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Abstract

Over the last couple of decades, CPUs have seen a fundamental change
from single-core to multicore design. This change has led to an increasing
interest in parallel programming to take advantage of the multiple cores. As
explicit parallel programming remains a challenging and error-prone task, a
considerable effort has been made in implicit parallel languages and frame-
works, which aims at hiding a lot of the tedious details of parallel program-
ming and let the programmer write code with close to sequential semantics.
However, current state-of-the-art languages and frameworks require that the
programmer must perform granularity control through a tuning process to
ensure good performance. Such a process is labour-intensive and generally
not portable.

This thesis presents the design and implementation of a new back-end
for the data-parallel language Futhark, targeting multicore CPUs. It aims
to make implicit parallel programming simple by using automatic granularity
control, which requires no tuning from the programmer. Our implementation
uses an oracle-guided scheduling approach that through an online algorithm
can predict the work (one-core run-time) of parallel for-loops. The oracle
can determine the granularity, which amortizes the cost of parallelisation at
run-time to effectively perform granularity control for both regular (nested)
parallelism and irregular parallelism. To evaluate our approach, we extend
the Futhark compiler to generate parallel C code and implement the algorithm
in the run-time system of the new back-end.

We evaluate our implementation’s performance against Futhark’s sequen-
tial back-end and show that our implementation can provide a significant
speed-up on the majority of existing Futhark programs. We also compare
our implementation against established benchmark suites such as FinPar and
Rodinia. Here we show that our implementation, in some cases, can provide
similar or better performance compared to hand-optimized code without the
need for manual tuning. However, our compiler does not consistently gen-
erate as efficient code as the hand-optimized benchmarks, which causes our
implementation to be slower for some benchmarks.

Keywords: Automatic Granularity Control, Implicit parallelism, Parallel
Languages, Futhark
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Chapter 1

Introduction

As CPU frequencies started to stagnate in the mid-2000s, using multicore
CPUs has been a critical component in achieving better performance through
shared-memory parallelism. However, it remains a difficult task to write
explicit parallel programs, as it requires expert knowledge to ensure both
correct and efficient programs. As such, a considerable amount of research
has been put into implicit parallelism. Implicit parallelism aims to hide
many of the tedious details in parallel programming, such as the schedul-
ing of parallel work, and delegate these to the compiler and run-time sys-
tem. Implicit parallelism has seen much work for both specialized languages
and language extensions for parallel systems. Examples of languages which
had support for implicit parallelism include Cilk[Blumofe u. a., 1995], Mul-
tilisp[Halstead, 1985], NESL[Blelloch u. a., 1993], while extensions include
Fork/Join Java[Lea, 2000], OpenMP[OpenMP, 2008] and TBB[Intel, 2011].
These offer support for simple but powerful parallel constructs such as fork-
join and parallel for-loops (parfor). For example, a “parallel map“, which
applies a function f to each element of an array xs, can be implemented
using parallel for-loops. The function f may itself contain parallel for-loops,
making it able to express nested parallelism as well.

Listing 1 A parallel map implementation using parallel for-loop
1 void parallel_map(T* xs, T* res, int n){

2 parfor (int i = 0; i < n; i++) {

3 res[i] = f(xs[i]);

4 }

5 }

To enable parallelization using parallel for-loops the run-time system must
create subtasks1 containing the closure of the function, which can be sched-
uled onto the computing cores for parallel execution. However, the creation
and management of subtasks comes with a cost, i.e., the overheads of paral-

1Also known as tasks, threads, or fibers.
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lelism. Such overhead can quickly become larger than the cost of execution.
For example, consider a function f , which increments the values of xs by
some constant. On modern computers, such an operation only takes a few
cycles, while the creation and management of a single subtask can take on the
order of thousands of cycles. If we were to naively create as many subtasks as
there are iterations, the overhead would overwhelm the cost of execution by
more than 100×. To control such overheads, one must tune the programs to
perform granularity control, which aims at creating subtasks whose sequential
work can amortize the cost of parallelization. For example, for a parallel loop,
one must group the iterations into “chunks“, which is executed sequentially.
However, even when one can control such overheads, further problems arise
when one considers irregular workloads, for example, when a call to f does
not take constant time, but its work is data-dependent. This can lead to un-
even workloads across subtasks and underutilization of the resources. Such a
case further complicates the tuning process, as in addition to the overhead, it
requires finding a partitioning of the iterations, which ensures load-balancing.
Current state-of-the-art languages and frameworks require that the program-
mer must perform the tuning. Such a process is time-consuming and not
portable as it depends on the machine, input data, and so on.

In this thesis, we present an implementation for writing implicit paral-
lel programs in the data-parallel array language Futhark, targeting multicore
CPUs. Our implementation provides automatic granularity control, which
requires only an once-per-machine automatic tuning process, and no addi-
tional tuning is required from the programmer. Furthermore, our approach
to granularity control supports both regular (nested) parallelism and irregular
parallelism, such as the case above, where calls to f are not constant time.

Up until this thesis, Futhark was only able to target GPUs (through
OpenCL or CUDA) or single-core CPUs (through C). The work in this the-
sis includes the design and implementation of a completely new back-end for
Futhark, which involves the development of a code-generator for the compiler,
as well as a run-time system capable of scheduling the generated code in par-
allel. As Futhark can target multiple platforms, we let the source language
remain untouched in this thesis, such that programs can be used across the
platforms, without target specific modifications. Instead, we rely on the com-
piler to perform multicore specific optimizations. Furthermore, as compiler
optimization is a perpetual process, our goal is to design our new back-end
such that either the compiler or run-time system can be changed in the future
without the need to change the other.

We extend the compiler with a new internal representation for generating
parallel C code for Futhark’s Bird-Meertens operators (map, reduce, scan,
etc)[Bird, 1989]. Our implementation use parallel for-loops for expressing
parallelism and involves lifting local code to global functions, which can be
encapsulated into a closure for parallel execution. Our compiler also generates
multiple versions of the semantically-equivalent code, which incrementally ex-
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ploits more levels of nested parallelism. For example, consider a program
containing two nested parallel loops. If the outer-loop contains enough paral-
lel work to saturate the machine, it would be more beneficial to perform the
inner loop sequentially. On the other hand, if the outer-loop only contains a
few iterations, it might be worth it to parallelize the inner-loop. Since such
decisions cannot be made at compile-time, we let the compiler produce both
versions for parallel computations and let the run-time system pick between
them. The run-time system is then able to exploit different levels of paral-
lelism depending on the specific input. The run-time system is implemented
as a library and only exposes an API to the code-generator. The closure of
the generated functions are then provided through an API call, which the
run-time system schedules using automatic granularity control.

Our implementation for automatic granularity control is based on the on-
line algorithm by Acar et al.[Acar u. a., 2019], which supports granularity
control for regular (nested) parallelism. We adapt the algorithm to our im-
plementation of parallel for-loops. Here we present the main idea behind their
algorithm. A more detailed presentation of their work can be found in Section
3.2.2. Their work is based on an “oracle-guided scheduling“ approach, which
can predict the actual work (one-core run-time) from parallel code, e.g., a
parallel map. In other words, the actual work denotes the run-time if we
were to execute the parallel code purely sequentially on a single core. Under
the assumption that the parallel code’s actual work is predictable in the input
size, n, one can define an abstract cost function c(n), which computes a value
proportional to actual work. In practice we use the asymptotic complexity,
e.g. n, n log n or n2 as cost functions. For example for a parallel map, assume
an array of length n and that a call to f() takes constant time C, then one can
use a linear cost function, i.e., c(n) = n, to describe the asymptotic work of
the parallel map. By the definition of “asymptotics“, there exists a constant
C, such that

C · c(n) ≈ T (1.1)

where T denotes the sequential run-time from the parallel code on some input
of size n. Through an iterative process, which samples sequential run-times,
the algorithm is able to infer the value of C at run-time. The online al-
gorithm leverages this estimate to predict the actual work of parallel codes
to perform granularity control by only parallelising computations, which can
amortize the cost of parallelisation. More precisely, let κ denote the cost of
parallelisation (in units of time) i.e., κ is the smallest amount of work for
a subtask, which makes parallel execution beneficial2. Continuing with our
parallel map example; we can replace the right-hand side of Eq. 1.1 with κ
and rewrite it to obtain the minimum number of iterations in a chunk which
amortizes the cost, i.e., nchunk = κ

C , which we use to perform granularity con-
trol. This approach to granularity control is flexible and requires no help from
the compiler. Compiler approaches to granularity control often fall short in

2κ is a machine-dependent value, which can be computed offline once-per-machine
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considering the environment the program is executed in and rely upon heuris-
tics, which do not generalize well. This approach performs granularity control
solely at run-time, by sampling sequential run-times of parallel codes and can
be implemented as a library solution. The disadvantage is that it requires
a cost function to describe the asymptotic work of parallel codes. In [Acar
u. a., 2019], they let the programmer provide the cost function. However, as
we do not wish to change the source language of Futhark, we use an assump-
tion. Since we are using parallel for-loops to express parallelism, we assume
that a linear cost function can describe the asymptotic work. We will discuss
the implications this assumption might have in Section 5.1, where we more
describe our approach in more detail.

For computations whose run-time are not predictable, i.e., results in irreg-
ular parallelism, the above approach does not apply, and our implementation
handles this case differently. For handling this case, we present our own online
algorithm for granularity control. As C is no longer a constant in this case, we
use a moving average estimation of C during execution of the parallel work to
estimate the chunk size, which amortizes the cost of subtask creation. Addi-
tionally, we implement a work-stealing strategy to enable workload balancing
at run-time.

To evaluate our implementation, we present an extensive empirical evalu-
ation, which is divided into three parts. First, we evaluate our new back-end
against the sequential back-end of Futhark on a series of microbenchmarks,
intended to show the performance of individual parallel constructs such as re-
duce, scan, etc. Second, we evaluate our new back-end against the sequential
back-end of Futhark using real-world programs from the Futhark Benchmark
suite, which shows how our implementation performs on programs containing
flat-, nested- as well as irregular parallelism. On our test machine, which
has 16 cores with 2-way multi-threading, we can achieve speed-ups ranging
from 7.8 to 23.8, with an average of 15.9, across 13 benchmarks on the largest
datasets. We only observed slow-downs in two cases, where the datasets is
small, and the program contains very little work. For example, for LU ma-
trix decomposition, we observed a slow-down of ×2.5 for a 64 × 64 matrix.
Finally, we compare our implementation to a set of hand-optimized programs
from other benchmark suites, such as FinPar[Andreetta u. a., 2016] and Ro-
dinia[Che u. a., 2009]. Our results show that our approach can eliminate the
need for hand-tuning of programs and, in some cases, provide better perfor-
mance. However, our compiler does not consistently generate as efficient code
as the hand-optimized benchmarks, which causes our implementation to be
slower for some benchmarks. We will discuss these results in more detail in
Chapter 7, where we present our benchmarks.

Contributions

The specific contributions of this thesis are:

• Design and implementation of a new code-generator in the Futhark
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compiler for compiling Futhark’s Bird-Meertens operators (map, reduce,
scan, etc) to parallel C code.

• Design and implementation of a run-time system for scheduling the
generated C code in parallel. The run-time system provides workload
balancing through a work-stealing strategy.

• Two online algorithms for automatic granularity control of parallel for-
loops for regular (nested) parallelism and irregular parallelism, respec-
tively. We implement the algorithms within the run-time system.

• An empirical evaluation using a wide variety of existing programs from
the Futhark benchmark suite as well as a comparison of our approach
against publicly available programs from established benchmark suites.

1.1 Thesis structure

The structure of this thesis is as follows:

Chapter 2 gives an introduction to multicore CPUs and the multi-threaded
programming model along with its challenges. The chapter also presents
parallel constructs as well as an introduction to the programming lan-
guage Futhark. This chapter is meant to give a brief overview for readers
who are unfamiliar with these topics.

Chapter 3 provides an overview of related work in implicit parallelism for
specialized programming languages and extensions as well as approaches
to automatic granularity control.

Chapter 4 presents how we translate Futhark’s Bird-Meertens operators
(map, reduce, scan, etc) into parallel algorithms using parallel for-loops.

Chapter 5 presents our methods for the run-time system, which includes our
approach to automatic granularity control, work management as well
as a memory management for the new back-end.

Chapter 6 presents the design and implementation of our new back-end,
which gives a high-level overview of our new code-generator and run-
time system.

Chapter 7 shows the result from our empirical evaluation for micro-benchmarks
and established benchmarks, comparing the performance against the se-
quential back-end of Futhark. Finally, we present an evaluation against
hand-optimized programs from other benchmark suites.

Chapter 8 briefly discusses the limitations or shortcomings of our work and
suggest how future work can improve upon it.
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Background and Related work
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Chapter 2

Background

This chapter introduces the fundamental concepts this thesis is built on. First,
we describe the basics of modern CPUs and multi-threaded programming
along with its challenges. Second, we present the parallel construct, parallel
for-loops, as a way of expressing parallel computations. Finally, we introduce
the programming language, Futhark. While the reader might not become an
expert in these topics from reading this chapter, they should gain enough
knowledge to understand the renaming of this thesis.

2.1 Computer architectures and CPUs

Today computers are an essential part of modern society and can be found
in the form of smartphones, laptops, servers, etc., and serve billions of people
every day. While these can be different in size and in computing power,
the majority of these are based on the von Neumann architecture[Neumann,
1945]. The architecture is based on the stored-program concept, keeping
both data and instruction stored in the same shared memory. Before the
architecture was introduced, each machine was designed and built for a single
predetermined purpose, which required manual rewiring of circuits, a labour-
intensive and error-prone process. The von Neumann architecture, shown
in Figure 2.1, consists of three main components, CPU, memory, and I/O
interfaces. The I/O interfaces allow the computer to interact with other
devices. Such devices include hard disks, also known as persistent storage, or
Graphics Processing Units (GPUs). The memory is used to store a program’s
instructions, which the machine executes, along with its data. A commonly
used memory type is Random-Access memory (RAM), which, unlike hard
disks, is non-persistent storage, i.e., the content is lost when the machine loses
power. The CPU has three main components. First, the Control Unit, which
determines the order in which instructions should be executed and controls
the retrieval of necessary data from memory by interpreting the program’s
instructions. It does so by issuing a series of control signals through the
control bus, a communication line for either the memory or I/O devices,
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specified by signal send along the address bus. The data bus is a bidirectional
signal line, where the data is sent or received through.

The arithmetic logic unit (ALU) is the execution unit of a CPU and per-
forms mathematical operations such as addition, multiplication, or boolean
operations. The registers are small, temporary storage locations. As they are
located directly onto the CPU, they are much faster to access than memory,
which usually is on the order of hundreds of cycles on a modern computer. In
contrast, registers can be accessed with just a couple of cycles and are a crit-
ical component to improve CPUs’ performance. A CPU that is implemented
onto a single chip is also called a microprocessor.

Figure 2.1: Diagram of the von Neumann Architecture and it’s basic compo-
nents (Source: http://www2.cs.siu.edu/~cs401/Textbook/ch2.pdf)

2.1.1 CPUs

CPUs are the hearts of computers and are intricate pieces of hardware, which
can consist of billions of transistors all on fitted into a small integrated cir-
cuit. But back in November 1971, it was not the case. At that time, the first
commercial produced microprocessor, 4004, was introduced by the Ameri-
can company, Intel Corporation. The 4004 had 2.300 transistors, could per-
form 60.000 operations per second and had 640 bytes of addressed memory.
Since then, the computing power of microprocessors has grown massively. As
predicted by Gordon Moore, the co-founder of Intel, would the number of
transistors roughly double every two years, while the cost is halved. What
this meant that we would observe an exponential growth in computing power
every second year.

The doubling of transistors at the time resulted in higher clock frequen-
cies, which made single-core applications run faster, the so-called “free lunch“.
In 2000 did the American semiconductor company Advanced Micro Devices
(AMD) break a historical barrier as they introduced the Athlon microproces-
sor, which had a clock frequency of 1 GHz. However, from 2005, this rapid
increase in clock frequencies changed. While we still observe higher transistor
count, the clock frequencies have stagnated due to physical, thermal limita-
tions, causing the microprocessors to heat up. Microprocessor designers had
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to rethink how to make use of the transistors to obtain better performance.
Instead, designers focused on increasing instructions per cycle (IPC) through
various approaches:

Memory hierarchy: The problem with the Von Neumann architecture is that
memory is placed far away from the chip and fetching data from memory
can create a substantial delay. As microprocessors became faster and
faster, they started to outperform the speed in which data could arrive,
making memory a bottleneck in most systems.

To mitigate the bottleneck, microprocessors make use of a memory hi-
erarchy in the form of caches. The memory hierarchy consists of several
layers of small and fast memory embedded directly onto the chip. As
more transistors could be fitted onto the single chip, the size and the
efficiency of the caches grew as well.

Instruction-level parallelism: To further improve the IPC, modern proces-
sors make use of instruction-level parallelism. Out-Of-Order execu-
tion is a technique to avoid wasting clock cycles by executing later
instructions, when the current instruction is stalling, and there are no
data-dependencies between them. Another instruction-level parallelism
technique is superscalar pipelines, enabling the execution of multiple
instructions in parallel. Again, it requires that parallel instructions do
not have data-dependencies.

Multiple cores: In 2005, AMD introduced the Athlon 64 X2 which featured
a new architecture with two cores. This sparked a new trend in CPUs,
which now could provide explicit parallelism onto the chip. The trend
by adding additional cores is continuing today and for example, the
Intel Xeon v2 Platinum 8290 come with 56 cores, and AMD provide 64
cores on their high-end Threadripper CPUs. Multicore core CPUs are
not much different from the single-core counterpart, and each core still
provides the same features above. Unlike the previous approaches, this
does not provide the programmer with implicit performance gains but
instead adds support for the programmer to better utilize the transistors
in the form of writing parallel programs.

Hyper-threading: As memory bandwidth continued to be a bottleneck on
most systems, Intel introduced the notion of hyper-threading in 2002 or
more generally called Multithreading. Multithreading adds the notion
of virtual cores. With Multithreading, one physical core acts as two
cores while still sharing many of the core resources. In simple terms,
Multithreading enables each virtual core to have its own architectural
state, i.e., registers and the front-end of the pipeline (fetching and de-
coding), while still sharing the execution units, such as the ALU. This
enables more efficient concurrent execution on the same physical core,
as each thread can take over whenever the other is stalling, usually wait-
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ing for data to arrive. According to Intel, Multithreading adds up to
30% performance gain on a single core.

While all of these optimizations can significantly increase performance, it re-
mains challenging to write programs that can take advantage of the multiple
cores. For example, in C, which has no notion of multi-threaded program-
ming, the programmer must explicitly manage threads and synchronization
on shared memory to ensure correctness. Such a process is notoriously known
to be error-prone and time-consuming. The next section provides an insight
into the multi-threaded programming model and its challenges.

2.2 Multi-threaded programming model

This section introduces POSIX threads as a way of creating parallel work-
flows and introduces its programming model. This section also discusses some
of the difficulties of writing correct multi-threaded programs and presents the
mechanisms to ensure that a program remains correct using threads.

2.2.1 Operating System threads

OS threads (hereafter threads) allow programs to execute using multiple par-
allel work-flows within a process. Threads can be scheduled onto different
cores by the operating system and run as separate entities. This is accom-
plished since they only duplicate the bare essential resources of its process.
Each thread maintains it is own stack pointer, registers, and program counter
while sharing other process properties, such as the heap, global data, environ-
ment, file descriptors, and signal handlers. As such, threads can be thought
of as lightweight processes, which can achieve parallelism without the heavy
management that comes with processes.

POSIX Threads (pthreads) was initially created for providing a stan-
dardized programming interface for the creation and managing of threads
across hardware on UNIX systems. pthreads presents has its own execu-
tion model, which is independent of the programming language. For exam-
ple, the execution model of pthreads does not provide any guarantee about
the execution order of threads, i.e., the execution of concurrent threads may
interleave arbitrarily. Thus a great amount of attention must be paid to-
wards ensuring thread-safeness. Thread-safeness refers to the programs abil-
ity to execute multiple threads simultaneously while ensuring that shared
data is “consistent“ and avoid creating “race“ conditions. For example, con-
sider a small program where we try to increment a shared counter using two
threads. A minimal program is shown in Listing 2 using the POSIX threads
library. The program creates two threads through lines 9 and 10, which calls
thread_increment and increments the shared variable counter. It then waits
for both threads to return from the function through lines 12 and 13. Finally
is the value of outputted.
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Listing 2 A unsafe program using threads
1 int counter = 0;

2 void *thread_increment(void *args) {

3 counter++;

4 return NULL;

5 }

6

7 int main() {

8 pthread_t tid1, tid2;

9 pthread_create(&tid1, NULL, thread_increment, NULL);

10 pthread_create(&tid1, NULL, thread_increment, NULL);

11

12 pthread_join(tid1, NULL);

13 pthread_join(tid2, NULL);

14 printf("%d\n", counter);

15 }

With a sequential execution model, one might expect that the counter
would contain the value of two, but since POSIX does not provide any guar-
antee about the execution order, both threads might read zero and increment
it and write back one. Without ensuring that such an operation is thread-safe,
data corruption can occur. We call such operation on shared data critical,
and when more operations are needed to modify some shared data, we call
it a critical section. There are several ways of ensuring that data-corruption
does not occur through synchronization mechanisms by ensuring that only a
single thread accesses to shared data at the time.

2.2.2 Mutual exclusion

We can avoid race-conditions to occur by using explicit locking, thereby se-
rializing critical sections. With pthreads such locks are available, called
mutexes. The extended code in Listing 3 shows an example usage, where
PTHEREAD_MUTEX_INITIALIZER is a macro that initializes the mutex.

Listing 3 Extended program, which ensures updates are thread-safe using
mutexes

1 ...

2 pthread_mutex_t lock = PTHEREAD_MUTEX_INITIALIZER;

3 void thread_increment(void *args) {

4 pthread_mutex_lock(&lock);

5 counter++

6 pthread_mutex_unlock(&lock);

7 return NULL;

8 }

9 ...

The use of mutexes are very flexible and can be used to lock arbitrary sized
critical sections. Another advantage of mutexes is the usage in combination
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with condition variables, allowing threads to sleep and wake up only when a
certain condition is full-filled. Such a pattern is especially useful when work-
ing with producer-consumer problems, allowing threads not to waste CPU
resources when there is no work. In modern operating systems, mutexes are
implemented using futexes, short for “Fast user-space mutex“, which only in-
vokes a kernel call whenever there is contention for the lock. Whenever a
thread is trying to acquire an unlocked lock, the operation is performed using
an atomic operation (Section 2.2.3), which happens in user-space. Only when
the requested lock is locked, a kernel call is made, requiring a context switch
to kernel space, which is relatively expensive.
When using locks, one must also beware of deadlocks. Deadlocks occur when-
ever within a set of threads, each thread is waiting for a lock to be released,
which is controlled by another thread. Deadlocks are the source of many
bugs in multi-threaded programming and can be challenging to resolve, as
they might only occur on rare occasions.

2.2.3 Atomic operations

At a more primitive level are atomic operations, which forms the basis of
many locks implementation, including the mutex presented above. Atomic
operations provide a guarantee that an operation cannot be interrupted by
other threads. For example, can an atomic addition of integers, read the old
value, perform the addition, and write the result back atomically.

1 ...

2 void thread_increment(void *args) {

3 atomic_add(counter , 1)

4 return NULL;

5 }

6 ...

Atomic operations require special machine language instructions available
through runtime libraries. The library implementation depends on the con-
crete machine currently executing on. Luckily, most mainstream compilers,
such as GCC, already provide atomic operation functions, such that the pro-
grammer does not need to worry about the concrete machine the program is
executed on. It is usually a very efficient way of dealing with race-condition
but is not applicable in some cases. For example, they do not support floating-
point operations. Compared to the use of mutexes are atomic operations less
flexible (unless used as locks), only providing atomic operations on few prim-
itives and unable to be used in combination with condition variables, for ex-
ample. Furthermore, as many compilers and processors rearrange instructions
to obtain better performance they usually only think about its dependencies
from a sequential point-of-view. Whenever concurrent programs are executed,
we usually need to explicitly tell the compiler or processor that specific in-
structions cannot be rearranged. The next section introduces the notion of
memory models and how we can use barriers to prevent such rearranging
instructions.
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2.2.3.1 Memory models and Barriers

When dealing with lock-free concurrent programming, the notion of mem-
ory ordering needs to be handled carefully. As an optimizing compiler has
the freedom to reorder instructions, it can cause unexpected behavior on
multi-threaded programs, where the order can be crucial. The reordering of
instructions is not only confined to optimizing compilers. Processors today
make use of reordering instructions at run-time, e.g., out-of-order execution,
to increase performance. We first introduce the notion of memory models.
We usually distinguish between strong and weak memory models. A memory
model is said to be strong if a core/thread performs a series of writes, every
other core/thread sees those writes in the same order as they were performed.
A weak memory model is then a processor which does not guarantee such or-
dering of writes and reads. From a hardware perspective, an example of a
strong memory model are microprocessors from the x86/641 architecture fam-
ily. Architectures based on Alpha or ARMv7 are examples of weak hardware
memory models. From a software perspective, programming languages like
C/C++ also falls into the category of weak memory models, as the compiler
is free to reorder instructions. To better understand the problem of a weak
memory model in a multi-threaded setting, consider the simple two threaded
program below; thread 1 waits as long as f equals 0 and prints the value of
x afterwards, while thread 2 writes to x and then sets f. Without restricting
the compiler from reordering, it might reorder the two instructions on thread
2, resulting in thread 1 printing 0.

1 // thread 1

2 while (f == 0);

3 print x

1 // thread 2

2 x = 42;

3 f = 1;

To ensure correct program behavior, we need to make use of memory bar-
riers, which prevents the compiler from rearranging instructions. A memory
barrier instruction tells the compiler that everything before the barrier can-
not be reordered onto the other side and vice versa. The modified example
program would now look like:

1 // thread 1

2 while (f == 0);

3 memory_barrier();

4 print x

1 // thread 2

2 x = 42;

3 memory_barrier();

4 f = 1;

Note that we also need a memory barrier on thread 1 as it might read
the value of x before reading f. Such reordering can also cause unexpected
program behavior. While such a full barrier prevents reordering, we can re-
lax the memory model a bit. We distinguish between acquire and release

semantics. An acquire semantic prevents memory reordering of the read-
acquire with any read or write operation that follows it. On the other hand,

1except for a few exotic cases
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a release semantic prevents reordering of the write-release with any read or
write operation that precedes it in program order. In our example, thread 1
only require an acquire semantic on the variable f, while the write to f on
thread 2 require a release semantic.

2.2.3.2 Atomic functions

Compilers such as GCC and Clang provide built-in atomic function, which
makes use of memory models described above. We list some of them here,
where type can be any integral scalar or pointer type of size 1, 2, 4, 8 or 16
bytes

type __atomic_op_fetch(type *ptr, type val, int memmodel)

where op can be any of add, sub, and, xor, or or nand. Semantically
this function performs the atomic operations {*ptr op= val; return

*ptr}

type __atomic_load_n(type *ptr, int memmodel):
Returns the content of *ptr

void __atomic_store_n(type *ptr, type val, int memmodel):
Writes the content of val to *ptr

type __atomic_exchange_n (type *ptr, type val, int memmodel):
Writes val into *ptr and returns the previous content of *ptr.

bool __atomic_compare_exchange(type *ptr, type*expected, type de-

sired, bool weak, int succes_memmodel, int failure_memmodel)

which atomically reads the content of *ptr, compares it to *expected

and if they are equal writes desired into *ptr and returns true. Oth-
erwise the content of *ptr is written into *expected and the function
returns false.

The implementation of these depends on the specific target architecture, but
if the architecture presents no lock-free instruction sequence, a fallback to an
explicit locking routine is used.

2.3 Parallelism and parallel constructs

This section formally presents the notion of parallelism and introduces some of
the most important theoretical results within the subject. Finally, we present
the parallel construct, parallel for-loops, which can be used to express (nested)
parallelism.
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2.3.1 Types of parallelism

We first define the notion of parallelism. Parallelism refers to simultaneous
execution of work. The definition of parallelism is often confused with concur-
rency, which refers to different computations’ ability to interleave with each
other. Parallelism is also concurrent, but not necessarily vice versa. We also
distinguish between two forms of parallelism:

• Task parallelism refers to simultaneously executing different opera-
tions on potentially different types of data. As such can task parallelism
perform asynchronous computations. One example of task parallelism
is the one performed by operating systems, which are able to perform
different tasks simultaneously. Task parallelism can also be found in
languages, such as Cilk.

• Data parallelism refers to simultaneous execution using the same op-
erations, but on different pieces of the same data. Examples of data
parallelism are Single Instruction Multiple Data (SIMD). Futhark is
based on data-parallel computation as well. In contrast to task paral-
lelism are data-parallel operations performed synchronously.

Task- and data parallelism are not mutually exclusive; they can naturally co-
exist within an application. Finally, we introduce the notion of work-efficiency
as a formal tool to reason about parallel algorithms efficiency. We define the
work of an algorithm as the number of operations performed by it. Which
leads to the definition of work efficiency of parallel algorithms:

Definition 2.3.1 (Work efficiency). A parallel algorithm is said to be work ef-
ficient if it performs no more work asymptotically than it’s sequential coun-
terpart.

2.3.2 Fork-join model

The fork-join model[Conway, 1963] is a simple and powerful parallel design
pattern for setting up a program for parallel execution. It is used in languages
like Cilk[Blumofe u. a., 1995] as the main model of parallel execution. The
fork-join model is conceptually simple and uses the two keywords, fork and
join to express parallelism. The fork keyword specify that a section of code
is suitable for parallelism, which will spawn parallel computations. Each
fork is then accommodated by a join, which is a synchronization mecha-
nism. The join ensures that the main computation cannot continue until all
parallel computations have finished. Parallel computations may recursively
use fork-joins and these two keywords suffice to express nested parallelism,
which makes the fork-join a powerful way of structuring parallel programs.
A concrete instance of fork-join is the fork2join, usually used with divide-
and-conquer algorithms, where each fork generates two sub-branches, which
can be executed in parallel. Another concrete application of a fork-join is the
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parallel for-loop. With a parallel for-loop, the iterations can then be divided
out among the cores for parallel execution. An implicit join point is set just
after the for-loop ends. Here we show how a parallel map, which applies
some function f to each element of an array, xs, can be implemented using a
parallel for-loop.

1 void parallel_map(T* xs, T* res, int n){

2 parfor (i = 0; i < n; i++) {

3 res[i] = f(xs[i]);

4 }

5 }

6 // Implicit join

Such an implicit parallel construct is powerful as it can represent various
computations while using the same generic interface. For example, we use
parallel for-loops to express parallelism for Futhark’s operators. The next
section presents the programming language Futhark and the semantics of
these operators.
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2.4 Introduction to Futhark

Before we introduce Futhark, we provide some mathematical definitions, which
is used by the language.

2.4.1 Mathematical Definitions

Definition 2.4.1 (Semigroups). Let X be a non-empty set and ⊕ be a binary
operator on X . The pair (X ,⊕) is called a semigroup if the operation is
associative, i.e. for all x, y, z ∈ X we have

x⊕ (y ⊕ z) = (x⊕ y)⊕ z (2.1)

Examples of a semigroup is multiplication over the real-numbers denoted
as the pair (R, ∗)

Definition 2.4.2 (Commutative). A semigroup (X ,⊕) is called commutative
if for all x, y ∈ X we have

x⊕ y = y ⊕ x (2.2)

Definition 2.4.3 (Neutral element). An element e ∈ X is said to be the neutral
element of a semigroup (X ,⊕) if for all x ∈ X it satisfies the following property

e⊕ x = x⊕ e = x (2.3)

A semigroup which has a neutral element is also called a monoid.

2.4.2 Futhark

Futhark is a pure functional data-parallel array language from the ML-family,
which uses a few generic Second-Order Array Combinators (SOACs) to ob-
tains its parallel code. Futhark focuses less on expressivity and elaborate type
system, and more on compilation to high-performance parallel code, through
its heavily optimizing ahead-of-time compiler. While the primary target of
the optimizing compiler is to generate efficient GPU code via OpenCL and
CUDA, the language is hardware agnostic. With this thesis, Futhark will also
be capable of generating parallel C code to be executed on a multicore CPU.

Futhark supports regular nested data-parallelism, as well as imperative-
style in-place updates of arrays, but maintains its purely functional style
through a uniqueness type system, which prohibits the use of an array after it
has been updated in-place. Like most ML-family languages, Futhark also has
parametric polymorphic and uses type parameters, which allows functions and
types to be polymorphic. Type parameters are written as a name preceded
by an apostrophe. For example Listing 4 shows a type abbreviation number
with a type parameter t, which is instantiated with concrete types in line 2,
where f32 denotes 32-bit floating point.
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Listing 4 Example of type abbreviation with type parameter in Futhark
1 type number 't = t

2 type float = number f32

Lastly, it is also possible to specify a parametric module, meaning that the
module can take another module as an argument (i.e., module-level functions),
which allows for abstraction over modules.

Futhark achieves much of its data-parallelism through its Second-Order
Array Combinators (SOACs), map, reduce, scan and reduce_by_index. The
use of parallel SOACs lets the programmer write programs with sequential
semantics as in conventional function language, but permit parallel execution
through Futhark’s compiler and run-time system. An overview of the four
SOACs and its semantics are shown below, where we use [x1, x2, . . . , x3] to
denote an array of n elements and [n]α to denote the type of an array of
length n with α.

• map: (α→ β)→ [n]α→ [n]β
map f [x1, x2, . . . , xn] ≡ [f(x1), f(x2), . . . , f(xn)]
where the function f is applied to every element of the array of xs.

• reduce: (α→ α→ α)→ α→ [n]α→ α
reduce f ne [x1, x2, . . . , xn] ≡ f(. . . f(f(ne, x1), x2), . . . , )xn)
where every element in the array is collapsed (or reduced) using the
binary operator f . Here we require that (Xf , f) is a monoid with neutral
element ne, where Xf is the set of input f takes.

• scan: (α→ α→ α)→ α→ [n]α→ [n]α
scan f ne [x1, x2, . . . , xn] ≡
[f(ne, x1), f(f(ne, x1), x2), . . . , f(. . . f(f(ne, x1), x2), . . .), . . . , xn)].
The scan SOAC produces an array of same size as the input. The
binary operator f is applied to every element, where the first argument
is the result of the preceding prefixes. Again we require that (Xf , f) is
a monoid with neutral element ne.

• reduce_by_index: [m]α → (α → α → α) → α → [n]i32 → [n]α →
[m]α
reduce_by_index dest f ne is vs
where f is an associative and commutative function with neutral ele-
ment ne. Here is and vs must be same length. We describe the seman-
tics using imperative code:

1 for j < length is:

2 i = is[j]

3 v = vs[j]

4 if i >= 0 && i < length dest:

5 dest[i] = f(dest[i], v)
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The reduce_by_index reads each value in is and vs and updates the
value at dest[i] with the value of v using the function f . Note that
updates are ignored if the index is out-of-bounds.

These SOACs permits the Futhark compiler to generate parallel code, which
means that Futhark programs are commonly written as bulk operations on
arrays. Through the SOACs, the Futhark compiler can provide optimizations.
For example is the composition of nested map-reduce computation efficiently
supported based on fusion and code generation [Henriksen u. a., 2016; Larsen
und Henriksen, 2017] and the compiler also provide support for 1D and 2D
tiling[Henriksen u. a., 2017]. However, the compiler also has some limitations
when it comes to irregular parallelism. The Futhark program below shows a
simple example of irregular parallelism, where the work of the nested reduce

depends on the value of i, which is varying from 1 to n.

1 map (\i -> reduce (+) 0 [1...i]) [1...n]

Even though the Futhark language supports irregular nested parallelism, the
compiler is unable to exploit it. Currently, when targetting GPUs, the com-
piler sequentialize the nested reduce, which results in a skewed work-load
across the hardware threads. This has been a historical downside of Futhark.
For example, many irregular problems, such as BFS, needed to be manually
written into a regular parallel form, e.g. by applying flattening techniques,
to exploit the inner parallelism at the cost of its efficiency. For the new back-
end, we aim to provide support for exploiting irregular parallelism through
work-load balancing techniques without the need for a manual rewrite.
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Chapter 3

Implicit parallelism

For the past decade there have been a development in providing specialized
languages and frameworks, which enable programmers to write parallel pro-
grams with close to sequential semantics using parallel constructs such as
parallel for-loops. These languages and frameworks raise the level of abstrac-
tion from the tedious details of parallel programming and delegate these to
the compiler and run-time system. This chapter first introduces run-time
systems and then gives an overview of the related work within the field of
implicit parallelism and approaches to granularity control.

3.1 Run-time system

The run-time system defines the execution behavior of a program, which is
not directly attributable to the program itself. The run-time system can, for
example, aid in freeing up resources when they are no longer needed, also
known as the garbage collector. Other tasks include stack and heap manage-
ment, bounds checking, exception handling, communication with the kernel,
etc. An example of a simple run-time system is the one implemented by the
C language. C’s run-time system can be regarded (by modern standards)
as a barebone run-time system, where, no bounds checking is performed nor
garbage collection. Instead, the run-time system puts these tasks onto the
programmer. As the new back-end compiles to C code, we use the already
in place run-time system while providing additional features such as bounds
checking and implicit memory management. We did not have to deal with
these parts of the run-time system a lot in our work, but instead, we mainly
focused our work on the scheduler.

An intrinsic part of the run-time system for implicit parallel languages is
the scheduler. The scheduler is responsible for delegating parallel work onto
the computing resources through various means. The main goal of a sched-
uler in parallel languages is to maximize throughput, i.e. the amount of work
completed pr. unit time. Schedulers usually use threads, also called workers,
to obtain higher throughput through parallelism. To obtain parallelism, the
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scheduler divides the work into smaller subtasks, which contains the closure
of the work and delegates these to the workers, which are then scheduled
onto the hardware resources for parallel execution. However, for a scheduler
to achieve its goal, it must consider the overheads of parallelism. To ensure
that such overheads do not overwhelm the benefits of parallelism, one must
perform granularity control, which controls the amount of work a single par-
allel subtask contains. However, determining how much work is needed to
amortize the cost depends on the specific input, machine, and so on, and is
one of the main challenges in implicit parallelism. As such, researchers have
provided several approaches to granularity control, as choosing an appropriate
granularity is essential in achieving good performance in parallel applications.

3.2 Related work

This section provides some insight into the field of implicit parallelism and is
two-fold. First, we provide an overview of some of the most popular imple-
mentations for writing implicit parallel programs, which include stand-alone
languages and language extensions. Second, we investigate the research field
within automatic granularity control, giving us ideas on how to approach the
problem with Futhark.

3.2.1 Languages and frameworks

We first gain a high-level view of some popular languages and frameworks
implementations for achieving parallelism on a CPU. The implementations
presented here share the common goal of making parallel computing simple,
hiding a lot of the complexity of parallel programming away. A goal also
shared by Futhark.

3.2.1.1 Cilk

Perhaps the most known programming language for implicit parallelism is
Cilk[Blumofe u. a., 1995]. Cilk is a task-parallel language and was originally
developed at Massachusetts Institute of Technology in the 1990s as an exten-
sion to accommodate existing C code. Cilk initially extended the C language
by a few keywords for identifying parallelism, which can safely be executed.
The idea was that the programmer should be responsible for exposing paral-
lelism to the compiler and run-time system. A small Cilk program computing
the nth Fibonacci number is shown in Listing 5, where spawn indicates that
the computation following can be computed in parallel, while sync denotes
that computation cannot continue until all previous spawned work has com-
pleted. Such a parallel construct is an example of the fork-join model, more
specifically a fork2join, often used for divide-and-conquer algorithms. A key
property of Cilk was that removing all of such keywords from the program
would result in a valid C program, called the sequential elision.
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Listing 5 A parallel program computing the n’th Fibonacci number in Cilk
1 cilk int fib(int n) {

2 if (n < 2) {

3 return n;

4 }

5 else {

6 int x, y;

7 x = spawn fib(n - 1);

8 y = spawn fib(n - 2);

9 sync;

10 return x + y;

11 }

12 }

Much of the theoretical work of scheduling multi-threaded computation
comes from Cilk. When the first version of Cilk was released in 1995, it in-
troduced a distributed randomized work-stealing scheduling approach, where
idle threads try to steal work from other threads[Blumofe u. a., 1995]. The
Cilk scheduler provided theoretical bounds on space, time, and communica-
tion overhead, providing asymptotic performance guarantees.
Due to the rise of mainstream parallel computing in the mid-2000s, Cilk Arts
was created to lead the compiler’s development. Cilk Arts released Cilk++
version in 2008, which extended C++ and added native support for generic
lock-free reductions and parallel loops over a fixed number of entries. In 2009
Cilk Arts were acquired by Intel to continue the development of the com-
piler, and Cilk++ was implemented into Intel’s C++ compiler. However, the
additional work of maintaining the compiler slowly became less beneficial as
more portable alternatives started to provide similar performance. In 2017,
Cilk depreciated, and recommended users to use Intel’s Threading Building
Blocks(TBB) or OpenMP instead. TBB is a library solution and provides
basic building blocks for writing parallel programs using standard C++ code
without the need for a special compiler. TBB provides generic parallel al-
gorithms, task schedulers, synchronization primitives, and much more. TBB
draws much of its inspiration from Cilk; for example, TBB also uses a ran-
domized work-stealing approach. However, where TBB often falls short is
its ease of use. The program below shows a C++ program using TBB to
compute the nth Fibonacci number. Compared to Cilk is the TBB version
much more verbose and requires more work from the programmer. Note that
for both Cilk and TBB, the programmer must perform granularity control
manually by providing a cut-off.
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Listing 6 A parallel program computing the n’th Fibonacci number in TBB
1 class FibTask: public task {

2 public:

3 const long n;

4 long* const sum;

5 FibTask( long n_, long* sum_ ) :

6 n(n_), sum(sum_)

7 {}

8 task* execute() {

9 if( n<CutOff ) {

10 *sum = SerialFib(n);

11 } else {

12 long x, y;

13 FibTask& a = *new( allocate_child() ) FibTask(n-1,&x);

14 FibTask& b = *new( allocate_child() ) FibTask(n-2,&y);

15 // Set ref_count to 'two children plus one for the wait".

16 set_ref_count(3);

17 // Start b running.

18 spawn( b );

19 // Start a running and wait for all children (a and b).

20 spawn_and_wait_for_all(a);

21 // Do the sum

22 *sum = x+y;

23 }

24 return NULL;

25 }

26 };

3.2.1.2 OpenMP

So far, we have seen how implicit parallel programs can be expressed using
a specialized programming language or as a library. A third approach is to
use a directive-based approach with direct support from the compiler and a
runtime library to transform sections of programs into parallel computation.
Open Multi-Processing (OpenMP)[OpenMP, 2008] is a language extension for
supporting multi-threaded programming, with compiler support for C/C++
and Fortran. OpenMP is supported by most mainstream compilers such as
GCC. As with Cilk, OpenMP uses keywords to express that specific parts
of a computation can be parallelized. More specifically, OpenMP uses the
compiler-specific directive, #pragma omp <flags> with several extension flags
for specifying thread creation, workload distribution, synchronization and
much more. The example program in Figure 3.1a, shows how one can paral-
lelise a for-loop with OpenMP by using the flag parallel for. OpenMP also
uses fork-join model where an implicit join is inserted right after the loop.
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1 # pragma omp parallel for

2 for (int i = 0; i < n; i++) {

3 // Do parallel work

4 }

5 // Implicit join insertion

(a) A parallel-forloop using OpenMP (b) Illustration of a parallel-for loop
using fork-join model

Figure 3.1: Example and illustration of parallel for-loop in OpenMP

When a directive is encountered during run-time, a team of threads are
taken from a thread-pool managed by the OpenMP run-time system, and
the work is delegated among these. As parallel computations are executed
on a request basis, the run-time system needs to fetch the number of needed
threads and prepare them for usage every time, which causes overhead. Fur-
thermore, as noted in [Bull u. a., 2012] can OpenMP employ a relatively high
overhead due to it is granularity control strategies, where often too many
subtasks are created. Available controls for granularity control in OpenMP
are static, dynamic, guided, or auto. A static approach refers to a fixed dis-
tribution of iterations, which is decided before the computation is started.
When static is chosen, the iterations are evenly divided among the threads,
which is preferred when the workload is the same across iterations.

Alternatively, there is a dynamic approach where the distribution is not
fixed before the execution is started, and can be readjusted during the par-
allel computation. Dynamic scheduling is usually used when the work-load
across iterations is not balanced to achieve load-balancing. When dynamic
scheduling is specified with a statically chosen chunk-size, each thread will
then take chunk-size work at the time. The thread can then request more
when it has finished its chunk, which results in better load-balancing. When
no chunks-size is specified, it defaults to one. Another approach to achieve
load-balancing is the guided approach, which is based on a heuristic, which
aims at reducing subtask creation while still achieving load-balancing. As-
sume nthreads threads are fetched. The scheduler will initially create a n

nthreads

chunk size for the first subtask, while the second subtask is assigned half of
that as so on, i.e., it gradually halves the work-load of each subtask. A lower
threshold can be provided for the minimum chunk size. This approach works
well when the majority of the work-load is towards the end of the computa-
tion. A final approach is that the compiler can decide which to use during
compilation. It was not possible to find the exact heuristic used. As with
Cilk and TBB, deciding between these approaches and finding an appropri-
ate chunk size puts most of the burden onto the programmer. While different
scheduling approaches are needed, we want to hide such choices from the pro-
grammer with Futhark.
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3.2.1.3 MaPLe

The final language is MaPLe (MPL), which is a parallelism-oriented fork of
MLton, a whole-program optimizing compiler for the functional programming
language Standard ML. Among the related languages, MPL is most similar to
Futhark; in fact, Futhark heavily inspired by Standard ML and provide many
common features, such as parametric polymorphism and a module system.
MPL uses two fork-join constructs for expressing parallelism

1 val par: (unit -> 'a) * (unit -> 'b) -> 'a * 'b
2 val parfor: int -> (int * int) -> (int -> unit) -> unit

The first one is par, which takes two functions to execute in parallel and
returns the result of them. This is equivalent to the use of spawn and sync

in Cilk. The second one is parfor, which is a parallel for-loop, as seen in
OpenMP. The parfor takes a chunk-size g, a range (i, j) and a function f .
It executes f(k), i ≤ k < j in parallel using g as the granularity control
parameters, i.e. it creates approximately (j− i)/g continuous chunks. Again,
we want to hide the underlying parallelism parameters away from the pro-
grammer. However, the simplicity of the parfor can give us an idea on how
to structure our implementation using parallel for-loops.

3.2.1.4 Summary

While we have only touched upon a small subset of the specialized languages
and frameworks for parallel computing, they provide us with a good idea of the
landscape. The presented implementations use high-level parallel constructs
to obtain parallelism, similar to how Futhark uses SOACs. However, all of the
above use approaches to granularity control, which requires manual tuning by
the programmer. The whole background for Futhark is that we want to make
parallel programming convenient, and manual tuning of programs does not
suit that definition. The next section provides some insight into automatic
granularity control and the related work within the field.

3.2.2 Automatic Granularity Control

In this thesis, we aim at providing automatic granularity control through
the compiler and run-time system. Stand-alone compiler techniques often
fall short as they fail to consider the environment the program is executed
in. For example, Iwasaki et al.[Iwasaki und Taura, 2016] use a synthesizing
static technique for determining cut-offs, for when it becomes more beneficial
to perform sequential execution for Cilk style divide-and-conquer programs.
However, it relies on having accurate static analysis for determining the cost
of execution at compile-time. Such an approach does not generalize well as
those cut-offs depend on the host-machine, where execution time on mod-
ern processors depends, among others, on caching and pipelining, which are
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difficult to determine the effects of at compile-time. Thus should an imple-
mentation for automatic granularity control at the very least involves the
run-time system, which can adapt to the environment.

This section will investigate automatic granularity control approaches,
which involves the run-time system.

3.2.2.1 Adaptive Granularity Control Using Multi-versioning

In 2013, P. Thoman et al.[Thoman u. a., 2013] presented a compiler and run-
time approach for granularity control using multi-versioning. The rough idea
was that the compiler generates multiple versions of parallel codes, each of
which was exploiting different levels of parallelism. Their approach was based
on unrolling of nested parallelism, thereby increasingly sequentializing larger
and large sections of the program. At run-time, the scheduler then decides
which version to use based on task demand, which is an indicator of how
(under)utilized threads are. When there are many idle-threads, the run-time
system will try to schedule the version spawning the most parallel subtasks,
while when the system is fully utilized, the sequential versions will be chosen.
Such an approach tries to exhaust the maximum amount of parallelism in the
system. Though one pitfall of such a run-time approach is that, even if there
are many idle threads, it does not ensure that parallelization is beneficial. In
fact, such parallelization might run slower than simply executing the program
sequentially due to the cost of subtask creation and management. Such costs
must be taken into consideration when designing the run-time system.

3.2.2.2 Oracle-based Granularity control

The next approach is from Acar et al.[Acar u. a., 2019], which provides gran-
ularity control in the context of fork2join constructs such as in Cilk. Their
approach supports nested parallelism and uses a “oracle-guided scheduling“
approach, which is capable of predicting the sequential run-time of parallel
codes. Their key contribution is an online algorithm for implementing the
oracle, which we present below.

For each parallel code, they ask the programmer to provide a parallel
body, which is a lambda function f() that performs a parallel computation.
They also ask the programmer for a sequential alternative, i.e., a sequential
function g(), which delivers the same results as the parallel body. In Cilk, the
sequential alternative can be obtained by removing all parallel keywords. Fi-
nally, for every such pair, they ask the programmer to provide a cost function
c(n), which gives an abstract measure of the work performed by g(n), where
n denotes input size. In other words, c(n) computes a value proportional
to the sequential execution time of g(n). In practice, good choices for the
cost function are asymptotic complexities, e.g. n, n log n or n2. Hence their
work assumes that the run-times are predictable and can asymptotically be
described by the cost function. By the definition of “asymptotics“, there exist
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a constant C such that
C · c(n) ≈ Tg(n) (3.1)

where Tg(n) denotes the execution time of g(n) for input of size n. Their
online algorithm aims to compute C by sampling execution times of g() and
use Eq. 3.1 to exploit the estimate of C to predict the sequential run-time for
future inputs. To perform granularity control, they introduce the quantity
κ, which denotes the smallest amount of work, in units of time, that would
be profitable to parallelize on the host machine. κ should be large enough
to amortize the cost of creating and managing a single parallel subtask. On
modern machines, the practical values of κ are on the order of tens to hun-
dreds of microseconds. Their run-time policy is simple; if the result of f(n)
can be obtained by executing g(n) in less time than κ then g(n) should be
used. However, to make such a decision, the algorithm needs an estimate
of C. Without an sufficiently accurate estimate of C the algorithm might
end up invoking g() on a large input, and thereby destroying all available
parallelism. However, to estimate C it needs to run g(), which creates an
initial circular dependency. To solve the dependency the algorithm initially
only execute g(n) with small input sizes, where it initially only sequentialises
the “base“ case. In the Fibonacci example from Listing 5 this corresponds
to only sequentializing fib(2), which gives Tg(2) and is used to compute an

early estimate of C by computing the ratio
Tg(2)
2 . The estimate may be sub-

sequently used to predict that another slightly larger input may execute in
less time than κ. As long as Tg(n) is smaller than κ, the algorithm tries to
gradually sequentialise larger and larger computation, i.e. increase n, which
gives a better estimate of C. The algorithm stops increasing n whenever Tg(n)
reaches the threshold of κ, which then indicates the smallest amount of work
that is worth parallelizing.
This approach takes into account the cost of parallelization, something that
the previous approach did not do. Furthermore, it only relies on the run-
time system being able to map measurements onto parallel codes, and can
be implemented as a library solution. Such an approach is favorable, making
it easier to perform changes to either the compiler or run-time system down
the road. However, it involves the programmer, as they need to provide a
sequential version and a cost-function. Luckily, Futhark’s parallel operators
can naturally be expressed as a sequential operation, so such a limitation is
not an issue. The cost-function is more troublesome. As we want to leave the
source language of Futhark unchanged, we cannot let the programmer provide
us with the cost function. While a linear cost function applies in most cases
and can be used as default, there exist cases that follow different asymptotics.
In some cases, such as when the run-time is not predictable, defining a proper
cost function is impossible. We will need to account for such cases.
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3.2.2.3 Hearbeat scheduling

What we have seen so far are schedulers using granularity control with a
greedy scheduling approach, where threads are kept busy as long as there
is work to do. Another type is lazy scheduling or lazy task creation, which
postpones parallel computations until the cost can be amortized. The aim
is to reduce the total overhead of subtask creation, while granularity control
tries to reduce the same overhead by switching to sequential code. Heart-
beat scheduling[Acar u. a., 2018] is an example of such a lazy task creation
technique. It involves each thread maintaining a call stack, which the thread
pushes frames onto. At periodic intervals, N , the thread will check its call
frame, and if it finds parallel work, it will promote the frame, creating a
subtask. The subtask may then be subject to load-balancing, e.g., stealing.
In between promotions, the threads perform the sequential work, popping
of work from the call stack. Such a scheduler’s performance requires proper
tuning of the promotion parameter, N , which decides the frequency parallel
frames are promoted. If N is too small, too many subtasks are potentially
created, resulting in over parallelization, while a too-large N creates under
parallelization. Even if one can find a good promoting value, lazy scheduling
can at best reduce the overhead of subtask creation, while granularity control
can switch between sequential and parallel algorithms, where sequential al-
gorithms are usually both asymptotically and practically more work-efficient.
While both lazy task creation and granularity control could co-exist within
a system, there is, to our knowledge, no work that tries to combine both
methods. We believe that such a system can quickly become too complex to
be practically efficient.
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Part II

Methods and Implementation
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Chapter 4

Parallel Algorithms for SOACs

In this chapter, we describe how each of the SOACs can be translated into
parallel algorithms using parallel for-loops. We present the parallel algorithm
using C-like code. We will use the notation parfor to denote a parallel loop,
while a seqfor denotes a sequential for-loop. For now, we omit how we decide
the chunk size for a parallel for-loop, and we assume that it is a fixed number.
For the analysis of work efficiency of our parallel algorithms, we assume that
it takes constant time to decide the chunk size and the chunk size in the
interval of [1, n] where n is the number of iterations.

4.1 map

The idea of translating a map is fairly simple, which semantically applies some
function f to each element of an array. We demonstrate how the operation
is compiled using the generic Futhark function in Listing 7, which takes an
n-length array as input and applies the function f to each of the elements.

Listing 7 A map function in Futhark using a generic function f over xs
1 let mapf [n] 't (xs:[n]t) = map f xs

The semantically equivalent sequential C version can be written as:

Listing 8 C code for a sequential map
1 void sequential_mapf (int32_t* xs, int32_t* res, int n) {

2 seqfor (int i=0; i<n; i++) {

3 res[i] = f(xs[i]) ;

4 }

5 }

where the result is written to an array res, passed through a function
parameter. Below we show how the map function is translated into a parallel
for-loop, where we group the iterations in the chunks to amortize the cost of
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parallelisation. Note that it is simple to convert the parallel for-loop into a
sequential one, by letting the chunk size be equal to n.

Listing 9 C code for a parallel map using a parallel for-loop
1 void parallel_mapf (int32_t* xs, int32_t* res, int n) {

2 int chunk = ... // to be determined

3 int n_chunks = (n + chunk - 1) / chunk;

4 parfor (i = 0; i < n_chunks; i++) {

5 seqfor (int j = chunk * i ; j < min(n, (i + 1) · chunk); j++) {

6 res[j] = f(xs[j]);

7 }

8 }

9 }

4.1.1 Work efficient

We can easily see that the work performed in this parallel algorithm is work-
efficient, as the number of operations is the same as in the sequential version.

4.2 reduce

The implementation of reduce requires a bit more work. We rely on the
assumption that the operator is associative and that the programmer provides
the operator’s neutral element. We use a concrete sum-function to show how
we can translate a Futhark reduce into an equivalent sequential C version.

Listing 10 A sum program in Futhark
1 let sum [n] (xs:[n]i32) = reduce (+) 0 xs

The equivalent sequential C-version can be written as:

Listing 11 C code for a sequential reduction
1 void sequential_sum (int32_t* xs, int32_t* res, int n) {

2 int32_t sum = 0;

3 seqfor (int i=0; i<n; i++) {

4 sum += xs[i];

5 }

6 *res = sum;

7 }

Unlike with a map, each iteration is no longer independent of each other as
the next value of sum depends on the previous, so we cannot just easily divide
the iteration space out into chunks. If we were to do so, we would need to
synchronize the access to the variable sum, which can cause the computation
to be equivalent to the sequential one due to contention. Furthermore, unless
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the operator is commutative, there is no way to ensure that updates are
performed using the correct ordering.
In order to use a parallel loop, we divide the computation into two stages.
The first stage divides the iterations into chunks, each of which has a unique
id. To avoid synchronization, we allocate an intermediate array before the
parallel loop starts. We can then reduce each chunk in parallel, where each
chunk then writes to it’s “private“ place in the intermediate array. When all
chunks are processed, the calling thread then reduces over the intermediate
array, giving us the final result. The parallel pseudo-code is shown in Listing
12

Listing 12 C code for a parallel sum function using parallel for-loop
1 void parallel_sum (int32_t* xs, int32_t* res, int n) {

2 int chunk = ... // to be determined

3 int n_chunks = (n + chunk - 1) / chunk;

4 // Stage 1

5 // Allocate chunk_sum[n_chunks] = {0};

6 parfor (i = 0; i < n_chunks; i++) {

7 int id = get_chunk_id();

8 seqfor (int j = chunk * i ; j < min(n, (i + 1) · chunk); j++) {

9 chunk_sum[id] += xs[j];

10 }

11 }

12 // Stage 2 - Perform a reduction over chunk_sum

13 int32_t sum = 0;

14 seqfor (int i = 0; i < n_chunks; i++) {

15 sum += chunk_sum[i];

16 }

17 *res = sum;

18 }

The parallel reduction is illustrated in Figure 4.1. Since the number of
chunks is expected to be small, the second stage is expected to be fast, and
hence we perform it sequentially. Note the use of a unique chunk id, which
ensures that the reduction is performed in the correct order. Whenever the
operator is communicative as well, we can lift such a restriction, which can
give us more freedom when scheduling the parallel for-loop.
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Figure 4.1: Illustration of a parallel reduction on an array with 16 elements,
which is divided into 4 evenly sized chunks

4.2.1 Work efficient

It is relatively easy to see that the parallel algorithm is work-efficient. The
sequential algorithm has O(n) operations. The first stage performs exactly
n operations in total. The second stage has at most n operations as each
chunk is at least of size one. Thus we have that O(2n) = O(n) operations are
performed.

4.2.2 Segmented reduce

A segmented reduce is handled slightly differently. A segmented reduce is
where the input data is grouped into segments, and a reduction is performed
over each segment. One can think of the reduction above as a segmented
reduce with one segment. But whenever the number of segments is larger
than one, the above method does not work directly. Instead, we perform a
sequential reduction over each segment, parallelizing only over the number
of segments. While there exist approaches which can parallelize over each
segment as well, such an implementation requires a slightly more complicated
technique. As our benchmarks do not benefit from this optimization, we will
leave it as future work to improve our implementation for exploiting more
parallelism. Note that the segmented reduction is regular, meaning that all
segments are of the same size. Assuming we have n segments with m elements
in each segment, the pseudo-code in Listing 13 shows how we are able to
parallelize a segmented reduction.
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Listing 13 C code for parallel segmented reduction
1 void parallel_segmented_sum (int32_t** xs, int32_t* res, int n, int m) {

2 int chunk = ... // to be determined

3 int n_chunks = (n + chunk - 1) / chunk;

4 parfor (int k = 0; k < n_chunks; k++) {

5 seqfor (int i = chunk * k ; i < min(n, (k + 1) · chunk); i++) {

6 res[i] = 0; // Neutral element

7 seqfor (int j = 0; j < m; j++) { // sequential reduce over segment i

8 res[i] += xs[i][j];

9 }

10 }

11 }

12 }

The sequential algorithm has O(n ·m) operations. We iterate over each
segment exactly once through lines 4 and 5. The inner most seqfor performs
exactlym operations and hence is the total workO(n·m) of parallel algorithm.

4.3 scan

The parallel algorithm for scan is slightly more complicated than the reduce.
We use a pre-fix sum as a concrete instance of a scan, to explain the parallel
algorithm, whose sequential version is shown below.

Listing 14 C code for sequential prefix-sum
1 void sequential_prefix_sum (int32_t* xs, int32_t* res, int n) {

2 int32_t accum = xs[0];

3 res[0] = accum;

4 seqfor (int i = 1; i < n; i++) {

5 accum = accum + xs[i];

6 res[i] = accum;

7 }

8 }

The parallel algorithm uses three stages. We omit the (verbose) pseudo-
code here and describe the three stages instead. For an input array xs and
resulting array res, we describe the three stages as:

1. In the first stage, we divide the input into fixed sized chunks. Then
in parallel, each chunk is scanned sequentially. The prefix-sum results
from each chunk are written to res.

2. In the second stage, we perform a sequential scan over the last element
from each chunk of res, except for the first chunk, which reads the
neutral element and the last one, which isn’t involved in this stage.
The result is written to res. This stage gives us the accumulative values
up until each chunk.
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3. Finally, using the same chunk sizes as in stage 1, we can compute the
final stage in parallel. Each chunk first reads the last value from the
previous chunk and uses it as its ”starting element”, except for the first
chunk, which again reads the neutral element. Each chunk can then be
scanned in parallel as in stage 1, giving us the final result.

The three stages are illustrated in Figure 4.2, which shows how the prefix-sum
over an integer array is computed.

Figure 4.2: Illustration of the parallel scan algorithm for computing the prefix-
sum of a 16 element array, which is divided into 4 evenly sized chunks

4.3.1 Work efficiency

The asymptotic work of a sequential scan is O(n). By looking at the work of
each of the three stages, we can see if our algorithm is work-efficient. Stage
1 applies the operator exactly n times as in the sequential algorithm, so it is
O(n). The second stage can, at most, apply the operator n times, since each
chunk is at least of size 1. The third and final stage applies the operator n
times again. Hence we find that we apply the operator at most 3n times, and
we have that O(3 · n) = O(n) and it’s work-efficient.

4.3.2 Segmented Scan

The conversion of a segmented scan is similar to the one of a segmented
reduction. We perform a sequential scan over each segment, where we only
parallelize over the segments. Likewise, our algorithm for a segmented scan
is suboptimal, as we cannot exploit parallelism within a segment. We will
also leave such improvements for future work. For brevity, we also omit the
pseudo-code for a segmented scan. By using the same deduction method as
with the segmented reduce, can one see that the parallel algorithm is work
efficient.
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4.4 reduce_by_index

Finally is the implementation of reduce_by_index. We remind the reader
that it has the following type and semantics:

reduce_by_index: [m]α→ (α→ α→ α)→ α→ [n]i32→ [n]α→ [m]α

reduce_by_index dest f ne is vs

Listing 15 The semantics of reduce_by_index using imperative pseudo-code
1 for j < length is:

2 i = is[j]

3 v = vs[j]

4 if i >= 0 && i < length dest:

5 dest[i] = f(dest[i], v)

Where f is an associative and commutative function with neutral element ne.
Here is and vs must be of the same length. reduce_by_index is also called a
generalized reduction, which reduces a collection of data into k buckets where
there is no pattern in the input data, in contrast to a segmented reduce,
where the data is grouped into segments. We use a concrete instance of a
reduce_by_index, called a histogram, for simplicity. A histogram has the
semantics shown by the imperative code. Note that we omit the bounds
checking of indices.

Listing 16 Imperative pseudo-code for a histogram computation
1 for j < length is:

2 i = is[j]

3 v = vs[j]

4 histogram[i] += v;

We provide two different parallel algorithms, which can be chosen between
at run-time depending on the input sizes. The parallel algorithms are based
on Subhistogramming and Atomic updates.

4.4.1 Subhistogramming

In Subhistogramming, each parallel computation is given its own sub-histogram,
of the same size as the histogram, along with a chunk of the indices and values
used to update the histogram. The idea is that each chunk can work inde-
pendently on its local histogram, which avoids synchronization of updates
on the same cells. A segmented reduction is then performed across the sub-
histograms to obtain the final result using the parallel algorithm described in
Section 4.2.2. Let nsubhistos be the number of sub-histograms used and let m
denote the histogram’s width. Again we have that n elements are processed.
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The pseudo-code for the parallel sub-histogram computation is shown List-
ing 17, where we omit the code for performing the segmented reduction for
brevity. First, we allocate the sub-histograms in line 4. Then each chunk first
retrieves its unique id in line 7. Then in line 9 through 11, the sub-histogram
is initialized with the neutral element. In lines 13 through 17, the chunk is
processed.

Listing 17 Parallel algorithm for histogram using Subhistogramming
1 void parallel_subhistogramming (int32_t* dest, int32_t* is, int32_t* vs, int n, int m) {

2 int chunk = ... // to be determined

3 int n_subhistos = (n + chunk - 1) / chunk;

4 // Allocate subhisto[n_subhistos, m];

5 // Stage 1

6 parfor (i = 0; i < n_subhistos; i++) {

7 int id = get_chunk_id();

8 // Part 1: Initialize subhistogram belonging to chunk

9 seqfor(j = 0; j < m; j++) {

10 subhisto[id, j] = 0

11 }

12 // Part 2: Perform the updates

13 seqfor (int j = chunk * i ; j < min(n, (i + 1) · chunk); j++) {

14 int32_t ind = is[j];

15 int32_t val = vs[i];

16 subhisto[id, ind] += val;

17 }

18 }

19 // Stage 2

20 Reduce nsubhistos histograms using segmented reduction

21 }

4.4.1.1 Work efficient

The sequential algorithm performs O(n) work. The parallel algorithm first
initializes each sub-histogram, which creates O(nsubhistos · m) work in total
initialization work. The second part of stage 1 performs O(n) work in to-
tal as in the sequential algorithm. The segmented reduction also performs
O(nsubhistos ·m) work as shown in Section 4.2.2. In total, we have that the
parallel algorithm performs O(nsubhistos ·m + n) work, and hence is the al-
gorithm not work-efficient. As we usually only create a small number of
sub-histograms, we can assume that nsubhistos is a small constant, which is at
most the number of cores. However, when m is large, this parallel algorithm
can become slow. We initially only implemented this approach but found
that the performance was too slow on some benchmarks, even slower than
the sequential version. When m is large, initializing each sub-histogram and
the reduction afterward adds significant overhead and caused too much addi-
tional work, causing the slowdown. Instead, we try to provide an alternative
whenever such cases occur.
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4.4.2 Atomic Updates

With an Atomic updates approach, all threads perform updates on the same
histogram, but each update is wrapped inside an atomic operation. The
algorithm presented here is based on the work by S. Hellfritzsch[Hellfritzsch,
2018] in his master’s thesis. The generic atomic approach is shown below,
which uses an atomic_operation to update the value.

Listing 18 Generic atomic histogram approach
1 void parallel_atomic_hist (int32_t* dest, int32_t* is, int32_t* vs, int n, int m) {

2 int chunk = ... // to be determined

3 int n_chunks = (n + chunk - 1) / chunk;

4 parfor (i = 0; i < n_chunks; i++) {

5 seqfor (int j = chunk * i ; j < min(n, (i + 1) · chunk); j++) {

6 int32_t ind = is[j];

7 int32_t val = vs[i];

8 atomic_operation { histo[ind] += val }

9 }

10 }

11 }

Note that there is no overhead in allocating additional memory, nor is
there a need for an additional pass with this strategy. This approach is then
clearly work-efficient. However, as there is no free lunch, this approach can
become relatively slow in practice when parallel computations access the same
bucket, causing the writes to become sequential. Furthermore, there is not an
explicit atomic operation for all binary operators. Since we need to support
user-defined operations, we need to ensure that we provide an atomic update
operation for all cases. We provide three levels of strategies, each of which
becomes less and less efficient. We start with the most efficient, where the
hardware supports the atomic operation.

4.4.2.1 Binary operation on integral scalar values

We start of when the operator is defined on integral scalar type values where
the operation is one of add, sub, and, xor, or or nand and the size is 1,
2, 4, 8 or 16 bytes in length. When we identify such a case, we can use the
__atomic_op_fetch presented in Section 2.2.3.1. Following the example from
the previous section, our atomic update approach becomes:

40



Listing 19 Atomic histogram approach on scalar values
1 void parallel_atomic_hist (int32_t* dest, int32_t* is, int32_t* vs, int n, int m){

2 int chunk = ... // to be determined

3 parfor (i = 0; i < (n + chunk - 1) / chunk; i++) {

4 seqfor (int j = chunk * i ; j < min(n, (i + 1) · chunk); j++) {

5 int32_t ind = is[j];

6 int32_t val = vs[i];

7 atomic_add_fetch(&histo[ind], val);

8 }

9 }

10 }

4.4.2.2 Binary operators on one memory location

The next approach is based on the usage of atomic compare-and-swap (CAS)
operations. Recall that a CAS operation atomically compares the expected
value to the current value, and if they are equal, perform the swap with the
desired value. Otherwise, the current value is returned in the expected value.
Upon a successful swap, the CAS operation returns true. We can leverage
such an insight to obtain an atomic update by merely casting any primitive
type to an integral scalar value of the same size, e.g. for float we can cast
it to int32.

Listing 20 Atomic histogram approach on floats
1 void parallel_atomic_hist (float* dest, int32_t* is, float* vs, int n, int m) {

2 int chunk = ... // to be determined

3 parfor (i = 0; i < (n + chunk - 1) / chunk; i++) {

4 seqfor (int j = chunk * i ; j < min(n, (i + 1) · chunk); j++) {

5 int32_t ind = is[j];

6 float val = vs[i];

7 float expected = histo[ind]

8 int done = 0;

9 while (!done) {

10 float new_val = val + expected;

11 done = atomic_cas((int32_t*)&histo[ind],

12 (int32_t*)&expected, to_bits_32(new_val));

13 }

14 }

15 }

16 }

We describe the update in three steps:

1. The current value is stored in the variable expected in line 7. We
perform the update in line 10, which is a simple addition as before.

2. In line 11-12, we try to perform the update using a CAS operation. A
few things to note. We are directly casting the pointer values to integer
values as this won’t change the bits when the CAS operation eventually
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reads them. Since the new_val is passed by value, we can not perform
a direct cast without changing the bits and thus the value. Instead,
we use an explicit cast function, which converts it to a type of int32

without changing the bits.

3. If the CAS operation was successful, then we are done, and the while
loop exits. Otherwise, the current value is written into expected and
we perform the operation again until we eventually succeed.

This approach can be used to implement all binary operators, which works
on single memory locations, e.g., floats, doubles, and so on, as long as the
size if one of 1, 2, 4, 8, 16 bytes.

4.4.2.3 Locking based approach

When neither of the above two methods is applicable, we fallback to a lock-
ing approach. For brevity, we only provide the updating code, omitting the
parfor and seqfor notation. We also continue the example of using 32-bit
integers as our histogram type, but it’s easy to see that this approach can be
used on any type.

Listing 21 Snippet of an Atomic histogram update using a locking based
approach

1 ...

2 int32_t ind = is[j];

3 int32_t val = vs[j];

4 int done = 0;

5 while (!done) {

6 if (atomicExch ((int*)&locks[ind], 1) == 0) { // Acquire lock

7 // Critical section - start

8 histo[ind] += val

9 // Critical section - end

10 memory_barrier();

11 atomic_write(&locks[ind], 0); // Release lock

12 done = 1;

13 }

14 }

15 ...

We use an array of integers called locks, which initially contains all zeros,
indicating that all locks are unlocked. In practice, we allocate a static array of
a fixed size and then use the modulo operation to obtain a specific lock index.
By using an explicit locking mechanism, we can perform any operation within
the critical section. We acquire the lock by using an atomicExch operation,
which returns the previous value of locks[ind]. When the previous value
was 0, we know that we have acquired the lock successfully. When we are done
with our update, we then release the lock using an atomic write operation.
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Note the use of a memory barrier, which ensures that we do not release the
lock before we are done with the update.

The reader may ask why we are not using mutexes instead, which can
provide the same mechanism. Mutexes adds memory overhead, since each
mutex uses 40 bytes on 64-bit machines running Linux, compared to the
4 bytes used by an integer. When the histogram is large, which we can
expect since we are using Atomic updates rather than Subhistogramming, we
would need relatively many locks to avoid contention, causing large memory
overhead. Such overhead can be limited by using the more primitive integer
array as locks combined with an atomic exchange operation.

4.4.3 Choosing a cut-off

For choosing between Subhistogramming and the Atomic update approach,
we use a simple heuristic. Whenever the condition nsubhistos ·m ≤ n holds, we
choose Subhistogramming; otherwise, we use the Atomic update approach.
The heuristic is based on the result from the asymptotic bound from Subhis-
togramming, i.e., O(nsubhistos ·m + n), which when the condition holds the
n term dominates and Subhistogramming is work-efficient. Our results show
that such a simple heuristic is sufficient on our micro-benchmarks, but more
work is required on optimizing the implementation. We will leave further
optimizations for future work.
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Chapter 5

Run-time system

This chapter presents our approach to the run-time system in Futhark. We
start with automatic granularity control, which presents our online algorithms
for flat- and nested parallelism as well as irregular parallelism. It then presents
our approach to work management within our run-time system. Finally, we
briefly present a few memory policies, which makes memory management
easier.

5.1 Automatic Granularity Control

In this section, we present our online algorithms for automatic granularity
control. We will use parallel loops to express parallel tasks, where the iter-
ations can be divide into continuous chunks and distributed onto the hard-
ware cores for parallel execution. Our approach handles the scheduling of
regular- and irregular parallelism as two separate cases. To distinguish be-
tween the scheduling approaches of regular- and irregular parallelism, we will
call the scheduling of regular (nested) parallelism as static scheduling, while
the scheduling of irregular parallelism is called dynamic scheduling. We first
present our approach for regular parallel computations, which might contain
nested parallelism.

The simplest scheduler implementation creates as many subtasks as there
are cores and partitions the iterations evenly out among these subtasks. We
will call such an approach for even partitioning. When the work of the task
is much greater than the overhead of creating these subtasks, this is an easy
way of exploiting as much parallelism as possible, with minimal overhead.
But when the work is not greater than the overhead, this simple method can
create too small chunk sizes to amortize the cost of parallelization. In such a
case we want to determine a chunk size, which amortizes the cost.

Our approach to automatic granularity control is inspired by the online
prediction algorithm in [Acar u. a., 2019], which performs automatic granular-
ity control using an oracle-guided scheduling approach. While their algorithm
is for fork2join parallel constructs, we extend their approach to parallel for-
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loops, which is more suitable in the context of Futhark.
As in [Acar u. a., 2019], we use an abstract notion of“work“, which ties the

sequential execution time of a task to a cost function, describing the asymp-
totic work. For a given task, at a high-level, our approach use samples of
execution times from previous runs to predict future runs’ work (of the same
task). Under a few assumptions, the algorithm can predict the work of a
task by estimating the constant associated with the asymptotic work through
an iterative online algorithm. By quantifying the cost of parallelization, we
can compute the granularity of a task, i.e., the chunk size, which amortizes
the overhead. But in order to perform granularity control, our algorithm
needs to know the constant associated with the task; however, the constant
is estimated from running the tasks. This creates an initial circular depen-
dency. We cannot run the task sequentially as the time penalty on a large
task is potentially huge. On the other hand, the potential time penalty for
executing a small task in parallel is much less. Our algorithm breaks this
interdependency by performing an even partitioning initially, to obtain se-
quential execution time samples and use these to estimate the constant. The
estimated constant is then subsequently used to predict future runs’ work and
perform granularity control. When the task is executed again, more samples
are collected, and our estimate becomes better and better. The algorithm is
then able to gradually determine the granularity, which amortizes the over-
head more precisely. Even partitioning comes with a small overhead but is
much safer when the task turns out to be large. The algorithm most likely
only performs the mistake of executing small tasks in parallel a few times.
As after it has done it, it will realize that it should have executed the task
sequentially. The next section presents our algorithm more formally.

5.1.1 An online algorithm for regular parallelism

In the following we let f(i, j) denote a parloop function, which takes an
iteration range (i, j), where i, j ∈ {0, ..., n− 1}∧ i < j. For example from our
parallel algorithm for reduce from Chapter 4, f() is a function containing the
sequential loop in stage 1. Here n denotes the input size, i.e., the number of
iterations the parallel loop shall execute. We call a parallel for-loop involving
a parloop function f() a task, which the scheduler can create subtasks for. A
subtask contains the closure of the parloop function along with an iteration
range, which can later be distributed among the cores for parallel execution.
Additionally, let g(n) denote the corresponding sequential function of a task,
i.e. the result of executing g() or a parallel task using f() is the same. In our
implementation g() is the same function as f(), i.e. g(n) ≡ f(0, n − 1), but
just executed differently. Finally we state our assumptions.

First, we assume that the execution time of g(n) is predictable in its input
size n. Second, we assume that the execution time of g(n) is linear in it’s
input size, i.e. it has the asymptotic O(n). The latter is different from [Acar
u. a., 2019], which used the programmer provided cost functions to describe
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asymptotic work. In Futhark, we want to avoid such involvement from the
programmer, and we rely on a linear relationship assumption instead. While
such an assumption is suitable in many cases, there are certainly cases where
this is not true - we will discuss the implications our assumptions might have
later.

The question is now, how do we decide how many subtasks (if any) should
be created for a given task? The next section first handles the edge case of
deciding between sequential or parallel execution.

5.1.1.1 Sequential execution

The main part of the algorithm presented is trying to quantify whether it’s
worth to parallelise the given task or sequentialise it when it contains no more
than a small amount of work. To formally quantify the cost of parallelisa-
tion, let κ denote the smallest amount of work (in units of time) that would
profitable to parallelize on a given machine. The value of κ should be large
enough to amortize the cost of creating and managing a single subtask. As
in Acar u. a. [2019], we employ the policy: On some input of size n, if we can
obtain the result of a task by executing it sequentially, i.e., execute g(n), in
less time than κ, then we should run g(n). Let Tg(n) denote the running time
of g(n), then by our linearity assumption we have the relationship

C · n ≈ Tg(n) (5.1)

for some constant C > 0. The online algorithm aims to estimate C, through

the ratio
Tg(n)

n , by sampling runs of g(n), and use the above relationship to
predict whether a call to g(n) takes less time κ. To obtain an initial estimate
of C we perform even partitioning as described above. The penalty is roughly
κ times the number of subtasks created, if the task turned out to be small,
which is manageable. Finally, we describe how to obtain a measurement of
Tg(n) from parallel subtasks. Recall that g() is the same as f(), so we can
measure the time of each subtask and sum them up to obtain our estimate of
Tg(n). More precisely, let Tf(ni) denote the time to execute a subtask with ni
iterations for the i’th subtask using the parloop function f(). We then have
the relationship

nsubtasks∑
i=0

Tf(ni) ≈ Tg(n) (5.2)

Note that the time measurement Tf(ni) include the time to perform the func-
tion call. This gives us a slight overestimate of the computation time of Tg(n)
and hence C. The algorithm uses this to make safe sequentialisations, i.e.
only sequentialise computations which are surely less than κ. Subsequent
runs of the same task (on perhaps different input of n), will exploit C to
predict whether a call to g(n) will take less time than κ, and if so, will run
g(n).
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5.1.1.2 General Granularity control

Whenever the run-time system receives a task and decides it to be scheduled
in parallel, it also has to figure out how many subtasks are worth creating.
In the case when no estimate of C is present, we use the procedure described
above, i.e. perform even partitioning. But having an estimate of C we can
estimate the minimum amount of work is needed to justify creating a subtask.
Let n denote the number of iterations for a parallel task using the parloop
function f() with estimated constant C, then we can estimate the minimum
amount of iterations for each subtask by replacing the right-hand side of Eq.
5.1 with κ. By rewriting it, we then have the minimum number iterations is:

nchunk = max
( κ
C
, 1
)

(5.3)

where we floor the minimum number of iterations to one. Given this, we can
estimate the number of subtasks to create as

nsubtasks =

⌊
n

nchunk

⌋
(5.4)

which makes it worth while to parallelise the computation. Note that nsubtasks
is greater than one; otherwise, the task would be executed sequentially. Fur-
thermore, under the assumption that the workload is regular, we cap nsubtasks
to the number of cores, as this would be the maximum amount of parallelism
obtainable on the particular machine with minimal overhead. We then have
that

nsubtasks = min

(
ncores,

⌊
n

nchunk

⌋)
(5.5)

are created for any given task when its scheduled for parallel execution.

5.1.1.3 Nested parallelism

In the case of nested parallelism, each level maintains its own estimate of C.
For example, if we have two tasks with the parloop functions fouter and fnested,
then they will have their own estimates Couter and Cnested, respectively. Note
that Couter contains the work performed by fnested in its estimate.

For a single level of parallelism, the online algorithm described above
suffices for automatic granularity control. However, when we measure the
execution time of fouter, the description so far does not take into account
that some nested computations might be executed in parallel. If fnested is
executed in parallel and if we are not careful with our time measurements,
then Couter could contain time measurements, including the overhead of paral-
lelization from scheduling fnested. Hence would time measurements stemming
from computations containing nested parallelism more likely exceed κ and
fouter would be executed in parallel, when it should have been executed se-
quentially. Instead, we must exclude any timings that involve creating and
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managing parallel subtasks, only including the times from executing the par-
loop functions. We finally sum up all sequential execution times stemming
from the nested computations, giving us an estimate of Couter, which only
contains the actual work performed. This allows us to perform granularity
control for nested parallelism.

Note that our algorithm does not consider the depth of the parallelism
nor the system’s current state; it merely computes how many subtasks to
create using Eq. 5.5 at each level. If the machine is saturated, it can become
suboptimal to create these subtasks, as there might not be any available
threads to take the work. The thread that created the subtasks might have
avoided subtask creation overhead and finished the task slightly faster by
doing it sequentially. However, maintaining the current state of the system,
e.g., keeping track of which threads are idle, also comes with an overhead.
Further, finding a good heuristic for when to avoid subtask creation and when
to create subtasks is difficult in practice. Instead, our approach aims to keep
it simple and avoid such heuristics.

5.1.1.4 Discussion

In this section, we discuss some of the shortcomings, our approach might
encounter due to our assumptions.

First, our assumption that there exist a constant, which can describe the
work for any input size, i.e. Tg(n) ≈ C · n, holds for any n. However, in
practice, one can observe that an estimation of C depends on the input size.
For example, for two different input sizes, one might be small enough to fit
into the caches, while the other might not. This can create different estimates
of C. Even two identical calls to the same function might result in different
run-times if one call already has cached data available. In the worst case,
an underestimation of C could result in running a task sequentially, which
could be executed faster in parallel. To minimize such effects, we accumulate
run-times and iterations across all runs of the same task, which gives us a
more robust estimate of C.

Second, in cases where our linearity assumption does not hold, we might,
in theory, end up creating too many or too few subtasks, resulting in over-
parallelization or under-parallelization, respectively. For example, if the true
cost function of a parallel computation is O(n2), then our algorithm will
estimate too-small granularities, as it will overestimate the constant C, which
results in over-parallelization. However, such over-parallelization is limited in
practice, since we cap the number of subtasks. Our linearity assumption
cannot result in under-parallelization, since we are using parallel loops, which
has a minimum complexity of O(n).

Third, in the case of nested parallelism, we might also face some issues.
For example, consider a function which sums up the row vectors for a n×m
matrix of integers. In Futhark such a function can implemented using a
reduce with a nested map (Listing 22).
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Listing 22 A program in Futhark which sums up the row vectors
1 let vector_sum [n][m] (xss:[n][m]i32) = reduce (map2 (+)) (replicate m 0) xss

Our algorithm will correctly estimate the constant associated with the
map, Cmap, since the complexity is linear in the dimension of the vector, i.e.,
O(m). However, the reduce has no knowledge about the work complexity
of the inner map and assumes that its work can be estimated through its
constant Creduce. In other words, the reduce only considers the complexity
with respect to n, i.e., the number of vectors. If the dimension of the vector,
m, changes during run-time our estimation of Creduce will become invalid.
In such a case, the complexity of the reduce should really be O(n · m),
which includes the complexity of the nested parallelism. While we did not
observe any current issues because of this, a program in the future might suffer
from our simplification. To solve such an issue, one could let the compiler
provide the cost function based on the levels of nested parallelism or even use
static analysis to infer the cost function[Jost u. a., 2010]. If these methods
are not precise enough, one could allow the programmer to provide the cost
function as a last resort. However, even if we were to let the programmer
provide a cost function, further problems arise. Our compiler might perform
transformations such as combining adjacent maps, i.e., fusion[Blelloch u. a.,
1993], which can provide benefits by increasing the granularity and reduce the
need for synchronization points. But if the two adjacent maps have different
cost functions, it is not clear what the cost function of the new fused map

should be. We could prevent such transformations in these cases but at a
cost of losing the benefits of the transformation.

In summary, our assumptions are associated with a couple of open issues.

5.1.2 Granularity control for irregular parallelism

The above method assumed that the workload is predictable, where the ex-
ecution time could be described as a function of the input size n. When the
workload of each iteration is not predictable, e.g. when the work is data-
dependent, the discrepancy between the work across cores can be large and
result in under-utilization. One can imagine a worst-case scenario where a
single thread might end up doing the majority of the work, while the remain-
ing threads finish quickly and become idle. Hence when we suspect that there
might be an uneven workload across each subtask, we want to load balance
the work during execution dynamically.

In our implementation, we use a compile-time approach to determine if a
particular task contains irregular work. The information is then given to the
scheduler, which will use a dynamic scheduling approach.
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5.1.2.1 Approaches to dynamic scheduling

For dynamic scheduling, we tried to employ several automatic granularity
control approaches to achieve load-balancing. The initial idea was to employ
a strategy similar to how TCP handles congestion control. The idea was
that whenever a task is marked as being potentially irregular, we start by
chunking the iterations evenly out onto each core as in even partitioning.
When threads initially start performing work, it creates a subtask containing
only one iteration initially and executes it. The next time it takes two, and
then four and so on. In the case that work ended being approximately load-
balanced, we would not endure a large penalty for the additional subtask
creations. When a thread finished its work, it will try to acquire more work.
Whenever a new subtask was acquired, implying that the task indeed was
irregular; we would halve the chunk size from the acquired subtask, similar
to how TCP backs off whenever it detects congestion on the network, e.g.,
when packages are lost. Unfortunately, we observed that whenever a task
was heavily irregular, the iteration counter would quickly go towards one as
a lot of acquiring was happening. This resulted in poor performance due to
the overhead of subtask creation. Other approaches to irregular parallelism is
the guided scheduling method used by OpenMP, briefly described in Section
3.2.1.2. But such a heuristic only works on a subset of irregular programs,
more specifically on those programs where the majority of the workload is at
the end of the iterations. A property we can not predict for Futhark programs
and hence not applicable.

Instead, we use an online algorithm which ensures, on average, that sub-
tasks created justify the cost of creating and managing a single parallel sub-
task. More specifically, we use κ as a guideline on how much work is needed
to amortize the cost by continuously adjusting the chunk-size based on the
value of C. We still use our linearity assumption here, which is a crude
simplification, as it does not make sense to define a cost function in this case.

5.1.2.2 An online algorithm for irregular parallelism

As with the initial idea, we initially perform an even partitioning of the iter-
ations. When the thread initially starts executing the subtask it only takes
a small chunk at the time. The chunk is initially a single iteration, which
is used to gather initial information about C. Note also that C is reset be-
fore each irregular task. As the work-load is data-dependent, C estimates
might vary between irregular tasks and cannot be reliably used again as in
the previous algorithm. As we sample more information from previous runs,
we accumulate the sampled run-times and iterations and our C estimation
becomes closer and closer to the average run-time per iteration. Accordingly,
we readjust the number of iterations per chunk. Before each subtask is exe-
cuted we recompute the number of iterations needed to amortize the cost of
subtask creation, based on the same method described in Section 5.1.1, i.e.
nchunk = κ

C . This becomes our chunk size, leaving the remaining iterations for
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later execution. The process is illustrated in Figure 5.1 from the perspective
of a single thread, which is assigned 10 iterations initially and uses 4 steps
to process its work. In the first step, it will take 1 iteration to obtain an
estimate of C. In the second step, it uses nchunk = κ

C to find it’s chunk size
and finds that it needs to consume 4 iterations to amortize the cost of subtask
creation. This again gives an updated estimate of C, and at the third step,
C has grown, so it only takes 2 iterations. Finally, is there only 1 iteration
left and the thread processes that one. When the thread runs out of work, it
will try to acquire more work from other threads, e.g., through stealing (See
Section 5.2), which ensures work-load balancing. While we only showed the
process from a single thread’s perspective, note that C is shared among other
threads working on the same task, and updates are done using atomic opera-
tions. There is an important point to be made here. If we were to chunk the

Figure 5.1: Illustration of our online algorithm for irregular parallelism from
a single thread’s perspective

iterations using some small chunk size before execution starts, there would be
no (easy) way of combining those into continuous chunks again. By keeping
large blocks of iterations, we have the opportunity for a subtask to consume
a large chunk if needed, making this algorithm similar to lazy task creation.

Finally, note that irregular parallelism can only be scheduled for maps
and reducees, where the latter requires that the operator is commutative.
As iterations might get moved around from core to core, we cannot ensure
that the operator is applied in the correct order when it is only associative.
For scan, will our parallel algorithm not work using a dynamic scheduling
approach, as it requires that the two stages use the same fixed chunk sizes.
Such a requirement is difficult to maintain in a dynamic environment. Though
it is uncommon to use irregular code patterns with these operators, so such
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a limitation is not a problem in practice.

5.2 Work management

We will need a way of managing the work which needs to be performed for
a given task. An initial approach is to have a centralized work queue that
all threads enqueue work onto and all threads deques from. While such an
approach can be easy to maintain and implement, it scales poorly as more
and more threads try to access the same queue. Instead, it is more scalable
to have each thread have its own local work queue, which it can manage inde-
pendently. However, by letting each thread have its own local queue, another
problem arises. How should work be distributed among the threads? One ap-
proach is to use work-sharing. When one’s own queue gets “large“, subtasks
are sent to other threads. This can ensure that work is distributed evenly
among other threads. But if all threads have a lot of work, they will all try to
send work to each other, creating communication congestion, where threads
spend a lot of time trying to off-load work. It is also difficult to estimate
when it should off-load work as it depends on the state of other threads.
Instead, one can use a work stealing approach, where an idle thread becomes
a “thief“ and try to steal work from another thread, called the “victim“. This
approach has much better properties than work-sharing when the system is
under load. For example, communication only happens whenever a thread is
idle. Such a scheme can enable workload balancing at a much lower cost, as
the thieves were idle anyways. Many different work-stealing strategies exist.
A key property of a good work-stealing algorithm is that it is lightweight. It
should not spend much time figuring out which queue to steal from. The sim-
plest one, while also working well in practice, is a randomized work-stealing
strategy. Here whenever a thread runs out of work, it randomly selects a
victim. If it fails to find any work in the victim’s queue; it will try to select
another victim randomly again until it finds some work. However, one prob-
lem is that work can sometimes fail to be distributed evenly among the cores
as they fail to steal from the correct victim, which holds a lot of work.

Work-sharing and work-stealing can be complementary and can easily
co-exist. In our implementation, we make use of both, depending on the
current state of the scheduler. When all threads are idle, and a task initially
arrives, it is subtasks will be distributed using a work-sharing approach, which
ensures that work is distributed consistently. If the task contains any nested
parallelism, the nested task will not be distributed using work-sharing as this
will create communication congestion. Instead, the nested subtasks will be
pushed onto the thread’s own queue and distributed through work-stealing.
To better understand our choice, we should look at how queues for work
management is implemented.
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5.2.1 Data-structures

We will need a safe and efficient way of storing and distributing work among
the threads. We will follow the classical producer-consumer pattern, where
one or more producers create work, which is later consumed by a consumer.
Before diving into some popular implementations, we should think about
which properties such a data-structure should have.

Thread-safe As the data-structure is shared among threads, we would want
to ensure that it’s thread-safe, for example, using one of the mechanisms
described in Section 2.2.1.

Space-efficient It should not use more space than necessary, but should not
need to allocate memory frequently either. A common choice is to use
a circular array buffer, which is a more efficient use of an array.

Locality of work It is common that recent inserted work provide better lo-
cality for the thread that inserted it, i.e., it’s desirable to let the latest
work be executed onto the same core. To optimize for such behavior, a
LIFO behavior is appropriate, while stealing threads consume from the
“back“ making it a FIFO for them.

For work-stealing we would want it to support the following operations, in-
sert, consume and steal.

5.2.1.1 Job queue using mutexes and condition variables

The first implementation shown is a classical job-queue based on the use
of mutexes and condition variables. As described in Section 2.2.1 can the
combination be resource-efficient. The common design pattern for ensuring
mutual exclusion is shown in Figure 5.2 using function names from the POSIX
thread library. We also use a generic name Object as the element that our job
queue manages. Note that insert and consume are blocking functions. Such
behavior can both be an advantage or disadvantage. Whenever there is no
work to perform, the thread can sleep, freeing up computing resources to the
system, only waking up whenever some work has been assigned to the thread.
However, in a work-stealing environment, it is usually not beneficial to block,
but instead, threads should try to look for work. Finally, thieves should not
be blocking others’ queues. Instead, they immediately return whenever the
queue is empty.
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1 void insert(Object o) {

2 pthread_mutex_lock()

3 while (queue_is_full) {

4 pthread_cond_wait()

5 }

6 // Now there's room - insert work

7 pthread_cond_broadcast()

8 pthread_mutex_unlock()

9 }

(a) Producer insert

1 Object consume() {

2 pthread_mutex_lock()

3 while (queue_is_empty) {

4 pthread_cond_wait()

5 }

6 // Now there's work - consume

7 pthread_cond_broadcast()

8 pthread_mutex_unlock()

9 return work;

10 }

(b) Consumer consume
1 Object steal() {

2 pthread_mutex_lock()

3 if (queue_is_empty) {

4 pthread_mutex_unlock();

5 return NULL;

6 }

7 // Now there's work - consume

8 pthread_cond_broadcast()

9 pthread_mutex_unlock()

10 return work;

11 }

(c) Thieves steal

Figure 5.2: Common design pattern for ensuring mutual exclusion with mutex

and condition variables

5.2.1.2 Chase-Lev’s lock-free deque

A very popular data-structures for storing work is a concurrent deque[Chase
und Lev, 2005; Lê u. a., 2013]. The deque is specially designed for work-
stealing environments and provides concurrent access for threads without the
need for locking to ensure thread-safety. The highly efficient scheme is based
on a collection of array-based double-ended queues (deque), where the owner
pushes and pops from the bottom, while stealing threads steals from the
top. Note that only the owner is allowed to push work onto its deque, and
hence is the data-structure mostly applicable in a distributed setting, where
each thread is managing its own deque. This type of deque has shown to
become an industry-standard in terms of efficiency due to its limited need for
synchronization across threads to ensure consistency, making it very efficient
when many tasks are produced. The deque has three main operations:

• push_back(Object o): Pushes o onto the bottom of the queue

• Object pop_back(): Pops an object from the bottom of the deque if
the deque is not empty. Otherwise returns Empty
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• Object steal(): If the deque is empty, returns Empty. Otherwise re-
turn the element stolen from the top of deque. But if the thread loses
the race it returns Abort.

The deque only keeps track of two indexes, the top and bottom, which indi-
cates the two ends of deque. If bottom is less than or equal top then the deque
is empty. On a push_back() operation the bottom index is incremented, while
it’s decremented on a pop_back(). A successful steal operation increments
the top index. Note that the bottom of the deque works like a stack (LIFO)
data-structure while the top works a queue (FIFO). This increases the local-
ity as newly pushed subtasks are more likely to use the already cached data.
Under the constraint that only the owner of the deque is allowed to invoke
push_back() and pop_back(), synchronization is only needed in two cases.
Whenever an owner invokes a pop_back() and, there is exactly one object
left in the deque; it has to ensure that it did not lose a race to a stealing
thread. Similarly, whenever a thread steals from the top, it also has to ensure
that it has won the race with another potential stealing thread. Such condi-
tion checking can be done through a single atomic compare-and-swap (CAS)
operation. Finally, to ensure a sequentially consistent memory, one needs to
make use of memory barriers as described in Section 2.2.3.1, ensuring that
the instruction orders are not reordered during execution.

5.2.2 Discussion

The two presented data-structure implementations, while achieving the same
goal, differ widely. We list the advantages and disadvantages of each below:

Job-queue

+ Efficient as threads can be woken up only when work is present,
not consuming CPU resources otherwise

+ Easy to distribute work evenly among cores as any thread can push
work to any queue.

- Slow when many threads try to access same queue, as they are
blocking each-other making failed attempts expensive as each steal-
ing thread can only check the queue one at time.

- Requires kernel intervention for waking up threads or if there is
lock contention.

Chase-lev’s deque

+ Lightweight as synchronization is only required in two cases and
uses fast atomic hardware supported operations.

+ Efficient when many threads are trying to steal from same queue
as they can concurrently race for the work, making failed attempts
cheaper than the with job-queue.
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- Difficult to ensure proper distribution as we rely on threads are
stealing from the correct queue, i.e. threads acquire work through
a steal.

- Resource inefficient as threads will run “full tilt“ all the time, since
there is no mechanism for de-scheduling and waking up threads in
a consistent way.

We can see that the job-queue can be used in both work-sharing and work-
stealing schemes, while Chase-lev’s deque is only applicable in the work-
stealing scheme. In our work, we provide implementations for both data-
structures but use the job-queue for several reasons. In Futhark, the ma-
jority of the tasks will be scheduled statically with one level of parallelism,
where we cap the number of subtasks created to the number of threads. As
a result, are there most likely only one subtask present in each queue at the
time, which contains approximately the same amount of work, and steal-
ing is rarely required. For such programs, we observed that the job-queue
performed better than Chase-lev deque. This performance gain is due to
the job-queue’s ability to distribute work directly onto other thread’s job-
queue. We saw a much larger variation in benchmarks for programs when
using Chase-lev’s deque as threads failed to steal from the right queue con-
sistently. Another issue with Chase-lev’s deque is that only the owner can
push work onto its deque, which results in the main thread’s deque essentially
becomes centralized, which all threads initially steal from. Chase-lev’s deque
is more appropriate for fork2join style programs, which can avoid letting a
deque becoming centralized. While you can implement parallel loops using
fork2join, we did not explore such an option in this thesis.

The results with the job-queue showed much more consistent performance
for such programs. As such is a work-sharing approach more suitable for the
majority of tasks in Futhark. Furthermore, since Futhark is used to acceler-
ate compute-intensive parts of a larger program, we do not want to consume
resources in between such computations. While we did explore the option of
using UNIX signals to only wake up threads when needed, the above disad-
vantages out favored the need to use Chase-lev’s deque.
In our implementation, we only enable work-stealing in case of nested- or ir-
regular parallelism. For nested computations, the subtasks created are pushed
onto the thread’s own queue, and distributed through work-stealing.

For irregular workloads, the subtasks are initially distrusted using work-
sharing. When threads run out of work, they will try to steal more work
from other threads. Here we saw a small performance penalty when using the
job-queue. With a small modification to the work-stealing strategy, we were
able to limit the need for stealing in this case. We use a half-work stealing
strategy, where we steal half of the iterations at a time, while previously, we
either stole the entire subtask or only a small chunk of it. When stealing an
entire subtask, it would often leave the victim with no work, and it would
be forced to steal again, increasing the communication overhead. On the
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other hand, stealing a small chunk would quickly leave the thief with no
work, again increasing overhead. A half-work stealing approach is hence a
compromise between the two.

5.3 Memory management

As memory needs to be handled manually in C, it’s relevant to set up some
memory management policies. As Futhark programs are meant to be alive for
extended periods of time, it is important to release memory back to the system
whenever it is not needed any more. The run-time system for the sequential
C back-end already employs a memory management system, which ensures
that allocated memory is released back to the system whenever there are no
more references to the memory. This is handled by wrapping every memory
allocation into a memblock struct, which then keeps track of the number
of references to the memory allocated. But memory management with the
multicore back-end can become much more difficult to manage when different
threads are allocating and sharing memory. For the multicore back-end we
employ the following memory policies

1. Whenever a task or subtask is executed, where the result is returned
back to the caller, the memory must already be allocated before the
task or subtask is started.

2. A subtask should never free any memory not allocated by it self.

The first policy ensures that the memory allocations cannot be a “side-effect“
of running some task or subtasks. This follows naturally for a pure functional
language. The second policy ensures that for every memory allocation within
a subtask is also freed within the subtask. This policy make it easier for the
compiler to keep track of allocations as it can just insert the corresponding
free at the end of the scope that the allocation was made in. These policies
enable simple memory management.
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Chapter 6

Implementation

This chapter describes the implementation of the new multicore back-end,
which includes our work for both the compiler and run-time system. A key
design goal is that the compiler and the run-time system should be two sep-
arate components, such that either can be subject to future changes while
avoiding changes to the other. We design an API for the run-time system,
which the generated C program interacts with. This creates an abstraction
between them, which hides away the implementation details of the run-time
system from the compiler. Before presenting the new code-generator and
scheduler, we first give an overview of the new multicore pipeline.

6.1 Compiler and Code generation

The Futhark compiler’s pipeline is shown in Figure 6.1.

Figure 6.1: Data flow diagram of the Compiler pipeline for Multicore compi-
lation

We put our focus on the back-end, which is responsible for generating
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code based on the translations to parallel constructs presented in Chapter
4. A little focus will be made on transformations and optimizations, while
the front-end will not be discussed in this chapter. The Futhark compiler is
written in Haskell and is, including our contribution, publicly available under
a free software license at:

https://github.com/diku-dk/futhark/

Below we give a short description of the compiler pipeline.

6.1.1 Compiler pipeline

The front-end brings the Futhark program to a SOAC IR representation,
which resembles A-normal form, i.e., three-address code of statement-like
bindings[Henriksen u. a., 2014]. The middle-end takes the SOAC IR repre-
sentation and performs optimizations and transformation to program, such as
fusion[Blelloch u. a., 1993]. For our multicore back-end, the middle-end out-
puts the program using an internal representation called Multicore Memory
(MCMem), which has applied all the optimizations and transformations as well
as inserted explicit statements for memory allocations. The new representa-
tion is similar to the SOAC IR, but introduces four new constructs SegMap,
SegRed, SegScan and SegHist, which express parallel execution. Finally, we
reach the back-end, which generates multi-threaded code for our target lan-
guage C, using the four new constructs. The compiler outputs the C code
within a single file, which is compiled using GCC to either an executable
or a library. The run-time system’s code is already embedded in the C file;
however, can the run-time system be regarded merely as a library, which is
linked to C code at compile-time. We start this section with an overview of
the optimizations and transformations made by the compiler.

6.1.2 Middle-end

This part of the compiler takes the SOAC IR representation from the Futhark
program as input and is responsible for applying transformations and opti-
mizations. Optimizations include code inlining, copy propagation, constant
folding, common-subexpression and dead-code elimination, and hoisting of
invariant terms outside of loops and SOACs[Henriksen u. a., 2014]. Further-
more can simplification rules be applied, such as producer-consumer fusion.
For example can a composition of reduce/scan and map be fused together
by the compiler, which we denote as redomap/scanomap, respectively, and is
defined as:

redomap� f ne xs ≡ reduce� ne (map f xs)

scanomap� f ne xs ≡ scan� ne (map f xs)

Fusion can eliminate the need for synchronization points, i.e., joins and re-
duce the need for intermediate arrays, which can ultimately reduce the need
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for memory copies. After performing its transformations and optimizations,
it finally ensures that memory is allocated by inserting explicit memory al-
locations statements into the program. We did not have to deal with this in
our implementation, and a lot of the memory management is leveraged from
previous work.
After this stage, we use a new internal representation, which is similar to
the SOAC IR representation, but with a couple of subtle changes. The
new representation introduces four new constructs SegMap, SegRed, SegScan
and SegHist, which express parallel execution. Internally we call these new
constructs for SegOps. These four SegOps corresponds to perfect parallel
nests where, semantically, the innermost parallel construct is a map, redomap,
scanomap or a histogram1, respectively and the rest are maps. These four
SegOps suffices to represent all the parallel constructs in Futhark, e.g. a
scatter is compiled to a SegMap. Our program now contains a collection of
SegOps, which is compiled to the parallel algorithms presented in Chapter 4.
The SegOps constructs provide flexibility for our code-generator. For example
can the middle-end output different SegOps, which can be used to generate
semantically equivalent code versions, where each can exploit different lev-
els of parallelism. Listing 6.2 shows the information carried by each SegOp.
For example, a SegRed represents a reduction, where SegBinOp is the binary
operator and KernelBody contains the statements of SegOp which could be
statements for preparing the data to use with the operator or potentially any
nested SegOps. Finally is there SegSpace, which represents the iteration space
for the parallel loops. The new representation of the program is internally
called MCMem.

1 data SegOp lvl lore

2 = SegMap lvl SegSpace [Type] (KernelBody lore)

3 | SegRed lvl SegSpace [SegBinOp lore] [Type] (KernelBody lore)

4 | SegScan lvl SegSpace [SegBinOp lore] [Type] (KernelBody lore)

5 | SegHist lvl SegSpace [HistOp lore] [Type] (KernelBody lore)

Figure 6.2: Internal SegOp representation

6.1.2.1 Transformations and Optimizations for the multicore back-end

As Futhark is data-parallel array language, many programs can easily satu-
rate CPUs, which has relatively few cores, using only the outer-most parallel
level. We use this observation as a heuristic in our compiler to sequentialise
nested SegOps. An advantage by letting the compiler sequentialise nested
SegOps is that it can perform other optimizations such as reducing explicit
memory copies. For example consider two nested maps. When the nested map

is compiled to a nested SegMap we require a memory copy to write the result
back into the outer SegMap’s resulting array. With sequentialisation we can

1Also called reduce_by_index in the source language
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use in-place lowering, meaning that the inner SegMap’s now sequential code
can write directly to the outer resulting array. This can in memory bounded
programs, increase performance up to 2×. As such, we let the compiler se-
quentialise nested operations, which generally leads to better generated code
and performance. However, a downside of only producing a sequential ver-
sion of our SegOp is that if the outer-most parallel level does not exhaust
the machine, we cannot exploit potential nested parallelism. The middle-end
thus outputs two semantically equivalent SegOps for each parallel computa-
tion. A version where all nested SegOps (if any) have been sequentialised as
well as a version where the SegOps are left untouched, i.e. contains nested
SegOps. The latter is only generated if there are any nested SegOps; other-
wise, the versions would be equivalent. To avoid confusion between program
structures produced from this part of the compiler, we distinguish between
top-level form and nested form. The top-level form is the one where
every nested SegOp has been sequentialised, while the nested form is the
program structure containing nested SegOps. By having both versions avail-
able, the scheduler is able to select between either at run-time depending on
the input sizes, making it possible to exploit potential nested parallelism if
needed.

6.1.3 Back-End

Given a program with MCMem representation, the back-end first translate each
of the SegOps into the parallel algorithms presented in Section 4 using an
imperative Intermediate Language (IL). We then translate the SegOp from the
Intermediate Language to C code. Here we use a technique similar to lambda
lifting [Johnsson, 1985], which transforms local functions to global functions,
by extending the function parameters to include the environment. However,
in our implementation, we do not actually extend the function parameters as
it would lead to function parameter explosion and instead use closures.

Every SegOp generates one C function, segop_fn, which has the type
shown in Listing 23. The control flow of the parallel algorithm is encapsulated
within a segop function. For example for a SegRed, which is translated
to the parallel algorithm for reduce, the segop function will contain code
for execution the first stage in parallel, as well as the sequential code for
performing stage 2.

Listing 23 SegOp function type
1 typedef int (*segop_fn)(void* args, int64_t iterations, int tid, struct scheduling_info info)

The segop function takes four arguments. First is a pointer to a struct
containing the function environment. Besides the environment, the task func-
tion also takes the number of iterations, the id of the thread that executed
the function, and lastly, the scheduling information. We will return to the
latter argument in the next section, where we present the scheduler’s API.
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Having a distinct segop function creates a level of abstraction, in which
each function corresponds to a SegOp, making it possible to generate a func-
tion for the top-level form and one for the nested form.

For a parallel computation within a SegOp, we also lift the code body into
a C function, parloop_fn, which has the type and template layout shown in
Listing 24.

Listing 24 Task function type and template
1 typedef int (*parloop_fn)(void* args, int64_t start, int64_t end, int subtask_id, int tid);

2

3 // parloop function template

4 int parloop_fn(void *args, int64_t start, int64_t end, ...) {

5 int err = 0;

6 struct parloop_struct *free_vars = (struct parloop_struct *) args;

7 // Unpack free variables into local variables

8 // prebody

9 for (int64_t i = start; i < end; i++) {

10 // function body

11 }

12 // postbody

13 return err;

14 }

The parloop_fn function takes 5 arguments. Similar to the segop func-
tion, a pointer containing the environment of the function. It also takes the
start and end of the iterations space and a subtask id, which is used to identify
which location the specific subtask should write its results to. Lastly, is the id
of the thread executing the function, which is used for logging purposes. The
template for a parloop_fn function is also shown. It first casts its environ-
ment into the struct belonging to the function and unpacks the environment
into local variables. A prebody can optionally be supplied, which usually
initializes values before the for-loop is entered. Then the sequential for-loop
is entered, which iterates over the range (start, end) executing the function
body. Finally, a postbody can optionally be provided to write the results of
the for-loop back. The motivation for the prebody and postbody is that, in
some cases, it is beneficial to generate code where the function body within
the for-loop only uses variables that are local and write the result back after
the loop has finished - We will show concrete examples later of such benefits.
The prebody and postbody are not always used and can be empty, but are
included so we can use a single representation of a parallel for-loop internally,
which is both simple and flexible. The implementation by lifting both the
segop and parloop_fn allows us to pass the function pointer along with en-
vironment to the scheduler. The next section describes the scheduler API
and how the scheduler uses these functions.
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6.1.3.1 Scheduler API

For brevity, in this section, we omit non-relevant information or fields when
showing code or definitions. Examples of such can be debugging or logging
information, which is not relevant to the run-time system’s functionality. Fur-
thermore, as C only has one namespace, it’s common to prefix library func-
tions and struct identifiers with the library’s name. For example, in our
implementation for the scheduler, we use the prefix scheduler_. We will
omit such prefixes here for simplicity.

The scheduling of a segop is divided into two phases, decision, and exe-
cution. We start by describing the decision phase. Whenever a segop needs
to be executed, a query will first be send to the scheduler through the API
function decide(). The function decides how the given segop should be
executed, i.e., sequentially or in parallel and if so, how many subtasks are
created. Our compiler generates code for invoking the call to decide() and
fills out the struct segop, such that the scheduler can make the decision (List-
ing 25). The struct contains the closure of the segop functions, as well as
information on which scheduling approach should be used for the segop, i.e.,
dynamically or statically, which is decided at compile-time. Lastly, it con-
tains pointers to the fields that contain time measurements associated with
the segop. These fields will be used to compute estimate C and decide how
the particular segop should be executed along with the number of iterations
using one of the procedures described in Section 5.1. Note that we do not
actually store the estimate of C but rather the total time and total iterations
from previous runs. This allows us easier accumulate time measurements.

The scheduler fills out the scheduling_info struct and invokes either the
top-level or nested segop function with it, such that the initialization code
within the segop function can prepare for parallel execution, e.g., by allocat-
ing the memory needed depending on the the number of subtasks created.
Whenever a parallel section is reached within the segop function, another
call to the scheduler is made, supplying the parloop function created by the
compiler from Listing 24. This is the execution part of the scheduler and is in-
voked using the scheduler function execute_parloop() (See Listing 26). Our
compiler generates the necessary code for invoking execute_parloop(), by
filling out the struct parloop, which contains scheduling information passed
down from the decision phase. Similarly to a segop, we encapsulate the en-
vironment of the parloop function through the pointer, args. If the number
of subtasks was one then execute_parloop() executes the parloop function
sequentially, otherwise it invokes execute_parallel(), which creates the
subtasks and distributes the work, and blocks until all the subtasks are fin-
ished. We will return to later on how we distribute the work in more detail
in Section 6.2. This concludes our presentation of the scheduler’s API, which
only exposes two functions, decision, and execution. While we could just
settle with one API call, which included both decision and execution, our ap-
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Listing 25 Scheduler task function and struct definitions
1 enum scheduling {

2 DYNAMIC,

3 STATIC

4 };

5

6 // Struct definition of segop closure

7 // and segop information

8 struct segop {

9 void *args;

10 segop_fn top_level_fn;

11 segop_fn nested_fn;

12 int64_t iterations;

13 enum scheduling sched;

14

15 // segop time measurements

16 int64_t *total_time;

17 int64_t *total_iter;

18 };

19

20 int decide(struct segop *);

21

22 struct scheduling_info {

23 int64_t iter_pr_subtask;

24 int64_t remainder;

25 int nsubtasks;

26 enum scheduling sched;

27

28 int64_t *total_time;

29 int64_t *total_iter;

30 };
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Listing 26 Executing a parallel loop
1 thread_local int thread_id;

2

3 struct parloop {

4 parloop_fn fn;

5 void* args;

6 int64_t iterations;

7 struct scheduler_info info;

8 };

9 ...

10 int execute_parloop(struct parloop *task)

11 {

12 int err = 0;

13 if (task->info.nsubtasks == 1) {

14 // Execute sequentially

15 err = task->fn(task->args, 0, task->iterations, 0, thread_id);

16 } else {

17 // Execute in parallel

18 err = execute_parallel(task);

19 }

20 return err;

21 }

proach comes with several advantages. It is possible to pre-query scheduling
information before a SegOp is run. This could include getting information on
how much additional memory is needed for a particular parallel task, which
depends on the particular scheduling. For example, if the scheduler decides to
run the given task sequentially, we do not need to allocate additional memory,
which can be more memory efficient for some SegOps, such as Subhistogram-
ming. It is also possible to explicitly ensure that multi-stage SegOps use the
same scheduling. For example, recall that the parallel scan algorithm has two
parallel stages and that we required that the scheduling of them must be the
same. Since these phases are encapsulated inside the same segop function,
both phases use the same scheduling decision to ensure such a requirement.
Lastly, it is possible to hand-over multiple segop functions to the scheduler,
which is semantically equivalent, i.e. produces the same result, but exploits
different levels of parallelism. In our work, we only provide the top-level-
and nested segop functions, but future work might try to incorporate more
versioning of the SegOps, giving the scheduler more options to choose from
depending on the input, current state of the run-time system, and so on.

6.1.4 Back-end continued

Having shown the run-time system’s API, it should now be easier to under-
stand what is generated by the compiler. For every SegOp we generate a
segop function along with a struct containing the fields of the environment,
i.e. its free variables. Additionally, if the SegOp contains nested SegOps, we

65



generate an additional segop function, which can exploit the nested paral-
lelism. The scheduler can then choose between these two. As the intersection
of both segop functions’ free variables is usually large, we only generate one
struct. Furthermore for each segop function one or more parloop functions
are generated, which themselves create their own struct containing the envi-
ronment of the function. For example, a non-segmented SegRed creates one
parloop functions, for the first stage. The second stage is sequential, and
the corresponding code is generated directly inside the segop function. The
bodies of the parloop functions may themselves create segop functions for
exploiting nested parallelism. The reader may notice the similarity of the C
code from Section 4 to our implementation. A segop function corresponds to
a parallel algorithm, while the sequential body of the parfors are lifted into
parloop function.

Our approach to multi-versioning has it’s downsides, as it can lead to
linear code size in the depth of the nested parallelism. However, in practice,
are the levels of nested parallelism not that deep and the code size is still
manageable.

6.1.4.1 Efficient sequential elisions

Recall that our scheduler can obtain the sequential elision by executing the
parloop function sequentially. However, we can do better in some cases. If a
segop is executed sequentially, we want to use the more practically work-
efficient sequential algorithm. In our compiler, we generate code for the
parallel algorithms, such that they are overloaded and can be executed as
efficiently as their sequential version. For example, for scan, when the first
stage is executed sequentially, it reduces to a sequential scan. We use the in-
formation passed from the scheduling information in our code-generator and
insert checks into our generated code to bypass stage 2 and 3, which are not
needed in this case. This overloading creates a small dependency between the
compiler and scheduler, where a hard-coded check is inserted into the code-
generator. For map and reduce the sequential elision is already as efficient as
the sequential version, so we do not need additional checks. Unfortunately,
is our sequential elision for reduce_by_index, not as efficient in practice as
the purely sequential version. If we use Subhistogramming, then we require
an explicit memory copy to write the result from the local histogram to the
resulting array while the Atomic approach suffers from the overhead of using
atomic operations.

6.1.4.2 Determining if a task is irregular

The compiler determines whether a parallel computation could contain any
uneven workload by inspecting the statements of the parloop function body.
The only current source of potential imbalance used is if the function body
contains a while-loop. Such statements are usually used when the termination
criteria are not known beforehand. Another interesting source of imbalance is
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if-else statements. One can imagine a scenario where the two branches’ work-
load is widely different. However, determining if the workload of the branches
is different at compile-time is difficult and requires more precise analysis to
do properly. We leave such a case and other potential sources for future work
to investigate. Finally are there cases where the inner-parallelism’s work de-
pends on it’s arguments, such as:

map (\i -> reduce (+) 0 [1...i]) [1...n]

where the work of the nested reduce depends on the value of i, which is
varying from 1 to n. At the time of writing, we do not currently check for
such cases in our compiler either.

6.1.5 Memory optimizations

In multicore systems, memory bandwidth can quickly become a bottleneck.
Here we present the memory optimizations we performed to minimize such
effects.

6.1.5.1 Memory access

During our work, we found that GCC is much more capable of generating
efficient code whenever the sequential for-loop in Listing 24 used variables,
which do not perform memory accesses. More specifically, we found that
GCC can put these variables in registers, requiring less spilling and re-loads
of data from memory. Currently, we only do such optimizations whenever the
operator is on primitive values for reduces and scans, but future work should
look into generating code, which uses fewer memory accesses in general.

In our implementation, we first load necessary data in the prebody and
write them to local variables, which is used inside the for-loop. Whenever
the loop exits, we write the result back using the postbody. An example is
shown in Listing 27, which optimizes the sum program from Listing 12. Here
we declare a local variable, local_sum, to be used within the for-loop, which
can be put into a register. We observed that such a simple optimization can
provide orders of magnitude better performance on our micro-benchmarks,
but minimizing memory access is not the whole story.

6.1.5.2 False sharing

False sharing occurs when two or more cores work on independent data that
share the same cache line. When a write is made to the cache-line, the sys-
tem’s cache-coherence protocol will force an update to the other cores using
the same cache line. This will cause memory stalls and wasteful usage of
memory bandwidth, which will result in performance degradation, especially
on systems with non-uniform memory access (NUMA) behavior. The perfor-
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Listing 27 Optimization to use local variables for a scalar reduction
1 int32_t parallel_sum (int32_t* xs, int32_t* res, int n) {

2 int chunk = n / n_cores;

3 int n_chunks = (n + chunk - 1) / chunk;

4 // Stage 1

5 // Allocate chunk_sum[n_chunks] = {0};

6 parfor (i = 0; i < n_chunks; i++) {

7 int id = get_subtask_id();

8 // prebody

9 int32_t local_sum = chunk_sum[id];

10 seqfor (int j = chunk * i ; j < min(n, (i + 1) · chunk); j++) {

11 local_sum += xs[j];

12 }

13 // postbody

14 chunk_sum[id] = local_sum;

15 }

16 ... // Stage 2 of reduce

17 }

mance speed-up above is also due to the removal of false sharing2. Before the
optimization in Listing 27, the shared intermediate array chunk_sum would
cause false sharing, as the cache lines on our system, are 64-bytes, which can
store 16 values of 32-bit each. To minimize this effect, we try to avoid letting
threads work on shared memory allocations, which is currently only supported
for reduce and scan. When the operator is on primitive values, we use the
optimization above, while on vectorized values, we allocate a local array for
the accumulator. Our Subhistogramming implementation could also benefit
from it, since we currently allocate the sub-histograms as a large contiguous
memory block, which is shared among the threads.

6.1.5.3 Memory reuse

This optimization enables reuse of memory allocations by hoisting allocations
and avoids putting pressure on the memory allocator. Whenever we encounter
an immediate memory allocation inside the sequential for-loop in our parloop
function, we move such allocations outside. Listing 28 shows an example of
an allocation, which safely can be moved outside to the prebody. The free

is also moved to the postbody.

6.1.5.4 Lexical memory usage

Recall that every memory allocation is wrapped inside a memblock, which
keeps track of references to the memory. Memory blocks which are only used
lexically, i.e., do not leave the scope that it was defined in, does not need ref-
erence counting and can be handled in a stack-like fashion avoiding the, albeit

2We believe the drastic performance increase is mainly due to the elimination of false
sharing, though it is difficult to measure the individual effects
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Listing 28 Example of memory allocation that can safely be moved to the
prebody

1 int parloop_fn(void *args, int64_t start, int64_t end, ...) {

2 ... // Initialization code

3 for (int64_t i = start; i < n; i++) {

4 type* intermediate_res = malloc()

5 // execute function body, writing result to intermediate_res

6 // write intermediate_res to res

7 free(intermediate_res)

8 }

9 ...

10 }

small, overhead of reference counting. For example, all allocations within a
subtask, i.e., within a parloop function, do not need reference counting, which
follows from our second memory policy.

6.2 Scheduler

The final implementation is the scheduler. Our scheduler launches nvcores−1
POSIX threads, which acts as worker threads. Including the main thread,
we have one thread running per (virtual) core. Each thread maintains its
own worker struct which contains a work-queue and thread specific variables
such as its id. Before the program starts, the worker threads are spawned
using a thread function and kept alive during the program’s duration. After
the threads are spawned, they are immediately put to sleep and only woken
up whenever there is work. Whenever the main thread starts execution of
the program, and it encounters a parallel computation it will call decide(),
which decides how it should be scheduled as described in Section 6.1.3.1.
Whenever a parallel computation with more than one subtask is decided, ex-
ecute_parallel() is called, which handles subtask creations and distribu-
tion. A subtask (Listing 29) contains the closure of the parloop_fn similarly
to the parloop struct from Listing 26. It also contains its iterations range,
subtask id, shared information for timings used for measuring the sequen-
tial work of the task the subtasks belongs to and auxiliary information used
whenever the task was dynamically scheduled. Lastly, a join counter is used
to track how many subtasks are yet to be finished. Each subtask maintains a
reference to the join counter and atomically decrements it upon completion
of a subtask. An outline of the process for subtask creation and distribution
is shown in Listing 30. Lines 9 through 12 read the scheduling information
from the previous decision phase. Line 13 creates the shared join counter.
Lines 17 through 26 creates the subtasks using the scheduling information.
Since we are using the job-queue, we are able to distribute the subtasks onto
the other workers queue directly, which are then woken up. After creating
the subtasks, the main thread will perform it’s own subtask first using the
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wrapper function run_subtask(). We will show the function’s content later
on when we present time measurements in Section 6.2.2. After executing its
subtask, the main thread then loops, waiting for the join counter to become
zero. This is outlined in lines 29-36. If the main thread has already finished
its work, and the join counter is still not zero, it will try to steal some work in
the meantime. Note that upon successful stealing, the stolen subtask might
be part of another concurrent task and as such is the stolen subtask executed
immediately, i.e. the join counter is not checked between a successful steal
and the execution. Note also that both decide() and execute_parallel()

are re-entrant if there are any nested segops and can be called by any thread.
In the case of nested segops, the same procedure is performed as above, just
where the calling thread becomes responsible for creating subtasks. Further-
more, are subtasks pushed onto the calling thread’s queue only. The subtasks
are then distributed using work-stealing.

Listing 29 Subtask struct definition
1 struct subtask {

2 parloop_fn fn;

3 void* args;

4 int64_t start, end;

5 int id;

6

7 // Shared variables across subtasks

8 volatile int *join_counter; // Counter for ongoing subtasks

9 int64_t *task_timer;

10 int64_t *task_iter;

11

12 // Parameters used when task is dynamically scheduled

13 int chunkable;

14 int64_t chunk_size;

15 };

6.2.1 Work-stealing on demand

We observed that programs which have load-balanced work, that enabling
work-stealing would decrease the performance of the program. When work-
stealing were enabled, threads were busy trying to steal work, and not im-
mediately ready for the next subtask to arrive at their job-queue. As most
Futhark programs do not require work-stealing, we disable work-stealing by
default and only enable it whenever an irregular task is encountered or a task
with nested parallelism is used, i.e., the scheduler uses the nested form. In
our implementation, we use a simple heuristic for selecting between the top-

level form and the nested form. We only use the nested form whenever
the task does not have enough iterations to exhaust all threads; otherwise, we
use the top-level form. As some threads will still be sleeping in such a case,
we push a dummy subtask to the sleeping threads’ job-queue to wake it up.
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Listing 30 Outline of execute_parallel
1 // A thread local reference to it's own worker struct

2 thread_local struct worker* worker;

3 // global reference to other workers

4 struct workers* workers;

5

6 int execute_parallel(struct parloop *parloop, int64_t *timer)

7 {

8 // Load scheduling information

9 struct scheduler_info info = task->info;

10 int64_t iter_pr_subtask = info.iter_pr_subtask;

11 int64_t remainder = info.remainder;

12 int nsubtasks = info.nsubtasks;

13 volatile int shared_counter = nsubtasks;

14 ...

15

16 // Create subtasks and distribute them

17 int subtask_id = 0;

18 int64_t start = 0;

19 int64_t end = iter_pr_subtask + (int)(remainder != 0);

20 for (subtask_id = 0; subtask_id < nsubtasks; subtask_id++) {

21 struct subtask *subtask = create_subtask(task->fn, task->args, start, end, &shared_counter, ...);

22 push_subtask(workers[subtask_id], subtask);

23 // Update range variables

24 start = end;

25 end += iter_pr_subtask + ((subtask_id + 1) < remainder);

26 }

27

28 // Join (wait for subtasks to finish)

29 while(shared_counter != 0) {

30 if (!subtask_queue_is_empty(worker->q)) {

31 struct subtask *subtask = subtask_queue_dequeue(worker);

32 if (subtask != NULL) run_subtask(worker, subtask);

33 } else {

34 // Try to steal some work while waiting for subtasks to finish

35 }

36 }

37 return 0;

38 }
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To keep treads awake, we set a global variable active_work, which indicates
that there is work that can be stolen. While the variable is greater than zero,
threads will stay awake and try to steal. Note that our heuristic does not
take into account the current state of the system (how many idle threads,
etc.) nor how much actual work the nested parallelism has. For example, if
there is not much nested parallel work, it can become inefficient to wake up
the threads just to handle the small amount. Future work should improve
our simple heuristic, by considering the work of the nested parallelism.

6.2.2 Time measurements

The procedure for time measurement is shown in Listing 31, where we for
simplicity exclude code, which is not relevant to time measurements. For
our implementation of time measurements, we assume that a function now()

returns the current time. The function should measure time at a couple of
magnitudes smaller than that of κ. Usually, such function can be implemented
using hardware cycle counters, which are cheap to query e.g., by reading
from the time stamp register rdtsc. But we found that converting cycles
to time was not consistent on our machine as it relies on the core frequency,
which can sometimes boost, causing unreliable measurements. Furthermore,
rdtsc is also not guaranteed to be synchronized across cores, which can cause
problems if a thread is migrated to another core during execution. Instead,
we use the UNIX function clock_gettime, which can measure the current
time with nanosecond precision3. It is slightly more expensive than using
cycle counters but is sufficiently precise for our purpose. For proper time
measurement, we use two thread-local variables, total and timer, which has
the following invariants. timer either contains the time of the beginning of the
innermost subtask started or a point in time posterior after it. total holds
the time of all the sequential work performed starting from the beginning of
the innermost subtask run plus the time stored in the variable timer. We also
use a thread-local variable nested to keep track of if we are within a nested
computation. We first explain time measurement in the absence of nested
parallelism. In this case nested is zero when entering execute_parloop().

If the parloop function is executed sequentially, the time measurement is
straight forward. When the task is executed in parallel, the process requires
a couple of more steps. execute_parloop() will call execute_parallel(),
which generates the subtasks and distributes them among the cores as de-
scribed in Section 6.2. For proper time measurements, we only want to mea-
sure the time used executing the sequential work of the subtasks and exclude
any of the overhead from parallelization. To do so, execute_parallel() allo-
cate a task_timer which initially is zero. Whenever a thread starts executing
a subtask, it will call run_subtask(), which executes a subtask and measures
how long it took. The function total_now() computes the total amount of

3The resolution depends on the specific CPU, which sometimes cannot provide nanosec-
ond precision
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sequential work since the beginning of the innermost call to run_subtask.
It’s easy to see that when the subtask contains no nested parallelism, to-

tal_now() computes the duration of the sequential subtask. Upon finishing
a subtask, run_subtask() will atomically add it’s time measurement to the
task_timer. When all subtasks have finished task_timer contains the sum
of the sequential work for each subtask, giving us the approximation from Eq.
5.2. Finally as execute_parallel() returns the timings associated with the
task is updated using the function report(). Whenever a irregular compu-
tation is encountered, in addition to task_timer we also use a task_iter,
which keeps track of how many iterations the time in task_timer is based on.
In conjunction with task_timer, we can then continuously compute our C
estimate used to adjust our chunk sizes. For a correct implementation, both
of these need to be updated atomically, which can be done by packing both
values into one variable and perform an atomic update using a CAS opera-
tion. However, at the time of writing the updates are done as two separate
atomic addition operations.

6.2.2.1 Nested parallelism

Whenever there is nested parallelism, we must exclude the time taken inside
execute_parallel(). Whenever the nested computation is executed sequen-
tially, we require no additional action, and we can just compute the time of
the nested computation. But when it’s executed in parallel, we need to save
the time up until entering execute_parallel(); otherwise, the paralleliza-
tion overhead would be included in the current parallel computation. As we
unfold back to the outer parallel level(s) we add the time_before to the to-

tal, giving us the result of all the sequential work only, excluding the time
used to create and manage the parallel subtasks.
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Listing 31 Time measurement accounting for nested parallelism
1 thread_local time total = 0;

2 thread_local time timer = 0;

3 thread_local int nested = 0;

4

5 time total_now(time total, time t) {

6 return total + (now() - t)

7 }

8 // Workers call run_subtask when they are executing subtasks

9 void run_subtask(subtask) {

10 total = 0;

11 timer = now();

12 nested++;

13 run(subtask);

14 nested--;

15 time elapsed = total_now(total, timer);

16 // Report time elapsed to shared timer across subtask

17 Atomic {task_timer += elapsed}

18 }

19

20 time execute_parallel(task) {

21 time task_timer = 0;

22 // Create and distribute subtasks

23 // Join (wait for subtasks to finish)

24 return task_timer;

25 }

26

27 void execute_parloop(task) {

28 ...

29 if (task->info.nsubtasks == 1) {

30 time t = now()

31 // execute task sequentially

32 time elapsed = now() - t

33 report(task, elapsed)

34 } else {

35 time t_before = total_now(timer)

36 t_task = scheduler_execute_parallel(task)

37 report(task, t_task)

38 total = t_task

39 if (nested) {

40 total += t_before

41 }

42 timer = now()

43 }

44 }

6.2.3 Testing

We use Futhark’s extensive suite of test programs for testing our implemen-
tation, which contains more than 2500 tests across 1400 programs. Our im-
plementation passes all these tests. Furthermore, we also pass on all the
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programs in the Futhark benchmark suite, which contains large and complex
programs. This is a good indication of the correctness of our implementation.

6.2.4 Summary

In this section, we’ve presented the implementation of the code-generator
and the scheduler. Our implementation creates an abstraction between these
components, where the scheduler only exposes an API to the code-generator
consisting of two functions. Future tweaks for either can thus be done inde-
pendently of each other.

Note that our run-time system implementation only uses locks for synchro-
nizing the job-queues, otherwise relying on atomic operations to synchronize
reads and writes to shared resources. This is to reduce the number of kernel
calls, which in turn reduces the overhead of potential context switches to and
from kernel-space. We only require involvement from the kernel when waking
up threads and whenever there is contention for a job-queue lock, i.e., when
there is work-stealing involved. In the latter case, we’ve reduced the overhead
of stealing by using a half-work, work-stealing algorithm.
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Part III

Experimental evaluation
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Chapter 7

Benchmarks

For evaluating our work, we conduct a series of benchmarks, which is di-
vided into three sections. First, we use micro-benchmarks to see how our
implementations can perform on small, simple programs compared to the se-
quential back-end. This will give us an early indication of the performance
of our implementations. The micro-benchmark for reduce_by_index is also
used to see how well our heuristic performs in practice for a variety of input
sizes.

Second, using more real-world applications, we compare the performance
of our implementation against the sequential back-end. These benchmarks
include programs from the Futhark benchmark suite1.

Finally, we benchmark our implementation against programs from three
publicly available benchmark suites, namely FinPar, Accelerate, and Rodinia.

While we cannot present all the benchmarks in the suite, we select a few
who have different characteristics. We then analyze them to see why we either
perform well or why we do not perform well and where we can improve. All
of our reported benchmarks from our implementation uses the average of 10
runs and is obtained using the in-built benchmarking tool in Futhark.

Experimental setup

Our test machine has two Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz
processors, each with 8 cores and 16 threads. The machine has 132 GB of
1600 MHz DDR3 RAM shared between the processors. Each core has two 32
KB L1 caches for data and instructions respectively, one 256 KB L2 cache
and a shared 20MB L3 cache per processor. The operating system is Red
Hat Enterprise Linux (RHEL) V. 7.8 running GNU/Linux kernel v3.10.0. To
compile our generated C code, we use GCC 4.8.5. Since the machine has two
processors, it has Non-Uniform Memory Access (NUMA) behaviour.

1The Futhark benchmark suite can found at https://github.com/diku-dk/

futhark-benchmarks
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Tuning process

For finding our parameter κ, we use a one-time per machine automatic tun-
ing process, similarly to [Acar u. a., 2019]. The tuning process uses a small
reduction program over an array of random 32-bit integers containing 108

elements. We observed that we needed to use so many elements to obtain a
repeatable result on the same machine. To pick our values for κ, we initially
first run our reduction sequentially without the involvement of the scheduler.
This gives us an estimate of C.

Then with the involvement of the scheduler, we execute a series of reduc-
tions using only one core, where we create subtasks according to

nsubtasks =

⌊
n

nchunk

⌋
(7.1)

where nchunk = κ
C and n is 108. Note that we do not cap the number of sub-

tasks created in this tuning process, as we want to measure the the overhead
of subtask creation and management. We start initially with a small value of
κ = 1µs. Using only one core, we progressively try to increase κ until we reach
the first value of κ upon our reduction runs slightly above 5% slower than the
sequential run, which becomes our overhead of parallelisation. Intuitively, the
5% is the overhead we allow from creating and managing subtasks, compared
to the optimal time from the sequential execution. On our test machine, our
tuning process found that κ = 5.1µs.

Theoretical vs practical speed-ups

While we might expect that using P processors would result in P times speed-
up, in reality, there are several reasons that one does not observe such speed-
ups. First are parallel algorithms often less practically efficient than their
sequential counter-part. An example is the parallel scan algorithm. While
it is work-efficient, it usually does not show a linear speed-up due to the
additional pass. Second, memory bandwidth usually does not scale up to P
processors, and performance might be affected as threads compete for the
shared memory bandwidth. Finally, there might not be enough work to ex-
haust all cores; for example, our scheduler might only estimate that there is
enough work to use a small portion of the cores, taking into consideration the
overhead of parallelization.

7.1 Micro-benchmarks

The following sections presents the evaluation of our multicore back-end us-
ing a series of micro-benchmarks for our SOACs for reduce, scan and re-

duce_by_index. We omit map as it’s just a parallel-loop and is not an explicit
parallel algorithm as the others. This section aims to understand which kind
of speed-up we can expect for simple programs compared to sequential C
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back-end and give us a good baseline for the speed-up we can expect from
larger programs.

7.1.1 Reduce

For the microbenchmarks for reduce, we use a summation over an array of
randomly generated numbers. For data types, we use 32-bit integers and
single-precision floating points as they are the most commonly used types in
Futhark.

Type Size Sequential Sequential elision Multicore

i32

106 477µs ×0.95 ×2.2
107 4801µs ×0.97 ×3.0
108 48548µs ×0.99 ×3.6

f32

106 1189µs ×0.94 ×5.3
107 11947µs ×0.96 ×7.7
108 119541µs ×0.97 ×8.2

Table 7.1: Benchmark results of a summation program using an array of 32-
bit data types. Sequential denotes the sequential back-end, while Sequential
elision is our implementation when executed sequentially. Multicore is our
implementation executed in parallel. Speed-ups are with respect to Sequen-
tial.

The results show that the more elements, the better the speed-up we get.
This should not come as a surprise. We also see that our Sequential elision
is comparable to Sequential in terms of execution times.

But we are experiencing relatively low speed-ups, considering that we have
16 cores with 2 threads each available. The programs are heavily memory-
bound, causing cores to wait longer for data to arrive than actually performing
work. For single precision, the speed-up is better as floating-point operations
are more expensive and hence perform slightly more work. Even with hard-
ware optimizations such as pre-fetching of data, integer addition is so fast
that it caused around 50% more cycles to be stalled in the pipeline compared
to floating-point. We can see that for programs that are memory bound, we
should not expect a lot of speed-up compared to the sequential back-end.

7.1.2 Scan

The parallel scan is interesting since, while it is work-efficient, it requires an
additional pass. We want to make sure that it’s beneficial to use such an
algorithm in practice. We here use a prefix-sum program over an array of
random generated 32-bit integers and single-precision floating points.
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Type Size Sequential Sequential elision Multicoreelision

i32

106 3237µs 796µs ×1.8
107 32599µs 24893µs ×5.8
108 573026µs 246405µs ×6.3

f32

106 4782µs 1438µs ×3.8
107 61233µs 29463µs ×6.2
108 614452µs 275742µs ×6.2

Table 7.2: Benchmark results of a prefix-sum program using an array of 32-
bit data types. Sequential denotes the sequential back-end, while Sequential
elision is our implementation when executed sequentially. Multicore is our
implementation executed in parallel. Note that the speed-up is with respect
to Sequential elision

First, we see that Sequential elision is faster than our Sequential by a good
margin. The reason for that is the inefficient code from the sequential back-
end, which performs the scan on an intermediate array. It then performs
a memory copy to the resulting array, while our implementation performs
the scan directly on the resulting array. We assume that such inefficiencies
will be removed in the future. Hence, we compare the speed-ups against the
sequential elision. Again is the program heavily memory bound and we only
observe a small speed-up similar to reduce. Nevertheless, this shows that the
parallel scan algorithm can provide speed-ups despite the additional pass.

7.1.3 Reduce by index

Our micro-benchmark for reduce_by_index adds an additional dimension.
Recall that we have two different implementations of reduce_by_index, Sub-
histogramming, and Atomic updates, where we use a heuristic to select be-
tween them at run-time. We want to make sure that our heuristic is relatively
robust. We use a histogram computation as it is the most common applica-
tion of reduce_by_index in Futhark. We use an input size of 106 and 108 of
32-bit integer elements, which are randomly generated. We also vary the des-
tination array size from 102 up to 108, where the random indexes are mapped
into using a modulo operation. The results are shown in Table 7.3. As ex-
pected, when Dest is small, there are a lot of conflicting writes to the same
location, which causes Atomic to become slow, significantly slower than the
sequential version. Subhistogramming performs much better in these cases.
It is first when Dest is quite large, 106, that we see that Atomic starts to
provide speed-up, while Subhistogramming starts to become slower.

As in the case of scan, the code from Sequential performs a memory copy
to write the result back to the resulting array. This causes an increase in
run-time for larger destination arrays.

The slow-down for the Sequential elision compared to Sequential when
Subhistogramming was chosen is due to poor branch prediction according to
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Input Dest Sequential Sequential elision Subhistogramming Atomic

106

102 3788µs 7557µs ×4.2 ×0.3
104 3606µs 7250µs ×4.5 ×0.87
106 9942µs 15154µs ×0.5 ×3.0
108 517955µs 146940µs ×0.27 ×4.2

108

102 382472µs 783646µs ×4.8 ×0.29
104 397964µs 788686µs ×6.3 ×0.95
106 718781µs 817539µs ×3.2 ×2.7
108 2810741µs 5939206µs ×1.17 ×3.6

Table 7.3: Micro benchmark using a histogram computation over 32-bit inte-
gers, where Input denotes the number of elements to process and Dest denotes
the size of the histogram. The approach chosen by our heuristic is in bold
and the speed-up shown is with respect to Sequential. The times for the
Sequential elision is the one chosen by our heuristic.

the profiling tool perf, even though both use the same data. We have not been
able to figure out why they behave so differently. When Atomic was chosen,
Sequential elision is slower due to the overhead of using atomic operations,
even though the Atomic does not perform a memory copy to return the result.
While our heuristic can choose the best performing implementation, in this
case, we note that our micro-benchmarks here are far from exhaustive, nor
did we investigate adversarial cases. For example when dest is large and all
updates are on the same location. Such a program is going to be slow using
either method.

7.1.4 Summary

In this section, we have benchmarked a set of micro-programs. This section
showed that the implemented parallel algorithms along with the scheduler
is capable of providing speed-up. While the speed-up was not particularly
impressive, the micro-benchmarks performs little work and are heavily mem-
ory bound. The next section presents much more work heavy programs,
using benchmarks from the Futhark-benchmark suite. For these programs,
we should expect more respectable speed-ups.

7.2 Established benchmarks

This section benchmarks a series of programs from the Futhark benchmark-
suite. It aims to show how the multicore back-end performs on more realistic
real-world programs. We generally have three types of programs, which we
want to benchmark:

• Flat regular programs: These programs are by far the most com-
mon in Futhark. Recall that the compiler generates top-level form
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SegOps, which means that we only have one level of parallelism. Further-
more is the workload regular and these programs are scheduled using
a static scheduling approach, where we divide the iterations out evenly
out among each subtask.

• Flat irregular programs: These programs are similar to programs
on top-level form, but with the difference that each iteration’s work-
load is no longer predictable. These programs are less common in
Futhark but are nevertheless interesting to see how well our online al-
gorithm from Section 5.1.2.2 performs on such programs.

• Nested regular programs: The final program type is the nested paral-
lel program types. Such programs should show us how well our scheduler
is capable of handling nested parallelism. We remind the reader, that
we only select the nested form whenever the parallel loop has fewer
iterations than threads.

The next sections benchmarks are hand-picked to show a different variety of
such programs. We aim to select a few benchmarks with different underlying
characteristics and highlight what makes the program perform well or not
so well. In the latter case, we discuss the main reasons and what can be
improved to make the program perform better in the future. The Futhark
benchmarks are ported from three benchmark suits, FinPar, Accelerate, and
Rodinia. The Parallel Financial Benchmark (FinPar)[Andreetta u. a., 2016]
is a suite containing real-life financial applications, such as Option pricing
of European Call-options (OptionPricing) and Local Volatility Calibration
(LocVolCalib). Accelerate is a suite containing several implementations in the
Haskell-embedded language for data-parallel array programming by the same
name. Benchmarks from Accelerate include FFT, Smoothlife, and N-Body.
Rodinia is a well-known benchmark containing more than 20 benchmarks such
as K-Means and Back-propagation. These benchmark suites have implemen-
tations, targetting multicore CPUs. We will compare our implementation
against these later in this chapter.

7.2.1 Flat regular programs

The programs presented in this section are the most common types in Futhark,
which are scheduled statically. For most of these programs we only exploit
top-level parallelism, when the dataset contains enough work to saturate our
machine. The results are shown in Table 7.4.

7.2.1.1 FinPar

The FinPar programs enables the compiler to aggressively fuse both map-map

and map-reduce compositions. We use three datasets for each benchmark,
small, medium, and large. OptionPricing is a map-reduce composition. For
OptionPricing, we observe a similar speed-up for all datasets. However, we
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Original suite Program Dataset Sequential Multicore

FinPar

OptionPricing

Small 1556 ms ×17.2
Medium 1583 ms ×17.3
Large 12596 ms ×17.3

LocVolCalib

Small 3723 ms ×17.9
Medium 7975 ms ×20.7
Large 181232 ms ×21.2

Accelerate

Smoothlife

128× 128 1264 ms ×9.1
256× 256 5912 ms ×12.7
512× 512 26409 ms ×17.5
1024× 1024 120883 ms ×16.4

N-body

1000 6 ms ×9.2
10000 632 ms ×15.2
100000 65011 ms ×16.9

Tunnel

1000 1527 ms ×17.9
4000 22143 ms ×19.1
8000 86553 ms ×18.7

Rodinia

BFS (heuristic)

4096 nodes 1.2ms ×2.0
512n high var 3.8 ms ×4.2
64k.n skew 250 ms ×12.6
1M nodes 346 ms ×11.3

K-Means
8/204800 3166 ms ×14.5
5/494019 3771 ms ×11.2

Backprop medium 831 ms ×12.1

Table 7.4: Benchmark result for flat regular parallel programs from Futhark
Benchmark Suite. Here Original suite denotes the suite the program was
ported from. All times are shown in ms and speed-up is against Sequential

observed that the program had an irregular workload through an if-else state-
ment, causing threads to perform different amounts of work. This could ben-
efit from a dynamic scheduling approach. However, as described in Section
6.1.4.2, determining the workload of the branches in if-else statements is diffi-
cult at compile-time. One could let the programmer supply directives to help
the compiler in such cases.

LocVolCalib is an outer map containing a sequential for-loop, which con-
tains several nested map. The nested maps are then sequentialised by the
compiler in the top-level form. However, the small dataset does not pro-
vide enough outer-most parallelism to exhaust all cores on our machine when
using the top-level form. In this case, our scheduler uses the nested form.
Table 7.5 show show our run-time system leverages the nested form to ex-
ploit the nested parallelism, gaining a speed-up of ×1.41.

83



LocVolCalib

Dataset Top-level form Nested form Speed-up

Small 295 ms 208 ms ×1.41

Table 7.5: Comparison of LocVolCalib performance on small dataset using
the top-level form vs. the nested form

7.2.1.2 Accelerate

The benchmarks from Accelerate shown here are Smoothlife, N-Body, and
Tunnel.

Smoothlife is a simulation of Conway’s Game of Life2, which is a cellular
automaton over a two-dimensional grid of cells. The program is structured
as an outer-loop with inner maps. The dataset denotes the height and width
of the grid in Table 7.10. As Smoothlife contains small maps, we see that we
need a large grid size to obtain a great speed-up.
N-Body is a simulation of a dynamic system often used in physics. The pro-
gram is structured as a sequential outer-loop with inner maps as Smoothlife.
Here we use a naive direct algorithm, which has the complexity O(n2). Here
the dataset denotes the number of bodies to simulate. As the actual work in
N-Body is not that large, we observe that we need a large dataset to obtain
great speed-up as well. In Section 7.2.2, we use the more efficient Barnes-Hut
algorithm for computing N-Body, which contains irregular parallelism. Tun-
nel contains a straight forward map with a sequentialised inner map-reduce.
The datasets denote the size of the outer-map. Here we observe consistent
speed-up for all datasets.

7.2.1.3 Rodinia

For Rodinia, we only have three programs which are different from those
already shown from Accelerate and FinPar. More precisely, we benchmark
BFS, K-Means, and Back-propagation from Rodinia.
The Futhark Benchmark suite has several BFS implementations. Here we
choose the fastest sequential (and parallel) version, BFS (heuristic). BFS is
one of the few programs in the suite containing parallel computations that
cannot saturate our machine, i.e., we do not hit the cap in Eq. 5.5. This was
observed for the two smaller datasets. Here our algorithm realizes that there
is not enough work and only creates a few subtasks. Table 7.6 shows the
difference if we were to naively perform an even partitioning across all cores
of the iterations on the smaller datasets, which results in over-parallelization.

2https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
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BFS (heuristic)

Dataset Naive Our Speed-up

4096 nodes 4.1 ms 0.6 ms ×6.8

512n high var 2.3 ms 0.9 ms ×2.6

Table 7.6: Comparison of BFS with a naive even partitioning and our imple-
mentation for automatic granularity control

K-Means is an iterative algorithm used in unsupervised learning for clus-
tering related d-dimensional points into K-clusters. K-Means contains a map

over the number of points, which for each point computes the distance to the
k-clusters’ centroids. The program also has two reduce_by_indexs over the
number of points for updating the k cluster centroids. One of these is over
integer values, and the other is over vectorized values with dimension d = 35.
The datasets are denoted on the form k/n, where k is the number of clusters,
and n is the number of points used. As the number of clusters used here is
small, k = 5, and k = 8, the run-time system chooses to use Subhistogram-
ming. Here we observe respectable speed-ups for both datasets; however, we
are limited by our reduce_by_index implementation because of false shar-
ing. This is best seen for the 5/494019 dataset, which has a smaller speed-up.
Since the number of clusters is small and we allocate the sub-histograms as
a shared contiguous array, multiple sub-histograms can fit into the same 64-
byte cache line for the integer computation. Future work might improve upon
our implementation by using private sub-histograms.

Finally, there is back-propagation, a very popular algorithm used in Deep
Learning to train Neural Networks. The result for Backprop shows a decent
speed-up compared to the input size, but the parallel program has unfulfilled
potential. Programs such as Backprop uses fairly basic matrix operations,
which can leverage vector instructions. When we used OpenMP compiler
directives such as vectorize, we observed almost a doubling in performance.
But as a proper implementation of vectorization cannot rely on the use of
compiler directives, we did not dig deeper into using such optimizations in
this thesis.

7.2.2 Irregular programs

This section presents the few benchmarks from our suite, which have irregular
parallelism, namely, N-Body and Mandelbrot. Finally, we also show bench-
marks for a ray-tracer, which naturally contains irregular parallelism. The
main results are shown in Table 7.7 and 7.9.
As before, N-Body (BH) is an outer sequential-loop with inner maps, but here
we use the Barnes-Hut algorithm, which is based on the use of octrees and
has asymptotic O(n log n). The traversal of the tree is implemented using a
while-loop, which results in irregular parallelism. Mandelbrot is a simple map

containing a while-loop, and hence also contains irregular parallelism.
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Original suite Program Dataset Sequential Multicore

Accelerate

N-body(BH)

1000 3 ms ×0.5
10000 58 ms ×3.2
100000 808 ms ×7.8

Mandelbrot

2000 714 ms ×23.1
4000 2893 ms ×23.3
8000 11708 ms ×23.8

Table 7.7: Benchmark results for irregular parallel programs from Futhark
Benchmark Suite. Here Original suite denotes the suite the program was
ported from. Parallel is the speed-up with respect to Sequential

Mandelbrot shows great speed-up due to our online algorithm for irregu-
lar computations along with work-stealing, which can load-balance the work.
Unfortunately, can our algorithm not perform great on all irregular programs.
On N-body (BH), we observe that our algorithm is unable to create a speed-
up for the smallest data-set. Table 7.8 shows how the benchmark performs
if we were to schedule the programs statically instead. We observe an in-
crease of ×1.6 in performance by using our online algorithm for Mandelbrot
while observing a slow-down for N-body (BH) compared to a static scheduling
approach.

Program Dataset Static Dynamic Speed-up

Mandelbrot

2000 49 ms 31 ms ×1.6
4000 201 ms 124 ms ×1.6
8000 799 ms 492 ms ×1.6

N-Body(BH)

1000 1.5 ms 7.6 ms ×0.2
10000 11 ms 18 ms ×0.6
100000 66 ms 104 ms ×0.6

Table 7.8: Comparison of programs containing irregular parallelism using
static and dynamic scheduling

The slow-down can be explained. When the estimate of C is greater than
κ, our algorithm chooses a granularity of 1 for each subtask, which is not an
issue in itself; for Mandelbrot, this is also the case. However, as the constant
C for N-Body(BH) is only slightly larger than κ, the overhead of subtask
creation cancels out its benefits. The small workload per subtask meant that
the program spent as much time creating subtasks as actually doing work.
Furthermore, the irregular work is small for N-Body(BH), so there is less to
gain in trying to load-balance the work, which causes slow-downs.
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7.2.2.1 Ray tracers

To demonstrate the scheduler’s ability to deal with programs with heavily
irregular parallelism we use a ray tracer3. Ray tracing is a rendering tech-
nique used in 3D computer graphics, usually used for generating 2D images.
As the name suggests, every pixel in the image traces a ray to intersect with
objects in a scene, which can be done in parallel using a map. A ray may
recursively be traced by scattering 0 to n times of object surfaces, where n
is a threshold to avoid infinite scattering. As such are raytracers potentially
highly irregular programs depending on the scene. For our benchmarks, we
use two irregular scenes, shown in Figure 7.1. The irreg scene is heavily
irregular as for the top half of the image, the rays are scattered 0 times, while
the bottom half, the rays are scattered multiple times. The rgbbox scene is
less irregular, but nevertheless, are rays scattered a non-predictable number
of times. The results are shown in Table 7.9

(a) Scene irreg (b) Scene rgbbox

Figure 7.1: The irregular scenes used for benchmark with a resolution of 1000
× 1000 pixels

For our ray-tracing benchmarks, we see that our algorithm performs quite
well. Table 7.9 also compares the performance of the ray-tracer when a stati-
cally scheduling approach is used to see the effect of our algorithm and work-
stealing. We see that our algorithm provides a performance gain for such
heavily irregular programs; with larger performance gains, the more irregu-
lar the programs are. The reason for the speed-ups can be explained. The
fastest pixels, i.e., the ones who do not recurse, finish first. This gives us an
underestimation of C and way below κ in this case. As such, the algorithm
will consume large amounts of the “cheap“ iterations very quickly in the be-

3The program implementation and benchmark can be found at https://github.com/

athas/raytracers
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ginning. But as the more expensive pixels finish, our estimate of C starts to
increase, and we begin to consume smaller amounts of iterations. The latter
stages of the computation is the part that ensures load-balancing taking only
a small amount at the time. Finally, we see a smaller difference between the
static and dynamic scheduling approach for rgbbox as there are less irregular
work and less to gain from work-load balancing.

Ray-tracer

Scene Sequential Static Dynamic

rgbbox 4827 ms ×14.1 ×17.7

irreg 1759 ms ×8.1 ×16.7

Table 7.9: Benchmark results from the two irregular scene used for our ray-
tracer. Here Static denotes the speed-up to generate the images using a static
scheduling approach, while Dynamic denotes the use of our algorithm. Both
speed-ups is with respect to Sequential

7.2.3 Nested parallel programs

This section presents the final type of programs, which can utilize nested
parallelism. We only have a couple of programs that we can show how our
implementation can exploit nested parallelism. Crystal is a map containing
an inner map over an array. Here the outer-map’s iterations are lower than
the number of cores, so we need to exploit the nested parallelism from the
inner map to saturate our machine. Below, the datasets are denoted on the
form k/m where k is the number of outer-iterations, and m denotes the inner
array’s size.

LU decomposition is the decomposition of a matrix to a Lower and Upper
triangular matrix. It’s interesting as it can contain the possibility of nested
parallelism for smaller matrices.
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Original suite Program Dataset Sequential Multicore

Accelerate Crystal

1/200 10 ms ×12.8
1/2000 11248 ms ×27.3
1/4000 44517 ms ×26.7
6/2000 67338 ms ×22.9
16/2000 174110 ms ×24.4
32/2000 340430 ms ×21.1

Rodinia LUD

64 0.1 ms ×0.4
256 6 ms ×1.9
512 44 ms ×3.7
2048 2760 ms ×11.2

Table 7.10: Benchmark results for programs with nested parallelism from
Futhark Benchmark Suite. Here Original suite denotes the suite the program
was ported from. Multicore is the speed-up with respect to Sequential

For Crystal, we see that our scheduler can handle nested parallelism quite
well. We observe remarkable speed-ups due to our scheduler can use the
nested form instead and distribute work to the other cores through work-
stealing. When k = 32 the scheduler uses the top-level form instead where
the inner map is sequentialised. The great speed-ups for Crystal is, its lack
access to shared memory. The program only uses private stack-allocated
variables for its computation, which fits into the faster caches. The only time
the parallel computation accesses shared memory is when it has to write its
result back.

The result for LUD with dataset 64 is an example where our heuristic for
nested parallelism fails. As the outer-most parallel only contains a couple of
iterations, we spend a relatively large amount of time waking up the remain-
ing threads to handle the nested parallelism. However, there is only a small
amount of nested parallel work, so we observe a slow-down. It is first when
there is enough nested parallelism that our overhead of waking up threads
becomes amortized. To fix such cases, future work could take into considera-
tion how much nested work there is only to wake up an appropriate amount
of threads to handle the nested parallelism.

7.2.4 Scaling in hardware threads

Finally, we shortly present how our programs scale in the number of hardware
threads. Figure 7.2 shows the three different trends for our programs as we
adjusted the number of hardware threads used. First is the (almost) linear
scaling for Crystal due to its small amount of memory access, which means
that the memory bandwidth becomes less of a bottleneck for this program.
Then there is LocVolCalib, which initially scales as well as Crystal, but be-
comes slightly worse for larger hardware threads due to memory bandwidth.
This is by far the most common trend for our programs. Finally, there is
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BFS (heuristic), which does not have a lot of work. There is a slight increase
for a smaller number of hardware threads, but from 16 hardware threads, the
speed-up is slightly decreasing, due to over-parallelisation. This is due to how
we measure execution time, i.e., include the function call in the time measure-
ments, which can give an overestimate of C. We did this to only sequentialise
computations, which are surely greater than κ, but as we increase the num-
ber of hardware threads and we initially perform even partitioning across the
threads, this overestimation becomes relatively larger. This, in turn, creates
the slight over-parallelisation. For programs with smaller workloads, this gives
some slow-downs in the number of hardware threads. However, as this trend
was only observed on programs with small workloads, the relative impact is
small.

Figure 7.2: Three trends of the scaling of speed-up (compared to sequen-
tial back-end) in the number of hardware threads. The number of hardware
threads shown range from 4 to 32. The dataset used is denoted in parenthesis.

7.2.5 Summary

This section showed how our implementation performed on a series of bench-
marks. We saw that the speed-up is proportional to the amount of work
that can be parallelized for regular flat-parallel programs. For example, for
LocVolCalib, we saw a speed-up of ×20 compared to the sequential back-
end for larger datasets. We also saw that for programs that perform a small
amount of access to shared memory can achieve greater speed-ups as the
shared memory bandwidth did not become a bottleneck in these programs.
Furthermore, when there is enough nested parallelism, our scheduler is able
to handle nested programs quite well using a work-stealing approach. While
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our implementation can sometimes result in slower times than the sequen-
tial back-end, these cases were only observed on smaller inputs, where the
absolute times are small. These cases show that our multicore back-end can-
not guarantee that all programs will run at least as fast as the sequential
back-end.

For irregular parallelism, we saw mixed results depending on the program.
For N-body(BH), which had an estimated C close to κ and little irregular
work, we saw that our online algorithm was too conservative with its granu-
larities, resulting in large overhead and poor performance. While for programs
with much more irregular work, such as Mandelbrot and the Ray-tracer, we
saw much better performance. Our results indicate that a one-size-fits-all
solution is difficult and requires more work in the future. Perhaps, we need
help from the programmer in such cases to set the chunk size manually.

Finally, we touched upon how code-generation can affect the performance
of the program. For example, can the use of vectorized instructions, which are
natural to exploit in data-parallel languages, be used to achieve even better
performance.

7.3 Benchmarks against other implementations

In this section, we present a comparison of our implementation against estab-
lished benchmark implementations from other suites, namely FinPar, Accel-
erate, and Rodinia.

7.3.1 FinPar

The benchmarks in the FinPar suite are hand-written C++ programs using
OpenMP as the driver for parallelism. We report the average of 10 runs of
the FinPar programs. The results are shown in Table 7.11. We see that for
LocVolCalib, our implementation can give better performance for the medium
and small datasets. Only for the large dataset is our implementation slower,
with about 10%. For OptionPricing, our implementation is slower across all
datasets, which is due to inefficient code generation, which is not as optimized
as the hand-written implementation. Furthermore, the FinPar implementa-
tion uses a dynamic scheduling approach, which can load-balance the work to
obtain a small speed-up, which we don’t do. This advantage is best seen for
the smallest dataset, which has relatively more irregular work. If we hard-
code our compiler to schedule OptionPricing as dynamic, we unfortunately
don’t observe a speed-up; in fact, it becomes orders of magnitude slower. This
is because the generated OptionPricing code within the parloop function per-
forms many small allocations before entering the sequential for-loop. These
allocations become a huge overhead since we generate many small subtasks
when using dynamic scheduling. If we want to dynamically schedule Option-
Princing, we would first need to hoist these allocations outside the parloop
function first.
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Program Dataset FinPar Our Speed-up

LocVolCalib

Small 314 ms 208 ms ×1.5
Medium 421 ms 385 ms ×1.1

Large 7686 ms 8549 ms ×0.9

OptionPricing

Small 43 ms 91 ms ×0.47
Medium 60 ms 91 ms ×0.66

Large 523 ms 724 ms ×0.73

Table 7.11: Comparison of benchmarks from FinPar against Our implemen-
tation

7.3.2 Accelerate

Here we compare benchmark results from Accelerate with our implementa-
tion. The Accelerate benchmarks use the criterion library for measuring time.
We note that Accelerate uses a much more modern compiler, LLVM 9, than
we have available on our test machine, which uses GCC v.4.8.5. Furthermore,
Accelerate uses the LLVM equivalent -ffast-math flag available on GCC to
speed-up computations, which we do not use as it breaks IEEE compliance
for floating points, disables error checking for mathematical operations, and
much more. Here we benchmark our implementations against Crystal, Tun-
nel, Mandelbrot, N-Body, and Smoothlife. The results are shown in Table
7.12.

Program Dataset Accelerate Our Speed-up

Crystal
1/2000 378 ms 425 ms ×0.89
1/4000 1400 ms 1700 ms ×0.82

Tunnel

1000 64 ms 95 ms ×0.67
2000 254 ms 351 ms ×0.72
4000 998 ms 1218 ms ×0.82
8000 4037 ms 4523 ms ×0.9

Mandelbrot

2000 44 ms 30 ms ×1.4
4000 168 ms 123 ms ×1.37
8000 662 ms 491 ms ×1.34

N-Body

1000 2.6 ms 0.6 ms ×4.3
10000 51 ms 39 ms ×1.3
100000 740 ms 3883 ms ×0.19

Smoothlife

128× 128 6.8 ms 145 ms ×0.04
256× 256 14 ms 470 ms ×0.03
512× 512 32 ms 1559 ms ×0.02

1024× 1024 122 ms 7718 ms ×0.001

Table 7.12: Comparison of benchmarks from Accelerate against Our imple-
mentation

We believe the slow-down for both Crystal and Tunnel is due to more
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efficient code-generation from Accelerate using LLVM. However, we have not
been able to confirm this. Our Mandelbrot implementation speed-up is due to
our ability to load-balance the work, while Accelerate uses a static approach,
with no load-balancing. For N-Body, we see better performance for smaller
datasets, but fails to keep up for the largest dataset. Here the performance
gain of a modern compiler along with -ffast-math are the main reasons.
For example, enabling -ffast-math cuts the run-time of our implementation
down to 1225 ms, which is an 3.5× speed-up.

For Smoothlife, Accelerate heavily outperforms our implementation. The
reason is that Smoothlife is mainly an Fast Fourier Transformation (FFT)
computation, where Accelerate delegates the computation to the heavily op-
timized FFTW library, while we use our own FFT implementation. Here our
implementation simply gets outmatched.

7.3.3 Rodinia

Similarly to FinPar are the publicly available Rodinia benchmarks for tar-
getting multicore CPUs written in C++ and uses OpenMP to obtain it’s
parallelism. The Rodinia programs where difficult to benchmark as they are
structured weirdly, making it hard to measure the performance in the same
way as Futhark, which performs ten consecutive runs. We only provide times
from one run here for Rodinia. As such, only when there is a large difference
can the results be used to indicate which implementation performs better.
The results are shown in Table 7.13.

Program Dataset Rodinia Our Speed-up

LUD

64 0.4 ms 0.4 ms ×1.0
256 1.7 ms 4 ms ×0.43
512 3.7 ms 15 ms ×0.25
2048 60 ms 285 ms ×0.21

K-Means
. 8/204800 440 ms 230 ms ×1.92

5/494019 1607 ms 407 ms ×3.95
Backprop medium 80 ms 66 ms ×1.21

Table 7.13: Comparison of benchmarks from Rodinia against Our implemen-
tation.

For larger matrices, Rodinia’s LUD is much faster for several reasons. It
uses a tiled matrix multiplication approach along with vectorized operations
to gain more speed-up, while we use neither of those currently. Furthermore,
our compiler has no cache awareness, which makes our naive matrix multipli-
cation implementation slow.
For K-Means, the histogram computation is sequential in the Rodinia im-
plementation. This causes our implementation to be faster, with a better
speed-up for the larger dataset, as there is more parallel work.

93



For Backprop, our implementation is faster, but the difference is not sig-
nificant enough to conclude that our implementation is better. Neither imple-
mentation uses vectorized operations to speed-up computations. As discussed
in the previous section, can such programs leverage vector instructions.

7.3.4 Summary

In this section, we benchmark our work against a variety of implementations
from other benchmark suites. We show that we can match or show better
performance for some of the benchmarks without the need for manual gran-
ularity control. For example, for Mandelbrot, we saw that our approach to
irregular parallelism can obtain better performance than the static scheduling
approach in Accelerate. For OptionPricing, it’s the other way around, where
we cannot effectively load-balance the work due to poor code-generation. Our
LUD implementation also generated much less efficient code than the hand-
written implementations. In summary, if we are to consistently match other
implementations’ performance, future work should focus on generating more
efficient C code.
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Part IV

Final remarks
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Chapter 8

Future work and conclusion

8.1 Limitations and future work

This thesis’s focus was to improve common code patterns in Futhark and
improve such programs’ performance, mainly through the run-time system.
We did not emphasize our work on optimizing the generated C code and
used much of the code already in place from the sequential back-end. This
makes for a more distinct evaluation of the new run-time system and shows
its efficiency compared to the sequential back-end. The performance gains
of the benchmarks compared to the sequential back-end are promising and
show that the run-time system can efficiently schedule the parallel work in
most cases. However, if we are to compete with established benchmark imple-
mentations, future work should put a focus on generating more efficient code
with a focus on memory-related issues, such as having better cache-awareness
and hoisting more memory allocations. Another key optimization is to enable
vectorization through Advanced Vector Extensions (AVX), present on almost
all modern CPUs. Such optimization is natural to use in a data-parallel lan-
guage like Futhark. Finally, we did not thoroughly investigate all performance
issues with our implementation of reduce_by_index as it requires consider-
able effort to optimize properly, which can be a project in itself. However,
optimizing the implementation to avoid false sharing is a good starting point.

For our run-time system, we saw, for large amounts of work, it is capable
of handling regular and nested parallelism by switching between work-sharing
and work-stealing. However, we also saw that when the nested parallelism
only contains a small amount of work, the overhead of waking up threads can
be overwhelming since our implementation does not take into account how
much nested work there is. Future work should involve investigating how
these cases can be handled better.

For irregular parallelism, we saw mixed results, which would need to ad-
dresses in future work. Our approach of using a dynamic chunk size, which
amortizes the cost of subtask creation showed varying results depending on
the task. Programs which had C estimates close to κ, ended up spending
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as much time creating subtasks as working. Additionally, for such estimates,
if the workload was not heavily irregular, the benefits or load-balancing be-
comes less, which resulted in some slow-downs. However, for heavily irregular
programs, we saw that our algorithm could provide significant speed-up com-
pared to a static scheduling approach. Future work might include approaches
to distinguish between slightly and heavily irregular program, and only use
our algorithm for the later programs.

Our scheduler assumes that parallel computations can be described using
a linear cost function. While we did not observe a benchmark where this
became a problem, future programs might suffer from our assumption. Future
work might look into using static analysis to determine the cost function e.g.,
with methods from [Jost u. a., 2010].

Finally, we only presented an analysis of a subset of the benchmarks in
our suite. While our selected benchmark covers a wide variety of programs,
we did not have time to analyse all of the benchmarks. Future work should
include analysing more benchmarks, including programs that are not in the
suite. This will give us more empirical data to provide us with ideas on where
to focus the future work and address potential unknown performance issues.

8.2 Conclusion

This thesis presented a design and implementation for a new back-end for
the data-parallel language Futhark, targeting multicore CPUs. Our work
included extending the Futhark compiler with a new code-generator for gen-
erating parallel C code as well as a new run-time system. We show how our
implementation provides a level of abstraction between the compiler and the
run-time system, where the latter is merely a library and only exposes an
API to the compiler. Such an abstraction was the primary design goal for
this thesis so that changes can be performed to either in the future, without
the need to change the other.

We show how implicit parallelism can provide granularity control without
the need for manual tuning from the programmer. Our implementation is
based on an oracle-guided scheduling approach, which uses online algorithms
to infer the actual work of computations. By considering the cost of paral-
lelization, our run-time system is then able only to parallelize computations
whose work can amortize the cost. We show how our algorithms can be used
to perform automatic granularity control for regular (nested) parallelism and
irregular parallelism using parallel for-loops.

We evaluate our work using a series of programs from the Futhark bench-
mark suite. Our empirical results show that our new back-end is capable of
providing significant speed-up for a large number of Futhark programs com-
pared to the sequential back-end, where we, on average, can achieve 15.6×
speed-up on the largest datasets. However, we also saw that more work
needs to be done for some. For smaller datasets, we can sometimes observe
a slow-down compared to the sequential back-end. Furthermore, our online

97



algorithm for irregular workload does not work well when the estimated C
is approximately the same as the parallelization overhead, which resulted in
poor performance.

Finally, we benchmarked our back-end against hand-optimized implemen-
tations. Here we saw that our implementation, in some cases, can provide
a similar or better performance without the need for manual tuning. How-
ever, there are also cases where our implementation come up short, mainly
due to inefficient code generation, compared to hand-optimized benchmark
programs. When such inefficiencies have been reduced, we will be able to
compete more consistently with such benchmarks and provide an alternative
for writing implicit parallel programs without the need for manual granularity
control.

While this thesis took a significant step towards a new multicore back-
end for Futhark, it still also shows that more work can be done to obtain
better performance. Future work will undoubtedly improve upon the work
presented in this thesis and bring improvements to both the compiler and
run-time system to achieve better performance, which is the ultimate goal of
Futhark.
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