an environment record, which would subsequently be passed as argument to
another function that receives the next argument, and so on. This causes the
array arguments to be separated and could potentially destroy the shape invari-
ant. For example, consider partially applying a function such as the following
(where [n] denotes a shape parameter):
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let f [n] (xs: [n]i32) (ys: [n]i32) = ...

In the implementation, we preserve the connection between the shapes of the
two array parameters by capturing the shape parameter n along with the ar-
ray parameter xs in the record for the closure environment and then extend
the Futhark internalizer to handle dependency between value parameters and
shapes of array parameters, and insert a dynamic check to ensure that they
are equal. In the case of the function f, the defunctionalized program will look
something like the following:

let f^ {n: i32 , xs: []i32} (ys: [n]i32) = ...
let f [n] (xs: [n]i32) = {n=n, xs=xs}

The Futhark compiler will then insert a dynamic check to verify that the size
of array ys is equal to the value of argument n.

Of course, built-in operations that truly rely on these invariants, such as
zip, will perform this shape check regardless, but by maintaining these invari-
ants in general, we prevent code from silently breaching the contract that was
specified by the programmer through the shape annotations in the types.

Having extended Futhark with higher-order functions, it might be useful
to also be able to specify shape invariants on function type parameters and
function type results, and on expressions of function type in general. This is not
supported by the existing type system and in general it would not possible in
the current type system to verify a shape constraint on an expression of function
type. We can still ensure that a shape invariant is checked dynamically, upon
applying a function, by repeatedly eta-expanding the function expression and
inserting type ascriptions with shape annotations on the order-zero parameters
and bodies. For instance, the following type ascription,

e : ([n]i32 -> [m]i32) -> [m]i32

would be translated as follows:

\x -> (e (\(y:[n]i32) -> x y : [m]i32)) : [m]i32

This extension has not yet been implemented in Futhark.
Shape parameters are not explicitly passed on application, but rather they

are implicitly inferred from the arguments of the value parameters. When
function types are allowed to refer to these shapes, it must be ensured that each
shape is given in positive position at least once before it is used in negative
position, that is, each shape may not be used in a function type parameter
until it has been given in a parameter of order zero type at least once. This
refinement has been implemented in the Futhark type checker.

6.5 In-place updates

In this section, we describe the interaction between in-place updates and higher-
order functions, the complications that arise, and the simple but conservative
restriction that was implemented to maintain soundness. For the record, this
solution was devised and implemented by Troels Henriksen.

Futhark supports in-place modification of arrays using a type system exten-
sion based on uniqueness types to ensure safety and referential transparency [18].
An array may be consumed by being the source of an in-place update, e.g.,
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a with [i]← e, or by being passed as argument for a unique function parame-
ter (indicated by an asterisk on the parameter type).

The type of an expression indicates its uniqueness attributes. For example,
the following type characterizes a function which consumes its first argument:

*[]a -> b -> c

Unfortunately, this type does not accurately describe when the array argument
is consumed. It could be consumed immediately, in case the function first
performs an in-place update and then returns another function, or it could not
be consumed until all arguments have been passed to the function.

This ambiguity was not present in first-order Futhark since functions could
not return other functions and functions could not be partially applied. How-
ever, in higher-order Futhark, a function may be partially applied and this
makes the safety analysis of in-place updates significantly more complicated.

Consider a function f of the above type. If this function is partially applied
to an array xs, it is not clear from the type whether xs should be considered
consumed at that point, and thus prohibited from being used again, or whether
xs is not consumed until f receives its second argument. Furthermore, if we
bind the partial application f xs to a variable g, it is not clear if it is safe to
apply g multiple times or not.

Thus, to ensure safety we have to assume that an array argument is con-
sumed immediately when passed for a unique parameter, that is, xs cannot be
used after the partial application f xs. We also have to assume that a partially
applied function, which may consume its argument, will perform an in-place
update upon further application, that is, g may only be applied once. The re-
striction that a partially applied consuming function may only be applied once
is rather tricky to enforce, in particular if the function is passed as argument
to another function.

These complications have been resolved by fairly simple, but very conser-
vative restrictions in the type checker: First, if the bound expression in a
let-binding has a function type (or any type of order greater than zero), then
this expression may not perform any in-place updates. Second, a partially
applied function, that consumes one of its arguments, may not be passed as
argument to another function.

Alternatively, the type system could be extended to make use of effect
types to capture when the effect of performing an in-place update can take
place. However, this would make the language more complicated to use.

In conclusion, higher-order functions and in-place updates do not interact
in a modular manner and there does not seem to be a straightforward way to
improve this situation, aside from introducing more sophisticated type analyses.



Chapter 7

Empirical evaluation

We may consider two different aspects in the empirical evaluation of our im-
plementation of restricted higher-order functions in Futhark through defunc-
tionalization. The first aspect is whether defunctionalization yields efficient
programs, or in other words, whether the use of higher-order functions carries
an overhead at run-time. The second aspect is whether the restricted higher-
order functions are actually useful and whether they allow the programmer to
reap some of the benefits that we claimed in the introduction, such as increased
modularity, or whether the restrictions are too severe in practice.

7.1 Performance evaluation

It is somewhat difficult to evaluate the first aspect in a rigorous way, since it
relies on having actual higher-order programs that can reasonably be compared
to equivalent first-order programs, but translating first-order programs to use
higher-order functions is a manual process and there are no objective criteria
for judging the right amount and right use of higher-order functions. Certainly,
the transformation leaves the performance of existing programs completely un-
changed, since the implemented transformation only affects programs that use
first-class functions or higher-order functions, as a result of the optimizations
described in Section 6.3.

We can, however, report on some of the changes to the existing Futhark code
that the addition of higher-order functions have inspired and how these changes
have affected performance. A particularly interesting effect is the significant
rewriting of the Futhark standard library, Futlib, that the support for higher-
order functions has enabled. Most of the Futhark SOACs have been converted
to library functions that wrap compiler intrinsics, including map, reduce, scan,
filter and others. Furthermore, various higher-order utility functions have
been added, such as function composition and application, curry, and uncurry.
Sorting functions, parameterized over some comparison operator, have been
translated from using parametric modules to using higher-order functions, and
similarly, a segmented scan operation now uses higher-order functions.

Futhark has a fairly extensive suite of benchmark programs translated from
the benchmark suites of Accelerate [5], Rodinia [7], Parboil [30] and others. All
of these programs make heavy use of library functions, in particular SOACs,
since they are the means by which parallelism is expressed. Thus, the per-
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formance impact of using higher-order functions has been indirectly evaluated
through the use of the standard library in the benchmark programs. In ad-
dition to the use of library-defined SOACs, most benchmark programs have
been rewritten to make use of the various higher-order utility functions where
appropriate. The use of higher-order functions did not affect the run-time
performance of the benchmark programs. Thus, our restricted higher-order
functions may be considered a zero-cost abstraction and Futhark programmers
need not worry about any negative consequences of extensive use of higher-
order functions in their code.

This positive result relies on the extensive optimizations performed by the
Futhark compiler, since defunctionalization still results in a fairly convoluted
program, despite the optimizations that were made to the implementation of
defunctionalization, as described in the previous chapter. The most impor-
tant of these optimizations are inlining, copy propagation, and hoisting of let-
expressions out of parallel SOACs and loops.

7.2 Programming with restricted higher-order functions

We now consider the second aspect, namely evaluating the usefulness of our
restricted higher-order functions. This is perhaps the more interesting one,
since the answer may not be a simple affirmative. Indeed, certain programs
simply cannot be written because of these restrictions, without completely
changing the basic algorithms of these programs. In the following, we will
show that various important styles of functional programs are unaffected by
our type restrictions. We will also give some negative examples and discuss
what particular kinds of programs we cannot write.

Functional images

The representation of data as functions is fundamental to λ-calculus, with
canonical examples such as Church encoding [9] of natural numbers, Booleans,
and lists. Other more modern examples include the representation of envi-
ronments by their lookup functions and the representation of arrays by their
indexing functions, such as the delayed arrays utilized in Repa [23]. Another
interesting use case is the idea of functional images [12], where an image is
represented by a function from points on the plane to colors, or any kind of
“pixel” representation. In Futhark, we can represent this as follows:

type point = (f32 , f32)
type image ’a = point -> a

Image manipulation and transformation is then defined via higher-order func-
tions or simply as function composition. Additionally, animations can be de-
fined as images abstracted over time, for some suitable type time:

type anim ’a = time -> image a

Pan [12, 13] is a domain specific language (EDSL) embedded in Haskell that
implements this idea. Values in Pan, such as the floating point numbers that
make up the points in the domain of images, are actually program fragments
that represent these numbers. Thus, a Haskell meta-program written using
Pan actually generates another program and the Pan library embeds a compiler
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into the meta-program which performs various optimizations on the generated
program at run-time and compiles it to C code.

The entire Pan library has been translated to Futhark. This work was
done by Troels Henriksen and Martin Elsman (the supervisors of this thesis).
Interestingly, this translation was very straightforward and the type restrictions
of higher-order Futhark did not demand any adjustments to be made compared
to the Haskell implementation. This is likely because of the staged compilation
approach that Pan uses, which requires that functions be restricted in ways
that are essentially identical to our restrictions, so that the compiled Haskell
program can generate an efficient C program.

To illustrate how defunctionalization works on functional images, we now
give a relatively simple example of a functional image and a higher-order func-
tion that works as an image filter to transform this image. The source program
is shown in Figure 7.1a and the program that results from defunctionalization
and simplification is shown in Figure 7.1b. This example is taken from [12].
The functional image is simply a vertical line through the origin, defined by the
function vstrip. The image filter swirl r is given as a function on generic
images and it performs a kind of “swirling” transformation on images with
any codomain (any pixel representation). An example of a rendered image
produced by this program is given in Figure 7.2.

The actual program produced by the defunctionalizer is much more compli-
cated. In particular, it contains a lot of packing and unpacking of environment
records containing nothing or little more than the values for global variables
like pi or the empty closure environments of library functions like cos and
sin. We have eliminated these for clarity and also replaced the internal vari-
able names generated by the compiler. The functions sqrt, abs, cos, and so
on, in the translated program, are compiler intrinsic functions (with simpli-
fied names). On the other hand, the program that is produced after passing
through the entire compiler pipeline is extremely simple with everything in-
lined, but it hardly resembles the original program anymore and so it does not
illustrate defunctionalization so well.

In the Futhark implementation, as opposed to the original Pan EDSL, high-
performance GPU code is directly generated at compile time. After defunc-
tionalization and various compiler optimizations have been performed on a
functional image program, the resulting program is essentially just a simple
two-dimensional map, that computes the color value of each pixel in the raster
image representation in parallel.

Dynamic nesting of closures

Defunctionalization is a whole-program transformation and it relies on the fact
that every function abstraction is present in the program text. In particular,
the code part of every closure is available in the source program even if the
number of closures at run-time may be dynamic, because each abstraction
may be evaluated in different environments any number of times. In itself,
the fact that the number of closures can be dynamic is not a problem for our
defunctionalization algorithm. Consider, for example, the following contrived
Futhark program, which instantiates the single λ-abstraction with as many
different environments as the length of the input array:
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type point = (f32 , f32)
type img ’a = point -> a
type transform = point -> point
type filter ’a = img a -> img a

let vstrip : img bool =
\(x,_) -> f32.abs x <= 0.5f32

let distO ((x,y): point) : f32 = f32.sqrt(x*x+y*y)

let rotateP (theta: f32) : transform =
\(x,y) -> (x * f32.cos theta - y * f32.sin theta ,

y * f32.cos theta + x * f32.sin theta)

let swirlP (r: f32) : transform =
\p -> rotateP (distO p * 2 * f32.pi / r) p

let swirl ’a (r: f32) : filter a =
\im -> im <<| swirlP (-r)

let image : img bool = \p -> swirl 1 vstrip p

(a) Source program.

let distO ((x,y): (f32 ,f32)) : f32 = sqrt (x*x+y*y)

let swirl (r: f32) (p: (f32 ,f32)) : (f32 ,f32) =
let theta = (distO p * 2 * pi) / r
let ((x,y) : (f32 ,f32)) = p
in ((x * cos theta) - (y * sin theta),

(y * cos theta) + (x * sin theta))

let swirl_vstrip (r: f32) (p: (f32 ,f32)) : bool =
let ((x,_): (f32 ,f32)) = swirl r p
in abs x <= 0.5 f32

let image (p: (f32 ,f32)) : bool =
swirl_vstrip (-1) p

(b) Resulting first-order program.

Figure 7.1: Example of a program implementing a functional image and a
“swirl” image filter using higher-order functions, and the resulting first-order
program produced by defunctionalization and simplification.
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Figure 7.2: Swirl filter applied to a functional image of a vertical line. This
image was rendered using the example program given in Figure 7.1a.

let main (xs: []i32) =
loop y = 0 for x in xs do (\z -> z+x) y

After defunctionalization, the λ-abstraction will be replaced by a record {x=x},
which will be passed to a function that extracts x and evaluates z+x.

Closures may be arbitrarily nested, that is, the environment of a closure
may contain closures, which may themselves also contain closures and so on.
In general, nested closures may be constructed through recursion or any other
kind of looping control structure, and so the depth of nesting can depend
on dynamic information. Our defunctionalization method can only handle
nested closures of a statically known depth. This constraint is ensured by the
restriction on functions in loops, enforced by the T-Loop typing rule. To see
how the dynamic nesting of closures causes problems, consider the following
Futhark program:

let main (xs: []i32) (y: i32) =
let g = loop f = (\z -> z + 1) for x in xs

do (\z -> x + f z)
in g y

The problem is that the function g that results from the loop may be of the form
(\z -> z + 1) or it may be of the form (\z -> x + f z), for some function
f that is itself of either one of those two forms. This suggests a recursive data
type representation such as

µα. {}+ {x : i32, f : α} ,

which is the kind of representation that would be used in Reynolds-style de-
functionalization of the above program, like the example in Section 2.1.

If the variable f did not occur in the λ-abstraction in the body of the loop,
this program would not be very problematic, since the code part of the closure
produced by the loop would be statically known to be either one of the two
options (depending on whether the loop performed zero or more iterations) and
the environment part would be produced by the loop at run-time.
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Sets as characteristic functions

We now consider the very simple example, adapted from [25], of representing
sets by their characteristic functions, in order to investigate the impact of the
restrictions on higher-order functions in a simple setting.

In Futhark, we can represent generic sets and set insertion (specialized to
integers to avoid having to pass an equality operator) as follows:

type set ’a = a -> bool
let empty_set ’a : set a = \_ -> false
let insert (x: i32) (s: set i32) : set i32 =

\y -> (x == y) || s y

Because of the type restrictions, it would seem that any function that produces
a set as a result is restricted to a control flow that could be expressed completely
in the form of “straight-line code”, that is, without any control flow that depends
on dynamic information and thus could be entirely inlined. Fundamentally, this
is true because this is exactly what the type restrictions attain, namely that any
function can be statically determined. For example, if we have a program that
uses insert a given number of times to build up a set of some statically known
size (which is, in a sense, the only thing that is possible under our restrictions),
then defunctionalization will yield a number of specialized lookup functions for
different sizes of sets, with sets being represented as nested records of some
fixed depth, quite like a linked list encoded using records. An example of these
“chained” lookup functions is shown in Figure 7.3.

This phenomenon is similar to the observation made by Reynolds [26], that
a functional environment turns into a linked list when subjected to defunc-
tionalization. Although in our case, the data representation is not recursive,
but simply encoded statically as nested records. Hence, our version of defunc-
tionalization produces a chain of calls to different specialized lookup functions
rather than having a single recursive function that traverses the list.

let lookup1 {x = (x: i32),
s = (s: {}) } (y: i32) : bool =

(x == y) || (let (_: i32) = y in false)

let lookup2 {x = (x: i32),
s = (s: {x: i32 ,

s: {}})} (y: i32) : bool =
(x == y) || lookup1 s y

let lookup3 {x = (x: i32),
s = (s: {x: i32 ,

s: {x: i32 ,
s: {} }})} (y: i32) : bool =

(x == y) || lookup2 s y

Figure 7.3: Program resulting from defunctionalization of sets as characteristic
functions and a number of set insertions.



CHAPTER 7. EMPIRICAL EVALUATION 43

This restriction to straight-line code, however, does not mean that dynamic
control flow and first-class functions are completely incompatible. For example,
we can encode a conditional that returns a set as follows:

let if_set ’a (b: bool) (s1: set a)
(s2: set a) : set a =

\x -> if b then s1 x else s2 x

This is just the eta-expanded version of the immediate, but illegal implemen-
tation. In a similar way, we can work around the type restrictions and write a
function that folds an array into a set:

let fold_set (xs: []i32) : set i32 =
\y -> loop found = false

for x in xs do found || x == y

(This could be implemented more efficiently using a reduction or a while-loop.)
These two examples illustrate how the type restrictions can often be worked

around. In common for both functions is that they essentially just delay the
dynamic decision that is inevitable in the computation. Essentially, we simply
cannot fold an array into a characteristic function, but we can embed the
iteration over the array into the definition of the characteristic function itself.

We note, however, that we cannot in general support functions in condi-
tionals simply by eta-expansion, as we will discuss further in the next chapter.

Segmented scan

A segmented scan [2] is a generalization of the usual scan, which performs the
scan operation independently on specified segments of the input array. We
can derive segmented scan from the ordinary scan: From a given associative,
binary operator and identity element, we can derive a new associative operator
and corresponding identity, which performs the segmented scan when used in
a normal scan over the input array together with an array of flags indicating
the segments. Among other things, segmented scans can be used to express
some computations on irregular data structures.

In first-order Futhark, scan is a built-in SOAC, but without support for
user-defined higher-order functions, it was not possible to write a general seg-
mented scan function. Previously, this limitation was circumvented by using
the higher-order module system instead, to express the instantiation of a seg-
mented scan for a particular operator and identity element as the application
of a parametric module to a module representation of a monoid. This works
reasonably well, but it requires some amount of boilerplate code and the seg-
mented scan operation cannot be instantiated “on the fly”, but needs to defined
as a new module on the top level for each particular operation.

The original implementation of segmented scan from Futlib, using higher-
order modules, is shown in Figure 7.4a (modified slightly). We have translated
this to use higher-order functions instead, as shown in Figure 7.4b.

These two implementations are very similar on the surface, but the first
one is expressed in terms of a strongly normalizing, simply typed λ-calculus
built on top of Futhark, in the form of a module system, while the second
version is expressed directly in higher-order Futhark. Both are specialized to
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module type monoid = { type t
val ne : t
val op : t -> t -> t }

module segmented_scan(M: monoid ): {
val segmented_scan : []bool -> []M.t -> []M.t

} = {
let segmented_scan [n] (flags: [n]bool)

(as: [n]M.t) : [n]M.t =
(unzip (scan (\(x_flag ,x) (y_flag ,y) ->

(x_flag || y_flag ,
if y_flag then y else M.op x y))

(false , M.ne)
(zip flags as))).2

}

(a) Using higher-order modules.

let segmented_scan [n] ’t (op: t -> t -> t) (ne: t)
(flags: [n]bool)
(as: [n]t) : [n]t =

(unzip (scan (\(x_flag ,x) (y_flag ,y) ->
(x_flag || y_flag ,
if y_flag then y else op x y))

(false , ne)
(zip flags as))).2

(b) Using higher-order functions.

Figure 7.4: Two different implementations of segmented scan in Futhark.

first-order Futhark code at compile time, through static interpretation and
defunctionalization, respectively.

The biggest difference for the programmer is how they are used. The version
using higher-order functions can be used completely as if it was an ordinary
SOAC like scan, that is, it may be used anywhere for any given operator and
identity element, like

segmented_scan (*) 1 flags xs

whereas the module version requires that a monoid module be defined and a
segmented_scan parametric module be instantiated, as in the following:

module i32mult = {
type t = i32
let ne = 1
let op x y = x * y

}
module s = segmented_scan(i32mult)
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let main (flags: []bool) (xs: []i32) =
s.segmented_scan flags xs

Furthermore, the form of the operator for the module argument of the
segmented_scan parametric module is restricted to the form given in the mod-
ule parameter type. In particular, the operator cannot depend on some addi-
tional argument, without making this explicit in the parametric module, and
its implementation can only refer to other top-level definitions. Using higher-
order functions, on the other hand, the operator can be the result of a function
composition or computed by any other function type expression and it may
refer to values in a local scope.

In the above example, the programs that result from static interpretation
of modules and defunctionalization of higher-order functions, respectively, are
quite similar in their basic structure, although the code produced for the mod-
ule version is very clean and readable compared to the code produced by de-
functionalization, which includes a lot of the usual unnecessary repackaging of
environments and so on.

This difference is likely explained by the fact that higher-order modules are
inherently more restricted than our higher-order functions, and the static in-
terpretation of modules is essentially just the usual λ-calculus evaluation of the
module language yielding terms of the underlying Futhark language, whereas
defunctionalization needs to handle partial application, closures escaping their
scope, and others. However, the programs that result from running the op-
timizing Futhark compilation pipeline on the two programs in Figure 7.4 are
completely identical, up to renaming of bound variables.



Chapter 8

Extensions

8.1 Support for function-type conditionals

Given that the main novelty enabling efficient defunctionalization is the restric-
tions in the type system, it is interesting to consider how these restrictions could
be loosened to allow more programs to be typed and transformed, and what
consequences this would have for the efficiency of the transformed programs.

In the following, we consider lifting the type restriction on conditionals, so
that branches may produce functions of any order. This change introduces a
binary choice for the static value of a conditional and this choice may depend
on dynamic information. The inferred static value must capture this choice.
Thus, we may extend the definition of static values as follows:

sv ::= · · · | Or sv1 sv2

It is important not to introduce more branching than necessary, so the static
values of the branches of a conditional should be appropriately combined to
isolate the dynamic choice at much as possible. In particular, if a conditional
returns a record, the Or static value should only be introduced for those record
fields that produce Lam static values.

The residual expression for a functional value occurring in a branch must be
extended to include some kind of token to indicate which branch is taken at run
time, so that the translated program can dynamically determine which function
to apply. Unfortunately, it is fairly complicated to devise a translation that
preserves typeability in the current type system. The residual expression of a
function occurring in a nested conditional would need to include as many tokens
as the maximum depth of nesting in the outermost conditional. Additionally,
the record capturing the free variables in a function would need to include the
union of all the free variables in each λ-abstraction that can be returned from
that conditional. Hence, we would have to include “dummy” record fields for
those variables that are not in scope in a given function, and “dummy” tokens
for functions that are not deeply nested in branches.

What is needed to remedy this situation, is the addition of (binary) sum
types to the language:

τ ::= · · · | τ1 + τ2

If we add binary sums, along with expression forms for injections and case-
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let r = if c1
then (if c2 then {f = \x -> x+k, a = 3}

else {f = \x -> x+n, a = 7})
else {f = \x -> x+k+n, a = 42}

in r.f r.a

(a) Source expression.

let r = if c1
then (if c2

then {f = inl (inl {k=k}), a = 3}
else {f = inl (inr {n=n}), a = 7})

else {f = inr {k=k, n=n}, a = 42}
in let x = r.a

in case r.f of
inl s -> (case s of

inl e -> (let k = e.k in x+k)
inr e -> (let n = e.n in x+n)

inr e -> (let k = e.k
let n = e.n in x+k+n)

(b) Target expression.

Figure 8.1: Example of defunctionalization of a nested conditional expression
that returns a result containing a functional value.

matching, the transformation would just need to keep track of which branches
were taken to reach a particular function-type result and then wrap the usual
residual expression in appropriate injections. An application of an expression
with an Or static value would then perform pattern matching until it reaches
a Lam static value and then insert let-bindings to put the closed-over variables
into scope, for that particular function.

To illustrate this extended transformation, consider the Futhark expression
in Figure 8.1a, where k and n are some integer variables in scope, and c1 and
c2 are expressions of type bool. By isolating the dynamic choice, as described
above, the static value for the expression r would have the following structure
(with some details omitted for the sake of brevity):

Rcd {f 7→ Or (Or (Lam . . . ) (Lam . . . )) (Lam . . . ),

a 7→ Dyn int}

Using sum types to represent the dynamic choice between functions, we
can translate this expression to the expression given in Figure 8.1b. In this
extended language, inl and inr are left and right injections into a binary sum,
while the case expression matches these two options.

An interesting aspect of this extension is that it appears to very strictly
delimit the set of possible functions that may occur at a given call site, which
is an attractive feature for GPU code generation in particular. Rather than
by performing general Reynolds-style defunctionalization and then using types
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or control-flow analysis to make the apply function well-typed and limit the
amount of control-flow, we can instead only introduce branching as necessary.

8.2 Support for while-loops and recursion

To increase the expressive power of the language presented in Chapter 3, we
might consider adding a form of while-loop, as also present in Futhark, in
addition to the bounded loop over the elements of an array:

e ::= · · · | loop x = e0 while e1 do e2

As with our existing loops, clearly we cannot allow while-loops that produce
functional values. If this restriction is made, then the addition of while-loops
does not cause any problems for defunctionalization and we can still prove that
defunctionalization terminates and preserves typing. However, the language
would no longer be strongly normalizing, so the current formulation of type
soundness in Lemma 1 would no longer hold. Consequently, Corollary 1 would
not hold either. Thus, we would need to reformulate those two properties to
assume, rather than conclude, the derivability of the evaluation judgment

Another extension that we might consider is the support for recursion and
how that would interact with defunctionalization. For the current project, this
extension is mostly of theoretical interest since GPUs offer only very limited
support for stacks, although Futhark could potentially be extended to allow
only (mutually) recursive functions that are tail-recursive.

Based on preliminary investigations, it seems very likely that our defunc-
tionalization method can support mutually recursive first-order functions with-
out any significant problems. The main interesting aspect of this is the fact
that recursive functions may partially apply themselves or pass themselves as
arguments to other functions (which may not be recursive under these restric-
tions, since they would not be first-order). A partially applied recursive call
would be handled in a very similar way as how partial application of “dynamic”
first-order functions is currently handled, except that the defunctionalization
environment would include the static value for the function itself. It would
also require some more bookkeeping to ensure that lifted functions, contain-
ing recursive calls, are translated to call themselves recursively rather than
producing more identical functions ad infinitum.

In general, we cannot allow recursive functions that return functions, since
that may cause the creation of dynamically nested closures, as discussed in re-
lation to functions in loops in Section 7.2. Consider, for example, the following
contrived function:

let f (x: int) : int -> int =
if x < 0 then \y -> y

else \y -> x + f (x-1) y

We cannot possibly determine the form of the function returned by f.
Similarly, we cannot in general allow recursive functions that take function

arguments, since a recursive function may construct an arbitrarily nested clo-
sure in the function argument in recursive calls. As a simple example, consider
the following function:
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let f (g: int -> int) (x: int) : int =
if x < 0 then g x

else f (\y -> g y + g y) (x-1)

Similar to the previous example, the function that is applied in the final recur-
sive call of f cannot possibly be statically determined, since the parameter g
accumulates a nested function closure with a shape that we cannot determine
until run-time.

However, we may be able to support recursive functions with function pa-
rameters as long as the function parameters do not accumulate as in the pre-
vious example. This may be rather similar to the variable-only criterion of
Chin and Darlington [8], which they introduce to avoid non-termination when
specializing recursive functions to their functional arguments.

Going further: Unrestricted dynamic nesting of closures

As discussed in Section 7.2, what makes it difficult to handle functions in loops
is the construction of dynamically nested closures, which prevents us from
statically determining the shape of the function produced by a loop. The same
is true for functions constructed through recursion. As we mentioned, this
problem suggests the addition of sum types and recursive types.

We envision how we could potentially support unrestricted functions in
loops, and potentially recursive functions, by extending the type system with
recursive sum types and introducing recursive static values together with the
Or static value, which is essentially a sum static value.

Recall the example, given in Section 7.2, of a loop that produces a nested
closure of a statically unknown depth. We repeat it here again for convenience:

let main (xs: []i32) (y: i32) =
let g = loop f = (\z -> z + 1) for x in xs

do (\z -> x + f z)
in g y

If we extend the translation with recursive static values, we could represent
the expression bound to g with a static value of the following form:

µα. Or (Lam z (z + 1) ·)
(Lam z (z + fz) (·, x 7→ Dyn int, f 7→ α))

The loop could be translated to construct a nested record of the recursive type
that we gave in Section 7.2 and the application of g could be translated to an
application of a lifted function g’, of the following form, to g and the original
argument:

let g’ (env: mu T. {} + {x: i32 , f: T}) (z: i32) =
case env of

inl env ’ -> z + 1
inr env ’ -> let x = env ’.x

let f = env ’.f in x + g’ f z

Here mu T. U is a recursive type, which binds the type variable T in type U.
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We note that this function is rather similar to the apply function of Reynolds-
style defunctionalization, except that this function is specialized to the appli-
cation of the function produced by the single loop. Clearly, we are approaching
a topic that is not particularly relevant to GPU compilation since the result of
a transformation like this would likely be very inefficient on GPUs, if it could
even work in the general case. However, it is still rather interesting if this
method could be used to devise a more general, type-preserving, Reynolds-
style defunctionalization algorithm that introduces only a minimal amount of
branching, without relying on subsequent type-based specialization of apply
functions or a separate control-flow analysis. We leave this investigation for
future work.



Chapter 9

Conclusion

In this concluding chapter of the thesis, we discuss some related work, mention
a few potential directions for future work, and finally conclude.

9.1 Related work

We already mentioned the original work by Reynolds in Section 2.1, where we
showed a simple example and pointed out the issue with typing the transformed
program. In a simply-typed setting, in order for a defunctionalized program
to be well-typed, the apply function needs to be specialized to each particular
type of function in the original program. Further complications arise when
using Reynolds-style defunctionalization in a polymorphic setting; the apply
function may receive a piece of data representing a polymorphic function, which
would require the apply function to accept different argument types, depending
on the particular form of the encoded function argument. Bell et al. [1] describe
a type-driven defunctionalization method that resolves this issue by specializing
each apply function to the type of their function-representing arguments, and
specializing the functions that call the apply functions, as necessary. Thus,
they only perform monomorphization as necessary during defunctionalization,
which may avoid excessive code duplication when possible. For our purposes,
we are not so concerned about this particular issue, since most function calls
in Futhark will be inlined anyway, for execution on the GPU.

Pottier and Gauthier [25] take a different approach and manage to prove
type preservation for defunctionalization with a single apply function for Sys-
tem F extended with guarded algebraic data types. They also point out that
the specialization of apply functions to each different function type, and even
specialization to different number of arguments, can result in many highly spe-
cialized apply functions, each having only a small number of branches. This
is an interesting perspective in the context of GPU code generation, although
one may imagine that many practical programs use first-class functions of only
a limited set of types.

A significant amount of research has been made in the area of embedded
domain specific languages (EDSLs) for data-parallel programming, including
languages such as Accelerate [5] and Obsidian [31], both of which target GPUs.

Accelerate is embedded in Haskell and uses a staged compilation approach,
where the compiled Accelerate programs generate and compile CUDA GPU
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programs at run-time. Since Accelerate programs are really Haskell programs
that are written using the Accelerate library, the meta-programs may use the
full power of Haskell, including unrestricted higher-order functions. However,
the generated programs themselves are first-order and the embedding of the
Accelerate language prevents arrays from containing functions and it prevents
the construction of GPU computations that produce functions. Accelerate
effectively disallows for functions to be represented on the GPU, except for the
CUDA kernels themselves, but because of staging, these restrictions are worked
around by using the facilities of Haskell and delaying the GPU compilation.

Obsidian is similar in that it uses a staged approach and thus allows the use
of higher-order functions in the meta-language. As a GPU language, Obsidian
offers more fine-grained control over the details of constructing GPU kernels,
whereas Accelerate offers a higher level of abstraction, but is restricted to a set
of hand-tuned algorithmic skeletons.

Data Parallel Haskell (DPH) [6] follows in the footsteps of the seminal work
by Blelloch on NESL [3]. NESL was targeted at a vector execution model with
limitations resembling those of modern GPUs and it does not support higher-
order functions. DPH extends the nested data-parallel programming model
of NESL to the full Haskell languages and DPH does support higher-order
functions using closure conversion, however, the compilation target of DPH is
multi-core CPUs rather than massively parallel processors like GPUs.

The GPU language Harlan [19] is remarkable for its wide range of features.
Harlan supports first-class functions by using Reynolds-style defunctionaliza-
tion, which uses the support for algebraic data types that Harlan also has, to
represent the function closures. Since this approach inherently involves branch-
ing and representation of irregularly sized data, Harlan will most likely suffer
from the performance issues that we have worked to avoid by completely elim-
inating first-class functions at compile-time. The authors of Harlan also note
these performance concerns, but state that it has not caused problems yet.
However, most of the Harlan benchmarks do not make much use of closures
on the GPU. The authors also note that some of these problems could be mit-
igated by using control flow analysis to delimit the set of functions that can
occur at each application site.

NOVA [10] is similar to Harlan in that it is an independent data-parallel
language, that can compile to GPU code and supports sum types and higher-
order functions. However, it is not very clear from the description in the paper
how closures are implemented on the GPU.

Single Assignment C (SaC) [29] is a parallel functional array language fo-
cused on numerical computations. SaC does not support higher-order functions
due to concerns about their effect on performance, specifically the creation of
closures [28]. As demonstrated in this thesis, these concerns can be eliminated
by typing rules that guarantee the possibility of efficient defunctionalization.

The basic proof technique of logical relations for proving strong normal-
ization for the simply-typed λ-calculus is originally due to Tait [32] and later
generalized to System F by Girard [16]. This technique has been the inspi-
ration for our approach to proving termination and preservation of typing for
defunctionalization in this thesis.

Minamide et al. [24] describe a type-directed and type-preserving closure
conversion transformation for the simply-typed λ-calculus and System F and
prove it correct using a logical relations argument. This is conventional clo-
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sure conversion and their work is not concerned with data parallelism or the
implementation of closures without relying on function pointers. They also
discuss the issue encountered when typing a transformed conditional expres-
sion that returns functions with different sets of free variables, as mentioned
in Section 8.1. They resolve this issue by representing closures as packages of
existential type that abstract the type of the environment. As pointed out by
Danvy and Nielsen [11], what defunctionalization attains is exactly the rep-
resentation of this existential type by a finite sum type and corresponding
injections and case dispatch.

Defunctionalization, in the style of Reynolds, has been used as an important
implementation strategy in a number of works [4, 33]. For instance, the Stan-
dard ML compiler MLton [4] uses defunctionalization, together with a control-
flow analysis, to implement higher-order functions, and it performs most opti-
mizations on the first-order intermediate representation. Like Futhark, MLton
also performs defunctorization and monomorphization before defunctionaliza-
tion. Unlike our method, MLton inserts dispatches over functions at call-sites,
although their control-flow analysis limits the number of cases required and the
authors show that the cost of dispatches is small in practice. Of course, MLton
targets CPUs where branching is not much of an issue.

Partial evaluation [22] is a very general approach to program optimization
and particularly program specialization. While we are not directly specializing
programs to some statically known inputs, we can still view our defunction-
alization transformation from the perspective of partial evaluation, which has
been inspirational for our work. In analogy to binding-time analysis and the
static and dynamic values of partial evaluation, we consider all functional val-
ues to be static and we propagate information about functions throughout the
program in order to perform specialization of static information. Unlike general
program specialization, our type restrictions ensure that all functions remain
statically known and that none will be residualized.

9.2 Future work

We have already discussed a couple of ideas for future work in Chapter 8. The
most interesting of these is probably the support for function-type conditionals
and since there is already plans for adding sum types to Futhark, this would
certainly be a reasonable task to pursue once that is done.

In Section 6.4, we mentioned how we could support shape invariants on
function type parameters and results, and on expressions of function type.
This feature still remains to be added to Futhark.

Various other improvements could be made to the defunctionalization algo-
rithm, as implemented in Futhark, to improve the resulting program. However,
the compiler will almost always optimize away any of the unnecessary repack-
aging of environments, duplicated and unnecessary lifted functions, and so on.
Thus, the optimizations made to the defunctionalizer should not be overly in-
tricate, since they would mostly just serve to decrease compilation times and
perhaps make the defunctionalized programs more readable for a human, rather
than improve the actual performance of compiled code.

Similar to dynamic functions, the handling of higher-order functions that
take multiple arguments could be improved so that the lifted function takes
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as many arguments as given, rather than creating a new function for every
argument. This could likely be done in an elegant way, which would not sig-
nificantly complicate the translation. The static value Lam for functions is
currently somewhat “weak” in its representation, in the sense that the expres-
sion for the function body is just an unconstrained expression, even when we
know that a function takes multiple arguments. The static value representa-
tion could be refined to more accurately characterize the shapes of the functions
that they represent. Similarly, the DynFun representation is also weak in the
representation of closures for partially applied functions. It may be possible to
unify these two notions to make the system more elegant.

Another direction of future work is to improve the interaction between
higher-order functions and in-place updates, which is currently very restricted
and not really modular. It may be, however, that the design of the uniqueness
type system needs to be rethought in the context of a higher-order language,
or that a clean, modular solution is not really feasible without sacrificing pro-
gramming convenience.

9.3 Closing remarks

In this thesis, we have shown a useful approach to implementing higher-order
functions in high-performance functional languages for restrictive compilation
targets like GPUs. This approach uses a defunctionalization transformation
that exploits type-based restrictions on the use of functions to remove all
higher-order functions without introducing any branching into the resulting
first-order program. We have proven the correctness of this transformation.
Furthermore, we have successfully implemented this transformation in the
Futhark compiler and we have described the extensions and optimizations that
were made in the implementation. Lastly, we have evaluated the implementa-
tion and have found that the use of higher-order functions does not add any
overhead, and that the restricted higher-order functions are indeed a practical
and useful addition to the language.
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