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Abstract

In the following report a domain-specific auto-tuner for the Futhark pro-
gramming language is described and implemented. As the current Futhark
auto-tuner is an ill fit for tuning Futhark programs, thorough analyses are
made to determine how the performance of the auto-tuner can be improved.
Two main ideas, both relying on domain-specific knowledge, are introduced
to accomplish this. These ideas leads to changes in the Futhark-compiler,
which in turn makes the development of an improved tuner possible.

The improved tuner is evaluated using three different programs. It is
shown to be significantly faster at tuning these programs than the older
tuner, with speedups ranging from 1.9 to 25.5. In addition to this it is
shown that the improved tuner produces just as good, or better, results
than the old tuner.

1. Introduction

Futhark [6] is a purely functional language which supports nested data-
parallelism as well as in-place array updates. The language is an ongoing
research project at the Department of Computer Science at the University
of Copenhagen. The aim of the language is to shift the main part of the
burden of producing efficient GPU-code from the programmer to a heavily-
optimising compiler [6].

The field of general-purpose computing on graphics processing units
(GPGPU) has been popularized in recent years. The growth in the frequency
of CPU-cores began to stagnate in the early 21th century [12], as issues of in-
creased power consumption, growing thermal challenges and semiconductor
scaling limits began to become apparent [4]. This led to an increased focus
on parallel programming. As GPUs are an example of massively parallel
hardware, the interest in using these for general computation, and not just
graphics, has followed from this.

Programming GPUs, however, remain a tedious and somewhat daunting
task, as it is, to a large extent, done in languages such as OpenCL or CUDA.
For both of these languages writing efficient code requires a broad knowledge
and deep understanding of both compiler- and hardware-architecture, which
makes GPU-programming inaccessible to most programmers. Even when
programs are written by specialists with the required knowledge they might,
especially for very performance optimized programs, result in non-modular
or very hardware-specific, and thus non-portable, code. It is some of these
issues, that Futhark tries to tackle [6].

Futhark’s solution to the problems mentioned above is to use a heavily-
optimising compiler to compile Futhark-programs to OpenCL-code. Futhark
features syntax and programming concepts, that most programmers, or at
least those with experience with functional programming, will find famil-
iar. By letting the source program be written in Futhark and outsourcing
the chore of generating OpenCL-code to the compiler Futhark can there-
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fore make the programming of GPUs accessible to a much larger group of
programmers. Furthermore the shift from writing hardware-specific code
to compiling to hardware-specific code makes it possible to support new
architectures merely by writing a new compiler.

This report concerns itself with auto-tuning in Futhark. Auto-tuning is
the process of experimentally optimizing the performance of a program by
adjusting different parameters at run- or compile time. First the background
of the problem is introduced in section 2 along with a motivation for why
auto-tuning is relevant and a theoretical look at the problem at hand. In
section 3 the process of designing and implementing a new auto-tuner is
described. This includes analysis of selected tuning problems, descriptions
of modifications made to the Futhark-compiler and breakdowns of the ap-
proaches taken to introduce domain-specific knowledge to the auto-tuner.
In section 4 the new auto-tuner is evaluated in order to justify the claim,
that it is an improvement compared to the current auto-tuner. Finally some
reflections about the project and possible, future improvements to the im-
plemented auto-tuner is presented in section 5.

2. Background

2.1 Code versioning in Futhark

Futhark relies on a wide range of optimizations to produce code that runs
efficiently on GPUs. While these optimizations has, until recently, relied
solely on static analysis performed at compile time, current improvements
to the compiler is aimed at evolving a hybrid analysis incorporating both
static and dynamic analysis [6].

The reason for introducing dynamic analysis as a supplement to static
analysis is perhaps best explained through a simple example. For this con-
sider the following Futhark-program, performing matrix-matrix multiplica-
tion of a n×m and a m× n matrix.

let matmult [ n ] [m] [ p ] ( x : [ n ] [m] i 32 ) ( y : [m] [ p ] i 32 ) : [ n ] [ p ] i 32 =
map (\ xr−>

map (\ yc−>
reduce (+) 0 (map2 (∗ ) xr yc ) ) ( transpose y ) ) x

Figure 1: Matrix multiplication.

The dynamic analysis is introduced to determine how many levels of par-
allelism should be exploited at any given run of a program. In the matrix
multiplication example in Figure 1 three levels of parallelism are present.
However, since the innermost level contains a reduce operation this is rel-
atively expensive to exploit. Because of this it can, if the two outer maps
contains enough parallelism to saturate the GPU, be beneficial to execute
the innermost level sequentially and only exploit the two outermost levels of
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parallelism. This way the overhead of the innermost map-reduce is avoided.
Just as introducing unnecessary parallelism can hurt performance, so can
not introducing enough parallelism. Thus, if the two outer levels do not
provide enough parallelism, the innermost level should also be parallelised.

Whether the two outermost maps provide enough parallelism will depend
on size and dimensions of the matrices that is multiplied. Since the size
of the matrices will not be known at compile time, it is obvious that this
problem must be handled with dynamic analysis.

Futhark’s solution to the problem is to generate several different, but
semantically equivalent, versions of the same code, each exploiting a different
amount of parallelism. At runtime the version of the code that exploits
the fewest levels of parallelism, while still saturating the GPU on which
the program is executed, can then be chosen. This process is dubbed as
incremental flattening by the Futhark language designers.

To fully understand how incremental flattening influences the execution of
a Futhark program, a brief introduction to the GPU execution and memory
model is needed. As Futhark compiles to OpenCL the OpenCL-terminology
is used. When a kernel, which is the GPGPU-term for functions, is exe-
cuted, it launches a number of work-items, all of which executes the kernel
on different parts of the data. Work-items can be thought of as threads in
the OpenCL world. These work-items are organized into a number of work-
groups. Work-items share a local memory with all the other work-items
in the same workgroup, but cannot communicate with work-items in other
workgroups [7]. These constraints much be taken into account when Futhark
chooses which version of the code to execute.

When the matrix multiplication program from Figure 1 is compiled with
incremental flattening the Futhark-compiler will identify the three levels of
nested parallelism. The compiler will then generate three semantically equal
versions of the program:

1. One version where each pass of the outer maps are assigned to a work-
item and the innermost map-reduces are executed sequentially. This
versions launches N ×N work-items.

2. One version where the innermost map-reduces are executed in a single
OpenCL-workgroup. As the hardware on which a program is executed
limits the size of workgroups, this version can only be executed when
all the work-items of the map-reduce actually fit in a workgroup. This
version launches N ×N ×M work-items.

3. One version that relies on Futhark’s regular segmented reduction [8] to
fully parallelise all three levels of maps and reduces. This version also
launches N ×N ×M work-items.

Of the three versions above version 1 and version 3 are the most concep-
tually important, as version 2 is essentially a special case of the more general
version 3.

At runtime Futhark will choose which version to execute based on threshold-
parameters. These parameters will be compared to some data-dependent
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values, representing a certain amount of possible parallelism and possibly
enforcing some hardware specific constraints. In the rest of this report these
comparisons are called thresholds-comparisons - or, in some cases, simply
comparisons. In our matrix-matrix multiplication example this means that
Futhark will always perform the following threshold-comparisons at runtime
in order to determine which version of the code should be executed:

i f t o u t e r ≤ N × N:
execute ve r s i on 1

else :
i f t i n t r a ≤ M × N × N:

execute ve r s i on 2
else :

execute ve r s i on 3

In the example above t_outer and t_intra are threshold-parameters.
At a high conceptual level the comparison t outer ≤ N × N means that if
N ×N provides enough parallelism then execute version 1. All in all we see
that the matrix multiplication program has three different execution-paths.

It is worth noting that in reality the comparisons are not quite as simple
as they are shown here, as some hardware-specific constraints are imposed.
These constraints serve as safety checks when generating the code equivalent
to version 2 from the matrix multiplication example. For simplicity these
have been omitted here. Due to these hardware-specific constraints version
2 will very rarely be executed when performing matrix-matrix multiplica-
tion, as the innermost map-reduce will seldom fit into a single OpenCL-
workgroup.

To illustrate why choosing fitting values for each threshold-parameter
(denoted as threshold-values throughout this report) are important consider
the benchmark in Figure 2.

This benchmark shows the multiplication of a 2n × 2m matrix with a
2m × 2n matrix with n varying for run of the benchmark. In order to keep
the workload of the different runs of the benchmark constant, while varying
the amount of outer parallelism, m is defined as 25 − 2n. As shown in
Figure 2 n takes values in the range [0 : 10]. The benchmark is run on
the same system as the rest of the benchmarks in this report. For more
information see section 3.1.

As it is clear from the graph in Figure 2, version 3 of the generated
Futhark-code significantly outperforms version 1 as long as n < 4. As the
amount of outer parallelism becomes large enough to saturate the GPU with
only the two outermost maps, which happens at the point where n reaches
4, version 1 starts to outperform version 3. The dip in runtime for version
3 when n lies in the range [6 : 8] is due to the fact that Futharks segmented
reduction internally does versioning in a ad-hoc way [8]. It is evident that if
one was to execute the same version of the code regardless of the input-data
the performance would suffer. By default all thresholds-values are 215, but
these values will not be optimal for all programs or all different hardware.
This is obviously the case for the matrix multiplication example on the
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Figure 2: Benchmark of matrix multiplication.

benchmarking system, as the default thresholds would mean that version 1
would only be executed when n reaches 8 making the comparison 215 ≤ 22n

true.
Unfortunately the current literature provides no examples of suitable ana-

lytical models for performance for GPUs. As the performance of a GPGPU-
program is dependent on a wide range of factors, such as local hardware,
program-behaviour and the dataset it is executed on, it is not feasible for
Futhark to automatically choose the optimal code version when a program
is being executed. A solution to this problem is to auto-tune the threshold-
parameters in an attempt to choose threshold-values that ensure optimal,
or near optimal, performance.

That no suitable analytical performance model for GPUs has been devel-
oped is supported by the fact that auto-tuning is often used to find values
for CUDA or OpenCL parameters - a problem that should be easier to solve
analytically than Futhark’s task of choosing the right code version to exe-
cute.

2.2 Auto-tuning in general

Auto-tuning is the process of automatically and experimentally determin-
ing the value(s) of one or several parameters with the aim of improving a
program’s performance [13]. In a GPGPU context these will, as mentioned
above, often be CUDA or OpenCL-parameters such as the number of work-
items or the size of workgroups. Another example of a problem that exhibits
itself well to auto-tuning is compiler flags [2]. Both OpenCL-parameters and
compiler flags can have a significant influence on the performance of a given
program, and thus choosing the right parameter-values is crucial, if one
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wants to achieve optimal, or near-optimal, performance.

Traditionally the values of such performance-influencing-parameters were
chosen manually by a specialised programmer, but auto-tuning provides
several advantages compared to this approach [11]. First of all auto-tuners
can easily search through a much larger search space than what is feasible
to do manually. Secondly, as such parameters are often hardware-specific,
auto-tuning allows for better portability between different hardware, since
the auto-tuner can simply be run on new hardware [2]. In recent years the
use of auto-tuning has become ever more widespread [11]. As a result of this
a wide range of auto-tuning software has been developed. These auto-tuners
generally falls into two categories [10]:

1. Domain specific auto-tuners developed to auto-tune specific problems
or languages. Examples of this kind of tuner are ATLAS [14] and
FFTW [5].

2. Application-independent auto-tuners, which are purposely general in
their approach to tuning and can thus be used for a wide range of
problems. ActiveHarmony [11], AtunerRT [10] and CLTuner [9] are all
examples of application-independent tuners.

Already existing domain specific auto-tuners will obviously not be relevant
for doing auto-tuning in Futhark, and they are therefore not considered any
further in this report.

In broad terms the process of auto-tuning typically involves the following
three steps [2]:

1. Generating the search space, consisting of is the possible tuning param-
eters and their possible values.

2. Implementing a cost function such as execution time, program size or
other such metrics.

3. Exploring the search space by trying different configurations aiming to
minimize the supplied cost function. A configuration is a set of tuning
parameters and values.

As auto-tuners generally concern themselves with problems where the
search space is large, many of them, such as ActiveHarmony [11], generally
use different kinds of hill-climbing techniques in order to explore the search
space.

For these techniques to prove fruitful each change in a configuration should
ideally result in some kind of change in the execution, and thus prompt a
measurable change in the result of the cost function. If this is not the
case, these hill-climbing techniques have no way to evaluate, whether the
change brought it closer to an optimal solution. As analyses in section 3 will
show, the tuning of Futhark threshold-parameters exhibit this behaviour.
This makes most available application-independent auto-tuners unsuitable
for the tuning of Futhark’s threshold-parameters.
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2.3 Theoretical aspects of the problem

Before moving on to the practical implementation of a new auto-tuner in
section 3, the following section introduces the theoretical aspects of the
problem.

Letting P be a set of all possible configurations of a given program, and
(t1 . . . tn) be a specific configuration of n threshold-values we have:

P = {(t1, t2, . . . , tn) ∈ N× N× · · · × N}

Denoting our cost function as f(x) we wish to have an auto-tuner that solves
the following problem:

argmin
c∈P

f(c)

Solving this problem efficiently is hard, as the search space, P , is very large.
Throughout section 3 several different auto-tuners are introduced and de-
scribed. Each of these try to optimize the tuning process by imposing restric-
tions on the domain of the threshold-values, and thus reducing the search
space. While the practical implementation of the tuners will not be described
here, the theoretical aspects of these restrictions will be introduced.

The approach taken by the already existing auto-tuner, which will be
discussed in section 3.2, is merely to specify an upper bound of 1,000,000 on
each threshold-value:

P = {(t1, t2, . . . , tn) ∈ N× N× · · · × N |ti < 1000000}

While this does restrict the domain to some degree, it still leaves a very large
search-space for the auto-tuner to explore. Therefore further restrictions are
imposed in the comparison based tuner, which will be discussed in section
3.4. For now it is sufficient to notice that this definition further restricts the
domain by defining both a upper and lower bound on each threshold-values
in a configuration:

P = {(t1, t2, . . . , tn) ∈ N×N×· · ·×N |(∃(ai, bi))[(ai, bi) ∈ N×N∧ai < ti < bi]}

Note that these bounds are not necessarily the same for all threshold-values
in a given configuration.

Though this once more limits the search-space of the auto-tuner a final
restriction is imposed in what will be known as the branch based tuner,
to be introduced in section 3.6. For this the notion of T being the set
of configurations that have already been tried by the auto-tuner, and e(x)
being a function that given a configuration calculates the execution-path of
this configuration, must be introduced. The restrictions are then expanded
as follows:

P = {(t1, t2, . . . , tn) ∈ N× N× · · · × N |(∃(ai, bi))[(ai, bi) ∈ N× N ∧ ai < ti < bi]

∧ (∀c ∈ T )[e((t1, t2, . . . , tn)) 6= e(c)]}
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Again further explanation of this approach is saved for later. What should be
noted is that the domain of the threshold-values it is now restricted further
by demanding that any new configuration does not share its execution-path
with an already tried configuration.

These restrictions constitutes the main thoughts behind the optimiza-
tions of the auto-tuner. As shown in the following section these ideas are
supplemented by more implementation specific heuristics.

3. Design & implementation

3.1 Benchmarking information

During the following section several different auto-tuners for Futhark will be
presented and evaluated. These evaluations are all done on a system with
a NVIDIA GeForce GTX 1050 Ti graphics processor. As a result all times
and speedups reported throughout this report are local to this system.

All tuners have been evaluated using three different programs from Futhark’s
benchmark suite:

1. The matrix multiplication program shown in Figure 1.

2. The NN-program from the Rodinia [3] benchmark suite ported to Futhark
by the Futhark language developers.

3. The LocVolCalib-program from the Finpar [1] benchmark suite which
has also been ported to Futhark by the Futhark language developers.

These three programs vary in complexity, ranging from the very simple
matrix multiplication to the complex LocVolCalib-program, which has ap-
proximately 200 lines of code. It is therefore reasoned that using these three
programs for evaluation will give a pretty reliable picture of tuner perfor-
mances, even though the sample size is quite small.

3.2 Existing auto-tuner

At the outset of this project there was already implemented a basic auto-
tuner1 (from here on denoted as the old tuner) for Futhark based on the
OpenTuner-framework [2]. The OpenTuner-framework is a open-source frame-
work written in Python and designed for building domain specific auto-
tuners. The framework implements all the infrastructure necessary to per-
form auto-tuning, such as measuring and storing results, as well as a wide
range of hill-climbing, and other, techniques used to explore the search space.

As only the hill-climbing techniques allows for purely automatic tuning,
i.e. tuning where the atuo-tuner itself will report when it has found a lo-
cally optmial configuration, the old tuner was limited to using these. The
OpenTuner-framework also employs so called meta-techniques, used for run-
ning several different techniques and assigning scores the each of these based

1 Available at
https://github.com/diku-dk/futhark/blob/6908ce4cdbdec8bd569d459d84db57bca0df9bde/
tools/futhark-autotune and in the supplementary src.zip-folder

https://github.com/diku-dk/futhark/blob/6908ce4cdbdec8bd569d459d84db57bca0df9bde/tools/futhark-autotune
https://github.com/diku-dk/futhark/blob/6908ce4cdbdec8bd569d459d84db57bca0df9bde/tools/futhark-autotune
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on their results [2]. This makes it possible to use several different hill-
climbing techniques at the same time. Since the use of these techniques
will be adjusted based on their results, that is, a technique producing good
results will be used more than one producing bad results, this ensures that
even if one of the techniques get stuck in a unfruitful part of the search
space, the tuner can still move on. Preliminary testing showed that limiting
the tuner to using hill-climbing techniques did not hurt the performance of
the tuner.

The old tuner, as well as all the other tuners described in this report,
uses the utility futhark-bench to test configurations. When a program
is run by futhark-bench, the utility will by default run the program 10
times for each of the specified datasets. A dataset is simply some predefined
data that will be used as input when running the program. Currently the
selection of datasets is fully manual, and thus the results of the auto-tuner
is dependent on choices made by the programmer. The three programs used
for evaluation in this report has between 3 and 10 datasets.

As tuning is done based on these datasets, it is important that the datasets
are representative. Tuning a program using only small datasets will not pro-
vide results that can be expected to improve performance if the program is
subsequently run with large input data and vice versa. Thus, the datasets
should ideally represent a wide range of different input-data. As the pro-
grams evaluated in this report is taken from the Futhark benchmarking suite
the datasets are assumed to be representative.

The cost function of the old tuner is simply a summation of the runtime
for all of the datasets. The same cost function is used in all of the tuners
presented in the report.

The old tuner is capable of auto-tuning both OpenCL parameters as
well as Futhark’s own threshold-parameters. As the focus of this project
is the tuning of the threshold-parameters specific to Futhark, the tuning of
OpenCL-parameters will not be discussed in any detail in this report, and
this capability will not be preserved in new tuners.

The approach taken to tune threshold-parameters by the old tuner is
straightforward. Each threshold-parameter is represented in the tuner as
an OpenTuner LogIntegerParameter. This means that the hill-climbing
techniques of OpenTuner will explore the range of possible values of each
threshold-parameter on a logarithmic scale. The range assigned to each
parameter is [0 : 1000000]. The reason for representing the parameters as
LogIntegerParameters is the assumption that the parameters will in gen-
eral need to change a lot before it results in a different code version being
executed. It is obvious that hard-coding the value ranges in such a way
is not an optimal solution. For some threshold-parameters the predefined
range might not be broad enough to ensure that the tuner prompts boolean
changes in the results of all threshold-comparisons. For others it might be
far to broad a range, making the search space unnecessarily large. As no
further customizations is made to adapt the OpenTuner-framework to the
specific task of auto-tuning threshold-parameters, the old tuner is practically
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a general, application-independent tuner targeted at Futhark.
The old tuner struggles when it comes to finding suitable threshold-

parameters. To demonstrate this, the old tuner was used to tune the
threshold-parameters of the three programs mentioned in section 3.1. The
tuner was limited to run for a maximum of 30 minutes. Though tuning can
be done for hours or days in the real world, it was felt that on a reasonable
new GPU, such as the one used for all tests in this report, tuning for 30
minutes should provide some reasonable results.

To account for the randomness of the tuners hill-climbing techniques each
program was tuned 3 times. As the result of tuning can be very dependent
on the initial values chosen by the tuner (as can be seen in Figure 4), running
the tuner three times hopefully provides a more representative picture of the
tuning capabilities than just running it once for a longer period of time.

The OpenTuner-framework will stop tuning when the hill-climbing tech-
niques estimate that a (locally) optimal configuration is found. For none of
the three programs did the tuner in any of its runs finish before the allotted
time ran out. Figure 3 shows the average number of configurations tried for
each program within the time-frame.

Figure 3: Number of tries managed by the old tuner within 30 minutes - averaged over
3 runs.

As the graphs shows the number of completed tries for each program
varies dramatically. For the LocVolCalib-program it takes a long time to
try each configuration, and thus only an average of 27 tries is completed.
For the two other programs the tuner manages a large amount of tries before
its time runs out. However, as noticed above, in none of the cases did the
tuner actually estimate that it was done. That the tuner is not able to find
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an optimal configuration for the NN-program in over 1700 tries is clearly a
problem.

When studying the old tuner it is not only interesting to study how many
configurations it tries, but also in how many tries it takes it to find the best
configuration for each run. If it consistently finds the best configuration
after a relatively small amounts of tries, simply limiting the amount time
the tuner is allowed to run for might be a good way to speed up the tuning
process. However, as shown in Figure 4, this is not the case.

The number of tries to reach the best configuration does not vary signif-
icantly for the LocVolCalib-program. This is due to the small number of
total tries that the tuner manages to execute with this program. For both
of the other programs the number of tries fluctuates to such a degree that
simply limiting the number of tries the old tuner is allowed to run does not
seem as a feasible solution.

(a) NN (b) Matrix multiplication

(c) LocVolCalib

Figure 4: Number of tries it takes the old tuner to find the best configuration in a given
run.

Note that there is no guarantee that was is above described as the best
configuration is in fact the best possible configuration, as the tuner might
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discover an even better configuration if it is allowed to run longer.
From these initial analyses it seems clear that to improve the performance

of the tuner it must be further adapted to the problem of tuning threshold-
parameters.

3.3 Analysis of the threshold-comparisons

In order to investigate why the old tuner performs as badly as it does, when
it comes to tuning threshold-parameters, the tuning process of the matrix
multiplication program was studied. This program was chosen as its small
number of different threshold-comparisons (2) made it possible to enumerate
all the threshold-values needed to try all execution-paths of the program.

For this analysis the threshold-comparisons for all datasets were manu-
ally extracted from the intermediate code exposed though some of Futhark’s
debugging options. Using this information each configuration tried by the
tuner was tested to see whether it produced a distinct configuration. By
this is meant a configuration, which for one or more datasets results in a
not yet seen combination of boolean results in the threshold-comparisons.
When performing the analysis the hardware-specific constraints, that might
influence some of the threshold-comparisons, were ignored. As all possible
permutations of the boolean results were enumerated, this should not influ-
ence the result in any meaningful way. For results of the tests see Table 1.

Run 1 Run 2 Run 3 Average

Tries 640 614 625 626

Distinct tries 10 11 13 11

% of distinct tries 1.56 1.79 2.08 1.8

Table 1: Number of tries and distinct tries in the three runs of the tuner.

From this analysis it was clear, that main issue of the old tuner is the
problem mentioned earlier on in section 2.2. The range between threshold-
values that actually affects a threshold-comparison, i.e. changes the result
of a comparison from false to true or the other way around, can be very
large. This means that the tuner will try a lot of configurations that does
not result in any change in which code-version is executed. As Table 1
shows, only about 1-2% of the configurations tried by the tuner were distinct.
Since the tuner has no information about the threshold-comparisons, the
only measure it has of each new configuration is its runtime. Naturally
the runtime does not change in any significant way when the results of all
threshold-comparisons stay the same, and therefore the tuner cannot provide
any reasonable information on which its hill-climbing techniques can act.
Thus, the tuner is more or less left to guessing which parameters to mutate
and whether the value of these parameters should be increased or decreased.
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3.4 Comparison based tuner

In an attempt to solve the problem mentioned in the previous section a
modification was made to Futhark’s compiler by the Futhark language de-
signers. This modification introduced a new flag in each Futhark executable.
If this flag is given, the values of the different thresholds-comparisons will
be reported by the program.

With this newly available information a new, domain-specific tuner2 (from
here on denoted as the comparison based tuner) was developed. Instead of
relying on the hill-climbing techniques of OpenTuner, the thoughts behind
this tuner was to calculate all the distinct configurations and exhaustively
try all of these.

Thus, the main part of the comparison based tuner is the function cal-
culating all the different possible configurations. This is done by extracting
all the values for the different threshold-comparisons across all dataset. For
each of the comparisons in each dataset, two threshold-values are then gen-
erated: one making the comparison false and one making it true. Finally
the Cartesian product of all the possible values for all the comparisons is
calculated.

Several steps are taken to minimize the total number of generated config-
urations. Imagine a threshold-parameter (t) which is compared against two
values (c1 and c2) stemming from two different datasets. We wish to have a
configuration where the threshold-value is smaller than c1, making the com-
parison t ≤ c1 true, as well as a configuration where t ≤ c1 is false. The same
goes for c2, where we again want both t ≤ c2 == false and t ≤ c2 == true.
By using the middle value of c1 and c2 we get one threshold-value that
satisfy both t ≤ c1 == false and t ≤ c2 == true at the same time. Elimi-
nating superfluous values is crucial when calculating the Cartesian product.
Specifically, if we have m datasets and n threshold-comparisons for each
dataset it allows us to reduce the number of configurations from (2m)n to
(m + 1)n.

Some threshold-comparisons compares a threshold-parameter against the
same value for several, or all, datasets. Expanding on the example from
above: If the threshold-comparisons c1 and c2 satisfies the constraint that
c1 == c2 we can satisfy both t ≤ c1 == true and t ≤ c2 == true
with the same threshold-value. The same will obviously be the case for
t ≤ c1 == false and t ≤ c2 == false. Care is taken to ensure that these
types of comparisons does not result in more configurations than necessary
being added to the configuration pool, which is the total amount of differ-
ent configurations that the tuner should try. Thus, for a program with n
threshold-comparisons, where mj denotes the number of different values the
jth threshold-comparison takes across all datasets we have a total number
of configurations of:

2 Available in the supplementary src.zip-folder.
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n∏
j=1

(mj + 1)

This strategy proved very effective for problems with a relatively low
number of threshold-comparisons, such as the NN and matrix multiplication
programs. Here, as shown in Figure 5, we see a significant reduction in the
number of tries compared to having the old tuner run for 30 minutes. This
reduction in tries also leads to a reduction in the time it takes to tune
a program on the benchmarking machine, as can be seen also be seen in
Figure 5.

(a) Factor by which the number of tries
is reduced compared to the old tuner.

(b) Speedup compared to the 30 minutes run-
time of the old tuner.

Figure 5: The reduction factor of tries and the speedup of the comparison based tuner
compared to the old tuner. Higher is better.

It should be noted, that as this tuner exhaustively searches through every
possible configuration one is guaranteed to find an optimal configuration.
This is not the case with the old tuner.

Unfortunately, problems arise when attempts are made to tune more
complicated problems, such as the LocVolCalib-program. In LocVolCalib
8 threshold-comparisons are made for each of the 3 datasets. 7 of the com-
parisons compares a threshold-parameter against a unique value for each
dataset, while the last comparison only compares the threshold-parameter
against two different value across the three datasets. This results in a total
amount of different configurations of:

(3 + 1)7 · (2 + 1) = 49152

As each run of the LocVolCalib-program is quite slow, demonstrated by
the fact that the old tuner managed to test less than one configuration per
minute, it is obvious that exhaustively searching through this large space
of configurations is not feasible. Hence it is clear that further analysis of
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the tuning problem is needed to improve the performance of more complex
problems.

3.5 Analysis of the dependency amongst threshold-comparisons

While the comparison based tuner, in contrast to the old tuner, has informa-
tion about the threshold-comparisons it does not have any information about
the dependencies amongst these comparisons. In order to illustrate the ef-
fect of these dependencies the branching tree of the LocVolCalib-program
has been drawn and is shown in Figure 6.
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Figure 6: Branching tree showing the dependencies between the threshold-comparisons
t1 . . . t8 of LocVolCalib. A T along an edge denotes that this path is taken if the comparison
is true, and a F denotes that the path is taken if the comparison is false. An node marked
with an E denotes that no further comparisons are performed down this path.

As the branching tree shows, there is a heavy dependency among the
threshold-comparisons. If t1 evaluates to true none of the remaining 7 com-
parisons are performed. This means that a lot of superfluous configurations
that only prompt changes in comparisons that are not actually performed
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will be included in the search space. Thus, based on the tree in Figure 6
it is obvious that a large portion of the calculated configurations for the
LocVolCalib-program can be discarded. A proof of concept, where the
branching information from LocVolCalib was used to filter away configu-
rations ending in the same execution-path, further supported this, as it was
possible to reduce the number of configurations from 49152 to 286.

3.6 Branch based tuner

Based on the analysis described above yet another change to the Futhark-
compiler was made by the Futhark developers. The compiler already sup-
plied each Futhark-executable with a flag that exposed the name of the dif-
ferent threshold-parameters used in the program. This was extended to also
include information about the dependencies among the different thresholds-
comparisons.

With this new information the comparison based tuner was extended into
what will be denoted as the branch based tuner3. After calculating all pos-
sible configurations the tuner calculates the execution path of each configu-
ration for each dataset. Referring to the tree in Figure 6 an example of such
an execution path could be ((E6, E7), (E3), (E1)), where each tuple repre-
sents the execution-path of a dataset. Note, that since some levels of the
branching tree has several threshold-comparisons a dataset can result in an
execution-path with more than one end-node. Based on the this information
the configuration pool is filtered. If a configuration has an execution-path
is identical to an already existing configuration, it is deleted from the pool,
leaving only one configuration for each unique execution-path.

From looking at the branching tree in Figure 6 it is evident that all de-
pendencies among the threshold-comparisons in the LocVolCalib-program
rely on a previous comparison being false. This is currently the case for all
Futhark-programs. The implementation of the branch based tuner does not,
however, rely on this.

The advantage of the branch based tuner is perhaps best shown through
a small example. Imagine a program with one dataset and three threshold-
comparisons resulting in the branching tree shown in Figure 7.

For this program the comparison based tuner would produce 8 different
configurations. These configurations, and their corresponding execution-
path, are shown in Table 2. Here T denotes that the configuration makes
the thresholds-comparison tn true, and F that the configuration makes the
threshold-comparison false.

From Table 2 it is obvious that there are some redundant configurations
in the configurations pool produced by the comparison based tuner. Since
the execution path of configuration 2-4 is identical to that of configuration
1 we can eliminate these. The same is the case for configuration 6, since
its execution-path is identical to that of configuration 5. Thus, the size of

3 Available in the supplementary src.zip-folder.
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Figure 7: An exemplary branching tree. A T along an edge denotes that this path is
taken if the comparison is true, and a F denotes that the path is taken if the comparison
is false. An node marked with an E denotes that no further comparisons are performed
down this path.

Configurations

1. t1 = T , t2 = T , t3 = T

2. t1 = T , t2 = T , t3 = F

3. t1 = T , t2 = F , t3 = T

4. t1 = T , t2 = F , t3 = F

5. t1 = F , t2 = T , t3 = T

6. t1 = F , t2 = T , t3 = F

7. t1 = F , t2 = F , t3 = T

8. t1 = F , t2 = F , t3 = F

Execution-paths

1. (E1)

2. (E1)

3. (E1)

4. (E1)

5. (E2)

6. (E2)

7. (E3)

8. (E4)

Table 2: Overview of configurations and execution-paths for the exemplary program.

the configuration pool is reduced from 8 to 4 configurations. Reducing the
number of configurations to try by 4 will only have a very negligible effect
on the performance of the tuner. However, as shown in Figure 8, the effect
of reducing configurations based on their executing path is much greater for
more complex problems.

As expected, this branch based tuner technique proves to be extremely
effective with regard to bringing down the number of configurations that the
tuner must try. As seen in Figure 8 the improvement is by far most signif-
icant in the LocVolCalib-program, which sees a reduction in the number of
configurations to try by a staggering factor of 171.9. As this is the most com-
plex program with most dependencies amongst the threshold-comparisons
this is to be expected. However the NN-program does also see a factor 4.3
reduction in configurations to try.
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Figure 8: Factor by which the number of configurations to try is reduced with the branch
based tuner compared to the comparison based tuner. Higher is better.

The real motivation for implementing the branch based tuner was to re-
duce the number of configurations for LocVolCalib, as tuning of this pro-
gram with the comparison based tuner was not feasible. Though the branch
based tuner manages to reduce the number of configurations with a factor
of 171.9, this still leaves a search space of 286 configurations. As shown in
Figure 3 the old tuner was only able to try 27 configurations within its 30
minute time-limit. Thus, it is not feasible to exhaustively search through
286 configurations, if we wish for the tuning to complete within a reasonable
time-frame. As a consequence of this, the tuning process of LocVolCalib was
further analysed to see if a greater reduction in configurations was possible.

This analysis showed that for the largest dataset certain execution-paths
resulted in a ’time-out’. By default futhark-bench, the utility used by the
tuner to time configurations, reports a time-out if the execution time for
a dataset exceeds 60 seconds. Obviously a lot of time-outs will limit the
number of configurations that the tuner can try within a given time-frame.

It can safely be assumed that if a dataset times out in a given execution-
path once, then all configurations with the same execution path for that
particular dataset will time-out. Therefore the branch based tuner was ex-
tended to filter away any such configurations. That is, if a configuration with
execution-path Ed for dataset d times out, then all other configurations that
for dataset d have execution-path Ed will be eliminated.

In addition to this new elimination round a new flag (--calc-timeout)
was also introduced to the tuner. If this flag is given, the branch based tuner
will try to calculate a more fitting time-out value than 60 seconds. This is
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done by first performing a ’vanilla run’ of the program where no threshold-
values are specified. The time-out value is then set to the runtime of the
slowest dataset plus a small safety margin. The reasoning behind this choice
is that if a configuration makes a dataset run slower than the slowest dataset
of the vanilla run, then it is unlikely that this configuration is optimal. One
should note that this flag does pose a theoretical risk of actually eliminating
optimal configurations. This can be the case if a configuration causes one
dataset to exceed the calculated time-out while speeding the others up dra-
matically more than any other configuration. Although this behaviour has
yet to be encountered, the flag should be used with care. All evaluations of
the branch based tuner, and the yet to be introduced final tuner, uses this
flag when tuning the LocVolCalib-program.

Tuning the LocVolCalib-program with these new heuristics leads to 11
time-outs. These result in 237 configurations being eliminated. This leaves
38 (plus the 11 that timed-out) configurations to be tried by the tuner.
Since we have reduced the time-out limit by calculating a more fitting value
for this, trying these configurations is substantially faster than trying the
27 configurations managed by the old tuner. The branch based tuner is
therefore able to exhaustively search through this reduced search space in
just over 20 minutes on the benchmarking system.

Using the technique described above we can compare the branch based
tuner to the old tuner. The results are shown in Figure 9.

(a) Factor by which tries is reduced
compared to the old tuner.

(b) Speedup compared to the 30 minutes run-
time of the old tuner.

Figure 9: The reduction factor of tries and the speedup of the branch based tuner
compared to the old tuner. Higher is better.

The number of tries needed to find a configuration is reduced by a factor of
27.2 for matrix multiplication and a factor of 57.6 for the NN-program. Note
that for the LocVolCalib-program the number of tries is increased. This is
due to the fact that the comparison based tuner can manage more tries in
less time because of the introduced heuristics. All three programs experience
a speedup. This speedup is most significant for the simpler program. Matrix
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multiplication is 25 times faster to tune with the branch based tuner and
the NN-program is 38.3 times faster to tune. For the LocVolCalib-program
the speedup is more modest, as the program is only 1.4 times faster to tune,
and the real improvement here lies in the fact that more configurations are
tried within a shorter amount of time.

Thus, the branch based tuner is capable of tuning all three programs used
throughout this report in a somewhat reasonable amount of time. Though
the strategy of reducing the search space enough to exhaustively search
through it has proven itself with these three programs, this approach might
not work for all programs. Some programs might have such a large number
of datasets and/or threshold-comparisons, that even all the steps taken to
minimize the search space will not be sufficient. To accommodate such
problems a fourth, and final, version of a Futhark tuner is introduced.

3.7 Final, combined tuner

The final, combined tuner4 (from here on denoted at the final tuner) is,
as the name suggest, a combination of the old tuner and the branch based
tuner. This tuner is, as opposed to the comparison and branch based tuners,
once again based on the OpenTuner-framework. If the ambition is that
a tuner should be able to tune large and complex programs, the idea of
performing exhaustive searches through a search space must be discarded. In
this case tuning must resort to using hill-climbing techniques. The inclusion
of concrete knowledge about execution paths of a Futhark-program evolves
the general old tuner into a domain-specific tuner specialized at tuning the
threshold-parameters of Futhark.

For such a combined tuner to be effective, steps must be taken to eliminate
the problems that made the old tuner ineffective. In broad terms these steps
involve two main additions to the old tuner:

1. Using branching information to make sure that configurations with the
same execution-path as a previously tried configuration is not tested.

2. Using the values of each threshold-comparison to provide more fitting
values for the tuner to try.

Regarding (1) this is simply done by storing the execution-path each time
a configuration is tested. Before a new configuration is tried, its execution-
path is then calculated, and if this execution-path has already been tested
in a previous run, the result of this run is used without actually testing the
configuration. Configurations resulting in time-outs are also eliminated in a
similar way to the approach taken by the branch based tuner. This greatly
reduces the number of configurations that the tuner has to try.

Regarding (2) two different approaches were considered. The fist approach
was to, just as in the comparison based tuner, calculate values that for
each dataset make all the threshold-comparisons both true and false and

4 Available at
https://github.com/diku-dk/futhark/blob/67f90e1000ce30f14810748f505bd8e919198d00/
tools/futhark-autotune and in the supplementary src.zip-folder.

https://github.com/diku-dk/futhark/blob/67f90e1000ce30f14810748f505bd8e919198d00/tools/futhark-autotune
https://github.com/diku-dk/futhark/blob/67f90e1000ce30f14810748f505bd8e919198d00/tools/futhark-autotune
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then simply using the list of these values instead of a value range. The
second approach simply sets the range of possible values for each threshold-
parameter based on the minimum and maximum values that this parameter
is compared against. Since hill-climbing techniques can only be used with
the latter approach, and since the motivation for the final tuner was to
reintroduce these techniques, this was chosen.

The change from exhaustively searching though a set of configurations to
using hill-climbing techniques does come with some trade-offs. First off it
might increase the time it takes to tune a program, as the tuner does not
know whether it has already covered every possible execution-path. Sec-
ondly, since the tuner might find a locally optimal configuration, and thus
stop tuning before it has covered every possible execution-path, it removes
the guarantee of finding the optimal configuration. These trade-offs are
deemed as being worth the capability of tuning extremely complex prob-
lems. In section 5.4 a possible solution to these trade-offs is presented, but
it has not been implemented.

As will be shown in greater detail in section 4 this tuner is, just as the
branch based tuner, capable of tuning both the matrix multiplication, NN
and LocVolCalib-program within a reasonable time-frame.

3.8 Technical aspects

Section 3 introduces four different tuners:
1. The old tuner
2. The comparison based tuner
3. The branch based tuner
4. The final, combined tuner
All four tuners are written in Python. While the comparison based

and the branch based tuner does not build upon any existing auto-tuning
framework, the old and the final tuner are both based on the OpenTuner-
framework. As OpenTuner is only compatible with Python 2.x, the final
tuner requires Python 2.

As mentioned earlier the final tuner relies on certain information being
exposed through different flags that can be passed to a Futhark executable.
For information about the different threshold-comparisons the flag -L is
used. When this flag is passed to a Futhark executable it will, alongside
some other information about hardware etc., produce information in the
style shown below:
Compared suff_outer_par_4793 <= 1024.

Compared suff_intra_par_4833 <= 1048576.

Using a regular expression the threshold-comparisons can then easily be
extracted. Passing the flag through the futhark-bench interface will pro-
vide information about the threshold-comparisons for each dataset with
which the program is executed. It is worth noting that -L will report every
possible threshold-comparison, even if the comparison is nested in a branch
that is not executed. Thus, it is sufficient to extract this information once
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at the beginning of the tuning. Since the final tuner relies on this behaviour,
it will have to be modified, if this is changed in later version of Futhark. If
they become necessary these modifications should be fairly uncomplicated.

Exposing information about the dependencies of the threshold-parameters
is done by passing the -print-sizes flag to a Futhark executable. Again
information about all dependencies, and not only the ones relevant to the
specific run of the program, are exposed. Thus, it is once more sufficient
to extract this information once. An example of the information provided
when this flag is passed is shown below:
suff_outer_par_4793 (threshold (!suff_outer_par_4748 \

!suff_outer_par_4653))

suff_intra_par_4833 (threshold (!suff_outer_par_4793 \

!suff_outer_par_4748 !suff_outer_par_4653))

group_size_4891 (group_size)

num_groups_hint_4893 (num_groups)

num_groups_hint_4970 (num_groups)

group_size_5041 (group_size)

tile_size_6496 (tile_size)

As shown the flag also provides information about the different OpenCL-
parameters, but as the tuners in this report only concerns themselves with
the threshold-parameters this information is not used. The dependency
information is encoded in the nested parenthesis of the threshold-parameters.
If a dependency is prepended with a exclamation mark, the comparison using
this dependency must be false, for the threshold-parameter to be used. If not
the comparison must be true. As mentioned earlier Futhark presently only
has dependencies that rely on previous comparisons being false, however
the tuner is not limited by this implementation detail, and if the behaviour
changes in the future no modifications should be necessary.

As the dependency information also includes dependencies that are later
eliminated through some optimizations in Futhark, care must be taken to en-
sure that only relevant dependencies are processed. This is done by only pro-
cessing dependencies that are also reported as threshold-parameters them-
selves. In the example from above this means that for suff_outer_par_4793
both of its dependencies are eliminated, and for suff_intra_par_4833 only
the dependency of suff_outer_par_4793 preserved.

As stated in section 3.2 and section 3.7 the two tuners based on the
OpenTuner-framework has been limited to only using hill-climbing tech-
niques. This has been incorporated into the final tuner, but not the old
tuner. For the old tuner the limitation can be imposed by supplying the
following flags when tuning:
--technique=RegularNelderMead --technique=RandomNelderMead \

--technique=RightNelderMead --technique=MultiNelderMead \

--technique=RandomTorczon --technique=RegularTorczon \

--technique=RightTorczon --technique=MultiTorczon

Auto-tuning is often done in parallel on several different systems at a
time. Since all available information needed for tuning is currently available
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at the outset of this, and since the OpenTuner-framework supports running
tests in parallel [2], this approach should in theory also be possible with the
final tuner. However, as this has not been tried there might be some details
in the interaction with the OpenTuner-framework that prevents this.

4. Results

4.1 Evaluation of the final tuner

One of the main issues with the old tuner was the amount of time it had to
run. Remember from section 3.2 and Figure 3 that for neither the matrix
multiplication, the NN or the LocVolCalib-program did the old tuner com-
plete within the 30 minutes time-limit. The final tuner, on the other hand,
saw all runs complete within the allotted time.

(a) Number of tries, averaged over 3 runs,
before a configuration is reported
by the final tuner.

(b) Seconds, averaged over 3 runs, that it
takes to complete tuning with the final tuner.

Figure 10: Number of tries and seconds it takes for the final tuner to report a locally
optimal configuration.

Figure 10 shows the number of tries, averaged over 3 tuning runs, that
was completed for each program before a locally optimal configurations was
reported by the final tuner, along with the average number of seconds it took
to complete tuning. Here a try is a configuration that is actually tested by
the tuner, i.e. a configuration with an execution-path that has not yet been
tried.

Figure 11 shows the factor by which the number of tries has been reduced
by the final tuner as well as the resulting speedup in tuning time. Note that
all the speedups reported in this section is with respect to the 30 minute
time-limit imposed on the old tuner. Had the old tuner been allowed to run
for as long as it would take it to report a locally optimal configuration, these
speedups would obviously increase.

For both the matrix multiplication and the NN-program the number of
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(a) Factor by which the number of tries
has been reduced by the new tuner
compared to the old tuner.

(b) Average speedup in the time it takes to
find a final configuration for the final tuner
compared to the 30 minute timeout by the old
tuner.

Figure 11: The reduction factor of tries and the speedup of the final tuner compared to
the old tuner. Higher is better.

tries has been reduced by a significant factor. For the LocVolCalib-program
this reduction is more subtle.

Both the matrix multiplication and NN-program has a speedup factor
around 25, which must be categorized as very substantial. For the LocVolCalib-
program the speedup is more modest, yet still shows an improvement of
almost 100%. Furthermore, it shows that the final tuner was actually able
to find a locally optimal configuration and finish tuning in less than the 30
minutes that the old tuner was allowed to run.

Decreasing the number of tries it takes to report a configuration does not
do much good if the reported configuration is not a suitable one. Certainly
it is also needed to evaluate these and see how the configurations found by
the final tuner compares to the ones found by the old. Figure 12 shows this
evaluation.

From Figure 12 we can see that for the two simple programs, matrix
multiplication and the NN-program, the configurations produced by the fi-
nal tuner does not result in any speedup, compared to the configurations
produced by the old tuner. In the case of the NN-program we actually ex-
perience a minor slowdown, but this is due to the fact that runtime will
vary slightly across runs, as the execution-path of the configurations are,
in fact, identical. For the more complex LocVolCalib-program we see an
average speedup of just about 50%. Comparing the runtime of a auto-tuned
program to the runtime of the same program without auto-tuning results in
a speedup of at least 50% for all three programs.

One should note that the same program, with the same datasets, has
been used for both auto-tuning and evaluation. Thus, no cross-validation
has been performed, but since the problem of auto-tuning is not a predictive
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(a) Speedup compared to configurations found
by the old tuner.

(b) Speedup compared to no tuning at all.

Figure 12: Speedup of the configurations found by the final tuner compared to the old
tuner and to no tuning at all. Higher is better.

problem, this should not influence the results in any significant way.
Finally it is interesting to return to the matrix multiplication problem

from section 2.1 and Figure 1. To see if the tuned version of the matrix
multiplication problem actually changes from one code version to another
at the right time, the run is repeated with a configuration produced by the
final tuner. As seen in Figure 13 the tuned program does in fact change
from version 3 to version 1 just as n becomes large enough.

Figure 13: Execution time of matrix matrix multiplication as a function of n for the two
code-versions and the tuned program.

All in all it is shown that the final tuner is functional, and that it is an
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improvement over the old tuner. It produces configurations that are faster
than running a program that is not tuned. These configurations perform at
least as well as the configurations produced by the old tuner. In the case
of the LocVolCalib-program we even see a speedup of 50%. Furthermore
the final tuner is significantly more effective than the old tuner. It tries far
fewer different configurations and thus speeds up the tuning process with a
factor between 1.9 and 25.5.

4.2 Overview of all tuners

Besides the old and the final tuner two other tuner have been presented in
this report. Figure 14 and Figure 15 presents an overview of how all tuners
perform compared to the old tuner.

(a) Matrix multiplication (b) NN

(c) LocVolCalib

Figure 14: Factor by which the number of tries to find a locally optimal configuration is
reduced compared to the old tuner for all three programs. Higher is better.

Figure 14 shows the factor by which the number of tries it takes each tuner
to find a locally optimal configurations is reduced compared to the number of
tries of old tuner. Again remember that the old tuner did not report a locally
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optimal configuration within the allotted 30 minutes. It is interesting to note
how the heuristics introduced in the branch based tuner only had a minimal
effect for the very simple problem of matrix multiplication. For the more
complex NN-program the effect was much more substantial. Regarding the
LocVolCalib-program we see that the number of tries is actually increased for
the branch based tuner, since it is able to try configurations more efficiently.
As the comparison based tuner would have to try over 49,000 configurations
when tuning the LocVolCalib-program this was never relevant. Therefore no
numbers are reported for the LocVolCalib-program and this tuner in neither
Figure 14 or Figure 15.

In Figure 14 the effect of discarding the exhaustive search in the final
tuner is also evident. Since the final tuner, instead of naively searching
exhausting the search space, stops when it has found what it estimates to
be a locally optimal configuration it is able to reduce the number of tries
compared to the comparison and branch based tuners.

(a) Matrix multiplication (b) NN

(c) LocVolCalib

Figure 15: Speedup in the time it takes to find a final configuration compared to the 30
minute timeout by the old tuner. Shown for all tuners and programs. Higher is better.

Figure 15 shows the speedup of the tuning process for each program rel-
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ative to the old tuner. For the two simpler programs, matrix multiplication
and NN, the branch based tuner is actually just as fast, or faster, than the
final tuner. This is the case even though the latter tries less configurations,
and is the result of one of the trade-offs described at the end of section 3.7.
While the branch based tuner will stop tuning as soon as it has exhausted
the search space, the final tuner spends time looking for new configurations
until it estimates that a locally optimal configuration has been found.

That the tuning of the LocVolCalib-program is faster when using the final
tuner than when using the branch based tuner is a result of the final tuner
finding a locally optimal configuration before trying all possible configura-
tions. This seems to indicate that while the exhaustive search of the branch
based tuner is faster for simple programs, the final tuner is better at solving
more complex tuning problems.

5. Reflections and future work

5.1 Cost function

When auto-tuning, the choice of cost function influences the result. As
mentioned in section 3.2 the cost function used by all the tuners described in
this report is the total runtime. This choice will heavily favor configurations
that improve the longest running datasets. While this could be remedied by
using an alternative cost function, such as the geometric mean of runtimes, it
is reasoned that current cost function is a reasonable choice. Since the benefit
of improving the runtime of long running datasets is obviously bigger than
improving the runtime of datasets that finish faster, it seems appropriate to
use a cost function that leads to just this behaviour.

5.2 The arbitrariness of threshold-values

The current implementation of the tuner is evaluating different configura-
tions against a finite number of datasets. Thus, when the tuner reports a
final configuration it might be optimal for the datasets used when tuning,
but the reported threshold-values will still be arbitrary and dependent upon
the datasets.

An straightforward solution to this problem is to introduce more datasets.
This solution does, however, come with a trade-off, as it will slow down the
tuning process. In addition to this, blindly adding more datasets will not
necessarily solve the problem. Imagine a simply case of a program with
three datasets and one threshold-comparison. Across all three datasets this
program compares threshold-values against c1, c2 and c3 where c1 < c2 <
c3. If the tuner reports the optimal threshold-value to lie between c2 and
c3, adding a fourth dataset where c4 < c1 or c3 < c4, will not affect the
threshold-value chosen by the tuner. Instead c4 must satisfy c2 < c4 < c3 to
have any effect on the arbitrariness.
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If this problem is to be solved, the tuner must therefore first identify an
optimal configuration for the initial set of datasets before new datasets can
be added. Generating and adding new datasets on the fly should be possible
for some programs such as matrix multiplication. Returning to the matrix
multiplication example and the graph in Figure 13 it should be possible for
the tuner to automatically generate a new dataset where n lies between 3
and 4. This process could then be repeated a number of times, each time
introducing a new dataset where n lies in the range where the shift from
version 1 to version 3 happens. Repeating this process enough times will
lead to less arbitrary threshold-values.

For other programs, such as the LocVolCalib-program, this auto-generating
of datasets might prompt bigger problems, either due to the complexity of
the program itself or due to the complexity of the datasets. The strategy
outlined above has therefore not been implemented in the final tuner. It
could, however, be an interesting approach to examine in the future.

5.3 Limited number of evaluation programs

As mentioned in section 3.1, and shown throughout the report, only three
programs have been used to evaluate the performance of the different tuners.
This is clearly not a very elaborate evaluation. The three programs do,
however, represent quite a broad scope of different types of programs, with
matrix multiplication being a very simple program and the LocVolCalib-
program being one of the most complex in Futhark’s benchmarking suite.
Due to this fact, the current evaluation is deemed adequate with regards to
concluding whether performance of the new tuner is better than that of the
old. However evaluating the tuner against a wider range of programs might
certainly be interesting, if not only to further justify the claims made in the
report.

5.4 Future work

As mentioned in section 5.2 a future improvement to the tuner could be
to automatically generate new datasets in order to reduce the arbitrariness
of the threshold-values. Whether this is indeed practical is not clear, as
naively generating new datasets that represent a change in workload might
be difficult for some programs. As so further investigations and analysis
would be needed.

In section 3.2 it is mentioned, that the old auto-tuner was also capable of
tuning OpenCL-parameters. As the focus in this report has been the auto-
tuning of threshold-parameters this is currently not possible with the final
tuner. Extending the final tuner with this functionality should, however, be
trivial. This might be considered in the future.

Another possible improvement would be to introduce the possibility of
having the tuner perform an exhaustive search, i.e. executing the branch
based tuner described in section 3.6 in certain cases. As shown in Figure 15
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the branch based tuner can be faster than the final tuner when tuning sim-
ple programs. This is due to the fact that the branch based tuner will
stop tuning as soon as it has exhausted the search space. The final tuner,
on the other hand, has no notion of how many different configurations are
contained within the search space. Thus, it must wait for its hill-climbing
to estimate that a locally optimal configuration has been found. Further-
more, the branch based tuner guarantees that every possible configuration
is tried - a guarantee that cannot be given with the hill-climbing techniques
of OpenTuner.

Thus, it might be preferable to use the approach of the branch based tuner
in the cases where the search space can realistically be exhaustively explored.
This possibility could be implemented by introducing an exhaustive search
technique to the OpenTuner-framework. The tuner could then either let the
user manually choose to run this technique by passing a special flag to the
tuner, or it could alternatively try to estimate the size of the search space
and automatically choose an appropriate search technique itself.

6. Related work

There is no shortage of available, application-independent auto-tuners, which
could, in theory, be used to tune Futhark’s threshold-parameters. However,
as the work done in this report has shown, there are a lot of advantages to be
gained from applying domain-specific knowledge to the auto-tuning process.
Furthermore, some of the available auto-tuners exhibit characteristics, that
make them unfit for use with Futhark.

The ActiveHarmony-auto-tuner [11] is an example of just this. The tuner
is a compiler-based auto-tuner [11], which means that its use-case is to au-
tomatically generate different versions of a program and test these to find
the optimal one. As mentioned in section 2.1 this is already implemented
in Futhark, and since the choice between code-versions is made at runtime,
Futhark does not lend itself to be used with a compiler-based auto-tuner.

AtunerRT [10] and CLTuner [9] are, on the other hand, both online auto-
tuners, meaning that they work by manipulating parameters at runtime.
Both tuners are, however, targeted at tuning individual OpenCL-kernels
and not whole programs. Both tuners work through their own API, which
must then be integrated into the program one wishes to tune. While it
would certainly be possible to update the Futhark-compiler to include these
API-calls in each compiled Futhark-program, these tuners would still suffer
from the lack of domain-specific knowledge that this report has shown to be
of great importance to an effective tuning.

7. Conclusion

This report introduces a new, domain-specific auto-tuner for tuning Futhark’s
threshold-parameters. The final tuner is build upon the OpenTuner-framework
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for building domain-specific tuners. Through analyses of Futhark-programs
several approaches has been developed to increase the performance of the
final tuner compared to the already existing auto-tuner. These analyses
has also led to modifications to the Futhark-compiler, making these new
approaches possible.

Information about the execution paths and threshold-comparisons of a
given Futhark-program is extracted during tuning, and this domain-specific
knowledge is then applied to minimize the time the tuner spends trying
threshold-values that will not provide any performance gain. In addition to
this the information is also used to define a more limited and precise search
space for the tuner to search through.

The final tuner is evaluated by auto-tuning three selected Futhark pro-
grams. These evaluations show that the performance of the configurations
found by the new tuner is on par with, or better than, the configurations
found by the old tuner. Furthermore for all three programs the final tuner
is capable of performing a ’full tuning’ - i.e. a tuning where the hill-climbing
techniques of the tuner estimates that an locally optimal configuration has
been found - in less than 30 minutes on the testing machine. This was not
possible with the old tuner. The speedup in the time it takes to tune the
programs ranges from 1.9 to 25.5.

Based on these evaluations it is concluded that the final tuner is an im-
provement over the old tuner. The change from what was basically an
general auto-tuner being applied in a Futhark-setting to a domain-specific
tuner has provided improvements in both tuning speed and performance
of the auto-tuned programs. While further improvements to the tuner are
possible, it is felt that the tuner is currently fit to solve threshold-related
auto-tuning tasks.
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