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Abstract

Neural networks are a powerful class of machine learning models, which are able to
solve complex problems, such as image classification. The increased power comes with a
cost though as they are computationally very expensive models and thus are trained on
GPGPUs. This thesis explored implementation options of a deep learning library, which
can support feed-forward types of neural networks, in the data-parallel language Futhark.
Furthermore, the thesis investigates if the language is expressive enough to handle the
complex nature of a deep learning library. The final design of the library in this thesis
uses a representation of a neural network as a composition of functions, which avoids the
limitation of non-regular arrays and shows that the module and type system is expressive
enough to provide the necessary abstraction. The library is then benchmarked against
the popular machine-learning library, Tensorflow, which showed that the performance of
the library is faster for larger batch sizes on a multilayer perceptron, but falls short on
smaller batch sizes. The library is up to 2.7 times slower on a convolutional network
for large batch sizes, but only 2.0 times slower for small batch sizes. The performance
gap for the latter result can be lessened significantly by implementing better convolutional
algorithms, along with the Futhark compiler continously being optimized in the future.

Keywords: Deep learning, Neural networks, General-Purpose Graphics Processing
Units, Futhark.
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Chapter 1

Introduction

In the recent decade the amount of data has exploded with the increased usage of elec-
tronic devices resulting in new problems arising due to this technological development.
These problems occur within, but not limited to, image classification, natural language
processing and many more. Given that the value of data is limited to how well we can find
patterns in it and the sheer complexity and size of this data, classical statistical methods
are no longer sufficient, calling for the need of other methods. For such problems and
data, machine learning approaches have been used as a substitute to the aforementioned
classical statistical methods. Such approaches use a combination of mathematics and
computational power to search for patterns in the data. The main advantage of machine
learning approaches is their ability to ”learn” iteratively through data examples without
explicit rules. A popular class of machine learning models is artificial neural networks
(also known as deep learning models) which attempt to replicate the biological neural
system where information flows through layers of neurons. This approach has seen great
success in multiple applications such as self-driving vehicles and board games, for exam-
ple when the AI application AlphaGo beat the world champion Go player, Lee Sedol,
using a deep learning approach. The term artificial neural network dates all the way
back to W. McCulloh & W.Pitts in 1943, where they modeled a one layer neural network
using electrical circuits. F. Rosenblatt (1958) expanded this thought and invented the
perceptron algorithm, which allowed such models to learn through data. The model cre-
ated a lot of excitement in the artificial intelligence community that only lasted a decade
when M. Minsky and S. Papert (1969) showed that the perceptron model only applied
to problems that were linearly separable; in particular, the XOR problem couldn’t be
solved using the perceptron model. The enthusiasm faded and it wasn’t until 1986 when
D. Rumelhart et al. presented the backpropagation algorithm that neural networks again
became popular. The backpropagation algorithm was very similar to the perceptron al-
gorithm, but applied to a neural network of arbitrary depth, meaning they could now
solve non-linear problems. The backpropagation algorithm is based on the concept of
letting errors flow backwards into the network, which are then used to adjust learning
parameters. This process is repeated continuously, also called training, until a sufficient
model is obtained. As such, neural networks can be called slow learners, requiring po-
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tentially thousands or millions of iterations. Thus the need for faster hardware that can
perform training is essential in the success of neural network applications and training is
therefore usually performed on General-Purpose Graphics Processing Units (GPGPU),
which can leverage the highly parallel nature of neural networks.

This thesis explores how an implementation of a deep learning library can be achieved
in the data-parallel GPGPU language, Futhark1, which was developed at the Department
of Computer Science at the University of Copenhagen.

1.1 Thesis objective

The main objective of this thesis is to investigate to what extend a general-purpose data-
parallel language such as Futhark, can implement a deep learning library. As Futhark
imposes limitations on the language semantics in order to produce high-performance
data-parallel GPU code, porting existing libraries one-to-one is not possible. Instead,
alternative approaches are required. The complex nature of a deep learning library will
also require an implementation of many separate components which will show if Futhark
is capable of providing the necessary level of abstraction. Such a library should ideally
be flexible enough to be maintained over an extended period of time. Lastly, will this
thesis explore how well such a library in Futhark can compete, in terms of performance,
with dedicated DSL solutions, such as Tensorflow2.

1.1.1 Limitations

The implementation is limited to the most essential blocks required for building and
training a feed-forward type of neural network. Achieving the same flexibility as state
of the art libraries, like Tensorflow is not a goal in this thesis work. Furthermore, Ten-
sorflow, and other popular deep learning libraries, are merely a front-end for the cudNN
API[18] - an API provided by NVIDIA specifically designed for deep learning applica-
tions. To achieve the best performance, the API provides multiple algorithm options and
hardware specific optimizations depending on the system and neural network. This will
be difficult for the thesis’ implementation and Futhark to match. However, Tensorflow
will be used as a benchmark to compare the performance of this thesis’ library to one of
the fastest libraries available.

1.2 Thesis structure

Chapter 2 presents the mathematical foundation behind neural networks based on chap-
ter 5 in C. Bishop’s book ”Pattern Recognition and Machine Learning”(2006) and present
the components needed to build and train a neural network. The chapter will also show

1https://futhark-lang.org
2https://tensorflow.org
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the derivation of the backpropagation algorithm for a multilayer perceptron, while only
the final results will be shown for a convolutional network. The reader is not expected
to understand this chapter in detail, but should at least read through the main concepts
and results. Chapter 3 will first discuss implementation alternatives of a deep learning
library in Futhark, and discuss why some approaches, which would be applicable in other
languages, doesn’t apply to Futhark. The main concept behind the implementation will
then be presented, followed by the implementation details. Chapter 4 will compare the
performance of training simple neural networks with the library against equivalent net-
works in Tensorflow. Chapter 5 presents the future work of the library and provides a
conclusion.

1.3 Introduction to Futhark

Futhark is a small high-level, purely functional array language from the ML-family,
which is designed to generate efficient data-parallel code [10]. Futhark currently gen-
erates GPU code via OpenCL, although the language is hardware independent. The
Futhark compiler can compile directly to an executable for the GPU or it can generate
a reusable library for either Python or C. The latter is how the language is meant to be
used, to accelerate computer-intensive parts of an application, and as such not meant as
a general-purpose language.

Futhark supports regular nested data-parallelism, as well as imperative-style in-place
updates of arrays, but maintains its purely functional style through a uniqueness type
system, which prohibit the use of an array after it has been updated in-place. As most
languages from the ML-family, Futhark also has parametric polymorphic and uses type
parameters, which allows functions and types to be polymorphic. Type parameters are
written as a name preceded by an apostrophe. For example Listing 1.1 shows a type
abbreviation number with a type parameter t, which is instantiated with concrete types
in line 2, where f32 denotes 32-bit floating point.

1 type number ' t = t
2 type f l o a t = number f32

Listing 1.1: Example of type abbreviation with type parameter in Futhark

Type abbreviations are mostly for syntactic convenience and for abstract types that
hide their definition we need to use the higher-order module system [5]. Futhark allows
for abstract modules, called module types, which provide a powerful abstraction mecha-
nism. For example Listing 1.2 shows how we can write a module type, number to have
an abstract type t and an abstract add function.

5



1 module type number = {
2 type t
3 val add : t → t → t
4 }

Listing 1.2: Example of a module type, number, in Futhark

Module types are used to classify the contents of modules, meaning that an im-
plementation of number must provide a concrete type t and an add function with the
signature t→ t→ t. We can then define a float module as follows:

1 module f l o a t : number {
2 type t = f32
3 let add ( x : t ) ( y : t ) : t = x + y
4 }

One can specify that an abstract type is allowed to be functional by specifying it in
the module type using ̂, (e.g. type ̂ my_func). Lastly is it also possible to specify a
parametric module, meaning that the module can take another module as an argument,
(i.e. module-level functions), which allows for abstraction over modules. The module
system is an important factor in Futhark for providing abstraction and code reuse into
larger applications, which are structured using the module system.

Futhark achieves much of its data-parallelism through its Second-Order Array Com-
binators (SOACs), map reduce scan and scatter. The semantics of the first three are
similar to the ones found in other functional languages, such as SML, F# and Haskell,
but there are, however, some aspects to note about these functions in Futhark. The
operator given to reduce and scan must be associative, in order to produce a result,
that is equivalent to applying the operator in sequential order. Along with, it must be
the neutral element of the operator (e.g., 1 for multiplication and 0 for addition). The
scatter function takes three array arguments, x, idx and vals, where idx and vals must
be of same length. The function performs in-place updates in x on indices idx with
values vals and returns the updated array. The input array x is consumed and is not
allowed to be used afterwards nor through aliasing. These SOACs permits the Futhark
compiler to generate parallel code, which means that Futhark programs are commonly
written as bulk operations on arrays. Through the SOACs is the Futhark compiler able
to provide aggressive optimizations. For example is a composition of nested map-reduce

computation efficiently supported based on fusion and code generation [9, 13] and the
compiler also provide support for 1-d and 2-d tiling [10].

As Futhark focuses less on expressiveness and elaborate type systems, but more on
compiling to high-performance parallel code, it puts some constraints on the language
semantics and in turn on the design of the deep learning library For example, the language
does not support irregular arrays, meaning that all inner arrays must have the same
shape. For example, is this two dimensional array [[1], [2, 3]] not allowed. Another key
limitation is that arrays of functions are not permitted. How these limitations affect the
design of the library will be discussed in Chapter 3.
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1.4 Code and data

The library produced from this thesis can be found at https://github.com/HnimNart/
deep_learning, which includes benchmark programs and tests. The data used through-
out the example programs is the MNIST dataset3, containing images of handwritten
digits, which is often used as the ”Hello-World” example in deep learning. As these
files are too big for GitHub, the data used for the Futhark examples can be found at
http://napoleon.hiperfit.dk/~HnimNart/mnist_data/.

3http://yann.lecun.com/exdb/mnist/
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Chapter 2

Neural Network

A neural network is a type of machine learning model, which is represented through a
hierarchical structure of layers. Each layer consists of a fixed set of units or neurons
with adaptable parameters, which can be changed during training. When some input
data is passed into the network, each successive layer uses the output from the previous
layer as input. The process is then repeated until an output layer has been reached.
The interpretation of the output from a network depends on the modeling problem. A
common one is the multiclass problem, where there are N prediction classes. The goal
of the neural network is then to predict which class the input data belongs to. In such
a case the output is interpreted as probabilities.

How each layer process the input depends on the type of layer, where this thesis will show
the process for a fully-connected- and convolutional layer. Before doing so, introducing
some terminology is needed. When a neural network consists solely of fully-connected
layers, it is called a multilayer perceptron and if a neural network has at least one con-
volutional layer, but maybe one or more fully-connected, it is called a convolutional
network. The architecture of a convolutional network usually consists of convolutional
layers at the beginning of the network and ends with a number of fully-connected layers
at the end. The next section will show how information is processed in a multilayer per-
ceptron and a derivation showing the backpropagation algorithm applied to a multilayer
perceptron of an arbitrary depth, which in the subsequent section will be extended to a
convolutional network.
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2.1 Multilayer perceptron

Multilayer perceptrons (MLP) are the simplest form of neural networks, where every
output from a given layer is connected to every single neuron of the next layer. Figure
2.1 shows a MLP with two layers1.

Figure 2.1: A 2-layer MLP network showing only the outer most neurons. (source:[1,
ch. 5])

Using Figure 2.1 as an example we can express the first layer with M neurons as having
M linear combinations with D inputs. Using this formulation and letting x1, x2, · · · , xD
be the input into the network in Figure 2.1, we can write the first layer calculation as:

aj =

D∑
i=1

w
(1)
ji xi + b

(1)
j (2.1)

where j ∈ {1...M}, that is each neuron in the layer and the superscript (1) refers to
the first layer. Here the wji are called the weight, the bj are called the bias and each
quantity aj is called the activation of a neuron and is transformed using a differentiable,
non-linear activation function, σ(·) giving

zj = σ(aj) (2.2)

1There is some confusion about counting layers in a network, where some would call this network a
three layer network. Using same terminology as C. Bishop I will also call this a two-layer network, since
there are two layers with weights.
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The zj are the output of the first layer, which are then passed onto the next layer,
where the same process is continued, until reaching the final layer. Following the same
procedure for the next layer we can write

ak =
M∑
j=1

w
(2)
kj zj + b

(2)
k for k = 1, ..,K (2.3)

Once the end of a network is reached, the output activations are transformed using an
appropriate activation function into yk, depending on the problem the network tries
to solve. With multiclass problems, it is common to transform each output unit into
probabilities, by using the softmax function, which is defined by

softmax(ak) = yk =
eak∑K
i=1 e

ai
for k = 1...K (2.4)

where 0 ≤ yk ≤ 1 with
∑K

k=1 yk = 1, which can be interpreted as a probability. Combin-
ing (2.1), (2.2), (2.3) and (2.4) we can express the network as a composition of operations
and the network function therefore takes the form

yk(x,w) = softmax

 M∑
j=1

w
(2)
kj σ

(
D∑
i=1

w
(1)
ji xi + b

(1)
j

)
+ b

(2)
k

 (2.5)

where we have grouped the weights and bias parameters into w. Thus a MLP is simply
a nonlinear function from a set of input variables {xi} that maps to a set of output
variables {yk} controlled by a set of adjustable parameters, w. For implementation
purposes, we can rewrite this into matrix form and use matrix-vector multiplication

instead of summations. For a neuron j in the first layer we can see that
∑D

i=1w
(1)
ji xi is

just the dot-product. As we have M neurons each with a set of weights, we can therefore
represent the weights in the first layer as W (1) : RM×D with the biases B(1) : RM .
Likewise for the next layer we define W (2) : RK×M with the biases B(2) : RK . Doing
this we can write

y(x,W) = softmax
(
W (2)σ

(
W (1)x +B(1)

)
+B(2)

)
(2.6)

The above process of evaluating (2.6) is called the forward propagation of information
through the network.

2.1.1 Activation functions

Activation functions are required to be differentiable; this is necessary when training net-
works, since we need to use the derivative of the input when we backpropagate through
the network. Common activation functions are tanh, rectified linear unit (ReLU), sig-
moid and softmax. Table 2.1 shows these activation functions and their derivatives
for an input x. The use of activation functions is an important factor for introducing
non-linearity into the network; otherwise we could simply express a network as a linear
combination, which in general is less powerful.
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Activation function σ(x) σ′(x)

tanh ex−e−x

ex+e−x 1− tanh(x)2

ReLU max(0, x) if x ≤ 0 then 0 else 1

sigmoid 1
1+e−x sigmoid(x)(1− sigmoid(x))

softmax ex∑K
k=1 e

zk
softmax(xi)(1(i = j)− softmax(xj))

Table 2.1: Common activation functions and their derivatives

2.2 Network training

As the goal with neural network is to be able to provide some prediction, given some
input, we need to train the network first. The idea is that given our yk(x,w), we want
it to predict our target values tk for all k. For each set of yk and tk we can calculate a
loss, defined by some function E(w). Table 2.2 shows some common loss functions.

Loss function E(w) ∂E(w)
∂yk

Cross-entropy −
∑K

k=1 (tk ln yk) − tk
yk

Cross-entropy w. softmax −
∑K

k=1

(
tk ln

eyk∑K
i=1 e

yi

)
yk − tk

Sum of squares 1
2

∑K
k=1(yk − tk)2 yk − tk

Table 2.2: Common loss functions and their derivatives w.r.t. to activation unit, yk,
used in the backpropagation algorithm

Note that the definitions of cross-entropy functions in Table 2.2 assumes that target
values are encoded as one-hot, meaning that for a n target values there exists only
one tk = 1 and tj = 0, ∀j 6= k. This is a common coding for multiclass problems,
as we are trying to predict a single class. As the goal of training the network to give
better predictions, we want to minimize the loss function, w.r.t. the weights w. Letting
OE(w) denote the gradient, that is the direction of the greatest rate of increase of the
error function, we can see that the smallest value of E will occur when OE(w) = 0,
as our loss function is a smooth continuous function of w. To achieve this we want to
determine OE(w) and subtract it from our weights such that we approach a minimum,
which ideally is a global minimum. By doing this iteratively, we improve the neural
networks prediction power a little step at the time. This is also called the gradient
descent optimization algorithm, which can be written as

wτ+1 = wτ − αOE(wτ ) (2.7)

where τ is the iteration step and α denotes the learning rate. The value of the learning
rate is often chosen to be of the order of 10−1, when starting training on a new network
and then decrease the learning rate as the model becomes more and more trained. This
avoids the problem of ”valley-hopping”, where the weight updates jumps between a local
minimum and never properly converges.
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2.2.1 Stochastic- and Batch gradient descent

Stochatic gradient descent (SGD) is the method where the gradients of a single data
point, (e.g. the vector x from Section 2.1), is applied to the weights at the time. In
contrast, there is batch gradient descent, where the gradients of the multiple data points,
i.e. {x1, ..,xn}, are applied to the weights at the same time. Because of the large amount
of data that needs to be processed, batches of data points are often used in practice,
which decreases the computational time, but comes with a cost. Le Cun et al. (1989)
showed that SGD provides the ability to escape stationary points, e.g. local minima
and likewise N. Keskar et. al.(2016) show that too large of a batch size decreases the
model accuracy, since they tend to get ”stuck” in local minima. Thus there is a trade-off
between computational time and model accuracy, which model developers need to take
into account. The sizes of batches are usually chosen to be of power of two, with common
sizes being 32, 64 and 128, but the exact choice depends on modeling problem. When
using batches of size N during training we obtain N -sets of gradients. The common
approach is to take the mean of the N gradients before applying them, which enables
comparisons across different batch sizes. Therefore equation (2.7) becomes:

wτ+1 = wτ − α 1

N

N∑
n=1

OEn(wτ ) (2.8)

C. Bishop applies the sum of the gradients in his book[1], but one can see that the
learning rate, can be adjusted to achieve the same result, i.e. if α is applied for the mean
approach, then α

N can be applied for the sum approach. The downside is that you’ll
need to adjust the learning rate accordingly for each batch size in order to compare,
thus using the mean is more common.

2.3 Backpropagation algorithm

This section will show the derivation of the backpropagation algorithm for an arbitrary
feed-forward topology with arbitrary differentiable, nonlinear activation functions. The
intuition of the backpropagation algorithm is that based on our output error, we want
the let these errors flow backwards into the network, which are then used to adjust the
weights. The backbone of the backpropagation algorithm is the chain rule which states
that if f and g are two differentiable functions then the derivative of ∂f(g(x))

∂x is

∂f(g(x))

∂g(x)

∂g(x)

∂x
= f ′(g(x))g′(x) (2.9)

As we want to determine OE(w), we need to determine ∂E
∂W l , by applying the chain rule

recursively back through the network for each layer l.
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2.3.1 Derivation

Recall that for the last layer we calculate:

ak =
M∑
j=1

wkjzj + bk (2.10)

yk = σ(ak) (2.11)

where σ is some activation function. We want to derive ∂E
∂wkj

first, i.e. the derivative

of a single weight, wkj . We see that E depends on wkj through both yk and ak, so by
applying the chain rule twice we get that

∂E

∂wkj
=
∂E

∂yk

∂yk
∂ak

∂ak
∂wkj

(2.12)

Using the loss function, sum of squares, defined in table 2.2 as an example, we can
evaluate the partial derivatives of each part separately which gives us

∂E

∂yk
= yk − tk,

∂yk
∂ak

= σ′(ak),
∂ak
∂wkj

= zj (2.13)

And combining them back together we get that

∂E

∂wkj
= (yk − tk)σ′(ak)zj (2.14)

We have now evaluated the derivative for a single weight wkj , which also applies to the
other weights in the last layer, giving us our gradient. A similar process is repeated for
the remaining layers of the network. We will introduce a general notation,

δj =
∂E

∂zj

∂zj
∂aj

(2.15)

which is called the error of neuron j, which semantically means if the activation of
neuron j changes by 1, then the loss function changes by δj . Letting the previous layer
be defined by:

aj =
∑
i

wjizi + bj (2.16)

zj = σ(aj) (2.17)

where we want to determine ∂E
∂wji

. By applying the chain rule, we can write the derivative
as

∂E

∂wji
=
∂E

∂zj

∂zj
∂aj

∂aj
∂wji

(2.18)

13



From equation (2.16) it’s easy to see that
∂aj
∂wji

= zi and by using our previously defined

δj notation we find that
∂E

∂wji
= δjzi (2.19)

We lastly need to evaluate δj . Using our definition and applying the chain rule gives us:

δj =
∂E

∂zj

∂zj
∂aj

(2.20)

=
∑
k

∂E

∂zk

∂zk
∂ak

∂ak
∂zj

∂zj
∂aj

(2.21)

The first two terms of (2.21) can be written as δk and we note that the derivative of
∂ak
∂zj

is the weight from neuron j to k (i.e. wkj). The sum comes from the fact that the

activation of neuron j is spread through of all its connections to the neurons in the next
layer, which in this case is all of the output nodes. The last term

∂zj
∂aj

= σ′(aj) does not

depend on k, and we can move it outside the summation. Substituting into (2.21) gives
us:

δj = σ′(aj)
∑
k

wkjδk (2.22)

By substituting (2.22) into (2.19) we can now determine ∂E
∂wji

. Lastly we must also

remember the derivative of the biases. As the bias term is simply a constant, we can
write the derivative

∂aj
∂bj

= 1 and we easily see that ∂E
∂bj

= δj . We have finally derived

the backpropagation algorithm, which when applying (2.22) and (2.19) recursively back
through the network gives us the gradients for each of the layers. The backpropagation
algorithm is summarized in Algorithm 1.

Algorithm 1 Backpropagation algorithm

1: Apply an input vector x to the network and forward propagate through the network
finding the activations of each layer

2: Evaluate δk for all of the output units for some loss function E using equation (2.15)
3: Backpropagate δ’s using equation (2.22) for each neuron in the network.
4: Use equation (2.19) to calculate the gradients w.r.t. wji for each weight in each layer.

For implementation purpose, we want to rewrite the backpropagation algorithm into
matrix form [19]. Assuming a network with depth d and let δ(l),W (l), B(l), z(l) denote
the errors, weights, biases and activations of the l’th layer respectively. We also let the
input x into the network be z(0). We can express the backpropagation algorithm as
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follows

z(l) = σ(l)(W (l)z(l−1) +B(l)) (2.23)

δ(d) =
∂E

∂z(d)
◦ σ′(d)(W (d)z(d−1) +B(l)) (2.24)

δ(l) = (W (l+1))Tδ(l+1) ◦ σ′(l)(W (l)z(l−1) +B(l)) (2.25)

∂E

∂W (l)
= δ(l)(z(l−1))T (2.26)

∂E

∂B(l)
= δ(l) (2.27)

Where ◦ denotes the Hadamard product or element-wise product.

2.4 Convolutional neural network

A convolutional neural network has the same hierarchical structure as a MLP, but con-
volutional layers treats the input data in a different manner. The main idea behind
convolutional layers is that data, like images, contain ”hidden” information in the spatial
structure, which can be utilized when searching for patterns. The input into a con-
volutional layer is therefore three dimensions, described by height, width and depth,
H ×W ×D. I’ll consider the case of depth equal to one first, thus reducing the dimen-
sions to two, and since it’s common to have square images, the input dimensions becomes
N ×N . When data is fed into a MLP, the input is stretched out into a single dimension,
resulting in the spatial information being lost, but with a convolutional network we want
to make use of this information. In convolutional layers weights are now called filters2,
which a layer can have multiples of. These filters are (usually) small square matrices
denoted by k × k. Each filter is slided across the input image in both dimensions with
a predetermined stride constant and computes the dot-product for each stride, which is
called the convolutional operation. Figure 2.2 shows an example. For compactness the
filter f is written as a vector [f00 f10 f01 f11]

T .x00 x10 x20
x01 x11 x21
x02 x12 x22

⊗ [f00 f10
f01 f11

]
=

[
[x00 x10 x01 x11 ] · f [x10 x20 x11 x21 ] · f
[x01 x11 x02 x12 ] · f [x11 x21 x12 x22 ] · f

]

Figure 2.2: Example of convolutional operation, with input image of size 3x3 and filter
size 2x2 with a stride 1, where · denotes the dot-product

An important property of a convolutional layer is weight sharing. The sharing of weights
causes equivariance, which means that if the input changes, then the output changes in
the same way [7, ch. 9], though are convolutional layers only naturally equivariance to

2Filters are also called kernels, but to not confuse with GPU kernels, the term filters is used instead
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shifts, but not rotation nor scaling. The goal is to have each filter adapt to certain char-
acteristics of the input images, for example one filter detects to edges, another detects
to depth and so on. We can define a convolutional operation3 for a single output value,
aij given an image, I and a single filter, Ff of size k × k as:

(I ⊗ Ff )ij = aij =

k−1∑
m=0

k−1∑
n=0

I[i+m, j + n]Ff [m,n] (2.28)

The outputs from a convolutional layer is now called an activation map, and we can
calculate the dimensions of the activation map, given an input image of dimensions
n× n and filter size of k × k with a stride of s as(

(n− k)

s
+ 1

)
×
(

(n− k)

s
+ 1

)
(2.29)

In the case of the depth dimension, also called channels, is larger than one, the image
channels must match the filter channels, because we are doing 2D convolutions4, (i.e. if
the input is of dimensions n×n× c, then the filter must have dimensions k×k× c). The
output value, aij is then the sum of the dot-products from each channel. Therefore is
depth dimension of the output from a convolutional layer only determined by the number
of filters, Nf , in a convolutional layer and we can write the output dimension as(

(n− k)

s
+ 1

)
×
(

(n− k)

s
+ 1

)
×Nf (2.30)

The activations, aij from a convolutional layer, given an image, I of size n× n× c and
a filter Ff of size k × k × c is then

(I⊗Ff )ij = aij =
k−1∑
m=0

k−1∑
n=0

c−1∑
c′=0

I[i+m, j+n, c′]Ff [m,n, c′]+bf for i, j = 1, ..,
(n− k)

s
+1

(2.31)
The operation is then repeated for each filter in F . Note that there is only one bias value
for each filter, i.e. there are Nf bias values in a convolutional layer. The convolutional
layer also applies an activation function σ() resulting in the output from the convolutional
layer.

zij = σ(aij) (2.32)

Removing subscripts we can write the output of a convolutional layer as:

Z = σ (I ⊗ F +B) (2.33)

Like in the MLP case this is also called the forward propagation of information, but in
this case there is no natural way to transform it into matrix form.

3This is technically a cross-correlation operation, as a convolution operation requires flipping the
filter, but when training a network it doesn’t matter which is used, as long as one is consistent during
forward and backward passes. This is also how Tensorflow performs its convolutional operation, https:
//tensorflow.org/api_guides/python/nn#Convolution

4The 2D refers to the dimensions the filter is slided in and not the dimensions of the filter nor the
input image
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2.4.1 Backpropagation algorithm

The backpropagation algorithm for the convolutional network is similar to the one of
MLP, but with the matrix multiplications replaced by convolutional operations. The full
derivation is omitted here; instead we refer to [11] for a full derivation. The equations
of the backpropagation algorithm for the convolutional network are:

Z(l) = σ
(
Z(l−1) ⊗ F (l) +B(l)

)
(2.34)

δ(l) = δ(l+1) ⊗
(
F (l+1)

)rot(180◦)
◦ σ′

(
Z(l−1) ⊗ F (l) +B(l)

)
(2.35)

∂E

∂F (l)
= Z(l−1) ⊗ δ(l) (2.36)

∂E

∂B(l)
=
∑
m

∑
n

δ(l)mn (2.37)

where δ(l) have the same semantics as in the case of MLP. Note that in equation
(2.35) each filter is rotated 180◦, 5 (or flipped), since we need to map the errors back
to the input with the corresponding weights, e.g. from the example in Figure 2.2 x00
is only affected by f00. In order to do so, we need to flip the filter and perform a full
convolutional operation, meaning that some of the filter goes out-of-bounds. This is in
practice solved by adding k−1 zero padding around δ, where k is the filter size and then
one can perform a normal convolutional operation. Figure 2.3 shows an example of the
full convolutional operation, where one can see that the result has same dimensions as
the example in figure 2.2, and verify that we have correctly mapped the errors back to
it’s input through the filter, f .


0 0 0 0
0 δ00 δ10 0
0 δ01 δ11 0
0 0 0 0

⊗[f11 f01
f10 f00

]
=


[0 0 0 δ00 ] · f ′ [0 0 δ00 δ10 ] · f ′ [0 0 δ10 0 ] · f ′

[0 δ00 0 δ01 ] · f ′ [δ00 δ10 δ01 δ11 ] · f ′ [δ10 0 δ11 0 ] · f ′

[0 δ01 0 0 ] · f ′ [δ01 δ1 0 0 ] · f ′ [δ11 0 0 0 ] · f ′


Figure 2.3: Example of a full convolution operation by padding the errors δ with zeroes
and applying the flipped filter, f ′ = [f11 f01 f10 f00]

T from Figure 2.2.

Having defined our backpropagation algorithms, we need to be able to combine a convo-
lutional layer with a fully-connected layer, which swapping part of the algorithms. For
the forward pass, we simply stretch out the output of the convolutional layer, before
applying it to the fully-connected one. For the backward pass we need to substitute

δ(l+1) ⊗
(
F (l+1)

)rot(180◦)
in (2.35) with (W (l+1))Tδ(l+1) from (2.25) in order to calculate

5This is just a consequence of the derivation and is done regardless even if one uses cross-correlation
or convolutional operation
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the errors δ(l) in equation (2.35). Combining the other way follows the same logic, but
is uncommon, since you lose the spatial information in the fully-connected layer.

2.5 Max-pooling layer

A pooling layer is often used after a convolutional layer in order to down-sample a n×n×c
input to n′ × n′ × c where n′ < n, and as such a pooling layer doesn’t have any learning
parameters associated with it. Max-pooling works by sliding a w1×w2 window over the
input image and select the maximum value within the window and discards the other
values. Figure 2.4 shows an example of a max-pooling operation using a 4 × 4 input
image and window of size 2× 2.

1 1 2 4
5 6 7 8
3 2 1 0
1 2 3 4

 ⇒︸︷︷︸
down-sample w. max-pooling

[
6 8
3 4

]

Figure 2.4: Example of max-pooling with a 2× 2 window and stride of 2

As the goal is to down-sample, the stride parameter is usually chosen to be the same
size as the sliding window, such that there is no overlap for each stride.

Backwards pass

The backwards pass in a max-pooling layer work by doing the reverse operation, i.e.
up-sample. Using the same example as above and say we have a 2× 2 error matrix, we
want to be able to remap the error values with maximum value during the forward pass.
This is in practice done by remembering which index the down-sampled values come
from. Figure 2.5 shows an up-sampling operation from the previous forward pass.

[
δ00 δ01
δ10 δ11

]
⇒︸︷︷︸

up-sample


0 0 0 0
0 δ00 0 δ01
δ10 0 0 0
0 0 0 δ11


Figure 2.5: Example of up-sampling continued from example in figure 2.4

As the other values don’t contribute to the output they are simply set to zero.

2.6 Weight initialization

The initialization of weights plays an important part of having a network converge to-
wards an acceptable minima. Usually a normal or uniform distribution is chosen, but
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sampling from either distribution also requires choosing a mean and variance. A zero
mean is normally chosen, but the choice of variance is not as simple. If the variance is too
small, then for neural networks with many layers, the activations will tend towards zero
as the data reaches the output layers, which results in close to zero gradients and thus
will the network not be updated. Choosing a too large variance will result in saturated
neurons, for example when using the tanh activation function, the output values tends
to have absolute large values and the gradient will be close to zero, thus resulting in the
network not updating. The Xavier uniform initialization [6] provides a good estimate
of the variance, which is also the default in Tensorflow6, which samples numbers from
the uniform distribution:

W ∼ U

[
−

√
6√

(Nin +Nout)
,

√
6√

(Nin +Nout)

]
(2.38)

where Nin and Nout denotes the number of input and output values in a given layer.
There exists other initialization methods (e.g. the He initialization [8]), which all have
strength and weaknesses depending on network architecture, activation functions used,
etc., but this initialization is fairly robust across most network types. It is therefore
chosen to be the standard choice in the library. Bias terms are just initialized to zeros.

6https://tensorflow.org/api_docs/python/tf/get_variable
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Chapter 3

Design and implementation

As Futhark focuses on producing efficient parallel code, it also imposes constraint on the
language semantics, in order to do so. These constrains will in turn impose limitations
on the design of the library, where the most significant limitations are that arrays cannot
be irregular and cannot hold function types. Without these limitations we could define a
network as an array of layers each containing a set of functions and weights. Forward and
backward passes could then be performed by a fold-like operation, which would be the
approach in any other functional language, but unfortunately not possible in Futhark.
We therefore need to look for alternative solutions.

3.1 Design

The initial solution was to split layer functions and weights into two separate parts,
which would avoid the two limitations mentioned above. As layers in a neural net-
work have different sizes, the limitation of irregular arrays, makes a natural one-to-one
array representation of weights impossible. To overcome this my initial design used
a weight representation of a one-dimensional array, but this required the need for ad-
ditional information of indexes, to keep track of which weight slices belongs to which
layers. Furthermore, additional information was required, such as the layer type, weight
shape, activation functions etc., for each layer in the network, where layer type and
activation functions where defined by integer values. The idea was that depending on
the layer type, the appropriate layer logic would be applied to handle, for instance the
forward pass for a fully-connected layer. I could then define a network as type nn =

(weights, layer_information). The separation of weights and layer functions meant
that we needed a function with some control structure to perform a forward and back-
ward pass for a network. The pseudo-code in Algorithm 2 shows such a function for
the forward pass. This would be the approach in most imperative languages and at first
sight seems reasonable in Futhark as well. But one main optimization in implementing
the backpropagation algorithm efficiently, is to store information produced during the
forward pass for the backward pass to avoid recomputing results. These can only be
stored as a one-dimensional array, because of the non-regular sizes of layers, and would
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Algorithm 2 Forward propagation

1: procedure Forward propagation(input, nn)
2: for l in nn.layer information do
3: (activation, dims, weight indexs) ← l // Extract layer information
4: weights flat ← nn.weights[weights indexs]
5: weights ← reshape dims weights flat
6: output ← apply weights and activation to input
7: input ← output // Write output to input for next layer

return output

again require an additional set of indices. The general problem with this representation
is that the restriction on non-regular arrays, means that most data needs to be stored
as one-dimensional arrays, with a corresponding set of indices and shape parameters.
Every time a layer needs to perform an operation, it first needs to extract the data and
reshape it. While reshaping might not result in compute-intensive operations, it is an
unfortunate consequence of this representation. The additional set of indices and shape
dimensions creates a library that uses additional information and operations, which can
be avoided in most other languages. Thus using an array representation of a network in
Futhark is not an optimal solution. Additionally as weights and layer logic is separated,
dependencies would be scattered all over the library and extending it would require
changes in several places, which will inevitably hinder the maintainability. Splitting
weights and layer logic is therefore not a viable solution either.

Recall from Section 2.1 that the network was combined by letting the output of the
first layer be the input to next one and that we can express a neural network as a func-
tion, that takes some weights and input and returns some output. From the derivation
of the backpropagation algorithm, we saw that the errors from the output layer was
passed back through the network, where each layer passes errors to the previous one.
Using these observations, we can view a neural network as two main functions(i.e., for
a network of depth n we can write fn(fn−1(· · · (f1(·))) for the forward pass and likewise
for the backward pass b1(b2(· · · (bn(·))))). This is the main idea behind this implemen-
tation, where neural networks are represented as a composition of functions. With this
representation, a single layer is now essentially the same as a one-layer network, which
defines two functions f(·) and b(·). Conceptually the idea is simple, but the functions
need to carry some additional information for this idea to be implemented efficiently.
Therefore we need to define abstract functions that can do so:

1 type forwards ' input 'w ' output ' cache =
2 bool → w → input → ( cache , output )
3 type backwards 'w ' cache ' e r r i n ' e r r o u t 'ˆu =
4 bool → u → w → cache → e r r i n → ( e r r out , w)

Listing 3.1: Auxiliary abstract types for specifying neural networks
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where ′(apostrophe) means that input, w, output, cache, and so on, are abstract types
and ̂ means that u is a functional type (and also abstract because of the apostrophe).
The abstract semantics of the functions are:

• forwards: Values of this type take, a boolean, some weights, and input and returns
a cache and the output from the network. The cache stores intermediate results,
such that when we backpropagate we do not have to recompue the values. The
boolean argument is there to indicate if the function is called during training; if it
is not, then we can just return an empty cache.

• backwards: Values of this type take, a function u for applying the gradients to
the weights, some weights, the information stored in the cache from the forward
pass, and the errors that are backpropagated from the above layer. The returned
value is the updated weights and the errors that is backpropagated further down
the network. The function u is provided by the type of optimizer that is used, e.g.
gradient descent, which enables the handling of gradients in different ways. Other
types of optimizers can then be implemented later on through the function u.

The boolean is there to indicate if it is the first layer of the network, and if it is,
then we do not need to calculate and backpropagate the error. This is a small
optimization, but can give a performance increase on longer training passes.

As these are fully abstract function types, means that a layer implementation needs to
define it’s own concrete types, but note that, how one layer chooses it’s concrete types
will affect if the layer can be combined with other layer types, which in some cases will
require an utility layer. In the implementation we require a layer to supply these two
functions with the abstract semantics above, but the internal logic is defined by the
layer it self. Additionally must the layer also define and possibly provide some weights.
Combining it all we can write the complete network type as:

1 type NN ' input 'w ' output ' c ' e i n ' e out 'ˆu =
2 { forward : forwards input w output c ,
3 backward : backwards c w e i n e out u ,
4 weights : w }

Listing 3.2: Abstract type for representing a neural network

In the implementation I’m using a more concrete function in the network type instead
of the abstract function u:

1 −−− The weight definition used by optimizers
2 type s td we ight s ' t = ( [ ] [ ] t , [ ] t )
3 type apply grad ' t = s td we ight s t → s td we ight s t → s td we ight s t

Listing 3.3: Function signature for applying gradient

As optimizers have to operate on the weights and gradients, they need to know its
concrete type, and therefore the abstract function apply_grad with a concrete signa-
ture is used. Layers that do not use this weight representation needs to reshape their
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weights and gradients before applying the function. Most optimizers update gradients
and weights in bulk operations (e.g. all gradients gets the same learning rate applied),
and therefore will reshaping not affect the update, but if some optimizer does not treat
gradients in bulk, then this design may be a non-optimal.

Networks can be combined by using the core function of the library connect_layers,
which takes two networks and combines them into one through lambda expressions.

1 let c o n n e c t l a y e r s 'w1 'w2 ' i ' o1 ' o2 ' c1 ' c2 ' e1 ' e2 ' e
2 ({ forward=f1 , backward=b1 ,
3 weights=ws1 } : NN i w1 o1 c1 e e1 ( apply grad t ) )
4 ({ forward=f2 , backward=b2 ,
5 weights=ws2 } : NN o1 w2 o2 c2 e2 e ( apply grad t ) )
6 : NN i 1 (w1 , w2) ( o2 ) ( c1 , c2 ) ( e2 ) ( e1 ) ( apply grad t ) =
7

8 { forward = \( i s t r a i n i n g ) (w1 , w2) ( input ) −>
9 let ( c1 , r e s ) = f1 i s t r a i n i n g w1 input
10 let ( c2 , r e s2 ) = f2 i s t r a i n i n g w2 r e s
11 in ( ( c1 , c2 ) , r e s2 ) ,
12

13 backward = \( ) u (w1 , w2) ( c1 , c2 ) ( e r r o r ) −>
14 let ( err2 , w2 ' ) = b2 false u w2 c2 e r r o r
15 let ( err1 , w1 ' ) = b1 true u w1 c1 e r r2
16 in ( err1 , (w1 ' , w2 ' ) ) ,
17

18 weights = ( ws1 , ws2 )}

Listing 3.4: Function for combining two networks

The forward functions are straightforwardly combined and like so for the backward
functions, just in reverse order. As mentioned above, there are some type restrictions
when combining two networks, nn1 and nn2. The output type of nn1 must match the
input type of nn2 and the error output type of nn2 must match the error input type of
nn1, which are the only restrictions when connecting two networks. These restriction
are also reflected in the two neural network types in Listing 3.4, (e.g. the output type
from the first network, o1 on line 3 is the same as the input to the second network on
line 5). Weights and caches are also combined into tuples, becoming more and more
nested as the network depth increases. The tuples are then unfolded when functions are
called deeper into a multilayer network. This representation completely avoids the use of
1-dimensional arrays and indexing, but instead inline functions and make use of tuples
to represent a network. We can store information in their correct form and also avoid
storing auxiliary information. Additionally, extending the library with a new layer, is
only limited to the concrete layer implementation itself and does not affect other parts.
Such a representation is clearly favored and is also more natural to the definition of a
neural network.
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3.2 Library structure

Having defined the core types and functions of the library, this section will provide
an overview of the library structure. The implementation makes use of the ML-style
module system in Futhark. As a neural network consists of many components, we
naturally should separate each of these into their own modules. Weight initialization-
, activation- and loss functions are implemented within their own modules respectively.
Layer implementations are a bit different, where I define a module type (i.e. an abstract
module) layer type, which each concrete layer implementation uses. Each concrete layer
implementation is then collected in the module layers, such that we can access all of the
layers through a single module. Optimizer implementations follow the same structure
as layers. As layers and optimizers in general have more complex implementations,
using a level of abstraction is needed. Lastly is the neural network module, where the
connect_layers function is implemented. This module contains more generic utility
functions, such as functions for calculating the loss or accuracy of a network. The next
sections will provide details on the implementations, starting with activation functions.

3.3 Activation functions

Recall that an activation function has the characteristic of being differentiable, such that.
we can use it’s derivative during the backward pass in order to calculate the gradient.
Therefore are activation functions represented as a pair, containing the function it self
and it’s derivative, i.e. we can define it’s abstract type as

1 type a c t i v a t i o n f u n c ' o = { f : o → o , fd : o → o}

Listing 3.5: Abstract activation function type

The activation functions provided in this implementation all use a 1-dimensional ar-
ray as their concrete type, which is required since the softmax function is applied on a
sequence of activations. A key reason for this representation is that the user can define
their own pair of functions and use them should the library not contain them. This
ensures a flexible system, where the user is not limited to the library implementation.
Supported activation functions are sigmoid, tanh, ReLU, identity and softmax, though
softmax can not be used during training in a layer1. The implementations follows the
definitions given in Table 2.1 and only softmax has been implemented differently by
subtracting the maximum value on each element, before applying the exponential func-
tion such that overflowing is avoided. The activation functions can be accessed through
the neural network module through simple wrappers, following the same interface as
Tensorflow.

1See Section 3.11 for more details
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3.4 Loss function

The definition of loss functions follows the same idea as activation functions, but they
just have a different signature.

1 type l o s s f u n c ' o ' t = { f : o → o → t , fd : o → o → o}

Listing 3.6: Abstract loss function type

Again, this allows users to define their own loss functions and in this implementation
a loss functions concrete type of ′o is a 1-dimensional array. Supported loss functions
are cross entropy, cross entropy with softmax and sum of squares. The implementation
of these follow the definitions given in Tabel 2.2.

Both activation- and loss function types are defined globally as they are also used by
concrete layer modules and the neural network module.

3.5 Optimizers

In this implementation optimizers performs the backpropagation algorithm, by calling
the forward and backward passes on a network and applies the gradients through it’s
own implementation of the abstract function apply_grad. In order to provide options
on future implementations, optimizers are separated with their own module type. The
module type of an optimizer is defined as follows:

1 module type opt imize r type = {
2 type t
3 type ˆ l e a r n i n g r a t e
4 −− | Train function with signature
5 −− network → learning rate → input data → labels →
6 −− batch size → loss function →
7 −− Returns the same network with updated weights
8 val t r a i n ' i 'w ' g ' e2 ' o :
9 NN ( [ ] i ) w ( [ ] o ) g ( [ ] o ) e2 ( apply grad t )
10 → l e a r n i n g r a t e
11 → ( input data : [ ] i )
12 → ( l a b e l s : [ ] o )
13 → i 32
14 → l o s s f u n c o t
15 → NN ( [ ] i ) w ( [ ] o ) g ( [ ] o ) e2 ( apply grad t )
16 }

Listing 3.7: Abstract optimizer module

Where learning rate is allowed to be a function type, which allows an optimizer im-
plementation to adapt the learning rate for different training steps with a user defined
function. The restrictions on the abstract function train is straightforward, given a
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neural network, the input and output should match the input data and the labels re-
spectively. The input data and labels must be an array type, where each data point is
an element, such that we can easily loop through the input data. The loss function given
as argument should also match the output type. The only optimizer the implementa-
tion provides is gradient descent defined in the gradient descent module. The process of
training a network is performed by a loop:

1 let t r a i n [ n ] 'w ' g ' o ' e2 ' i (
2 { forward=f ,
3 backward=b ,
4 weights=w} : NN ( [ ] i ) w ( [ ] o ) g ( [ ] o ) e2 ( apply grad t ) )
5 ( alpha : l e a r n i n g r a t e )
6 ( input : [ n ] i )
7 ( l a b e l s : [ n ] o )
8 ( batch sz : i 32 )
9 ({ f= , fd=lo s s ' } : l o s s f u n c o t ) =
10

11 let i = 0
12 let updater = apply grad gd alpha batch sz
13

14 let (w' , ) = loop (w, i ) while i < l ength input do
15 let input ' = input [ i : i+batch sz ]
16 let l abe l ' = l a b e l s [ i : i+batch sz ]
17 let ( cache , output ) = f true w ( input ' )
18 let e r r o r = map2 (\ o l −> l o s s ' o l ) output l abe l '
19 let ( , w ' ) = b false updater w cache e r r o r
20 in (w' , i + batch sz )
21 in { forward = f , backward = b , weights = w'}

Listing 3.8: Train function in gradient descent module

We forward propagate the input and calculate the error(line 17 and 18), which are
then backpropagated through the network to get the updated weights (line 18). The
updater value is a function that takes the gradients and weights of a layer and performs
the update using equation (2.8). The process is repeated, until all of the given input
data has been processed, returning the same network with the updated weights.

3.6 Layers

Recall that the errors are backpropagated back through the network using this following
equation for MLP:

δ(l) = (W (l+1))Tδ(l+1)︸ ︷︷ ︸
error′

◦ σ′(l)(W (l)z(l−1) +B(l)) (3.1)

The error’ part is backpropagated in this implementation as the error term, as it can
be calculated at layer l + 1, but not at layer l. The same part of the error term is
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used for a convolutional network. Recall also that when connecting a convolutional
layer with a fully-connected one, we’d need to swap this exact part. Therefore must
the layer implementations follow this convention, such that we can backpropagate the
errors correctly. The remaining part, σ′(i)(W

(l)z(l−1)+B(l)) is calculated at layer l, where

W (l)z(l−1) + B(l) is retrieved from the cache. The abstract layer module layer type is
defined as:

1 module type l a y e r t y p e = {
2 type t
3 type input params
4 type ˆ a c t i v a t i o n s
5

6 type input
7 type output
8 type weights
9 type e r r i n
10 type e r r o u t
11 type cache
12 −− In i t i a l i z e layer given input params,
13 −− activation func and seed
14 val i n i t : input params −> a c t i v a t i o n s −> i 32 −>
15 NN input weights output cache e r r i n e r r o u t ( apply grad t )
16 }

Listing 3.9: Abstract layer module

Thus a concrete layer implementation must define it’s own input, output, weights,
err in, err out, and cache types and must provide a function, that initializes the layer
given its own defined input parameters and activation function. The integer given is used
as a seed parameter, which is used for layers with weight initialization. Note that layer
functions are expecting a batch of data points at the time for forward and backward
passes, such that the parallelism is optimized.

The implemented layers are dense (fully-connected), 2D convolutional, max-pooling, and
flatten. The latter is a utility layer, which allows a convolutional layer to be combined
with a dense one.

3.6.1 Dense

The dense layer is initialized with a tuple of two integers, (m,n), which represents
the input and output dimensions respectively. The weights are then represented as a
matrix of dimensions n ×m, where each row represents the weights associated with a
neuron, along with a 1-dimensional array of length n for the biases, following the same
representation as in Section 2.1. The forward pass is implemented one-to-one using
equation (2.23), with appropriate transposing of the input data, as it is in row format.
Matrix multiplication is performed using the function matmul from the futlib/linalg

library. The cache in a dense layer consists of the original input and the result after
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applying the biases, which are used during backpropagation. The backward pass is
implemented using equation (2.25), (2.26) and (2.27) directly.

3.6.2 Convolutional

The implementation of a convolutional layer is not as straightforward as the dense
one. There are many ways convolutions can be implemented efficiently today, with
each method having different strengths and weaknesses. The need for performing fast
convolution is evident in that convolutional networks are used in real-time applications
such as self-driving cars for detecting pedestrian, which requires low latency, so the suc-
cess of a convolutional network is limited by how fast we can perform the convolution
[14]. Convolutional operations are compute-expensive operations and H. Kim et. al. [12]
show that more than 70% of the training time is spent in convolutional layers on the
AlexNet network, which consists of 5 convolutional layers and 4 fully-connected layers.
The search for faster convolutional algorithms is still an active area of research, where the
common approach is to reduce the amount of multiplication operations at the expense
of additions and/or use of auxiliary memory.

The simplest way is to implement the convolutional operation directly, following
equation (2.31), but this also leads to very slow performance. Another approach is to
lower the convolution into a matrix multiplication, which can be done by transforming
image data into matrices using a function called im2col, which arranges the image slices
into a column matrix. This is also called the GEneric Matrix-Matrix multiplication
(GEMM) approach. By representing filters as matrices as well, we can perform the con-
volutional operation as a matrix multiplication. Matrix multiplication can be done very
efficiently on GPUs, as it can utilize the local memory that has low latency and high
bandwith. The downside is that it uses a lot of auxiliary memory and also additional
resources to transform the data to matrix form. As an example given a 4×4 image and a
filter of size 2× 2 with a stride of 1, Figure 3.1 shows how the transformation duplicates
the data by a factor of 2.25. This factor increases linearly with the image size, fixing
everything else.

x00 x01 x02 x03
x10 x11 x12 x13
x20 x21 x22 x23
x30 x31 x32 x33

 ⇒︸︷︷︸
im2col


x00 x01 x02 x10 x11 x12 x20 x21 x22
x01 x02 x03 x11 x12 x13 x21 x22 x23
x10 x11 x12 x20 x21 x22 x30 x31 x32
x11 x12 x13 x21 x22 x23 x31 x32 x33


Figure 3.1: Example of im2col operation on a 4× 4 image with a 2× 2 filter and stride
of 1

The Fast Fourier Transformation (FFT) along with the convolution theorem is another
popular approach [23], but this approach only performs well for large filter sizes as the
extra padding on small filters and unused calculations outweighs the benefit of perform-
ing element-wise multiplications. It also only works with a stride equal to one [12, p.
59]. For filters of smaller sizes, 5 and below, the Winograd minimal filtering (WMF) [14]
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algorithm is usually better than FFT. The WMF algorithm is also based on the GEMM
approach and achieves its performance gain by transforming the data with pre-computed
auxiliary matrices, for each filter size, which reduces the arithmetic complexity of the
convolutional operation. Because of these matrices needs to be pre-computed means
that each filter size requires a special case and therefore is the WMF algorithm only
applicable to a small set of filter sizes. The two latter methods also uses excess amount
of auxiliary memory to hold intermediate results.

Note that determining which algorithm is fastest cannot always be predetermined, as it
also depends on batch size, stride, and on. For example, Tensorflow executes all available
algorithms, to figure out which is best [12, p. 60]. cudNN [18] have all three approaches
implemented into their library, but clearly implementing all three algorithms is a huge
task and not feasible in this project. As both FFT and WMF algorithms doesn’t apply
for a general convolutional layer, these algorithms have been neglected for now.

This leaves us with one last option, which is to use the GEMM approach, which can be
applied in the general case. H. Kim et. al [12] (see Figure 3.2) show that the GEMM
approach performs reasonably well for small batch sizes, but scales poorly as the batch
sizes increases, because the transformation to matrix form becomes too expensive.

Figure 3.2: Performance comparison on forward and backward passes between Direct
convolution, GEMM, FFT and WMF algorithm on the AlexNet (source: [12])

The auxiliary memory usage can also become an issue and caused memory allocation
failures on a NVIDIA GTX 970 with 4GB of memory. The cudNN library solves this
by reading fixed sized sub matrices of the input data from the off-chip memory onto the
on-chip memory successively and computes a subset of the output. This is done while
fetching the next sub matrices onto the on-chip memory, essentially hiding the memory
latency associated with the data transfer, thus is the computation only limited by the
time it takes to perform the arithmetic, while limiting the auxiliary memory usage[2,
p. 5]. The cudNN library provide both options in their API (i.e. to form the matrix
explicitly or implicitly). Interestingly enough, [12] shows that the GEMM method has
a less or equal peak memory usage than direct convolution, though it is not clear which
GEMM method is used in the paper, but assuming that the explicit method is used,
since they have 4× 12GB of GPU memory and the showed peak memory usage is below
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6GB. The same result was also encountered in practice2, where the direct convolution
not only had worse performance, but got memory allocation failures at fewer data points.
The exact reason for this is unknown, but it seems that the GEMM method is superior
to direct convolution in terms of performance and memory usage.

The implicit GEMM approach is not possible in Futhark, and the closest approach is
to perform a loop, which iterate through the input, computing each in chunks, but this
approach does not hide the memory latency and seems like a half solution to the problem,
as different systems have different memory capacities. As the memory allocation failures
only occur, when calculating the accuracy for many data points at the same time, well
above the normal batch sizes used during training, the implicit method has been skipped
in this work, but consider this future work to find an alternative solution.
Therefore have the explicit GEMM approach been implemented, which transforms the
input image into matrix form explicitly.

Implementation

The convolutional layer implementation takes four parameters, number of filters, filter
size, stride, and input depth. The latter is needed to initialize the proper filter depth to
match the input depth. Note that it is only possible to have square filters, but as it is
the most common, it is not a big issue, but extending it to allow for non-square filter
sizes is not difficult. The input layout for N images is assumed to be N ×D ×H ×W ,
where D,H and W is depth, height, and width respectively.

Forward pass

The forward pass is done by using the im2col function, which transforms the image
given filter size and image offsets into a matrix. By representing filters as a matrix and
with the image matrix in place the convolutional operation can be performed by a matrix
multiplication. The biases and the activation function is then applied to the result.

[
f0,0,0 f0,1,0
f1,0,0 f1,1,0

] [
f0,0,1 f0,1,1
f1,0,1 f1,1,1

]
⇒
[
f0,0,0 f0,1,0 f1,0,0 f1,1,0 f0,0,1 f0,1,1 f1,0,1 f1,1,1

]
Figure 3.3: A single filter of size 2× 2× 2 representation in a convolutional layer

The cache consists of the image matrix, which avoids doing the transformation again
during the backward pass, but we need to store the original image dimensions addition-
ally. We also cache the result of the convolutional operation after applying the bias in the
correct format, such that we do not have to reshape it when we perform the Hadamard
product during backpropagation.

2There is an experimental implementation on branch ’directconv’, which uses direct convolution, but
the implementation is rather messy and no longer maintained
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Backward pass

The backward pass is based on equations (2.35) and (2.36). Having calculated δ(l), we
need to flatten each of the layers, to be able to perform a matrix multiplication for the
convolutional operation in (2.36) with the image matrix from the cache. For backprop-
agation of the errors to the previous layer, we need to flip the filters first, which can be
done by slicing into the filter vector and reverse each filter separately using the Futhark
function reverse.[

f1,1,0 f1,0,0 f0,1,0 f0,0,0 f1,1,1 f1,0,1 f0,1,1 f0,0,1
]

Figure 3.4: Flipped filter from Figure 3.3.

Recall that equation (2.35) is a full convolution and we need to pad δ(l) before transform-
ing it into matrix form. From that representation we can perform a matrix multiplication
again to perform the convolutional operation.

3.6.3 Max pooling

A max pooling layer is initialized with a tuple of two integers, (wm,wn), which represents
the dimensions of the sliding window, where the stride in the two dimensions respectively
is implied from those parameters. The forward pass is done by sliding the pooling window
over the input image, where each slice is given to the function max_val, which returns
the index of the maximum value in the slice and the value itself as a tuple. The index
is then transformed to an offset in the original image as if it was an 1-dimensional array
and stored along with the maximum value. Lastly we unzip the offsets from the values
and keep the offsets in the cache and forward propagate the down-sampled values.

The backward pass is done by using the offsets from the cache along with the scatter
function. The original image size is first created as a 1-dimensional array and filled with
zeros. Each of the 2-dimensional errors given is then flattened, and we can then perform
a scatter operation on each of them with the corresponding set of offsets. Now every
value is in the correct place and before returning, we reshape the errors into the correct
shape.

3.7 Weight initialization

The Xavier initialization is implemented using the module uniform real distribution,
which generates numbers from a uniform distribution, from the Futhark library fut-

lib/random. The Xavier initialization function is defined in the weight initializer mod-
ule in the library. The implementation samples each number separately by generating a
state from a seed s.
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1 let gen rand uni ( s : i 32 ) ( d i s t : ( uni .num. t , uni .num. t ) ) : t =
2 let rng = uni . eng ine . rng f rom seed [ s ]
3 let ( , x ) = uni . rand d i s t rng in x

Listing 3.10: Function for sampling a uniform number from the seed s, by generating
a state in line 2, which is used to sample the number in line 3

Normally you would only generate a single state for a sequence of random number,
where the state is updated and passed along for each call to uni.rand in Listing 3.10,
but with this implementation the function can be called with map, which allows one to
generate the numbers in parallel, rather than in a sequential order. The seeds given into
the function gen_rand_uni are generated through simple arithmetic, based on the users
chosen seed and requested weight dimensions. The tests also show that the numbers are
sampled within the ranges provided by the distribution parameters, which is sufficient.
The initialization function are used by the dense and convolutional layers, as they are
the only ones with weights.

3.8 Additional network functions

As we not only want to train a network, but also want to be able to evaluate a model a
number of additional functions are provided:

• predict: Given a network, input data and an activation function, the predict

function performs the forward pass of the network with the input data and returns
the output activations.

• accuracy: The accuracy function takes a network, input data, labels and an
activation function and performs the forward pass like predict, but additionally
compares the output activations from the network with the labels. The choice of
comparison is done using either an argmax or argmin function3, which is given into
the accuracy function as argument. The function returns an percentage on how
many data points the model correctly predicts, #hits

#datapoints .

• loss: The function calculates the loss on a network given some input data, labels
and a loss function. The accumulated loss of the input data and labels is returned.

These functions are defined in the neural network module.

3.9 Putting it all together

The implementation defines a deep learning module, which combines all of the modules,
layers, optimizers, loss and neural network such that we only have to instantiate a single

3Recall from Chapter 2 that the output are interpreted as probabilities, and therefore will the output
activation with highest probability be the prediction of the input. The argmin comparison is usually
used for cases, where the goal is predict, which is not correct.
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module. Having defined all of these components, we can now see how one can built the
convolutional network defined in Table 3.1

Layer type Filters/neurons Filter/window size Stride Activation function

conv2d 32 5× 5 1 relu

max pooling 0 2× 2 2 N/A

conv2d 64 3× 3 1 relu

max pooling 0 2× 2 2 N/A

dense 1024 N/A N/A identity

dense 10 N/A N/A identity

Table 3.1: Convolutional network with input dimension of 1× 28× 28

The network in Table 3.1 is build to be trained on the MNIST data-set. Listing 3.11
show how we can put together such a network using the library:

1 import ” . . / l i b / deep l ea rn ing ”
2 module dl = deep l ea rn ing f32
3 let seed = 1
4

5 let conv1 = dl . l a y e r s . conv2d (32 , 5 , 1 , 1) d l . nn . r e l u seed
6 let max pool1 = dl . l a y e r s . max pooling2d (2 , 2 )
7 let conv2 = dl . l a y e r s . conv2d (64 , 3 , 1 , 32) d l . nn . r e l u seed
8 let max pool2 = dl . l a y e r s . max pooling2d (2 , 2 )
9 let f l a t = dl . l a y e r s . f l a t t e n
10 let f c = dl . l a y e r s . dense (1600 , 1024) d l . nn . i d e n t i t y seed
11 let output = dl . l a y e r s . dense (1024 , 10) d l . nn . i d e n t i t y seed
12

13 let nn0 = dl . nn . c o n n e c t l a y e r s conv1 max pool1
14 let nn1 = dl . nn . c o n n e c t l a y e r s nn0 conv2
15 let nn2 = dl . nn . c o n n e c t l a y e r s nn1 max pool2
16 let nn3 = dl . nn . c o n n e c t l a y e r s nn2 f l a t
17 let nn4 = dl . nn . c o n n e c t l a y e r s nn3 f c
18 let nn = dl . nn . c o n n e c t l a y e r s nn4 output

Listing 3.11: Example of building a convolutional network w. the library

where we first define each of our layers separately. We can then build our network
using the connect_layers function. Having defined our network we can train it and
calculate the accuracy as such:

33



1 let main [m] ( input : [m] [ ] d l . t ) ( l a b e l s : [m] [ ] d l . t ) =
2 let input ' = map (\ img −> [ u n f l a t t e n 28 28 img ] ) input
3 let t r a i n = 64000
4 let v a l i d a t i o n = 10000
5 let b a t c h s i z e = 128
6 let alpha = 0 .1
7 let nn ' = dl . t r a i n . g r a d i e n t d e s c e n t nn alpha
8 input ' [ : t r a i n ] l a b e l s [ : t r a i n ]
9 b a t c h s i z e d l . l o s s . s o f t m a x c r o s s e n t r o p y w i t h l o g i t s
10 in dl . nn . accuracy nn '
11 input ' [ t r a i n : t r a i n+v a l i d a t i o n ]
12 l a b e l s [ t r a i n : t r a i n+v a l i d a t i o n ]
13 ( d l . nn . softmax ) ( d l . nn . argmax )

Listing 3.12: Example of training a network w. the library

The program first trains the network on 64000 data points with a batch size of 128 and
learning rate of 0.1 on line 7. The accuracy of the trained network is then calculated on
10000 separate data points on line 10. The program can be found at https://github.
com/HnimNart/deep_learning/blob/master/programs/mnist_conv.fut and the data
used to run this can be downloaded at http://napoleon.hiperfit.dk/~HnimNart/

mnist_data/mnist_100000_f32.bindata. On a Unix-like system you can compile it
with the futhark-opencl compiler and run it with these two commands:

1 $ futhark−openc l mnist\ conv . f u t
2 $ . / mnist conv < path/ to / mnist 100000 f32 . bindata

3.10 Testing

As we have seen, a neural network implementation has many components, and if just
one of these is implemented wrong, then the network will not train properly. One way
to test is to compare the same types of networks to existing libraries and check if one
can achieve the same accuracy on the same data modulo the weight initialization. For
sufficiently large training data, the accuracies should converge towards the same. Such
testing have been done with a MLP and a convolutional network. The comparison
is done with Aymeric Damien’s Tensorflow examples4, neural network.py and convolu-
tional network.py, with some minor modifications. Particularly, the dropout layer in the
convolutional network is removed and the optimizer is changed to gradient descent. The
data used is the MNIST dataset and both networks uses the loss function, cross entropy
with softmax. The modified Tensorflow programs along with the Futhark programs can
be found in Appendix C.1 and the accuracies from running each programs ten times with
different seeds is shown in Appendix B. The network structure and training parameters
used for the MLP are in Table 3.2 with results in Table 3.3.

4https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/3_

NeuralNetworks
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Layer type Neurons Activation function

dense 256 identity

dense 256 identity

dense 10 identity

Parameter Value

Training steps 500
Batch size 128

Learning rate 0.1
Training data # 64.000

Validation data # 10.000

Table 3.2: MLP network with input dimension of 1× 784 and training parameters.

Program Accuracy Std deviation 95% confidence interval

Tensorflow 90.78 % 0.003142 [0.9058, 0.9097]

Futhark 90.21 % 0.002777 [0.9004, 0.9038]

Table 3.3: Mean, standard deviation and confidence interval of accuracy test for MLP

The confidence interval do not overlap, which could be due to unlucky variable initial-
ization, however the intervals are relatively close to each other, which indicates that the
two libraries computes similar results. Repeating the same process for the convolutional
network defined in previous section, where we use the same training parameters as for
the MLP, we get the results shown in Table 3.4

Program Accuracy Std deviation 95% confidence interval

Tensorflow 97.26 % 0.00296 [0.9708, 0.9745]

Futhark 97.27% 0.00301 [0.9708, 0.9746]

Table 3.4: Mean, standard deviation and confidence interval of accuracy test for convo-
lutional network

The results show very similar accuracy, and provide some confidence that the implemen-
tation computes the same as Tensorflow. Furthermore is unit tests provided, which are lo-
cated at https://github.com/HnimNart/deep_learning/tree/master/tests. These
tests are relatively simple with small numbers and input sizes, such that the results can
be calculated by hand. The tests can be run by using futhark-test ./ from the folder.

3.11 Shortcomings of the implementation

This section will discuss some of the short comings in the library. Most of these are
minor issues, which does not effect the performance or accuracy, but should be noted
nevertheless.
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3.11.1 Specifying input dimension

In the library, when creating a convolutional or dense layer you must specify the input
size, such that the correct filter or weight sizes can be generated. This is due to Futhark’s
lacking support for recursive types, and when creating a layer, it cannot know the input
size from the previous layer. It’s a minor issue and a neural network developer should
know these sizes, but would provide a tiny improvement to the usability. To solve this
with the current version of Futhark, you can wait to initialize the weights until the entire
network is assembled, but would require another function to the neural network type.

3.11.2 Swap layers and weights

A common approach when one has sparse data available, say for image classification, is
to use an existing network architecture, with a large amount of data available, which you
perform initial training on. The trick is that the initial convolutional layers, will have
learned to recognize general image patterns, which can be used in your own network. To
adapt to your own data, you swap 2 or 3 layers (usually the last ones) out with ”fresh”
layers, and continue training on the modified network with your own data. Now, since
weights for a given network is represented as a nested tuple, it is rather cumbersome
to extract and swap weights relative to an array representation. This is an unfortunate
consequence of the network representation.

3.11.3 Softmax during backpropagation

The softmax activation function is different from the others, because it is not applied
element-wise, but rather element-wise for a sequence. This means that for a sequence,
the derivative of the softmax function is a matrix rather than a vector, and therefore
when the errors are calculated during backpropagation, it requires to do matrix mul-
tiplication rather than the Hadamard product. This is not supported currently, which
means that you can not use the softmax activation function during training, but it is
also rare that you would use the softmax function in a layer, so it is a minor issue.
Rather if you want to calculate the loss using softmax probabilities, you should use
cross_entropy_w_softmax, which when combined has a simple derivative.

3.11.4 Long compilation times

Though this issue is not directly related to the library, if you compile the convolutional
network provided in programs, you would probably notice that compilation time is rather
long. If you are in the process of testing different model architectures, this can become
annoying. Rerunning networks in other libraries, like Tensorflow, takes a fraction of the
time, as they are interpreted and simply execute pre-compiled binaries, which is a benefit
when testing different architectures. Thus the benefit in using this implementation comes
from the deployment of a model given that it is faster than other frameworks.
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3.12 Expanding to recurrent type of networks

Another powerful type of model in deep learning is the recurrent types, which are capable
of modeling problems with temporal behavior (i.e. where there is dependencies towards
previous input) and are commonly used in natural language processing [22]. Using the
unfinished sentence ”The quick brown fox jumps over the ..” as an example, where the
goal of the network is to predict the next words, (i.e. ”lazy dog”), then it is clear that a
correct prediction is based on the previous words. The recurrent layer would then process
each word in succession, but has a ”memory” of previous processed words, which affects
the output results. The implementation therefore requires that a layer additionally has
a feedback loop, where the previous computation is fed back into the same layer again.
Such implementation can be done by feeding the input (e.g. the sentence) into a layer,
and let layer handle the processing it self, i.e. process each word5 of the sentence in
succession, (e.g. by using scan), thereby is the feedback loop self contained within
the layer implementation and therefore is the network representation in this thesis also
applicable for a recurrent type of network. Optimizers, activation- and loss function can
also be reused and an extension is limited to new recurrent layers.

5Note that a fixed size input is normally used, (e.g. 4 letters), and just using a word as an example
here for simplicity. We therefore don’t have the problem with the irregular array limitation as all input
and output will be of fixed sizes.
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Chapter 4

Benchmarks

The benchmarks in this section compares Tensorflow and Futhark performance on the
two networks used in the accuracy test, but the benchmark only include the training
part of the programs. Each test run is done with 64.000 data points, with four different
batch sizes 128, 64, 32 and 16. Recall from section 2.2.1, that there are no universal
standard batch size and that batch sizes affects the modeling power, which means that
model developers, might need to run their models several times to fine-tune their model.
The batch size is also limited by hardware memory combined with size of network ar-
chitecture. What this means is that a benchmark should not be limited to only one
batch size, but rather a range of batch sizes, to provide a comprehensive overview of the
performance.
Note that the training steps doubles each time the batch sizes is halved. Because
the run time is so small for the MLP, keeping the same training steps, would lead
to too small time measurements, which when including noise creates too much fluctu-
ation. Because of there is some noise when running each training run, each training
run is done 10 times and the mean of time results are shown. Futhark programs have
been benchmarked with futhark-bench --compiler=futhark-opencl <prog>.fut us-
ing version 0.7.0. Tensorflow version 1.8 is used and the time library have been used
around the training instructions inside a for-loop with 11 iterations. The first call to
the train function in Tensorflow will load data to the GPU, but subsequent calls will
already have data available in the GPU memory. Tensorflow will also run different
algorithms on different layers during the initial training step, to figure out which algo-
rithms performs the best, and this information will be remembered for later calls to the
train function[12, p.60]. The Futhark benchmark programs can be found at https:

//github.com/HnimNart/deep_learning/tree/master/benchmark1, and the Tensor-
flow programs are the same as used in accuracy tests, just with a loop around the train

function. The graphics card used is NVIDIA GTX 970 with 4GB of memory and all pro-
grams uses 32 bit floating points. The times from each run in Tensorflow is in appendix

1You need to place the data in the data-folder, before running the benchmark in Futhark. The data file
is the same as used earlier, i.e. http://napoleon.hiperfit.dk/~HnimNart/mnist_data/mnist_100000_

f32.bindata
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A, along with the output from using futhark-bench

4.1 MLP network

The first benchmark is using the same MLP as used in the accuracy test. As most
of the computer-intensive parts in this type of network is implemented using matrix
multiplication, I would expect that the times are at least comparable. The mean of
the times are shown Figure 4.1 in milliseconds along with a relative speed-difference
calculated as

timefuthark
timeTensorflow

.

Library
Batch size

16 32 64 128

Tensorflow 824 ms 624 ms 488 ms 434 ms

Futhark 1594 ms 846 ms 506 ms 350 ms

Relative speed diff. 1.94 1.36 1.04 0.81

Table 4.1: Benchmark results for MLP.

The results show that for batch size of 128, Futhark is faster than Tensorflow, and for
batch size of 64 the performance is the same. As the batch size decreases to 32 Tensorflow,
starts to perform better, and for batch size of 16 Tensorflow is significantly faster than
Futhark. This is due to the degree of parallelism shrinks too much for Futhark, though
is a batch size of 16 also relatively small and often only used on hardware with limited
space.

(a) Benchmark times (ms) (b) Relative speed diff.

Figure 4.1: Benchmark results for MLP

4.2 Convolutional Network

The second benchmark is on the convolutional network used in the accuracy test. The
expectation are here lower than before, as we know that the implemented algorithm is

39



not optimal for the convolutional layers. The best that we can hope for are that Futhark
is not orders of magnitudes slower. The results are shown in Table 4.2

Library
Batch size

16 32 64 128

Tensorflow 5881 ms 4168 ms 3343 ms 2748 ms

Futhark 12091 ms 9010 ms 7992 ms 7515 ms

Relative speed diff. 2.06 2.16 2.39 2.73

Table 4.2: Benchmark results for convolutional network

The results show that for a batch size of 128, Futhark is 2.73 times slower than Tensor-
flow, but as the batch decreases the relative difference also shrinks, showing a similar
results as [12], i.e. the GEMM approach works best at smaller batch sizes, but the
performance are still relatively far from each other. This is primarily due to that the
GEMM approach doesn’t perform better than the WMF or FFT algorithms on the filter
sizes used in this network, even at smaller batch sizes.

(a) Benchmark times (ms) (b) Relative speed diff.

Figure 4.2: Benchmark results for convolutional network

4.3 Reflection on results

To be able to reflect on the performance on the benchmark results, we should first try
assess how fast Tensorflow is, in absolute terms. S. Chintala [3] have benchmarked
different convolutional networks with other popular libraries and shows that Tensorflow
are among the fastest libraries, but is beaten by Torch2 and Neon3, though is Neon
significantly faster on larger networks. A comparison between Tensorflow and other
cudNN based deep learning libraries in [12] shows that they have similar in performance,
when run in ’benchmark’ mode, meaning that they choose the best algorithms, either

2http://torch.ch/
3https://ai.intel.com/neon/
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based on heuristics or simple brute-force. Only Torch is a bit faster in the paper. While
these results show that Tensorflow isn’t the fastest it’s clear that Tensorflow is not
considered a slow library either as it is based on cudNN, which have been developed
over multiple years, aiming at providing fast code for deep learning applications. The
fact that the benchmark shows similar or better performance for the MLP, where the
underlying methods is the same, for a batch size of 64 and above is a great result. The
small gap on batch size of 32 is acceptable, but the large performance gap for a batch size
of 16 is not so great, but one can argue that this result is less important, as this batch
size is more uncommon than the others. For the convolutional network, the benchmark
results are clear; Tensorflow currently is the faster library, but we know that there is
about a 2x performance gain in using better algorithms [12]. Assuming this, the library
will be within a factor of 1.5 of Tensorflow, which would be a great accomplishment for
a high-level language like Futhark. Once those algorithms have been implemented, a
more comprehensive comparison between those two will tell if the performance gap is
only due to the choice of algorithms and if Futhark is capable of competing, in terms of
performance, with Tensorflow. Overall the benchmark results are promising for a deep
learning library in Futhark, which eventually can perform at a similar level as Tensorflow.
Additionally as Futhark is a hardware independent language and thus cannot provide
as much hardware specific optimizations as cudNN does, makes the benchmark results
impressive, especially in the case of the MLP with a batch size of 128. Considering that
Futhark still is a relatively new, we can only expect that Futhark compiler will yield
even better performance in the future as well.
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Chapter 5

Future work and conclusion

5.1 Future work

There are some unsolved issues and shortcomings as described earlier in the implemen-
tation. A discussion on how these should be resolved in a proper manner should be
prioritized. Having resolved those we can consider the future of the library which will
consist of two main parts. First of, implementation of better performing algorithms for
the convolutional layer will inevitably increase performance [12]. This might also apply
to implementing a matrix multiplication algorithm, with a better asymptotic bound, but
might not be easy to properly to do in Futhark efficiently. Nevertheless improving these
two main compute-intensive parts would improve the performance of the library. Sec-
ondly is to extend the library with more activation functions, loss functions, optimizers
and layers etc., giving a more complete library providing users with options.

5.2 Conclusion

This thesis explored implementation options of a deep learning library in Futhark. The
final implementation is based on a composition of functions for representing a neural net-
work, which avoids the non-regular array and array of functions limitation of Futhark.
The representation also avoids the need for auxiliary information. The implementation
also showed that the module system in Futhark is capable of providing the abstraction
needed for the complex nature of a deep learning library. While there are still some
minor issues in the library, the proposed framework showed that Futhark is fully capable
of an implementation of a deep learning library, which shows a high degree of flexibility
and maintainability for future work.

The benchmarks showed that for a MLP and larger batch sizes, Futhark is more than
capable of competing with dedicated DSL solutions like Tensorflow, but Futhark falls
behind when the batch size decreases. For the convolutional network there is still some
work to do, if the library is to be able to match Tensorflow’s performance. The main
reason for the performance gap is due to Tensorflow’s superior selection of algorithms.
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When those algorithms are implemented into the library, a new benchmark will provide
a more fair comparison of the libraries. As this thesis has only scraped the surface of a
deep learning library in Futhark, future iterations will undoubtedly progress the library
into being faster and more complete.
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Appendix A

Benchmark results

A.1 Futhark benchmarks results

1 Resu l t s for mnist 128 . f u t :
2 datase t . . / data / mnist 100000 f32 . bindata : 349954.80 us ( avg . o f 10 runs ; RSD: 0 . 0 0 )
3 Resu l t s for mnist 64 . f u t :
4 datase t . . / data / mnist 100000 f32 . bindata : 506426.60 us ( avg . o f 10 runs ; RSD: 0 . 0 0 )
5 Resu l t s for mnist 32 . f u t :
6 datase t . . / data / mnist 100000 f32 . bindata : 845774.50 us ( avg . o f 10 runs ; RSD: 0 . 0 0 )
7 Resu l t s for mnist 16 . f u t :
8 datase t . . / data / mnist 100000 f32 . bindata : 1593802.60 us ( avg . o f 10 runs ; RSD: 0 . 0 0 )

Figure A.1: Benchmark results for MLP in Futhark

1 Resu l t s for mnist conv 128 . f u t :
2 datase t . . / data / mnist 100000 f32 . bindata : 7514796.40 us ( avg . o f 10 runs ; RSD: 0 . 0 0 )
3 Resu l t s for mnist conv 64 . f u t :
4 datase t . . / data / mnist 100000 f32 . bindata : 7991749.90 us ( avg . o f 10 runs ; RSD: 0 . 0 0 )
5 Resu l t s for mnist conv 32 . f u t :
6 datase t . . / data / mnist 100000 f32 . bindata : 9010751.10 us ( avg . o f 10 runs ; RSD: 0 . 0 0 )
7 Resu l t s for mnist conv 16 . f u t :
8 datase t . . / data / mnist 100000 f32 . bindata : 12091464.30 us ( avg . o f 10 runs ; RSD: 0 . 0 0 )
9

Figure A.2: Benchmark results for CNN in Futhark
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A.2 Tensorflow benchmark results

run #
Batch size

16 32 64 128

1 806060 604798 546822 439358

2 880370 679317 476656 476263

3 809124 631627 472093 531199

4 810173 600780 538741 408783

5 877590 692555 479202 413419

6 806486 622508 478880 407778

7 812005 603003 475040 430840

8 824111 608722 469326 413238

9 811256 603799 473371 413990

10 805981 600677 475712 411898

Table A.1: Benchmark time in µs for each run w. MLP in Tensorflow.

run #
Batch size

16 32 64 128

1 6116550 4465761 3431302 2772002

2 5947696 4164861 3424191 2762104

3 5774723 4102609 3279976 2743420

4 5816716 4081254 3343420 2756505

5 5873528 4276965 3538718 2711210

6 5891137 4114870 3239401 2707600

7 5826807 4160194 3295297 2743304

8 5852604 4080076 3347933 2762100

9 5852070 4129724 3281702 2762154

10 5867789 4107558 3252794 2762101

Table A.2: Benchmark time in µs for each run w. CNN in Tensorflow
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Appendix B

Accuracy results

run #
Library

Tensorflow Futhark

1 0,9127 0,906

2 0,9117 0,9009

3 0,9086 0,9065

4 0,9061 0,9028

5 0,9102 0,8972

6 0,9011 0,9033

7 0,9066 0,9021

8 0,9063 0,9014

9 0,9069 0,8992

10 0,9084 0,9001

Mean 0.9078 0.9021

Table B.1: Accuracy results for MLP
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run #
Library

Tensorflow Futhark

1 0,9676 0,9709

2 0,974 0,9731

3 0,9708 0,972

4 0,9707 0,9658

5 0,9695 0,9701

6 0,9761 0,9728

7 0,9713 0,9738

8 0,9762 0,9757

9 0,9726 0,9757

10 0,9766 0,977

Mean 0.9726 0.9727

Table B.2: Accuracy results for convolutional network
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Appendix C

Programs

C.1 Accuracy programs

C.1.1 MLP Futhark program

1 import ” . . / l i b / deep l ea rn ing ”
2 module dl = deep l ea rn ing f32
3

4 let seed = 1
5

6 let l 1 = dl . l a y e r s . dense (784 , 256) d l . nn . i d e n t i t y seed
7 let l 2 = dl . l a y e r s . dense (256 , 256) d l . nn . i d e n t i t y seed
8 let l 3 = dl . l a y e r s . dense (256 , 10) d l . nn . i d e n t i t y seed
9

10 let nn1 = dl . nn . c o n n e c t l a y e r s l 1 l 2
11 let nn = dl . nn . c o n n e c t l a y e r s nn1 l 3
12

13 let main [m] ( input : [m] [ ] d l . t ) ( l a b e l s : [m] [ ] d l . t ) =
14 let t r a i n = 64000
15 let v a l i d a t i o n = 10000
16 let b a t c h s i z e = 128
17 let alpha = 0 .1
18 let nn1 = dl . t r a i n . g r a d i en t d e s c e n t nn alpha
19 input [ : t r a i n ] l a b e l s [ : t r a i n ]
20 b a t c h s i z e d l . l o s s . s o f t m a x c r o s s e n t r o p y w i t h l o g i t s
21 in dl . nn . accuracy nn1 input [ t r a i n : t r a i n+v a l i d a t i o n ]
22 l a b e l s [ t r a i n : t r a i n+v a l i d a t i o n ] d l . nn . softmax dl . nn . argmax

C.1.2 MLP Tensorflow program

1 """ Neural Network.

2

3 A 2-Hidden Layers Fully Connected Neural Network (a.k.a Multilayer Perceptron)
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4 implementation with TensorFlow. This example is using the MNIST database

5 of handwritten digits (http://yann.lecun.com/exdb/mnist/).

6

7 Links:

8 [MNIST Dataset](http://yann.lecun.com/exdb/mnist/).

9

10 Author: Aymeric Damien

11 Project: https://github.com/aymericdamien/TensorFlow-Examples/

12 """

13 from __future__ import print_function

14

15 # Import MNIST data

16 from tensorflow.examples.tutorials.mnist import input_data

17 mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

18

19 import tensorflow as tf

20

21 # Parameters

22 learning_rate = 0.1

23 num_steps = 500

24 batch_size = 128

25

26 # Network Parameters

27 n_hidden_1 = 256 # 1st layer number of neurons

28 n_hidden_2 = 256 # 2nd layer number of neurons

29 num_input = 784 # MNIST data input (img shape: 28*28)

30 num_classes = 10 # MNIST total classes (0-9 digits)

31

32 # Define the neural network

33 def neural_net(x_dict):

34 # TF Estimator input is a dict, in case of multiple inputs

35 x = x_dict['images']
36 # Hidden fully connected layer with 256 neurons

37 layer_1 = tf.layers.dense(x, n_hidden_1)

38 # Hidden fully connected layer with 256 neurons

39 layer_2 = tf.layers.dense(layer_1, n_hidden_2)

40 # Output fully connected layer with a neuron for each class

41 out_layer = tf.layers.dense(layer_2, num_classes)

42 return out_layer

43

44 # Define the model function (following TF Estimator Template)

45 def model_fn(features, labels, mode):

46 # Build the neural network
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47 logits = neural_net(features)

48

49 # Predictions

50 pred_classes = tf.argmax(logits, axis=1)

51 pred_probas = tf.nn.softmax(logits)

52

53 # If prediction mode, early return

54 if mode == tf.estimator.ModeKeys.PREDICT:

55 return tf.estimator.EstimatorSpec(mode, predictions=pred_classes)

56

57 # Define loss and optimizer

58 loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(

59 logits=logits, labels=labels))

60 optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)

61 train_op = optimizer.minimize(loss_op,

62 global_step=tf.train.get_global_step())

63

64 # Evaluate the accuracy of the model

65 acc_op = tf.metrics.accuracy(labels=tf.argmax(labels,1), predictions=pred_classes)

66

67 estim_specs = tf.estimator.EstimatorSpec(

68 mode=mode,

69 predictions=pred_classes,

70 loss=loss_op,

71 train_op=train_op,

72 eval_metric_ops={'accuracy': acc_op})

73

74 return estim_specs

75

76 # Build the Estimator

77 model = tf.estimator.Estimator(model_fn)

78

79 # Define the input function for training

80 input_fn = tf.estimator.inputs.numpy_input_fn(

81 x={'images': mnist.train.images}, y=mnist.train.labels,

82 batch_size=batch_size, num_epochs=None, shuffle=False)

83 # Train the Model

84 model.train(input_fn, steps=num_steps)

85

86 test_input, test_labels = mnist.train.next_batch(10000)

87 # Evaluate the Model

88 # Define the input function for evaluating

89 input_fn = tf.estimator.inputs.numpy_input_fn(
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90 x={'images': test_input}, y=test_labels,

91 shuffle=False)

92 # Use the Estimator 'evaluate' method

93 e = model.evaluate(input_fn)

94 print("Testing Accuracy:", e['accuracy'])

C.1.3 Futhark convolutional program

1 import ” . . / l i b / deep l ea rn ing ”
2 module dl = deep l ea rn ing f32
3 let seed = 1
4

5 let conv1 = dl . l a y e r s . conv2d (32 , 5 , 1 , 1) d l . nn . r e l u seed
6 let max pool1 = dl . l a y e r s . max pooling2d (2 , 2 )
7 let conv2 = dl . l a y e r s . conv2d (64 , 3 , 1 , 32) d l . nn . r e l u seed
8 let max pool2 = dl . l a y e r s . max pooling2d (2 , 2 )
9 let f l a t = dl . l a y e r s . f l a t t e n
10 let f c = dl . l a y e r s . dense (1600 , 1024) d l . nn . r e l u seed
11 let output = dl . l a y e r s . dense (1024 , 10) d l . nn . i d e n t i t y seed
12

13 let nn0 = dl . nn . c o n n e c t l a y e r s conv1 max pool1
14 let nn1 = dl . nn . c o n n e c t l a y e r s nn0 conv2
15 let nn2 = dl . nn . c o n n e c t l a y e r s nn1 max pool2
16 let nn3 = dl . nn . c o n n e c t l a y e r s nn2 f l a t
17 let nn4 = dl . nn . c o n n e c t l a y e r s nn3 f c
18 let nn = dl . nn . c o n n e c t l a y e r s nn4 output
19

20 let main [m] ( input : [m] [ ] d l . t ) ( l a b e l s : [m] [ ] d l . t ) =
21 let input ' = map (\ img −> [ u n f l a t t e n 28 28 img ] ) input
22 let t r a i n = 64000
23 let v a l i d a t i o n = 10000
24 let b a t c h s i z e = 128
25 let alpha = 0 .1
26 let nn ' = dl . t r a i n . g r a d i e n t d e s c e n t nn alpha
27 input ' [ : t r a i n ] l a b e l s [ : t r a i n ]
28 b a t c h s i z e d l . l o s s . s o f t m a x c r o s s e n t r o p y w i t h l o g i t s
29 in dl . nn . accuracy nn '
30 input ' [ t r a i n : t r a i n+v a l i d a t i o n ]
31 l a b e l s [ t r a i n : t r a i n+v a l i d a t i o n ]
32 ( d l . nn . softmax ) ( d l . nn . argmax )

Tensorflow convolutional program

1 """ Convolutional Neural Network.

2

3 Build and train a convolutional neural network with TensorFlow.
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4 This example is using the MNIST database of handwritten digits

5 (http://yann.lecun.com/exdb/mnist/)

6

7 Author: Aymeric Damien

8 Project: https://github.com/aymericdamien/TensorFlow-Examples/

9 """

10 from __future__ import division, print_function, absolute_import

11

12 # Import MNIST data

13 from tensorflow.examples.tutorials.mnist import input_data

14 mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

15

16 import tensorflow as tf

17

18 # Training Parameters

19 learning_rate = 0.1

20 num_steps = 500

21 batch_size = 128

22

23 # Network Parameters

24 num_input = 784 # MNIST data input (img shape: 28*28)

25 num_classes = 10 # MNIST total classes (0-9 digits)

26

27 # Create the neural network

28 def conv_net(x_dict, n_classes, reuse, is_training):

29 # Define a scope for reusing the variables

30 with tf.variable_scope('ConvNet', reuse=reuse):

31 # TF Estimator input is a dict, in case of multiple inputs

32 x = x_dict['images']
33 # MNIST data input is a 1-D vector of 784 features (28*28 pixels)

34 # Reshape to match picture format [Height x Width x Channel]

35 # Tensor input become 4-D: [Batch Size, Height, Width, Channel]

36 x = tf.reshape(x, shape=[-1, 28, 28, 1])

37 # Convolution Layer with 32 filters and a kernel size of 5

38 conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)

39 # Max Pooling (down-sampling) with strides of 2 and kernel size of 2

40 conv1 = tf.layers.max_pooling2d(conv1, 2, 2)

41 # Convolution Layer with 64 filters and a kernel size of 3

42 conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)

43 # Max Pooling (down-sampling) with strides of 2 and kernel size of 2

44 conv2 = tf.layers.max_pooling2d(conv2, 2, 2)

45 # Flatten the data to a 1-D vector for the fully connected layer

46 fc1 = tf.contrib.layers.flatten(conv2)
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47 # Fully connected layer (in tf contrib folder for now)

48 fc1 = tf.layers.dense(fc1, 1024)

49 # Output layer, class prediction

50 out = tf.layers.dense(fc1, n_classes)

51 return out

52

53 # Define the model function (following TF Estimator Template)

54 def model_fn(features, labels, mode):

55 logits_train = conv_net(features, num_classes, reuse=False,is_training=True)

56 # Predictions

57 pred_classes = tf.argmax(logits_train, axis=1)

58 pred_probas = tf.nn.softmax(logits_train)

59

60 # If prediction mode, early return

61 if mode == tf.estimator.ModeKeys.PREDICT:

62 return tf.estimator.EstimatorSpec(mode, predictions=pred_classes)

63

64 # Define loss and optimizer

65 loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(

66 logits=logits_train, labels=labels))

67 optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)

68 train_op = optimizer.minimize(loss_op,

69 global_step=tf.train.get_global_step())

70

71 # Evaluate the accuracy of the model

72 acc_op = tf.metrics.accuracy(labels=tf.argmax(labels,1) , predictions=pred_classes)

73

74 # TF Estimators requires to return a EstimatorSpec, that specify

75 # the different ops for training, evaluating, ...

76 estim_specs = tf.estimator.EstimatorSpec(

77 mode=mode,

78 predictions=pred_classes,

79 loss=loss_op,

80 train_op=train_op,

81 eval_metric_ops={'accuracy': acc_op})

82

83 return estim_specs

84

85 # Build the Estimator

86 model = tf.estimator.Estimator(model_fn)

87

88 # Define the input function for training

89 input_fn = tf.estimator.inputs.numpy_input_fn(

53



90 x={'images': mnist.train.images}, y=mnist.train.labels,

91 batch_size=batch_size, num_epochs=None, shuffle=False)

92 # Train the Model

93 model.train(input_fn, steps=num_steps)

94

95 test_input, test_labels = mnist.train.next_batch(10000)

96 # Evaluate the Model

97 # Define the input function for evaluating

98 input_fn = tf.estimator.inputs.numpy_input_fn(

99 x={'images': test_input}, y=test_labels,

100 shuffle=False)

101 # Use the Estimator 'evaluate' method

102 e = model.evaluate(input_fn)

103 print("Testing Accuracy:", e['accuracy'])
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