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Abstract

This project explores the concept of automatic differentiation for functional lan-
guages. In particular, it gives mathematical reasoning for how a rewrite rule for the
functional primitive reduce_by_index is derived. The project also derives even more ef-
ficient rewrite rules for the cases where this construct is given addition, multiplication,
or min/max as its operator. These were implemented as compiler transformations for
the data-parallel functional language Futhark. The implementations are argued to be
valid, and benchmarks show that the general case is not as efficient as the forward
mode equivalent. However, nearly all the special cases outperform both. This project
argues that this shows how other constructs can be derived and how much is to gain
from supporting even more special cases.
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1 Introduction

Automatic differentiation (AD) is a common and efficient method of computing deriva-
tives of functions expressed as programs. This type of differentiation especially useful
when the programs are complicated and when the precision of finite difference methods
are inadequate. (Leal 2018) Modern deep learning is based on the reverse mode AD im-
plementation which excels when the number of inputs is vastly larger than the number of
outputs of the program. Although in practice only a selected few parallel frameworks are
used these include PyTorch (Paszke et al. 2019) and Tensorflow. (Developers 2022)

These common libraries do however not support AD on higher-order functions and that
is where the novel approach taken in the data-parallel language Futhark come into play.
(Henriksen, Serup, et al. 2017) This is a language which supports nested parallelism and
has the performance of low-level languages while maintaining a high-level functional
approach. Every program in Futhark is composed of a few functional constructs each
of which need to have AD explicitly supported in the compiler for programs to be fully
differentiated. (Schenck et al. 2022)

One of these functional construct unique to Futhark which is not supported yet by the
reverse mode AD in the compiler is reduce_by_index. (Henriksen, Hellfritzsch, et al. 2020)
This construct allows for an efficient method of histogram computations, like an N-ary
reduce operator. The imperative equivalent of a call of reduce_by_index (RBI) can be seen in
figure 1. It takes as input a destination histogram, operator op, index array is and value
array as

1 m = length h i s t _ o r i g
2 fo r i in 0 . . ( length i s ) − 1 :
3 ind = i s [ i ]
4 v = as [ i ]
5 i f ind >= 0 && ind < length as :
6 h i s t _ o r i g [ ind ] = op h i s t _ o r i g [ ind ] v

Figure 1: Imperative equivalent of RBI

This parallel construct is non-trivial to differentiate and is not supported by any other AD
libraries since they do not have a representation of it. This project will derive a rewrite rule
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for the construct and implement it in the Futhark compiler. Furthermore three special cases
of the construct with much more efficient reverse mode AD methods will be introduced
and implemented. These implementations will then be benchmarked and compared to
eachother and the forward mode version.

In section 2 the preliminaries for reasoning about parallel algorithms, functional notation,
and the Futhark language will be presented. Section 3 will then give a thorough intro-
duction to automatic differentiation. This will lead into section 4 which reasons about the
rewrite rule for reduce and how it is extended to a rewrite rule for RBI as well as present
the special cases. Section 5 will present how the rewrite rule for RBI is converted to
pseudocode, and introduce a simplified version of Futhark IR which will be used to show
snippets of the implementation. Section 6 will give a short explanation of how the imple-
mentation was tested and verified to be correct. Section 7 will present the benchmarks
reason about their results. Section 8 will give a short conclusion of the contributions of
this project and what can be improved by future work.
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2 Preliminaries

This section introduces some of the preliminaries needed for understanding the discus-
sions and code presented later in the project. Specifically, the work and span model
for reasoning about the run-time of parallel algorithms will be very roughly presented.
After which, certain concepts from functional programming will be presented. Finally,
the Futhark language, along with some of the essential constructs it contains, will be
explained.

2.1 Work and span

This project involves reasoning about the performance of parallel algorithms. As such,
the regular RAM model used to reason about the performance of sequential algorithms
is inadequate. Therefore, this project will use the cost model based on Parallel Random
Access Machines, PRAM. Specifically, the asymptotics of the work-span model will be
used to analyse the parallel constructs in this project. (Blelloch 1996)

The work of T, presented as W(T), represents the total number of operations executed by
the function T. This is very similar to the regular big-O notation for cost used for the RAM
model. It can be generalised as the time the program would take if it ran on a single
processor.

The span of T, presented as S(T), is defined as the maximum length of the series of
sequential dependencies in the computation. This is what limits the computing time in an
idealised machine with infinite processors.

Figure 2: Rudimentary example of work and span
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The example program T is shown in figure 2. This program sums eight values in a parallel
fashion. The length of sequential dependencies is three, and thus we have the span S(T) =
3. Similarly, the amount of computations is seven and thus, the work W(T) = 7.

These examples merely serve to show how to reason about work and span. In practice,
asymptotics is dealt with, and constants are disregarded. Thus one would say that both
span and work of the example would be O(1).

2.2 Functional notation

This project involves vital concepts from Haskell-inspired functional programming lan-
guages. As such, an assortment of the most important ones will be briefly explained in
this section. This is not intended to be a deep dive into functional programming but rather
just an explanation of some of the essential concepts to understand the pseudocode and
core of this project.

The type signatures used in this project extend the typical Haskell type signature that
looks like the example in listing 1. Here the name of the function is separated from the
type signature by two colons. This type signature denotes each input followed by an arrow
where the last type is the output. So the function foobar takes two inputs of type a and
returns an output of type b.

foobar : : a −> a −> b

Listing 1: Haskell type signature of an example function

Many of the functional primitives in the next section take anonymous functions as input.
These are represented as in listing 2 where the input is separated by whitespace after the
backslash on the left-hand side of the arrow, and the function output is defined on the
right-hand side.

(\x y −> x + y )

Listing 2: Anonymous function that performs addition on two inputs

Associativity and commutativity are two concepts that are also important to certain func-
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tions, which will be brought up in this project. If an operator with the type ⊙ is commuta-
tive, then the two following representations are equivalent x⊙ y and y ⊙ x. Associativity
means that the following two representations are equivalent (a⊙ b)⊙ c and a⊙ (b⊙ c)

2.3 Futhark

Futhark is a data-parallel, purely functional language that offers a machine-neutral pro-
gramming model. In recent years, the increase in CPU core speed has drastically slowed.
It has ushered in a new age of programming where performance for larger programs is
equivalent to how attuned they are to exploit parallelism. Hardware such as general-
purpose graphics processing units (GPGPU) levy this parallelism to substantially out-
perform programs written in a single-core framework. (Podobas 2015) This is where the
hardware-agnostic aspect of Futhark shines, as it allows a user to compile programs for
both CPU and GPU backends.

A core feature of Futhark is supporting for arbitrary nesting of second-order array combina-
tors (SOACs) such as map, scan, reduce, and reduce_by_index. (Henriksen, Hellfritzsch,
et al. 2020) All of which are implemented as data-parallel constructs.

It also allows for a functional type of in-place updates in arrays. For example let xs[ i ] = x
is syntactic sugar for let xs ' = xs with [i ] <= x which is the equivalent of returning a copy
of xs with the i-th index updated in-place to be x.

The following section will briefly describe the semantics and syntax of each of the essential
inbuilt functions and primitives used in this project. The Futhark notation will also be
explained since the pseudo-code in later sections will be inspired heavily by it.

Futhark supports a size-dependent type system that verifies the compatibility of arrays
passed to functions. In listing 3 we use a size parameter [n] to explicit quantify sizes of
arrays. This parameter is not explicitly passed when calling reverse but is merely deduced
by the input array of that size. Similarly, Futhark uses Hindley-Milner-Style type inference
(Damas and Milner 1982), so most of the time, explicit type annotations are not needed.
Thus we can define annotate functions when generic types that need to be compatible with
all inputs that use that type. The asterisk before the return type indicates that the return
value is unique and has no aliases. This annotation is mainly used here in the preliminaries
for completeness.
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iota is very useful Futhark function that given an integer n, returns an array of size n
consisting of the set of integers 0, 1, .., n − 1. Its type can be found in listing 3. It is often
used to create an array of indices. reverse takes an input array and reverses their order.
replicate takes an explicit size and an element and returns an array with the element
replicated to be of that size.

1 i o t a : : ( n : i 64 ) −> ∗ [n ] i 64
2 reverse [ n ] ' t : : ( x : [ n ] t ) −> [ n ] t
3 r e p l i c a t e ' t : : ( n : i 64 ) −> ( x : t ) −> ∗ [n ] t

Listing 3: Type signature of common functions

The SOAC map applies a given function to every element in an input array and returns a
new array with the size of the input array containing elements of the return type of the
function. Its type signature can be found in listing 4. Work of map is O(n · W (f)) and
span O(S(f))

1 map ' a [ n ] ' x : : ( f : a −> x ) −>
2 ( as : [ n ] a ) −>
3 ∗ [n ] x

Listing 4: Type signature of map

The SOAC scatter seen in listing 5 calculates the equivalent of the imperative code found
in figure 3.

1 fo r i in 0 . . . length is −1:
2 ind = i s [ i ]
3 v = as [ i ]
4 i f ind >= 0 && ind < length as :
5 as [ ind ] = v

Figure 3: Imperative equivalent of the Scatter

Essentially scatter overwrites dest with the values in as for the corresponding index in is.

Page 9 of 50



Notice how if the index in is outside the index domain of dest it has no effect. It has work
of O(n) and span O(1)

1 s c a t t e r ' t [m] [ n ] : : ( dest : ∗ [m] t ) −>
2 ( i s : [ n ] i 64 ) −>
3 ( as : [ n ] t ) −>
4 ∗ [m] t

Listing 5: Type signature of scatter

The SOAC scan is also called the inclusive prefix scan. It takes a binary associative
operator op, a neutral element ne, and an input array as. The type signature can be found
in 6. If as = [a0, a1, a2], and the operator ◦ then scan would return [ne, ne ◦ a0, ne ◦ a0 ◦ a1].
The exclusive prefix scan, which is not part of Futhark, is slightly different and will be
referenced later in the pseudocode. This is not included in the language because it is easily
derived from the inclusive scan by simply dropping the first element and appending the
result of using the operator on the last value of the inclusive scan and the last value in the
input array. Scan has work of O(n ·W (op)) and span O(log(n) ·W (op))

1 scan [ n ] ' a : : ( op : a −> a −> a ) −>
2 ( ne : a ) −>
3 ( as : [ n ] a ) −>
4 ∗ [n ] a

Listing 6: Type signature of scan

The SOAC reduceworks similarly to scan and has the same input. But instead of returning
the entire array it simply reduces the whole array to one value. The returned value is the
same as the last element in the result of the exclusive prefix scan. In the example used for
scan the result would be ne ◦ a0 ◦ a1 ◦ a2. The work of this SOAC is O(n ·W (op)) and span
is O(log(n) ·W (op)).
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1 reduce [ n ] ' a : : ( op : a −> a −> a ) −>
2 ( ne : a ) −>
3 ( as : [ n ] a ) −>
4 a

Listing 7: Type signature of reduce

The SOAC reduce_by_index (RBI) performs a reduction with op as the operator and the
value in dest as well as all values in as that have the same index in is. The indices in is can
be thought of which bucket the corresponding value in as should be reduced with. The
equivalent imperative code can be expressed as shown in figure 1.

ne must be the neutral element for op, which may be applied multiple times and hence
must be associative and commutative. Similarly to scatter, any indices outside the index
domain of hist_orig will have their values disregarded. The work of RBI is O(n · W (op))

and span is O(n ·W (op)) in the worst case where all updates are to the same position, but
O(W (op)) in the best case.

1 reduce_by_index a [ n ] [m] : : ( h i s t _ o r i g : ∗ [m] a ) −>
2 ( op : a −> a −> a ) −>
3 ( ne : a ) −>
4 ( i s : [ n ] i 64 ) −>
5 ( as : [ n ] a ) −>
6 ∗ [m] a

Listing 8: Type signature of reduce_by_index
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3 Introduction to Automatic Differentiation

Computing derivatives of functions is an integral part of essential algorithms in machine
learning, scientific computing, and financial algorithms. (Baydin, Pearlmutter, and Radul
2015) A frequently used machine learning algorithm that can benefit from AD is gradient
descent. It can be described as using the gradient of some loss function to optimize the
parameters for the next iteration in the optimization process until a potential extremum is
encountered.

Computing derivatives of functions in computer programs can generally be classified
into four categories: (1) Manually deriving the function by hand and implementing the
computation as code. (2) Numerical differentiation using finite difference approximations.
(3) Symbolic differentiation using expression manipulation in computer algebra systems.
(4) Automatic differentiation, which computes the derivative in conjunction with the result
of the function. This last type is the focal point of this thesis.

Automatic Differentiation (AD) is a family of techniques used to efficiently and accurately
evaluate the derivatives of numeric functions expressed as computer programs. It often
involves augmenting the actual computation of the program also to populate data struc-
tures that, depending on the mode, either accumulate into the final derivative in lockstep
with the regular computation or are used in an additional computation afterwards that
accumulates the derivatives in reverse from the result to the input.

These two different modes will be explained more in-depth with examples in this section.
They have in common the augmentation of the program that is being computed. This
most often involves inserting additional intermediate variables that are derivatives with
regard to the sub-computation at that point in the program.

3.1 Forward mode

AD in the forward mode associates each intermediate variable in the program with a
derivative. For example if we have consider the computation of the function f(x1, x2) =

ln(x1) + x1x2 − sin(x2), we can see how the tangent computation of the derivative with
respect to x1 beside it in table 1. This is done by firstly associating each intermediate
variable vi with a derivative as defined in equation 1
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v̇i =
∂vi
∂x1

(1)

This derivative is then used to express each sub-computation as a function with which
we can reason about the right-hand side of the table mathematically. For example, if we
express the result as such y = f(g(h(x))) where g is a previous sub-computation that
depends on the result of h and x is the input. If we want to differentiate y, we can use the
chain rule to get a more digestible representation. Recall that the chain rule allows us to
differentiate a composite function P (x) = k(l(x)) as P ′(x) = k′(l(x)) · l′(x).

ẏ =
∂f(g(h(x)))

∂xi

=
∂f(g(h(x)))

∂g(h(x))
· ∂g(h(x))

∂xi

=
∂f(g(h(x)))

∂g(h(x))
·
�
∂g(h(x))

∂h(x)
· ∂h(x)

∂xi

�

=
∂f(g(h(x)))

∂g(h(x))
·
�
∂g(h(x))

∂h(x)
·
�
∂h(x)

∂x
· ∂x

∂xi

��

Figure 4: Chain rule used to decompose an example function in forward AD fashion

Then forward mode AD can be seen as computing ẏ in a right-to-left manner, starting
from the input. As such we can augment the original program to compute these partial
derivatives of the sub-expressions in lockstep with their actual computation. The AD
transformation for the forward mode involves the core rewrite rule found in equation 2

let v = f(a, b)

↓
let v = f(a, b)

let v̇ = ∂f(a,b)
∂a ȧ+ ∂f(a,b)

∂b ḃ

(2)

This is exactly what we see on the right hand side of table 1, where we differentiate with
respect to x1.
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Regular computation

v−1 = x1 = 2

v0 = x2 = 5

v1 = ln v1 = ln 2

v2 = v−1 × v0 = 2× 5

v3 = sin v0 = sin 5

v4 = v1 + v2 = 0.693 + 10

v5 = v4 − v3 = 10.693 + 0.959

y = v5 = 11.652

Tangential forward mode AD

v̇−1 = ẋ1 = 1

v̇0 = ẋ2 = 0

v̇1 = v̇−1/v−1 = 1/2

v̇2 = (v̇−1 × v0) + (v̇0 × v−1) = 5 + 2

v̇3 = v̇0 × cos v0 = 0× cos 5

v̇4 = v̇1 + v̇2 = 0.5 + 5.5

v̇5 = v̇4 − v̇3 = 5.5− 0

ẏ = v̇5 = 5.5

Table 1: Forward mode AD example setting ẋ1 = 1 to compute ∂y
∂x1

Performing forward AD on a function f : Rn → Rm with n input xi and m outputs
yj and setting one variable ẋi = 1 and the rest to zero can be generalized as computing
one column of the Jacobian. Repeating this process for every input makes it possible to
populate the entire Jacobian matrix.

Jf =




∂y1
∂x1

. . . ∂y1
∂xn

... . . . ...
∂ym
∂x1

. . . ∂ym
∂xn




Figure 5: Jacobian matrix for function f with n inputs and m outputs

Treating the input variables in the forward tangent as a vector of sizen and initializing each
derivative as its counterpart in this vector allows for an efficient and matrix-free method
of computing the Vector-Jacobian product.

In Futhark, the forward mode AD is called by the function jvp the definition of which can
be found in listing 9
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1 jvp : : ( f : ϵ −> β ) −> ( x : ϵ ) −> ( x ' : ϵ ) −> ϵ

Listing 9: Type signature of jvp

3.2 Reverse mode

AD in the reverse mode uses the same idea of decomposition as shown in figure 4.
However, instead of starting the computation from the inputs, the reverse mode starts
from the derivative of the output. It computes the derivative shown in the figure in a
left-to-right fashion, as can be seen in figure 6. This means that the regular computation
needs to fully compute the expected result before the AD can start computing derivatives.
The regular computation is referred to as the forward pass, and the derivative computation
that follows is referred to as the backwards pass.

yi =
∂f(g(h(x)))

∂x

=
∂f(g(h(x)))

∂g(h(x))
· ∂g(h(x))

∂x

=

�
∂f(g(h(x)))

∂g(h(x))
· ∂g(h(x))

∂h(x)

�
· ∂h(x)

∂x

Figure 6: Chain rule used to decompose an example function in reverse AD fashion

In the backwards pass each sub-expression vi is complemented by an adjoint value vi = ∂yj
∂vi

.
These represent how sensitive the derivative with regards to yj is with respect to changes in
vi. A sub-expression can be used multiple times throughout a program, so these adjoints
are accumulated accordingly throughout the backwards pass.

The reverse mode AD transformation involves the core rewrite rule in equation 3
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let v = f(a, b)

↓
let v = f(a, b)

...

let a += ∂f(a,b)
∂a v

let b += ∂f(a,b)
∂b v

(3)

The backwards pass starts by initializing the adjoints of the output as the unit vector for
the output we wish to differentiate relative to. Setting y = ei where ei is the i-th unit vector
and propagating the adjoints in reverse from outputs to inputs will enable us to compute
a row of the Jacobian at a time. This process can be seen for the same example as earlier
in table 2.

This process will need to be repeated for each output to populate the Jacobian matrix
fully. Notice how this differed from the forward mode, where the number of repetitions
depends on the number of inputs.

Similarly to the forward mode, a Jacobian-Vector product can be computed using the
reverse mode AD. This is done by initializing the y to the vector. This project will be using
the Futhark notation for a vjp function to denote reverse mode AD transformation. This
operator takes a function f, input x, as well as the adjoint of the result y’.

1 vjp : : ( f : ϵ −> β ) −> ( x : ϵ ) −> ( y ' : β ) −> ϵ

Listing 10: Type signature of vjp
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Regular computation

v−1 = x1 = 2

v0 = x2 = 5

v1 = ln v1 = ln 2

v2 = v−1 × v0 = 2× 5

v3 = sin v0 = sin 5

v4 = v1 + v2 = 0.693 + 10

v5 = v4 − v3 = 10.693 + 0.959

y = v5 = 11.652

Reverse phase

v5 = y = 1

v4 = v5
∂v5
∂v4

= v5 × 1 = 1

v3 = v5
∂v5
∂v3

= v5 × (−1) = −1

v1 = v4
∂v4
∂v1

= v4 × 1 = 1

v2 = v4
∂v4
∂v2

= v4 × 1 = 1

v0 = v3
∂v3
∂v0

= v3 × cos v0 = −0.284

v−1 = v2
∂v2
∂v−1

= v2 × v0 = 5

v0 = v0 + v2
∂v2
∂v0

= v0 + v2 × v−1 = 1.716

v−1 = v−1 + v1
∂v1
∂v−1

= v−1 +1 /v−1 = 5.5

x2 = v0 = 1.716

x1 = v−1 = 5.5

Table 2: Reverse mode AD example computing both ∂y
∂x1

and ∂y
∂x2

.
Notice how the primal trace is computed before the accumulation of adjoints.
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At first glance, the forward mode AD looks more efficient because it can be computed in
lockstep with the results, but this is often not the case. If we have a program where the
amount of inputs n differs a lot from the number of outputs m, we can confidently reason
which mode is most efficient. If m << n, then the reverse mode AD will be the more
efficient choice since the difference in how many repetitions are needed will significantly
outweigh the cost of additional accumulation computations added to the program. In
other cases, the forward mode is expected to be the faster choice for the same reasons.

In most machine learning algorithms, this is the exact case. The number of inputs will
most often be significantly more than outputs. The goal in machine learning is often
to take a massive amount of inputs and give either a classification in a single output or
to output a relatively small vector which can be used as weights in a model. Thus, we
expect the reverse mode AD to be the more efficient choice for traditional machine learning
algorithms.
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4 Code transformation for primitives

This section will explain how the rewrite rule for reverse AD, seen in equation 3, is used to
reason about the code transformations for the functional primitives in Futhark. Specifically,
the transformation for reduce will be reasoned about first. Then it will be presented how
this can be extended to a valid code transformation for the reduce_by_index primitive.

4.1 Reduce

Recall that the semantics for reduce, seen in listing 7, assumes the operator is associative.
If a reduce has the operator ⊙, neutral element e⊙, input as = [a0, a1, .., an−1] and its
output bound to the variable y. Then we can reason about the contributions to the adjoint
if we group the terms as

let y = (a0 ⊙ ..⊙ a−1)⊙ ai ⊙ (ai+1 ⊙ ..⊙ an−1) (4)

Then for every i we can define the variable li as the left group as such li = (a0 ⊙ ..⊙ a−1)

and define ri similarly for the group right of ai. Thus if we consider these two variables
as constants we can use the rewrite role for reverse AD in equation 3 to get the following

ai += ∂(li⊙ai⊙ri)
∂ai

y (5)

where + denotes a potentially vectorized addition.

The right-hand side of this equation can be generically generated in code as a function f

that can be mapped over all ai, li, and ri.

f ← vjp ((\ li ai ri → li ⊙ ai ⊙ ri), (ls, as, rs), y)

To compute li for all possible i, we perform an exclusive scan over the input with the
operator ⊙. For ri, we do the same thing but over the reversed input, which we reverse
again to have the final list. Assuming ⊙ has no free variables, we can write the reverse AD
rewrite for reduce as is shown in figure 7.
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1 −− Forward sweep
2 l e t y = reduce ⊙ e⊙ as
3 −− Rev e r s e sweep
4 l e t l s = scanexc ⊙ e⊙ as
5 l e t r s = reverse as |> scanexc (\a b −> b ⊙ a ) e⊙ |> reverse
6 l e t as += map f l s as r s

Figure 7: The rewrite rule for reduce

Although adding overhead in the computation of reduce_by_index, the addition of the
reverse sweep does not affect the work or span asymptotics for the program.

4.2 Reduce_by_index

Recall how the semantics of reduce_by_index at its core an N-ary implementation of
reduce. This indicates that the transformation above will also be used here but extended
to compute for each bucket instead. This code transformation for arbitrary operators is
not implemented in Futhark and is the main extension proposed in this project.

The first part of this section covers the reasoning and explanation of the rewrite rule for
RBI for arbitrary operators. The second part of this section introduces three special cases
for which there is a theoretically more efficient rewrite rule.

4.2.1 Overview of how the rewrite rule is derived

The forward pass in the rewrite will also only consist of the reduce_by_index call. But for
the reverse pass we will need to do an extension of the rewrite rule for reduce Consider
the statement

l e t y = reduce_by_index h i s t _ o r i g ⊙ e⊙ i s as

If the operator is lifted to work on arrays we can deconstruct the expression above to the
line below where w is the of hist_orig.

l e t y = h i s t _ o r i g ⊙L reduce_by_index ( r e p l i c a t e w e⊙ ) ⊙ e⊙ i s as

The expression above shows how the RBI call computes an N-ary reduction and adds it
to the values already present in hist_orig. This indicates that with the rewrite rule for AD
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seen in equation 3 we will also have to accumulate on its adjoint. So the goal of the reverse
pass will therefore be to calculate the contributions to the adjoint of as as well as hist_orig.

To derive hist_orig we can think of the result of each bucket as yi = xi ⊙ si where s is the
result of the right-hand side of ⊙L and x is hist_orig. Hence the adjoint can be computed
by

hist_origi += ∂(hist_origi⊙si)
∂hist_origi

yi (6)

Then similarly to reduce we can derive the contributions to as using variables that repre-
sent all values scanned left and right of ai of a specific bin, see equation 4. However, for
RBI we will need to extend them based on the corresponding index in is. This is to make
the li and ri variables only take values in their bucket into account. Assume this, and also
the adjoint of our contributions s is already computed. Since as is of size n and s is of size
w where w <= n, we will need to make a new variable that is size n and holds the adjoint
of the bucket that the corresponding value in as belongs to. This stretched representation
will be referred to as ss. With this, the adjoint of as can be computed as such

ai += ∂(li⊙ai⊙ri)
∂ai

ssi (7)

4.2.2 Rewrite rule for the general case

Since we are interested in a rewrite rule for programs, we will need to iron out some of
the assumptions made in the derivations above. Firstly we need to compute the li and ri

variables for each bucket. Secondly we need to compute our contributions, s, before we
can accumulate hist_orig. After this accumulation is done we need to compute s, which
is defined similarly to hist_orig just differentiated with regards to s instead of hist_orig.
Then we have everything we need to compute as.

To compute the li and ri variables for each bucket, we will need to perform the same scans
and reverse them as in the rewrite rule for reduce but also extend to take the index into
account and compute them isolated from the values of other buckets.

The order of the input arrays can be shuffled, which is unsuitable for parallel operations.
This is because of the memory locality between values belonging to the same bucket.
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Therefore we will sort the values in both as and is according to the value in is, and then
create a flag array to indicate the start of these bucket segments. This allows segmented
operations that are much more suitable to run in parallel. Assuming a constant key size,
we can do this without affecting the work-depth asymptotic by using Radix sort.

With the sorted elements, we can use segmented scans to get results for all buckets in
one parallel operation. These segmented operations take arrays with binary indicators of
whether the value is the segment’s start and then compute the scan or reduce for all values
within the same segment. An example of this can be found below, where the inner values
of certain variables can be found in the comments

1 l e t as = [ 1 , 2 , 6 , 3 , 5 , 8 ]
2 l e t i s = [ 0 , 1 , 2 , 1 , 1 , 0 ]
3
4 l e t ( sor ted_ i s , sor ted_as ) = rad ixSor t ( i s , as )
5 l e t seg_ f l ags = mkSegFlags so r t e d_ i s
6
7 −− s o r t e d _ i s => [ 0 , 0 , 1 , 1 , 1 , 2 ]
8 −− s o r t e d _ a s => [ 1 , 8 , 2 , 3 , 5 , 6 ]
9 −− s e g _ f l a g s => [ 1 , 0 , 1 , 0 , 0 , 1 ]

10
11 l e t seg_scan_res = seg_scan + 0 seg_ f l ags sor ted_as
12 −− s e g _ s c a n _ r e s => [ 0 , 1 , 0 , 2 , 5 , 0 ]

Figure 8: An example of sorting wrt. is and a segmented scan operation

Furthermore, if we perform an iota to represent the order and zip it to as before we sort it,
we can easily permute our adjoint contribution back to the original order with a scatter
when needed.

To compute the contributions, we use our operator on the last value in each segment and
the corresponding value in lis. This corresponds to performing a segmented scan.

All of these intermediate variables then enable the computations of the adjoint values
derived above. This results in the rewrite rule shown in figure 9. It includes some
auxiliary functions that are not shown since they are considered implementational details.
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1 −− Forward pa s s
2 l e t y = reduce_by_index h i s t _ o r i g ⊙ e⊙ i s as
3
4 −− Backwards pa s s
5 l e t a s_ io t a = zip as ( i o t a n )
6 l e t sor ted_ i s , ( sorted_as , so r t ed_ io t a ) = rad ixSor t i s a s_ i o t a
7 l e t segment_f lags = mkSegFlags so r t e d_ i s
8 l e t l i s = seg_scanexc ⊙ e⊙ segment_f lags sor ted_as
9

10 l e t ( rev_vals , r ev_ f l ags ) = rever seCor rec t ly sor ted_as segment_f lags
11 l e t r i s = seg_scanexc ⊙ e⊙ r ev_ f l ags rev_vals |> reverse
12
13 l e t s e g _ l a s t _ l i s , s eg_ la s t_va lue = ex t rac tLas t InSeg l i s sor ted_as
14 l e t s = map2 op s e g _ l a s t _ l i s seg_ la s t_va lue
15
16 l e t hist_orig = map3 (\ xi si yi −> ( fx xi si ) ∗ yi ) h i s t _ o r i g s y
17
18 l e t s = map3 (\ xi si yi −> ( fs xi si ) ∗ yi ) h i s t _ o r i g s y
19
20 l e t as_con t r ib_sor t ed =
21 vjp ( (\ l i a i r i −> l i ⊙ a i ⊙ r i ) ,
22 ( l i s , sorted_as , r i s ) ,
23 s )
24 l e t as_cont r ib = backPermute as_cont r ib_sor t ed so r t e d_ i s
25 l e t as += as_cont r ib
26
27 where
28 ȳ i s a v a i l a b l e a f t e r forward pass
29 fx i s (\ x s → ∂(x⊙s)

∂x )

30 fs i s (\ x s → ∂(x⊙s)
∂s )

Figure 9: The reverse mode AD rewrite rule for reduce_by_index

Since none of these operations or functions has a larger asymptotic work or span than
reduce_by_index, the asymptotics are unaffected. Although obviously introduces some
overhead to the program that is not negligible in practice.
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This rewrite rule is not the most efficient method of performing reverse AD of RBI. Al-
though it does not affect the asymptotics of the program, many redundant computations
can be avoided. The main one is how the result is computed twice because we need
the intermediate variable s. This could be avoided by computing lis and sorted_as in the
forward pass and using them to create the result. This, along with other details, will be
explored and addressed in the implementation section of this project.

4.2.3 Special case: Multiplication

When the operator is multiplication, there is a special case when there are one or more
zeroes in the input. Since the result will be a zero in these cases, the Jacobian will either
be fully or almost entirely inhabited by zeroes.

This is because if any more than one ai in a bucket is zero, the adjoint will always result
in zero. Although, if there is only a single zero input value in the bucket there is a case
where neither li nor ri for a bucket evaluate to zero and because the adjoint of that specific
bucket can be simplified to (li ⊙ ri) · y there is a single value in the adjoint of that bucket
that is nonzero.

The proposed algorithm does a slightly modified forward pass to compute the nonzero
products and the zero counts. This is done by mapping over the values in as to create
tuples containing the value and an integer boolean indicating if the value was zero. If the
value were zero, the first part of the tuple would have a one instead. This can then be
reduced into the two variables by using a single reduce, which multiplies the first value in
the tuple and sums the second. Then all that remains is to check whether there were any
zeros in the input and set the output result for that bucket to either the nonzero product
or zero accordingly.

In the backward pass, all values are mapped, and their adjoints are computed depending
on the value of their buckets’ zero counts. If there are no zeroes, the normal adjoint value
is computed with the regular rewrite rule for reduce. However, if there is a single nonzero
value and the current value is zero, the adjoint value for that index is (li⊙ri)·y. Otherwise,
zero is returned as the adjoint.
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1 −− c a s e : l e t y = r educ e_by_ ind ex h i s t _ o r i g (∗ ) 1 i s a s
2 −− Input :
3 −− Assuming t i s a t yp e o f r e a l number
4 −− h i s t _ o r i g : [w] t
5 −− i s : [ n ] i 64
6 −− as : [ n ] t
7
8 −− Forward pa s s
9

10 −− F i r s t compute z e r o e s f o r e a ch b u c k e t
11 l e t as_zeros = map (\a −> i f a==0 then 1 e lse 0) as
12 l e t zero_counts = reduce_by_index ( r e p l i c a t e w 0) (+ ) 0 i s as_zeros
13 −− Then compute nonzero p r oduc t
14 l e t as_nz = map (\a −> i f a == 0 then 1 e lse a )
15 l e t as_nzprod = reduce_by_index ( r e p l i c a t e w 1) (∗ ) 1 i s as_nz
16
17 l e t y_contr ib =
18 map2 (\nzp zc −>
19 i f ( zc > 0) then 0 e lse nzp
20 ) as_nzprod zero_counts
21 l e t y = map2 (∗ ) y y_contr ib
22
23 −− Backwards pa s s
24 l e t h i s t _o r ig_ba r = map2 (∗ ) y_bar y_contr ib
25
26 l e t as_bar_cont r ib =
27 map (\ i a −>
28 i f zero_counts [ i ] == 0 then
29 ( as_nzprod [ i ] / a ) ∗ y_bar [ i ]
30 e lse i f zero_counts [ i ] == 1 && a == 0 then
31 as_nzprod [ i ] ∗ y_bar [ i ]
32 e lse
33 0
34 ) as i s
35 as_bar += as_bar_cont r ib

Figure 10: Efficient reverse mode AD special case for RBI with multiplication
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4.2.4 Special case: Min/Max

The second special case is when the operator is either max or min, and the neutral element
is the smallest or largest possible element, respectively. This optimisation aims to extend
the forward pass with an operator that can save at which index the maximum or minimum
element is found for each bucket and then use that index to compute the adjoint directly.
This saves a lot of unnecessary computations otherwise done in the general case.

1 −− c a s e : l e t y = r educ e_by_ ind ex h i s t _ o r i g minmax ne i s a s
2 −− Input :
3 −− Assuming t i s a t yp e o f r e a l number with v a l i d min / max f u n c t i o n
4 −− h i s t _ o r i g : [w] t
5 −− i s : [ n ] i 64
6 −− as : [ n ] t
7
8 −− Forward pa s s :
9 l e t ind_op =

10 (\ acc_v acc_ i v i −>
11 i f ( acc_v == v ) then ( acc_v , min acc_ i i )
12 e lse i f ( acc_v == minmax acc_v v )
13 then ( acc_v , a c c_ i )
14 e lse ( v , i ) )
15 l e t ( y , y_ind ) =
16 reduce_by_index h i s t _ o r i g ind_op ( ne , −1) i s ( zip as ( i o t a n ) )
17
18 −− Backwards pa s s :
19 l e t h i s t _o r ig_ba r = map (\ min_ind e l −>
20 i f min_ind == −1 then e l e lse 0
21 ) h i s t _ inds y_bar
22
23 l e t as_bar_contr ib_reordered =
24 map2 (\ i h_v −>
25 i f i == −1 then 0 e lse as_bar [ i ] + h_v
26 ) h i s to_ inds h i s to_bar
27 l e t as_bar_cont r ib = s c a t t e r h i s to_ inds as_contr ib_reordered
28 l e t as_bar += as_bar_cont r ib

Figure 11: Efficient reverse mode AD special case for RBI with min/max
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4.2.5 Special case: Addition

When the operator is addition, either vectorised or scalar, and the neutral element is zero
then the regular reduce has the special adjoint case of ∂(li+ai+ri)

∂(ai)
y = y which implies that

the return sweep is simply let as += y.

To translate this into the reduce_by_index structure we simply change the adjoint contri-
butions index into the adjoint of the result y.

1 −− c a s e : l e t y = r educ e_by_ ind ex h i s t _ o r i g (+ ) 0 i s a s
2 −− Input :
3 −− Assuming t i s a t yp e o f r e a l number
4 −− h i s t _ o r i g : [w] t
5 −− i s : [ n ] i 64
6 −− as : [ n ] t
7
8 −− Forward Pass :
9 l e t y = reduce_by_index h i s t _ o r i g (+ ) 0 i s as

10
11 −− Backwards Pass :
12 l e t h i s t _o r ig_ba r = y_bar
13
14 l e t as_bar_cont r ib =
15 map (\ i −>
16 y_bar [ i s [ i ] ]
17 ) ( i o t a n )
18
19 l e t as_bar += as_bar_cont r ib

Figure 12: Efficient reverse mode AD special case for RBI with addition
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5 Implementation

This section will start by giving an introduction to the intermediate representation (IR)
used in the Futhark compiler. This includes an explanation of how it is used and an
example. Followed by this will be a thorough look into how the rewrite ruled for RBI,
seen in figure 9, is translated to pseudocode. After which selected parts of the code will be
discussed and explained. Finally, a short discussion of the shortcomings of this solution
will be presented.

5.1 Intermediate representation

This section will present a simplified version of the intermediate representation used in
the compiler of Futhark. This IR will then be used to show how the rewrite rules from the
previous chapter can be implemented as extensions to the Futhark compiler.

1 data SOAC rep =
2 Screma SubExp [VName] ScremaForm
3 | Hist SubExp [VName] [ HistOp rep ] (Lambda rep )
4 | Scatter SubExp [VName] (Lambda rep ) VName
5 data ScremaForm rep =
6 ScremaForm [ Scan rep ] [ Reduce rep ] (Lambda rep )
7 data SubExp rep =
8 Constant PrimValue , Var VName
9 data Scan rep =

10 Scan (Lambda rep ) [ SubExp ]
11 data Reduce rep =
12 Reduce (Lambda rep ) [ SubExp ]
13 data Lambda rep =
14 Lambda [ Param rep ] ( BodyT rep ) [ Type ]
15 data PrimValue rep =
16 Intvalue , FloatValue
17 data BasicOp =
18 Index VName SubExp
19 | Iota , CmpOp , SubExp , BinOp
20 VName : : String

Figure 13: Simplified IR
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The simplification is merely a tool to convey the most vital aspects of how the rewrite rules
get translated to compiler code.

In Figure 13 the most important subset of the IR used in this project is shown. The Screma
is a combination of scan, reduce, map, which takes as input; a size, a list of input arrays
and this combination. Semantically it performs the map first to create the input for the
scans, which is followed by the reductions. The Hist is the internal representation of
reduce_by_index. The Lambda is an index generating function. In the code we implement,
it will always just be the identity function. BasicOp contains many of the basic operations
such as indexing, binary operations like subtraction and addition, comparing used to make
predicates, and more. These are, for the most part, self-explanatory when seen in context.
Certain data types are omitted because their internals are needlessly complicated for this
demonstration.

The Futhark compiler also contains many functions to modularise compiler extensions.
This project has also introduced a number of them. However, they will only be explained
if it is necessary for the following sections.

5.2 The essence of the Futhark compiler

Futhark has many complicated features, most of which are already compiled before hitting
the part of the compiler pipeline that performs AD. (Elsman et al. 2018) There are also
several standard optimisations performed prior to AD. At this point, the only higher-order
functions that remain are the SOACs. However, it is followed by a simplification step that
can potentially fuse SOACS if it is a valid optimisation.

The compiler itself uses monads to build the contributions of each step of the compiler into
the final product. The adjoints for reverse AD are similarly stored and combined with the
AD monad, ADM. This monad allows for accumulating adjoint values and is responsible for
storing and updating the intermediate adjoints. There are specialised monads that allow
for building expressions. For example, the Builder monad will be used to build the BodyT
expression, which can be used to express anonymous functions, among other things. Both
of these monads are implementations of MonadBuilder, which allows for many vital utilities
like binding expression, referencing them, scoping and more.

This project will extend the part of the compiler in which vjp has been called with the Hist
SOAC. Here we will match the SOAC pattern to ensure it is the correct one, and for the
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special cases, we will also match to see that they are valid cases.

5.3 IR example

This section will present a simple example to showcase how the IR is used for code
generation. This is supposed to give a general idea of what compiler code is equivalent to
a simple source code example and what the generated code from this looks like.

A simple snippet from the pseudocode of the special multiplication case will have its
implementation walked through step by step. The snippet in question can be seen in
figure 14a. This is the line where an indicator array for whether the values in as are zeros
or not is created. This is written as a simple anonymous function that is mapped over as
originally.

In figure 14c, the compiler code implementing this line can be seen. Note that the lines that
create oneSubExp, and zeroSubExp are omitted. They are simple variables that represent
the numerical values zero and one for t, which is the type of input. Although there are
many compiler-specific intricacies in even a simple snippet, only the most important will
be explained.

In line 1 the MonadBuilders building block letSubExp is used to define a zero value of type t
under the name "t_zero". In line 2 the utility function newParam defines a parameter vari-
able which has the name "value". Line 3 starts the creation of the body of the anonymous
function. Here the runBodyBuilder is called and has its scope extended with the newly
created parameter. In Line 4, the body of the anonymous function is started, and the
following list is its output, which is only a single value. Line 5 through 8 shows how an if
statement is declared, where line 6 is the predicate, line 7 is the true branch, and line 8 is
the false branch. On line 10, the list of parameters, the body of the anonymous function
and the return type are used to construct a Lambda expression. On lines 11 and 12, this
Lambda is used in a Screma with the size and input array to bind it to an expression called
as_zeros.
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1 l e t as_zeros =
2 map (\a −>
3 i f a==0 then 1 e lse 0
4 ) as

(a) Source code

1 l e t { as_zeros : [ n ] f32 } =
2 map(n , { as } ,
3 \ { value : f32 }
4 : { f32 } −>
5 l e t { cond : bool } =
6 eq_f32 ( value , 0 . 0 f32 )
7 l e t { x : f32 } =
8 i f cond
9 then { 1 . 0 f32 }

10 e l s e { 0 . 0 f32 }
11 : { f32 }
12 in { x } )

(b) Generated code

1 t_zero <− letSubExp " t_zero " $ zeroExp $ Prim t
2 v_f <− newParam " value " $ Prim t
3 zero_lam_bdy <− runBodyBuilder . loca lScope ( scopeOfLParams [ v_f ] ) $ do
4 eBody [
5 e I f
6 (eCmpOp (CmpEq t ) ( eParam v_f ) ( toExp t_zero ) )
7 ( eBody [ eSubExp oneSubExp ] )
8 ( eBody [ eSubExp zeroSubExp ] )
9 ]

10 l e t zero_lam = Lambda [ v_f ] zero_lam_bdy [ Prim in t64 ]
11 as_ze ros_ ind i ca to r <−
12 letExp " as_zeros " $ Op $ Screma n [ as ] ( ScremaForm [ ] [ ] zero_lam )

(c) Compiler code

Figure 14: The three stages of the compiler code

In figure 14b, a simplification of the generated code is portrayed. It shows how the as_zeros
is defined as the result of a map function. The semantics of the generated code is slightly
different from regular source code. The map, for example, has three inputs; the size, the
input, and the anonymous function, which has the output in the final array.
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5.4 Pseudocode

This subsection will present the pseudocode for how the reverse AD rewrite rule for
reduce_by_index has been implemented by this project. There will be some auxiliary
functions that are glossed over for their triviality, but the actual implementation is still as
close to this pseudocode as possible.

Recall how the definition of vjp, seen in listing 10, differentiates with regards to the second
input given to it. So even if it is possible to only differentiate with regards to only one of
the inputs hist_orig or as, the pseudocode below is optimised for the case that the adjoint
for both arrays is needed. This is the case in most programs since all intermediate adjoints
need accumulation.

The example call and inputs can be seen in listing 11, here w is the size of the output,
and n is the size of the input. As the algorithm involves filtering out indices, and sorting
values, while also using the original array, there can easily be some confusion about which
variables are actually sorted and what size they are. Therefore the pseudocode below will
use these simple notations in variable names to indicate size and whether they are the
sorted version of an original array. Any input variable with a suffix apostrophe, ’, is the
filtered version. For example, n′ is the size of the filtered arrays, and is′ is the filtered
indices. Similarly, any sorted variable will have the _sorted suffix. Furthermore, to be able
to reconstruct the original order so an iota variable will be constructed at the start and
used to represent the order of the variables.

1 l e t y = reduce_by_index h i s t _ o r i g op ne i s as
2
3 where
4 h i s t _ o r i g : [w] t
5 i s : [ n ] i 64
6 as : [ n ] t
7 ne : t
8 op : t −> t −> t

Listing 11: Types of the inputs
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To filter, we would first like to flag any indices in is that are inside the index domain.
These can then be scanned to create new indices that increase continuously but disregard
any values outside the index domain. The filtering is done by creating a temporary n-
sized index array equal to the scanned flag array except for the indices that should be
disregarded, which are set to negative ones instead. This n-sized array will then be used
to scatter an iota n to create a final index array of size n′. This new array is used to create
the array that contains the buckets for all values we actually will use in our reductions.

1 l e t temp_flags = map (\ ind −> i f 0 <= ind < w then 1 e lse 0) i s
2 l e t tmp_flags_scanned = scan (+ ) 0 temp_flags
3 l e t n ' = l a s t tmp_flags_scanned
4 l e t temp_inds =
5 map ( \ f l a g f lag_scan −>
6 i f f l a g == 1 then f l ag_scan − 1 e lse −1
7 ) temp_flags temp_flags_scanned
8 l e t io ta ' = s c a t t e r n ' ( Scra tch i n t n ' ) temp_inds ( i o t a n )
9 l e t i s ' = map (\ i −> i s [ i ] ) io ta '

Listing 12: Pseudocode of how is is filtered

The sorting is performed according to the values in is’ since we are interested in a repre-
sentation where we have all values from the same buckets grouped. We also the iota’ to
enable us to reverse the sorting for is’ later when needed. The sorting is performed with a
custom radix sort, which can be seen in the appendix listing 19. We then use the sorted and
filtered iota to index into as, which results directly in a filtered and sorted representation.

1 l e t ( sor ted_ io ta ' , so r t ed_ i s ' ) = rad ix_so r t ( io ta ' , i s ' )
2 l e t sorted_as ' = map(\ i −> as [ i ] ) sor ted_ io ta '

Listing 13: Pseudocode of how is’, iota’ and as are sorted

The segmented scans that we will perform require a flag array as input that indicates the
start of each segment. This array is created by iterating through the sorted_is’ array and
indicating whether the last bucket is different from the current.
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1 l e t seg_ f l ags =
2 map (\ index −>
3 i f index == 0 then 1
4 e lse
5 i f sor ted_ i s ' [ index ] == sor ted_ i s ' [ index −1]
6 then 0
7 e lse 1
8 ) ( i o t a n ' )

Listing 14: Pseudocode of how the segment flag array is created

The pseudocode for the segmented scan can be found in the appendix listing 20. The listing
below shows how the li and ri variables for each segment are computed using segmented
scans. Notice how the reverse segmented scan has the flags reversed and rotated by one
place for them to indicate where each segment begins for the reversed values correctly.

1 l e t l i s = sgmScanExc op sorted_as ' seg_ f l ags
2
3 l e t rev_sorted_as ' = reverse sorted_as '
4 l e t rev_seg_flags_tmp = reverse seg_ f l ags
5 l e t rev_seg_ f lags =
6 map (\ ind −>
7 i f ind == 0 then 1
8 e lse rev_seg_flags_temp [ ind −1]
9 ) ( i o t a n ' )

10
11 l e t r i s = sgmScanExc op rev_as ' rev_sorted_as '

Listing 15: Pseudocode of the segmented scans

Since we have the li values already available, we can perform our reduction computation
by using the operator on each of the last li values for each segment along with the last
value in each segment from sorted_as’. This is done in listing 16 by scattering and then
computing the contributions and adding them to the hist_orig input variable with two
simple maps. This concludes the forward pass.
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1 l e t s e g _ l a s t _ f l a g = map (\ i −> i f i == n '−1 then i
2 e lse i f seg_ f l ags [ i +1] == 1
3 then i
4 e lse −1
5 ) ( i o t a n ' )
6
7 l e t s e g _ l a s t _ l i s = s c a t t e r ( r e p l i c a t e ne w) s e g _ l a s t _ f l a g l i s
8 l e t seg_ la s t_va lue = s c a t t e r ( r e p l i c a t e ne w) s e g _ l a s t _ f l a g sorted_as '
9

10 −− s i s t h e c o n t r i b u t i o n s made t o y
11 l e t s = map2 op s e g _ l a s t _ l i s seg_ la s t_va lue
12
13 l e t y = map2 op h i s t _ o r i g s

Listing 16: Pseudocode of how lis and as is used to compute result of RBI

Backwards pass

With the result of the forward pass available, the only thing missing is computing the
contributions to the adjoint values. The sorted and filtered variables will still be used
because their contributions will be scattered to an array of zeroes which we will use for
the final update of adjoints. Thus the values filtered do not have any contributions to the
adjoint of hist_orig or as. At this point, the adjoint of y will be available.

An auxiliary function will be used to differentiate the input operation⊙with relation to the
first or second parameter. The lambda function derivOpByX variable will then represent
(\ x y → ∂(x⊙y)

∂x ), and similarly the derivOpByX is the equivalent of (\ x y → ∂(x⊙y)
∂y ).

Giving the first adjoint lambda function hist_orig and s as its inputs and then multiplying
this by y will give us the the following representation for the computation of the adjoint
of each bucket xi in hist_orig and si in s xi = ∂(xi⊙si)

∂xi
· yi.

1 l e t hist_or ig_bar_temp = map2 derivOpByX h i s t _ o r i g s
2 l e t h i s t _o r ig_ba r = map2 (\ t y_b −> t ∗y_b ) his t_or ig_bar_temp y_bar

Listing 17: Pseudocode of how the adjoint for hist_orig is computed
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To compute the adjoint of sorted_as we first need the adjoint of s, as seen in equation 7.
Then since each value in the same bucket needs their derivative multiplied by the same
adjoint value we simply stretch out s_bar to also be of size n’. Then we take the differential
of op and use it in a new lambda function which computes (li op_adj ai op_adj ri) where
op_adj is the derived operator. This function can then be used in a vjp call with s_bar_repl
as the adjoint of the result, the result of which simply needs to ber back permuted to the
original order and then we have our contributions to the adjoint of as.

1 l e t s_bar_temp = map2 derivOpByY h i s t _ o r i g s
2 l e t s_bar = map2 (\ x y −> x∗y ) s_bar_temp y_bar
3 l e t s_bar_rep l = map (\ bin −> hist_temp_bar [ bin ] ) sor ted_as
4
5 l e t map_lam = (\ l i as vi −> op_adj ( op_adj l i as ) v i )
6 l e t as_bar_contr ib_reordered =
7 vjp (map_lam , ( l i s , sorted_as ' , r i s ) , s_bar_rep l )
8 l e t as_bar_cont r ib = s c a t t e r n ' sor ted_ io ta ' as_bar_contr ib_reordered
9

10 as_bar += as_bar_cont r ib

Listing 18: Pseudocode of how the adjoint for as is computed

5.5 Implementational details

This project has implemented the pseudocode above along with the special cases for
multiplication, addition, and min/max found in figure 10, 12, and 11 respectively. This
section aims to give some insight into a few of the non-trivial implementational decisions
made. There will also be examples of how these decisions were translated to compiler
code.

Important to note is that some details were discussed with my fellow student Søren Brix for
the implementation of the general case. This was done with my supervisor’s permission
and ultimately only helped us get a working product ready in time. We did not discuss
the special cases or much about the theory behind the project.

In the implementation of vjp it first starts by matching the input and then calling the
appropriate internal function to handle it accordingly. For example, SOACs have their own
file where they have matched, and the functions that compute their adjoint contributions
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are called. This file has been extended by this project to match the Hist constructor,
which, as discussed earlier, is the internal representation for the reduce_by_index SOAC.
The assumptions of the special cases are matched first, where the operator and neutral
element are the most obvious ones. This is then followed by the general case, which has
some assumptions it needs to check. If any of these matches, the appropriate function is
called.

These functions that compute the adjoint for reduce_by_index are all located in a file
called RBI.hs, where there is a function for each of these cases. The special cases are
mainly direct translations of the pseudocode in the same fashion as can be seen in figure
14. Therefore only snippets from the general case will be considered here.

The design process for all cases focused on creating modular code. This was done through
a couple of different methods. The first one is that each line of the pseudocode was
considered and implemented in isolation. This means that each new expression can be
thought of as an individual function that assumes its input is valid and is implemented as
close to the pseudocode as possible to ensure the validity of its output. This does, however,
mean that the code is even more verbose than it could have been. For example the screma
expressions could have been given fused Lambda functions or scans along with it. Instead,
this implementation has a screma for each scan, map, and reduce performed. However,
the simplification step after AD in the compiler takes care of this for the generated code,
so it is not likely that it affects the performance of the code. Furthermore, there are utility
functions for some of the bigger anonymous function bodies or lines that are used more
than once.

The most complex part of the algorithm is the radix sort. This is implemented as a simple
loop, bit shift and a custom written partition function. The pseudocode for this can be
seen in appendix figure 19. The complexity came from how vital this part was and how
many components it consisted of. Because of the modular approach discussed earlier, the
implementation got a bit bloated. Thus, great care was taken to verify its output in almost
every step of its development. The biggest missing feature also lies within this part of the
program. The sorting algorithm has a constant loop size of 6 and therefore does not sort
correctly for bucket sizes larger than 64. This also means that there is redundant sorting
for any sizes less than 32. The loop size should be ⌈log2(w)⌉ in the correct implementation.
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1 l e t f l a g s =
2 map (\ ind −>
3 i f 0 <= ind < w then 1
4 e lse 0
5 ) i s
6 l e t f lag_scanned =
7 scan (+ ) 0 f l a g s
8 l e t n ' =
9 l a s t f lags_scanned

(a) Source code

1 l e t { f_scan : [ n ] i64 , f l a g s : [ n ] i 64 } =
2 scanomap (n , { i s } ,
3 {\ { x : i64 , y : i 64 } : { i 64 } −>
4 l e t { add_res : i 64 } = add64 ( x , y )
5 in { add_res } , {0 i 64 } } ,
6 \{ ind : i 64 } : { i64 , i 64 } −>
7 l e t { cond : bool } = ind < 0 i64
8 l e t { x : i 64 } =
9 i f cond then {0 i64 } e l s e {

10 l e t { cond : bool } = w < ind
11 l e t { c_neg : bool } = not cond
12 l e t { z : i 64 } = b to i c_neg
13 in { z } } : { i 64 }
14 in { x , x } )
15 l e t { l e : i 64 } = sub (n , 1 i64 )
16 l e t { new_length : i 64 } = f_scan [ l e ]

(b) Generated code

1 i_param <− newParam " ind " $ Prim in t64
2 pred_body <− runBodyBuilder . loca lScope ( scopeOfLParams [ i_param ] ) $ do
3 eBody [ e I f
4 (eCmpOp ( CmpSlt In t64 ) ( eParam i_param ) ( eSubExp zeroSubExp ) )
5 ( eBody [ eSubExp zeroSubExp ] )
6 ( eBody [ e I f
7 (eCmpOp ( CmpSlt In t64 ) ( eSubExp wsubexp ) ( eParam i_param ) )
8 ( eBody [ eSubExp zeroSubExp ] )
9 ( eBody [ eSubExp oneSubExp ] )

10 ] ) ]
11 l e t p_lam = Lambda [ i_param ] pred_body [ Prim in t64 ]
12 f l a g s <− le tExp " f l a g s " $ Op $ Screma n [ inds ] $ ScremaForm [ ] [ ] p_lam
13
14 scan_soac <− scanSOAC [ Scan (addLambda ( Prim in t64 ) ) [ zeroSubExp ] ]
15 f lags_scanned <− le tExp " f_scan " $ Op $ Screma n [ f l a g s ] scan_soac
16
17 lastElem <− letSubExp " l e " $ BasicOp $ BinOp Sub n oneSubExp
18 n ' <− letSubExp " new_length " $ BasicOp $ Index f lags_scanned lastElem

(c) Compiler code

Figure 15: The three stages of the compiler code
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A core idea of the pseudocode from the previous section is how the input arrays are filtered
before the results and adjoints are computed. The size of the filtered arrays was computed
by flagging all valid indices, scanning them with addition and extracting the last value.
The compiler code for this can be seen in figure 15a. It works very similarly to the example
from earlier. The anonymous function body can easily be defined by creating a parameter
and using it in a simple nested if statement. This is then used in the Lambda for a Screma
to create the first indicator flag array. A utility function for creating addition lambdas is
used to create a scanSOAC for the scanned flags Screma easily. Finally, a subtraction and
indexing operation is performed to have the final expression n’. The generated code in
figure 15b shows an example of how the compiler can fuse operators after the AD step.
In this case, the scan and map resulted in the scanomap fusion. This is a more efficient
approach than performing them separately. In this case, the inputs to it are the size,
the index, the scan lambda, and then the map lambda. Logically one can think of this
as the map outputting two arrays, and then the scan is performed on only one of them
afterwards. Due to this construct being implemented to run in parallel, it is not the reality.

Another example of a core part of the algorithm is how the adjoints are actually updated.
The snippet of pseudocode where the adjoint for as is updated for the general case can
be found in 16a. Here the adjoint of the operator is used to get the reverse mode AD for
the lambda function li ⊙′ ai ⊙′ ri, the result of which is then scattered to an n-sized array
constitutes the final contributions for this program. In figure 16c, the simplified compiler
code equivalent to this can be found. Here an auxiliary function makes the adjoint lambda
function for the operator and uses it in a vjp call. After this, the adjoint of the sorted values
is scattered to a zero array which are the final contributions for as. In the generated code,
the adjoint lambda creation and vjp call are not shown explicitly. Instead, the lambda
function of the scatter computes this by simply multiplying the adjoints of the input with
li and ri. This is another case of fusion by the compiler.

The rest of the algorithm are snippets similar to figure 15 and figure 16. Most of the
non-trivial choices were made in the development of the pseudocode discussed in the
previous subsection.
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1 l e t map_lam =
2 (\ l i as vi −>
3 op_adj ( op_adj l i as ) v i )
4 l e t as_bar_cont r ib_r =
5 vjp (map_lam ,
6 ( l i s , sorted_as ' , r i s ) ,
7 s_bar_rep l )
8 l e t as_bar_cont r ib =
9 s c a t t e r

10 n
11 sor ted_ io ta '
12 as_bar_cont r ib_r
13
14 as_bar += as_bar_cont r ib

(a) Source code

1 l e t { a s_bar_cont r ib_ds t : [ n ] f32 } =
2 r e p l i c a t e ( [ n ] , 0 . 0 f32 )
3 l e t { as_bar_cont r ib : [ n ] f32 } =
4 s c a t t e r ( new_length ,
5 { sor ted_ i s_b ins_1 , fwd_scan ,
6 rev_scan_rev , so r t ed_ i s_b ins_2 } ,
7 \ { sorted_bin_p : i64 , x_1 : f32 ,
8 x_2 : f32 , x_3 : i 64 }
9 : { i64 , f32 } −>

10 l e t { his t_temp_adj : f32 } =
11 his t_bar ' [ sorted_bin_p ]
12 l e t { binop_x_adj_1 : f32 } =
13 fmul32 ( x_1 , his t_temp_adj )
14 l e t { binop_y_adj_2 : f32 } =
15 fmul32 ( x_2 , binop_x_adj_1 )
16 in { x_5940 , binop_y_adj_2 } ,
17 ( as_bar_cont r ib_ds t )
18 in { as_bar_cont r ib }

(b) Generated code

1 ( _ , lam_adj ) <− mkF op
2 vjp lam_adj [ l i s , sorted_as ' , r i s ] [ h is t_ temp_bar_repl ]
3
4 as_bar_cont r ib_r <− lookupAdjVal sorted_as '
5 as_bar_cont r ib_ds t <−
6 letExp " h i s t _o r i g_b a r_ con t r i b_ds t " $ BasicOp $ Rep l i ca t e n t_zero
7 f <− mkIdentityLambda [ Prim int64 , t ]
8 as_bar_cont r ib <−
9 letExp " as_bar_cont r ib " $ Op $

10 S c a t t e r n ' [ sor ted_ io ta ' , a s_bar_cont r ib_r ] f as_bar_cont r ib_ds t
11
12 updateAdj as as_bar_cont r ib

(c) Compiler code

Figure 16: The three stages of the compiler code
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5.6 Shortcomings of the implementation

The implementation matches the ideal scenario with a single operator, neutral element and
a single set of input arrays. However, since the compiler fuses throughout the pipeline,
these assumptions may not be the reality. The implementation does not support input
arrays that do not contain singletons—so having tuples or lists as the values in as is not
supported in this implementation.

There are also 2d and 3d versions of the reduce_by_index construct, which are not supported
by this implementation. Although they are represented similarly in the IR, the assumptions
made in the implementation do not allow for them to be matched.

However, the biggest shortcoming is that the radix sort only sorts a constant amount of
bits. For example, it only sorts the first 6 bits in this project, so any call with less than 64
unique bins will be correct. An alternative is setting this constant to 64 so that it returns
the correct result no matter how many bins it has to take into account. This is much too
inefficient to give a realistic code benchmark. The solution is relatively simple; one has to
implement a snippet that computes how many bits need to be sorted, which is equal to
⌈log2(w)⌉ where w is the number of bins in the output.
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6 Validation

Since this is a compiler project, testing and validity are of the highest importance since
subtle errors are incredibly easy to miss and can have devastating consequences at any
time in the future. These extensions have their results reliant on much intermediate code,
which has made it impossible to unit test through the source code. Therefore testing
and verification were mainly done through testing the final result. The intermediate code
was tested as thoroughly as possible using various techniques in the development phase.
An example of this is how in the general algorithm, the radix sort was tested during the
development by setting the result of the entire algorithm as the output of the sort. These
manual tests are not robust enough to verify anything, but they exemplify how creative
one must be when the code itself cannot be unit tested.

An assumption made very early on is that if nothing obvious proved the contrary, then
every previously implemented part of the compiler must be correct. This allows for
verification of the result of the vjp function by comparing it to the result of the jvp function
which already supports reduce_by_index. Of course, because of the nature of these methods,
the outputs will not give the same shaped output, but with some elementary maps and a
transposition, they are expected to be equivalent. These cross-test cases include different
types, shuffling of indices, and having indices out of bounds. Some of the smaller cases
were also worked out by hand to be certain that the result of the jvp was correct.

Another method of verification that was used both in the development phase and after was
generating the code for the algorithm using the futhark dev -s command. Constructing
a test case that uses the algorithm we are interested in testing and giving the filename to this
command gives us the generated intermediate code. Then, one can verify that this code
corresponds to the actual code and the pseudocode for the algorithm. Of course, because
of simplifications and fusions done by the pipeline, the result is not directly equivalent,
so it takes quite a bit of time and effort to assess the validity of the code. This generated
code is the same as was used in the code snippets in the previous section. For the longer
algorithms, such as the general case, the generated code can be quite difficult to accurately
verify because of how much the generated code deviates from the written counterpart.

The reason why the Haskell code is near impossible to unit test even though it is written in
a modular method is that this code manipulates intermediate representations in monads
where one would have to somehow construct the expected state of the ADM from scratch

Page 42 of 50



to verify that the code up to that point is correct. This was decided to be outside the scope
of this project since the result of the algorithm is what will be used in the end. Therefore,
the main focus is on verifying that the algorithms’ results are correct. This is mainly done
with tests in which we know the outcome. For some of the tests, the outcome has been
computed by hand. While for others, the already implemented forward mode is used to
check against.
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7 Benchmarks

This section will briefly present benchmarks of the different algorithms. The performance
of the AD for reduce_by_index will be compared between the forward mode, reverse mode,
and the special cases in the reverse mode.

The benchmarks were performed using the CUDA backend for Futhark on a home com-
puter. This computer has 32GB of memory and an Nvidia GeForce 2080 Super. The
benchmarks were performed on Windows Subsystems for Linux (WSL) because Futhark
does not support native Windows. The input dataset was created using futhark dataset.
Unless stated otherwise, the input dataset is non-zero 32-bit floats. There were no signif-
icant relative differences observed when using integers. The maximum size of the inputs
is 5 · 107. After this size, CUDA was not able to allocate enough memory. All of the bench-
marks are the meantime of 5 repetitions. There are two different types of benchmarks,
one that derives the differentiated hist_orig and one which differentiates as. A baseline RBI
without AD will also be included. Optimally a benchmark with the program differentiated
with regard to both inputs would be included, but it was not possible to get it working for
jvp. Since the general case for RBI is optimised to differentiate both arrays, this might be
reflected in worse performance in the benchmarks.

Since reduce_by_index is not a construct available in other languages or libraries that support
AD, the benchmarks are only within the Futhark compiler. An extension of this could
be to implement the constructor just the reverse AD algorithm in a library like PyTorch,
though this was not done in this project.

Important to note is that the general implementation for the reverse mode always per-
formed six rounds of sorting since the radix sort was not implemented dynamically. For
these sizes, that is much overhead if using less than 64 buckets. All of the benchmarks are
performed with an output size of 64. This is not ideal since we are not able to vary the
size of hist_orig enough to get an accurate difference in performance for the reverse-mode
AD. However, even with the overhead the speedup of having one bin instead of 64 in the
general case is 20%. So if the sorting were dynamic, there would be some more exciting
benchmarks.
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Figure 17: Benchmarks of AD wrt. as

In figure 17, the result of a benchmark of the different algorithms when differentiating
wrt. as is shown. The time in milliseconds on the y-axis has been logarithmically scaled.
It is very clear that the general case for the reverse mode is by far the slowest for all
three operators. The forward mode also beats the special case for the min/max operator.
However, the special cases outperforms the forward mode AD for multiplication and
addition. For multiplication, it even nears the baseline without AD.

Figure 18: Benchmarks of AD wrt. hist_orig

In figure 18 the benchmark of AD wrt. to hist_orig is shown. The addition is missing
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because the compiler recognizes that its result is simply the input adjoint, so it finishes
computation in under a millisecond, no matter the size. The results for the other two
operators are very similar to the previous benchmark. As mentioned earlier, the adjoint
of hist_orig is tied in with the sorting and segmented scans in the general case because it
is optimized to find both adjoints. This is probably where this poor performance stems
from.

Figure 19: Benchmarks of mult. reverse mode AD wrt. as

In figure 19, we see the benchmark for the special case reverse mode AD of multiplication.
This benchmark uses 64-bit integers as its input values. The general case was not used in
this benchmark. It is only the special case algorithm. It showcases how there is up to 17%
speedup when the input contains zeros.

In table 3 the AD overhead for the different cases is shown wr.t hist_orig and as.

Hist_orig as
Forward mode (mul) 122x 142x
General case (mul) 10.8x 12x
Addition 1x 15x
Multiplication 1.22x 2.4x
Min/Max 15x 15x

Table 3: AD overhead (AD-Time / Baseline-Time)
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8 Conclusion & further work

This project has derived a rewrite rule for the reverse mode AD of the reduce_by_index
construct. It has also attempted implementing it in the Futhark compiler, along with some
special cases that were theorised to show significant speedups relative to this general case.

The implementations serve as suitable proof of concept, but the radix sort in the general
case needs to be addressed to be considered finished. This is a minor addition but is
missing from this project’s implementation. An alternative is to set the loop number to
64, which would mean the reverse mode AD would be correct but inefficient. This would
mean that the RBI construct would be fully supported and ready to use for programs
needing reverse mode AD in Futhark. So even if it is the case that the forward mode is
faster for the general case, it could still be an essential tool in the arsenal of programmers
since no other libraries support this.

Furthermore, this project has introduced special cases for the most common operators that
are incredibly efficient, and this could outweigh the ineffectiveness of the general case for
many use cases. They also show how much can be won by deriving even more reverse
mode special cases.

To better reason about the performance of these rewrite rules, better benchmarks are
needed. The static nature of the general case stifles any accurate attempts at gauging
the speedup when changing the number of bins. Furthermore, since the general case is
optimised for finding the adjoints of both arrays, a better benchmarking would differen-
tiate with regards to both arrays for both forward and reverse. Also, a baseline outside
the Futhark language, for example, an implementation in PyTorch would be helpful for
comparison.
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9 Appendix

The code can be found at this GitHub link. It will be made private after the defence.
Changes can be primarily found in src/Futhark/AD/Rev/RBI.hs

1 l e t p a r t i t i o n 2 =
2 l e t b i t s _ i n v = map (\b −> 1 − b ) b i t s
3 l e t ps0 = scan (+ ) 0 ( b i t s _ in v )
4 l e t ps0_clean = map2 (∗ ) b i t s _ i n v ps0
5 l e t ps1 = scan (+ ) 0 b i t s
6 l e t p s0_o f f s e t = reduce (+ ) 0 b i t s _ i nv
7 l e t ps1_clean = map (+ ps0_o f f s e t ) ps1
8 l e t ps0_clean = map2 (∗ ) b i t s _ i n v ps0
9 l e t ps = map2 (+ ) ps0_clean ps1_clean '

10 l e t ps_ac tua l = map (−1) ps
11 l e t s c a t t e r _ i n d s = s c a t t e r inds ps_ac tua l inds
12
13
14 l e t ( sor ted_ i s , sor ted_bins ) =
15 loop over [ new_indexes , new_bins ] fo r i < Ce i l ing ( log2 (w) ) do
16 b i t s = map (\ ind_x −> ( ind_x >> i ) & 1) new_bins
17 newidx = p a r t i t i o n 2 b i t s ( i o t a n ' )
18 (map(\ i −> new_indexes [ i ] ) newidx , map(\ i −> new_bins [ i ] ) newidx )

Listing 19: Pseudo code for Radix sort

1 l e t inp =
2 map (\ ( f lag , i ) −> i f f then ( f , ne ) e l s e ( f , va l s [ i −1] ) ) f l a g s i o t a
3 scan (\ ( v1 , f1 ) ( v2 , f2 ) −>
4 l e t f = f1 || f2
5 l e t v = i f f2 then v2 e l s e op v1 v2
6 in ( v , f ) ) inp

Listing 20: Pseudo code for segmented exclusive scan
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