
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

Master’s thesis

Emil U. Weihe — emil@weihe.dk

Support Vector Machines in Futhark

Supervisor: Troels Henriksen

Handed in: August 31, 2020

Abstract

The support vector machine is a supervised learning model. It is sometimes

referred to as the best "o�-the-shelf" learning model since it is relatively sim-

ple to use and can achieve very accurate results. The model is expensive to

train, which motivates the use of graphics processing units (GPUs) to acceler-

ate it. Futhark is a high-level programming language designed to be compiled

into e�cient GPU code. In this thesis, a new support vector machine li-

brary written in Futhark is presented. It introduces kernel function modules,

which allow users of the library to define and use their own choice of kernel

function. The library was benchmarked against the popular GPU-accelerated

support vector machine library, ThunderSVM, which showed that their per-

formance is relatively similar when training. On one dataset, the library was

2.2 times faster than ThunderSVM, but it performed a bit worse on others.

For prediction, it was consistently between 2.4 to 9.6 times faster. Since the

current trend shows that Futhark is becoming faster over time, these results

are very promising.

Keywords: SVM, SVC, GPU, Futhark, pretty fast

Contents

1 Introduction 1

1.1 Related works . 2
1.2 Thesis objective . 2
1.3 Introduction to Futhark . 2
1.4 Source code repository . 4

2 Support Vector Machines 5

2.1 Training a C-SVM . 6
2.2 Sequential Minimal Optimization 7

2.2.1 Optimization of a pair 7
2.2.2 Selection of a pair . 10
2.2.3 Revised updates . 11
2.2.4 The full algorithm . 12

2.3 Decomposition methods . 12
2.3.1 First-in first-out . 13

2.4 Nonlinear classification . 13
2.5 Multiclass classification . 14

3 Design and Implementation 15

3.1 Library structure . 15
3.2 Full-kernel solver . 16
3.3 Two-level solver . 16

3.3.1 Caching . 18
3.4 The svc module . 18

3.4.1 Prediction . 20
3.5 Modular kernels . 20
3.6 Testing . 22
3.7 Python binding . 24

4 Experimental Study 25

4.1 Training . 26
4.2 Prediction . 27
4.3 Reflection on results . 28

5 Conclusion and Future work 29

5.1 Conclusion . 29
5.2 Future work . 29

Chapter 1

Introduction

In order to solve today’s data science problems, a drastic increase in computa-
tional power is needed. Problems such as detecting cancer in X-ray images,
automated face recognition, and even getting cars to drive autonomously,
all require massive amounts of data to be processed. To keep up with the
demand, it has been necessary to utilize the compute power of graphics pro-
cessing units (GPUs) to accelerate the systems. The extensive amount of
cores and high memory bandwidth of GPUs enables them to solve highly
parallel problems very e�ciently. The support vector machine (SVM) is an
excellent supervised learning model with parallel characteristics. It is used
to solve problems such as classification, regression, and outlier detection.
It is very computationally expensive to apply SVMs to large and complex
problems. This motivates the use of GPUs to accelerate them.

In this thesis, I present a novel support vector machine implementation in the
data-parallel language, Futhark. Programs written in Futhark can compile
into heavily optimized code that runs on GPUs.

1

1.1 Related works

LIBSVM is a very popular support vector machine toolkit for CPUs [CL11].
It was released in 2001 and has been maintained ever since. It is used in
the popular Python library scikit-learn [Ped+11]. It implements classifica-
tion (SVC), regression (SVR), and the one-class SVM for outlier detection.
ThunderSVM1 is a more modern implementation for multi-core CPUs and
GPUs. It was released in 2018. On most datasets, it is more than 100 times
faster than LIBSVM when using GPUs [Wen+18].

1.2 Thesis objective

The main goal of this thesis is to use Futhark to develop a GPU-accelerated
support vector machine library. Futhark is a high-level language that hides
many of the rather complicated low-level details of writing GPU code, such as
thread blocks, synchronization, and memory management. As such, I want
to investigate how the e�ciency of a support vector machine library written
in Futhark compares with other established solutions. Since many di�erent
types of SVMs exist, the objective is limited to the implementation of a C

type multiclass SVM classifier (as introduced in Chapter 2).

1.3 Introduction to Futhark

Futhark2 is a programming language designed to be compiled into e�cient
parallel code [Hen+17]. Its syntax is derived from ML. It is purely functional,
has a static type system, and it comes with a set of constraints which allows
the compiler to produce highly performant GPU code. Currently, it can
produce GPU code via OpenCL and CUDA. It can also compile to C.

Futhark uses array combinators to perform operations on array elements in
parallel. These are the building blocks of Futhark. It uses them to produce
GPU code and as such, they are the key to achieving fast programs. Futhark
defines second-order array combinators (SOACs) such as map, reduce, and
scan, that takes a function as an argument, which indicates the operation to
perform. As a small example, we can write the dot product qn

i=1 uivi of two
vectors u and v using map and reduce by:

let dot [n] (u: [n]f32) (v: [n]f32): f32 =
reduce (+) 0 (map2 (*) u v)

1
https://github.com/Xtra-Computing/thundersvm

2
https://futhark-lang.org/

2

For parametric polymorphism Futhark uses type parameters, which allows
functions and types to be polymorphic. Type parameters are written as
a name preceded by an apostrophe. Futhark also has size parameters, for
imposing constraints on the sizes of arrays. A type for a pair of arrays of the
same type t and size n can be expressed as:

type array_pair �t [n] = ([n]t, [n]t)

While Futhark is a purely functional language, it allows in-place array up-
dates. The ith element of an array A can be set to 0 with A with [i] = 0.
Mulitple elements can be updated in parallel with the scatter function.
Futhark employs a special type system feature called uniqueness types to
ensure the safety of in-place updates. Functions can take unique parameters,
prefixed by *, which indicates that the argument will be consumed by the
function, e.g., if the function updates the argument value in-place.

Futhark has an ML-style higher-order module system. It has module types
that lets us specify the contents of a module. They contain specifications of
what a module should implement. We can define a module type mt by:

module type mt = {
type t
val add1: t -> t

}

It specifies a type t and a function add1 that takes a parameter of type t
and returns t. Futhark also has parametric modules, which can take other
modules as arguments. For example, this allows us to define a module m of
type mt that takes a module of type real as a parameter:

module m (R: real): mt = {
type t = R.t
let add1 (n: t): t = R.(n + i32 1)

}

Here R.(n + i32 1) is the shorthand syntax for (n R.+ R.i32 1). Dot-
notation is used to access the functions and types of modules. real is the
module for real numbers in Futhark. It implements the operator + and a
function i32 that casts to R.t from the primitive integer type i32.

3

Futhark imposes a set of rules that allows it to produce e�cient code and
ensure correctness. For example, irregular arrays are not allowed. Another
important example is that the function argument given to reduce and scan
must be associative and have a neutral element in order to work correctly
on GPUs. While it can prevent irregular arrays at compile-time, it cannot
detect if a function is associative, so that has to be ensured by the developer.

1.4 Source code repository

The finished implementation is a small SVM library written in Futhark. The
source code can be found at the GitHub repository: github.com/fzzle/futhark-
svm. The repository includes instructions on how to build and use it as a
library in Python, or as a Futhark package. It also includes instructions in
the bench/ folder on how to run the benchmarks presented in this thesis.

4

Chapter 2

Support Vector Machines

The support vector machine (SVM) is a supervised learning model. In its
purest form, an SVM takes data points (m-dimensional vectors) of two classes
as input and attempts to find an (m ≠ 1)-dimensional hyperplane, which
separates them — a decision surface. The class of a new data point can be
determined based on which side of the hyperplane it lies. This is a binary
linear SVM classifier. The inherent problem is to find the best hyperplane.

In 1992, Boser et al. [BGV92] proposed the hard margin hyperplane. If the
classes in a set of data are completely separable, it is the hyperplane with the
largest margin between the classes. Two classes of data points are completely
separable if you can put a hyperplane between them such that there is only
data points of one class on each side. The limitation of the hard margin
hyperplane is that it only works on completely separable data. Besides, it’s
been shown that it doesn’t generalize well if there exist outliers. It was
extended in 1995 by Cortes & Vapnik [CV95], who proposed a soft margin

hyperplane, which also works on data that can’t be separated without error.
It introduces slack variables ›, which lets it tolerate training data that falls
on the wrong side of the hyperplane. It also introduces a regularization
parameter C, which controls how much the model should be penalized for
misclassifying data when training. It is commonly referred to as a C-SVM
and it is a type of SVM that most of the popular toolkits implement.

There exist simple modifications to the C-SVM, which makes it usable for
other problems, namely regression, and outlier detection (one-class SVM).
However, in this chapter, I will primarily focus on the principles and ideas
that have been used to develop e�cient C-SVM implementations, as they
can be used as a foundation for the modified versions.

5

2.1 Training a C-SVM

Given a training set X of m-dimensional data points xi and their correspond-
ing labels yi œ {+1, ≠1} for all i œ {1, . . . , n}, the goal of a C-SVM is to find
the hyperplane which separates the positive and negative data points with
a maximal margin m = 1/ÎwÎ and, at the same time, a minimal number of
training errors. Training amounts to solving an optimization problem:

argmin
w,›,b

1
2ÎwÎ2 + C

nÿ

i=1
›i (2.1a)

subject to yi(w · xi + b) Ø 1 ≠ ›i, ’i œ {1, . . . , n}, (2.1b)
›i Ø 0, ’i œ {1, . . . , n}. (2.1c)

Here w and b are the normal and intercept of the hyperplane, › are the slack
variables, and C is a regularization parameter. The optimization problem
can be rewritten into a dual form quadratic program [CV95; BB00]:

argmin
–

W (–) = 1
2–TQ– ≠

nÿ

i=1
–i (2.2a)

subject to 0 Æ –i Æ C, ’i œ {1, . . . , n}, (2.2b)
y · – = 0. (2.2c)

Here – is an n-dimensional set of Lagrange multipliers, and Q is an n ◊ n-
dimensional symmetric matrix with Qi,j = yiyjKi,j and Ki,j = xi · xj. W (–)
is the objective function and the goal is to find Lagrange multipliers – that
minimizes it. Once an optimal – has been found, it is possible to derive the
normal w and the intercept b of the hyperplane by:

w =
nÿ

i=1
yi–ixi, (2.3)

b = w · xk ≠ yk, for any k where –k > 0. (2.4)

Thereby, the label y
test of a test data point xtest can be predicted by:

y
test = sgn

1
w · xtest ≠ b

2
(2.5a)

= sgn
A

nÿ

i=1
yi–ixi · xtest ≠ b

B

(2.5b)

The data points xi that have an associated Lagrange multiplier –i that is
greater than 0 are referred to as support vectors. These are the data points
that are used for the label prediction of unseen data.

6

For the set of – to be an optimal solution of (2.2), it must satisfy the Karush-
Kuhn-Tucker (KKT) conditions, which are as follows:

–i = 0 ∆ yi (w · xi + b) Ø 1 (2.6)
–i = C ∆ yi (w · xi + b) Æ 1 (2.7)

0 < –i < C ∆ yi (w · xi + b) = 1 (2.8)

2.2 Sequential Minimal Optimization

In 1998, John C. Platt proposed Sequential Minimal Optimization (SMO)
[Pla98]. It’s an e�cient algorithm used to solve the quadratic programming
(QP) optimization problem that arises when training the C-SVM (2.2). SMO
works by iteratively improving the –’s until the KKT conditions are satisfied
within a threshold Á. At each iteration, a pair of Lagrange multipliers {–u, –l}
are selected and the objective function W (–) is reoptimized with respect to
this pair while the rest of the Lagrange multipliers are kept fixed.

SMO can be considered a decomposition method, by which the QP problem
is broken into QP subproblems. In 1997, Osuna et al. proved a theorem
which shows that solving QP subproblems will decrease the objective value
of the full QP problem, as long as at least one Lagrange multiplier of the
subproblem violates the KKT conditions [OFG97]. Decomposing the prob-
lem is a recurring theme in C-SVM training algorithms since the matrix Q
with its n

2 elements is often too big to be kept in memory. However, SMO
di�ers because it breaks the problem into the smallest possible subproblems
that can be solved analytically and thus, very e�ciently. Other algorithms
mostly use numerical QP optimization which tends to be slow in practice.

2.2.1 Optimization of a pair

Let’s consider the problem of minimizing the objective function W (–) with
respect to a pair of Lagrange multipliers –u and –l while keeping the rest
of the n ≠ 2 –’s fixed. When updating –u and –l, they have to satisfy the
constraints of the full problem (2.2b-c) so it’s a requirement that:

0 Æ –k Æ C, ’k œ {u, l}, (2.9a)
y · – = 0. (2.9b)

The equality constraint (2.9b) can be rewritten as:

yu–u + yl–l = ≠
ÿ

i/œ{u,l}
yi–i (2.10)

7

By multiplying with yu on both sides it becomes:

–u + yuyl–l = ≠yu

ÿ

i/œ{u,l}
yi–i (2.11)

Since the –i’s for i /œ {u, l} are fixed, the right-hand side will be a constant.
To simplify, let’s denote this constant by ”. The constraint becomes:

–u + yuyl–l = ” (2.12)

The constraints on –u and –l are visualized in Figure 2.1.

If yiyj = +1 and –u + –l = ” > C:

0 ” C

”

C

au

al

If yiyj = ≠1 and –u ≠ –l = ” > 0:

0 ” C

C ≠ ”

C

au

al

If yiyj = +1 and –u + –l = ” > C:

0 ” ≠ C C

” ≠ C

C

au

al

If yiyj = ≠1 and –u ≠ –l = ” < 0:

0 C + ” C

≠”

C

au

al

Figure 2.1: The inequality constraint (2.9a) causes –u and –l to
lie within a box [0, C] ◊ [0, C] and the equality constraint (2.12)
causes it to lie on a diagonal line. The two topmost frames show
the constraints if yuyl = +1 (which means yu = yl), and the two
bottom ones show the constraints if yuyl = ≠1 (and yu ”= yl).

The equality constraint (2.12) can be rewritten to a function of –l:

–u = ” ≠ yuyl–l (2.13)

8

In the SMO paper by Platt, –l is updated first, bound to the constraints,
and then –u is found by (2.13). As seen in Figure 2.1, al has to lie within
the bounding box of the diagonal line. For example, in the top-left frame we
have L Æ –l Æ H for L = 0 and H = ”. To summarize all the frames, if yu

equals yl, then the lower bound L and upper bound H that apply to al are:

L = max{0, ” ≠ C} = max{0, –u + –l ≠ C}, (2.14)
H = min{C, ”} = min{C, –u + –l}. (2.15)

If yu does not equal yl, then:

L = max{0, ≠”} = max{0, –l ≠ –u}, (2.16)
H = min{C, C ≠ ”} = min{C, C + –l + –u}. (2.17)

To update –l, we have to find a value –
Õ
l which minimizes the objective

function W (–) of (2.2). If the –i’s for i /œ {u, l} are kept fixed, and –u is
substituted with ” ≠ yuyl–l (by (2.13)), then the objective function W (–)
becomes a quadratic function of –l. If the constraints in (2.9) are ignored,
then it’s easy to find the the value –

Õ
l that minimizes W (–). It amounts to

taking the derivative of W (–), setting it equal to 0, and solving it. The full
proof is given in [Pla98]. It yields the following equation:

–
Õ
l = –l + yl(fu ≠ fl)/÷u,l (2.18)

Here ÷u,l = Ku,u + Kl,l ≠ 2Ku,l, and fk is the error on the kth training point.
fk is defined as the di�erence between the current output of the model and
the desired output yk. They are sometimes referred to as the optimality

indicators. They can be obtained by the following:

fk =
A

nÿ

i=1
–iyiKi,k

B

≠ yk (2.19)

The unconstrained –
Õ
l has to be bound by L and H:

–
new
l = max{L, min{–

Õ
l, H}} (2.20)

Finally, the new –u value can be found by:

–
new
u = ” ≠ yuyl–

new
l due to (2.13) (2.21)

= –u + yuyl–l ≠ yuyl–
new
l due to (2.12) (2.22)

= –u + yuyl(–l ≠ –
new
l) (2.23)

Rather than computing fu and fl at every update of –u and –l, it’s possible
to update all fi for i œ {1, . . . , n} by the following formula:

f
new
i = fi + (–new

u ≠ –u)yuKu,i + (–new
l ≠ –l)ylKl,i (2.24)

This requires the fi’s to be initialized as ≠yi.

9

2.2.2 Selection of a pair

SMO will work towards a minimum as long as at least one of the Lagrange
multipliers selected violates the KKT conditions. However, since only a pair
of multipliers are updated every step, it becomes an important task to choose
and optimize those that will improve the overall problem the most. To speed
up convergence, heuristics can be used to select a good pair of multipliers.

In 2001, Keerthi et al. [Kee+01] proposed a selection method which finds
the maximal violating pair, the pair which violates the KKT conditions the
most. It selects u and l by the following equations:

u = argmini{fi | i œ I
upper}, (2.25)

l = argmaxi{fi | i œ I
lower}. (2.26)

Where:

I
upper = I1 fi I2 fi I3, (2.27)

I
lower = I1 fi I4 fi I5, (2.28)

I1 = {i | 0 < –i < C}, (2.29)
I2 = {i | yi = +1, –i = 0}, (2.30)
I3 = {i | yi = ≠1, –i = C}, (2.31)
I4 = {i | yi = +1, –i = C}, (2.32)
I5 = {i | yi = ≠1, –i = 0}. (2.33)

A property of this pair is that if fu Ø fl then the KKT conditions are
satisfied. Since it’s often di�cult, if not impossible, to achieve a perfectly
optimal solution, it can be rewritten to incorperate a small threshold Á:

fl ≠ fu < Á (2.34)

In 2005, Fan et al. [FCL05] proposed an improvement to this heuristic. It
uses the same u, but it incorporates information from the derivative of the
objective function when selecting l. It greatly decreases the amount of iter-
ations needed to find an optimal solution. The pair is selected by:

l = argmaxi

I
(fu ≠ fi)2

÷u,i

----- fu < fi, i œ I
lower

J

. (2.35)

10

2.2.3 Revised updates

Due to the assumption that fu < fl of the selection heuristic (2.35), and that
÷u,l is positive under normal conditions as described in [Pla98], the update
step described in 2.2.1 can be simplified slightly. Let’s set:

q = (fl ≠ fu)/÷u,l (2.36)

Since fu < fl and ÷u,l > 0 we know that q > 0. This makes it possible to
bound the change q with respect to the inequality constraints on –l and –u.
Let’s denote the bounded q by q

Õ. Consider if we want to update –l (2.20)
and –u (2.23) using q

Õ. Since the change q
Õ is bounded such that –l and –u

doesn’t exceed their inequality constraint (2.9a), we can write:

–
new
u = –u + yuq

Õ
, –

new
l = –l ≠ ylq

Õ
. (2.37)

These updates also satisfy the equality constraint (2.12) since the same
change is applied in each direction. Finding the constraints on q

Õ requires
solving 0 Æ –u + yuq

Õ Æ C and 0 Æ –l ≠ ylq
Õ Æ C. We have:

0 Æ –u + yuq
Õ Æ C =∆ ≠–u Æ yuq

Õ Æ C ≠ –u (2.38)

Since q
Õ
> 0 and –u > 0, this can be simplified to:

q
Õ Æ C ≠ –u, if yu = +1, (2.39)

q
Õ Æ –u, if yu = ≠1. (2.40)

Conversely, for –l these bounds are:

q
Õ Æ –l, if yl = +1, (2.41)

q
Õ Æ C ≠ –l, if yl = ≠1. (2.42)

Thereby, it’s possible to find q
Õ by binding q to these constraints.

Additionally, the update of fi’s can be simplified by:

f
new
i = fi + (–new

u ≠ –u)yuKu,i + (–new
l ≠ –l)ylKl,i (2.43)

= fi + ((–u + yuq
Õ) ≠ –u)yuKu,i + ((–l ≠ ylq

Õ) ≠ –l)ylKl,i (2.44)
= fi + yuyuq

Õ
Ku,i ≠ ylylq

Õ
Kl,i (2.45)

= fi + q
Õ(Ku,i ≠ Kl,i) (2.46)

11

2.2.4 The full algorithm

Algorithm 1 summarizes the entire training process as carried out by SMO
using the components that have been defined. Note that f

max and fu are the
optimality indicators of the maximal violating pair, and thus, if f

max≠fu < Á

the KKT conditions are satisfied and the training is done.

Algorithm 1: Sequential Minimal Optimization
Input: A set of training points X and their labels y
Output: A set of Lagrange multipliers –

1 for i Ω 1 to n do // initialization
2 fi Ω ≠yi;
3 –i Ω 0;
4 end

5 loop

6 find u using (2.25);
7 find f

max using (2.26);
8 if f

max ≠ fu < Á then stop;
9 find kernel row Ku;

10 find l using (2.35);
11 find kernel row Kl;
12 update –u and –l using (2.37);
13 update f using (2.46);
14 end

Actual implementations should use additional termination checks to ensure
that the training is not stuck. Floating-point underflow can potentially cause
q to be 0. If that happens, no change is applied to the –’s. Most SMO solvers
also set a limit on the number of iterations they allow.

2.3 Decomposition methods

A strategy that has greatly improved GPU implementations of SMO is adding
another level of decomposition. Since SMO will work towards a global mini-
mum as long as it can find a pair –u and –l that violate the KKT conditions,
it is possible to select a subset of the problem that has violating pairs and
solve it with SMO. Let’s call this subset the working set. As mentioned be-
fore, the matrix Q is often too big to store in memory, yet this allows us to
compute a part of it, keep it in memory, and solve the subproblems using
it. While it won’t be able to select the best pair u and l according to the
SMO selection heuristics, it won’t have to search the entire problem for u

12

and l either, a process which is performance-critical since it is done every
iteration. Additionally, all the –’s that already satisfy the KKT conditions
can be avoided, such that they do not have to be considered by the selection
heuristics. Thereby, it achieves the same e�ect as shrinking, a heuristic em-
ployed by LIBSVM, that filters out –’s that are not believed to be updated
any further [CL11]. If we want to perform SMO on a subset of n

ws data
points, a natural strategy would be to select the nws

2 most violating pairs.
This amounts to selecting the nws

2 data points with the smallest optimality
indicators from I

upper, and conversely, the nws

2 largest indicators from I
lower.

2.3.1 First-in first-out

To decrease the amount of data points that oscillate in and out of the working
set, ThunderSVM reuses a part of the previous working set. It uses a first-in
first-out (FIFO) retention policy to choose which data points to keep. It can
thereby also reuse a part of the previous cached kernel matrix, instead of
having to compute a full new one. It keeps half of the working set by default.

2.4 Nonlinear classification

Not all data is linearly separable. For such data, the linear classifier won’t
be able to find a good decision surface. To be able to handle such data,
SVMs can use kernel functions to map the data into a very high-dimension
feature space where it may be linearly separable. E.g., we could have a kernel
function k(xi, xj) = Ï(xi) · Ï(xj) where Ï : Rm æ Rt is a mapping from m to
t dimensions. It is di�cult and expensive to map into high-dimensional space
with Ï. As such, a "kernel trick" is employed, which allows us to calculate
the inner product implicitly without using a mapping Ï. In the definition
of the training problem (2.2), we replace Ki,j = xi · xj by Ki,j = k(xi, xj).
Additionally, the output is modified to incorporate the kernel function:

y
test = sgn

A
nÿ

i=1
yi–ik(xi, xtest) ≠ b

B

(2.47)

In SMO, it is assumed that K is a positive definite matrix. Thus, the kernel
function k(·, ·) has to be positive definite to be valid. If not, there are cases
where ÷i,j is not positive as otherwise assumed. However, bounding ÷i,j to a
small positive constant (e.g. · = 10≠12 as used by LIBSVM) has enabled it
to train with kernel functions that aren’t fully positive definite [CL11]. Even
if the kernel function is positive definite, there are rare cases where ÷i,j = 0,
and thus, it is a good idea to bound it [Pla98].

13

Table 2.1 shows a list of popular kernel functions.

Classifier type Kernel function

Linear k(xi, xj) = xi · xj

Polynomial k(xi, xj) = (“xi · xj + c)d

Gaussian (RBF) k(xi, xj) = exp(≠“Îxi ≠ xjÎ2)
Sigmoid k(xi, xj) = tanh(“xi · xj + c)

Table 2.1: These are the kernels implemented by LIBSVM and
ThunderSVM. The kernels use various parameters (“, c, and d)
that can be tuned to achieve better accuracy.

2.5 Multiclass classification

So far, binary classification has been covered. In order to solve a multiclass

classification problem with three or more classes, it is common to decompose
the problem into multiple binary problems and solve them. ThunderSVM
uses one-versus-one, a technique where a binary classifier is trained for every
pair of classes. For k classes there will be a total of k(k≠1)

2 binary classifiers.
After training each classifier, predictions are made by voting; the class that
is predicted by most of the binary classifiers is returned as the output of
the model. Inevitably, ties can happen when two or more classes receive the
same amount of votes. In these cases, it is important to resolve the ties in
a fair manner. If a tie involving the same classes happens multiple times,
ThunderSVM simply picks the same class every time, and as such, it can be
slightly biased towards specific classes. A better solution would be to resolve
the ties randomly or use additional information from the binary classifiers.

14

Chapter 3

Design and Implementation

In this chapter, I will describe the implementation of FutharkSVM (FSVM),
a small SVM library in Futhark. In order to exploit the power of the GPU,
it is necessary to use the array combinators provided in Futhark to perform
operations in parallel. As such, the transformation from the ideas outlined
in Chapter 2 to code using Futhark’s SOACs will be discussed.

3.1 Library structure

The implementation uses Futhark’s higher-order module system. svm is a
parametric module, and it is the container of the library. It packs all the
useful modules into one. It takes a float type module as an argument, making
it possible to choose the desired floating-point precision for the entire library.
It contains modules svc and kernels. svc is a parametric C-SVM module.
In order to enable the user to choose the kernel they want it to use, svc
takes a kernel module as an argument. kernels packs all the predefined
kernel modules that can be passed to svc: linear, polynomial, rbf, and
sigmoid. They all implement a module of type kernel and can be used
to compute their specific kernel matrix. Additionally, svc uses the solver
module which implements an SMO solver. Having the solver in a separate
module from svc allows other types of SVMs (e.g. svr for regression) to be
implemented using it in the future. A simple example of how the library is
used is shown in Listing 1.

15

1 import "futhark-svm/svm"

2

3 module fsvm = svm f32

4 module lin_kernel = fsvm.kernels.linear

5 module lin_svc = fsvm.svc lin_kernel

6

7 entry fit_and_predict X y X_test =

8 let model = lin_svc.fit X y 10 fsvm.default_fit {}

9 in lin_svc.predict X_test model.weights fsvm.default_predict {}

Listing 1: Example usage of the library in Futhark. A function
fit_and_predict is defined, which first fits on X and y, and then
predicts the labels of the data points in X_test.

3.2 Full-kernel solver

The svc module uses an SMO solver to train. The initial solver that was
implemented computes the full kernel matrix and keeps it in memory. Thus,
it can implement SMO as summarized in Algorithm 1. It is quite fast but
as discussed before; it is rarely possible to store a full kernel matrix in GPU
memory due to its n

2 elements.

Listing 2 shows how a single step of SMO is performed in Futhark. It has
comments that describe exactly what each part corresponds to. At every
iteration of SMO we have to search for u, l, and f

max. To implement argmax
and argmin as used by the selection heuristics we can use the reduce array
combinator. ÷i,j = Ki,i + Kj,j + 2Ki,j is used to find l and update the –’s. It
includes two diagonal elements of the kernel matrix and as such, a separate
array D is used to cache these for fast accesses. After finding u and l the –’s
can be updated. Finally, the optimality indicators f can be updated using a
simple map operation. This step function is the core of the implementation.

3.3 Two-level solver

Since the full-kernel solver uses too much memory it is necessary to use two-
level decomposition. We can decompose the problem such that only a few
rows of the kernel matrix have to be stored in memory at a time. This
amounts to selecting a working set of n

ws data points to perform SMO on.
As such, there will be an outer loop where a working set is selected and
solved with SMO (in an inner loop) every iteration. Note that choosing n

ws

16

1 local let solve_step [n] (K: [n][n]t) (D: [n]t)

2 (Y: [n]t) (F: [n]t) (A: [n]t) ((Cp, Cn): C_t)

3 (m_p: m_t): (bool, (t, t), [n]t, [n]t) =

4 -- Find the extreme sample x_u in I_upper.

5 let B_u = map2 (is_upper Cp) Y A

6 let F_u_I = map3 (\b f i ->

7 if b then (f, i) else (R.inf, -1)) B_u F (iota n)

8 let min_by_fst a b = if R.(a.0 < b.0) then a else b

9 let (f_u, u) = reduce min_by_fst (R.inf, -1) F_u_I

10 -- Find f_max so we can check if we�re done.

11 let B_l = map2 (is_lower Cn) Y A

12 let F_l = map2 (\b f -> if b then f else R.(negate inf)) B_l F

13 let f_max = R.maximum F_l

14 -- Check if done.

15 in if R.(f_max-f_u<m_p.eps) then (false,(f_u,f_max),F,A) else

16 -- Find the extreme sample x_l in I_lower.

17 let K_u = K[u]

18 let V_l_I = map4 (\f d k_u i ->

19 let b = R.(f_u - f)

20 in if R.(b < i32 0)

21 then (R.(b * b / (max tau (D[u] + d - i32 2 * k_u))), i)

22 else (R.(negate inf), -1)) F_l D K_u (iota n)

23 let max_by_fst a b = if R.(a.0 > b.0) then a else b

24 let (_, l) = reduce max_by_fst (R.(negate inf), -1) V_l_I

25 -- Find bounds for q.

26 let c_u = R.(if Y[u] > i32 0 then Cp - A[u] else A[u])

27 let c_l = R.(if Y[l] < i32 0 then Cn - A[l] else A[l])

28 let eta = R.(max tau (D[u] + D[l] - i32 2 * K_u[l]))

29 let b = R.(F[l] - f_u)

30 -- Find new a_u and a_l.

31 let q = R.(min (min c_u c_l) (b / eta))

32 let a_u = R.(A[u] + q * Y[u])

33 let a_l = R.(A[l] - q * Y[l])

34 -- Update optimality indicators.

35 let F� = map3 (\f k_u k_l -> R.(f + q * (k_u - k_l))) F K_u K[l]

36 -- Write back updated alphas.

37 let A� = map2 (\a i ->

38 if i == u then a_u else if i == l then a_l else a) A (iota n)

39 in (R.(q > i32 0), (f_u, f_max), F�, A�)

Listing 2: solve_step performs a single iteration of SMO.

17

to be the number of GPU threads will enable the array combinators used in
SMO to utilize the full power of the GPU. FSVM selects the working set by
both of the strategies described in 2.3. Note: If the problem has fewer data
points than n

ws, FSVM simply uses the full-kernel solver.

3.3.1 Caching

While the FIFO strategy used by ThunderSVM keeps half of the previous
working set, and thus, allows us to reuse a part of the previous kernel matrix
rows, it does not act as a cache for kernel matrix rows. It simply copies a
fixed part of the previous rows and reuses them. In FSVM, a simple least-
recently used (LRU) cache is used to store kernel rows for future requests.
It stores all kernel rows for the t previous iterations. When new kernel rows
have to be computed for a working set, the kernel rows from t ≠ 1 previous
iterations are searched through first. Note that it is t ≠ 1 because the kernel
rows from the most recently cached iteration are not considered; with the
selection heuristics besides FIFO, it is very uncommon that a data point is
selected for the working set twice in a row, and thus, the hit rate would
be close to zero. It is possible to search the cache simply by comparing all
indices of cached rows with all indices of the new rows to compute, which
is done quite e�ciently with map and reduce. The rows with indices that
were found can then fetched from the cache, and the rest are computed
with matrix multiplication. I found that using t = 2 (only searching the
"previous previous" kernel rows) is quite e�cient, and that larger t might
not be necessary to achieve high hit rates. For full trainings on the MNIST
dataset [LC10] I observed cache hit rates between 75% and 88% with various
kernel parameters. In addition, the training became about 3x faster. For the
Adult dataset [DG17] the hit rate was 4-71%.

3.4 The svc module

svc is the module of the C-SVM classifier. It has two functions: fit and
predict. The fit function, which trains a model, takes a dataset, some
settings, and some kernel parameters. It returns a value of type output
which has two fields; weights and details (as shown in Listing 3). The
weights field is a record that contains all the values needed to predict the
labels of unseen data. If the input dataset has k classes, the output contains
the weights for q = k(k ≠ 1)/2 binary models. Each binary model has a
di�erent amount of weights and support vectors. As Futhark does not permit
irregular arrays, all the weights and support vector indices are stored in flat

18

1-dimensional arrays. E.g., the field A of weights is a flat array that contains
all yi–i’s for all the q models. The field Z contains the number of weights
for each binary model and it indicates where the weights of each model start
and end in the flat array. The other field of the output, details, contains
verbose information about the training of each binary model.

1 type weights �t [m][o][p][q] = {

2 -- Flat alphas.

3 A: [o]t,

4 -- Flat support vector indices.

5 I: [o]i32,

6 -- Support vectors.

7 S: [p][m]t,

8 -- Segment sizes of flat alphas/indices.

9 Z: [q]i32,

10 -- Rhos (-bias/intercept).

11 R: [q]t,

12 -- Number of classes.

13 n_c: i32

14 }

15

16 type details �t [q] = {

17 -- Objective values.

18 O: [q]t,

19 -- Total iterations (inner).

20 T: [q]i32,

21 -- Outer iterations.

22 T_out: [q]i32

23 }

24

25 -- | Trained model type.

26 type output �t [m][o][p][q] = {

27 weights: weights t [m][o][p][q],

28 details: details t [q]

29 }

Listing 3: output is the return type of the fit function and
weights is used as input to the predict function. There are
comments in the code to describe each field.

19

3.4.1 Prediction

Since the training weights come in a flattened format, the prediction function
of svc is implemented using irregular segmented operations. It thereby finds
the output of all q binary models in parallel. Initially, it computes the kernel
matrix between the test data points and the support vectors. It can then
compute yi–ik(xi, xtest) using the flattened array A of yiai. All these values
can be summed up by segmented reduction, and we can obtain the value of
y

test = sgn (qn
i=1 yi–ik(xi, xtest) ≠ b) for each of the binary models. A binary

model represents two classes, and y
test œ {+1, ≠1} will be a vote for one of

them. The votes can be counted using reduce_by_index, a SOAC which
can be used to count into bins. Finally, we can do a reduction on the bins to
find the index of the bin with the most votes, which also happens to be the
predicted class of the full model.

3.5 Modular kernels

A limitation of most SVM implementations is that only a select few popu-
lar kernel functions are made available. Studies have shown that other, less
frequently used kernels in some cases yield better results than the popular
ones. For example, in the article [BTB05], the Laplacian RBF kernel per-
forms better than the Gaussian RBF kernel. In this implementation, kernels
are defined with modules. This allows kernels to be defined by users of the
library. The definition of the kernel module type can be found in Listing 5.
As an example, let the Laplacian RBF kernel be defined by:

k(xi, xj) = exp(≠“Îa ≠ bÎ) (3.1)

It can be defined in Futhark as a kernel module as shown in Listing 4:

1 module laplacian_rbf (R: real): kernel

2 with t = R.t

3 with s = {gamma: R.t} = default_kernel R {

4 module util = kernel_util R

5 type t = R.t

6 type s = {gamma: t}

7

8 let value [n] (k_p: s) (u: [n]t) (v: [n]t): t =

9 R.(exp (negate k_p.gamma * sqrt (util.sqdist u v)))

10 }

Listing 4: A simple Laplacian RBF kernel module.

20

1 module type kernel_function = {

2 -- | Kernel parameters.

3 type s

4 -- | Float type.

5 type t

6 -- | Compute a single kernel value.

7 val value [n]: s -> [n]t -> [n]t -> t

8 }

9

10 -- | Kernel computation module type.

11 module type kernel = {

12 include kernel_function

13 -- | Compute the kernel diagonal.

14 val diag [n][m]: s -> [n][m]t -> *[n]t

15 -- | Extract diagonal from a full kernel matrix.

16 val extdiag [n]: s -> [n][n]t -> *[n]t

17 -- | Compute a row of the kernel matrix.

18 val row [n][m]: s -> [n][m]t -> [m]t -> [n]t -> t -> *[n]t

19 -- | Compute the kernel matrix.

20 val matrix [n][m][o]:s->[n][m]t->[o][m]t->[n]t->[o]t-> *[n][o]t

21 }

Listing 5: kernel is the module type used to define the kernels. It
specifies functions that are used to compute kernel values. s is the
type of the kernel parameters. E.g., the parameter for the Gaus-
sian RBF kernel is “. kernel_function is a shorthand module
type for kernel, which only specifies the value function. Mod-
ules with this type can be given as an argument to a parametric
module default_kernel, which implements all the functions of
kernel in a standard way using the value function.

A new C-SVM module can then defined by:

module laplacian_rbf_svc = svc f32 (laplacian_rbf f32)

For some X and y, it can be trained by:

laplacian_rbf_svc.fit X y svm.default_training {gamma=0.1}

Some kernel functions have special properties that make it possible to com-
pute the kernel matrix, or parts of it, more e�ciently. This is another reason

21

why modules have been chosen to implement them. For example, the di-
agonal of the Laplacian RBF kernel matrix is always all 1’s. As such, it is
unnecessary to compute or even cache the diagonal, because all accesses to
it can be replaced with a constant instead. It would be tedious to replace all
accesses to the diagonal with a 1 in the code of the solvers by hand. Futhark’s
module system should be able to do this for us. While we can define a new
kernel using only the value function and the default_kernel parametric
module as done in Listing 4, it is also possible to define each of the functions
specified by the kernel module type from scratch. For the Laplacian RBF
kernel module, we could simply define the diag function, which computes
the diagonal of its kernel matrix, as:

let diag [n][m] _ (_: [n][m]t): *[n]t = replicate n (R.i32 1)

3.6 Testing

It is not easy to validate the correctness of the output weights of a support
vector machine. The support vectors chosen by this implementation might
not be the same as those chosen by other implementations, and thus, the
Lagrange multipliers – might not be the same. Also, it will not be possible
to use ÎwÎ to compare the margin achieved since w will be in some obscure
feature space induced by the kernel function. The output that can be com-
pared with other implementations to verify the results is, for the most part,
the objective value, bias, and accuracy.

Since only a few indicators can be compared against those of existing imple-
mentations, it becomes an important task to test that the SVM’s underlying
functionality operates correctly. Futhark’s inbuilt testing utility has been
used to write unit tests for the modules. The tests can be run with futhark
test tests/. In addition, these tests are automatically run every day with
the GitHub Actions tool, and thus, new modifications are continuously and
consistently tested. It is tested with the most recent version of Futhark, and
thereby, the tests will indicate if anything needs to be updated.

These tests are primarily made to be quick and concise such that they can
be used painlessly under development. Also, they’re made to not fail when
insignificant numerical errors happen. There are tests of the utilities, kernel
implementations, solver, and of the full C-SVM implementation. For testing
the full implementation, the tiny Iris dataset [Fis36] (which has two nonlin-

22

early separable classes) is used, and its output is compared with the output
of LIBSVM. The objective values achieved are identical (down to the last
decimal), refer to Table 3.1.

Kernels Objective values: FSVM

Linear ≠2.7480 ≠0.2036 ≠15.7598
Polynomial ≠77.3304 ≠19.8216 ≠289.5543
Gaussian (RBF) ≠3.1437 ≠3.5925 ≠74.4895

Objective values: LIBSVM

Linear ≠2.7480 ≠0.2036 ≠15.7598
Polynomial ≠77.3304 ≠19.8216 ≠289.5543
Gaussian (RBF) ≠3.1437 ≠3.5925 ≠74.4895

Table 3.1: Objective values found when training with Futhark-
SVM and LIBSVM using the shown kernels on the Iris dataset.
The table contains three objective values per training since there
are three classes, and it solves once for each pair of classes. The
values are the same and the test passes.

The implementation has also been evaluated on much larger datasets that
are not as suitable for automated tests in a development environment. The
results of that will be reviewed in the experimental study, Chapter 4.

23

3.7 Python binding

Python is one of the most used languages for data science. It has excellent
libraries for data loading and preprocessing, and thus, it makes it easier to
test and benchmark an SVM library than if it had to be done solely with
Futhark. Many other SVM libraries, such as LIBSVM and ThunderSVM,
also provide Python bindings. It felt natural to provide a binding such that
it is possible to use FSVM in Python. In order to make the compiled Futhark
OpenCL program available in Python, I used futhark_ffi1. The interface
was inspired by scikit-learn. Listing 6 shows example usage.

1 from futhark_svm import SVC

2 import numpy as np
3

4 X_train = np.array([[0, 1], [1, 0]])

5 y_train = np.array([0, 1])

6

7 m = SVC(kernel=�rbf�, C=10)

8 m.fit(X_train, y_train)

9 m.predict(np.array([[0, 1]])) #=> [0]

Listing 6: Example usage in Python. The class SVC has a similar
interface to the class of the same name in scikit-learn.

1
https://github.com/pepijndevos/futhark-pycffi/

24

Chapter 4

Experimental Study

In this chapter, FutharkSVM (FSVM) is benchmarked versus ThunderSVM
(TSVM) in terms of accuracy, objective values, number of support vectors,
and time used to train and predict. The steps to run the benchmarks are
outlined in the bench/ folder of the source code repository. Both libraries
have Python interfaces with the same input format, and thus, to ensure
fairness and make reproduction easier, data loading is done using Python.
The three datasets used are detailed in Table 4.1.

Name Cardinality Features Classes

MNIST 60000 784 10
Olivetti 400 4096 40
Adult 48842 113 2

Table 4.1: Datasets used for the benchmarks.

The MNIST dataset comes with 60,000 training samples and 10,000 test sam-
ples. Olivetti and Adult has randomly been split into training and test sets,
with 10% of the total dataset used for testing (40 and 4,884 test samples,
respectively). Adult, that has 14 features originally, comes with some cate-
gorical data that has been one-hot encoded. The features of all datasets have
been normalized to the [0, 1] interval.

The experiments are conducted with an Intel i3-8100 CPU with 16 GB RAM
and an NVIDIA GTX 1060 GPU with 3 GB RAM. Both SVM implementa-
tions use 32-bit floating-point numbers for all benchmarks. FSVM is com-
piled with OpenCL while TSVM uses CUDA-C and C++. The Python
interfaces make calls to these compiled libraries.

25

The Gaussian RBF kernel and the polynomial kernel are used. The parame-
ters C, “, d, and c used were selected by ad hoc experimentation: Parameters
that achieved a decent test accuracy with TSVM were used.

4.1 Training

Table 4.2 shows the times achieved when training. FSVM rivals the perfor-
mance of TSVM on most of the experiments. For MNIST, FSVM performs a
bit worse than TSVM on two out of the six experiments. On the other four,
FSVM performs slightly better (1.05 to 1.15 times faster than TSVM). It
performs better than TSVM on the Olivetti dataset. When there are binary
problems with less than n

ws = 1024 data points, FSVM will use an SMO
solver that computes the full kernel matrix, rather than the solver using
two-level decomposition. This solver is much faster, as it has no overhead
from employing a cache, nor does it su�er from attempting to decompose a
dataset that already has a suitable size. Datasets with few data points per
class, such as Olivetti, can benefit from this. FSVM is significantly slower on
the Adult dataset, but it is di�cult to rule out if constant factors are at play
since the times are low. For the experiments, the features were normalized
to the [0, 1] interval because TSVM printed nan di�erences and seemed stuck
otherwise. FSVM could handle the non-normalized Adult dataset without
any issues. This is perhaps because of the additional safety measures, e.g.,
ensuring that q > 0 and ÷i,j > 0 (TSVM employs neither of those checks).

Dataset Kernel
Parameters Time (seconds)

Speedup
C “ d c FSVM TSVM

0 MNIST Poly. 10 0.01 2 0 33.13 23.95 0.72x
1 MNIST Poly. 10 0.01 3 0 23.03 24.24 1.05x
2 MNIST Poly. 10 0.01 4 0 22.94 23.96 1.05x
3 MNIST RBF 0.1 0.001 - - 28.54 31.71 1.11x
4 MNIST RBF 1 0.001 - - 21.41 24.63 1.15x
5 MNIST RBF 10 0.01 - - 31.81 23.60 0.74x
6 Olivetti Poly. 10 0.01 3 0 3.68 8.08 2.20x
7 Olivetti RBF 10 0.01 - - 4.07 7.46 1.83x
8 Adult Poly. 1 0.0001 3 0 2.50 1.38 0.55x
9 Adult RBF 1 0.0001 - - 2.52 1.55 0.61x
10 Adult RBF 10 0.0001 - - 3.72 1.46 0.39x

Table 4.2: Benchmark results for training. Speedup is the relative
performance calculated by time

TSVM
/time

FSVM. Best if bold.
FSVM=FutharkSVM, TSVM=ThunderSVM

26

Table 4.3 shows some important measurements after training; it contains
the mean of the objective values, the bias of the last binary model that was
trained, and the training error. The objective values and biases of FSVM and
TSVM are almost identical, which indicates that the trainings have achieved
similar optimizations. The training error of FSVM is slightly higher for some
of the experiments. As neither FSVM nor TSVM employs any tie-breaking
strategy when predicting, it might be caused by them having sorted the
classes di�erently. E.g., while FSVM will always choose 0 in a tie between
classes 0 and 1, TSVM might always choose 1.

#
Mean obj. value Bias (last) Training error

FSVM TSVM FSVM TSVM FSVM TSVM

0 -860.50 -860.50 0.127 0.128 0.066 0.001
1 -1193.37 -1220.34 0.227 0.227 0.008 0.001
2 -2219.09 -2219.06 0.333 0.332 0.003 0.003
3 -225.39 -225.39 -0.574 -0.564 0.092 0.092
4 -887.25 -887.25 -0.319 -0.319 0.061 0.061
5 -578.46 -578.46 1.346 1.345 0.017 0.000
6 -0.14 -0.14 -2.564 -2.564 0.000 0.000
7 -3.90 -3.90 -3.130 -3.130 0.000 0.000
8 -21113.8 -21113.8 -1.000 -1.000 0.152 0.152
9 -16566.9 -16566.9 -1.022 -1.023 0.164 0.148
10 -152211 -152210 -1.554 -1.556 0.240 0.240

Table 4.3: Mean objective value, last bias, and training error.
#0 corresponds to training setup #0 in Table 4.2, etc.
FSVM=FutharkSVM, TSVM=ThunderSVM

4.2 Prediction

Table 4.4 lists the number of support vectors (SVs) that were outputted by
training, the test accuracy, and the time it took to predict the data points in
the test set. The number of SVs is listed to show that the tests are fair; the
time it takes to predict is related to the number of SVs. It can be seen that
FSVM and TSVM have the same amount of SVs, and as such, the prediction
times should be "fair" in that aspect. Test accuracies are quite similar except
for two deviations where FSVM performs a bit worse than TSVM. Again,
the di�erence might be caused by tie-breaking. Lastly, FSVM is consistently
2.4 to 9.6 times faster than TSVM for prediction.

27

#
Support vectors Test accuracy Time (seconds)

Speedup
FSVM TSVM FSVM TSVM FSVM TSVM

0 8721 8718 0.951 0.980 0.365 1.498 4.10x
1 8135 8133 0.976 0.979 0.352 1.457 4.14x
2 8424 8423 0.974 0.974 0.369 1.495 4.05x
3 37949 37953 0.913 0.913 1.466 3.902 2.66x
4 20807 20807 0.941 0.941 0.837 2.487 2.97x
5 10868 10868 0.957 0.983 0.461 1.758 3.81x
6 353 353 0.975 0.975 0.003 0.028 9.33x
7 350 350 0.975 0.975 0.003 0.029 9.66x
8 21301 21370 0.769 0.764 0.075 0.186 2.48x
9 17694 17689 0.854 0.854 0.060 0.161 2.68x
10 15513 15511 0.838 0.854 0.054 0.146 2.70x

Table 4.4: Benchmark results for prediction and test accuracies.
The number of total unique support vectors found when training
are listed, as they impact prediction times. Speedup is the relative
performance calculated by time

TSVM
/time

FSVM. Best if bold.
#0 corresponds to training setup #0 in Table 4.2, etc.
FSVM=FutharkSVM, TSVM=ThunderSVM

4.3 Reflection on results

TSVM boasts a massive 100x performance improvement over LIBSVM when
training with GPUs. It is 10-100x faster than LIBSVM for prediction [Wen+18].
The benchmarks show that the performance of FSVM and TSVM is quite
similar when training. Especially for MNIST, the largest dataset used in the
benchmarks, the di�erence is very small. For prediction, FSVM is 2.4-9.6x
faster than TSVM. This is most likely due to the fact that the voting in the
prediction function of FSVM is done via the GPU, while it is not in TSVM.
Considering that Futhark is a high-level language, with additional run-time
safety checks (e.g. bounds checking), and that it is hardware agnostic, and
as such, will not be able to provide as many low-level hardware-specific op-
timizations (TSVM uses CUDA and libraries that run on NVIDIA hardware
only), these results are very good. It shows that an SVM implementation
in Futhark can compete with TSVM. Furthermore, Futhark is still in de-
velopment, and it seems to be getting a lot faster over time1. If this trend
continues, then FSVM will also be getting faster and better.

1
https://futhark-lang.org/blog/2020-07-01-is-futhark-getting-faster-or-slower.html

28

Chapter 5

Conclusion and Future work

5.1 Conclusion

In this thesis, a new SVM library in Futhark has been introduced. It has
modular kernels, such that new kernel functions can be implemented by the
users of the library. It compiles into very e�cient GPU code, and the bench-
marks that were conducted show that it rivals the performance of the popular
SVM library ThunderSVM when training. On one dataset it performed 2.2x
better, while it performed slightly worse on others. A new method for one-
versus-one prediction on GPUs was proposed. It computes predictions for all
binary models in parallel and it also counts votes in parallel. The benchmarks
showed that it is consistently 2.4 to 9.6 times faster than ThunderSVM at
predicting. Since Futhark is hardware agnostic and has multiple backends,
it can be compiled to run on more hardware than ThunderSVM which only
runs on NVIDIA GPUs. As a high-level language, Futhark also provides ad-
ditional safety checks to ensure memory safety and the like. Finally, Futhark
programs have been shown to become faster over time as the compiler im-
proves. The library introduced has shown that Futhark is an excellent choice
for the implementation of SVMs.

5.2 Future work

In order for this library to become a complete SVM toolkit in the future, it
needs to implement support vector regression, and one-class SVMs. These
would not be very di�cult to implement using the SMO solver, and are
models that are expected from an SVM toolkit. Besides more models, there

29

are still a lot of strategies and tweaks that can be explored in order optimize
the implementation further. For example, as the kernel matrix is symmetric,
and n

ws kernel rows are computed every iteration, it is possible to reuse n
ws

columns of the rows every iteration (and thereby compute n
ws ◊ n

ws fewer
dot products). Also, since the matrix is symmetric, it might be possible to
achieve better performance by using sparse matrix multiplication.

Another problem that could be fixed in the future is that FutharkSVM does
not work on datasets that are too big for GPU memory. As Futhark takes
care of all memory management, it is not possible for the programmer to
decide if the dataset is stored in CPU or GPU memory. As a result, the
entire dataset which we train on is stored in GPU memory. For FutharkSVM
to work with very large datasets, or on machines with little GPU memory, a
program (written in C or a similar language) could be necessary to call the
essential parts of the Futhark program which uses the GPU.

30

Bibliography

[Fis36] R. A. Fisher. “The Use of Multiple Measurements in Taxonomic
Problems”. In: Annals of Eugenics 7.7 (1936), pp. 179–188.

[BGV92] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik.
“A Training Algorithm for Optimal Margin Classifiers”. In: Pro-

ceedings of the Fifth Annual Workshop on Computational Learn-

ing Theory. COLT ’92. Pittsburgh, Pennsylvania, USA: Associ-
ation for Computing Machinery, 1992, pp. 144–152.

[CV95] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks”.
In: Mach. Learn. 20.3 (Sept. 1995), pp. 273–297.

[OFG97] Edgar Osuna, Robert Freund, and Federico Girosi. “An Improved
Training Algorithm for Support Vector Machines”. In: (1997),
pp. 276–285.

[Pla98] John Platt. “Sequential Minimal Optimization: A Fast Algo-
rithm for Training Support Vector Machines”. In: Advances in

Kernel Methods-Support Vector Learning 208 (July 1998).

[BB00] Kristin Bennett and Erin Bredensteiner. “Duality and Geometry
in SVM Classifiers”. In: (Sept. 2000).

[Kee+01] S. S. Keerthi et al. “Improvements to Platt’s SMO Algorithm for
SVM Classifier Design”. In: Neural Comput. 13.3 (Mar. 2001),
pp. 637–649.

[BTB05] S. Boughorbel, J-P. Tarel, and N. Boujemaa. “Conditionally Pos-
itive Definite Kernels for SVM Based Image Recognition”. In:
(2005), pp. 113–116.

[FCL05] RE Fan, PH Chen, and Chih-Jen Lin. “Working Set Selection
Using Second Order Information for Training SVM”. In: Journal

of Machine Learning Research 6 (Jan. 2005), pp. 1889–1918.

31

[LC10] Yann LeCun and Corinna Cortes. “MNIST handwritten digit
database”. In: (2010).

[CL11] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A Library for
Support Vector Machines”. In: ACM Transactions on Intelligent

Systems and Technology 2 (3 2011). Software available at http:
//www.csie.ntu.edu.tw/~cjlin/libsvm, 27:1–27:27.

[Ped+11] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”.
In: Journal of Machine Learning Research 12 (2011), pp. 2825–
2830.

[DG17] Dheeru Dua and Casey Gra�. UCI Machine Learning Repository.
2017. url: http://archive.ics.uci.edu/ml.

[Hen+17] Troels Henriksen et al. “Futhark: Purely Functional GPU-Programming
with Nested Parallelism and in-Place Array Updates”. In: SIG-

PLAN Not. 52.6 (June 2017), pp. 556–571.

[Wen+18] Zeyi Wen et al. “ThunderSVM: A Fast SVM Library on GPUs
and CPUs”. In: Journal of Machine Learning Research 19 (2018),
pp. 797–801.

32

