
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

Master’s Thesis
Sune Hellfritzsch

Efficient Histogram Computation on GPGPUs

Supervisors: Cosmin Eugen Oancea and Troels Henriksen

Submitted: October 23, 2018

Abstract

In this thesis, we describe the development and implementation of a
new language construct for efficient computation of generalised reductions
in the programming language Futhark. A generalised reduction, which also
goes by the names reduction by key or reduction by index, is reducing a
collection of data into k buckets where there is no pattern in the input data.
This is opposed to segmented reductions where input data is grouped by
segments. Throughout the thesis, we use the computation of a traditional
histogram – a concrete instance of generalised reductions – as a running
example.

We show how such a random reduction pattern can effectively be im-
plemented on graphics processing units (GPUs) by using atomic functions.
The implementation is based on the idea of letting GPU threads cooperate
on subhistograms, i.e., the input data is split between groups of threads
such that each group produce their own local histogram, which are ul-
timately combined into one final histogram. For choosing a number of
cooperating threads we present a simple heuristic, which are based on a
comprehensive experiment also presented in the thesis.

Finally, we evaluate the new construct on a collection of adversarial
datasets and we show that it performs at least as well, and often much
better, than existing solutions in Futhark.

Contents

1 Introduction 1

Part I Realm of the Problem

2 Background 7
2.1 The CUDA Programming Model 7
2.2 GPGPU Architecture . 13
2.3 Obtaining Good Performance on GPUs 14
2.4 Futhark . 16

3 Problem Statement and Related Work 21
3.1 High-level Strategies . 21
3.2 Current State for Histograms in Futhark 24
3.3 Extending scatter . 25
3.4 Brief Outline of Research . 26

Part II Development, Implementation, and Benchmarks

4 Prototyping 33
4.1 Strategies for Locking . 33
4.2 Strategies for Subhistogramming 36
4.3 Performance Experiment . 41

5 Implementation 48
5.1 Front End . 49
5.2 Middle . 58
5.3 Back End . 67

6 Validation and Benchmarks 74
6.1 Micro-benchmarks . 74

ii

6.2 Established Benchmarks . 77

Part III Final Remarks

7 Conclusion and Future Work 85
7.1 Limitations and Future Work 85

Bibliography 87

Appendices 89

A Prototyping Experiment 90
A.1 Experiment – Raw Data . 90
A.2 Experiment – Graphs . 93
A.3 Experiment – Subhistogramming Data 93

B Implementation 96
B.1 Visualization of Subpasses in Middle Stage 96
B.2 Call-graphs for Back End . 97

iii

1 Introduction

This thesis describes the design, development, and implementation of a new lan-
guage construct in the programming language Futhark and its optimizing com-
piler. The construct provides a way to efficiently compute what is referred to as
generalised reductions. Before we dive into details let us gain some intuition for
the new construct by an example, and at the same time explore at a very high
level some of the problems we need to address.

The example is a histogram computation which is a well-known instance of
a general reduction. Say you have an image and want to count the frequency of
each color. The simplest algorithm is to process one pixel at a time: determine its
color and increment the corresponding counter by one until all pixels have been
processed. The result can be visualized as a histogram as shown in Figure 1, and
the algorithm is here given in C-like pseudo-code:

for(int i=0; i<N; i++) {
col = f(image[i])
cnt = hist[col]
hist[col] = cnt + 1

}

where image is an array of size N containing a flattened version of the image,
hist is an array whose length is equal to the number of unique colors in the

. .

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

1

2

3

4

5

6

Blue Green Red Yellow

Figure 1: Histogram computation for an image. Each bucket has height corre-
sponding the number of occurences of the color.

1

CHAPTER 1. INTRODUCTION

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

1

2

3

4

5

6

Blue Green Red Yellow

Figure 2: Data races. What happens when we simultaneously process two pixels
that goes into the same bucket?

. .

image, and f is a bucket function computing the index, called a bucket, into
hist for any color in image.

In a sequential setting, this approach is very slow but also completely safe.
One way to speed up the process is to realize that determining the color of one
pixel is independent of determining the color of any other pixel. Thus, you
could half the time taken to compute the histogram by cooperating with a friend
by splitting the image in two equally-sized parts and have your friend process
one half while you process the other half. This idea is displayed in Figure 2.

But this approach comes with a cost as it implicitly introduces data races.
As an example, assume that you and your friend processes pixels 5 and 13 at
the same time. Then both of you will read the current value of the counter for
yellow, namely, 2, increment the value locally by one, to 4, and write back the
value simultaneously. Because you read the same value the new value after both
writes will be 4 but it should have been 5.

Such data races can be avoided by using atomic operations. This means
that one can perform a read-modify-write operation without being interfered by
someone else trying to read or write the same piece of data. Effectively, this
serializes simultaneous accesses to the same piece of data as you or your friend
must wait for the other to finish her computations. We will go into detail about
how such atomic operations can be used but for now, we assume that they exist
and that we can use them.

The observant reader may notice that in the worst case, where all pixels have
the same color, this naive application of atomic operations corresponds to the
sequential version described in pseudo-code above. Thus, we are also concerned
with the level of memory contention, i.e., the number of accesses to the same
bucket in the same histogram. Continuing the example, we would like to mini-
mize contention between you and your friend in order to avoid expensive serial-
ization.

2

CHAPTER 1. INTRODUCTION

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

1

2

3

4

Blue Green Red Yellow

1

2

3

4

1

2

3

4

5

6

Blue Green Red Yellow

Figure 3: Memory contention. We split the image in half and compute two local
histograms before combining them into a final histogram.

. .

One such method for minimizing contention we will call subhistogramming
which is shown in Figure 3. The idea is, that instead of cooperating on the same
histogram you compute your own local histogram. When all local histograms
are computed one person combines them into the final histogram. In the worst
case described above this approach will half the time needed to compute the
histogram not counting in the time needed to combine the subhistograms. It
turns out that this idea scales rather elegantly if you are careful with certain
subtle issues. We will return to these issues later.

Before the example, we claimed that a histogram is a specific instance of a
pattern called generalized reductions. But that was vague because we did not
explain what generalized reductions are, and it is a fair question to ask how his-
tograms and generalized reductions relate to each other. Below we have rewritten
the histogram computation from above (left) and shown how it corresponds to a
generalised reduction pattern (right):

for(int i=0; i<N; i++) {
col, _ = f(image[i])
cnt = hist[col]
new = cnt + 1
hist[col] = new

}

⇒

for(int i=0; i<N; i++) {
ind, val = f(xs[i])
old = ys[ind]
new = old ‘op‘ val
ys[ind] = new

}

where xs is an input array of size N, ys is the result array, f is a bucket function
computing an index and a value, and op is an assocaitive and commutative bi-
nary operator. In particular it uses the operator, op, to combine old and val into
a new value, new, which is stored at the same index, ind. If multiple x[i]’s
produce the same index, ind, the corresponding values will be combined using

3

CHAPTER 1. INTRODUCTION

the original value in ys[ind] as the base value, hence “reducing” the input array
into k buckets. This is opposed to the probably better known reduce operator
in many functional languages, that reduces a collection of values into one value,
which is effectively one bucket, by using a combining operator and a neutral
element.

The running example above presented the main ideas in this thesis without
mentioning the specific architecture, although most readers probably thought of
graphics processing units (GPUs). This thesis investigates the aspects of gen-
eral reductions presented in the above example in a parallel perspective, both
theoretically and practically:

• Our main contribution is the design and implementation of a general re-
duction construct in the programming language Futhark and its optimiz-
ing compiler (Chapter 5). The implementation is capable of generating
efficient GPU code based on user-provided input, i.e., at compile-time it
selects the optimal strategy for implementing a combining function pro-
vided by the user, and at run-time it uses subhistogramming to mitigate
the impact on runtime performance caused by the serializing effect from
collisions.

• Since the primary code generation target is efficient GPU code, we es-
tablish a necessary background to understand the implementation (Chap-
ter 2). In particular, we explain the programming model proposed by
CUDA, along with well-known strategies for obtaining good performance
on GPUs. Furthermore, since we implement the construct in the program-
ming language Futhark, we explain the programming model of Futhark.
We also explain some of its language features that are used throughout
this thesis.

• In Chapter 3 we analyze the strengths and weaknesses of high-level strate-
gies for computing histograms, in terms of their work complexities. The
chapter also presents a small selection of related literature and work on
histogram computations and generalised reductions. Finally, it discusses
current solutions for computing histograms in Futhark, which serves as
justification for our new construct.

• Chapter 4 builds the skeleton on which the code generation in the compiler
implementation is based. Specifically, we 1) present three different code
generations for implementing atomic operations provided by the user, and,
since atomic functions serializes accesses on collision, we also 2) present
the idea of subhistogramming, i.e., the number of cooperating threads per
subhistogram. Finally, we run a comprehensive experiment investigating

4

CHAPTER 1. INTRODUCTION

the impact of cooperation level on runtime performance, and based on the
results we propose a heuristic for choosing a cooperation level.

• The runtime performance of the new construct, using an optimized case
for addition is compared to a sequential implementation of a traditional
histogram, along with existing solutions in Futhark, and a single reference
implementation in Thrust (Chapter 6), on 12 adversarial datasets. On all
datasets we report speedups compared to the sequential solution, ranging
from the smallest speedup of 1.62× up to the largest speedup of 17.63×.
On all datasets we greatly outperform both the sequential solution, existing
solutions in Futhark, and the Thrust implementation (except for one case,
where Futhark was already known to perform poorly).

In addition, we rewrite two existing Futhark benchmarks to use the new
construct. Here we see both a slowdown and a small speedup; both are
known cases of where existing solutions perform really well.

• As mentioned in the previous bullet, the implemented construct is known
to have some weaknesses, i.e., for large histograms where only a few buck-
ets are hit it performs poorly. In Chapter 7 we briefly discuss if the limita-
tions can be worked around, and based on the latter weakness we suggest
as future study to look into caching behavior with respect to random writes

5

Part I

Realm of the Problem

6

2 Background

This chapter lays the foundation on which rest of the thesis is built. First, we de-
scribe the CUDA programming model which the final code generation is based
on, along with a brief conceptual introduction to GPU accelerated programming.
Second, we describe the design of a GPU – a concrete instance of a parallel ar-
chitecture. Third, because current languages for writing parallel programs for
GPUs, e.g., CUDA, are often highly sensitive to the given architecture, we dis-
cuss how to obtain good performance on GPUs. Finally, we introduce the pro-
gramming language Futhark.

2.1 The CUDA Programming Model
To use NVIDIAs own words, CUDA is a general purpose parallel computing
platform and programming model.

The platform part is a software layer including language extensions, com-
piler, debugger, drivers, and runtime environment. In this thesis, we will use the
CUDA language extension to C/C++, but other languages and directive-based
approaches are supported, e.g., Fortran and OpenACC. We use the platform part
as is, and will not treat it further.

The programming model part is often overlooked because the language ex-
tensions implementing the programming model put a lot of focus on hardware.
Nevertheless, we will use the C/C++ language extension as a vehicle for under-
standing parts of the programming model relevant to this thesis. But first, we
will give a brief, conceptual introduction to how GPU accelerated programming
works.

2.1.1 Heterogeneous programming
The CUDA programming model is a heterogeneous model which refers to the
fact that more than one kind of processor is used in order to obtain performance
gains. In our setting, we have that a CPU, called the host, is offloading heavy
computations to a GPU, called the device. At this point, it suffices to know that

7

CHAPTER 2. BACKGROUND

Host Device

Data

Data & Code
Ti

m
e

Figure 4: Heterogeneous programming. The host is using the GPU as a co-
processor to accelerate computations. Note, that the host is always in
control and may terminate the program running at the device at any
time; the host may wait or continue its own computations.

. .

a GPU is a physically separate device from the CPU that is able to efficiently
execute multithreaded code. We will return to the architecture later.

Usually, the structure of a host program is as follows (see also Figure 4):

1. Declare and allocate host and device memory.

2. Initialize host memory.

3. Copy data from host to device.

4. Execute program on device.

5. Copy data from device to host.

Importantly, as also indicated by the figure, that the host is always in control,
i.e., the host may terminate the program running on the device at any time.

During its lifetime the host can launch multiple programs running on the
device, and the programs may also be able to run concurrently on the device
depending on its capability.

2.1.2 Kernels
Programs that are to execute on a device are called kernels, not to be confused
with operating system kernels. From the programmers point of view kernels can

8

CHAPTER 2. BACKGROUND

be seen as regular functions in C, but annotated with a function execution space
specifier. For example,

__global__ void my_kernel(..) { .. }

declares a kernel my_kernel that are callable from the host but executed on
the device. In addition, the following specifiers are available: __device__,
for functions that are called from and executed on the device, and __host__,
for functions that are called from and executed on the host. We will only be
concerned with functions called from the host and executed on the device in this
thesis.

When launching a kernel the user must specify at least two things, namely,
how many threads to use and the arguments to the function. Optionally, one
should also provide the amount of a special type of memory needed for the func-
tion. We will return to the memory hierarchy in Section 2.1.4.

Each thread then sequentially executes the instructions contained in the ker-
nel code, but threads are executed in parallel.

Kernels are invoked from the host program by using the special kernel-
execution syntax indicated by triple chevrons:

my_kernel<<< .. >>>(..)

where the arguments in the parentheses are normal function arguments as usual.
The arguments in the chevrons specify how to group the threads, which will be
described in the following section.

Often the host program needs to wait for the device to finish in order to
get the results of the computation. Forcing the host to wait can be achieved by
the keyword cudaThreadSynchronize(). For example, if the result of one
kernel, say kernel_a, is required by another subsequent kernel, kernel_b, we
insert a barrier:

kernel_a<<< .. >>>(..);
cudaThreadSynchronize();
kernel_b<<< .. >>>(..);

which effectively lets the host wait for all threads in kernel_a to terminate
before the host program continues.

2.1.3 Thread Hierarchy
When specifying the number of threads the user must also specify how to group
these threads. We will call this grouping or structuring for the thread space.

9

CHAPTER 2. BACKGROUND

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

Thread (0, 0, 0)

Thread (2, 1, 1)

Thread (1, 2, 1)

Figure 5: Two-dimensional grid (left) with a three-dimensional thread block
(2,1) (right), along with individual threads in that block.

. .

The thread space is split into three categories, namely threads, blocks, and grids,
where each category is enclosed in its successor. This is shown in Figure 5.

At the lowest level, we have threads which are organized in thread blocks or
just blocks. Thread blocks have, as their name suggests, three dimensions, x, y,
and z, and all dimensions must be greater than or equal to one. Next, a collection
of blocks are organized in a grid. Completely analog, grids are three-dimensional
(although slightly confusing, as grids usually refer to sets of evenly spaced par-
allel lines at particular angles to each other in two dimensions). Finally, we have
a kernel which, as mentioned above, must specify the thread space, i.e., grid and
block size. Thus, we have the mnemonic: a kernel is executed in a grid of blocks
of threads.

The kernel-execution syntax takes two arguments between the chevrons, the
first specifying the grid dimensions and the second specifying the block dimen-
sions.

Each thread launched has access to two three-dimensional vectors corre-
sponding to its conceptual place in the block and the blocks place in the grid,
respectively. The thread and block vectors can be accessed through the built-in
functions threadIdx and blockIdx, respectively, and the vector elements can
be accessed by specifying the dimension. For example, threadIdx.x gives the
threads position in the blocks x dimension, and blockIdx.x gives the blocks
position in the grids x dimension. Similarly, each thread can access the sizes of
the dimensions for both blocks and grids, e.g., blockDim.x and gridDim.x

for the length of the blocks and grids x dimension, respectively.
In current architectures, the size of thread blocks are restricted to 1024 threads

no matter its dimensions, but multiple equal-sized blocks can be launched.
Furthermore, blocks are required to execute independently, hence the code

is scalable with hardware. But analogously to how the host may be forced to

10

CHAPTER 2. BACKGROUND

Global memory
(Inter-kernel)

Shared memory
(Per-block)

Registers
(Per-thread)

Size: ↓
Speed:↑

Figure 6: Memory hierarchy in the CUDA programming model. Actually, there
is also thread-local global memory that are limited in size and are as
slow as global memory.

. .

wait for all threads in a kernel to terminate, we may also force all threads in
a thread block to wait for all threads in the block to reach a barrier. Such a
barrier is issued with __syncthreads(), and can be thought of the block-level
equivalent of cudaThreadSynchronize(). When using __syncthreads()
one must ensure that all threads are actually reaching this barrier at some point,
otherwise, the kernel will deadlock.

2.1.4 Memory Hierarchy
The memory hierarchy in CUDA can be illustrated using a traditional pyramid
hierarchy, with the slowest and largest type of memory at the bottom and the
fastest and scarcest type at the top. Roughly, we have three main categories
ranging from slowest to fastest, namely global memory, shared memory, and
registers. This is shown in Figure 6.

The large and slow global memory must be allocated and initialized by spe-
cialized CUDA functions, e.g., cudaMalloc() and cudaMemcpy(), which al-
locates memory on the device and copies memory between the host and the
device, respectively. The duration of global memory is inter-kernel meaning that
it is persistent across kernels launched by the same application, and thus it can
be used to communicate between threads in different grids. Global memory is
free’d by calling cudaFree().

Shared memory, which can be thought of as a software-managed cache is
much faster than global memory and is allocated on a per-block basis, i.e.,
threads from the same block access this same shared memory when allocated.
The lifetime of shared memory is the same as the block, thus it can only be used
to communicate between threads from the same block. Shared memory is allo-
cated either statically by specifying the amount of memory in the kernel code or
dynamically using the kernel-execution syntax.

11

CHAPTER 2. BACKGROUND

The fastest type of memory is registers and they are private to each thread.
Registers are very scarce and are used for storing variables, but one should be
careful as the compiler may spill them to thread-local memory which is as slow
as global memory.

Finally, the CUDA programming model assumes a weakly-ordered memory
model. This means that the order in which data are written to global or shared
memory, and others, may not be the same order in which other threads observe
the data being written. Such reordering is generated by the compiler or by the
CPU at runtime and may be used for optimizing bandwidth utilization. In a
single-threaded program this does not matter – in fact, it happens all the time. For
multithreaded programs, like GPU kernels, this can cause erroneous programs.
The CUDA programming model provides memory fences to force an ordering on
memory accesses. For example, __threadfence(), which guarantees that all
memory accesses that appear in the code before the fence will also be observed,
by other threads in the same thread block, as being executed before all accesses
that occur after the fence. Note, that the observing threads must observe actual
memory and not cached versions, thus the memory location should be declared
volatile using the volatile keyword.

The reason is that the compiler will try to optimize memory accesses as long
as it respects memory ordering semantics and visibility imposed by the memory
model, synchronization functions, and memory fences. By declaring a memory
location volatile the compiler is forced to give up all optimizations. In other
words, volatile tells the compiler that the value may be used at any time by
other threads and therefore any reference must be translated into an actual read
or write from memory.

2.1.5 Atomic Functions
Because blocks may be distributed to different multiprocessors and execute con-
currently, we cannot be sure of the ordering of the execution of threads. Thus, if
we have a memory location that at least two threads are trying to access it may
be the case that both threads read the same value, modify it, and write it back,
which may result in an incorrect value, e.g., imagine you have a counter. This is
a classic race condition.

CUDA provides a handful of atomic functions – atomic in the sense that
they perform a read-modify-write sequence without any other thread being able
to access the memory location. We will use three of these functions, namely:

atomicAdd(int* address, int val)

which reads the value at memory location address and stores it in old, adds

12

CHAPTER 2. BACKGROUND

Control
Logic

ALU ALU

ALU ALU

Cache

Main memory

(a) CPU.

Main memory

(b) GPU.

Figure 7: CPUs are about control while GPUs are about throughput.
. .

old and val and writes it back to address.

atomicCAS(int* address, int compare, int val)

which reads the value at address and stores it in old, performs the operation
old == compare ? val : old and writes the result to address.

atomicExch(int* address, int val)

which simply reads the value at address and stores it in old before writing
val to address.

Note, that these functions return the value that resided at address before
the atomic operation. Only for atomicCAS and atomicExch will we use the
returned value.

Note, that atomic functions do not impose synchronization nor do they work
as memory fences. Furthermore, one might note that not all architectures have
atomic functions, but we expect that when CUDA introduces atomic functions
other vendors will do so too.

2.2 GPGPU Architecture
Because GPGPU programming is highly sensitive to the specific architecture at
hand we will now look at how a GPU is actually implemented. We will use
NVIDIAs GTX 780Ti as a vehicle but the ideas will be general.

CPUs perform well on complex programs containing a lot of branching struc-
tures because they are able to hide latency by speculative- and out-of-order ex-
ecution. This idea is illustrated in Figure 7(a): There are a few ALUs to handle
the actual computations and a beefy control logic to handle complex programs.

While CPUs are about control, GPUs are about throughput. They are opti-
mized for problems that are data-parallel. That is, each thread can compute a
part of the problem independently of the others while still be executing the same

13

CHAPTER 2. BACKGROUND

operations. Furthermore, GPUs perform best if the ratio of arithmetic operations
to memory operations are high. This is shown in Figure 7(b) where a lot of
ALUs share some small control logic.

The GTX 780Ti consists of 15 Streaming Multiprocessors (SM). Each SM
then consist of 192 Streaming Processors (SP), 64 double-precision units, 32
Special Function Units (for approximating specific functions), and 32 Load-
Store Units. For this exposition it is sufficient to focus on SMs and how they
execute threads at a high level.

When a CUDA enabled program executes on the host and launches a ker-
nel, the blocks of the grid are distributed to SMs with available resources, i.e.,
threads belonging to the same block executes on the same multiprocessor. Mul-
tiple blocks may execute concurrently on one multiprocessor if resources are
available, and as all threads from a block terminate new blocks are distributed to
the SM if resources are available.

The number of blocks a multiprocessor can hold at the same time depends
on how many resources, such as registers and shared memory, each block uses.
Thus, you may have an incentive to use as few resources as possible in order to
fit more blocks onto each multiprocessor. Recent NVIDIA GPUs may hold at
most 16 blocks at the same time, though.

Today most GPUs use an execution model called single instruction multi-
ple thread (SIMT), which can be seen as a development of the single instruc-
tion multiple data (SIMD) model. In the SIMT model the programmer writes a
program that may contain branches and the like, hence threads can be seen as
independent units. A SIMD type computer have multiple processing elements
that each performs the exact same operation on multiple data elements simulta-
neously.

Although being conceptually independent units, threads on NVIDIA GPUs
are executed in groups called warps. Warps consist of 32 threads that execute in
lockstep, i.e., all threads execute the same instruction. Threads are determinis-
tically divided into warps, with warp zero containing threads zero through, and
including, thread 31, warp one containing threads 32 through, and including,
thread 63, and so on.

2.3 Obtaining Good Performance on GPUs
In this section, we discuss ways to optimize GPU code, or how to avoid per-
formance penalties if you will. As mentioned in the previous section, this is
needed because kernels are hardware sensitive in a different way than programs
for CPUs. Thus, this section can be seen as utilizing what we have learned in the
previous two sections.

14

CHAPTER 2. BACKGROUND

if(gid % 2 == 0) {
...

} else {
...

}

(a) Results in thread-divergence.

if(warp_id % 32 == 0) {
...

} else {
...

}

(b) Avoids thread-divergence.

Figure 8: Note that the two examples do not result in the same behavior, but are
merely examples of thread divergence behaviour.

. .

2.3.1 Thread divergence
We have previously talked about how threads are bundled in warps and executed
in a lockstep-fashion, and how this relates to the SIMT model. This behavior has
significant performance implications when the kernel code contains branches.

Consider the branch in Figure 8(a). Half the warp enters the true-branch
and the other half enters the false-branch. Because all threads must execute the
same instruction, all threads must actually first enter the true-branch. But threads
for which the predicate evaluated to false is disabled, and the instructions are
effectively no operations (NOOP)s. The same is the case for the false-branch.

The problem is that only half the threads will be active at any point through
the if-branch, hence we are not fully utilizing instruction issuing. Therefore,
when possible, we should write kernels that avoid intra-warp thread-divergence
such that all threads in a warp follow the same execution path. An example is
given in Figure 8(b).

2.3.2 Coalescing
More than often we encounter problems for which speed of computation rely on
how fast we can read and write memory. Such problems are said to be memory-
bound. The reads and writes to memory goes through a wide bus, usually trans-
ferring 512 consecutive bits, corresponding to 16 32-bit words, in one go. Thus,
if threads in a warp access adjacent memory locations we need only two memory
transfers to satisfy the access of all threads in a warp. This kind of access pattern
is called coalesced memory access. In the worst case, all threads in a warp are
accessing memory locations with no memory location within the same 16 words,
such that we need 32 memory transfers to satisfy all threads.

15

CHAPTER 2. BACKGROUND

2.3.3 Occupancy
In Section 2.2 we saw how GPUs are built for high throughput and that they are
optimized for handling thousands of threads. So in order to utilize the hardware
we should always have a lot of threads in flight, otherwise each SM will not have
enough warps to hide latency between dependent instructions.

This idea is named occupancy and denotes the ratio of active threads on
an SM to the maximum number of active threads supported by the SM. The
maximum number of active threads is limited by resources available for the SM,
e.g., registers and shared memory, and by a hard limit. For example, the GTX
780Ti supports 2048 active threads per SM as the hard limit.

Say you have a thread block of 256 threads that uses 16KB of shared mem-
ory, and that the total amount of shared memory is 48KB. Then you are able to
fit three thread blocks on one SM, but the resulting occupancy is only 3×256

2048
=

37.5%. If instead you rewrite the code to use only 12KB then the occupancy is
4×256
2048

= 50%. In both cases, you are limited by shared memory resources.
On the other hand, imagine you have a thread block of 1024 thread using

global memory instead of shared memory. Then you can fit two thread blocks
on each SM and achieve an occupancy of 100%. But because thread blocks are
using the much slower global memory the kernel does not necessarily run faster.

Occupancy can provide good guidance but should be used carefully.

2.4 Futhark
Futhark is a data-parallel programming language that introduces a program-
ming model that builds on the vocabulary of functional programming by us-
ing second-order array combinators (SOACs). It is eagerly-evaluated, stati-
cally typed, purely functional, and has call-by-value semantics. The primary
target of the optimizing compiler is efficient OpenCL code for execution on
GPUs, but other targets are supported such as C or Python. This section builds
on [Hen17, EH18, Hen, HSE+17].

2.4.1 Programming Model
The best way to explain the programming model of Futhark is to gain intuition
for the language by example. Consider the following program that adds two to
each element of an integer array (a historical note: this was the first Futhark
program to be correctly compiled to OpenCL and executed on a GPU [EH18]):

map (\x -> x + 2) xs

16

CHAPTER 2. BACKGROUND

This showcases the map construct which is probably the most important building
block in Futhark. It takes as input a function α → β and an array of values of
type α, and produces an array of values of type β. This makes map very versatile
as the user must only be concerned with the types while the compiler handles
the parallelism.

Futhark employs a type of parallelism called explicit data-parallelism. It is
explicit because the user through language constructs such as map, instructs the
compiler of where to find the parallelism. It is data-parallel because the same
operation is applied to different pieces of data. The example above is a prime
example in understanding parallel functional languages.

Now, consider the following example that finds the largest absolute differ-
ence between elements in two integer arrays:

reduce max 0 (map abs (map2 (-) xs ys))

where reduce takes as input an operator of type (α → α → α), the neutral
element of the operator of type α, and an array of values of type α, and produces
a value of type α. One might think that this needs at least three traversals of
the input arrays: first, subtracting the input arrays; second, finding the absolute
value of the differences; third, finding the maximum of the absolute differences.
In practice, all three operations will be fused such that arrays xs and ys will be
traversed only once in global memory [HLO16].

This is the primary strength of Futhark: The compiler takes the responsibility
of leveraging the compositionality of inherently-parallel bulk operators, such
that the user does not have to, although some experience with Futhark may help
you write faster programs.

2.4.2 Language features
Below we present language features of Futhark that are important in order to
understand some of the design choices we made and that we will see later in this
thesis:

Regular arrays Futhark supports only regular arrays, i.e., nested arrays must
have the same shape. Irregular arrays can be expressed by a flat represen-
tation along with a flag array indicating the start of each inner array also
called a segment. There already exists a library for segmented operations.

Size annotations Often you see yourself implementing some function on arrays
that does not make sense for arrays of unequal length. In Futhark you can
impose size constraints on the inputs using size parameters. Assume you

17

CHAPTER 2. BACKGROUND

are writing a function for zipping two integer arrays and decide that it only
makes sense for arrays of equal length:

let zip_int_arrays (xs : []i32) (ys : []i32) =
map2 (\x y -> (x,y)) xs ys

Then you can require your function to accept only arrays of equal length
by annotating the arrays with a size parameter [n]:

let zip_int_arrays [n] (xs : [n]i32) (ys : [n]i32) =
map2 (\x y -> (x,y)) xs ys

Now the compiler will complain if the observed lengths of xs and ys are
unequal. In fact, this is what happens if you type the first code snippet into
the Futhark interpreter, futharki, because map2 uses this strategy.

Parametric polymorphism Continuing the example of zipping integer arrays,
and say you want to zip an array of floats. Then you would have to write
a new function for floats. This duplication is never desirable, and Futhark
solves it by using parametric polymorphism, which lets you use a type
parameter, ’a, to write polymorphic functions:

let zip_same_type ’a [n] (xs : [n]a) (ys : [n]a) =
map2 (\x y -> (x,y)) xs ys

In fact, you could introduce two type parameters to zip two arrays of dif-
ferent types.

In-place updates Futhark supports in-place updates in order to avoid excessive
copying of arrays. Staying in the histogram world, consider the following
example from [EH18], and imagine you want to increment the count of a
bucket:

let xs = xs with [i] <- xs[i] + 1

i.e., we update the array xs on index i with the value xs[i] + 1. By
using an in-place update we avoid copying the whole array, and instead
write only the to-be-updated element, an operation time proportional to
the elements being updated.

Since Futhark is a functional language referential transparency must be
preserved. Thus, in order to do in-place updates, the compiler must know

18

CHAPTER 2. BACKGROUND

that no references to xs, or any variables aliasing it, exists after the in-
place update. This is handled by a uniqueness type system described in
the following.

Uniqueness types Continuing the example from before, consider the following
function:

let increment (xs *[]i32) (i : i32) : *[]i32 =
xs = xs with [i] <- xs[i] + 1

i.e., we are returning xs but with index i incremented by one. The asterisk
in the parameter declaration for (xs *[]i32) tells the compiler that xs
or any of its aliases must not be referenced after the call to increment.
Note, that the return value has also an asterisk, which means that it shares
no values with any visible variables.

2.4.3 Array Operators
When we introduced the programming model we showed how certain built-in
functions are used as composable building blocks. To gain some intuition for
these building blocks and in order to use some of them later, we here present
some of the most important. In the following, we assume xs to be an array
which elements are denoted x1, x2, .., xn.

• iota : (n : i32)→ [n]i32
iota n ≡ [0, 1, ..., n− 1]
Produces an array of integers from 0 to n− 1.

• replicate : (n : i32)→ β → [n]β
replicate n x ≡ [x1, x2, ..., xn]
Produces an array with the value x repeated n times.

• map : (α→ β)→ []α→ []β
map f [x1, x2, . . . , xn] ≡ [f(x1), f(x2), ..., f(xn)]
The function f is applied to every element in the array xs. This has inher-
ently data-parallel semantics, as each element can be processed simulta-
neously.

• reduce : (α→ α→ α)→ α→ []α→ α
reduce f ne [x1, x2, . . . , xn] ≡ f(...f(f(ne, x1), x2), ..., xn)
All values in the array is combined (reduced) using the binary operator f
with ne as start value. We require that f is associative and that ne is the
neutral element for f .

19

CHAPTER 2. BACKGROUND

• scan : (α→ α→ α)→ α→ []α→ []α
scan f ne [x1, x2, . . . , xn] ≡

[f(ne, x1), f(f(ne, x1), x2), ..., f(...f(f(ne, x1), x2), ..., xn)]
Produces an array of the same size as xs, by combining all prefixes. This
corresponds to applying reduce to all possible prefixes of xs, and return
an array of values. Like for reduce we require that f is associative and
that ne is the neutral element for f .

• stream_red : (β → β → β)→ ([]α→ β)→ []α→ β
stream_red g f [x1, x2, . . . , xn] ≡ g(...g(g(f(x1), f(x2)), ..., xn)
Assume a function distr_p that, when given an input array, chunks this
array into an array of p subarrays of equal length (except possibly the last
subarray). stream_red will apply distr_p to xs to obtain p chunks.
Then f will be applied to each of the chunks in parallel, and ultimately
reduce the subresults to one result by applying g. We require that the
combining function g is associative.

map, reduce, scan belongs to a category of functions which in the functional
programming world is called second-order array combinators, or SOACS. As
previosly mentioned the goal is to provide a few of these functions with efficient
parallel implementations and effecient optimisations, such that they can be used
as building blocks.

The function stream_red is more exotic and derserves some extra expla-
nation. The high-level idea of stream_red is based on following semantic
equivalence (written here with reduce):

reduce ⊕ e⊕ xs ≡ reduce ⊕ e⊕ (map (reduce⊕ e⊕) (distrp xs))

which says, that we can rewrite a reduction as mapping the reduction function
over chunks of the input array, before reducing the intermediate results. In this
way the compiler can use the chunking function, distrp to control the amount
of parallelism needed depending on the situation. We will see later how this can
be used to compute histograms.

20

3 Problem Statement and Related
Work

Futhark relies on having a few efficient building blocks that can be combined to
form solutions to complex problems. Now and then we encounter problems that
cannot be efficiently solved using this approach. One way go about this is to
create a new SOAC, although this should be considered carefully as it requires
work through the whole compiler pipeline as well as maintenance.

In this chapter, we first explore on a high level the strengths and weaknesses
of different approaches to computing general reductions. To justify our imple-
mentation effort we demonstrate how these approaches can currently be imple-
mented in Futhark. Next, we show how the existing scatter construct can
serve as an inspiration for the new language construct. Finally, we give a brief
outline of the existing research, including solutions specific to histogram com-
putations, as well as libraries and languages.

3.1 High-level Strategies
This section investigates the work complexities of different strategies for com-
puting histograms in a parallel setting. We will use W to denote the work com-
plexity of an algorithm, i.e., the total number of operations performed by the
algorithm and we will use D to denote its depth complexity, i.e., the longest
sequential dependency chain. Furthermore, we say that a parallel algorithm is
work efficient if it does not perform asymptotically more operations then the
sequential algorithm, in this case O(N).

In the following let N be the number of input elements, H be the number of
buckets in the histogram, f be a bucket function computing an index, ind, and
a value, val, when applied to an element from the input array, img. The index
and the value is then used for updating a histogram, histo.

We will use the notation forall to mean a parallel loop which indices are
distributed among hardware threads, and forseq to mean a sequential loop
where each index is computed in sequence by the same hardware thread. Fur-

21

CHAPTER 3. PROBLEM STATEMENT AND RELATED WORK

forall(ii = 0; ii < N; ii++) {
forseq(i = 0; i < H; i++) {

histo[i] = 0
}
(ind, val) = f(img[ii])
histo[ind] += val

}
// Reduce N histograms (determined by parallel loop).

Figure 9: Data-parallel solution. Each thread initializes its own subhistogram
and processes one input element. This results in N subhistograms to
be combined.. .

thermore, let the number of software threads launched be T := min (HDW, N),
where HDW is the number of hardware threads needed to saturate the machine.
Finally, we assume that subhistograms are reduced using a work efficient seg-
mented reduction.

The simplest approach in order to avoid collisions is to let each thread com-
pute its own histogram; this is a data-parallel solution. In addition, and for
demonstration purposes, we let each thread process only one input element.
Pseudo-code for this strategy is shown in Figure 9, where the outermost loop
is distributed among N threads, and each thread then computes the innermost
loop of size H and the following to statements. Its work complexity is then:

Wdata−parallel := O(N ×H +N)

In comparison, the sequential algorithm performs O(N) operations, thus this
solution is not work efficient.

One way to reduce the amount of work is by distributing the outer loop
among fewer threads, effectively letting each thread process multiple elements.
Thus, as an improved data-parallel strategy, we let each thread process a chunk of
elements of sizeN/T , reducing the number of threads needed toN/(N/T) = T .
This is shown in Figure 10, and its work complexity is:

Wdata−parallel−chunk : = O
(
T ×H + T × N

T

)
= O(T ×H +N)

such that when T ×H is comparable to or a fixed multiple of N , we have:

Wdata−parallel−chunk = O(k ×N +N) = O(N)

and the algorithm is work efficient. In particular, if we have N/T = H then we
get O(N +N) = O(N).

22

CHAPTER 3. PROBLEM STATEMENT AND RELATED WORK

forall(ii = 0; ii < N; ii += (N/T)) {
forseq(i = 0; i < H; i++) {

histo[i] = 0
}
forseq(i = ii; i < min(ii + (N/T), N); i++) {

(ind, val) = f(img[ii])
histo[ind] += val

}
}
// Reduce N / H histograms (determined by parallel loop).

Figure 10: Improved data-parallel solution. Each thread initializes its own sub-
histogram and processes a chunk of input elements of size H . This
results in N/H subhistograms to be combined.

forall(i = 0; i < H; i++) {
histo[i] = 0

}
forall(i = 0; i < N; i++) {

(ind, val) = f(img[i])
atomic_operation{ histo[ind] += val }

}
// Only one histogram -> no reduction needed.

Figure 11: Non-data-parallel solution. Each thread processes one element but
all threads cooperate on the same histogram.

. .

Furthermore, consider the situation where we have atomic operations, such
that threads may cooperate on one histogram. This is at the other extreme as
opposed to the first data-parallel solution where all threads had their own his-
togram. Figure 11 shows the situation where each thread processes one element
and all threads cooperate on a single histogram. Obviously, this is work effi-
cient, both with and without chunking. We may note, that in the case where all
input image pixels maps to the same bucket, then its depth complexity is O(N)
because atomics serializes the whole computation.

Finally, we consider the sort-reduce strategy shown in Figure 12. The map
is work efficient for obvious reasons. The sort_by_key function can be im-
plemented using radix-sort which is known to have work complexity O(k×N).
Thus, when k is 32-bits, its work complexity is O(N), and so, in this case, it

23

CHAPTER 3. PROBLEM STATEMENT AND RELATED WORK

let (xs, keys) = map f img
let (xs’, keys’) = sort_by_key(xs, keys)
let (xs’’, keys’’) = reduce_by_key(xs’, keys’)

Figure 12: Functional-style pseudo-code for computing a histogram.
. .

is work efficient. The reduce_by_key function can be implemented as a seg-
mented reduction, which is known to be asymptotically work efficient. Thus, the
combination of the three is work efficient, but it is not really efficient in practice
because of the potential high overhead of sorting. Furthermore note, that in the
case where not all buckets are present in the input this does not produce the same
result as the other solutions above.

This constitutes the landscape. In Chapter 4 we will pursue a combination of
the data-parallel-chunk approach and the atomic approach. But first, we will see
how to implement the data-parallel-chunk and the sort-reduce strategies.

3.2 Current State for Histograms in Futhark
The justification for this thesis is that we claim that currently there is no scalable
way of efficiently expressing generalized reductions. In this section, we will look
at some of these solutions, which are from [Hen]. For the sake of simplicity, we
will look at the specific case of histogram computations, and we assume that
indices are not out of bounds.

One might be tempted to write the sequential solution directly as follows:

let histo_seq (n : i32) (is : []i32) : [n]i32 =
loop acc = (replicate n 0) for i in is do
let acc[i] = acc[i] + 1

in acc

While this produces the correct result it is simply too slow in practice as it is not
possible to extract the parallelism, i.e., it will be sequential.

Another solution is to utilize the previously mentioned efficient building
blocks. Futhark provides what is called streaming combinators, which assigns
a function to some number of threads and then combines the per-thread results
into a final, single result:

let histo_stream (n : i32) (is : []i32) : [n]i32 =
stream_red_per (map2 (+)) (histogram_seq n) is

24

CHAPTER 3. PROBLEM STATEMENT AND RELATED WORK

Here we apply histo_seq as the per-thread operator and combine results using
map2 (+). This might be fine for a small number of buckets, but a problem for a
large number of buckets. This is so because each thread allocates its own private
histogram, thus at some point we will not be able to launch enough threads to
saturate the machine due to insufficient memory.

The final solution we will look at is not straight forward and is not very
efficent in practice:

let histo_sgm_red (n: i32) (is: []i32) : [n]i32 =
let num_bits = t32 (f32.ceil (log2 (r32 n)))
let is’ = radix_sort num_bits i32.get_bit is
let flags = map2 (!=) is’ (rotate 1 is’)
in segmented_reduce (+) 0 flags is’

Here the indices are first sorted using a radix sort, before a segmented reduc-
tion is applied to sum the buckets on a per-bucket basis. This solution is very
flexible but both the radix sort and the segmented reduction are quite expensive
operations.

In total, we think that this justifies a new construct in terms of the implemen-
tation effort.

3.3 Extending scatter
In data-parallel computing, a scatter operation receives as arguments an original
array, an array of indices, and an array of values and it updates the elements
of the original array at the corresponding indices with the new provided values.
One can generalize the scatter construct to represent a fusion between a map
and a scatter, in which the mapped function transforms some arbitrary type α
into index-value pairs of type (i32, β), and the scatter updates the original array
based on these index-value pairs. The advantage is that the fused map-scatter
does not need to materialize the index-value arrays in memory.

Currently, the intermediate representation of scatter in the Futhark com-
piler has the following type signature:

scatter : [n]β → (α→ (i32, β))→ [n]α→ [n]β

An example of its semantics, assuming a tuple-of-array representation and type
α = (i32, β), is given by:

scatter [b0, . . . , bm−1] id [0, 2, 4, 6] [a0, a2, a4, a6]

which results in

[a0, b1, a2, b3, a4, b5, a6, b7, b8, . . . , bm−1]

25

CHAPTER 3. PROBLEM STATEMENT AND RELATED WORK

However, the current scatter has two problems. First, it has a nondeter-
ministic semantics when there are several to-be-updated values corresponding to
the same index, i.e., when the index array contains duplicates. For example, if
the map results in [(0, 3.0), (0, 4.0), . . .] then the first element of the result array
may be either 3.0 or 4.0 depending on which update gets executed first. Second,
it lacks the ability to combine several values corresponding to the same index as
it will simply overwrite that current element.

One way of thinking of a histogram construct would be to generalize the
scatter construct with respect to the second problem by adding support for com-
bining values on duplicate indices. The starting point is to generalize scatter
as below:

scatter’ : [n]β → (β → β → β)→ β → (α→ (i32, β))→ [n]α→ [n]β

such that it, in addition, takes as input an associative and commutative operator,
(β → β → β), and identity element, β. The new scatter’ would have the
following data-parallel semantics:

1. The map produces, semantically, an array of index-value pairs.

2. This array is sorted with respect to indices.

3. The sorted array is then reorganized as a two-dimensional irregular array
in which the segments correspond to values that share the same index.

4. An irregular segmented reduction, with a specified binary associative op-
erator computes the to-be-updated value for each index.

5. Ultimately, each such index of the original array is updated to the previ-
ously computed combined-value.

The observant reader may notice that the new scatter’ still suffers from the
first problem as it will combine all values with the same index, i.e., it does not
have an update semantics. For our purpose this is not a problem as scatter’
will be deterministic with respect to the histogram semantics.

3.4 Brief Outline of Research
The release of CUDA in 2007 marks the start of huge amounts of work ded-
icated to efficient histogram computations on GPUs. We investigate selected
papers presenting carefully crafted implementations specifically for histogram
computations. Even though these solutions cannot easily be modified to perform

26

CHAPTER 3. PROBLEM STATEMENT AND RELATED WORK

generalized reductions we can definitely learn from the ideas. In addition, we
discuss two master’s theses that, among other things, investigate possibilities for
efficient computations of generalized reductions on GPUs. Finally, we look into
two well-established existing solutions.

3.4.1 Histogram Specific Solutions
The papers we have looked at all identify two main performance bottlenecks
when computing histograms, namely, random writes and collisions. The two
problems are connected as we will see, but we will first look at the former.

Podlozhnyuk, who seems to be the first to release a paper on histogram com-
putation in CUDA [Pod07], uses subhistograms in shared memory to mitigate
the latency induced by slower global memory. Subhistograms are then written
to global memory where they are either combined into a final histogram, often by
a segmented reduction, or combined directly by using atomic operations. Shams
& Kennedy [SK07], Nugteren et al. [NvdBCM11], Brown & Snoeyink [BS12]
all follow his approach using subhistograms in shared memory.

Because shared memory is limited and because early solutions did not have
shared memory atomics and therefore often used per-thread subhistograms, the
main problem then becomes minimizing per-thread shared memory usage in or-
der to increase occupancy. Next, the problem becomes avoiding shared memory
bank conflicts and the studied solutions go to great extend to mitigate this. We
will not go into details but merely state that this is one approach.

Instead, we present one proposal to show the nature of these types of opti-
mizations. Shams & Kennedy compact histograms using four 8-bit counters per
32-bit word, such that each thread needs 64 words to store a 256 bin histogram.
The per-block histogram is then partitioned such that each thread holds 4 32-bit
buckets in registers. Flushing to per-block buckets are done for every 63 words
per thread to prevent overflow. Since they use 64 threads per block that need
16KB of shared memory each, and that they are running on the Fermi architec-
ture that has 48KB of shared memory, this allows 3 thread blocks per SM. As
they note, this amounts to an occupancy of 12.5% which is half of [Pod07] but
the double of [NvdBCM11].

We will not pursue the shared memory solution as extreme as this, squeezing
out almost every bit, but, as we will see later, instead use atomic operations.

Solutions to the second performance bottleneck, collisions, depends on the
fact that atomic functions were not available for shared memory until around
2011. Podlozhnyuk proposes a software implementation of atomic operations
that later papers also use. Since collisions become expensive the problem is
now to avoid them. This is either done by using per-thread subhistograms or
per-warp subhistograms, which again amounts to avoiding bank conflicts. Most

27

CHAPTER 3. PROBLEM STATEMENT AND RELATED WORK

papers recognize that collisions are more frequent in real image data. Nugteren
et al. come with two alternative and mutually exclusive proposals. Their first
proposal is to shuffle the data in global memory before processing as usual. The
second proposal is to just not read in coalesced fashion in the first place.

We will rely heavily on efficient atomic operations and instead, reduce the
number of collisions by using multiple subhistograms per-block. But they rec-
ognize that real image data may increase the frequency of collisions, which com-
plicates an efficient solution.

Finally, Shams & Kennedy proposes a solution supporting an arbitrary num-
ber of buckets. They use a multi-pass algorithm which requires multiple passes
of the input, as only a range of buckets is processed in each pass. Although this
solution is very flexible, it seems to be inefficient as it depends on both the input
size and number of buckets.

We will investigate the possibility of supporting as many 32-bit buckets as
global memory allow.

3.4.2 Generalised Reductions and Similar Operations
In his master’s thesis, Eilers [Eil14] makes and extensive investigation of the
possibilities for efficient implementations multireduces on GPUs, where multi-
reduce is simply another word for generalized reduction. This reflects the lack of
common nomenclature in the area. His investigation includes both commutative
and non-commutative operators, in both global and shared memory, arbitrary
operators and an arbitrary number of buckets.

In addition to replicating most of the solutions discussed above he proposes
a solution with multiple threads cooperating on subhistograms directly in global
memory. It has not been possible to see the actual implementation, but he reports
promising results, especially when compared to its simplicity.

This sounds like a viable solution for our purpose. Our solution must sup-
port arbitrary operators, and therefore also arbitrary data types. Thus a solution
not using shared memory seems like a good starting point because we need not
be concerned with memory usage. Furthermore, our solution must support a
very large number of buckets. Finally, Eilers makes a small experiment on the
number of subhistograms in global memory. We will try to develop a heuris-
tic indirectly choosing the number of subhistograms by choosing the number of
threads cooperating.

In a later master’s thesis, Joekladal [Jø16] follows up on and somewhat ex-
tends Eilers’s work on multireduces. Joekladal proposes a crude heuristic for
the cooperation level in order to minimize shared memory usage. Because he is
keeping subhistograms in shared memory the upper limit is 8192 32-bit buckets.
This he solves by developing a discriminator operator, that partitions input ele-

28

CHAPTER 3. PROBLEM STATEMENT AND RELATED WORK

ments, effectively grouping elements by their label before applying a segmented
reduction on them.

We will not pursue such a sorting approach but instead, focus on coopera-
tion on multiple histograms in global memory, and use a heuristic to choose the
amount of cooperation in order to minimize contention.

3.4.3 Libraries and Languages
In addition to investigating techniques specifically for computing histograms we
have also looked at how general purpose programming languages handle gen-
eralized reductions. In particular, we have looked at Thrust [thr], a parallel
algorithms library resembling the C++ Standard Template Library, and at Ac-
celerate [acc], a domain specific language embedded in Haskell for data-parallel
array programming.

Accelerate

In Accelerate we have the permute function, which performs a scatter-like op-
eration using a combining operator as shown in Section 3.3. It has the following
type signature:

permute : (Exp a→ Exp a→ Exp a)

→ Acc (Array sh′ a)

→ (Exp sh→ Exp sh′)

→ Acc (Array sh a)

→ Acc (Array sh′ a)

where the arguments are, in order: a combining function, an array of default
values, a bucket function, and an array of input values. It produces an array that
is initialised with the provided default values an where values are written using
the combining function.

The documentation for permute provides a small example of computing a
histogram:

1 let histogram :: Acc (Vector Int) -> Acc (Vector Int)
2 histogram xs =
3 let zeros = fill (constant (Z:.10)) 0
4 ones = fill (shape xs) 1
5 in
6 permute (+) zeros (\ix -> index1 (xs!ix)) ones

Lines 3 and 4 initialise two arrays with zeros and ones, respectively. The arrays

29

CHAPTER 3. PROBLEM STATEMENT AND RELATED WORK

are provided as arguments to the permute function in line 6, along with the
addition-operation as the combining operator, and a bucket function.

We know from [McD15] that atomic operations in Accelerate are imple-
mented using either a critical section protected by a spin-lock, needed due to
Accelerate using an internal struct-of-arrays representation, or a compare-and-
swap style. 1 Even though we have not been able to locate it in the source
code, we expect that they recognize operators that have a corresponding atomic
function, for example addition, and generate code that uses that function instead.

Furthermore, although we have not been able to determine this from the
source code either, it appears that they do not use anything similar to subhis-
togramming in order to reduce the frequency of collisions.

In total, the semantics of permute, along with its style and flexibility as
exposed to the user, is what we aim at.

Thrust

Thrust provides a function called reduce_by_key. Given an array of indices
and an array of values, it performs what is semantically a segmented reduction.
That is, it combines adjacent values using a combining operator only if the cor-
responding keys are equal, e.g., given the following arrays of keys and values:

keys : [1, 1, 1, 2, 2, 2, 3, 1, 1]

values : [1, 1, 1, 1, 1, 1, 1, 1, 1]

it produces

result keys : [1, 2, 3, 1]

result values : [3, 3, 1, 2]

Even though this behaviour is nicely described in the documentation for Thrust,
it is not exactly what we epxect from the name of the function, as this is more of
a segmented reduction. In particular, we would expect the result to be:

result keys : [1, 2, 3]

result values : [5, 3, 1]

such that the last 1’s in the keys array contributes the to the first bucket in the
values array, which is the bucket for the other occurences of 1 in the keys array.

Nevertheless, in order to compute a histogram we can simply sort the values
by indices first. Fortunately, the function sort_by_key does exactly that. For

1See https://en.wikipedia.org/wiki/Compare-and-swap.

30

https://en.wikipedia.org/wiki/Compare-and-swap

CHAPTER 3. PROBLEM STATEMENT AND RELATED WORK

1 // sort keys
2 thrust::sort(thrust::device,
3 d_indices.begin(),
4 d_indices.end());
5
6 // compute histogram
7 thrust::reduce_by_key(thrust::device,
8 d_indices.begin(),
9 d_indices.end(),
10 d_values.begin(),
11 thrust::make_discard_iterator(),
12 d_values.begin());

Figure 13: Histogram computation in Thrust.
. .

a histogram it is unnecessary to sort the values as they are all ones, and thus we
can use the faster sort function for sorting only the indices. Figure 13 displays
the histogram computation in Thrust, and we assume having two arrays; an array
of indices, d_indices; and an array of values, d_values, which are initialised
with zeros. In lines 2-4 we take advantage of the fact that all values are one
and so we need only to sort the indices. This is followed by a function call to
reduce_by_key which, as described above, acts as a segmented reduction.

The behaviour of reduce_by_key leads us to believe that it is implemented
as a kind of prefix-sum, although we have not been able to determine this from
the source code.

On the other hand, sorting has its benefits, as it makes the implementation
data independent, i.e., its runtime performance is stable across all input distri-
butions. Despite this desirable feature, the above combination of a sort and se-
mantically a segmented reduction seems expensive. Instead, we will pursue an
implementation that does not need to pre-process data in order to reduce it.

31

Part II

Development, Implementation, and
Benchmarks

32

4 Prototyping

The focus of this chapter is twofold. First, we investigate different strategies for
atomic updates. This is due to a source array of tuples in Futhark is represented
internally as two arrays, and for that reason, what appears as a single update of
one array element actually corresponds to two updates in the core language; one
for each array. In addition, since this project is aimed at a language implemen-
tation, we need to support any user-defined operator. Fortunately, CUDA and
OpenCL provides a handful of atomic functions, some of which can be used to
implement arbitrary atomic functions on any number of arrays.

The second aspect we consider is the unfortunate side effect of atomic func-
tions, namely, serialization of simultaneous accesses to the same memory loca-
tion. The impact on the performance of serialization can be reduced using the
simple idea of subhistogramming. In order to determine the cooperation level
we have run a comprehensive experiment, and based on the results of the exper-
iment we propose a heuristic for choosing a cooperation level. The chapter is
concluded by a summary of the results which we believe validates our heuristic.

The code presented in this chapter, although heavily modified for brevity and
clarity, is available here:

https://github.com/lolkat2k/masters-prototype/

along with a setup for reproducing all presented results as well.

4.1 Strategies for Locking
In order to accommodate the needs outlined above with respect to user-defined
operators, we investigate three strategies based on three different atomic func-
tions, namely atomicAdd, atomicCAS, and atomicExch.

In this section, we assume, for simplicity, that we have already computed an
index, bucket, which is never out-of-bounds, and that we perform the following
operation:

33

https://github.com/lolkat2k/masters-prototype/

CHAPTER 4. PROTOTYPING

histo[bucket] += 1

i.e., we are updating a bucket in a traditional histogram.

4.1.1 Addition Only
The simplest and fastest way to update the bucket is, basically, not a locking
strategy because the addition is performed implicitly:

atomicAdd(&histo[bucket], 1);

It simply adds 1 to the memory location pointed to by &histo[bucket]. This
is much faster than the other two strategies we present, thus if we can identify
the user-defined operator as a simple addition we should choose this strategy.

4.1.2 Arbitrary Binary Operators on One Memory Location
The second strategy we present is based on the atomicCAS function. Before
digging into the code we may note, although obvious, that atomicCAS does not
implicitly perform the operation as opposed to atomicAdd. It merely compares
the current value to a provided value, and depending on the truth value it either
writes another provided value or the current value.

For this reason, we need a supporting structure for verifying that no other
thread updated the current value in between our read, modification and write:

1 int old = histo[bucket];
2 int assumed;
3
4 do {
5 assumed = old;
6 old = atomicCAS(&histo[bucket], assumed, assumed + 1);
7 } while(assumed != old);

The code can be divided into three logical steps:

1. First, the current value is stored in line 5. The variable is named assumed
because it contains the value we expect to be at the memory location when
we perform our update. Thus, if the actual value has changed in the mean-
time, then our update is based on an incorrect value.

2. Second, we use atomicCAS to write a new value, which in this example
is the result of the addition (line 6). If the current value is equal to what

34

CHAPTER 4. PROTOTYPING

we got in step one, the update is based on the correct value. If not, it has
changed, and the updated value is based on an incorrect value.

3. Third, if the write in step two succeeded then stop. This is the case if the
memory location contained what we had previosly read, thus the result of
the addition is correct. Otherwise, go to step one (lines 4 and 7).

This strategy can be used for implementing all binary operators that work
on a single memory location, i.e., internally the array must be represented by a
single array. Because the supporting structure is implemented in software it is
much slower than the hardware optimized addition presented above, but, as we
will see, it is still much faster than the next strategy.

4.1.3 Arbitrary Operators on Multiple Memory Locations
In contrast with the previous, we here present a strategy that does not perform the
computation implicitly, nor does it need to check whether it got the computation
right. Instead, it relies on a critical section protected by a spinlock:

1 int done = 0;
2
3 while(!done) {
4 if(atomicExch((int *)&locks[bucket], 1) == 0) {
5 // Critical section - start
6 histo[bucket] = histo[bucket] + 1;
7 // Critical section - end
8 locks[bucket] = 0;
9 done = 1;
10 }
11 __threadfence();
12 }

Here the array locks has length equal to the number of buckets, is initialised
with zeroes, and is declared volatile. The atomic function atomicExch sets the
provided value, 1, at the given memory location, &locks[bucket].

This strategy has, besides the obvious, two interesting parts that need em-
phasis:

• In line 4 each thread attempts to acquire the lock for the given bucket. (The
casting is necessary because the type of the memory location must be an
integer pointer from the perspective of the atomic function.) If any thread
attempts to acquire a lock that is already taken, it will set the value 1, but
will also, receive a 1, and thus it will not enter the critical section. Only

35

CHAPTER 4. PROTOTYPING

threads receiving a 0 will enter the critical section, and only the thread
currently holding the lock is able to release it.

• In line 11 we have the memory fence, which is basically ensuring that
all threads trying to acquire the lock are also observing the correct order
of each other’s attempts. This is needed because atomic functions do not
have memory fence nor synchronization properties.

Due to the critical section, we can update any number of arrays using any
kind of operator. Thus, despite being much slower, it allows for greater flexibility
than the other strategies, which seems like a fair tradeoff. In practice, we should
only use this strategy as a fallback case when it is not possible to use one of the
other strategies.

4.2 Strategies for Subhistogramming
Due to the expected negative impact on performance arising from the serializing
effect of atomic operations, we investigate possibilities for mitigation based on
the idea of subhistogramming. In addition, we recall that one of the performance
bottlenecks identified in Section 3.4 was random writes. Thus, we implement
this idea in both global memory and the much faster shared memory.

The implementation of this idea relies on precomputed values, but for clarity
and brevity, we assume that all such values have been computed, and we will
explicitly describe each value when they arise. Furthermore, both cases (global
and shared memory) will be based on atomicAdd and chunking, i.e, one thread
will process multiple input elements. We will still be updating a bucket in a tra-
ditional histogram. Finally, we assume that all excess threads have been guarded
off.

4.2.1 Subhistogramming in Global Memory
The most straightforward way is to create subhistograms in global memory and
let threads cooperate regardless of which threadblock they belong to:

36

CHAPTER 4. PROTOTYPING

1 // Global thread id.
2 int gtid = blockIdx.x * blockDim.x + threadIdx.x;
3
4 // Global histogram id.
5 int ghid = (gtid / coop_lvl) * his_sz;
6
7 for(int i=gtid; i<img_sz; i+=num_threads) {
8 int bucket = f(img[i]);
9 atomicAdd(&histo[ghid + bucket], 1);
10 }

Here we assume that the following values have been computed; the number of
threads cooperating on one histogram, coop_lvl; the number of buckets in the
histogram, his_sz; the number of input elements, img_sz; and the number of
threads launched, num_threads.

The strategy has three main aspects to notice:

• The subhistograms are stored in global memory as one array, thus we need
to compute an offset to find the correct subhistogram. Each thread com-
putes the subhistogram to cooperate on based on its global thread index
(line 5). This means that threads from different thread blocks may coop-
erate.

• We assumed that each thread computes a chunk of elements, which is ex-
pressed by the for-loop starting in line 7. Recall that coalesced reads are
obtained if consecutive threads are reading consecutive elements. There-
fore, we let each thread start reading the element corresponding to its
global thread index, and the loop is incremented by the total number of
threads. The loop terminates when the loop counter exceeds the number
of elements in the input array.

• In line 8 we compute the bucket as if we had only one histogram, which
allows us to reuse the bucket function independently of the number of
subhistograms. The bucket is then used to obtain the correct index in the
large subhistogram array in line 9.

Even though the above code has been simplified for brevity and clarity, it
shows how simple it is to get a working implementation using subhistogramming
in global memory. The hard part lies in tuning the cooperation level, which we
will see later, but first, we show how to implement subhistogramming in shared
memory.

37

CHAPTER 4. PROTOTYPING

4.2.2 Subhistogramming in Shared Memory
Compared to the global memory version it requires only a few more steps to
implement subhistogramming in shared memory, but are not conceptually more
difficult to understand. It can be divided into three logical steps: 1) initialize
histograms in shared memory, 2) compute histograms in shared memory, and 3)
copy histograms to global memory.

The implementation is displayed in Figure 14, and in addition to the vari-
ables from the previous section, we assume that the number of histograms that a
thread block compute is given by hists_per_block. This value is determined
by how many subhistograms that fit in shared memory, and the cooperation level.
For example, if we can fit two subhistograms in shared memory, but the coopera-
tion level is more than 512, then we can only compute a single subhistogram per
block. On the contrary, if we can fit only one subhistogram in shared memory,
then the cooperation level is equal to the thread block size (if we assume 32-bit
buckets).

As said above, the code can be divided into three logical steps as also indi-
cated in the code:

• In line 15 we create an array of integers in shared memory. The total size
of shared memory is provided as an argument to the kernel and here we
simply use all of it for a single array.

The following loop in line 16 performs coalesced writes to initialize the
subhistograms, which are completely analogously to the coalesced reading
described in the previous section. Note, that we must use only threads
from the current thread block because shared memory is only visible on a
per-block basis.

Immediately after the loop, we need a barrier, __syncthreads() to en-
sure that all buckets have been initialized before any thread starts working
on any of the subhistograms.

• Histograms are computed completely analogously to the global memory
strategy. The only difference is that we use a local histogram index in line
24 to compute the bucket. Following this block, we also have a barrier to
ensure that no thread starts copying before all threads are done processing
elements.

• Finally, the histograms in shared memory are copied to global memory.
The important thing here is that each subhistogram in shared memory has
a corresponding space in global memory that it is copied to. In line 12
we see that the global histogram offset is computed on a per-block basis.

38

CHAPTER 4. PROTOTYPING

1 // Local and global thread id.
2 int ltid = threadIdx.x;
3 int gtid = blockIdx.x * blockDim.x + ltid;
4
5 // Total number buckets for local histograms.
6 int his_sz_block = hists_per_block * his_sz;
7
8 // Local histogram id.
9 int lhid = (ltid / coop_lvl) * his_sz;
10
11 // Global histogram id.
12 int ghid = blockIdx.x * hists_per_block * his_sz;
13
14 // 1) Initialize histograms in shared memory.
15 extern __shared__ int shared_histo[];
16 for(int i=ltid; i<his_sz_block; i+=blockDim.x) {
17 shared_histo[i] = 0;
18 }
19 __syncthreads();
20
21 // 2) Compute histograms in shared memory.
22 for(int i=gtid; i<img_sz; i+=num_threads) {
23 int bucket = f(img[i]);
24 atomicAdd(&shared_histo[lhid + bucket], 1);
25 }
26 __syncthreads();
27
28 // 3) Copy histograms from shared to global memory.
29 for(int i=ltid; i<his_sz_block; i+=blockDim.x) {
30 global_histo[ghid + i] = shared_histo[i];
31 }

Figure 14: Subhistogramming in shared memory.

39

CHAPTER 4. PROTOTYPING

This offset is then used for copying into the correct subhistogram space in
global memory. Note, that both the reads and the writes are coalesced.

We will see in a moment, that this strategy turns out to be faster than the one
in global memory, indicating that the random writes have a significant impact on
performance.

But this strategy is also more fragile. The obvious reason is that the amount
of shared memory is limited, hence it cannot be used for all situations. One
less obvious reason is that the more subhistograms we put in shared memory the
fewer thread blocks can run on a streaming multiprocessor. In practice, this may
or may not have a significant impact on performance, but we have not investi-
gated the full implications of this strategy.

Note on atomicExch-based Strategy in Shared Memory

If we want to use the atomicExch-based locking strategy with subhistogram-
ming in shared memory, we would straightforwardly translate the version using
global memory:

while(!done) {
if(atomicExch((int *)&locks[ghid + bucket], 1) == 0) {
histo[ghid + bucket] += 1;
locks[ghid + bucket] = 0;
done = 1;

}
__threadfence();

}

into one using shared memory, i.e., we would move locks and histo to shared
memory, holding everything else equal. While the global memory version works,
the shared memory version does not. We have not been able to figure out why
the first version does not work in shared memory, as opposed to the second.
Atomic functions do not impose constraints on memory orderings, and as such
we are removing conditions (the threadfence) that should ensure other threads to
observe the lock being released. We leave this issue for further studies and use
the second version in the following.

Instead, we use the following strategy:

40

CHAPTER 4. PROTOTYPING

while(!done) {
if(atomicExch((int *)&sh_locks[lhid + bucket], 1) == 0) {
sh_histo[lhid + bucket] += 1;
atomicExch((int *)&sh_locks[lhid + bucket], 0);
done = 1;

}
}

where sh_locks and sh_histo are shared memory versions of locks and
histo, respectively.

4.3 Performance Experiment
In the previous, when we discussed subhistogramming strategies, we assumed
that the cooperation level was given. In order to determine the cooperation level
we have run a comprehensive study investigating the runtime performance of
all three locking strategies for varying cooperation levels across a range of his-
togram sizes. Based on the results of this study, we present a heuristic for choos-
ing a cooperation level, and this chapter is concluded by a summary of the ex-
perimental results which we believe justify our heuristic. The full experimental
results are available in Appendix A

In addition, the experiment enables us to show further two things. First, we
show the impact on performance of choosing the atomicCAS or atomicExch-
based strategy compared to the atomicAdd strategy. Second, we show the im-
pact on performance when using subhistogramming in shared memory compared
to subhistogramming in global memory.

4.3.1 Setup
The experiment measures the runtime for computing a histogram from an input
array of 10 million elements. For each histogram size we let the cooperation
level range from no cooperation to full cooperation, i.e., from all threads com-
puting their own histogram to all threads cooperating on the same histogram.

For each histogram size, the values of the input array elements are uniformly
distributed and correspond to indices. Note, that this is the best case scenario
as we minimize contention and thus serialization. The distribution of input data
may have a significant impact on performance since both the frequency of colli-
sions and the cache hit rate are affected. We leave this issue to further studies,
but will revisit it briefly in the benchmarks.

All runtimes reported are averages of five runs and a single runtime measure-
ment includes initialization and computation of subhistograms but not the final

41

CHAPTER 4. PROTOTYPING

reduction phase. The reduction phase for varying number and size of histograms
are timed separately using the following Futhark program:

let main [H] (hists : [][H]i32) : [H]i32 =
map (\col -> reduce (+) 0 col) (transpose hists)

It takes as input an unknown number of subhistograms all of size H , which can
be seen as a matrix which rows corresponds to subhistograms. We then map a
reduction over the rows of the transposed matrix, in which rows consist of the
same bin from all subhistograms.

The final reduction phase is timed in Futhark because an efficient reduction
kernel is non-trivial to implement by hand in CUDA and the fact that efficient
code generation already exists in Futhark.

Finally, the performance of the code has been evaluated on a system consist-
ing of an Intel Xeon E5-2650 CPU, and an NVIDIA GTX 780Ti GPU. The latter
has 48MB of shared memory per block and 16MB of L1 cache. For NVIDIA
GPUs with compute capability 3.x this split can be configured but 48MB of
shared memory is the default and also the largest.

4.3.2 Heuristic for Choosing Cooperation Level
In order to minimize collisions but still keep the work complexity in check, we
now propose a heuristic for choosing a cooperation level.

In Section 3.1 we discussed the work complexities of high-level strategies
for computing histograms. Recall, that we had a data-parallel solution, Figure 9,
where all threads compute their own histogram, and a solution where all threads
cooperate on the same histogram using atomic functions, Figure 11. We observe
that these two cases correspond to two extremes. Our heuristic then interpolates
between these extremes by choosing a cooperation level. The optimal coopera-
tion level was determined by analyzing the results of the experiment described
above, and which are summarized in the following section.

As a theoretical justification, we here develop the work complexity for our
heuristic. In the following, assume the number of software threads launched
to be T := min (HDW, N), where HDW is the number of hardware threads
needed to saturate the machine. Each thread computes a chunk of elements of
size N/T . Now, let C denote the cooperation level we want to use, and let T/C
be the number of subhistograms produced using that cooperation level. Then the
work complexity can be computed as:

Wheuristic := O(T
C
×H + T × N

T
)

Then, as per our assumption of uniformly distributed input data, we can allow up
to H threads to cooperate on one subhistogram without collisions, i.e., C := H .

42

CHAPTER 4. PROTOTYPING

Substituting in this value we get:

Wheuristic := O(T
H
×H + T × N

T
)

but in practice we that HDW � N , such that:

Wheuristic := O(HDW +N) = O(N)

meaning that subhistogramming in global memory is work efficient if we choose
the cooperation level to be equal to the histogram size.

Thus, we have the following heuristic:

Per-thread chunk :=
⌈
N
T

⌉
Cooperation level := H

which produces dT/Ce subhistograms. In practice, the runtime associatied with
the final reduction, which depends on the number and size of subhistograms
produced, is negligible when using our heuristic.

We note that the depth complexity is equal toN in the worst case, i.e., having
one large histogram where all elements hit the same bucket. In practice, though,
we expect to have depth O(1), excluding the final reduction.

Finally, the above heuristic needs some adjustment when using subhistogram-
ming in global memory: When only one histogram fit in shared memory and the
cooperation level is greater than the block size, then the current heuristic would
propose a cooperation level which is not possible. From the experimental re-
sults, we observed that setting an upper limit for cooperation level equal to the
block size produces good results. The heuristic for subhistogramming in shared
memory becomes:

Per-thread chunk :=
⌈
N
T

⌉
Cooperation level (C) := min (H , B)

under the condition
⌈
B
C

⌉
×H ≤ 12KB. HereB is thread block size, and the con-

dition ensures that at the size of at least one subhistogram, using 32-bit buckets
and 48KB of shared memory, does not exceed the amount of shared memory. We
then fit as many subhistograms as possible subject to two limitations, namely, the
amount of shared memory and the the thread block size, and choose the smallest
limit. When H > B the work complexity will be greater than the one com-
puted above, because fewer threads are cooperating on one histogram, causing
the number of subhistograms to increase compared to the corresponding case in
global memory. This again effects the the number of thread blocks needed to
process all elements, but we expect this overhead to be negligible. In total, this
leaves room for improvement of our heuristic regarding shared memory, but, as
we will see, we obtain a significant improvement in runtime performance com-
pared to global memory.

43

CHAPTER 4. PROTOTYPING

0.0

0.5

1.0

Sl
ow

do
wn

×0
.86 ×0

.94

×0
.85

×0
.89 ×0

.96

×1
.00

×1
.00

×0
.99

×1
.00

×0
.99

×1
.00

×1
.00

- -

Add

Global Shared

0.0

0.5

1.0

Sl
ow

do
wn

×1
.00

×1
.00

×0
.84

×0
.88

×0
.92

×0
.93 ×0
.98

×0
.66 ×0

.78

×0
.82

×0
.82 ×1

.00

- -

CAS

16 64 256 1024 4096 16384 61440
Histogram size

0.0

0.5

1.0

Sl
ow

do
wn

×1
.00

×1
.00

×0
.75 ×0

.84

×0
.88 ×0
.93

×0
.96

×1
.00

×1
.00

×1
.00

×1
.00

×1
.00

- -

Xchg

Figure 15: The impact on performance for subhistogramming when using our
heuristic. For each histogram size, we find the fastest runtime, no
matter its cooperation level, which is then used as a baseline when
comparing the runtime obtained from using the cooperation level
proposed by our heuristic. This is done for all locking strategies, in-
dicated by Add, CAS, and Xchg, and memory spaces, Global and
Shared. Values of 1.00 indicate that our heuristic proposed the co-
operation level that produced the fastest runtime. See Table 3 for
data corresponding to this graph.

. .

4.3.3 Empirical Validation of Proposed Heuristic
The full experimental results are available in Appendix A and the proposed
heuristic were chosen by analyzing them, but here, for clarity and brevity, we
present a summary of the results which we believe justify the chosen heuristic.

Figure 15 shows the runtime performance of subhistogramming when using
our heuristic. For each histogram size, the horizontal axis, we have compared
the runtime performance obtained using our heuristic to the runtime for the co-

44

CHAPTER 4. PROTOTYPING

operation level giving the fastest runtime. The vertical axis then gives the slow-
down, i.e., how did we compare to the fastest runtime, hence a bar with height
1.00 means that our heuristic provided the fastest runtime. This is done for both
shared and global memory, and for each of the three locking strategies.

For CAS and Xchg, we see that for the two smallest histograms in global
memory, 16 and 64, the cooperation level chosen by our heuristic provides the
fastest runtime. For Add, on the other hand, is up to 14% slower, and the optimal
cooperation levels in these cases are 16 times larger than the histogram size.
This indicates that Add is implemented with specialized hardware that handles
collisions better, and it suggests that it uses a higher cooperation level in this
case.

For the two largest histograms in global memory, 16384 and 61440, we have
the opposite pattern. Here our heuristic provides the optimal cooperation level
for Add, but is within 7% for CAS and Xchg. For both CAS and Xchg the
optimal cooperation levels are 16 times lower than the histogram size, i.e., 4096
and 16384, respectively.

For the medium-sized histograms in global memory, 256, 1024, 4096, and
for all three operators, our heuristic does not provide the optimal cooperation
level. The slowdown is up to 25%, while most slowdowns are around 8%−10%.
From the raw data we see that this is due to the same patterns described above:
Add allows for greater cooperation levels, while CAS and Xchg require lower
cooperations. For the latter two operators, the data suggests that the cooperation
level is equal to the histogram size divided by four.

For Add and Xchg on all histogram sizes in shared memory, our heuristic
provides a close-to-optimal cooperation level. Only for CAS we see a significant
decrease on small histograms in shared memory, and the raw data suggests we
use a cooperation level equal to the histogram size divided by four. We have not
investigated why CAS would perform significantly worse than Xchg in shared
memory, and leave that for future studies.

In total, we believe that this justifies our heuristic for three reasons. First, for
all three strategies, the heuristic is stable across a broad range of histogram sizes.
Second, its simplicity is appealing in a language implementation, in which the
small slowdowns seems tolerable compared to increased complexity in the com-
piler. Third, even though its implications are not yet fully understood it seems
fairly easy to reason about, which is desirable in an already complex setting.
Therefore, we will use the heuristic in our implementation.

Performance Penalty From Using Other Operators Than atomiAdd

Table 1 shows the impact on runtime performance from using atomicCAS or
atomicExch compared to atomicAdd, when using our heuristic. For each his-

45

CHAPTER 4. PROTOTYPING

16 64 256 1024 4096 16384 61440

Global
Add (µs) 434µs 484µs 744µs 913µs 947µs 913µs 997µs
CAS (×) 0.39× 0.40× 0.33× 0.24× 0.20× 0.20× 0.21×
Xchg (×) 0.24× 0.23× 0.19× 0.13× 0.11× 0.11× 0.11×

Shared
Add (µs) 489µs 467µs 505µs 500µs 555µs - -
Cas (×) 0.32× 0.34× 0.40× 0.43× 0.58× - -
Xchg (×) 0.19× 0.20× 0.21× 0.21× 0.19× - -

Table 1: The impact on performance of using atomicCAS or atomicExch
compared to atomicAdd, for a range of histogram sizes (topmost row).
For subhistogramming strategies in both global and shared memory, in-
dicated by Global and Shared, respectively, row atomicAdd is used
as baseline and displays runtime in microseconds; rows atomicCAS
and atomicExch display slowdowns.

. .

togram size, the topmost row, we use atomicAdd as baseline, row Add, which
displays runtime in microseconds. We then compare the strategies atomicCAS
and atomicExch, rows Cas and Xchg, respectively, to the baseline.

For small histograms in global memory, we see that CAS is up to 1
0.39

=
2.56× slower than Add, and that for larger histograms is up to 1

0.20
= 5× slower.

This pattern repeats for Xchg which is 1
0.24

= 4.16× slower on small histograms
and 1

0.11
= 9.09× slower on large histograms.

In shared memory, we see that for medium-sized histograms, which are the
largest we have tried in shared memory, that the slowdown is less significant than
in global memory.

In total, this suggests what we attempt to recognize the case when the opera-
tor is a simple addition and then utilize the corresponding atomic function. This
also holds for CAS, i.e., if we can detect the case where we can use CAS instead
of Xchg.

Speedup From Using Subhistogramming in Shared Memory

Finally, Table 2 shows the impact on runtime performance from using shared
memory instead of global memory, when using our heuristic. For a range of
histogram sizes we use the runtime using subhistogramming in global memory
as baseline, and compare the runtime using shared memory.

For small histograms, it appears that we do not benefit from using the faster
shared memory. One reason might be, that the impact on runtime performance
from random writes is less significant for small histograms, i.e., the impact from

46

CHAPTER 4. PROTOTYPING

16 64 256 1024 4096

Add Global (µs) 434µs 484µs 744µs 913µs 1020µs
Shared (×) 0.89× 1.04× 1.48× 1.83× 1.84×

Cas Global (µs) 1103µs 1217µs 2235µs 3862µs 4296µs
Shared (×) 0.72× 0.89× 1.79× 3.33× 4.51×

Xchg Global (µs) 1812µs 2094µs 3948µs 6827µs 7495µs
Shared (×) 0.70× 0.88× 1.67× 2.93× 2.50×

Table 2: The impact on performance of using shared memory compared to
global memory, for a range of histogram sizes (topmost row). For
each locking strategy atomicAdd, atomicCAS, and atomicExch,
indicated by Add, CAS, and Xchg, respectively, row Global is used
as baseline and display runtime in microseconds; row Shared display
speedup.

. .

an increased cache miss rate caused by distant writes is less severe in small
histograms.

On the contrary, we see that with larger histograms we benefit from having
subhistograms in shared memory. For example, for histogram size 4096 and
CAS we see a 4.51 speedup, which will make the operator run in about 1000µs,
i.e., as fast as Add does in global memory. The runtime for Xchg can be more
than halved, although it will still be slow compared to the other two. Finally, we
can make Add, which is already very fast, run in almost half the time of global
memory.

47

5 Implementation

This chapter describes the implementation of a new language construct in the
programming language Futhark and its optimizing compiler. The code genera-
tion is based on the subhistogramming strategy in global memory described in
the previous chapter.

The Futhark compiler supports both sequential and parallel code generation,
and it therefore contains two pipelines: one for sequential programs and one
for programs containing parallel parts. The focus of this chapter is the parallel
pipeline generating host programs in C and calls OpenCL kernels, although other
targets are supported. This pipeline is displayed in Figure 16 in a conventional
three-stage structure, and this chapter describes our work progressing from front
to back end.

In Futhark a pipeline comprises a collection of passes, each taking as input
a program and producing a program as output. Our work has been focused on
extending existing enabling transformations, i.e., passes that modify the abstract
syntax tree to increase the effectiveness of subsequent passes, effectively modi-
fying the whole pipeline to handle the new construct.

Finally, the Futhark compiler, including our contribution, is publicly avail-
able under a free software license at:

. .

Lexer + Parser

Typechecker

Internalisation
Transformations
+ Optimisations

IL Code Gen.
(Kernels)

IL Code Gen.
(OpenCL calls)

OpenCL
Code Gen.

Futhark source code OpenCL program

Fr
on

te
nd

Middle

B
ac

k
en

d

Figure 16: Data flow diagram for the GPU compilation pipeline.

48

CHAPTER 5. IMPLEMENTATION

https://github.com/diku-dk/futhark/

The compiler is written in Haskell and we will reference files as Haskell mod-
ules, e.g., src/Futhark/Representation/SOACS/SOAC.hs is referenced
as Futhark.Representation.SOACS.SOAC. To reference a specific func-
tion in a module the last component of a module reference will be the function
name, which always start with a lowercase letter. Due to space issues and to
increase readability we will sometimes omit code from listings, which will be
indicated by (..).

5.1 Front End

Lexer Parser Typechecker Internalisation

Futhark
source code ASTC SOACS

Tokens ASTS

NoInfo

ASTS

Info

Front end

The abstract syntax for the Futhark language is split into two: a source version
(ASTS) and a core version (ASTC). This increases flexibility in the middle phase
of the pipeline as we will see later. In addition, the source version is parameter-
ized by having type information or not, and the core version is parameterized by
a representation.

With this in place, we say that the responsibility of the lexer and parser is
to translate a Futhark source program into source abstract syntax with no type
information. Then the type checker adds type information to the source abstract
syntax, and, finally, the internaliser handles higher-order functions and modules,
before translating the source abstract syntax into core abstract syntax parameter-
ized by the SOACs representation.

5.1.1 Lexer, Parser, and Type Checker
We have dubbed the new language construct reduce_by_index and it will be
exposed to the user through a library function from the SOACs library which is
loaded by default through the prelude. Thus, users can simply use the reduce_by_index
in their programs without loading any modules.

Figure 17 displays the function, where lines 1 through 3 constitutes the func-
tion declaration and line 4 is the function body. The function takes as input five
arguments and it is important to notice the following: the first input, dest, and
the result must be of equal length; the array of indices, is, and array of values,
as, must be of equal length; and that the combining function, f, the element ne,

49

https://github.com/diku-dk/futhark/

CHAPTER 5. IMPLEMENTATION

1 let reduce_by_index ’a [m] [n]
2 (dest : *[m]a) (f : a -> a -> a)
3 (ne : a) (is : [n]i32) (as : [n]a) : *[m]a =
4 intrinsics.gen_reduce (dest, f, ne, is, as)

Figure 17: The new language construct is exposed to the user through the
SOACs library, which is also loaded by default through the prelude.

data ExpBase f vn =
(..)
| Apply (ExpBase f vn) (ExpBase f vn) (f Diet)

(f PatternType) SrcLoc
| GenReduce (ExpBase f vn) (ExpBase f vn) (ExpBase f vn)

(ExpBase f vn) (ExpBase f vn) SrcLoc

Figure 18: Language.Futhark.Syntax.
. .

and the array of values must all be of the same type. It is the responsibility of
the user to check whether ne is the neutral element for f.

Importantly, the body contains a single call to a function called gen_reduce,
which takes all the same arguments as the library function.

We begin our presentation of the implementation right after the program has
been lexed, parsed, and type checked. At this point, the program is represented
by the source abstract syntax. The important parts of the syntax definition are
shown in Figure 18, where the arguments to the data type are used to parameter-
ize the abstract syntax by type information.

Because the construct is a higher-order polymorphic function, it will be
wrapped by an Apply-node. The type checker has ensured that the constraints
discussed above, imposed by the function declaration, are satisfied. Now, it is the
job of the internaliser to translate the the Apply-node into a GenReduce-node.

5.1.2 Internalisation

Defunctoriser Monomorphiser Defunctionaliser Internaliser

ASTS Info ASTC SOACS
Internalisation

Futhark supports both higher-order functions and modules, and in order to gen-
erate code for GPUs which has only limited support for function pointers, it

50

CHAPTER 5. IMPLEMENTATION

evaluates away modules and turn higher-order functions into calls to a first-order
apply-function. The result of this process, a well-typed, monomorphic, module-
free program in source abstract syntax is then transformed into core abstract
syntax (as indicated by the small diagram below the section title) [Hov18].

The described process has been split into four separate passes; defunctoriser,
monomorphiser, defunctionaliser, and internaliser. Our implementation has only
modified the latter three, and therefore we will not go into further details about
the defunctoriser than as to note, that it is responsible for removing modules.
Thus, the defunctoriser receives a well-typed and polymorphic program with
modules and produces an equivalent module-free program which is passed to
the monomorphiser.

Monomorphiser

Since the the defunctionaliser works only on monomorphic programs, the job
of the monomorphiser is to convert a polymorphic program into an equivalent
but monomorphic program. That is, for each instance of a polymorphic func-
tion it specializes its type for that particular type instantiation determined by the
application in the program. Effectively, it produces specialized functions from
generic ones.

The above description is the task for the function in Figure 19. It takes as
input a value of type Exp, which is a Haskell type synonym for ExpBase – the
source abstract syntax – shown in Figure 18, and it produces a monomorphic
expression inside the MonoM-monad.

As mentioned above, higher-order functions cannot be present in the abstract
syntax at this point and are therefore wrapped in an Apply-node. transformExp
then receives an Apply-node holding our construct, pattern matches on the num-
ber of arguments (line 5) and looks up if it knows a function named gen_reduce
(line 6). Recall, that this function was the body of the library function in Fig-
ure 17. If these checks suceed, it produces a GenReduce-node (Figure 18) in
source abstract syntax, and makes a recursive call to also transform its arguments
(line 7 and lines 12-19).

Defunctionaliser

At this point, the monomorphiser has just turned all polymorphic functions into
monomorphic functions, but the program still contains higher-order functions.

Higher-order functions are, as mentioned above, not well-suited for GPUs
and one way to get around that is to turn them into first-order apply-functions [Hov18].
This is the job of the defunctionaliser, which main function is shown in Fig-
ure 20. The function takes as input a value in source abstract syntax, Exp, and

51

CHAPTER 5. IMPLEMENTATION

1 transformExp :: Exp -> MonoM Exp
2 transformExp (Apply e1 e2 d tp loc) =
3 case (e1, e2) of
4 (..)
5 (Var v _ _, TupLit [dest, op, ne, buckets, img] _)
6 | intrinsic "gen_reduce" v ->
7 transformExp $ GenReduce dest op ne buckets img loc
8 where intrinsic s (QualName _ v) =
9 baseTag v <= maxIntrinsicTag &&
10 baseName v == nameFromString s
11 (..)
12 transformExp (GenReduce e1 e2 e3 e4 e5 loc) =
13 GenReduce
14 <$> transformExp e1 -- histogram
15 <*> transformExp e2 -- operator
16 <*> transformExp e3 -- neutral element
17 <*> transformExp e4 -- buckets
18 <*> transformExp e5 -- input image
19 <*> pure loc

Figure 19: Futhark.Internalise.Monomorphise.
. .

returns a tuple inside the DefM-monad. We are not experts on this part of the
compiler, thus the reader must make do with a high-level explanation of the first
component of the tuple which are the most important to us. The first component,
Exp, resembles the original input value but instead of possible lambda abstrac-
tions it has record expressions capturing the environment variables at the time
of evaluation. At a later point the function will be evaluated using the values
from the record expressions. The defunctionalisation process is called recur-
sively on the arguments of GenReduce, ultimately producing a defunctionalised
GenReduce-node. The program is now a well-typed, monomorphic program,
without modules and without higher-order functions.

Internaliser

Last, but definitely not least, we have the internaliser. It receives the program
produced by the defunctionaliser, which is in source abstract syntax, and trans-
lates it into core abstract syntax. After this last translation step in the front end,
the compiler will perform various transformations and optimizations on the core
abstract syntax tree.

Before we go into detail about the implementation of the internaliser, we take

52

CHAPTER 5. IMPLEMENTATION

1 defuncExp :: Exp -> DefM (Exp, StaticVal)
2 defuncExp e@(GenReduce hist op ne bfun img loc) = do
3 hist’ <- defuncExp’ hist
4 op’ <- defuncSoacExp op
5 ne’ <- defuncExp’ ne
6 bfun’ <- defuncSoacExp bfun
7 img’ <- defuncExp’ img
8 return (GenReduce hist’ op’ ne’ bfun’ img’ loc,
9 Dynamic $ typeOf e)
10 (..)

Figure 20: Futhark.Internalise.Defunctionalise.
. .

a step back and consider the high-level design of the internal representation of
the new construct. We do this in order to show the difference between source
Futhark, which uses an array-of-structs representation, and core Futhark, which
uses a structs-of-arrays representation. For this reason, we cannot simply map
the type for the source language construct to the core language. Here we de-
velop the core language representation such that we know the end goal of this
translation.

In order to describe the internal representation – the end point of the inter-
nalisation process – we will make use of the following notation adapted from
[HLO16]. Whenever α is some object we will write α to denote a sequence of
α’s:

α = α · · ·α

and if we need to specify the length of the sequence we add a superscript:

αk = α1, α2 · · ·αk

We can also prepend to a sequence:

β αk = β, α1, α2 · · ·αk

If the term under the bar is variant we add a subscript to the term:

αi
k = α1, α2 · · ·αk

Finally, if we want to write out a sequence we use braces, e.g.:

α2 = {α1, α2}

53

CHAPTER 5. IMPLEMENTATION

Now, referring to the function declaration for our construct in Figure 17, the
source language type is as follows:

∗[m]α→ (α→ α→ α)→ α→ [n]i32→ [n]α→ ∗[m]α

But, as mentioned, this has some implications. In particular, a source array
[](i32, i32) is represented in the core language as two separate arrays of type
[]i32. Using the new notation we are able to capture this fact in the core langauge
as follows:

∗[mi]αi

∑
k li

→
(
αi

li → αi
li → αi

li
)k

→ αi

∑
k li

→
(
βi

k →
(
i32, αi

li
)k)

→ ∗[ni]βi
k

→ ∗[mi]αi

∑
k li

where the first argument is a sequence of destination arrays, the second is a
sequence of combining operators, the third is a sequence neutral elements, the
fourth is a single bucket function, and the fifth is a sequence of input arrays.
This ultimately produces a sequence of arrays of the same types and lengths as
the first argument.

This representation allows k different input arrays from the source language,
where each source array is represented by li arrays in the core language. For
example, [m](f32, i32) in the source language, corresponds to k = 1, li = 2,
and {[m]f32, [m]i32} in the core language.

To gain some intuition for this representation consider the following exam-
ple using a source array of type [](f32, f32). The type of the source language
function becomes:

∗ [m](f32, f32)

→ ((f32, f32)→ (f32, f32)→ (f32, f32))

→ (f32, f32)

→ [n]i32

→ [n](f32, f32)

→ ∗[m](f32, f32)

54

CHAPTER 5. IMPLEMENTATION

1 data SOAC lore =
2 (..)
3 | GenReduce SubExp [GenReduceOp lore] (LambdaT lore) [VName]
4 (..)
5
6 data GenReduceOp lore =
7 GenReduceOp { genReduceWidth :: SubExp
8 , genReduceDest :: [VName]
9 , genReduceNeutral :: [SubExp]
10 , genReduceOp :: LambdaT lore }

Figure 21: Futhark.Representation.SOACS.SOAC.
. .

while the type of the core language expression becomes:

{ ∗[m]f32, ∗[m]f32 }
→ { (f32→ f32→ f32), (f32→ f32→ f32) }
→ { f32, f32 }
→ (β → { i32, f32, f32 })
→ ∗[n]β

→ { ∗[m]f32, ∗[m]f32 }

where β is the type of the array that produces the indices and values when the
bucket function is applied to it.

With this definition in place, we re-enter the pipeline where we left: right
before the translation from source abstract syntax to core abstract syntax.

Like the source abstract syntax was parameterized by type information, the
core abstract syntax is parameterized by a representation, where each represen-
tation eases different optimizations. There are three main representations in the
Futhark compiler; SOACS, Kernels, and ExplicitMemory. We will go into de-
tails for each representation when we describe our implementation in the middle
stage.

The end goal for the internalisation process is the core abstract syntax param-
eterized by the SOACs representation, meaning that program still has second-
order array combinators and nested parallelism. Thus, we want to extend the
collection of SOACs with our new construct based on the core language type
developed above.

The Haskell implementation of the core language type, GenReduce, is shown
in Figure 21. Its first argument, SubExp, is the length of the possibly multiple
input arrays represented by the last argument, [VName]. This means that we

55

CHAPTER 5. IMPLEMENTATION

end up requiring all input arrays to be of equal length, although the core lan-
guage type allowed otherwise. We do this in order for Futhark to perform better
optimizations.

Further, we see that its second argument is [GenReduceOp lore], repre-
senting the notion of a histogram in the source language, i.e., it contains a list of
variable names (line 8) corresponding to components of the source input array,
along with a list of neutral elements (line 9) represented in the same fashion as
just described, and a combining operator (line 10). The first SubExp (line 7) is
used later to ensure that all the arrays in line 8 have equal length. (Again, this
goes against the core language type, and we are also going against it for the same
reason as before.)

Finally, we have (LambdaT lore), which is the sole bucket function.
Now that we have established a mapping between the source language and

the core language, and added our construct to the existing collection of SOACS,
we are ready to proceed with the actual translation. The main function of the
internaliser is internaliseExp, which is shown in Figure 22. It is tasked with
translating the source abstract syntax constructor, GenReduce, into the core ab-
stract constructor of the same name. As an indication in the compiler source
code, we see that the function takes as its second argument an E.Exp and re-
turns [I.SubExp], such that E refers to the source (external) abstract syntax,
and I refers to the core (internal) abstract syntax parameterized by the SOACs
representation.

internaliseExp takes two inputs; the second argument, E.Exp, is an ex-
pression from the source abstract syntax (in our case GenReduce) that we are
about to translate into core abstract syntax, and the first argument is a string,
which we want to bind the result of the translation of Exp too.

Roughly, the code can be divided into three sections:

• In lines 8-13 the individual components of the function are internalised
recursively. For example, when internalising the variable hist it may
result in multiple core language arrays as described previously.

• Because Futhark is statically typed, types are size-dependent, and we are
doing these manipulations after the source abstract syntax has been type
checked we insert assertions. For example, the compiler should throw an
error when the row type of the destination array and the type of the neutral
element is not referring to the same size variable (lines 17-22). In other
words, you may have two variables that you know should be of the same
size, but if they do not refer to the same size variable in the compiler, then
it will complain.

56

CHAPTER 5. IMPLEMENTATION

1 (..)
2 import Language.Futhark as E
3 import Futhark.Representation.SOACS as I
4 (..)
5 internaliseExp :: String -> E.Exp -> InternaliseM [I.SubExp]
6 internaliseExp desc
7 (E.GenReduce hist op ne buckets img loc) = do
8 ne’ <- internaliseExp "gen_reduce_ne" ne
9 hist’ <- internaliseExpToVars "gen_reduce_hist" hist

10 buckets’ <-
11 letExp "gen_reduce_buckets" . BasicOp . SubExp =<<
12 internaliseExp1 "gen_reduce_buckets" buckets
13 img’ <- internaliseExpToVars "gen_reduce_img" img
14
15 -- reshape neutral element to have same size as the
16 -- destination array
17 ne_shp <- forM (zip ne’ hist’) $ \(n, h) -> do
18 rowtype <- I.stripArray 1 <$> lookupType h
19 ensureShape asserting
20 "Row shape of destination array does " ++
21 "not match shape of neutral element"
22 loc rowtype "gen_reduce_ne_right_shape" n
23
24 ne_ts <- mapM I.subExpType ne_shp
25 his_ts <- mapM lookupType hist’
26 op’ <- internaliseFoldLambda
27 internaliseLambda op ne_ts his_ts
28
29 (..)
30
31 letTupExp’ desc $ I.Op $
32 I.GenReduce w_img [GenReduceOp w_hist hist’ ne_shp op’]
33 (I.Lambda params body’ rettype) $ buckets’’ : img’

Figure 22: Futhark.Internalise.

57

CHAPTER 5. IMPLEMENTATION

• In lines 24-27 the combining operator, op, is internalised. Basically, the
function internaliseFoldLambda is responsible for ensuring that the
shapes of formal and actual arguments are correct, and that the return type
of the function and the type of its body is the same.

• Finally, in lines lines 31-33, we return a variable that is let-bound to an in-
ternal GenReduce-expression comprising the internalised componenents.

This concludes the front end stage, where we have seen how the construct is
exposed to the user as a polymorphic higher-order function, transformed into a
monomorphic first-order function, and ultimately how it is translated into core
abstract syntax.

5.2 Middle

SOACS Kernels ExplicitMemory

ASTC SOACS ASTC ExplicitMemory

ASTC

SOACS

ASTC

Kernels

Middle

After the internalization process, the program is now represented in core abstract
syntax parameterized by the SOACs representation. As displayed in the figure
above, the middle stage can be conceptually divided into three steps represented
by the parameterization of the core abstract syntax tree that they are working
on. Each step is comprised of multiple subpasses of which most are optimiz-
ing transformations such as fusion A high-level overview of the sub-passes are
shown in Appendix B.1.

In the following, we will focus on enabling transformations, i.e., transforma-
tions that change the representation, and show how the new construct progresses
through the pipeline.

Representation – SOACS

Since we have already seen how source abstract syntax is translated into core
abstract syntax parameterized by the SOACs representation, we here show the
corresponding type checker. Each representation extends a basic type checker
and type checking is performed every time the core abstract syntax changes its
parameterization. The type checkers are similar in structure and therefore we
will not show the type checkers for the other representations.

Figure 23 displays the source code for the type checker for the SOACs rep-
resentation. From the Haskell function declaration we see that it takes as input a

58

CHAPTER 5. IMPLEMENTATION

SOAC, in this case the new GenReduce node, and produces unit in the TypeM-
monad. The monad contains a variable table and a function table, which the
type checker has access to when it is running. This function, typeCheckSOAC,
and other type checkers, then throw an error in the TypeM-monad when things
are not type checking. These errors are indicated by, for example, the functions
TC.require and TC.bad.

The type checker checks various properties, and we have emphasized the
following:

• Line 4 ensures that the argument given as length for the input arrays is
really an integer.

• Lines 7-23 are a larger code block that checks if the types of the combin-
ing operators corresponds to the type of their neutral element and to their
destination arrays. For example, line 12 ensures that the arguments to the
combining operator corresponds to the the type of the neutral elements,
while lines 13-18 check that the return type of the operator equals the type
of the neutral element.

• Finally, lines 32-40 check that the return type of the bucket function is
an array of buckets, replicate (length ops) (Prim int32), fol-
lowed by the results from the combining operators, nes_ts.

With this, we conclude our description of the SOACs representation. As
displayed in the small diagram below the title for this section, the core abstract
syntax in the SOACs representation is now about to change representation to the
Kernels representation.

Representation – Kernels

At this point in the pipeline, we introduce the notion of kernels, also indicated
by name. This representation enables optimizations related to flattening and co-
alescing, but our implementation has only touched the enabling transformation.

The starting point is the GenReduce-node from the SOACs representation
introduced in Figure 21, and the end point is a new node named GroupGenReduce
(Figure 24), which captures the notion of in-kernel expressions. In other words,
GroupGenReduce belongs to a group of expressions, such as GroupScan and
GroupReduce, which can be said to be in the body of a kernel. This is similar
to how GenReduce extended the collection of SOACs.

With the change of representation, we introduce the notion of kernels, which
means that the program now supports flat-parallelism expressed via GPU ker-
nels. This is the major first difference between the parallel and sequential pipeline.

59

CHAPTER 5. IMPLEMENTATION

1 typeCheckSOAC :: TC.Checkable lore =>
2 SOAC (Aliases lore) -> TC.TypeM lore ()
3 typeCheckSOAC (GenReduce len ops bucket_fun imgs) = do
4 TC.require [Prim int32] len
5
6 -- Check the operators.
7 forM_ ops $ \(GenReduceOp dest_w dests nes op) -> do
8 nes’ <- mapM TC.checkArg nes
9 TC.require [Prim int32] dest_w

10
11 -- Operator type must match the type of neutral elements.
12 TC.checkLambda op $ map TC.noArgAliases $ nes’ ++ nes’
13 let nes_t = map TC.argType nes’
14 unless (nes_t == lambdaReturnType op) $
15 TC.bad $ TC.TypeError $ "Operator has return type " ++
16 prettyTuple (lambdaReturnType op) ++
17 " but neutral element has type " ++
18 prettyTuple nes_t
19
20 -- Arrays must have proper type.
21 forM_ (zip nes_t dests) $ \(t, dest) -> do
22 TC.requireI [t ‘arrayOfRow‘ dest_w] dest
23 TC.consume =<< TC.lookupAliases dest
24
25 -- Types of input arrays must equal parameter types
26 -- for bucket function.
27 img’ <- TC.checkSOACArrayArgs len imgs
28 TC.checkLambda bucket_fun img’
29
30 -- Return type of bucket function must be an index for
31 -- each operation followed by the values to write.
32 nes_ts <- concat <$>
33 mapM (mapM subExpType . genReduceNeutral) ops
34 let bucket_ret_t =
35 replicate (length ops) (Prim int32) ++ nes_ts
36 unless (bucket_ret_t == lambdaReturnType bucket_fun) $
37 TC.bad $ TC.TypeError $
38 "Bucket function has return type " ++
39 prettyTuple (lambdaReturnType bucket_fun) ++
40 " but should have type " ++ prettyTuple bucket_ret_t
41 (..)

Figure 23: Futhark.Representation.SOACS.SOAC.

60

CHAPTER 5. IMPLEMENTATION

data KernelExp lore =
(...)
| GroupGenReduce [SubExp] [VName] (LambdaT lore)

[SubExp] [SubExp] VName
(...)

Figure 24: Futhark.Representation.Kernels.KernelExp.

1 transformStm :: KernelPath -> Stm -> DistribM KernelsStms
2 transformStm path (Let orig_pat (StmAux cs _)
3 (Op (GenReduce w ops bucket_fun imgs))) = do
4 bfun’ <- Kernelise.transformLambda bucket_fun
5 genReduceKernel path [] orig_pat [] [] cs w ops
6 bfun’ imgs

Figure 25: Futhark.Pass.ExtractKernels.
. .

On a high level, we are transforming a program using second-order array com-
binators to a program using explicit kernels, by applying a kernel extraction
transformation. The transformation will attempt to rearrange construct in order
to make more parallelism available, e.g., via loop-distribution.

In the process of translating a GenReduce-node to a GroupGenReduce-
node, we will use three functions, namely, transformStm, genReduceKernel,
and blockedGenReduce. Together they generate code for, among other things,
the final segmented reduction that combines the subhistograms, the loop that en-
sures coalesced reads, the heuristic, and for computing indices for reading and
writing memory.

The entry point for the translation is transformStm, which is shown in Fig-
ure 25. It takes two inputs, but only the second, Stm, is important to us. A Stm

is basically a let-bound variable. Recall, that we bound the result of processing
the GenReduce-node in the function internaliseExp in Figure 22.

transformStm is mainly a wrapper for genReduceKernel, but first it ex-
tracts the statements in the body of the bucket function (line 4).

This brings us to genReduceKernel which is shown in Figure 26. It takes
as input a lot of arguments, but for simplicity, we will focus on the last four,
which corresponds to the arguments to the GenReduce-node in the SOACS rep-
resentation (Figure 21). The functions overall purpose is twofold: 1) it adds the
statements produced by the call to blockedGenReduce (line 9), which we will
return to, and 2) it generates code for choosing at runtime if we can avoid the

61

CHAPTER 5. IMPLEMENTATION

final segmented reduction.
Besides the call to blockedGenReduce in line 9, we will empasize three

important sections:

• Lines 13 and 15 chunks the variable names referring to arrays in the desti-
nation histogram and the variable names we want to bind them to. This is
due to the fact that one histogram may comprise multiple arrays in Haskell
caused by the tuples-of-arrays representation in the Futhark compiler.

• Lines 22-23 computes the number of subhistograms we are using for each
histogram computation. This is not part of the heuristic, but is merely a
simple trick to possibly avoid performing the final segmented reduction if
we have only one subhistogram.

• Lines 26-29 then checks if the number of subhistograms are equal to one
(still on a per histogram basis), which are used in lines 32-36 to gen-
erate an if-statement that chooses between two code generations at run-
time; body_with_segred contains code for the segmented reduction
case, while body_with_reshape contains code for the single subhis-
togram case,

Above we mentioned, that genReduceKernel is responsible for adding the
statements produced by blockedGenReduce, but we did not specify what state-
ments. As an example, it is tasked with creating the loop that ensures coalesced
reads, but also to allocate the locks array.

blockedGenReduce, which is shown in Figures 27 and 28, is a rather large
function and a lot of things are happening, but we will empasize four important
sections. The first two are in the shown in Figure 27:

• Lines 5-15 checks the number of subhistograms. If we have one large his-
togram we reuse the original array as the destination. If we have many
subhistograms we copy the values from the original array into the destina-
tion array. Finally, we insert an if-statement to choose at runtime.

• Lines 18-21 are responsible for allocating the locks array, which is an
integer array with length equal to the number of buckets times the number
of subhistograms, and with all elements initialized to zero. To allocate the
array we insert a Replicate-node.

Note, that the locks array is allocated regardless of the operator, although
it is only the atomicExch strategy that needs this array. This is because
we select the strategy depending on the operator late in the pipeline, as we
will see later. We discuss the implications of this design in Section 7.1
when we consider the subhistogramming strategy in shared memory.

62

CHAPTER 5. IMPLEMENTATION

1 genReduceKernel path nests orig_pat ispace
2 inputs cs genred_w ops lam arrs = do
3 ops’ <- forM ops $ \(GenReduceOp num_bins dests nes op) ->
4 GenReduceOp num_bins dests nes <$>
5 Kernelise.transformLambda op
6 (..)
7 runBinder_ $ do
8 (histos, k_stms) <-
9 blockedGenReduce genred_w ispace inputs’ ops’ lam arrs

10
11 addStms $ fmap (certify cs) k_stms
12
13 let histos’ = chunks (map (length . genReduceDest) ops’)
14 histos
15 pes = chunks (map (length . genReduceDest) ops’) $
16 patternElements orig_pat
17
18 mapM_ combineIntermediateResults (zip3 pes ops histos’)
19 where (..)
20 combineIntermediateResults
21 (pes, GenReduceOp num_bins _ nes op, histos) = do
22 num_histos <- arraysSize depth <$>
23 mapM lookupType histos
24
25 -- Avoid the segmented reduction if num_histos is 1.
26 num_histos_is_one <-
27 letSubExp "num_histos_is_one" $
28 BasicOp $ CmpOp (CmpEq int32) num_histos $
29 intConst Int32 1
30
31 (..)
32 letBindNames (map patElemName pes) $
33 If num_histos_is_one
34 body_with_reshape body_with_segred $
35 IfAttr (staticShapes $ map patElemType pes)
36 IfNormal

Figure 26: Futhark.Pass.ExtractKernels.

63

CHAPTER 5. IMPLEMENTATION

1 blockedGenReduce arr_w segments inputs ops lam arrs =
2 runBinder $ do
3 (..)
4 -- Initialize sub-histograms.
5 sub_histos <- forM (zip ops num_histos) $
6 \(GenReduceOp w dests nes _, num_histos’) -> do
7 -- If num_histos’ is 1: reuse the original destination
8 let num_histos_is_one =
9 BasicOp $ CmpOp (CmpEq int32) num_histos’ $

10 intConst Int32 1
11 reuse_dest = (..)
12 make_subhistograms = (..)
13 letTupExp "histo_dests" =<<
14 eIf (pure num_histos_is_one) reuse_dest
15 make_subhistograms
16 (..)
17 lock_arrs <- forM (zip ops num_histos) $
18 \(GenReduceOp w _ _ _, num_histos’) ->
19 letExp "locks_arr" $ BasicOp $
20 Replicate (Shape $ segment_sizes ++ [num_histos’, w])
21 (intConst Int32 0)
22 (..)

Figure 27: Futhark.Pass.ExtractKernels.BlockedKernel.
. .

The third and fourth sections are shown in Figure 28:

• Lines 2-25 are responsible for creating the statements that goes into the
kernel, kstms, and for computing the location to which the results of the
kernel are written, kres. In line 27 the two are bound in a kernel body,
and used in lines 28-30 to create a kernel expression which is bound to a
variable named histograms.

• Lines 4-22 are responsible for creating the body of the coalescing loop.
Besides what is shown in the code snippet, the loop body also computes
the offset into the input array is computed, the bucket function is applied,
and it is checked whether the bucket is in-bounds.

What is shown is that we compute which subhistogram we are working on,
and that we create a GroupGenReduce vale constructor from Figure 24.
The constructor contains all the necessary information for the intermediate
code generator to create intermediate code for the construct, e.g., the sub-

64

CHAPTER 5. IMPLEMENTATION

1 (..)
2 (kres, kstms) <- runBinder $ (..)
3 (..)
4 loop_body <- runBodyBinder $ (..)
5 (..)
6 lam_res <- letTupExp "bucket_fun_res" =<<
7 eIf in_bounds in_bounds_branch
8 not_in_bounds_branch
9 (..)

10 ops_res <- forM (..) $
11 \(GenReduceOp dest_w _ _ comb_op, subhistos,
12 bucket, vs’, lock_arrs’, num_histos’) -> do
13
14 -- Compute subhistogram index for each thread.
15 subhisto_ind <- (..)
16 fmap (map Var) $ letTupExp "genreduce_res" $ Op $
17 GroupGenReduce (segment_sizes ++ [num_histos’, dest_w])
18 subhistos comb_op (map Var segment_is ++
19 [subhisto_ind, bucket])
20 vs’ lock_arrs’
21
22 return $ resultBody $ concat ops_res
23
24 result <- letTupExp "result" $ DoLoop [] merge form loop_body
25 return $ map KernelInPlaceReturn result
26
27 let kbody = KernelBody () kstms kres
28 letTupExp "histograms" $ Op $ Kernel
29 (KernelDebugHints "gen_reduce" [])
30 kspace dest_ts kbody

Figure 28: Futhark.Pass.ExtractKernels.BlockedKernel (cont’d).
. .

histograms, sub_histos, the operator, comb_op, the bucket, bucket,
the values, vs’, and the locks array, lock_arrs’.

In line 24 the statements for creating the components just described are
used as the body for a for-loop, which are then returned and used as the
statements described in the previous bullet.

With this, we conclude our presentation of the Kernel representation stage.
Here we have seen how the GenReduce-node from the SOACs representation

65

CHAPTER 5. IMPLEMENTATION

1 handleKernel (Kernel desc space kernel_ts kbody) =
2 subAllocM handleKernelExp True $
3 (..)
4 where handleKernelExp (GroupGenReduce w dests op
5 bucket vs locks) = do
6 (..)
7 op’ <- allocInLambda (x_params’<>y_params’)
8 (lambdaBody op)
9 (lambdaReturnType op)

10 return $ Inner $
11 GroupGenReduce w dests op’ bucket vs locks

Figure 29: Futhark.Pass.ExplicitAllocations.
. .

has been translated into the GroupGenReduce-node in the Kernels represen-
tation, and with this translation how the program now has a notion of GPU-
oriented kernels.

Representation – ExplicitMemory

Finally, we arrive at the last representation, namely, the ExplicitMemory rep-
resentation. A lot of low-level and intricate bookkeeping happens within this
representation and our implementation has not dealt much with this pass. Ev-
ery array expression in Futhark resides in a memory block which was explicity
allocated in the program. This pass translates the core abstract syntax using the
Kernels representation, which has no notion of memory annotations, into Explic-
itMemory representation. During this translation statements that correspond to
arrays are assigned to memory blocks. Thus, our implementation simply utilizes
the existing infrastructure.

We are, admittedly, not experts in this complicated stage, but for complete-
ness Figure 29 displays the main function, handleKernel, responsible for
handling the new construct. At this point, the construct is represented by the
GroupGenReduce-node and handleKernel wraps it in an Inner-node, after
having checked if any arrays need to be assigned to memory blocks inside the
combining operator (lines 7-9).

66

CHAPTER 5. IMPLEMENTATION

5.3 Back End

IL Code Gen.
(Kernels)

1 IL Code Gen.
(OpenCL calls)

2 OpenCL
Code Gen.

3

ASTC ExpMem OpenCL program

IL:

Kernels

IL:

OpenCL

Back end

The high-level idea of the back end is straightforward. As the figure above
shows, the back end receives a program in abstract core syntax parameterized
by the ExplicitMemory representation and translates it into an imperative inter-
mediate language, before creating an OpenCL program.

Currently, Futhark does not have support for generating atomic functions,
and since we aim at using them, we need to add support for atomic functions.
Neither the source nor the core abstract syntax are to be executed, at least not in
a parallel setting, thus they need not have a notion of atomic functions. Thus,
we extend the intermediate language, along with the existing intermediate-code
generator to be able to generate intermediate code containing atomic functions.

The main modifications were done in box one in the diagram below the sec-
tion title, which pertains to extending the intermediate language and the cor-
responding intermediate-code generator. Because we extend the intermediate
language we also need to extend the OpenCL code generator, which pertains to
box two. For the remainder of the pipeline we rely on the existing infrastructure,
and box three is merely included for completeness.

To assist both our understanding and the extension of the back end we cre-
ated call-graphs for the programs futhark-opencl and futhark-c which are
displayed in Appendix B.2.

This section is split into two subsections, one for each of the first two boxes
in the diagram above, and we start with the leftmost.

5.3.1 IL Code Generation – Kernels
At this point, the program is in core abstract syntax parameterized by the Ex-
plicitMemory representation, and is going to be translated into intermediate lan-
guage. The latter contains no notion of atomic functions and for that reason it
needs to be extended.

The first step is to extend the category of expressions that can go into kernels
(Futhark.CodeGen.ImpCode.Kernels) with a notion of atomic functions:

67

CHAPTER 5. IMPLEMENTATION

data KernelOp = GetGroupId VName Int
| GetLocalId VName Int
(..)
| Atomic AtomicOp
| Barrier
| MemFence
deriving (Show)

data AtomicOp = AtomicAdd VName VName (Count Bytes) Exp
| AtomicCmpXchg VName VName (Count Bytes)

Exp Exp
| AtomicXchg VName VName (Count Bytes) Exp
(..)
deriving (Show)

i.e., we extend the data type KernelOp with the value constructor Atomic

which takes one argument, namely, a value constructor of the type AtomicOp

which we also added. KernelOp also contains a memory fence constructor.
AtomicOp contains constructors for all atomic functions available in OpenCL,

but most importantly atomic_add, atomic_cmpxchg, and atomic_xchg, but
also functions such as atomic_max. Later we will se how the atomic functions
is used for implementing the locking strategies presented earlier.

With the notion of atomic functions in the intermediate language we extend
the intermediate-code generator, enabling it to translate the GroupGenReduce
expression from core abstract syntax to intermediate imperative code. This part
constitutes an important piece of the implementation as it is directly responsible
for generating intermediate code for the strategies shown in Section 4.1.

The function responsible for the translation is compileExp. It has two pat-
terns for the GroupGenReduce constructor: The first is for situations in which
the strategies atomicAdd or atomicCAS can be used, displayed in Figures 30
and 31, respectively. The other is a fallback case, shown in Figure 32, which is
for situations where the atomicExch strategy has to be used.

In both cases compileKernelExp only uses the last argument, namely, the
GroupGenReduce-node created in the Kernels stage. It produces statements
that go into kernels via the ImpM-monad (InKernelGen() is simply a type
synonym), where the environment in the monad is updated with the produced
intermediate code.

Starting with the atomicAdd-case in Figure 30, the case-expression in line
8 recognizes whether the operator has a corresponding function in OpenCL. If it
does, this function is returned, and the value that we want to apply the function to
is translated (line 10). Finally, we generate intermediate code for an if-statement
that applies the atomic function if the index is in-bounds (line 12) and performs

68

CHAPTER 5. IMPLEMENTATION

1 compileKernelExp :: KernelConstants -> ImpGen.Destination
2 -> KernelExp InKernel
3 -> InKernelGen ()
4 compileKernelExp _ _ (GroupGenReduce w [a] op bucket [v] _)
5 | [Prim t] <- lambdaReturnType op,
6 primBitSize t == 32 = do
7 (..)
8 case opHasAtomicSupport old arr’ bucket_offset op of
9 Just f -> do
10 val’ <- ImpGen.compileSubExp v
11 ImpGen.emit $
12 Imp.If (indexInBounds bucket’ w’)
13 (Imp.Op $ f val’)
14 Imp.Skip
15 Nothing -> do
16 (..)

Figure 30: Futhark.CodeGen.ImpGen.Kernels. Generating intermediate
code for the atomicAdd case.

. .

a no-operation if it is out-of-bounds (line 14).
If the operator does not have a dedicated atomic function it can still be im-

plemented using the atomicCAS strategy shown in Section 4.1.1. Since the in-
termediate language does not have do-while-loops we implemented the strategy
using a while-loop:

loop = true;
while(loop) {
assumed = old;
old = atomicCAS(histo[bucket], assumed, assumed + val)
if(assumed == old) {

loop = false;
}

}

The implementation is displayed in Figure 31 and can roughly be divided into
three sections:

• In lines 11-12 we assign assumed = old. Furthermore, we manually
copy the to-be written value, val, and the current value, assumed, to the
parameters of the lambda-body of the operator (bind_acc_param and

69

CHAPTER 5. IMPLEMENTATION

bind_arr_param). The operator binds the result of the computation to
the same variable as bind_acc_param.

• Lines 14-20 corresponds to the atomic function, where acc_p is the vari-
able bound in bind_acc_param.

In addition to this, one might notice the functions toBits and fromBits.
This trick makes it possible to use the atomicCAS strategy on 32-bit floats
as well, i.e., before writing the value with atomicCAS the float is converted
to bits which are then written as a 32-bit integer. This is an important
part of the flexibility of the implementation, as many high-performance
problems are using floats. (One might note, that floating point addition is
not associative, but people are doing it anyway.)

• Finally, lines 22-29 corresponds to the if-statement, responsible for break-
ing out of the while-loop when the value was correctly updated.

Finally, we have the fallback case using the atomicExch strategy, i.e., if the
operator does not have atomic support and cannot be implemented as a binary
operator on one memory location. The code generation is displayed in Figure 32
and can roughly be divided into four sections:

• Lines 6-7 compute the correct index into the locks array.

• In lines 10-19 we declare a handful of code generations up front in order
to express the code generation for the while-loop more compactly. Most
importantly, this includes the atomic function trying to acquire the lock,
try_acquire_lock, by setting the integer in the locks array at the index
corresponding to the bucket. In this way, we set only one lock even though
the histogram may consist of multiple arrays in the source language.

• Next, we have the while-loop, which is entered if the index is in-bounds,
and keep looping until the lock is acquired and the value is set. In line 24
we make an attempt to acquire the lock and in the following line we check
if we succeeded. If we got the lock, we perform a handful of operations:
Like for the previous cases we bind parameters to the formal arguments
of the operator. Next, we update the possible multiple arrays with the new
values (update_arrs), release the lock (release_lock), and break out
of the loop (break_loop).

• Finally, we have the memory fence in line 32.

With this, we conclude the intermediate-code generation. We we have now
seen how the claimed flexibility for user-defined functions and support for floats

70

CHAPTER 5. IMPLEMENTATION

1 compileKernelExp _ _ (GroupGenReduce w [a] op bucket [v] _)
2 | [Prim t] <- lambdaReturnType op,
3 primBitSize t == 32 = do
4 (..)
5 case opHasAtomicSupport old arr’ bucket_offset op of
6 Just f -> do
7 (..)
8 Nothing -> do
9 (..)
10 ImpGen.emit $ Imp.While (Imp.var run_loop int32)
11 (Imp.SetScalar assumed (Imp.var old t) <>
12 bind_acc_param <> bind_arr_param <> op_body
13 <>
14 (Imp.Op $
15 Imp.Atomic $
16 Imp.AtomicCmpXchg old_bits arr’ bucket_offset
17 (toBits (Imp.var assumed int32))
18 (toBits (Imp.var (paramName acc_p) int32)))
19 <>
20 Imp.SetScalar old (fromBits (Imp.var old_bits int32))
21 <>
22 Imp.If
23 (Imp.CmpOpExp
24 (CmpEq int32) (toBits $ Imp.var assumed t)
25 (Imp.var old_bits int32))
26 -- True branch:
27 (Imp.SetScalar run_loop 0)
28 -- False branch:
29 Imp.Skip
30)

Figure 31: Generating intermediate code for the atomicCAS case. (Futhark.
CodeGen.ImpGen.Kernels.)

71

CHAPTER 5. IMPLEMENTATION

1 (..)
2 compileKernelExp _ _
3 (GroupGenReduce w arrs op bucket values locks) = do
4 (..)
5 -- Correctly index into locks.
6 (locks’, _locks_space, locks_offset) <-
7 ImpGen.fullyIndexArray locks bucket’
8
9 (..)
10 ImpGen.declaringLParams (lambdaParams op) $ do
11 let try_acquire_lock =
12 Imp.Op $ Imp.Atomic $
13 Imp.AtomicXchg old locks’ locks_offset 1
14 lock_acquired =
15 Imp.CmpOpExp (CmpEq int32) (Imp.var old int32) 0
16 loop_cond =
17 Imp.CmpOpExp (CmpEq int32) (Imp.var loop_done int32) 0
18 break_loop =
19 Imp.SetScalar loop_done 1
20
21 (..)
22 -- While-loop: Try to insert your value
23 ImpGen.emit $ Imp.While loop_cond
24 (try_acquire_lock <>
25 Imp.If lock_acquired
26 -- True branch
27 (bind_acc_params <> bind_arr_params <> op_body <>
28 update_arrs <> release_lock <> break_loop)
29 -- False branch
30 Imp.Skip
31 <>
32 Imp.Op Imp.MemFence
33)

Figure 32: Generating intermediate code for the atomicExch case.
(Futhark.CodeGen.ImpGen.Kernels.)

72

CHAPTER 5. IMPLEMENTATION

is actually implemented in the compiler. This leads us to the final modification
in order to support the new construct.

5.3.2 IL Code Generation – OpenCL Calls
In this phase, the intermediate program is augmented with OpenCL kernels,
which are merely strings containing the OpenCL kernel source code. Because
we extended the intermediate language with a notion of atomic functions we
need to be able to translate these intermediate language constructs into actual
OpenCL code. More specifically, we need to add a case recognizing each of the
value constructors, e.g., AtomiAdd or AtomicCmpXchg, to the function gener-
ating OpenCL code:

1 (..)
2 atomicOps (AtomicAdd old arr ind val) = do
3 ind’ <- GenericC.compileExp $ innerExp ind
4 val’ <- GenericC.compileExp val
5 GenericC.stm [C.cstm|$id:old =
6 atomic_add((volatile __global int *)&$id:arr[$exp:ind’],
7 $exp:val’);|]
8 (..)

In lines 3 and 4 we recursively translate the index and value, respectively, which
are then used to construct an expression containing the atomic function in lines 5-
7. The function, and much of the back end in general, is based on Template
Haskell for generating the target program AST. Basically, everything in between
the two pipes is OpenCL code and the $id and $exp identifiers to capture a
variable from the Haskell environment and use it in the OpenCL code. In this
way we are able to translate the atomic functions to OpenCL code while inserting
the bucket and the value. The translation of the rest of the function is performed
similarly, and thus we have omitted it.

With this, we conclude our description of the implementation. We have seen
how the construct was exposed to the user via the library function reduce_by_index
and how it was translated into core abstract syntax. From here, we saw its path
through the middle stage, progressing through the representations. Along the
way, we made the necessary extensions to support the new construct. Ulti-
mately, we extended the intermediate language in the back end with a notion
of atomic operations and added support for translating these extensions into ac-
tual OpenCL code.

73

6 Validation and Benchmarks

In order to evaluate our new construct, we consider two different properties.
The first property is whether our implementation yields efficient programs and,
importantly, if we obtain speedups as claimed. The second property is whether
our implementation increases readability of programs and is intuitive to use.

The chapter is split into two parts. First, we will look at the performance of
the current strategies for histogram computation presented in Chapter 3, along
with a reference implementation in Thrust. Next, we will rewrite two existing
Futhark programs from the Parboil and Rodinia benchmark suites. In addition,
we port a benchmark program from Parboil. Both sections evaluate both proper-
ties mentioned above.

Code for reproducing all results presented in this chapter is available here:

https://github.com/lolkat2k/masters-benchmarks/

and were run on a system consisting of an Intel Xeon E5-2650 CPU and a
NVIDIA GTX 780Ti GPU, which is the same as in Chapter 4.

6.1 Micro-benchmarks
This section contains a small experiment and its purpose is twofold: First, we
want to measure if our implementation effort pays off in performance, i.e., is the
performance of the new construct better than the solutions described in Chap-
ter 3. Second, we want to compare the performance to the outside world, in this
case, a reference implementation in Thrust.

In this experiment, all programs compute a simple histogram, and each pro-
gram takes as input only the number of buckets and an array of indices, where
no index is out of bounds. Each program was run five times and the average was
used to report either the runtime or compute the speedup. All datasets contains
20 million indices.

The results are displayed in Figure 34, where REF is a sequential C program
used as baseline, FV1 is the sort-reduce composition, FV2 is the stream_red

74

https://github.com/lolkat2k/masters-benchmarks/

CHAPTER 6. VALIDATION AND BENCHMARKS

0 256 512 768 1024 1280 1536 1792 2048
0

25000

50000

75000

100000

125000

Nu
m

be
r o

f e
le

m
en

ts

 = 64

0 256 512 768 1024 1280 1536 1792 2048

 = 128

0 256 512 768 1024 1280 1536 1792 2048
Buckets

0

25000

50000

75000

100000

125000

Nu
m

be
r o

f e
le

m
en

ts

 = 256

0 256 512 768 1024 1280 1536 1792 2048
Buckets

 = 512

Figure 33: Twenty million elements from a truncated normal distribution with
lower limit 0, upper limit 2048, µ = 1024, and varying standard
deviations, corresponding to datasets D5-D8, respectively.

. .

program, FV3 is the new reduce_by_index using the atomicAdd-based im-
plementation in global memory, and Thrust is a histogram computation imple-
mented in Thrust (see Chapter 3).

The programs were evaluated on twelve datasets grouped in four categories:

D1-D4: The indices are uniformly distributed, and the number of buckets is 16,
256, 4096, 65536, respectively.

D5-D8: The number of buckets is fixed at 2048, and indices are drawn from a
truncated normal distribution with mean 1024, and standard deviation 64,
128, 256, and 512, respectively. Figure 33 illustrates the distribution of
indices.

D9-D12: The number of buckets are 16, 256, 4096, and 65536 (the same sizes
as D1-D4), but for each dataset all indices are hitting only one bucket, i.e.,
all indices in the dataset are equal to bucket size divided by two.

75

CHAPTER 6. VALIDATION AND BENCHMARKS

REF (ms) FV1(×) FV2(×) FV3(×) Thrust(×)

D1 13ms 0.26× 2.40× 12.88× 0.90×
D2 13ms 0.15× 0.63× 8.02× 0.85×
D3 13ms 0.10× 0.32× 5.31× 0.80×
D4 41ms 0.25× - 16.11× 2.48×

D5 13ms 0.11× 0.44× 5.86× 0.82×
D6 13ms 0.11× 0.43× 4.83× 0.81×
D7 13ms 0.11× 0.42× 6.05× 0.81×
D8 13ms 0.11× 0.42× 5.52× 0.80×

D9 36ms 0.71× 13.49× 17.63× 2.51×
D10 36ms 0.41× 9.66× 12.66× 2.50×
D11 36ms 0.28× 1.70× 6.24× 2.50×
D12 36ms 0.22× - 1.62× 2.50×

Figure 34: Speedups of three Futhark programs (FV1-FV3) and a Thrust pro-
gram (Thrust) compared to a sequential C program (REF) on twelve
datasets (D1-D12). Column REF acts as baseline and displays run-
time in milliseconds; FV1-FV3 and Thrust display speedups.

. .

We notice that the results confirm our intuition about the new construct. For
example, if we compare datasets D4, where indices are uniformly distributed,
and D12, where all indices hit the same bucket, we see a speedup of 16.11× for
the former and only 1.62× for the latter, even though the histogram are of the
same size (65536). In both cases, all threads will cooperate on one histogram, but
D4 corresponds to the best case in terms for collisions, while D12 corresponds
to the worst case. This pattern is clear if we look only at datasets D9-D12: The
larger the histogram the fewer subhistograms will be allocated, resulting in a
higher frequency of collisions.

Comparing within datasets D1-D4 we see an odd pattern, namely, that the
speedup decreases with histogram size, but for the largest histogram size (D4) we
suddenly see a huge speedup. This is not due to properties of reduce_by_index
as it takes around 100µs longer to run D4 than D3, as we expected. Instead, the
speedup is due to the impact on caching in the sequential reference solution,
caused by the random writes in a large array.

Looking at datasets D5-D8 we see that the speedup fluctuates around five
for all values of sigma. At first glance, we would have expected the speedup to
increase with decreasing values of sigma. (See Figure 33.) But if we take into
account two factors this might not be as surprising: First, the small number of

76

CHAPTER 6. VALIDATION AND BENCHMARKS

buckets (2048) allows for many subhistograms which reduces the frequency of
collisions. This by itself is not enough as more collisions will occur with increas-
ing values of sigma. But the second factor, and probably the most important, is
that we are utilizing the atomic addition function, which is very effective. Had
we instead used an operator that does not have an atomic counterpart, we would
probably have seen a decrease in speedup with increasing values of sigma.

If we compare across dataset groups D1-D4 and D9-12 one would intuitively
expect the speedup to be smaller for the latter group than the first. Instead, we
see the opposite. We conjecture that this is primarily caused by a high cache
hit rate for the latter. This leads us to consider the dataset group D5-D8: If less
variance in the dataset causes better cache behavior, then D5 should result in a
higher speedup than D8. We guess that the existing variance in the low sigma
datasets are still too much for improved cache behavior to have an impact on
performance, but we are not at all sure.

Furthermore, we see that the sort-reduce composition (FV1) is outperformed
for all datasets, although stable for datasets D5-D8. Both properties are as ex-
pected. The stream_red (FV2) operator performs well on small datasets but
fails to handle large histograms (D4 and D12).

Finally, we note that the Thrust reference implementation performs poorly,
but we will not put any emphasis on this. We are not Thrust experts, and so our
implementation may be very poor. But the stable results support the implemen-
tation intuition as indices are sorted before being reduced. The reduction phase
appears to be a segmented reduction. Furthermore, we wave a suspicion that
some memory copying is performed behind the curtains due to our approach.

In total, the results confirm the design intuition: It performs well on small to
medium histograms with uniformly distributed data; less well when data is not
uniformly distributed; poor for large histograms where only a few, far distant
buckets are hit.

6.2 Established Benchmarks
In addition to the datasets crafted by us, we will test reduce_by_index on
programs from the wild: We rewrite two existing benchmark programs already
implemented in Futhark, namely, TPACF from Parboil and k-means from Ro-
dinia, and we port the Histo benchmark from Parboil. In the following, we will
for each benchmark describe and analyze the results, starting with the two pro-
grams from Parboil.

77

CHAPTER 6. VALIDATION AND BENCHMARKS

6.2.1 Parboil
TPACF

Basically, the interesting part for in this context of the TPACF Futhark program
is a map over a sequential histogram computation, where all subhistograms are
combined. This means, that we should be able to simply flatten all indices and
perform the histogram computation in one go.

From analyzing the program and the datasets we see that the histograms are
small, around 20 bins in the interesting function, on a large number of elements.

Figure 35(a) displays the part of the program that we have modified. Starting
in line 6 we see that it maps a function one_value, which body is a sequential
loop computing a histogram, over some arrays. This produces an array of his-
tograms which are piped into a function sumBins that combines the histograms
in exactly the same way as the Futhark reduction program from Section 4.3.1.
We recognize that this is one of the current strategies shown in Section 3.2, for
computing histograms in Futhark, and so it should be possible to rewrite it to use
reduce_by_index.

The rewritten program is shown in Figure 35(b), and the first thing we do is
to flatten the indices inside the mapped function, such that they can be given to
reduce_by_index as an argument (line 4). Then we apply reduce_by_index
to the indices, effectively creating a histogram that may exploit the inner paral-
lelism.

In addition to this, we tried compiling the rewritten program with the in-
cremental flattening feature in Futhark, which basically generates different code
versions to choose from at runtime. Each version extracts different amounts
of inner parallelism, and the one that extracts the least but still enough paral-
lelism is chosen. For the TPACF Futhark program this means that the inner
reduce_by_index is sequentialised, effectively reverting our rewrite to look
like the original program.

The above programs were tested on three datasets from the Parboil bench-
mark suite. The results are displayed in Figure 36 where REF is the OpenCL
NVIDIA implementation from the Parboil benchmark suite, which is used as
baseline and displaying runtime in milliseconds. FV1 is the current implemen-
tation in Futhark, FV2 is the rewritten implementation, and FV3 is as FV2 but
compiled using the incremental flattening feature in Futhark. Programs FV1-
FV3 are compared to REF and display speedups.

From the results, we see our rewritten program takes more then double the
time than the reference implementation, while the current solution is 25% slower.
Compiling with the incremental flattening strategy, which as mentioned sequen-
tialised the inner reduce_by_index, obtains roughly the same runtime as the

78

CHAPTER 6. VALIDATION AND BENCHMARKS

1 let one_value (xOuter, yOuter, zOuter) index =
2 loop dBins = replicate numBins2 0i32
3 for j in index+1..<numD do
4 -- compute index (sequential)
5 in unsafe dBins with [index] <- dBins[index] + 1i32
6 in map2 one_value data1 (iota numD) |> sumBins

(a) Original part.

1 let one_value (xOuter, yOuter, zOuter) =
2 let myFun (xInner, yInner, zInner) =
3 -- compute index (sequential)
4 let indices = map myFun data2
5 in reduce_by_index (replicate numBins2 0)
6 (+) 0 indices
7 (replicate num2 1)
8 in map one_value data1 |> sumBins

(b) Rewritten part.

Figure 35: Rewriting the TPACF Futhark program.

D1 D2 D3

REF (ms) 8ms 435ms 2668ms

FV1 (×) 0.62× 0.77× 0.76×
FV2 (×) 0.45× 0.47× 0.43×
FV3 (×) 0.61× 0.77× 0.76×

Figure 36: TPACF benchmark. Speedup of three Futhark programs (FV1-FV3)
compared to an OpenCL baseline implementation (REF) from the
Parboil benchmark suite, compared on three datasets (D1-D3) also
from the Parboil benchmark suite. Row REF is the baseline and
displays runtime in miliseconds; FV1-FV3 display speedups.

79

CHAPTER 6. VALIDATION AND BENCHMARKS

D1

REF (µs) 297µs

FUT (×) 1.7×

Figure 37: Histo benchmark. Speedup of the Futhark implementation (FUT)
compared to an OpenCL baseline implementation (REF) from the
Parboil benchmark suite, compared on a single dataset (D1) also
from the Parboil benchmark suite. Row REF is the baseline and
displays runtime in microseconds; FUT displays speedup.

. .

current solution. This indicates and leads us to believe, that the current solution
is the optimal in Futhark, at least for now.

In addition to the Futhark programs presented above, we also tried a strat-
egy that flattened all indices, such that only one reduce_by_index were used.
This lead the program to crash because it creates a huge multi-dimensional array
that cannot be fused. Furthermore, the current version discovered a bug in our
implementation, because huge indices caused integer overflow.

Histo

The Histo benchmark program is a two-dimensional histogram of a two-dimensional
input with higher density around the center of the histogram. In Parboil the im-
plementation produces a BMP file which is not included in the timing, thus our
implementation does not create a BMP file in the first place.

The corresponding Futhark implementation showcases the simplicity of the
function exposed to the user:

let main (img_width : i32) (img_height : i32)
(his_width : i32) (his_height : i32)
(img : []i32) : []i32 =

reduce_by_index (replicate (his_width * his_height) 0)
(+) 0 img
(replicate (img_width * img_height) 1)

compared to the Parboil OpenCL implementation, which you need to be rather
proefficent in OpenCL to write.

Figure 37 displays the results, where REF is the OpenCL NVIDIA imple-
mentation from Parboil, displaying runtime in microseconds, and FUT is the
Futhark implementation displaying speedup. We see that our implementation on

80

CHAPTER 6. VALIDATION AND BENCHMARKS

this particular dataset is very efficient, and we conjecture that there are at least
two reasons for this:

• Even though the description says that the input data has a higher density
around the center of the histogram, we see from the dataset that the re-
sulting histogram has dimensions 256 × 4096 which is over one million
buckets in a one-dimensional representation.

• The Parboil OpenCL implementation divides the histogram into a grid,
such that groups of thread blocks cooperate on a subhistogram and each
thread block in the group is responsible for a range of buckets. This strat-
egy requires the input to be sorted which has a cost. It also appears that
each element may be processed multiple times because each thread han-
dles only a certain range of buckets in the subhistogram.

In total, we conjecture that the overhead in the baseline implementation caused
by manipulations are simply not amortized on this dataset, while it may be ef-
ficient on datasets with higher density. On the contrary, the Futhark program
is computing a large histogram, which we think looks like multiple D4 datasets
from the previous section in succession, i.e., it has multiple high-density regions
due to the flattening.

6.2.2 Rodinia
The Rodinia benchmark suite contains the classical k-means clustering algo-
rithm, which is about grouping points in a d-dimensional space into k clusters,
such that each cluster contains the points that are closest to its center. For each
cluster the centre is the mean of all points in the cluster.

In order to compute the mean, we must know the number of points in a
cluster, which can be seen as a histogram. The current Futhark implementation
uses the stream_red_per construct for this which is shown in Figure 39(a).
The sequential histograms are computed in lines 4-6 and produces partial results
of size k, which is the number of clusters (or buckets if you will). These partial
results are then summed using the map2-function with the addition operator. The
rewritten program is shown in Figure 39(b).

Figure 38 displays the results, where REF is the Rodinia OpenCL imple-
mentation which acts as baseline and displays its runtime in milliseconds. The
row FV1 refers to the Futhark implementation using stream_red_per, and
FV2 refers to the rewritten program using reduce_by_index. Both display
speedups with respect to REF. For both datasets, we see that the rewritten pro-
gram is only slightly faster than the current. This is due to the number of clusters,
k, being very small, such that the overhead from creating a histogram per thread

81

CHAPTER 6. VALIDATION AND BENCHMARKS

D1 D2

REF (ms) 1255ms 1885ms

FV1 (×) 4.9× 5.1×
FV2 (×) 5.4× 7.2×

Figure 38: k-means benchmark. Speedup of two Futhark programs (FV1 and
FV2) compared to an OpenCL baseline implementation (REF) from
the Rodinia benchmark suite, compared on two datasets (D1 and D2)
also from the Rodinia benchmark suite. Row REF is the baseline and
displays runtime in miliseconds; FV1 and FV2 display speedups.

1 let points_in_clusters =
2 stream_red_per
3 (\(acc: [k]i32) (x: [k]i32) -> map2 (+) acc x)
4 (\(inp: []i32) ->
5 loop acc = (replicate k 0) for c in inp do
6 unsafe let acc[c] = acc[c] + 1 in acc)
7 membership

(a) Original part of the k-means program, responsible for counting the number of points belong-
ing to each cluster.

let points_in_clusters =
reduce_by_index (replicate k 0)

(+) 0 membership
(replicate n 1)

(b) Rewriting the part of the k-means program that counts the number of points in each cluster.

Figure 39: Rewriting part of the k-means program.

82

CHAPTER 6. VALIDATION AND BENCHMARKS

in FV1 is insignificant. In the datasets k is maximally 8. If we instead had a
dataset with a larger k we would see that FV2 would significantly outperform
FV1.

83

Part III

Final Remarks

84

7 Conclusion and Future Work

We have presented a new language construct for efficient computation of gener-
alised reductions in the programming language Futhark. Its implementation is
based on atomic functions and the idea of subhistogramming, effectively letting
GPU threads cooperate on partial results. To mitigate the effect of serialization
caused by atomic functions we have developed a simple heuristic for determin-
ing the number of cooperating threads.

In practice, generalised reductions often manifest themselves as traditional
histograms, and the implementation has been optimized to this specific case. In
fact, the compiler chooses between three code generations, choosing the most
efficient based on a combining operator provided by the user.

We have demonstrated that the runtime performance of the new construct is
at least as good, and often much better, than existing solutions for computing
traditional histograms in Futhark. The construct was tested on a collection of 12
adversarial datasets and we see speedups ranging from ×1.62 to ×17.63 com-
pared to a sequential baseline, where existing solutions in Futhark show only
moderate speedups and often slowdowns. In addition, we have rewritten two
existing Futhark benchmarks to use the new construct, showing a competitive
runtime performance.

7.1 Limitations and Future Work
The two rewritten Futhark benchmarks, TPACF and k-means, suggests that if
the number of buckets in a histogram is small (< 20) existing solutions perform
slightly better. Thus, although our new construct aims at being flexible, there
are cases where its performance is known to be poor, e.g., very large histograms
where only a few buckets are hit, and in such cases other methods may be used
instead.

An interesting topic would be to investigate the cache behavior with respect
to random writes, along with mitigation strategies. For example, we see a slow-
down if indices are normally distributed around a mean bucket, compared to the
case where all indices are hitting the same bucket.

85

CHAPTER 7. CONCLUSION AND FUTURE WORK

One straightforward method for mitigating the impact on performance of ran-
dom writes, is to move subhistogramming to shared memory instead of global
memory. But since shared memory is limited we would need to generate two ker-
nels at compile-time; one using shared memory and another using global mem-
ory. The global memory version can then be used as a fallback kernel whenever
the histogram is too large to fit in shared memory. This optimization is also
appealing as it is cheap in terms of introducing complexity in the compiler; a
shared memory implementation would roughly follow the global memory im-
plementation, and then we can generate both kernels by inserting an if-statement
to choose a runtime. This is what is currently happening for regular segmented
reductions [LH17].

86

Bibliography

[acc] Accelerate - High-Performance Parallel Arrays for Haskell.
http://www.acceleratehs.org/.

[BS12] Shawn Brown and Jack Snoeyink. Modestly faster histogram
computations on gpus. In Innovative Parallel Computing-
Foundations & Applications of GPU, Manycore, and Heteroge-
neous Systems (INPAR 2012), pages 1–7, 2012.

[EH18] Martin Elsman and Troels Henriksen. Parallel Programming in
Futhark. 2018.

[Eil14] Marco Eilers. Multireduce and Multiscan on Modern GPUs.
Master’s thesis, University of Copenhagen, Department of Com-
puter Science, 2014.

[Hen] Troels Henriksen. Futhark Programming Language Homepage.
https://futhark-lang.org/. [Online; accessed 05-October-2018].

[Hen17] Troels Henriksen. Design and Implementation of the Futhark
Programming Language. PhD thesis, University of Copenhagen,
Department of Computer Science, 2017.

[HLO16] Troels Henriksen, Ken Friis Larsen, and Cosmin E. Oancea. De-
sign and gpgpu performance of futhark’s redomap construct. In
Proceedings of the 3rd ACM SIGPLAN International Workshop
on Libraries, Languages, and Compilers for Array Program-
ming, ARRAY 2016, pages 17–24, New York, NY, USA, 2016.
ACM.

[Hov18] Anders Kiel Hovgaard. Higher-order functions for a high-
performance programming language for gpus. Master’s thesis,
University of Copenhagen, Department of Computer Science,
2018.

87

CHAPTER 7. CONCLUSION AND FUTURE WORK

[HSE+17] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Hen-
glein, and Cosmin E. Oancea. Futhark: Purely functional gpu-
programming with nested parallelism and in-place array updates.
In Proceedings of the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI 2017,
pages 556–571, New York, NY, USA, 2017. ACM.

[Jø16] Asbjørn Viderø Jøkladal. Implementing Discriminator and Gen-
eralized Histogram on GPGPUs. Master’s thesis, University of
Copenhagen, Department of Computer Science, 2016.

[LH17] Rasmus Wriedt Larsen and Troels Henriksen. Strategies for reg-
ular segmented reductions on gpu. In Proceedings of the 6th
ACM SIGPLAN International Workshop on Functional High-
Performance Computing, FHPC 2017, pages 42–52, New York,
NY, USA, 2017. ACM.

[McD15] Trevor L. McDonell. Optimising Purely Functional GPU Pro-
grams. PhD thesis, University of New South Wales, School of
Computer Science and Engineering, 2015.

[NvdBCM11] Cedric Nugteren, Gert-Jan van den Braak, Henk Corporaal, and
Bart Mesman. High performance predictable histogramming on
gpus: Exploring and evaluating algorithm trade-offs. In Pro-
ceedings of the Fourth Workshop on General Purpose Processing
on Graphics Processing Units, GPGPU-4, pages 1:1–1:8, New
York, NY, USA, 2011. ACM.

[Pod07] Victor Podlozhnyuk. Histogram calculations in cuda. NVIDIA
Cooperation: https://developer.download.
nvidia.com/compute/cuda/1.1-Beta/x86_
website/projects/histogram64/doc/histogram.
pdf, 2007. [Online; accessed 17-October-2018].

[SK07] Ramtin Shams and R. A. Kennedy. Efficient histogram algo-
rithms for nvidia cuda compatible devices. In Proc. Int. Conf.
on Signal Processing and Communications Systems (ICSPCS),
pages 418–422, 2007.

[thr] Thrust. https://thrust.github.io/.

88

https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/histogram64/doc/histogram.pdf
https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/histogram64/doc/histogram.pdf
https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/histogram64/doc/histogram.pdf
https://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/histogram64/doc/histogram.pdf

Appendices

89

A Prototyping Experiment

A.1 Experiment – Raw Data
The following runtimes are reported in milliseconds for space issues. Note, that
a dash instead of a number indicates that the device had insufficient memory for
generating the amount of subhistograms required by the given cooperation level.

Buckets: 16 Cooperation level

1 4 16 64 256 1024 4096 16384 61440

Add Global 2.90 0.56 0.39 0.35 0.34 0.44 0.95 2.91 2.98
Shared 0.90 0.43 0.45 0.55 0.75 1.54 - - -

CAS Global 3.31 1.27 1.06 1.44 4.21 21.64 126.08 833.50 4265.64
Shared 1.47 0.97 1.50 2.88 7.73 44.21 - - -

Xchg Global 8.84 2.05 1.77 3.06 7.59 23.52 156.82 2158.17 4728.41
Shared 4.32 2.88 2.53 4.56 10.22 38.87 - - -

Futhark 0.11 0.05 0.04 0.04 0.03 0.02 0.02 0.02 0.02

Buckets: 64 Cooperation level

1 4 16 64 256 1024 4096 16384 61440

Add Global 7.84 2.59 0.56 0.45 0.46 0.43 0.53 1.29 2.39
Shared 2.91 0.93 0.44 0.43 0.46 0.70 - - -

CAS Global 12.47 2.82 1.32 1.18 1.84 5.95 18.89 125.31 860.12
Shared 5.08 1.89 1.02 1.34 2.13 5.57 - - -

Xchg Global 25.09 8.60 2.13 2.06 3.62 8.48 25.08 254.87 1058.88
Shared 16.71 5.88 3.05 2.34 3.88 8.89 - - -

Futhark 0.29 0.10 0.05 0.04 0.04 0.02 0.02 0.02 0.02

90

APPENDIX A. PROTOTYPING EXPERIMENT

Buckets: 256 Cooperation level

1 4 16 64 256 1024 4096 16384 61440

Add Global 9.14 6.60 2.44 0.68 0.69 0.67 0.61 0.71 1.08
Shared 13.15 2.94 0.93 0.45 0.45 0.54 - - -

CAS Global 13.70 10.16 2.75 1.82 2.18 3.57 7.18 20.44 101.71
Shared 21.49 5.55 1.96 0.98 1.20 1.96 - - -

Xchg Global 26.67 20.87 8.42 2.91 3.89 6.24 12.75 35.28 127.85
Shared 68.20 18.60 6.15 2.96 2.31 3.88 - - -

Futhark 1.28 0.54 0.33 0.05 0.05 0.02 0.02 0.02 0.02

Buckets: 1024 Cooperation level

1 4 16 64 256 1024 4096 16384 61440

Add Global 10.16 8.71 6.37 2.79 0.86 0.88 0.82 0.79 0.80
Shared 82.27 13.20 2.95 0.94 0.47 0.46 - - -

CAS Global 15.10 13.08 10.27 3.51 3.34 3.83 5.30 10.35 17.09
Shared 114.11 21.91 5.65 1.83 0.89 1.12 - - -

Xchg Global 28.88 25.48 20.17 11.77 5.70 6.79 9.31 16.60 27.89
Shared 292.15 70.12 18.89 5.87 2.90 2.30 - - -

Futhark 4.55 1.12 0.68 0.13 0.06 0.04 0.02 0.02 0.02

Buckets: 4096 Cooperation level

1 4 16 64 256 1024 4096 16384 61440

Add Global 12.70 10.05 8.67 6.91 3.17 0.94 0.91 0.89 0.90
Shared 751.64 82.27 13.20 2.96 0.94 0.47 - - -

CAS Global 17.59 14.88 13.27 11.08 4.36 4.21 4.61 5.98 7.59
Shared 856.90 114.22 22.02 5.50 1.73 0.87 - - -

Xchg Global 34.04 28.58 25.46 22.23 15.82 7.41 8.50 10.55 13.39
Shared 2851.49 413.28 100.75 27.79 8.36 2.91 - - -

Futhark 19.19 4.69 1.19 0.37 0.18 0.08 0.03 0.02 0.02

91

APPENDIX A. PROTOTYPING EXPERIMENT

Buckets: 16384 Cooperation level

1 4 16 64 256 1024 4096 16384 61440

Add Global - 12.68 10.01 8.86 7.34 3.29 0.95 0.94 0.96
Shared - - - - - - - - -

CAS Global - 17.59 14.82 13.45 11.49 4.62 4.47 4.83 5.23
Shared - - - - - - - - -

Xchg Global - 34.00 28.38 25.91 23.52 16.81 8.19 8.89 9.72
Shared - - - - - - - - -

Futhark - 19.70 4.81 1.49 0.66 0.28 0.06 0.03 0.02

Buckets: 61440 Cooperation level

1 4 16 64 256 1024 4096 16384 61440

Add Global - - 12.49 9.98 8.99 7.38 3.18 1.02 0.96
Shared - - - - - - - - -

CAS Global - - 17.45 14.88 13.77 11.56 4.79 4.54 4.66
Shared - - - - - - - - -

Xchg Global - - 33.63 28.57 26.80 24.20 16.88 8.27 8.67
Shared - - - - - - - - -

Futhark - - 18.46 5.28 2.41 1.02 0.20 0.06 0.03

92

APPENDIX A. PROTOTYPING EXPERIMENT

A.2 Experiment – Graphs
The following graphs are based on the raw data presented in the previous ap-
pendix. Note that the runtimes here are report in microseconds for visualization
purposes.

1 4 16 64 256 1024 4096 16384 61440
Cooperation level

0

10000

20000

30000

40000

50000

60000

Ru
nt

im
e

(
s)

0 12
67

5

10
00

6

88
55

73
38

32
88

95
0

94
4

96
2

0 0 0 0 0 0 0 0 00 17
58

7

14
82

1

13
45

1

11
49

3

46
25

44
73

48
27

52
33

0 0 0 0 0 0 0 0 00 33
99

6

28
38

0

25
91

2

23
52

0

16
81

3

81
91

88
92

97
20

0 0 0 0 0 0 0 0 00 19
69

7

48
12

14
92

65
8

27
5

63 31 22

Number of buckets: 16384
AtomicAdd - Global
AtomicCAS - Global
AtomicExch - Global
Futhark reduction

AtomicAdd - Shared
AtomicCAS - Shared
AtomicExch - Shared

1 4 16 64 256 1024 4096 16384 61440
Cooperation level

0

10000

20000

30000

40000

50000

60000

Ru
nt

im
e

(
s)

0 0 12
48

9

99
78

89
94

73
82

31
76

10
18

96
4

0 0 0 0 0 0 0 0 00 0 17
44

6

14
88

4

13
77

0

11
55

6

47
87

45
37

46
64

0 0 0 0 0 0 0 0 00 0 33
62

5

28
56

7

26
80

3

24
20

4

16
88

1

82
70

86
66

0 0 0 0 0 0 0 0 00 0 18
45

9

52
77

24
09

10
21

19
6

60 32

Number of buckets: 61440

Figure 40: Runtimes in microseconds for the three locking strategies in global
memory, including the reduction phase in Futhark. These histogram
sizes does not fit in shared memory.

A.3 Experiment – Subhistogramming Data
See Table 3.

93

APPENDIX A. PROTOTYPING EXPERIMENT

16 64 256 1024 4096 16384 61440

Add

REF (coop. level) 256 1024 4096 16384 16384 16384 61440
(µs) 372µs 453µs 629µs 808µs 913µs 976µs 997µs

Global (×) 0.86× 0.94× 0.85× 0.89× 0.96× 1.00× 1.00×

REF (coop. level) 4 64 64 1024 1024 - -
(µs) 483µs 467µs 500µs 500µs 555µs - -

Shared (×) 0.99× 1.00× 0.99× 1.00× 1.00× - -

CAS

REF (coop. level) 16 64 64 256 1024 4096 16384
(µs) 1103µs 1217µs 1871µs 3405µs 4296µs 4537µs 4598µs

Global (×) 1.00× 1.00× 0.84× 0.88× 0.92× 0.93× 0.98×

REF (coop. level) 4 16 64 256 1024 - -
(µs) 1022µs 1073µs 1025µs 956µs 952µs - -

Shared (×) 0.66× 0.78× 0.82× 0.82× 1.00× - -

Xchg

REF (coop. level) 16 64 64 256 1024 4096 16384
(µs) 1812µs 2094µs 2960µs 5766µs 7495µs 8255µs 8331µs

Global (×) 1.00× 1.00× 0.75× 0.84× 0.88× 0.93× 0.96×

REF (coop. level) 16 64 256 1024 1024 - -
(µs) 2570µs 2383µs 2363µs 2333µs 2993µs - -

Shared (×) 1.00× 1.00× 1.00× 1.00× 1.00× - -

Table 3: Subhistogrammin data.

94

1 4 16 64 256 1024 4096 16384 61440
Cooperation level

0

10000

20000

30000

40000

50000

60000

Ru
nt

im
e

(
s)

28
95

56
2

39
2

35
4

34
3

44
1

95
4

29
07

29
82

90
0

43
2

44
8

54
7

74
5

15
36

0 0 033
10

12
74

10
61

14
41

42
08

21
64

3

12
60

76

83
34

96

42
65

63
7

14
70

97
1

14
97

28
83

77
34

44
21

2

0 0 088
38

20
45

17
70

30
55

75
92

23
51

9

15
68

20

21
58

17
2

47
28

40
5

43
19

28
82

25
28

45
55

10
22

1

38
87

1

0 0 010
8

50 41 37 29 18 16 17 21

Number of buckets: 16
AtomicAdd - Global
AtomicCAS - Global
AtomicExch - Global
Futhark reduction

AtomicAdd - Shared
AtomicCAS - Shared
AtomicExch - Shared

1 4 16 64 256 1024 4096 16384 61440
Cooperation level

0

10000

20000

30000

40000

50000

60000

Ru
nt

im
e

(
s)

78
39

25
89

55
8

44
5

45
6

43
1

53
2

12
87

23
85

29
09

92
6

44
4

42
9

46
0

69
6

0 0 012
46

9

28
21

13
19

11
79

18
36

59
52

18
88

5

12
53

10

86
01

18

50
76

18
89

10
21

13
36

21
25

55
66

0 0 025
08

5

86
01

21
34

20
56

36
18

84
82

25
07

9

25
48

72

10
58

87
5

16
70

6

58
78

30
52

23
44

38
75

88
85

0 0 029
1

98 52 38 39 21 19 17 18

Number of buckets: 64

1 4 16 64 256 1024 4096 16384 61440
Cooperation level

0

10000

20000

30000

40000

50000

60000

Ru
nt

im
e

(
s)

91
39

66
02

24
36

67
6

69
1

66
5

61
0

70
6

10
83

13
14

8

29
43

93
4

45
2

45
1

53
7

0 0 013
69

8

10
16

0

27
45

18
23

21
82

35
69

71
81

20
43

9

10
17

08

21
48

8

55
54

19
62

97
7

11
95

19
61

0 0 026
66

9

20
87

1

84
22

29
13

38
94

62
38

12
75

4

35
28

1

12
78

51

68
20

1

18
59

6

61
49

29
62

23
10

38
80

0 0 012
81

54
4

32
8

47 52 23 18 19 17

Number of buckets: 256

1 4 16 64 256 1024 4096 16384 61440
Cooperation level

0

10000

20000

30000

40000

50000

60000

Ru
nt

im
e

(
s)

10
15

9

87
11

63
66

27
93

86
4

87
7

82
1

79
0

79
9

82
27

0

13
19

7

29
49

93
7

47
5

46
4

0 0 015
10

3

13
08

2

10
27

0

35
09

33
43

38
26

52
96

10
34

7

17
09

1

11
41

07

21
90

8

56
53

18
33

89
4

11
24

0 0 028
88

4

25
48

0

20
17

4

11
76

6

57
04

67
92

93
13

16
60

4

27
88

8

29
21

48

70
12

1

18
89

1

58
73

28
96

22
97

0 0 045
54

11
21

68
2

12
8

61 35 19 18 16

Number of buckets: 1024

1 4 16 64 256 1024 4096 16384 61440
Cooperation level

0

10000

20000

30000

40000

50000

60000

Ru
nt

im
e

(
s)

12
70

2

10
05

1

86
67

69
14

31
67

93
6

91
4

89
2

89
6

75
16

37

82
26

6

13
19

7

29
59

94
0

47
1

0 0 017
58

6

14
87

6

13
27

0

11
07

6

43
60

42
12

46
12

59
83

75
94

85
69

04

11
42

15

22
02

3

54
99

17
28

86
8

0 0 034
04

2

28
58

2

25
45

8

22
22

6

15
81

6

74
10

84
98

10
54

5

13
38

5

28
51

49
4

41
32

83

10
07

50

27
79

4

83
57

29
09

0 0 019
18

9

46
90

11
94

36
5

18
3

84 32 20 21

Number of buckets: 4096

Figure 41: Runtimes in microseconds for the three locking strategies in
both global and shared memory, including the reduction phase in
Futhark..

B Implementation

B.1 Visualization of Subpasses in Middle Stage

Simplify

Fuse SOACS

Extract Kernels

Babysit Kernels

Tile loops

Simplify

Explicit Allocations

Simplify

Double buffer

AST:
Core: SOACS

AST:
Core: ExplicitMemory

SOACS Kernels ExplicitMemory

Transformations + Optimisations

Figure 42: Overview of transformations and optimisations. Note, that this is
only a selection of the actual passes performed by the compiler, and
that there may be passes in between the displayed passes. In particu-
lar, the program is type checked after each change of representation.

96

APPENDIX B. IMPLEMENTATION

B.2 Call-graphs for Back End
To assist our understanding of the back end we created two call-graphs; one for
futhark-opencl and one for futhark-c, which are displayed in Figures 43
and 44, respectively. Both graphs contain only selected calls pertaining to the
back end and we have omitted all calls to functions in the middle and front end.

When mapping the boxes from Figure 43 to the high-level diagram from the
beginning of the back end section, we have that box eight corresponds to box a,
box seven corresponds to box b, and box five corresponds to box c.

Comparing the two call-graphs we see that the one for futhark-opencl
contains two additional boxes; boxes six and seven. Roughly, we can say that
they are responsible for adding the notation of calls to kernels in the intermediate
code (box six); for augmenting an intermediate program with a string containing
the OpenCL programs, and for adding calls to these kernels (box seven).

. .
futhark-opencl 1

BackEnds.COpenCL.compileProg

Prog ExplicitMemory→ CParts

2 BackEnds.COpenCL.asExecutable

CParts→ String

3

ImpGen.OpenCL.compileProg

Prog ExplicitMemory→
ImpCode.OpenCL.Program

4 Backends.GenericC.compileProg

ImpCode.OpenCL.Program +
Boilerplate→ CParts

5

ImpGen.Kernels.compileProg

Prog ExplicitMemory→
ImpCode.Kernels.Program

6 ImpGen.Kernels.ToOpenCl.kernelsToOpenCL

ImpCode.Kernels.Program→
ImpCode.OpenCL.Program

7

ImpGen.compileProg

Prog ExplicitMemory→
ImpCode.Kernels.Program

8 Backends.GenericC

??

9

Figure 43: Call-graph for futhark-opencl. (Selected calls.) Shaded parts
refer to Haskell functions, while non-shaded parts show input and
output types for the function. Dashed boxes are the difference com-
pared to the call-graph for futhark-c shown in Figure 44.

97

APPENDIX B. IMPLEMENTATION

futhark-c

BackEnds.SequentialC.compileProg

Prog ExplicitMemory→ CParts

BackEnds.SequentialC.asExecutable

CParts→ String

ImpGen.Sequential.compileProg

Prog ExplicitMemory→
ImpCode.Sequential.Program

Backends.GenericC.compileProg

ImpCode.Sequential.Program +
Boilerplate→ CParts

ImpGen.compileProg

Prog ExplicitMemory→
ImpCode.Sequential.Program

GenericC

??

Figure 44: Call-graph for futhark-c. (Selected calls.) Shaded parts refer
to Haskell functions, while non-shaded parts show input and output
types for the function.

98

	Introduction
	Realm of the Problem
	Background
	The CUDA Programming Model
	GPGPU Architecture
	Obtaining Good Performance on GPUs
	Futhark

	Problem Statement and Related Work
	High-level Strategies
	Current State for Histograms in Futhark
	Extending scatter
	Brief Outline of Research

	Development, Implementation, and Benchmarks
	Prototyping
	Strategies for Locking
	Strategies for Subhistogramming
	Performance Experiment

	Implementation
	Front End
	Middle
	Back End

	Validation and Benchmarks
	Micro-benchmarks
	Established Benchmarks

	Final Remarks
	Conclusion and Future Work
	Limitations and Future Work

	Bibliography
	Appendices
	Prototyping Experiment
	Experiment – Raw Data
	Experiment – Graphs
	Experiment – Subhistogramming Data

	Implementation
	Visualization of Subpasses in Middle Stage
	Call-graphs for Back End

