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Abstract
This project examines how basic ray casting techniques work and how the voxel space algorithm
relate to these techniques. It then examines how data parallelism can be applied to the voxel-based
graphics engine, and whether the application of data parallelism has any quantifiable benefits over
the existing squential voxel-based rendering algorithm. The report outlines the creation of an imple-
mentation of the Voxel Space algorithm in the functional parallel programming language Futhark.
In addition to the standard Voxel Space implementation it also outlines a series of improvements
made to the engine in order to increase the fidelity of the rendered images.
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Chapter 1

Introduction

This report covers the implementation of FutSpace, a voxel-based 2.5D graphics engine, based on
the 1992 Voxel Space 3D engine created and patented by Freeman[Fre96].
Futspace is implemented using the parallel programing language Futhark created by Elsman, Hen-
riksen, and Oancea[EHO20]. Chapter 2 starts with a brief historical look at videogame graphics
and continues on by examining the common pseudo 3D rendering methode known as raycasting
and how this methode relates to the voxel space algorithm. The chapter contains a matematical
examination of the voxel space algirthm. Section 2.3 covers the examination of the JavaScript
implementation for the voxel space algorithm created by Macke[Mac20] and language specific fea-
tures used in this implementation.
Next Chapter 3 explores the general idea of data prallelism and how the JavaScript implementation
can be altered to take advantage of the data prallelism offered by the Futhark language. Chapter 4
goes into detail on how we made the translation from the sequential JavaScript code to the parallel
Futhark implementation.Chapter 5 establishes a suitable cost model for analysing the Futspace
implementation and goes through an runtime analysis of the implementation and how this com-
pares to the JavaScript implementation. Lastly Chapter 6 explore a series of improvements that
we have made to the original Voxel Space engine. These improvements include a generalization
that allows for the drawing of arbitrary mathematical functions and various visual improvements.
The full implementation and installation guide can be found on github[Kri+20]
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Figure 1.1: Screenshot of a frame rendered by FutSpace
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Chapter 2

Voxel Space

2.1 Historical Background
Computer graphics has existed since the inception of the computer. There exists two types of
computergraphics: Raster graphics and Vector graphics. This report will not touch any further on
the topic of vector graphics. The raycasting which will be explored in Section 2.2.1 and the Voxel
Space algorithm on which we base our project are both rasterised graphics.

In 1992 ID software released Wolfenstein 3D which redefined the first-person-shooter genre and the
demand for 3D gameworlds. There had been 3D games before this point. They were mainly flight
simulators with little widespread popularity. Due to the popularity of Wolfenstein 3D the request
for 3D-graphics grew. Due to the limited computing power available at the time full 3D rendering
was not available to the average consumer. This gave rise to pseudo-3D or 2.5D as it is also called.
A very popular technic for creating 2.5D graphics was the raycasting method used by Wolfenstein
3D

Voxel Space is a 2.5D engine and its approach to computer graphics is similar to the ray casting
method in Wolfenstein 3D with some noticable differences that will be explored in Section 2.2.
The Voxel Space 3D engine was developed in 1992 by Kyle Freeman at Novalogic for the video
game Comanche: Maximum Overkill. In 1996 Novalogic was awarded the patent for the en-
gine[Fre96]. The engine was upgraded in 1997 for the games Comanche 3 and Armored Fist 2
to allow for the inclusion of traditional texture-mapped polygons[96]. In 1999 the last generation
of the engine Voxel Space 32 was released. This iteration of the engine featured 32-bit colors and
360 degrees terrain rotation[Sta00]. These two upgraded engines were patented in 2000[Fre00].

The term GPU as we know it today, was coined by Sony in 1994 with the release of the the Playsta-
tion 1 and popularized by Nvidia with the launched their Geforce 256. The term GPU was defined
by Nvidia as: "a single-chip processor with integrated transform, lighting, triangle setup/clipping,
and rendering engines that is capable of processing a minimum of 10 million polygons per sec-
ond"[Nvi]. Today GPU accelerated calculation has become ubiquitous. However there still exist a
large number of algorithms from before the introduction of the GPU, that might benefit from the
added computational power provided by the GPU. The aim of this project is therefore to go back
and examine if the voxel space algorithm can be translated to parallel execution and benefit from
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the improvements of mordern hardware.
The patent for the Voxel Space 3D engine expired in 2013. On September 23. 2017 Github user
Sebastian Macke (s-macke) created a Javascript implementation of Kyle Freemans original Voxel
space 3D engine. This implementation while written in a more modern language than the original
Voxel Space engine, still uses a sequential approach to the problem and not a parallelized approach
which can take greater advantage of the GPU’s power. It is this implementation that we have based
our project on.

2.2 Algorithm

2.2.1 General Method
In order to explain the Voxel Space algorithm, it is first necessary to understand what ray casting
is. Ray casting is a rendering method for creating images that appear 3-dimensional from data that
is 2-dimensional. Core to the concept of ray casting is the idea of shooting a number of rays into
a scene from a point typically called the camera. Typically the amount of rays used is equal to the
width of the final image, such that each ray corresponds to one unique column in the final image.
Each ray will step through the scene over a number of iterations until either the ray intersects with
a scene object or a maximum ray length is reached. In the case of a ray intersecting with an object
in the scene, its corresponding column in the final image is colored with the color of the intersected
object, and the ray iteration ends.

Figure 2.1: Rays shot from camera into two-
dimensional scene that will be raycasted

Figure 2.2: Approximate resulting render of
ray casting scene in Figure 2.1, but with a
much larger amount of rays

However, in order to create a sense of vertical perspective, it is not enough to simply color the
entire column. Instead, a perspective calculation is performed, such that the part of the column
that is colored depends on the distance between the camera and the position of the intersection.
This, as Figure 2.2 shows, makes the rear wall of the scene look further away than the foreground.
Furthermore, the horizontal perspective is directly related to the sum of the relative angles of the
rays, and this sum is known as the field of view. The field of view is highlighted in Figure 2.1 as the
semi-transparent red circle segment that encloses all the rays. The circle perimeter is the maximum
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ray length from the camera. Typically the rays are evenly distributed within the field of view, like
in Figure 2.1, such that the relative angle between any two rays is the same.

Figure 2.3: Scene from Figure 2.1 without
camera and rays. White indicates no object

Figure 2.4: Grayscale representation of
heights in scene. Black is the smallest possi-
ble height

While the ray casting outlined above is of course about as rudimentary as ray casting gets, it does
offer an opportunity to highlight the most defining feature of the Voxel Space algorithm, namely
the fact that the Voxel Space algorithm introduces the concept of object and camera height. The
only information available to the ray caster is the scene in Figure 2.3, which by the use of color
indicates where objects are positioned, such that if a ray enters a part of the scene that is not white,
an intersection will occur. However, the Voxel Space algorithm treats every part of the scene as
some object, including the parts that are white. Each of these objects have a corresponding height
value attached to them, which is visualized in Figure 2.4.

This will, after a redefinition of what rays and intersections are in Voxel Space, allow us to render
overlapping objects while still technically staying in a two-dimensional scene. As we in Voxel
Space consider every part of the scene in Figure 2.3 an object, we can no longer rely on the same
intersection logic as the basic ray caster. Instead, when drawing the image column for some ray,
we need the color and height information from Figure 2.3 and Figure 2.4 for every iteration of the
ray, such that we can use this information to build the image column in layers.

In Voxel Space the color and height information are represented by sets C and H respectively.
These sets can be seen as discrete finite functions mapping from to N2 to N. We will use the
notation 𝒟.C / to denote the domain of C and ℐ.C / to denote the image of C . The domain and
image ofH are denoted similarly. Even though C and H are finite functions, Voxel Space manages
to create the illusion of an endless terrain. This is achieved through the use of tiling, which is
defined in Equation 2.9.

For each layer, the color and height information for a given intersection is used to perform a mod-
ified version of the perspective transformation described for the basic ray caster. However, the
order in which these layers are drawn on the image column is important for the correctness of the
algorithm. If the layers are drawn in the order that the intersections occured, then you risk that the
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part of the image column corresponding to the foreground is overwritten by some later occurring
intersection. The problem with occluding layers in foreground, that have already been written, will
simply be referred to as the occlusion problem. By drawing the layers in the reverse order that
the intersections occured in, the foreground will always be drawn last, which is a solution to the
occlusion problem that we will refer to as back-to-front. An issue with the back-to-front method
is that it is wasteful; we end up writing colors to the column that will be overwritten in some later
step of the method.

A more efficient solution to the occlusion problem is front-to-back. In the front-to-back method
we draw layers in the order of increasing distance from the camera by keeping track of the parts of
each column that have already been written to in a previous iteration. Then, by simply checking
whether a new layer for some column has a lower height in the screenbuffer than the maintained
value for that column, we avoid overwriting any useful information and simply move onto the next
layer. As we in Voxel Space want the color and height values for all objects that a ray intersects
until the maximum ray distance, we can think of the intersections for all rays as a set of points
withins the field of view that we want to sample, thus we define a different field of view system for
Voxel Space than the one defined for the basic ray caster.

Figure 2.5: Voxel Space-equivalent of Figure 2.1

As seen in Figure 2.3, the new representation of the camera and field of view does not offer a 1:1
translation of the ray intersections from Figure 2.1 and Figure 2.2. Instead, approximate positions
of the ray intersections are found by creating a set of line segments that run horizontally across the
field of view, which also causes the field of view to no longer be a circle segment but instead a
triangle.

We will now explain how the components of a basic ray caster can be defined mathematically such
that we can explain how the field of view system in Figure 2.5 can be derived, and exactly what is
performed in the Voxel Space algorithm.
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Figure 2.6: Figure of ray casting. r0, r2 and r5 not shown for clarity

Mathematically, ray casting is a way of rendering a scene W 2 R2 such that we produce an image
of dimensions l �m. Rays rj ; j 2 f0; 1; :::; mg are cast and iterated n times from a point O 2 W ,
and if rj and an object in the scene intersect at distance zi ; i 2 f0; 1; :::; ng, some part of column
j in the final image assumes the color of the object. The direction of the rays is determined by
a view vector

��!
OV that represents the direction of the rendering. The field of view is bounded by

the vectors
��!
OL and

��!
OR. We let

��!
OL be

��!
OV rotated by 1

2
 and

��!
OR be

��!
OV rotated by �1

2
 . The

relative angle of any two rays in the field of view is then found by dividing the angle between
��!
OL

and
��!
OL by m. The vertical perspective of the final image can be considered a transformation in

N ! N, such that the height of a rendered column for ray rj decreases as zk increases.
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2.2.2 Voxel Space algorithm

Figure 2.7: crude image of the mathematical entities used in the voxel space algorithm

The Voxel Space algorithm, however, does not have any concept of rays. Instead an approximation
of the position of the intersection test for rj at zk is found by introducing line segments AkBk; k D
f0; 1; :::; ng for which it is the case that Ak intersects

��!
OL � zk and Bk intersects

��!
OR � zk . Each

AkBk is split into m segments EFj , such that the position of the intersection test of rj at zk is
approximated by the start point of EFj of AkBk . We furthermore define Mk as the midpoint of
AkBk and ! as the camera height. The horizontal perspective of the final image is then still a
function of the total field of view, and the vertical perspective transformation is the same as in the
ray casting scenario outlined above.

2.2.3 Determining Ak and Bk

Ak and Bk are the end-points of vectors
��!
OAk and

��!
OBk with origin O D .x0; y0/. Hence they may

be characterized by the following equations:

Ak D ��!
OAk CO (2.1)

Bk D ��!
OBk CO (2.2)

Assume
��!
OV is the vector defined by sin.�/ and cos.�/:

��!
OV D

�
sin.�/
cos.�/

�
(2.3)

We then have:
���!
OMk D zk � ��!

OV D zk �
�

cos.�/
sin.�/

�
(2.4)
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Figure 2.8: Determining
���!
OMk by scaling �!o with zk

��!
OAk can now be determined by rotating

���!
OMk

1
2
 degrees counter-clockwise. To perform this

rotation we multiply
���!
OMk with the rotationmatrix R

�
1
2
 

�
:

��!
OAk D ���!

OMk �R. =2/

D zk �
�

cos. =2/ � sin. =2/
sin. =2/ cos. =2/

�
�
�

cos.�/
sin.�/

�

D zk �
�

cos.�/ � cos. =2/ � sin.�/ � sin. =2/
cos.�/ � sin. =2/C sin.�/ � cos. =2/

� (2.5)

��!
OBk can be determined by rotating

���!
OMk

1
2
 degrees clockwise. To perform this rotation we

multiply
���!
OMk with the rotationmatrix R

�
2� � 1

2
 

�
:

��!
OBk D ���!

OMk �R.2� �  =2/

D zk �
�

cos.2� �  =2/ � sin.2� �  =2/
sin.2� �  =2/ cos.2� �  =2/

�
�
�

cos.�/
sin.�/

�

D zk �
�

cos.�/ � cos.2� �  =2/ � sin.�/ � sin.2� �  =2/
cos.�/ � sin.2� �  =2/C sin.�/ � cos.2� �  =2/

� (2.6)
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Figure 2.9: Determining
��!
OAk and

��!
OBk by rotating

���!
OMk  =2 degrees counter-clockwise and  =2

degrees clock-wise respectively

2.2.4 Segmenting AkBk
We wish to raster AkBk so that it matches the number of columns on the screen to be rendered on.
This can be done by segmenting AkBk into m sublines EFj with dimensions .dx; dy/:

�
dx

dy

�
D AkBk

m
D

�
Ak:x � Bk:x

Ak:y � Bk:y

�

m
(2.7)

The start-point Ej of EFj can then be defined as

Ej D
�
dx

dy

�
� j (2.8)

EFj has an associated color c 2 ℐ.C / and base-height h 2 ℐ.H/. To determine c and h, tiling
needs to be taken into account. This can be done by introducing modular arithmetic. Because C
and H are q � r-dimensioned discrete spaces, we define a function p such that:

p.x; y/ D
�bxc mod q

byc mod r

�
(2.9)

c and h may then be derived by applying p to Ej and mapping the resulting index .x0; y 0/ into C
and H :

c D C
�
p

�
Ej :x; Ej :y

��
; (2.10)

h D H
�
p

�
Ej :x; Ej :y

��
(2.11)

2.2.5 Creating a Vertical Perspective
The color value from C collected by each ray at p.k; j / in the subspace U , needs to be projected
into the discrete finite l �m space T , representing the screen space. This projection has to account
for creating a horizontal and a vertical perspective on the j -axis and h0-axis of T , respectively.
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Since the number of segments on each depth-layer is consistent since it represents each ray, the
horizontal perspective is created by the process of generating the rays themselves. Keeping the
number of rays equal to m simplifies the projection for the j coordinate in T , to simply be the
same coordinate as in U .

To create the effect of a vertical perspective, the greater the distance each depth-layer is from the
origin O in U , the lower the value of h0 in T it needs to have 1. This effect follows a number series
converging toward zero.

Figure 2.10: Projection from U into T

The effect can be created by using a number series starting at one, and which diverges towards C1
to generate the distance scalar zk for each depth-layer. The reciprocal z�1

k
can then be used in the

projection to achieve the desired effect.

The value of z�1
k

only has a range of Œ1; 0/ and a scaling constant ˇ is needed to map across the
range l in T .

The projection from U ! T becomes

project.p.k; j // D
�
z�1

k
� ˇ

j

�
T

(2.12)

2.2.6 Accounting for Height and Camera Tilt
The definition of Equation 2.12 can be extended, to take the value of H and ! into account.

By letting �k;j D ! �H.p.k; j // height can be created in the terrain.

The projection now becomes

project.p.k; j // D
�
�k;j � z�1

k
� ˇ

j

�
T

(2.13)

1Since it represents the screen space, the origin of U is located at the top and grows down on the h0 axes
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Figure 2.11: Terrain created by using �k;j values for each p.k; j /

In this projection the value h0 D 0 in T , represents the horizon line of the perspective. By intro-
ducing a value �, the h0 value of the horizon in T can be set.

The projection now becomes

project.p.k; j // D
�
�k;j � z�1

k
� ˇ C �

j

�
T

(2.14)

Projected values of p.k; j / can result in values h0 > l , but still has the vertical perspective effect
applied to them. By using a negative value of �, these values can become visible in T and create
the illusion of tilting downward.

(a) Positive � value (b) Negative � value

Figure 2.12: Using � to tilt up and down
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2.3 VoxelSpace – A JavaScript Implementation
In Section 2.2 we introduced the Voxel Space rendering algorithm and explained its steps in detail.
Now we will look at how it may be implemented in a straightforward sequential fashion. We will
base our explanation on VoxelSpace, which is a reverse-engineered implementation of the original
Comanche engine written in JavasScript[Mac20]. The full implementation code can be found in
Listing A.1. A substantial part of this code implements an interactive application, which is not
relevant to us. The constructs that are relevant are the camera, map and screendata objects
defined in lines 6-44 and the DrawVerticalLine() and Render() functions defined at lines
235-251 and lines 272-320 respectively. We will start by explaining the most important fields in the
camera, map and screendata objects. This explanation will then allow us to delve deeper into
how Render() in conjunction with DrawVerticalLine() renders a frame on screen using
the front-to-back approach described in Section 2.2.1.

The camera object is defined as:

var camera =
{

x: 512.,
y: 800.,
height: 78.,
angle: 0.,
horizon: 100.,
distance: 800

};

Listing 2.1: Definition of camera object

Fields x and y in Listing 2.1 together make up what we referred to as origin O in Section 2.2.
height, angle and horizon represent !, angle � , and vertical tilt � of the virtual observer
(i.e. camera) respectively. Finally distance designates the max rendering distance d . Now lets
proceed to the definition of the map object:

var map =
{

width: 1024,
height: 1024,
shift: 10,
altitude: new Uint8Array(1024 * 1024),
color: new Uint32Array(1024 * 1024)

};

Listing 2.2: Definition of map object

Listing 2.2 contain all information related to C and H . The fields width and height are the
dimensions q and r of C and H . C and H themselves are represented by fields color and
altitude which are one-dimensional arrays of length q � r storing respectively 32-bit unsigned
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integers and 8-bit unsigned integers in row-major order. The shift field is a scalar used for index
calculations. We will return to its specific function later on. We finish our discussion of objects by
defining screendata:

var screendata =
{

canvas: null,
context: null,
imagedata: null,

bufarray: null,
buf8: null,
buf32: null,

backgroundcolor: 0xFFE09090
};

Listing 2.3: Definition of screendata

The most important fields in Listing 2.3 are canvas and buf32. These are defined without ini-
tialization, so we will describe their semantics based on their intended usage. canvas represents a
browser-canvas object which, amongst other things, contain information on the height l and width
m of the screen to be rendered on. The actual screen is represented by buf32. To be specific,
buf32 is meant to be a one-dimensional array of length l �m containing the colors to be displayed
on screen in the form of 32-bit unsigned integers.

The Render() function may conceptually be interpreted as generating a color-height pair .c; h/
at each point in a n�m-dimensioned discrete spaceG. The function is built around a double-nested
for-loop which iterates over depth slices zk in its outer range and iterates over screen columns j in
its inner range. The outer-range iterates from z0 D 1 to zk < d with a step-size starting at 1 and
increasing by Δ D 0:005 for each iteration:

var deltaz = 1.;

for (var z = 1; z < camera.distance; z += deltaz) {
...
deltaz += 0.005;

}

Listing 2.4: Outer range of double-nested for-loop

Listing 2.4 may be thought of as implementing the skeleton of the front-to-back approach discussed
in Section 2.2.1. The fact that an increasing step size is used, is simply one way of ensuring that
the difference between succeeding depth-slices zk and zkC1 nears infinity, as one approaches the
horizon. By lowering Δ towards 0 one may limit the rate at which jzk � zk�1j increases as a
function of k. This, in turn, will result in more depth samples and hence a smoother rendered frame
in general. More depth samples of course also means more data to be processed and hence an
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increase in overall runtime. These issues are further explored in Chapter 6.

As explained in Section 2.2.1, one may think of depth-slice zk as constituting a line AkBk between
two points Ak and Bk on the boundary of the virtual observers field of view. The body of the
outer-loop determines Ak and Bk relative toO (i.e.

��!
OAk and

��!
OBk) for a given depth slice zk using

the logic encapsulated by Equation 2.5 and Equation 2.6 respectively:2

var plx = -cosang * z - sinang * z;
var ply = sinang * z - cosang * z;
var prx = cosang * z - sinang * z;
var pry = -sinang * z - cosang * z;

Listing 2.5: Determining Ak and Bk relative to O given a depth-slice zk

Having determined Ak and Bk relative to O , the body of the outer-loop determines the segment
size of AkBk by implementing Equation 2.7:

var dx = (prx - plx) / screenwidth;
var dy = (pry - ply) / screenwidth;

Listing 2.6: Determing the segment size of AkBk

The absolute position of Ak is then found by incrementing .plx; prx/ with O:

plx += camera.x;
ply += camera.y;

Listing 2.7: Determing absolute position of Ak

Now lets discuss the body of the inner for-loop in Render(). The first thing to note is that it
ultimately increments .plx; ply/ with .dx;dy/:

for (var i = 0; i < screenwidth | 0; i = i + 1 | 0) {
...
plx += dx;
ply += dy;

}

Listing 2.8: Skeleton of inner for-loop

Using this approach the loop is able to process each segment EFj of AkBk in sequence. Each
EFj has an associated color .c; h/ which, as described in Section 2.2.4 can be determined by
applying a tiling function p to Ej and mapping the resulting .x0; y 0/ into C and H respectively.
The inner-loop implements p via the following construct:

2Listing 2.5 of the general case for vector rotation defined in Equation 2.5 and Equation 2.6. See Chapter C.
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var mapoffset = ((Math.floor(ply) & mapwidthperiod) << map.shift)
+ (Math.floor(plx) & mapheightperiod) | 0;

Listing 2.9: implementation of tiling function f

Listing 2.9 takes into account the fact that C and H are represented by one-dimensional arrays
map.color and map.altitude using row-major order. The value mapoffset hence is a
single offset rather than a pair of values .x0; y 0/. The steps taken to compute mapoffset are
threefold. First ply is floored and subsequently reduced modulo r by applying the bitwise AND
operator to it and value mapwidthperiod D map.width � 13. The result is then shifted
map.shift bits to the left, thereby producing a value � , which corresponds to y 0. Finally, plx
is floored and reduced modulo r symmetrically and the result � added to � . mapoffset D
� C � then corresponds to .x0; y 0/. .c; h/ can then be retrieved by indexing into map.color and
map.altitude with mapoffset.

The next construct in the inner-loop consists of a sequence of operations which transform h to h0
by accounting for vertical perspective as well as camera.height and camera.horizon:

var heightonscreen = (camera.height - map.altitude[mapoffset])

* invz + camera.horizon | 0;

Listing 2.10: Transforming h to h0

Listing 2.10 is more or less a straightforward adaptation of the steps described in Section 2.2.5 and
Section 2.2.6. Noting that invz corresponds to z�1

k
� ˇ, the reader should be able to connect the

dots themselves.

This concludes our discussion of how Render() generates a .c; h0/ pair at each point in a n�m-
dimensioned discrete space G.

Drawing on screen

Having determined .c; h0/ for an individual column j , the implementation has to write a line of
color c to buf32, for that column. To handle the occlusion problem in the front-to-back method,
an array called hiddenY with an index for each column is created. Each value in the array is
initialized with the value of l , and indicates the last h0 value, where a line was written to buf32.

function Render()
{

...
var hiddeny = new Int32Array(screenwidth);
for(var i=0; i<screendata.canvas.width|0; i=i+1|0)

hiddeny[i] = screendata.canvas.height;
...

};

Listing 2.11: initialization of hiddenY

3This only makes sense because map.width D map.height D 1024 is a power of two
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Once .c; h0/ has been determined in the inner for-loop, the function
DrawVerticalLine(x, ytop, ybottom, col) is called to write the line, for column j
to buf32. Here x is the column j , ytop is h0, ybottom is the current value of hiddenY for
column j and col is c.

Before the function writes anything to buf32 the value of ytop is checked. First if the value of
ytop is negative, it is set to zero, since a negative value, is a placement above the screen and would
require writing to an index, outside the range of buf32. Second if the value of ytop is larger than
ybottom, the function returns. This can occur if the value of ytop greater than l , or the line that
has to be written is occluded, by a line that have already been written on a previous layer.

function DrawVerticalLine(x, ytop, ybottom, col)
{

...
if (ytop < 0) ytop = 0;
if (ytop > ybottom) return;
...

};

Listing 2.12: Setup of DrawVerticalLine

If the function does not return by the previous step, the line is written to buf32. The start position
for ytop in buf32 is first calculated and saved in offset by using ytop, screenWidth and
x.

A for-loop is then used to write the value of col to the position of offset in buf32. At each
iteration the position of offset is moved to the next position in the same column of buf32. This
continuous until the position of ybottom is reached.

function DrawVerticalLine(x, ytop, ybottom, col)
{

...
var offset = ((ytop * screenwidth) + x)|0;
for (var k = ytop|0; k < ybottom|0; k=k+1|0)
{

buf32[offset|0] = col|0;
offset = offset + screenwidth|0;

}
};

Listing 2.13: Drawing the line

When the function returns, the last thing to do is to update the value of hiddenY, in the inner
for-loop of Render(). This is done by simply checking if the value of heightonscreen is
less than the value of hiddenY for the current column. If it is, the value of hiddenY is set to the
value of heightonscreen.
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function Render()
{

...
if (heightonscreen < hiddeny[i]) hiddeny[i] = heightonscreen;
...

};

Listing 2.14: Updating the value of hiddenY
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Chapter 3

Data Parallelism

3.1 General Idea
To understand data parallelism we must first understand the general principle of parallel comput-
ing. In parallel computing, independent operations are carried out simultaneously, generally within
different cores of a processing unit. Though closely related, it is important to distinguish it from
concurrent computing. In concurrent computing, scheduling is used to execute tasks during over-
lapping time periods, however the execution is not necessarily parallelized. An obvious example is
the use of time slicing on a single-core system.

A common abstract model used in parallel computing is the Parallel Random Access Machine(PRAM)
[EG88, p. 234-245] .

Figure 3.1: A diagram of a Parallel Random Access Machine. Source: tutorialspoint (https://www.
tutorialspoint.com/parallel_algorithm/parallel_random_access_machines.htm)

The PRAM is the parallel equivalent of the RAM abstract machine used when reasoning about
sequential algorithms. The model assumes several processing units are connected via a shared
memory from which data can be read and written. The majority of algorithms we are interested
in can function within a Exclusive-Read Exclusive-Write (EREW) PRAM, meaning a PRAM in
which each processing unit has exclusive read and write access to each memory cell.
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In any case, the PRAM neglects important technical details such as cache access, space limitations,
communication overhead and heterogenous memory access. This makes mapping it to actual hard-
ware complicated and hence reasoning about the runtime of parallel algorithms using this approach
is not easy. We will later look at an alternative approach using Language Based Cost Models
(Section 5.1), however for now the PRAM should suffice as an abstract model.

Given this model, we may introduce data parallelism by contrasting it with task parallelism. Task
parallelism is the simultaneous execution of different operations on different data, i.e. the simulta-
neous execution of different tasks, and thereby a potential form of concurrent programming with
nondeterministic features. Data parallelism, on the other hand, is the simultaneous execution of the
same operation on different data and is almost always deterministic and therefore easier to reason
about. At the hardware side, task parallelism is usually employed with the Multiple Instruction
Multiple Data (MIMD) architecture while data parallelism uses the Single Instruction Multiple
Data (SIMD) architecture [Fly72].

Figure 3.2: left: MIMD architecture. right : SIMD architecture. Source: Colin M.L. Burnett
(https://en.wikipedia.org/wiki/User:Cburnett)

As can be inferred from Figure 3.2 the MIMD architecture is more complex than the SIMD archi-
tecture and hence takes up more space on a chip. In terms of throughput, one is generally better off
using the SIMD architecture, however its capabilities are limited in comparison. In a sense, the dif-
ference in these architectures highlights two different approaches to designing computer hardware:
given a limited number of transistors, should these be spent on raw computational power or easy
of programmability? On a CPU (Central Processing Unit) the focus is on the latter. In fact, CPUs
are mostly task parallel units utilising MIMD (as well as many other exotic subunits) to simplify
irregular code execution. GPUs (Graphics Processing Units) on the other hand focus on the former.
These are data parallel units which use the SIMD architecture to increase throughput but are quite
hard to program.

Intuitively the mechanics of a SIMD-based GPU are quite simple however. As shown on Figure
3.2, a set of values is represented as a vector unit which is operated over in parallel. With this setup it
should be clear how data parallelism may help optimize a rendering algorithm such as Voxel Space.
From what has been covered in Chapter 2 we know significant parts of the pixel calculations in
the algorithm are identical and independent of each other. By offloading such calculations to the
GPU and executing them in parallel we could improve its overall runtime. This should come
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as no surprise, as GPUs are primarily intended for optimizing the rendering of graphics. This
analysis of course does not take into account the many finer points of the Voxel Space algorithm.
However, before we can proceed with its actual parallelized implementation, (in Chapter 4) we
need a framework for expressing such an implementation. This is the subject of the next section.

3.2 Programming in Parallel
As mentioned in the previous section, programming a GPU is complicated. In fact, it is complicated
enough that mapping a data-parallel implementation of the Voxel Space algorithm directly to it is
infeasible. What is needed is a high-level language able to express the intended functionality of
the algorithm in such a way that a compiler can translate it to a low-level framework, such as
OpenCL [Kae+15], which more or less directly mirrors its parallel target architecture. Several such
high-level languages exists including the popular NumPy [20c].

NumPy features straightforward sequential and deterministic semantics while offering parallel po-
tential, by which we mean it can be parallelized by the right compiler, as long as the code is written
in a parallel style1. NumPy code written in the parallel style usually involve performing bulk oper-
ations on entire arrays. As an example compare the following two functions for incrementing each
value in an n-dimensional array by one:

import numpy as np

def inc_seq(x):
for i in range(len(x)):

x[i] = x[i] + 1

def inc_par(x):
return x + np.ones(x.shape)

Listing 3.1: Sequential vs. parallel implementation of array incrementation in NumPy. Source:
Adapted from “Deterministic parallel programming and data parallelism” [Hen19b, s. 23].

The first sequentially increments each value using a for-loop while the second takes a paral-
lel approach by summing the input array x with an array of ones created via NumPy’s built-in
np.ones() function. Moreover the two approaches use different programming paradigms: im-
perative and functional respectively. This is no coincidence, as most NumPy code is purely func-
tional, meaning it has no side-effects.

Unfortunately, NumPy’s ability to express parallelism is limited by it being a first order language.
Such languages are parametrized over simple values and hence only allow functions to do one thing.
Previously mentioned np.ones() is a prime example of this. While it may compute values in
parallel, it can only compute one type of value (specifically ones). This makes implementing more
elaborate constructs, such as per-item control flow, cumbersome. Assume for example we wish to

1In practice NumPy is not usually parallel but rather implemented in efficient C and Fortran, however this a technical
point not essential for our analysis
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apply the following mathematical function to each element x in a n-dimensional array:

f .x/ D
(p

x if 0 < x
x otherwise

(3.1)

A sequential implementation would look something like:

def apply_sqrt_seq(xs):
xs = xs.copy()
for i in range(len(xs)):

if xs[i] > 0:
xs[i] = np.sqrt(xs[i])

return xs

Listing 3.2: Sequential implementation of Equation 3.1 in NumPy. Source: Adapted from
“Deterministic parallel programming and data parallelism” [Hen19b, s. 32].

Which is fairly neat (except for the initial copy operation). The same, however, cannot be said for
the following implementation written in a parallel style:

def apply_sqrt_par(xs):
xs_nonneg = xs >= 0
xs_neg = xs < 0
xs_zero_when_neg = xs * xs_nonneg.astype(int)
xs_zero_when_nonneg = xs * xs_neg.astype(int)
xs_sqrt_or_zero = np.sqrt(xs_zero_when_neg)
return xs_sqrt_or_zero + xs_zero_when_nonneg

Listing 3.3: Parallel implementation of Equation 3.1 in NumPy. Source: Adapted from
“Deterministic parallel programming and data parallelism” [Hen19b, s. 34]

What is needed in cases like this is a higher-order parallel language, which is parametrised over
not only simple values but also functions. The next section presents such a language.

3.3 Futhark
Futhark [EHO20] [20a] is a purely functional programming language with parallel potential like
NumPy. It supports openCL and CUDA compilers which can translate programs written in a paral-
lel style into efficient GPU code, but is itself hardware-agnostic. As alluded to at the end of Section
3.2, it is higher-order, with functions treated as first-class citizens, i.e. allowed to be passed as ar-
guments to other functions (with some caveats we will not get into here). This is relevant, as it
allows for array programming with second-order array combinators, or SOACs for short.

SOACs accept an array A along with other arguments including a function f , and then use these
to transform A into some result, which may itself be an array. A simple example is Futharks map
which accepts A of type Œ�˛ and some function f W ˛ ! ˇ, and then produces a new array of type
Œ�ˇ by applying f to each element in A. Because each application of f is independent, they can, in
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principle, easily be executed in parallel on a SIMD architecture assuming A is mapped to a vector
unit. This allows us to write data-parallel programs in a neat and efficient way. In fact, a parallel
implementation of Equation 3.1 in Futhark requires only:

let apply_sqrt_par (xs : []f32) : []f32 =
map (\x ->

if x > 0
then f32.sqrt x
else x) xs

Listing 3.4: Parallel implementation of Equation 3.1 in Futhark

In this case map accepts an array xs of type Œ�f32 (f32 is a 32-bit floating point value) and an
anonymous function f W f32 ! f32 which is applied to each element in xs. Note how map
works only on regular arrays containing values of a uniform type ˛. This is no coincidence. In
fact all SOACs in Futhark have this restriction. However, ˛ can itself be an array of type Œ�ˇ,
meaning multidimensional arrays are supported. Such multidimensional arrays can be created and
manipulated in parallel as well because Futhark allows nested parallelism. The basic idea is that
a function f passed to a SOAC can itself use a SOAC. For instance, the following program uses a
double-nested map to transpose a two-dimensional matrix in parallel:

let transpose [n][m] 't (xss: [n][m]t) : [m][n]t =
map (\j ->

map (\i -> xss[i, j]) (iota n)
) (iota m)

Listing 3.5: Transposing a two-dimensional matrix in Futhark

The iota function in Listing 3.5 accepts an integer n and then produces an array A D Œ0; : : : ; n�
1�. It is an example of a first-order array combinator, which always performs the same array
transformation. Another useful first-order array combinator is zip, which accepts two arrays of
type Œ�˛ and Œ�ˇ and then merges them into an array of type Œ�.˛;ˇ/. unzip performs the inverse
operation.

Listing 3.5 also showcases a special feature of Futhark called size-annotations. Size-annotations
are language constructs which can be used to impose constraints on the shape of the parameters
and result of functions. The [n] and [m] used in the signature of transpose indicate it accepts
a two-dimensional array xss of shape n �m and returns a two-dimensional array of shape m � n.
The t is a type-annotation indicating transpose is a polymorphic function, meaning xss can
contain elements of any (uniform) type t, in which case the array returned contains elements of
type t as well.

Futhark becomes very powerful when you combine several different SOACs. One popular choice is
combining mapwith reduce. reduce accepts an arrayA of type Œ�˛, a function ˚ W ˛ ! ˛ ! ˛

acting as a binary operator and its neutral-element 0˚. It then produces a value of type ˛ by folding
˚ over each pair of elements in A starting with .0˚; A0/. The MapReduce programming paradigm
can for example be used to compute the dot-product of two vectors in one line:
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let dotprod [n] (xs: [n]f32) (ys: [n]f32) : f32 =
reduce (+) 0 (map2 (*) xs ys)

Listing 3.6: Computing the dot-product of two vectors in Futhark

The map2 in Listing 3.6 is a variant of map which applies a function f W ˛ ! ˇ ! � to each pair
of (identically placed) elements in two arrays A and B of type Œ�˛ and Œ�ˇ respectively. Futhark
also supports map3, map4 and map5 which behave symmetrically.

scan is somewhat similar to reduce. It accepts the same parameters but returns an array of type
Œ�˛ with all the intermediate results of the fold. For both SOACs ˚ is required to be an associative
operator if the fold is to be executed in parallel. .˚; 0˚/ is then said to be a monoid. In Section
5.1 we will look more closely at why this requirement is needed for parallel execution.

Though not technically a SOAC, scatter is also relevant to mention. It accepts array A of type
Œ�˛, array B of type Œ�int, array C of type Œ�˛ and then updates Ai to v for each pair of (identically
placed) elements .i; v/ in B and C . In this way it allows in-place updates to be executed in parallel,
which, in most cases, will be more efficient than filtering through a whole array (even if it is done in
parallel as well). Note that B and C must have the same outer size and that the result is unspecified
if B contains duplicates (i.e. several writes are performed to the same location). Moreover, because
Futhark is a purely functional programming language, the original arrayA is required to not be used
in any execution path following the in-place update in order to preserve referential transparency.

As a final remark it should be mentioned that Futhark being a purely functional language also
means it is prohibited from reading input or writing output (as both are side effects). For this
reason it cannot be used as a general-purpose language, but rather is intended to provide compiled
library files which can be imported and used for perfomance sensitive parts of larger applications
written in conventional languages. In fact Futhark supports compilation to both C and Python
libaries in addition to openCL and CUDA executables.
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Chapter 4

The Translation

4.1 Overview
Having introduced parallel programming via Futhark in Chapter 3, we are now at a point where
we can develop an efficient implementation of the Voxel Space algorithm. We will be using an
incremental approach, translating each logic step in the Javascript implementation one at a time.
We encourage the reader to check the full implementation in Listing A.2 for reference.

As explained in Section 2.3, the Javascript implementation basically consists of two parts. In the
first part a double-nested for-loop generates a color-height pair at each point in a depth � width-
shaped discrete space G using an imported color/height-map pair .C;H/. In the second part a
frame of height � width dimensions is rendered on screen by having a third for-loop draw a vertical
line for each generated color-height pair.

Before we cover the translation of each of these parts, we need to establish how the various objects
in the JavaScript implementation should be represented in Futhark. We recall three objects are used
to represent camera, .C;H/ and screen respectively. We do not need the screen object as it contains
strictly browser-specific information. The two other objects can be represented in Futhark with
records. The question remains how C and H themselves should be implemented. The JavaScript
implementation uses one-dimensional arrays of size q � r . We will use two-dimensional arrays of
shape q � r as they are much easier to work with.

4.2 Generating Color-Height Pairs
For the first part we need some way of expressing a double-nested for-loop in a parallel style. Not
surprisingly, this can be done with a double-nested map. However, the translation is complicated by
the fact that the outer loop in the Javascript implementation uses a non-linear increment sequence
starting at deltaz D 1:0 and increasing with 0:005 for each iteration performed. This is an
example of an arithmetic sequence .an/ with first term a0 D 1 and Δ D 0:005 as the common
difference. Because the looping variable z (representing the current depth-slice) also starts at 1:0
and is incremented with deltaz at the end of each iteration, its value zk during the kth iteration
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can be determined as the partial sum of .an/ at i D k � 1:

k�1X
iD0

ai D
k�1X
iD0

.a0 C iΔ/ D k

2
.2a0 C .k � 1/Δ/ D k

2
.2C .k � 1/ � 0:005/ (4.1)

Noting that the outer-loop exits when zk is greater than or equal to the chosen rendering distance
d , we can determine its number of iterations n by setting Equation 4.1 equal to d , solving for k
and then rounding down. BecauseΔ D 0:005 ¤ 0 and we are only interested in positive solutions,
this gives us:

n D

66664
q
.Δ � 2a0/

2 C 8Δd � 2a0 CΔ
2Δ

77775 D

66664
q
.�1:995/2 C 0:04d � 1:995

0:010

77775 (4.2)

Given Equation 4.1 and Equation 4.2, we can determine the full sequence of zks using a range-
map combination. For better flexibility we wrap the code in a get_zs function parametrised over
both Δ, d and z0:

1 let get_zs (delta : f32) (d: f32) (z_0 : f32) : []f32 =
2 let sqrt = f32.sqrt ((delta-2*z_0)**2 + 8*delta*d)
3 let num = sqrt - 2*z_0 + delta
4 let div = 2*delta
5 let n = i32.f32 (num / div)
6 let is = map (\i -> f32.i32 i) (1...n)
7 in map (\i -> (i/2) * (2*z_0 + (i-1) * delta)) is

Listing 4.1: Function generating the full sequence of values zk taken on by z in the outer-loop.

Note that line 5 in Listing 4.1 takes advantage of the fact that type conversion from f32 to i32 in
Futhark always rounds towards zero. Other than this the code should be self-explanatory. We can
now implement the outer loop by passing the array zs returned by get_zs to a map along with
an anonymous function f1 performing the necessary logical steps in the body of the loop:

map (\z -> ... ) zs

Listing 4.2: Outer-loop implementation skeleton

The first of these logical steps is to compute the start-point A D .x0; y0/ and segment dimensions
.dx; dy/ of the horizontal line AB intersecting the visible space at the current depth-slice zk.
This can be done in Futhark using more or less the same language constructs as in the original
JavaScript implementation. We will not go into further detail here but note that the relevant code
is encapsulated in a get_h_line function which accepts a depth-slice z, a camera record cam
and a screen-width m and then returns a line record containing the aforementioned start point and
segment dimensions.

Along with this line record we also need a scaling variable inv_z for the heights at depth-slice
zk . Having computed this variable, using again the same method as in the JavaScript implementa-
tion, we have all we need to start the inner loop. The inner loop needs to iterate over each pixel pj in
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a horizontal line on a screen with width m, so we will use a iota-map combination to implement
it:

map (\j -> ... ) (iota m)

Listing 4.3: Inner-loop implementation skeleton

The question is how the anonymous function f2 in Listing 4.3 should implement the body of the
inner loop. We know the body initially computes the start-point E D .x; y/ of the segment EF in
AB corresponding to the current pixel pj by flooring .x0; y0/ and ends by incrementing .x0; y0/

with .dx; dy/ so the process can be repeated during the next loop iteration. We cannot increment
.x0; y0/with .dx; dy/ in our translation because Futhark does not support mutable variables. How-
ever, we can emulate the increment operation by summing .x0; y0/ and j.dx; dy/. This allows us
to define a get_seg_point function which accepts a line record l along with an index j and
then computes .x; y/ as follows:

let get_seg_point (l : line) (j : i32) : (i32, i32) =
let x = i32.f32 (l.x_0 + (f32.i32 j) * l.dx)
let y = i32.f32 (l.y_0 + (f32.i32 j) * l.dy)
in (x, y)

Listing 4.4: Function computing the start-point .x,y/ of the segment EF in AB corresponding to
pixel pj .

The next logical step is to index C andH with .x; y/ to retrieve its associated color cx;y and height
hx;y . Because we represent both C andH with two-dimensional arrays of shape q�r the operation
is fairly simple. All we need to do to ensure proper tiling is reduce .x; y/ modulo .r; q/:

let seg_point_color = lsc.color[y%q,x%r]
let seg_point_height = lsc.altitude[y%q,x%r]

Listing 4.5: Indexing C and H with .x,y/

What remains is computing the relative on-screen height h0
x;y . This requires no real translation,

however we have to take into account h0
x;y may fall outside the range .0 : : : l � 1/. To solve this

problem we use Futharks built-in i32.max and i32.max operators in conjunction:

let bounded_height = i32.min (l-1) (i32.max 0 (i32.f32
relative_height))

Listing 4.6: Accounting for negative relative heights h0
x;y using Futharks built-in max function

We return the color-height pair .cx;y; h
0
x;y/ at the end of f2. Consequently, the double-nested map

will return a n � m-shaped two-dimensional array of such pairs, i.e. one pair at each point in a
depth � width-shaped discrete space G.
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4.3 Rendering a Frame
GivenG we wish to render a frame on screen. Doing this in a way that takes advantage of Futharks
parallel potential requires a somewhat conceptually complicated approach. The main complication
stems from having to account for occlusion when drawing vertical lines on screen. We know
the JavaScript implementation solves this problem by processing each color-height pair in G in
front-to-back/left-to-right order using a continually updated variable hiddeny to indicate down
to which point vertical lines should be drawn. We would like to process as many color-height pairs
as possible in parallel so we need a different solution.

The first thing to note is that color-height pair gk;j D .c; h0/ logically maps to a c-colored vertical
line PLc bounded by points P D .h0; j / and L D .l � 1; j / on screen. This means there is a
one-to-one correspondance between columns in G and on screen:

Figure 4.1: 1-1 correspondance between columns in G and columns on screen. Example .c; h0/ are
for clarity visualized in terms of both color and height and their mapping to vertical lines PLc on
screen are drawn as well. Note that the screen has been vertically inverted.

It should be self-evident that vertical lines in different columns on screen cannot possibly occlude
each (otherwise reassure yourself by consulting Figure 4.1). Hence it follows that occlusion only
applies when processing color-height pairs from the same column in G. Because occlusion is the
only source of logical dependency when rendering on screen, we can use a map to process each
column of color-height pairs in G in parallel:

map (\j -> ... ) (transpose color_height_pairs)

Listing 4.7: Using a map to process each column of color-height pairs in G in parallel

The next question is how occlusion should be implemented for each column in G. Assume we
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are processing column g�;j and that PkL denotes the vertical line which gk;j maps to. Given
g1;j D .c1; h

0
1/ and g2;j D .c2; h

0
2/ such that h0

1 � h0
2, we expect P1Lc1

to occlude all of P2Lc2
.

By extension, if g3;j D .c3; h
0
3/ and h1 � h3, we expect P1Lc1

to occlude all of P3Lc3
as well.

Figure 4.2: P1Lc1
occluding all of P2Lc2

and P3Lc3
.

A simple way of representing this occlusion is by transforming g2;j and g3;j into g0
2;j D .c1; h

0
1/

and g0
3;j D .c1; h

0
1/ respectively:

Figure 4.3: Representing occlusion of P2Lc2
and P3Lc3

by transforming g2;j and g3;j into g0
2;j

and g0
3;j .
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With this approach we can perform occlusion over all gk;j 2 g�;j in a semi-parallel manner. The
idea is to use Futharks scan in conjunction with an occlude operator:

1 let occlude (c_1 : i32, h_1 : i32 )
2 (c_2 : i32, h_2 : i32 ) : (i32, i32) =
3 if (h_1 <= h_2)
4 then (c_1, h_1)
5 else (c_2, h_2)
6 ...
7 let col_occluded = scan (occlude) (0, l) j

Listing 4.8: occlude operator used in conjunction with scan to implement occlusion for a
column s�;j in G

The definition of occlude in Listing 4.8 should be more or less self-explanatory. Given gk;j D
.ck; h

0
k
/ and gkC1;j D .ckC1; h

0
kC1

/ in g�;j , it implements occlusion on a local level by return-
ing g0

kC1;j
if h0

k
� h0

kC1
and gkC1;j otherwise. The subsequent scan application in line 7

propagates local occlusion by folding occlude over each .gk;j ; gkC1;j / 2 g�;j beginning with
.0occlude; g0;j /. Because all intermediate results of the fold are saved, it follows that col_occluded[k]
will contain either g0

k��;j
D .ck��; h

0
k��
/, if ck�� should occlude ck at P D .h0; j / on screen, or

gk;j if not. As an example, Figure 4.4 and Figure 4.5 shows the occlusion mechanism applied to
a g�;j column with a wide range of h0 values.

Figure 4.4: g�;j before occlusion. Figure 4.5: g�;j after occlusion.

The next logical step is to render c on screen at P D .h0; j / for each .c; h0/ in col_occlude.
This can be done in parallel using Futharks scatter:

let init_col = replicate l lsc.sky_color
let (cs, hs) = unzip col_occluded
let screen_col = scatter init_col hs cs
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Listing 4.9: Rendering in parallel c on screen at P = .h0, j / for each .c, h0/ in col_occlude.

The actions taken in Listing 4.9 are twofold. First a replicate application is used to initialize
the l-sized screen-column corresponding to col_occluded. The value cbg D lsc.sky_color
used for initialization is the background color of the frame to be rendered. Next the enclosing
scatter application is used to overwrite the screen column with c at those points P D .h0; j /
for which there exists a .c; h0/ in col_occluded. In Section 3.3 we mentioned that the result
of a scatter application is unspecified if the array supplied to it as second argument contains
duplicates. This is obviously very likely in this case as the color-height pairs in col_occluded
have been generated via occlusion. The reason why the implementation works nevertheless is that
the occlusion procedure ensures any two pairs .c1; h1/ and .c1; h2/ for which h1 D h2 must also
have c1 D c2. This means arrays positions written to concurrently will have always end with the
same value independent of how the concurrent writes are interleaved.

Figure 4.6: Rendering c on screen at P D .h0, j / for each .c; h0/ in Figure 4.5 using the approach
implemented in Listing 4.9. Note that the purple background color is drawn as a line (rather than
a single point at the bottom of the screen) for illustrative purposes.

To complete the screen column we need to extend each c rendered on it with its associated vertical
line PLc . Taking occlusion into account, it follows that each PLc should cover all consecutive
background color below its origin P but extend no further. Put another way, what we want to avoid
is one vertical line PkLc occluding another vertical line PkC�Lc with origin PkC� below Pk. The
solution once again is to use scan, this time in conjunction with a fill operator:

let fill (c_1 : i32) (c_2 : i32) : i32 =
if (c_2 == lsc.sky_color)
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then c_1
else c_2

...
in scan (fill) lsc.sky_color screen_col

Listing 4.10: Using scan in conjunction with a fill operator to fill in the missing colors in
screen_col.

The scan application in Listing 4.10 folds the fill operator over each .ck; ckC1/ in screen_col
starting with .cbg; c0/ at the top. Because the fill operator replaces ckC1 with ck if and only if
ckC1 D cbg, it follows that each ck in effect will extend to cover all consecutive background color
below it. The value returned by the scan application must then necessarily be the fully rendered
column at .�; j / on screen. Figure 4.7 provides an illustration.

Figure 4.7: Completing the screen column in Figure 4.6. Lines are again drawn only for illustrative
purposes (As there are no background-colored points to cover).

Consequently, the outer map will return the fully rendered frame on screen. The final step in our
translation is to transpose the rendered frame from its current m � l shape to its intended l � m
shape:

...
in transpose rendered_frame

Listing 4.11: Transposing the rendered frame from its initial m � l shape to its intended l � m

shape.
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Chapter 5

Implementation Analysis

5.1 Establishing a Cost Model
In Chapter 4 we covered in-depth a parallelizable implementation of the Voxel Space render al-
gorithm written in Futhark. However we did not provide any actual run-time analysis. The first
question is which framework should be used for such an analysis. One option would be to measure
run-time in terms of instruction cycles given some abstract machine model such as the PRAM. As
alluded to in Section 3.1, this approach is complicated because abstract machine models usually
neglect important low-level details such as concurrency issues. One could of course incorporate
these low-level details into ones model but this would not be a very portable solution. An alterna-
tive is to abandon machine representation altogether and instead use a language-based cost model,
which defines run-time directly in terms of higher-level programming language constructs. With
this approach programmers are presented with an interface of cost guarantees which the language
implementor is responsible for ensuring across different machines. Hence performance reasoning
does not need to be "ported" when targeting new machines.

5.2 Work and Span
For our analysis we will be using a variant of the language-based cost model developed by Guy
Blelloch in connection with his work on NESL [Ble96]. Central to this cost model are the concepts
of work and span1. Work is defined as the total number of operations executed by a computation
while span is defined as the longest chain of sequential dependencies in the computation. One way
of visualizing the work and span of a computation is by using Dependency DAGs (Directed Acyclic
Graphs). inc_seq() from Listing 3.1 for example has the following dependency DAG:

11Sometimes also called depth
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Figure 5.1: Dependency DAG for inc_seq() from Listing 3.1. Source: “Cost models and
advanced Futhark programming” [Hen19a, s. 5].

Figure 5.1 is to be read from the top down. Each node corresponds to an operation q executed
by inc_seq(). Nodes representing independent operations are placed on the same level. The
children of a node qi are to be interpreted as those operations immediately dependent on qi . Given
this setup, the work W.p/ of the program p implemented by inc_seq() is equal to the total
number of nodes while its span S.p/ is equal to the longest path from root to a leaf. We note that
W.p/ D O.n/ and S.p/ D O.n/. This tells us the total number of operations and longest chain of
sequential dependencies in p both grow linearly with its input size. Put another way, p will always
have to execute O.n/ operations in sequence, even if run on more than one core. This makes
intuitive sense as its use of a for-loop inherently makes inc_seq() a sequential implementation.
Now lets look at the dependency DAG for inc_par() from Listing 3.1:

Figure 5.2: Dependency DAG for inc_par() from Listing 3.1. Source: “Cost models and
advanced Futhark programming” [Hen19a, s. 6].

In this caseW.p/ is stillO.n/ however S.p/ is reduced toO.1/ because the individual initialization
steps of np.ones() as well as the subsequent addition operations are internally independent.
Each of these independent operations could, at least in principle, be executed in parallel if p were
to be run on sufficiently many cores. With this in mind we would expect the runtime of p to be
(more or less) constant as long as the number of cores it is run on scales appropriately with its input
size.
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Generally speaking, work and span can be seen as measures of the runtime of a computation at two
extremes: the runtime T1 when executing sequentially on a single core, and the runtime T1 when
executing in parallel on an unlimited number of cores. In practice we want to know the runtime
for some fixed number of cores. Brent’s Theorem [Ble96, p. 89], which we will not prove here
2, shows that if a computation has work T1 and span T1 then its runtime Ti when executing on i
cores is:

T1

i
� Ti � T1

i
C T1 (5.1)

Equation 5.1 is important because it tells us that the upper bound on Ti is proportional to T1 with
an overhead of T1

i
corresponding to the amount of missing hardware parallelism. Hence it makes

sense to use span as a runtime measurement for programs running on massively parallel hardware
such as GPUs (where i is very large). This, however, does not mean work is irrelevant in terms of
runtime analysis. For one we cannot assume a parallelizable implementation will always be able to
run on enough cores to make T1

i
insignificant. Moreover, hidden factors related to communication

may, even in the best case, prevent full utilization of its parallel potential. Considering this, it is not
surprising that a parallelizable implementation with great span might, under certain circumstances,
be outperformed by a sequential implementation with better work. This of course is undesirable.
What we want ideally are implementations such as inc_par() which improve upon the span
of their sequential equivalent while preserving the same work (within a constant factor). Such
implementations are said to be work-efficient.

5.3 A Cost Model for Futhark
So far we have analyzed programs in terms of work and span by tallying the levels of their depen-
dency DAGs. The language-based cost model of Blelloch formalizes this procedure by associating
specific work and span costs with primitive operations and specifying rules for combining these
across program expressions [Ble96, p. 87-88]. Not surprisingly, the general rule is that the total
work, when evaluating a set of expressions in parallel, equals the sum of the work of the expres-
sions, while the total span equals the maximum of the span of the expressions. The cost model we
will be using adopts a similar approach. Its (partially) complete specification is provided by Elsman
et al. in Parallel Programming in Futhark [EHO20, p. 67-68] and on the official Futhark website
[20b]. We will, for the sake of brevity, explain only the rules most relevant to the implementation
from Chapter 4.

We start with the base rule which states that literals have constant work and span:

W.v/ D S.v/ D O.1/ (5.2)

This should not need further explaining. We next note that the work and span of an operator
application is linear in the work and span of its operands with an overhead corresponding to the
cost of the actual operation performed:

W.e1 ˚ e2/ D W.e1/CW.e2/CO.1/; (5.3)

2The theorem also makes several assumptions about communication costs, i.e. latency and bandwidth. We note that
latency can be accounted for by modifying Equation 5.1 while bandwidth is less of a problem on newer machines
[Ble96, p. 89-90]. However we wont go into further detail.
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S.e1 ˚ e2/ D S.e1/ C S.e2/ CO.1/ (5.4)

Equation 5.4 is important because it tells us that operator application is not fully parallelizable in
Futhark. Now let ŒŒe�� denote the result of evaluating e and let e0ŒŒŒe�� =x� denote e0 after substituting
each occurrence of x with ŒŒe��. We then have the following rules with respect to let-expressions:

W
�
let x D e in e0� D W.e/CW

�
e0ŒŒŒe�� =x�

� CO.1/; (5.5)

S
�
let x D e in e0� D S.e/ C S

�
e0ŒŒŒe�� =x�

� CO.1/ (5.6)

We can infer from Equation 5.6 that let-expressions are not fully parallelizable either. This makes
intuitive sense as the body of a let-expression is usually dependent on the variable that the let-
expression assigns a value to initially. Function application is analogous because the evaluation
of its body usually depends on the value of its arguments. The evaluation of these arguments is
itself not fully parallelizable as Futhark treats them similar to operands. Assuming f is a function
\x1 : : : xn -> e applied to arguments e1 through en, we arrive at the following rules for its work
and span:

W .f e1 : : : en/ D W.e1/C : : :CW.en/CW .eŒŒŒe1�� =x1; : : : ; ŒŒen�� =xn�/ (5.7)
S.f e1 : : : en/ D S.e1/ C : : :C S.en/ C S.eŒŒŒe1�� =x1; : : : ; ŒŒen�� =xn�/ (5.8)

The constructs that, in general, are most parallelizable in Futhark are array combinators. The first-
order variety includes iota which allows for parallel array initialization. Its work and span are:

W.iota e/ D W.e/CO.ŒŒe��/ (5.9)
S.iota e/ D S.e/ CO.1/ (5.10)

The constant factor in Equation 5.10 is a direct indication that each element in the array produced
by iota can, in fact, be constructed in parallel. We assume the same holds true for replicate,
as it performs array initialization in a semantically similar manner. We cannot, however, verify
this as the specification does not actually list its work and span. The specification, in fact, does
not list the work and span of any first-order array combinator besides iota. What we can do
is derive these rules ourselves based on the implementation-model presented by Henriksen in his
Futhark blog [Hen19c]. We will not explain the derivation here3, but note that the rules relating to
replicate, unzip and transpose are:

W.replicate e1 e2/ D W.e1/CW.e2/ CO.ŒŒe1��/ (5.11)
S.replicate e1 e2/ D S.e1/ C S.e2/ CO.1/ (5.12)
W.unzip e/ D W.e/ CO.n/; ŒŒe�� D Œ.a1; b1/; : : : ; .an; bn/� (5.13)
S.unzip e/ D S.e/ CO.1/; ŒŒe�� D Œ.a1; b1/; : : : ; .an; bn/� (5.14)
W .transpose e/ D W.e/ CO.nm/; ŒŒe�� D Œa1; : : : ; an�Œb1; : : : ; bm� (5.15)
S.transpose e/ D S.e/ CO.1/; ŒŒe�� D Œa1; : : : ; an�Œb1; : : : ; bm� (5.16)

The main SOAC relevant for our analysis is map. We learned in Section 3.3 that its function argu-
ment can, in principle, be applied to each element in its array argument in parallel. The following
pair of rules confirm Futhark supports this type of execution:

W.map f e/ D W.e/CW
�
e0Œv1=x�

�C; : : : ;CW �
e0Œvn=x�

�
; (5.17)

3see Section B.1 for more information
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ŒŒf �� D \x -> e0; ŒŒe�� D Œv1; : : : ; vn�

S.map f e/ DS.e/C max
�
S

�
e0Œv1=x�

�C; : : : ;CS�
e0Œvn=x�

�� CO.1/; (5.18)
ŒŒf �� D \x -> e0; ŒŒe�� D Œv1; : : : ; vn�

Equation 5.17 and Equation 5.18 should remind the reader of the general rule explained earlier.
The parallel expressions in this case are the applications of function f . If we ignore the costs as-
sociated with evaluating array e, then the total work equals the sum of the work of these function
applications while the total span equals the maximum of their span (plus a constant factor account-
ing for additional overhead). The model used by Futhark for evaluating instances of scatter
is similar in the sense that each of the array updates to be performed can be executed in parallel.
Hence the work and span of scatter are:

W.scatter e1 e2 e3/ DW.e1/CW.e2/CW.e3/CO.n/; (5.19)
ŒŒe1�� D Œa1; : : : ; am�; ŒŒe2�� D Œi1; : : : ; in�;

ŒŒe3�� D Œv1; : : : ; vn�

S.scatter e1 e2 e3/ DS.e1/C S.e2/C S.e3/CO.1/; (5.20)
ŒŒe1�� D Œa1; : : : ; am�; ŒŒe2�� D Œi1; : : : ; in�;

ŒŒe3�� D Œv1; : : : ; vn�

The work and span of scan require a more thorough explanation. We will base our reasoning on
the work-efficient implementation developed by Blelloch in Prefix Sums and Their Applications
[Ble90] as Futhark’s implementation guarantees the same work and span. It is, however, important
to note that the two implementations are not necessarily identical.

Before the work-efficient implementation of scan can be explained we first need to understand
how to parallelize reduce. Lets assume we want to reduce n values with the C operator. Lets
also assume that the values are the leaves in some balanced binary tree. We can then construct the
nodes in the level above by summing each pair of leaves in parallel. By repeating the procedure at
each level we end with a value at the root which is the total sum of the values in the leaves:

Figure 5.3: Summing n values in a semi-parallel manner using a balanced binary tree. Source:
Prefix Sums and Their Applications [Ble90, p. 40].
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The final tree, as illustrated by Figure 5.3, containsO.n/ nodes and has a height h D O.log.n//. If
we think of this tree as a dependency DAG, it follows that the implementation method has work and
span equal to O.n/ and O.log.n// respectively. The correctness of the method is predicated on C
being an associative operator. The reason for this is that the method performs operator application
in non-sequential order. Generally speaking, the method can be used whenever reduce is applied
to an operator ˚ which, along with its neutral element 0˚, constitute a monoid. With this in mind,
it is not surprising that the work and span of reduce in Futhark are:

W.reduce ˚ e1 e2/ D W.e1/CW.e2/CW .eŒv1=x1; v2=x2�/ � nCO.1/ (5.21)
ŒŒ˚�� D \x1 x2 -> e; ŒŒe1�� D 0˚;
ŒŒe2�� D Œv1; : : : ; vn�

S.reduce ˚ e1 e2/ D S.e1/C S.e2/C S.eŒv1=x1; v2=x2�/ � log.n/CO.1/ (5.22)
ŒŒ˚�� D \x1 x2 -> e; ŒŒe1�� D 0˚;
ŒŒe2�� D Œv1; : : : ; vn�

The tree in Figure 5.3 contain many partial sums. It turns out that these partial sums can be used
to generate all prefix sums of the n-sized array of input values. This requires performing another
sweep of the binary tree this time starting at the root and going down to the leaves. Initially the
neutral element 0 is inserted at the root. At each subsequent step the nodes at the current level
passes to their left child their own value and passes to their right child C applied to the value from
their left child and their own value. The result is a binary tree in which the nth leaf (counting from
left to right) equals the n�1th prefix sum of the initial array of values:

Figure 5.4: The binary tree produced by performing a downsweep of Figure 5.3. Source: Adapted
from Prefix Sums and Their Applications [Ble90, p. 42].

The full array of prefix sums can then be obtained by extracting the leaves from Figure 5.4, ap-
pending the root from Figure 5.3 and shifting one position to the right. A symmetrical procedure
can be used for any other monoid. To understand why this works in general we will be relying on
the following theorem:
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THEOREM 5.1
After a complete down-sweep, each vertex of the tree contains the sum of all the leaf values that
precede it.

Since the leaf values that precede any leaf are the values to the left of it in the input array, it follows
from THEOREM 5.1 that the leaves after a downsweep must constitute the full prescan of the input
array. This prescan can then be extended to a scan using the method described above. We will not
actually provide a proof of THEOREM 5.1 but note that it can be found in Prefix Sums and Their
Applications [Ble90, p. 41-43].

It should be obvious that nodes at the same level can be processed in parallel during a downsweep
as they are only logically dependent on their own value and the value of their children. Because
the binary tree produced by the downsweep contains the same number of nodes and has the same
height as the binary tree produced by the initial upsweep, it stands to reason that the work and span
of scan must be identical (within a constant factor) to that of reduce. This, in fact, is the case in
Futhark as the following rules confirm:

W.scan ˚ e1 e2/ D W.e1/CW.e2/CW .eŒv1=x1; v2=x2�/ � nCO.1/ (5.23)
ŒŒ˚�� D \x1 x2 -> e; ŒŒe1�� D 0˚;
ŒŒe2�� D Œv1; : : : ; vn�

S.scan ˚ e1 e2/ D S.e1/C S.e2/C S.eŒv1=x1; v2=x2�/ � log.n/CO.1/ (5.24)
ŒŒ˚�� D \x1 x2 -> e; ŒŒe1�� D 0˚;
ŒŒe2�� D Œv1; : : : ; vn�

This concludes our review of the cost model of Futhark.

5.4 Intermezzo – Correctness of Implementation
Before we can proceed with a runtime analysis of our implementation from Chapter 4 we need to
prove it is correct. We will not concern ourselves with actual testing here, as the interactive appli-
cation available at the FutSpace repository [Kri+20] should be sufficient to convince the reader that
the implementation does indeed work as intended. Whats more interesting is proving formally that
the implementation produces the same result when run sequentially and in parallel. As explained
in Section 5.3, this essentially boils down to proving that all instantiations of scan are applied to
monoids only.

The first instantiation of scan in our implementation is applied to .occlude; .0; l//. Proving
.occlude; .0; l// is a monoid entails proving .0; l/ is the neutral element of occlude, and that
occlude is an associative operator. First let GC D G [ f.0; l/g. Then occlude can formally be
defined as a mapping from GC � GC to GC:

occlude W GC � GC ! GC (5.25)

Because all generated heights h0 in G are less than l it follows that:

8.c; h0/ 2 GC W
.0; l/ occlude .c; h0/ D .c; h0/ D .c; h0/ occlude .0; l/

(5.26)
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Hence .0; l/ must be the neutral-element of occlude4.

For occlude to be an associative operator it must satisfy:

8�
.c1; h

0
1/; .c2; h

0
2/; .c3; h

0
3/

� 2 GC �GC �GC W�
.c1; h

0
1/ occlude .c2; h

0
2/

�
occlude .c3; h

0
3/

D
.c1; h

0
1/ occlude

�
.c2; h

0
2/ occlude .c3; h

0
3/

�
(5.27)

As Figure 5.5 illustrates, there are six distinct classes of values that can be taken by h0
1, h0

2 and h0
3:

1 W h0
1 � h0

2 � h0
3; 2 W h0

1 � h0
3 < h

0
2; 3 W h0

2 < h
0
1 � h0

3;

4 W h0
2 � h3 < h

0
1; 5 W h0

3 < h
0
1 � h0

2; 6 W h0
3 < h

0
2 < h

0
1

(5.28)

Figure 5.5: Visualization of the six classes of values that can be taken by h0
1, h0

2 and h0
3.

We need to prove Equation 5.27 holds for each of these cases. This can be done by straightforward
evaluation. For example, for the first case we have:

�
.c1; h

0
1/ occlude .c2; h

0
2/

�
occlude .c3; h

0
3/ D .c1; h

0
1/ occlude .c3; h

0
3/

D .c1; h
0
1/ ;

.c1; h
0
1/ occlude

�
.c2; h

0
2/ occlude .c3; h

0
3/

� D .c1; h
0
1/ occlude .c2; h

0
2/

D .c1; h
0
1/

4A somewhat subtle point is that Equation 5.26 must hold for .0; l/ itself. It should be obvious that this is the case
because .0; l/ occlude .0; l/ D .0; l/.
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Similarly, for the second case it holds that
�
.c1; h

0
1/ occlude .c2; h

0
2/

�
occlude .c3; h

0
3/ D .c1; h

0
1/ occlude .c3; h

0
3/

D .c1; h
0
1/ ;

.c1; h
0
1/ occlude

�
.c2; h

0
2/ occlude .c3; h

0
3/

� D .c1; h
0
1/ occlude .c3; h

0
3/

D .c1; h
0
1/

We will not go into further detail with the remaining cases as their proofs are symmetrical5.

We next need to prove (cbg, fill) is a monoid as well. First let CC D C [ fcbgg. Then fill is
formally a function mapping from CC � CC to CC:

fill W CC � CC ! CC (5.29)

Because fill returns its second argument when it is different from cbg and its first argument
otherwise, it follows that:

8c 2 CC W c fill cbg D c D cbg fill c (5.30)

Therefore cbg must be the neutral element of fill.

For fill to be an associative operator it must satisfy:

8.c1; c2; c3/ 2 CC � CC � CC W
.c1 fill c2/ fill c3 D c1 fill .c2 fill c3/

(5.31)

To prove Equation 5.31 we will be using the same approach we took when proving Equation 5.27.
Noting that the result of occlude depends only on its second argument it follows that there are
exactly four cases to cover:

1 Wc2 ¤ cbg ^ c3 ¤ cbg 2 W c2 D cbg ^ c3 ¤ cbg

3 Wc2 ¤ cbg ^ c3 D cbg 4 W c2 D cbg ^ c3 D cbg
(5.32)

For the first case we have:

.c1 fill c2/ fill c3 D c2 fill c3 D c3 ;

c1 fill .c2 fill c3/ D c1 fill c3 D c3

Similarly for the second we have:

.c1 fill c2/ fill c3 D c1 fill c3 D c3 ;

c1 fill .c2 fill c3/ D c1 fill c3 D c3

Once again we will not go into further detail with the remaining cases as their proofs are symmet-
rical.6

5See Figure B.1 for the full associativity proof
6See Figure B.2 for the full associativity proof
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5.5 Applying the Cost Model
We are now ready to apply the cost model introduced in Section 5.3 to our implementation from
Chapter 4. We will once again use an incremental approach, covering each logical step in the
implementation in turn.

The first logical step is determining the depth-slices which need to be iterated through. This is
done with the get_zs function which performs a sequence of constant-time arithmetic operations
followed by two map applications. The first map application is supplied a .1 : : : n/ range and
a constant-time function implementing integer conversion. The resulting array is supplied to the
second map application along with another constant-time function implementing the arithmetic
sequence formula. We can infer that the total work and span resulting from applying get_zs
must be:

W.get_zs Δ d z0/ D O.n/

S.get_zs Δ d z0/ D O.1/

The next logical step is determining color-height pairs at each point in G. This is done with a
double-nested mapwhich uses the n-sized array of depth-slices returned by get_zs as outer range
and (iota m) as inner range. The double-nested map performs a sequence of constant-time arith-
metic operations and array indexing intermixed with calls to get_h_line and get_segment_point.
These functions similarly perform a sequence of constant-time arithmetic operations. Hence it fol-
lows that the total work and span of the double-nested map is:

W.color_height_pairs/ D O.nm/7

S.color_height_pairs/ D O.1/

The double-nested map returns a two-dimensional array of color-height pairs. The implementation
renders a frame on screen by transposing this array and supplying the result to a map-application
along with a function f2 which, given a column s�;j in G renders the corresponding column on
screen. Because the shape of the two-dimensional array is n�m, the work and span of its transpo-
sition is:

W.transpose color_height_pairs/ D O.nm/

S.transpose color_height_pairs/ D O.1/

f2 first applies scan to the .occlude; .0; l// monoid and s�;j . Because the occlude operator
is a constant-time function and the size of s�;j is n, it follows that the work and span of the scan
application is:

W
�
scan .occlude/ .0; l/ s�;j

� D O.n/

S
�
scan .occlude/ .0; l/ s�;j

� D O.log.n//

The occluded column returned by this scan-application is then unzipped into an n-sized array
containing color values and an n-sized array containing height values. The work and span of this
operation is:

W .unzip col_occluded/ D O.n/

6color_height_pairs here is shorthand for let color_height_pairs = : : :
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S.unzip col_occluded/ D O.1/

The color and height arrays are used to render the column corresponding to g�;j on screen. This is
done via a combination of replicate and scatter followed by a scan-application filling in
missing colors. The replicate application takes l as it first argument, so its work and span is:

W
�
replicate l cbg

� D O.l/

S
�
replicate l cbg

� D O.1/

The scatter-application takes the n-sized color and height arrays as second and third argument
respectively, so its work and span is:

W .scatter init_col hs cs/ D O.n/

S.scatter init_col hs cs/ D O.1/

The l-sized array returned by the scatter application is fed to the scan-application along with
the .fill; cbg/ monoid. Because fill is a constant-time function, the work and span of the
scan application is

W
�
scan .fill/ cbg screen_col

� D O.l/

S
�
scan .fill/ cbg screen_col

� D O.log.l//

f2 is applied to each of the m columns in G so the total work and span must be

W .rendered_frame/ D O.nm/CO.m/.O.n/CO.n/CO.l/CO.n/CO.l//

D O.nm/CO.ml/

D O.m.nC l//

S.rendered_frame/ D O.1/CO.1/.O.log.n//CO.1/CO.1/CO.1/CO.log.l///
D O.log.n//CO.log.l//
D O.log.nl//

The final step is transposing the rendered frame from m � l-shape to l � m-shape. The work and
span of this operation is:

W .transpose rendered_frame/ D O.ml/

S.transpose rendered_frame/ D O.1/

Putting it all together, we end up with the following work and span for our implementation:

W .render cam lsc l m/ D O.n/CO.nm/CO.m.nC l//CO.ml/

D O.m.nC l// (5.33)
S.render cam lsc l m/ D O.1/CO.1/CO.log.nl//CO.1/

D O.log.nl// (5.34)

Taking Equation 4.2 into account, we have nDO
�p

d
�

. Equation 5.33 and Equation 5.34 can
therefore be rewritten:

W .render cam lsc l m/ D O.m.nC l//
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D O
�
m

�p
d C l

��
(5.35)

S.render cam lsc l m/ D O.log.nl//

D O
�

log
�p

dl
��

(5.36)

We can conclude that the work of our implementation is most dependent on the width m of the
screen rendered on, while its span is completely independent of it. In both cases the render distance
d is the least significant factor.

5.6 Benchmarking
In Section 5.5 we derived Equation 5.35 and Equation 5.36 which characterize the sequential
and parallel performance of the implementation from Chapter 4 respectively. These equations
may not, however, reflect reality. For one, they abstract away constant factors which may have
a considerable impact on runtime. Moreover, work and span do not, as discussed in Section 5.2
take low-level details such as communication costs and initialization overhead into account. To
put Equation 5.35 and Equation 5.36 into perspective we are going to benchmark the sequential
and parallel performance of the implementation. Given that Equation 5.35 and Equation 5.36 are
functions of d , m and l , it makes sense benchmarking against each of these parameters in turn.
What we will do specifically is run three different benchmark tests both in sequential and parallel
mode. In each benchmark test we keep two parameters constant at integral value 10 and measure
change in execution time as the last parameter is increased.

We use Futharks dataset utility with the -b option to generate the data needed for benchmarking
in an efficient binary format. This is has the unfortunate side-effect of limiting us from supplying
meaningful color and height maps as input. This, however, is not a great problem, as the implemen-
tation executes mostly the same steps regardless of the values in its height and color-map arguments.
To perform the actual benchmarking we use Futharks bench utility with the backend=c option
for sequential execution and with the backend=opencl option for parallel execution. We refer
the reader to Listing A.4 for the full benchmarking code. The system we use for benchmarking is
a desktop PC with an AMD Ryzen 5 3600 CPU and an NVIDIA GTX 1080 8GB GPU.

To visualize the results of each benchmark test we use separate graphs plotting both sequential
and parallel runtimes as functions of input size. To quantify the relative speedup when executing
in parallel, we also provide in each graph a third trendline which is simply the OpenCL runtimes
divided by the C runtimes. The graphs are show in Figure 5.6, Figure 5.7 and Figure 5.8.

These graphs confirm what Equation 5.35 and Equation 5.36 imply: that the implementation can
be executed efficiently in parallel, but to varying degree depending on the value of parameters d ,
m, and l . This is especially evident when comparing Figure 5.6, where the implementation is
benchmarked as a function of d , with Figure 5.7, where it is benchmarked as a function of m. To
clearly show the difference we provide in Figure 5.9 and Figure 5.10 graphs which plot against
each other the sequential and parallel runtimes from Figure 5.6, Figure 5.7 and Figure 5.8 . It
is perhaps not surprising that the sequential runtime of the implementation scales best with d and
worst with m as they are respectively the least and most significant factor in Equation 5.35. The
reason why the parallel runtime of the implementation scales similarly is not as obvious, given that
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Equation 5.36 is completely independent of m. The most likely explanation is that the GPU of
the benchmarking system is not sufficiently hardware parallel to approximate Equation 5.36. In
that case it is possible that the span and parallel runtime of the implementation may correspond
better on a system with a newer GPU. Regardless, settingm (or l) above 5000 does not really make
sense, as the dimensions of most screens rarely exceed 3840 � 2160. Hence we may assume that
the implementation scales very well in practice.

Figure 5.6: Runtime as a function of d when m D l D 10.
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Figure 5.7: Runtime as a function of m when d D l D 10.

Figure 5.8: Runtime as a function of l when d D m D 10.
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Figure 5.9: Comparing runtime as a function of d , m and l respectively when executing the se-
quential C binary.

Figure 5.10: Comparing runtime as a function of d , m and l respectively when executing the
parallel OpenCL binary.
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Chapter 6

Improvements

Having implemented a parallel version of the Voxel Space algorithm and having access to com-
puters that by far, in terms of computational power, exceed those that the original Voxel Space
algorithm was designed for, we now look for additional features and rendering techniques to spend
our available computational power on. First of all, in addition to the core rendering algorithm, we
have replicated the interactive aspect of VoxelSpace. As such, it is possible to move around in
the rendered environments in real-time, switch between environments and adjust certain rendering
parameters on the fly. The interactive application makes use of Lys[Cop20b], an SDL wrapper for
Futhark that makes it possible to both handle keyboard and mouse input and blit a framebuffer from
inside a Futhark program to an OpenGL window context. The additions we have implemented both
apply to the core rendering algorithm and the interactive application.

6.1 Generalising the algorithm
As explained in the previous chapters, .C;H/ are mappings N2 ! N. However, why limit our-
selves to N2? Conceptually, there is nothing about our rendering approach that keeps us in N2,
as any value in R2 can be rounded such that we end up back in N2. In fact, rounding to whole
numbers is only necessary when we are dealing with indices into .C;H/. Therefore we should
be able to present any function g 2 R2 as a valid input to the rendering algorithm, such that our
mapping becomes R2 ! N for all inputs. In fact, the only thing stopping us from doing this, is the
presumption made in the code about input data being two dimensional integer arrays.

1 let seg_point_color = lsc.color[y%q,x%r]
2 let seg_point_height = lsc.altitude[y%q,x%r]

Listing 6.1: Retrieving height and color values from arrays

Concretely, if we express the array indexing seen above as a function of .x; y/, it naturally becomes
possible to render any other function of .x; y/ as well. We have implemented this by adding two
additional parameters to the rendering algorithm, namely color_fun:f32->f32->i32 and
height_fun:f32->f32->i32. Then the rendering of .C;H/ suddenly becomes a special
application of the rendering algorithm instead of its sole use. The specific handling of .C;H/
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has been implemented in two new functions png_color:[][]i32->f32->f32->i32 and
png_height:[][]i32->f32->f32->f32, which can then be partially applied with .C;H/
in order to get two new functions of respectively type f32->f32->i32 and f32->f32->f32.
These functions can then be passed as arguments to the rendering algorithm.

1 let render (c: camera) (color_fun : f32 -> f32 -> i32) (height_fun : f32 ->
f32 -> f32) (h : i32) (w: i32) (t : smoothing) : [][]i32 =

2 ...
3 let height_color_map =
4 map (\z ->
5 ...
6 map (\i ->
7 ...
8 let (interp_color, map_height) = (color_fun x y, height_fun x y)
9 ...

10 ) (iota w)
11 ) zs

Listing 6.2: Core renderer function signature and usage of height and coloring functions

let png_height [h][w] (heights : [h][w]i32) (x : f32) (y : f32) : f32 =
f32.i32 heights[(i32.f32 y)%h, (i32.f32 x)%w]

let png_color [h][w] (colors : [h][w]i32) (x : f32) (y : f32) : f32 =
colors[(i32.f32 y)%h, (i32.f32 x)%w]

Listing 6.3: Handling the special case of image rendering

Figure 6.1: A render of cos.x/ � sin.y/ with low field of view
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6.2 Shadow rendering

Figure 6.2: Part of height map included with
project (C1W.png)

Figure 6.3: Shadowmap generated from
heightmap on the left

A major limitation to the Voxel Space algorithm is that shadows are not drawn dynamically. This
means that shadows have to be precomputed and blended into the color map, which is the case for
the included Comanche maps. This starts becoming a headache when rendering .C;H/ pairs that
do not contain any prebaked shadows, as the final image lacks any of the depth that the Comanche
maps have. However, we wish to stay within the framework of ray casting, and we therefore need
a way to generate the shading for each cij 2 C , such that the final image for any arbitrary .C;H/
appears to contain shadows cast by the sun. First of all, how do we represent light and shadows in
terms of .C;H/? Viewing hij 2 H as points, or voxels with the volume hij � 1 � 1, on a plane at
coordinate .i; j / is the first step towards building this representation.
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Figure 6.4: Scene with voxels hab, hac and light source P .

Figure 6.5: P is lowered, such that habP intersects hac

We see in Figure 6.4 that a light source P is shooting rays of light onto the voxels hab and hac .
P , hab and hac are all colinear. If we then lower the height of the P , as in Figure 6.5, we see that
the light cannot reach hab anymore, as hac now obscuring the line habP , the line between hab and
P . If we now imagine that there is an arbitrary amount of voxels in the scene, it must still be the
case that for any voxel hij in the scene there either is or is not some other voxel intersecting hijP .
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Expressed in terms of Figure 6.5, we can formulate this as finding a point on habP that is inside
the volume of hac . This is the segment of habP in Figure 6.5 that is colored red.

How can we find this point? From the perspective of hab, we have no knowledge of the exact
position and volume of hac until we encounter hac . Therefore we need to traverse the line from hab

to P until we reach hac . However, there are two additional details we have to consider. Since we
want to model the sun, P should be much further away from the voxels. As the distance between the
voxels and P increases, the lines habP , hacP become increasingly parallel to eachother. Secondly,
if for some voxel hij there is nothing obscuring P , it is inconvenient and practically impossible to
traverse the entire line hijP if P is basically infinitely distant.

Figure 6.6: Final light representation and intersection model

Therefore, we wish to move away from the idea of lines and P and instead represent the light by a
vector

�!
L D .x; y; z/T pointing towards the light. Then, in order to discover a potential intersection

at some distance d from hij , we can simply calculate
�!
L0 D hij C �!

L � d and test if
�!
L0 is inside

another voxel. Mathematically we define this intersection test as

Intersection.hi;j ; d / D
8<
:
1 hi;j C d � �!

L:y � h
iCd ��!L :x;j Cd ��!L :z

< 0

0 hi;j C d � �!
L:y � h

iCd ��!L :x;j Cd ��!L :z
� 0

: (6.1)

As we potentially still have to test many values of d for any voxel, we introduce a maximum
value dm for

�!
L � d . We also introduce a step size ds and step count dc such that ds D dm

dc
and

d D k � ds; k 2 f0; 1; 2; :::; dcg.

Having explained the shadow mapping on a conceptual level and defined the necessary intersection
test in Equation 6.1, we can now move on to the actual implementation. Since Equation 6.1 for a
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voxel hij does not depend on the solution of Equation 6.1 for any other voxel, we can do the inter-
section testing in parallel for all voxels. Furthermore, since we have defined Intersection.hi;j ; d /

along with dm and ds, we can parallelize the ray traversal as well. We have implemented this as a
triple nested map SOAC, where the outer two map SOACs work on all hi;j and the innermost map
SOAC is used to perform the ray traversal in parallel. The innermost map then produces a set of
values A of dimension dc where ak 2 A is a value indicating whether an intersection occured at
distance k �ds. These values are then summed to a single real value si;j using reduce (+), which
is then used as a weight in a color blending with ci;j 2 C , for some C . The reason why we choose
to use the sum of A, instead of simply finding out whether a single intersection has occurred, is
that we have found it to be more aesthetically pleasing when doing the color blending. It gives the
shadow maps more depth, as crevaces and low points in the terrain end up becoming increasingly
shaded as

�!
L becomes increasingly parallel to the plane.

1 let generate_shadowmap_accumulated (q : i32) (r : i32) (color_fun : f32 ->
f32 -> i32) (height_fun : f32 -> f32 -> f32) (sun : [3]f32) : [][]i32 =

2 let max_dist = 1024
3 let steps_per_ray = 256
4 let step_size = f32.i32 (max_dist / steps_per_ray)
5 in
6 map (\y ->
7 map (\x ->
8 let x = f32.i32 x
9 let y = f32.i32 y

10 let height = height_fun x y
11 let intersections =
12 map (\dist ->
13 let dist = f32.i32 dist
14 let height = height + dist * step_size * sun[1]
15 let test_height = height_fun
16 (x + dist * step_size * sun[0])
17 (y + dist * step_size * sun[2])
18 in
19 if height - test_height < 0 then 1 else 0
20 ) (1..<steps_per_ray)
21 let amount = f32.i32 (reduce (+) 0 intersections)
22 in (argb.mix (amount) argb.black 1.0 (color_fun x y))
23 )(0..<r)
24 ) (0..<q)

Listing 6.4: The shadowmap generation implementation

As seen in Listing 6.4, the implementation follows the explanation to the letter. The outer two map
SOACs iterate over both dimensions of some H , and the inner map SOAC does the intersection
testing. As we want black shadows, we use sij as a weight against cij in argb.mix, a color
mixing procedure imported from the futhark library Matte[Hen20]. Furthermore, while not shown
inside the shadow mapping function, the direction of sun is changed through the use of a matrix
multiplication library Linalg[Cop20a].

Finally, we need to look at the asymptotic behavior of the algorithm along with some benchmarks
to see how the algorithm actually performs. Based on the work and span definitions in Section
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5.2, our triple nested map, along with reduce (+) leads to a work of O.q � r � .dc C dc// D
O.q � r �dc/. Our span, on the other hand, becomesO.log.dc//. As seen in Figure 6.9, the runtime
of the algorithm scales with dc , which fits with the asymptotic analysis. Casting shadows therefore
becomes prohibitively expensive to perform in real-time when dc is too big.

Figure 6.7: Runtime of shadow mapping as a function of q when dc D 32 and r D 128

Figure 6.8: Runtime of shadow mapping as a function of dc when q D r D 128
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Figure 6.9: Comparing runtime of q and dc respectively when executing the parallel OpenCL
binary

6.3 Bilinear Filtering
A defining visual feature of the height/color map rendering is the sharp, well-defined look of the
rendered voxel columns, however we want to increase the overall smoothness of the final image.
The sharp, blocky look is especially apparent in the foreground of the image, which is due to the
fact that the foreground is sampled more times per hi;j 2 H compared to the background.
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Figure 6.10: Notice how the hill in the fore-
ground is perceptually lower resolution than
the hills in the background

Figure 6.11: Same image and rendering set-
tings, but with height and color map interpo-
lation in use

As mentioned in Section 6.1, we do a mapping R2 ! N2 when dealing with .C;H/ pairs. We
do this using a function p.x; y/ defined in Equation 2.9, where .x; y/ 2 .R;R/ become indices
to some .C;H/ pair. However, we can introduce a new function p0.x; y/ that uses the respective
fractional parts of .x; y/ to perform interpolation between the nearest indices around .x; y/. A
suitable candidate mathematical method for interpolation in R2 is bilinear interpolation. Bilinear
interpolation is the R2 equivalent of linear interpolation, which is defined as

f .x/ � .x2 � x1/f .x1/C .x2 � x1/f .x2/; x1 � x � x2 (6.2)

Therefore if we have a function f , the function values of f at .x1; y1/, .x1; y2/, .x2; y1/, .x2; y2/,
and we want to find f .x; y/ where x1 � x � x2 and y1 � y � y2, we can approximate f .x; y/
by linearly interpolating first in the x-direction and then in the y-direction:

f .x; y1/ � x2 � x
x2 � x1

f .x1; y1/C x � x1

x2 � x1

f .x2; y1/ (6.3)

f .x; y2/ � x2 � x
x2 � x1

f .x1; y2/C x � x1

x2 � x1

f .x2; y2/ (6.4)

f .x; y/ � y2 � y
y2 � y1

f .x; y1/C y � y1

y2 � y1

f .x; y2/ (6.5)

In our case we apply this to neighboring points in .C;H/, such that the distance x2 � x1 D 1 and
y2 � y1 D 1. Therefore we can simplify the previous equations:

f .x; y1/ � .x2 � x/f .x1; y1/C .x � x1/f .x2; y1/ (6.6)
f .x; y2/ � .x2 � x/f .x1; y2/C .x � x1/f .x2; y2/ (6.7)

f .x; y/ � .y2 � y/f .x; y1/C .y � y1/f .x; y2/ (6.8)
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And Equation 6.6, Equation 6.7, Equation 6.8 in terms of p0.x; y/ become

p0.x; byc/ D .dxe � x/p.bxc; byc/C .x � bxc/p.dxe; byc/ (6.9)
p0.x; dye/ D .dxe � x/p.bxc; dye/C .x � bxc/p.dxe; dye/ (6.10)

p0.x; y/ D .dye � y/p0.x; byc/C .y � y1/p
0.x; dye/ (6.11)

The actual implementation of the filtering is spread across two functions, as the filtering needs to
happen per color channel for c 2 C .
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Chapter 7

Conclusion

By breaking down and analyzing VoxelSpace, and the underlying Voxel Space algorithm, we have
been succesful in translating the rendering stages of the algorithm such that they become highly
parallel. The translation itself makes use of second order array combinators (SOACs), as they are
proven to be easily parallelized. The analysis and translation has resulted in a working implemen-
tation of the VoxelSpace algorithm in Futhark, a pure functional programming language that makes
use of the parallelizable nature of SOACs to generate CUDA or OpenCL programs, such that our
implementation makes use of parallelism on the GPU. Besides the translation of the core render-
ing algorithm, we have also implemented an interactive application that makes it possible to move
around a rendered terrain in real time with keyboard inputs. The interactive application makes use
of a Futhark SDL binding, lys, which makes it possible to easily create an OpenGL window context
and display a rendered frame from the core renderer on screen.

Secondly, we have looked into ways in which the compute power of modern GPUs can be used
to improve the rendering capabilities of the Voxel Space algorithm. This resulted in a parallelized
ray tracing-type shadow mapping algorithm, the introduction of bilinear filtering in the ray casting,
along with the ability to dynamically render terrain defined by mathematical functions instead of
images.

In terms of ideas for future improvements to our translation of the core renderer, we find it most
relevant to consider finding a way to avoid the use of scan in the height map occlusion step,
as scan has a span of S.scan/ D log.n/, which is asymptotically the most taxing step of the
rendering process. In a similar vein, the shadow mapping implementation also makes use of scan,
which leads to poor performance when both casting shadows on large terrains or with long rays.
Perhaps some acceleration structure can be applied, so that the ray traversal step becomes less
gruesome. The translation also assumes that only a terrain should be rendered, so another thing
that would be interesting to research is a way to represent other types of objects on the terrain, such
as sprites, so that they can be rendered as a part of the core renderer as well.
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Appendix A

Code

Listing A.1: JavaScript implementation of the Voxel Space rendering algorithm (and associated
interactive application.

1 "use strict";
2
3 // ---------------------------------------------
4 // Viewer information
5
6 var camera =
7 {
8 x: 512., // x position on the map
9 y: 800., // y position on the map

10 height: 78., // height of the camera
11 angle: 0., // direction of the camera
12 horizon: 100., // horizon position (look up and down)
13 distance: 800 // distance of map
14 };
15
16 // ---------------------------------------------
17 // Landscape data
18
19 var map =
20 {
21 width: 1024,
22 height: 1024,
23 shift: 10, // power of two: 2^10 = 1024
24 // 1024 * 1024 byte array with height information
25 altitude: new Uint8Array(1024 * 1024),
26 // 1024 * 1024 int array with RGB colors
27 color: new Uint32Array(1024 * 1024)
28 };
29
30 // ---------------------------------------------
31 // Screen data
32
33 var screendata =
34 {
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35 canvas: null,
36 context: null,
37 imagedata: null,
38
39 bufarray: null, // color data
40 buf8: null, // the same array but with bytes
41 buf32: null, // the same array but with 32-Bit words
42
43 backgroundcolor: 0xFFE09090
44 };
45
46 var updaterunning = false;
47
48 var time = new Date().getTime();
49
50
51 // for fps display
52 var timelastframe = new Date().getTime();
53 var frames = 0;
54
55 // Update the camera for next frame. Dependent on keypresses
56 function UpdateCamera() {
57 var current = new Date().getTime();
58
59 input.keypressed = false;
60 if (input.leftright != 0) {
61 camera.angle +=
62 input.leftright * 0.1
63 * (current - time) * 0.03;
64 input.keypressed = true;
65 }
66 if (input.forwardbackward != 0) {
67 camera.x -=
68 input.forwardbackward * Math.sin(camera.angle)
69 * (current - time) * 0.03;
70 camera.y -=
71 input.forwardbackward * Math.cos(camera.angle)
72 * (current - time) * 0.03;
73 input.keypressed = true;
74 }
75 if (input.updown != 0) {
76 camera.height +=
77 input.updown * (current - time) * 0.03;
78 input.keypressed = true;
79 }
80 if (input.lookup) {
81 camera.horizon +=
82 2 * (current - time) * 0.03;
83 input.keypressed = true;
84 }
85 if (input.lookdown) {
86 camera.horizon -=
87 2 * (current - time) * 0.03;
88 input.keypressed = true;
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89 }
90
91 // Collision detection. Don't fly below the surface.
92 var mapoffset =
93 ((Math.floor(camera.y) & (map.width - 1)) << map.shift)
94 + (Math.floor(camera.x) & (map.height - 1)) | 0;
95 if ((map.altitude[mapoffset] + 10) > camera.height)
96 camera.height = map.altitude[mapoffset] + 10;
97
98 time = current;
99

100 }
101
102 // ---------------------------------------------
103 // Keyboard and mouse event handlers
104 // ---------------------------------------------
105 // Keyboard and mouse event handlers
106
107 function GetMousePosition(e) {
108 // fix for Chrome
109 if (e.type.startsWith('touch')) {
110 return [e.targetTouches[0].pageX, e.targetTouches[0].pageY];
111 } else {
112 return [e.pageX, e.pageY];
113 }
114 }
115
116
117 function DetectMouseDown(e) {
118 input.forwardbackward = 3.;
119 input.mouseposition = GetMousePosition(e);
120 time = new Date().getTime();
121
122 if (!updaterunning) Draw();
123 return;
124 }
125
126 function DetectMouseUp() {
127 input.mouseposition = null;
128 input.forwardbackward = 0;
129 input.leftright = 0;
130 input.updown = 0;
131 return;
132 }
133
134 function DetectMouseMove(e) {
135 e.preventDefault();
136 if (input.mouseposition == null) return;
137 if (input.forwardbackward == 0) return;
138
139 var currentMousePosition = GetMousePosition(e);
140
141 input.leftright =
142 (input.mouseposition[0] - currentMousePosition[0])
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143 / window.innerWidth * 2;
144 camera.horizon =
145 100 + (input.mouseposition[1] - currentMousePosition[1])
146 / window.innerHeight * 500;
147 input.updown =
148 (input.mouseposition[1] - currentMousePosition[1])
149 / window.innerHeight * 10;
150 }
151
152
153 function DetectKeysDown(e) {
154 switch (e.keyCode) {
155 case 37: // left cursor
156 case 65: // a
157 input.leftright = +1.;
158 break;
159 case 39: // right cursor
160 case 68: // d
161 input.leftright = -1.;
162 break;
163 case 38: // cursor up
164 case 87: // w
165 input.forwardbackward = 3.;
166 break;
167 case 40: // cursor down
168 case 83: // s
169 input.forwardbackward = -3.;
170 break;
171 case 82: // r
172 input.updown = +2.;
173 break;
174 case 70: // f
175 input.updown = -2.;
176 break;
177 case 69: // e
178 input.lookup = true;
179 break;
180 case 81: //q
181 input.lookdown = true;
182 break;
183 default:
184 return;
185 break;
186 }
187
188 if (!updaterunning) {
189 time = new Date().getTime();
190 Draw();
191 }
192 return false;
193 }
194
195 function DetectKeysUp(e) {
196 switch (e.keyCode) {
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197 case 37: // left cursor
198 case 65: // a
199 input.leftright = 0;
200 break;
201 case 39: // right cursor
202 case 68: // d
203 input.leftright = 0;
204 break;
205 case 38: // cursor up
206 case 87: // w
207 input.forwardbackward = 0;
208 break;
209 case 40: // cursor down
210 case 83: // s
211 input.forwardbackward = 0;
212 break;
213 case 82: // r
214 input.updown = 0;
215 break;
216 case 70: // f
217 input.updown = 0;
218 break;
219 case 69: // e
220 input.lookup = false;
221 break;
222 case 81: //q
223 input.lookdown = false;
224 break;
225 default:
226 return;
227 break;
228 }
229 return false;
230 }
231
232 // ---------------------------------------------
233 // Fast way to draw vertical lines
234
235 function DrawVerticalLine(x, ytop, ybottom, col) {
236 x = x | 0;
237 ytop = ytop | 0;
238 ybottom = ybottom | 0;
239 col = col | 0;
240 var buf32 = screendata.buf32;
241 var screenwidth = screendata.canvas.width | 0;
242 if (ytop < 0) ytop = 0;
243 if (ytop > ybottom) return;
244
245 // get offset on screen for the vertical line
246 var offset = ((ytop * screenwidth) + x) | 0;
247 for (var k = ytop | 0; k < ybottom | 0; k = k + 1 | 0) {
248 buf32[offset | 0] = col | 0;
249 offset = offset + screenwidth | 0;
250 }
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251 }
252
253 // ---------------------------------------------
254 // Basic screen handling
255
256 function DrawBackground() {
257 var buf32 = screendata.buf32;
258 var color = screendata.backgroundcolor | 0;
259 for (var i = 0; i < buf32.length; i++)
260 buf32[i] = color | 0;
261 }
262
263 // Show the back buffer on screen
264 function Flip() {
265 screendata.imagedata.data.set(screendata.buf8);
266 screendata.context.putImageData(screendata.imagedata, 0, 0);
267 }
268
269 // ---------------------------------------------
270 // The main render routine
271
272 function Render() {
273 var mapwidthperiod = map.width - 1;
274 var mapheightperiod = map.height - 1;
275
276 var screenwidth = screendata.canvas.width | 0;
277 var sinang = Math.sin(camera.angle);
278 var cosang = Math.cos(camera.angle);
279
280 var hiddeny = new Int32Array(screenwidth);
281 for (var i = 0; i < screendata.canvas.width | 0; i = i + 1 | 0)
282 hiddeny[i] = screendata.canvas.height;
283
284 var deltaz = 1.;
285
286 // Draw from front to back
287 for (var z = 1; z < camera.distance; z += deltaz) {
288 // 90 degree field of view
289 var plx = -cosang * z - sinang * z;
290 var ply = sinang * z - cosang * z;
291 var prx = cosang * z - sinang * z;
292 var pry = -sinang * z - cosang * z;
293
294 var dx = (prx - plx) / screenwidth;
295 var dy = (pry - ply) / screenwidth;
296 plx += camera.x;
297 ply += camera.y;
298 var invz = 1. / z * 240.;
299
300 for (var i = 0; i < screenwidth | 0; i = i + 1 | 0) {
301 var mapoffset =
302 ((Math.floor(ply) & mapwidthperiod) << map.shift)
303 + (Math.floor(plx) & mapheightperiod) | 0;
304 var heightonscreen =
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305 (camera.height - map.altitude[mapoffset])
306 * invz + camera.horizon | 0;
307 DrawVerticalLine(
308 i, heightonscreen | 0,
309 hiddeny[i],
310 map.color[mapoffset]
311 );
312 if (heightonscreen < hiddeny[i])
313 hiddeny[i] = heightonscreen;
314 plx += dx;
315 ply += dy;
316 }
317
318 deltaz += 0.005;
319 }
320 }
321
322
323
324 // ---------------------------------------------
325 // Draw the next frame
326
327 function Draw() {
328 updaterunning = true;
329 UpdateCamera();
330 DrawBackground();
331 Render();
332 Flip();
333 frames++;
334
335 if (!input.keypressed) {
336 updaterunning = false;
337 } else {
338 window.requestAnimationFrame(Draw, 0);
339 }
340 }
341
342 // ---------------------------------------------
343 // Init routines
344
345 // Util class for downloading the png
346 function DownloadImagesAsync(urls) {
347 return new Promise(function (resolve, reject) {
348
349 var pending = urls.length;
350 var result = [];
351 if (pending === 0) {
352 resolve([]);
353 return;
354 }
355 urls.forEach(function (url, i) {
356 var image = new Image();
357 //image.addEventListener("load", function() {
358 image.onload = function () {
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359 var tempcanvas =
360 document.createElement("canvas");
361 var tempcontext =
362 tempcanvas.getContext("2d");
363 tempcanvas.width = map.width;
364 tempcanvas.height = map.height;
365 tempcontext.drawImage(
366 image, 0, 0,
367 map.width, map.height
368 );
369 result[i] =
370 tempcontext.getImageData(
371 0, 0, map.width,
372 map.height
373 ).data;
374 pending--;
375 if (pending === 0) {
376 resolve(result);
377 }
378 };
379 image.src = url;
380 });
381 });
382 }
383
384 function LoadMap(filenames) {
385 var files = filenames.split(";");
386 DownloadImagesAsync(
387 [
388 "maps/" + files[0] + ".png",
389 "maps/" + files[1] + ".png"
390 ]
391 ).then(OnLoadedImages);
392 }
393
394 function OnLoadedImages(result) {
395 var datac = result[0];
396 var datah = result[1];
397 for (var i = 0; i < map.width * map.height; i++) {
398 map.color[i] =
399 0xFF000000
400 | (datac[(i << 2) + 2] << 16)
401 | (datac[(i << 2) + 1] << 8)
402 | datac[(i << 2) + 0];
403 map.altitude[i] = datah[i << 2];
404 }
405 Draw();
406 }
407
408 function OnResizeWindow() {
409 screendata.canvas =
410 document.getElementById('fullscreenCanvas');
411
412 var aspect =
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413 window.innerWidth / window.innerHeight;
414
415 screendata.canvas.width =
416 window.innerWidth < 800 ? window.innerWidth :
417 800;
418 screendata.canvas.height =
419 screendata.canvas.width / aspect;
420
421 if (screendata.canvas.getContext) {
422 screendata.context =
423 screendata.canvas.getContext('2d');
424 screendata.imagedata =
425 screendata.context.createImageData(
426 screendata.canvas.width,
427 screendata.canvas.height
428 );
429 }
430
431 screendata.bufarray =
432 new ArrayBuffer(
433 screendata.imagedata.width
434 * screendata.imagedata.height * 4
435 );
436 screendata.buf8 =
437 new Uint8Array(screendata.bufarray);
438 screendata.buf32 =
439 new Uint32Array(screendata.bufarray);
440 Draw();
441 }
442
443 function Init() {
444 for (var i = 0; i < map.width * map.height; i++) {
445 map.color[i] = 0xFF007050;
446 map.altitude[i] = 0;
447 }
448
449 LoadMap("C1W;D1");
450 OnResizeWindow();
451
452 // set event handlers for keyboard, mouse, touchscreen and window resize
453 var canvas =
454 document.getElementById("fullscreenCanvas");
455 window.onkeydown = DetectKeysDown;
456 window.onkeyup = DetectKeysUp;
457 canvas.onmousedown = DetectMouseDown;
458 canvas.onmouseup = DetectMouseUp;
459 canvas.onmousemove = DetectMouseMove;
460 canvas.ontouchstart = DetectMouseDown;
461 canvas.ontouchend = DetectMouseUp;
462 canvas.ontouchmove = DetectMouseMove;
463
464 window.onresize = OnResizeWindow;
465
466 window.setInterval(function () {
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467 var current = new Date().getTime();
468 document.getElementById('fps').innerText =
469 (frames / (current - timelastframe) * 1000).toFixed(1)
470 + " fps";
471 frames = 0;
472 timelastframe = current;
473 }, 2000);
474
475 }
476
477 Init();

Listing A.2: Futhark implementation of the Voxel Space rendering algorithm

1
2 -- benchmark program as a function of d, m and l respectively
3 -- ==
4 -- input @ d_10
5 -- input @ d_100
6 -- input @ d_1000
7 -- input @ d_10000
8 -- input @ d_100000
9 -- input @ d_500000

10 -- input @ d_1000000
11 -- input @ m_10
12 -- input @ m_100
13 -- input @ m_1000
14 -- input @ m_10000
15 -- input @ m_100000
16 -- input @ m_500000
17 -- input @ m_1000000
18 -- input @ l_10
19 -- input @ l_100
20 -- input @ l_1000
21 -- input @ l_10000
22 -- input @ l_100000
23 -- input @ l_500000
24 -- input @ l_1000000
25 type camera =
26 { x : f32,
27 y : f32,
28 height : f32,
29 angle : f32,
30 horizon : f32,
31 distance : f32,
32 fov : f32 }
33
34 type landscape [q][r] =
35 { width : i32,
36 height : i32,
37 color : [q][r]i32,
38 altitude : [q][r]i32,
39 sky_color : i32 }
40
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41 type line =
42 { x_0 : f32,
43 y_0 : f32,
44 dx : f32,
45 dy : f32 }
46
47 let get_zs (delta: f32)(d : f32) (z_0 : f32) : []f32 =
48 let sqrt = f32.sqrt ((delta-2*z_0)**2 + 8*delta*d)
49 let num = sqrt - 2*z_0 + delta
50 let div = 2*delta
51 let n = i32.f32 (num / div)
52 let is = map (\i -> f32.i32 i) (1...n)
53 in map (\i -> (i/2) * (2*z_0 + (i-1) * delta)) is
54
55 let get_h_line (z : f32) (cam : camera) (m : i32) : line =
56 let sin_ang = f32.sin cam.angle
57 let cos_ang = f32.cos cam.angle
58 let view = cam.fov
59 let left_x = (- cos_ang - sin_ang * view )*z
60 let left_y = (sin_ang - cos_ang * view)*z
61 let right_x = (cos_ang - sin_ang * view)*z
62 let right_y = (- sin_ang - cos_ang * view)*z
63
64 let seg_dim_x = (right_x - left_x) / (f32.i32 m)
65 let seg_dim_y = (right_y - left_y) / (f32.i32 m)
66
67 let left_x = left_x + cam.x
68 let left_y = left_y + cam.y
69
70 in
71 { x_0 = left_x,
72 y_0 = left_y,
73 dx = seg_dim_x,
74 dy = seg_dim_y }
75
76 let get_segment_point (l : line) (j : i32) : (i32, i32) =
77 let x = i32.f32 (l.x_0 + (f32.i32 j) * l.dx)
78 let y = i32.f32 (l.y_0 + (f32.i32 j) * l.dy)
79 in (x, y)
80
81 let render [q][r] (cam: camera) (lsc : landscape [q][r])
82 (l : i32) (m: i32) : [l][m]i32 =
83 #[unsafe]
84 let z_0 = 1.0
85 let delta = 0.005
86 let zs = get_zs delta cam.distance z_0
87
88 let color_height_pairs =
89 map (\z ->
90 let h_line = get_h_line z cam m
91 let inv_z = (1.0 / z) * 240.0
92 in
93 map (\j ->
94 let (x, y) = get_segment_point h_line j
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95 let seg_point_color = lsc.color[y%q,x%r]
96 let seg_point_height = lsc.altitude[y%q,x%r]
97 let height_diff = cam.height - (f32.i32 seg_point_height)
98 let relative_height = height_diff * inv_z + cam.horizon
99 let bounded_height = i32.min (l-1) (i32.max 0 (i32.f32

relative_height))
100 in (seg_point_color, nonneg_height)
101 ) (iota m)
102 ) zs
103
104 let occlude (c_1 : i32, h_1 : i32 )
105 (c_2 : i32, h_2 : i32 ) : (i32, i32) =
106 if (h_1 <= h_2)
107 then (c_1, h_1)
108 else (c_2, h_2)
109
110 let fill (c_1 : i32) (c_2 : i32) : i32 =
111 if (c_2 == lsc.sky_color)
112 then c_1
113 else c_2
114
115 let rendered_frame =
116 map (\j ->
117 let col_occluded = scan (occlude) (0, l) j
118 let (cs, hs) = unzip col_occluded
119 let init__col = replicate l lsc.sky_color
120 let screen_col = scatter init__col hs cs
121 in scan (fill) lsc.sky_color screen_col
122 ) (transpose color_height_pairs)
123
124 in transpose rendered_frame
125
126 let main [q][r] (color_map : [q][r]i32)
127 (height_map: [q][r]i32)
128 (l:i32) (m: i32) (d: f32) : [][]i32 =
129
130 let init_camera =
131 { x = 512f32,
132 y = 800f32,
133 height = 78f32,
134 angle = 0f32,
135 horizon = 100f32,
136 distance = d,
137 fov = 1f32 }
138
139 let init_landscape =
140 { width = q,
141 height = r,
142 color = color_map,
143 altitude = height_map,
144 sky_color = 0xFF9090e0 }
145
146 in render init_camera init_landscape l m
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Listing A.3: Custom implementations of the first-order array combinators used in Listing A.2
1 let replicate 't (n: i32) (x: t) : *[n]t =
2 map (\i -> x) (iota n)
3
4 let zip [n] 'a 'b (as: [n]a) (bs: [n]b) : [n](a,b) =
5 map2 (\x1 x2 -> (x1,x2)) as bs
6
7 let unzip [n] 'a 'b (xs: [n](a,b)): ([n]a, [n]b) =
8 let as = map (\i -> xs[i].0) (iota n)
9 let bs = map (\i -> xs[i].1) (iota n)

10 in (as, bs)
11
12 let transpose [n][m] 't (xss: [n][m]t) : [m][n]t =
13 map (\j ->
14 map (\i -> xss[i, j]) (iota n)
15 ) (iota m)
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Listing A.4: Auxilliary file used for benchmarking.

1 #core_renderer benchmark
2
3 d_%:
4 futhark dataset -b --i32-bounds=0:16777215 -g [1024][1024]i32 -g

[1024][1024]i32 -g 10i32 -g 10i32 -g $*f32 > $@,!
5 m_%:
6 futhark dataset -b --i32-bounds=0:16777215 -g [1024][1024]i32 -g

[1024][1024]i32 -g 10i32 -g $*i32 -g 10f32 > $@,!
7 l_%:
8 futhark dataset -b --i32-bounds=0:16777215 -g [1024][1024]i32 -g

[1024][1024]i32 -g $*i32 -g 10i32 -g 10f32 > $@,!
9

10 SIZES1 = 10 100 1000 10000 100000 500000 1000000
11
12 bench1: $(SIZES1:%=d_%) $(SIZES1:%=m_%) $(SIZES1:%=l_%) renderer_core.fut
13 futhark bench --backend=c --json bench_c.json renderer_core.fut
14 futhark bench --backend=opencl --json bench_opencl.json

renderer_core.fut,!
15
16 plot_bench:
17 python3 plot_bench.py
18
19 clean1:
20 rm renderer_core
21 rm renderer_core.c
22 for i in $(SIZES1); do \
23 rm d_$$i; \
24 rm m_$$i; \
25 rm l_$$i; \
26 done
27
28 #shadow_mapping benchmark
29
30 q_%:
31 futhark dataset -b --i32-bounds=0:16777215 -g [$*][128]i32 -g

[128][128]i32 -g 10i32 > $@,!
32 d_%:
33 futhark dataset -b --i32-bounds=0:16777215 -g [128][128]i32 -g

[128][128]i32 -g $*i32 > $@,!
34
35 SIZES2 = 10 100 1000 2000 4000 8000 16000
36
37 bench2: $(SIZES2:%=q_%) $(SIZES2:%=d_%) shadow_mapping.fut
38 futhark bench --backend=c --json bench_c.json shadow_mapping.fut
39 futhark bench --backend=opencl --json bench_opencl.json

shadow_mapping.fut,!
40
41 clean2:
42 rm shadow_mapping
43 rm shadow_mapping.c
44 for i in $(SIZES2); do \
45 rm q_$$i; \
46 rm d_$$i; \
47 done
48
49 shadows: bench2 clean2 plot_bench
50
51 all: bench1 clean1 bench2 clean2 plot_bench
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Appendix B

Proofs

B.1 Work and Span of First-order Combinators
In Section 5.3, we defined the work and span of replicate, unzip and transpose. We
cannot formally prove these definitions are correct, as we do not have access to the actual imple-
mentation of replicate, unzip and transpose In Futhark. In Listing A.3 are listed custom
implementations of these first-order operators. Assuming these implementations are representative,
we can infer that the work and span of replicate. unzip and transpose must be :

W.replicate n/ D O.n/CO.n/ D O.n/;

S.replicate n/ D O.1/CO.1/ D O.1/;

W.unzip e/ D 2O.n/C 2O.n/ D O.n/;

ŒŒe�� D Œ.a1; b1/; : : : ; .an; bn/�

S.unzip e/ D 2O.1/C 2O.1/ D O.1/;

ŒŒe�� D Œ.a1; b1/; : : : ; .an; bn/�

W.transpose e/ D O.m/ �O.n/ D O.nm/;

ŒŒe�� D Œa1; : : : ; an�Œb1; : : : ; bm�

S.transpose e/ D O.1/ �O.1/ D O.1/;

ŒŒe�� D Œa1; : : : ; an�Œb1; : : : ; bm�
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B.2 Associativity Proofs

Figure B.1: Full proof of Equation 5.27

1 W �
.c1; h

0
1/ occlude .c2; h

0
2/

�
occlude .c3; h

0
3/ D .c1; h

0
1/ occlude .c3; h

0
3/

D .c1; h
0
1/ ;

.c1; h
0
1/ occlude

�
.c2; h

0
2/ occlude .c3; h

0
3/

� D .c1; h
0
1/ occlude .c2; h

0
2/

D .c1; h
0
1/;

2 W �
.c1; h

0
1/ occlude .c2; h

0
2/

�
occlude .c3; h

0
3/ D .c1; h

0
1/ occlude .c3; h

0
3/

D .c1; h
0
1/ ;

.c1; h
0
1/ occlude

�
.c2; h

0
2/ occlude .c3; h

0
3/

� D .c1; h
0
1/ occlude .c3; h

0
3/

D .c1; h
0
1/

3 W �
.c1; h

0
1/ occlude .c2; h

0
2/

�
occlude .c3; h

0
3/ D .c2; h

0
2/ occlude .c3; h

0
3/

D .c2; h
0
2/ ;

.c1; h
0
1/ occlude

�
.c2; h

0
2/ occlude .c3; h

0
3/

� D .c1; h
0
1/ occlude .c2; h

0
2/

D .c2; h
0
2/

4 W �
.c1; h

0
1/ occlude .c2; h

0
2/

�
occlude .c3; h

0
3/ D .c2; h

0
2/ occlude .c3; h

0
3/

D .c2; h
0
2/ ;

.c1; h
0
1/ occlude

�
.c2; h

0
2/ occlude .c3; h

0
3/

� D .c1; h
0
1/ occlude .c2; h

0
2/

D .c2; h
0
2/

5 W �
.c1; h

0
1/ occlude .c2; h

0
2/

�
occlude .c3; h

0
3/ D .c1; h

0
1/ occlude .c3; h

0
3/

D .c3; h
0
3/ ;

.c1; h
0
1/ occlude

�
.c2; h

0
2/ occlude .c3; h

0
3/

� D .c1; h
0
1/ occlude .c3; h

0
3/

D .c3; h
0
3/

6 W �
.c1; h

0
1/ occlude .c2; h

0
2/

�
occlude .c3; h

0
3/ D .c2; h

0
2/ occlude .c3; h

0
3/

D .c3; h
0
3/ ;

.c1; h
0
1/ occlude

�
.c2; h

0
2/ occlude .c3; h

0
3/

� D .c1; h
0
1/ occlude .c3; h

0
3/

D .c3; h
0
3/

77



Figure B.2: Full proof of Equation 5.31

1 W .c1 fill c2/ fill c3 D c2 fill c3 D c3 ;
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2 W .c1 fill c2/ fill c3 D c1 fill c3 D c3 ;

c1 fill .c2 fill c3/ D c1 fill c3 D c3

3 W .c1 fill c2/ fill c3 D c2 fill c3 D c2 ;

c1 fill .c2 fill c3/ D c1 fill c2 D c2

4 W .c1 fill c2/ fill c3 D c1 fill c3 D c1 ;

c1 fill .c2 fill c3/ D c1 fill c2 D c1
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Appendix C

Simplification of rotation matrix

We can simplify Equation 2.5 and Equation 2.6 to a more computationally friendly definition by
setting  D 1

2
� .

Equation 2.5 can be simplified:

��!
OAk D zk �
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cos.�/ � cos. =2/ � sin.�/ � sin. =2/
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Multiplying Equation 2.5 by
p
2 results in

��!
OAk D zk �

 
cos.�/ �

p
2

2
� sin.�/ �

p
2

2

cos.�/ �
p

2
2

C sin.�/ �
p

2
2

!
�
p
2

D zk �
�

cos.�/ � sin.�/
cos.�/C sin.�/

� (C.2)

This simplication only has the side effect, that the length of
��!
OAk becomes

p
2 instead of 1, which

has no noticable impact on the algorithm.

A symmetrical derivation shows that:

��!
OBk D zk �

�
cos.�/C sin.�/

� cos.�/C sin.�/

�
(C.3)

It then follows from Equation 2.1 that:

Ak D
�

cos.�/ � sin.�/
cos.�/C sin.�/

�
C

�
x0

y0

�
(C.4)
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Bk D
�

cos.�/C sin.�/
� cos.�/C sin.�/

�
C

�
x0

y0

�
(C.5)

The attentive reader will realize that the definition of .plx; ply/ and .prx; pry/ in Listing 2.5
differs somewhat from Equation C.4 and Equation C.5. We may infer that the implementation
actually renders inverted frames. This, however, is not perceptible in practice.
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