

U N I V E R S I T Y O F C O P E N H A G E N

Data Parallel Programming B2-21/22
Multiple-precision Integer Arithmetic

Multiple imprecise programmers

Amar Topalovic
hck338@alumni.ku.dk

Walter Restelli-Nielsen
sdb472@alumni.ku.dk

Kristian Olesen
mjt368@alumni.ku.dk

Contents
1 Introduction 3

2 Practical matters 3
2.1 Project structure . 3
2.2 Python interface . 3
2.3 Building, testing and benchmarking . 3

3 Internal representation 4
3.1 Signed integers . 4

4 Addition 4
4.1 Implementation . 4
4.2 Neutral element . 5
4.3 Proof of associativity . 5

5 Sum 6

6 Multiplication 6

7 Division 8
7.1 Division with a regular precision divisor . 9

8 Other functionality 10
8.1 Comparison . 11
8.2 Count leading zeros . 11
8.3 Displaying big integers . 12

9 Tests 12
9.1 Futhark tests . 12
9.2 Python tests . 13

10 Benchmarks 14
10.1 Addition . 14

10.1.1 Single number . 14
10.1.2 Multiple 3200-bit numbers . 14

10.2 Multiplication . 15
10.2.1 Single number . 15
10.2.2 Multiple 320-bit numbers . 15

10.3 Division . 15
10.4 Small_division . 15
10.5 Sum . 15
10.6 Other tests . 16

11 Discussion 16

12 Improvements 16

13 Conclusion 17

2

1 Introduction
In this project, we attempt to solve the problem of computing with higher precision integers. More
precisely, our goal is to create a Futhark implementation of integers of arbitrary precision; not
to be confused with unbounded precision integers. The implementation enables the user to work
with 32n-bit precision integers, for any n (up to the allowed maximum array size in Futhark). We
will refer to these as big integers or bigints going forward.

Our goal is to implement a number of operations for these high precision integers, in particu-
lar, addition, multiplication and division. We will go through the implementation of these three
in the following sections. We will briefly mention a few other operations in Section 8.

Existing libraries, in other languages, for this purpose, include GMP, which handles unbounded
precision integers sequentially, and CGBN, which is made to handle many fixed precision integers
of up to 32k bits of precision. One of the strategies employed in the development in CGBN is
reportedly to confine the parallelism of computations on these integers to small groups of threads,
meaning that the potential parallelism is not fully exploited. If enough of these computations are
made in parallel, applying this strategy has a reported speedup factor of about 5-6, according
to their own benchmarks. For this project, however, we will focus on the use-case involving
computations with few, incredibly large numbers. Setting this to be the project focus allows us
to focus on making simpler algorithms that work well in parallel, rather than implementing state
of the art sequential algorithms with the aim of running these in large batches. Whether or not
this use-case is in demand, or if this is even viable given the current strengths and weaknesses of
current available machines, we do not know. What we do know is that choosing this focus will
involve more of the course topics pertaining to Futhark programming and reasoning in terms of
parallel algorithms.

2 Practical matters

2.1 Project structure
• The root folder contains the files addrs.fut sumrs.fut mults.fut divrs.fut, the core

source code for additions, sums, multiplications and divisions respectively. We can also find
a Makefile where shortcuts to benchmark and test are defined, and bigint.fut containing
the module bigu32 that defines an API for our bigint type.

• The folder bench/ contains a number of .fut-files intended to be run with make bench_{add|mul|sum|div}
that use Futhark’s random data generator and futhark bench tool to benchmark.

• The folder tests/ contains a number of Python-scripts and Futhark programs testing vari-
ous properties of the implemented functions, such as commutativity for multiplication. We
can also find the subfolders gmp/ and CGBN/, containing benchmarking code for the libraries
we compare performance to.

2.2 Python interface
Compiling with the pyopencl Futhark backend to a library our bigint API is callable from a python
interface interface.py that contains a bigint class that converts to/from the representation of
numbers used in the Futhark program and Python ints. As a default it just loops forever testing
the implemented operations with random data.

2.3 Building, testing and benchmarking
Building the futhark source can be done with

make build

Running the Futhark tests and (some of) Python test suite can be done with

make test

3

and executing the Futhark benchmarks can be done with

make bench

To run the rest of the Python tests (an infinite loop of tests) can be done with

make python

3 Internal representation
We have chosen to represent our bigints in Futhark as arrays of u32-values, effectively representing
any number D in an array A of length n as D =

∑n−1
i=0 A[i] · 232·i. In other words, each entry

in the array will represent a digit in base 232 of the combined number. Thus any desired fixed
precision can be set in increments of 32 bits by choosing the length of the array (number of digits)
accordingly. Encoding the numbers in this way allows for the optimal space efficiency of the
representation of numbers in hardware, and has the benefit of being able to take advantage of built-
in arithmetic operations. The downside to this approach is that numbers in this representation
are not easily representable as in a base 10 format, though algorithms for this are not hard to
implement.

3.1 Signed integers
Our main focus has been on unsigned integers, but a bigu32_signed-module can be found in
bigint.fut, implementing some rudimentary functionality using two’s complement as a way of
representing negative numbers.

4 Addition
A problem with implementing a parallel algorithm for addition is that fundamentally, the result of
adding two numbers of one digit can have an effect on the next digit, which in turn can influence
the number in the sequence. A simple example of this would be for base 10: adding the numbers
1 and 9999, the carry computed for the first digits affect the rest of the number. Leaving the
possibility of a fully parallel algorithm aside, we have explored the possibility of exploiting some
levels of parallelism from addition in the following section.

4.1 Implementation
Addition is implemented with the following code:

Listing 1 Implementation of addition
1 let add_op (a : (bool, bool)) (b : (bool, bool)) : (bool, bool) =
2 let (ov1, mx1) = a
3 let (ov2, mx2) = b
4

5 let ov = (ov1 && mx2) || ov2
6 let mx = mx1 && mx2
7

8 in (ov, mx)
9

10 let add32 [n] (a : [n]u32) (b : [n]u32) : [n]u32 =
11 let (res, cs) = unzip <|
12 map2 (\x y -> let xy = x + y in (xy, (xy < x, xy == u32.highest))) a b
13 let (carries, _) = unzip <| rotate (-1) <| scan add_op (false,true) cs
14 let carries[0] = false -- overflow doesn't loop
15 in map2 (\x f -> x + u32.bool f) res carries

4

First, each of the digits are individually added together in a map and we keep track of which
digits overflow and which digits are one off from overflowing. The latter two properties are
then used in a scan to compute the results of carries cascading. The result of the scan is then
rotated to line up where the carries need to be added to the final result in the map on the last line.

The way the scan operator keeps track of which values to overflow is as follows:
For combining two elements a and b into a⊕ b to result in an overflow, either a overflows and this
causes b to overflow, because it was only one off overflowing, or b is already overflowing. This can
be seen in line 5.
Generalizing to two arbitrarily sized consecutive sections of the input number
(⊕

∑i∈0..n
j∈0..i aj) ⊕ (⊕

∑d∈i+1..n
k=i+1 bk): For bd to overflow, it must either already have overflowed or

ai overflows and causes a cascading overflow such that values at indexes i+1 up to d overflow as
well. For the latter scenario to happen, all of the values from index i+ 1 up to d must be equal
to the highest digit, which is kept track of in line 6 by &&-ing the max digit properties.

The scan dominates the complexity of all the other operations, resulting in a span complexity of
O(logN) and work complexity of O(N) as the operator used is O(1).

4.2 Neutral element
The element (false, true) = (0,1) can be shown to be a (left-)neutral element for our scan
operator ⊕ with the following exhaustive evaulation:

(0,1) op (0,0) = (0 && 0) || 0, 1 && 0 = (0,0)
(0,1) op (0,1) = (0 && 1) || 0, 1 && 1 = (0,1)
(0,1) op (1,0) = (0 && 0) || 1, 1 && 0 = (1,0)
(0,1) op (1,1) = (0 && 1) || 1, 1 && 1 = (1,1)

4.3 Proof of associativity

([
o1
m1

]
⊕
[
o2
m2

])
⊕
[
o3
m3

]
=

[
(o1 ∧m2) ∨ o2

m1 ∧m2

]
⊕

[
o3
m3

]
(1)

=

[
(((o1 ∧m2) ∨ o2) ∧m3) ∨ o3

(m1 ∧m2) ∧m3

]
(2)

=

[
(((o1 ∧m2) ∧m3) ∨ (o2 ∧m3)) ∨ o3

m1 ∧ (m2 ∧m3)

]
(3)

=

[
((o1 ∧ (m2 ∧m3)) ∨ (o2 ∧m3)) ∨ o3

m1 ∧ (m2 ∧m3)

]
(4)

=

[
o1
m1

]
⊕

[
(o2 ∧m3) ∨ o3

m2 ∧m3

]
(5)

=

[
o1
m1

]
⊕

([
o2
m2

]
⊕

[
o3
m3

])
(6)

Steps 1 and 2 are two applications of the operator definition. Step 3 is distributing m3 in the
first row of the vector and moving the parentheses by the associative property of ∧ in the second
row. Step 4 is moving the innermost parenthesis in ((o1 ∧m2) ∧m3) to (o1 ∧ (m2 ∧m3)) by
associativity. Steps 5 and 6 are reverse applications of the operator definition, with parenthesis
placed around the final reverse application.

5

5 Sum
Summation of big integers can be implemented trivially as a reduction using the implemented
addition. This encounters the problem that reduce does not exploit parallelism within the opera-
tor, meaning that the span for an addition operation would become O(N · log(M)) for M vector
integers of size N .
Two ideas can be employed to make the algorithm more parallel: The first idea is to develop a
form of addition based on "delay carry addition", which takes two integers a, b of a certain base
and returns (a + b, a + b%B). This ostensibly transforms the problem from a reduce add into
a add <| reduce map. The second idea is to move the map operation outside of the reduce, to
map reduce, to fully exploit the parallelism of the problem. This can be done by transposing the
arrays and can be seen in the code in Listing 2.

Listing 2 Implementation of sum32_alt
let sum32_alt [n][m] (xs: [m][n]u32) : [n]u32 =

let xst = transpose xs
let op = \(s1, c1) (s2, c2) ->

let s = s1 + s2
let of = u32.bool (s < s1)
in (s, c1 + c2 + of)

let add_rem_f = \ys -> map (\y -> (y, 0)) ys
let ne = (0u32, 0u32)
let (sum, car) = map (reduce op ne <-< add_rem_f) xst |> unzip
in add_shl sum car

This algorithm has a span of complexity O(log(N) + log(M)) from applying map reduce and
addition, as well as work in the order of O(N · M) as before. This solution only works if M
is less than the 32bit range of 4 billion, which is deemed a sufficiently large number for most
applications.

6 Multiplication
As with the other operations, there are two aspects to consider, namely, how to implement the
operations correctly, and how to leverage all the potential parallelism we can.

The idea behind our implementation of multiplication is to reduce the problem to regular
multiplication of single precision integers and addition of big integers. This is done in the natural
way with long multiplication (or grade-school multiplication) in base 232, that is, by realising that,
if we have two non-negative integers, a and n, below 232·n, written in base 232 as

a =

n−1∑
i=0

ai2
32·i and b =

n−1∑
j=0

bj2
32·j , (7)

for ai, bi ∈ {0, 1, . . . , 232·n − 1}, for all i = 0, 1, . . . , n− 1, then their product is given by:

a · b =
n−1∑
k=0

(∑
i+j=k

(ai · bj)
)
232·k

In this way we only need to be able to multiply 32-bit numbers without loss of precision, and,
luckily, this is easily done in Futhark. Such as product will at most take up 64-bit, and while
regular multiplication returns the lowers 32-bit, then u32.mul_hi will return the upper 32-bit. If
we let u and l denote functions that return the lower 32-bit and the upper 32-bit respectively,
then the product can be written as

a · b =
n−1∑
k=0

(∑
i+j=k

l(ai · bj) +
∑

i+j=k−1

h(ai · bj)
)
232·k. (8)

6

There are two important observations to take away from this equation:

• All the coefficients are 32-bit numbers, so they can be calculated with the built-in multipli-
cation. Thus, whether the result is correct comes down to whether we can add the numbers
correctly.

• There are no dependencies between the terms in the summation, so we can calculate the
values l(ai · bj) and h(ai · bj) in parallel. Thus, exploiting potential parallelism comes down
to doing a good job during addition, which is simpler.

Now, we have tried several implementations of multiplications, and they all try to calculate
the multiplications, high and low parts, in parallel and then add these, as we said. We do not
use the additions we have implemented (and which are described in Section 4), but use similar
methods to calculate the additions with overflow.

Listing 3 Implementation of multiplication using reduce_by_index.
1 let mul_concat [n] (A : [n]u32) (B : [n]u32) : [n]u32 =
2 let map_op (i : i64) (j : i64) =
3 if i + j < n
4 then (((A[i] * B[j], 0), i + j)
5 , ((u32.mul_hi A[i] B[j], 0), i + j + 1))
6 else let w = ((0, 0), -1) in (w, w)
7 let (ys1, ys2) = map (\i -> map (map_op i) (iota n)) (iota n)
8 |> flatten
9 |> unzip

10 let k = length ys1 + length ys2
11 let (vs, is) = unzip <| concat_to k ys1 ys2
12 let empty = replicate n (0,0)
13 let (res, car) = reduce_by_index empty add_op (0,0) is vs |> unzip
14 in add_shl res car

One of our implementations, mul_concat, is given in Listing 3, and as mentioned, we start
by computing the high and low parts of the products. This is done with the function defined in
lines 2–6 of Listing 3, which, to a set of indices (i, j) returns the high and the low parts of the
product ai · bj along with the associated k from the sum (8). The reason for this is that this k
is the index in the big integer representation of the product the values corresponds to. Now, we
should also mention that, for (i, j) that does not appear in any of the inner sums in (8) we return
((0, 0),−1) for both the high and the low , as the index −1 will be out of bounds for the following
reduce_by_index.

Now, this reduce_by_index is done with values given by the concatenation of the lower parts
of the products with the higher parts, and indices given by their corresponding indices (the k’s).
The operator used, add_op, is the same as the reduction operator of summation (the one named
op in Listing 2), which keeps adding numbers and incrementing the carry every time there is an
overflow. In the end we are left with the sum without carries and the carries, which we then add
together.

When it comes to work and span we can break down the function as follows:

• The nested map on line 7 clearly has work O(n2) and span O(1), as the work and span of
map_op is clearly both O(1).

• The two lists ys1 and ys2 both have length n2, so the following concatenation operator has
work O(n2) and span O(1).

• The reduce_by_index is a bit complicated. The work is O(n2) as the operator redOp has work
and span O(1), but, according to the documentation, best case span is O(1) and worst case
span is O(n2), given the work and span of redOp. From the description of reduce_by_index,1

1https://futhark-lang.org/docs/prelude/doc/prelude/soacs.html#939

7

https://futhark-lang.org/docs/prelude/doc/prelude/soacs.html#939

it seems like the span might be O of the maximum number of updates to a single index
times the work of the functions, which in our case is O(n), as we clearly do not update any
entry more than n times.

• We know from earlier (see Section 4) that the work and span of add_shl is O(n) and O(log n),
respectively.

Tallying up the result, we see that the work and span of the mul_concat function is O(n2) and
(probably2) O(n), respectively.

Listing 4 Implementation of multiplication using reduce_stream_per.
1 let mul_rbs [n] (A : [n]u32) (B : [n]u32) : [n]u32 =
2 let op (v : (i64, u32)) : [n](u32, u32) =
3 let (i, a) = v
4 in map (\j -> let k = j - i
5 let lo = if k >= 0 then a * B[k] else 0
6 let hi = if k > 0 then u32.mul_hi a B[k-1] else 0
7 let s = lo + hi
8 in (s, u32.bool (s < lo))
9) (iota n)

10 let f (i : i64) (as : [i](i64, u32)) : [n](u32, u32) =
11 reduce_comm add_partial (replicate n (0,0)) (map op as)
12 let (sum, car) = unzip <| reduce_stream_per add_partial f <| zip (iota n) A
13 in add_shl sum car

Another implementation of multiplication, mul_rbs, is given in Figure 4. This one is a bit
different, as we do not do all multiplications up front, but rather divide the work into chunks and
calculate (ai2

32·i) · b for all i and then aggregate the result. The computation of (ai232·i) · b with
carries separate can be done easily in parallel (and is done in op) and we can then aggregate the
partial results and their carries with the add_partial (which is just an map add_op for add_op in
Listing 3). This whole thing can then be accomplished by a reduce_stream_per that calculates
the (ai2

32·i) · b values and then aggregates the results. In the end we just need to add the carries
to the partial result we end up with, as previously.

Regarding work and span for mul_rbs, we know from the description of reduce_stream_per,3
that the work is O(n · W (add_partial) + W (f)) and the span is O(log(n) · W (addpartial)).
As mentioned add_partial is just map add_op for the operator from before, so that its works and
span is O(n) and O(1), and it is easy to see that op has the same work and span. With this we
see that the argument to reudce_comm must have work O(n2) and span O(1), and that the work
and span of f must therefore be O(n2) and O(n log n) (using the guarantees4 of reduce_comm). All
in all, we end up with mul_rbs having work and span O(n2) and O(n log n), respectively.

7 Division
Division is implemented as described in Donald Knuth’s book as "algorithm D" (see [1]), which
is also referenced as a starting point for further optimization in the GMP library. The algorithm
takes two arguments U = u0 ·B0...un−1 · Bn−1, V = v0 ·B0...vm−1 · Bm−1, encoded in the usual
big integer format as arrays, and returns an array of size n−m with the result Q = ⌊U

V ⌋. Since
Futhark incorporates the lengths of arrays into their types, U, V and Q are of size n in the code.

We have decided to implement the algorithm by taking advantage of 64bit integer division, com-
bining two 32bit array values at a time of the leading digits of U and dividing these by the lead
digit of V to form an estimate of q. Ensuring that this estimate fits into a 32 bit integer is done

2Probably meaning that we suspect our conclusion above above reduce_by_index is correct. Otherwise the
span may be O(n2).

3https://futhark-lang.org/docs/prelude/doc/prelude/soacs.html#1123
4https://futhark-lang.org/docs/prelude/doc/prelude/soacs.html#925

8

https://futhark-lang.org/docs/prelude/doc/prelude/soacs.html#1123
https://futhark-lang.org/docs/prelude/doc/prelude/soacs.html#925

by normalizing both U and V in a way that ensures that vm−1 < 232

2 . This normalization step
also ensures that the estimate of q is never too low and never more than 2 values off the true
value, according to the proofs in the source.
While this approach is sequential and therefore does not gain any advantage from being run on
a parallel machine, the presence of a big integer division operator is deemed necessary for the
completeness of the library. Each loop iteration has span O(log(N)) and does work amounting to
O(N) due to the subtraction of two big integers and the multiplication of one big and one 32bit
integer, resulting in a combined span and work complexity of O(N · log(N)) and O(N2). Such
a result may, on sufficiently parallel hardware, still outperform an implementation in a purely
sequentially compiled language if run in parallel for a sufficiently large amount of numbers. Even
this, however, is likely to fall short of the performance of the CGBN implementation, which
incorporates parts of the GMP library for this approach.

7.1 Division with a regular precision divisor
Dividing by a single precision divisor can surprisingly be done efficiently in parallel. Using the
same setup as previously, a number U = u0 · B0...un−1 · Bn−1 divided by v, it can be seen that
each partial result q0...qn−1 can be computed in parallel as follows:

For i ∈ {0..n− 1},

qi =

(∑n−1
j=i+1 uj ·Bj−i

)
+ ui

v
%B

This accounts for the division of ui and v added to the remainder of the step before, which also
takes into account all previous remainders. Because of the modulo and division operators, it is
known that x·B

v %B = x%v·B
v %B, since x·v·B

v %B = 0 and therefore
Given any x, we can write x = qv + (x%v), for some q, and so we see that

x ·B
v

%B =
q · v ·B + (x%v) ·B

v
%B =

(
q ·B +

(x%v) ·B
v

)
%B =

x%v ·B
v

%B

This allows for the equation to be rewritten as:

qi =

(∑n−1
j=i+1 uj ·Bj−i

)
+ ui

v
%B (9)

=

(∑n−1
j=i+1 uj ·Bj−i−1

)
·B + ui

v
%B (10)

=

((∑n−1
j=i+1 uj ·Bj−i−1

)
%v

)
·B + ui

v
%B (11)

=

((∑n−1
j=i+1 uj · (Bj−i−1%v)

)
%v

)
·B + ui

v
%B (12)

This is a useful result, as it not only shows that each value of q can be computed independently,
but also that the difficult part of the computation Bx%v can be computed in parallel and the
partial results of this can be used at each step of the computation. This is best done using a scan
operation.

The augmented datatype for the proposed scan includes Bx−1%v, also referred to as distance,
where x is the amount of array indices reduced. Adding two partial results, comprized of q, r, d
for current division estimate, current remainder and distance, gives:q1r1

d1

⊕

q2r2
d2

 =

q2 + ((q1 · d2)%v ·B + r2)/v
(q1 · d2 ·B + r2)%v

(d1 · d2 ·B)%v

Without further analysis, it is clear that the calculation of distances is associative. The calcula-
tions for r and q are also associative, since represent a weighted sum of the number (q·v+r)%(v·B).

9

For scan to work in Futhark, an extra boolean parameter is added to represent if the value is the
neutral element. Combined, the operator can be seen in the following code:

let op = \(q1, remainder1, distance1,is_neutral_1) (q2, remainder2, distance2,is_neutral_2) ->
if is_neutral_1 then (q2, remainder2, distance2,is_neutral_2) else
if is_neutral_2 then (q1, remainder1, distance1,is_neutral_1) else

let distance = mul_mod V B <| mul_mod V (u64.u32 distance1) (u64.u32 distance2)

let r1d2 = mul_mod V (u64.u32 remainder1) (u64.u32 distance2)
let remainder_to_add = mul_mod V B r1d2
let remainder = u32.u64 <| (remainder_to_add + (u64.u32 remainder2)) % V

let q_to_add = mul_div V B r1d2
let q_to_add2= (remainder_to_add + (u64.u32 remainder2)) / V
let q = u32.u64 <| (u64.u32 q2) + q_to_add + q_to_add2

in (q, remainder, u32.u64 distance, false)

Using the straight forwardly declared "mul_mod" and "mul_div" functions.

This operator can be computed in constant time using the 64bit precision operators, giving the
algorithm, which mostly consists of a scan, a work and span complexity of O(N) and O(log(N)),
which is deemed to be a tight bound.

8 Other functionality
Besides addition, multiplication and division, we have implemented a small amount of extra
functionality. First of all, we have created a module type to wrap the implemntation in, and to
have an API to expose. This can be found in bigint_type.fut, and looks something like:

module type bigint = {
type t[n]

val zero : (n: i64) -> t[n]
val one : (n: i64) -> t[n]
val highest : (n: i64) -> t[n]
val lowest : (n: i64) -> t[n]

val + [n] : t[n] -> t[n] -> t[n]
val * [n] : t[n] -> t[n] -> t[n]
val / [n] : t[n] -> t[n] -> t[n]
val % [n] : t[n] -> t[n] -> t[n]

...
}

We then implement this module as a module bigu32, which is a bit integer with 32-bit arrays as
underlying data-structure, with

module bigu32 : (bigint with t [n] = [n] u32) = ...

We have already talked about how to implement the last four of the operations seen above in the
module type, and the other four are quite easy. Besides this, we have some comparison based
operators between big integers, and a function for finding the leading number of zeroes.

10

8.1 Comparison
All the comparison based operators we have implemented, <, >, <=, >=, ==, !=, min and max, are
easily implemented if we given two numbers x and y can determine if x > y, if x = y or x < y.
We have implemented a function for this, namely,

type c = #lt | #eq | #gt

let cmp [n] (x: [n]u32) (y: [n]u32) : c =
let ec = \a b -> if a < b then (#lt: c)

else if a == b then (#eq: c)
else (#gt: c)

let cs = map2 ec x y
in reduce (\c1 c2 -> if c2 == (#eq: c) then c1 else c2) (#eq: c) cs

This function finds, by a reduction, the largest digit (base 232) where the two numbers do not
agree, and return the relationship between these digits, unless they are equal in which case it
returns #eq. This clearly means that if the function return #lt, then x < y, and similarly with
#gt

Now, it is not too difficult to see that this is an associative operator with neutral element #eq.
If we use #eq from the left, then c2 == #eq is true, as we return the right hand element, and from
the right it is also neutral element. For this reason one would only need to check associativity
when the operator is applies to a bunch of #lt and #gt, as the equation is trivial if one of the
element is the neutral element. However, if none are #eq, then we just return the right-most value,
which we know is associative.

With this operator, we can very easily implement all of the mentioned comparisons/operators.

8.2 Count leading zeros
We have also implemented a function for counting the number of leading zeros (bits, so base 2,
not base 232) of a big integer. The function is given by

let clz [n] (x: [n]u32) : i64 =
let mop = \d -> (u32.clz d |> u32.i32

, d u32.== 0)
let rop = \(d1, _) (d2, b2) -> (if b2 then d1 + d2 else d2

, b1 && b2)
in map mop x |> reduce rop (0u32, true) |> (.0) |> i64.u32

Now, the intuition of the implementation is as follows. We create an array with the number of
leading zeros of each of the digits, as well as a boolean that indicates if the digit was only zeroes.
The operator then applies the principle that, given two numbers their juxtaposition is only purely
zeros if they are both purely zeros, and the number of leading zeros in this juxtaposition is the
number of leading zeros in the right most one (our most significant digits are to to the right),
unless this one is entirely zeroes, in which case it the sum of the leading zeros in both numbers.

Like before, it is not too difficult to see that this operator is associative with a neutral element.
If we denote the operator by ⊙, then one of the cases of associativity is([

n1

⊤

]
⊙
[
n2

⊥

])
⊙

[
n3

⊤

]
=

[
n2

⊥

]
⊙

[
n3

⊤

]
=

[
n2 + n3

⊥

]
and the other way arraound:[

n1

⊤

]
⊙
([

n2

⊥

]
⊙
[
n3

⊤

])
=

[
n1

⊤

]
⊙

[
n2 + n3

⊥

]
=

[
n2 + n3

⊥

]
which is as it should. The test of the cases are similar.

11

8.3 Displaying big integers
To convert from our chosen inner representation of big-integers to readable numbers, the basic
idea is that each digit in the readable format with position i must be computed as: D/10i%10. For
this project, this is done sequentially using the small division algorithm, though, since finding the
remainder of a big-integer and a regular divisor is essentially a reduction, this could also have been
done with a segmented reduction. If printing, or converting between internal representations of
numbers, were ever to become a performance critical task, an efficient algorithm for this purpose
could theoretically be constructed.

9 Tests
We have generally made use of two kinds of test; Futhark tests and Python tests. The reason
for including Python tests is that Python has unlimited integer precision, which Python can be
tested up against. With the former, we mostly have property testing.

9.1 Futhark tests
As mentioned we mostly do property testing in this part. The part that is maybe not property
testing is the tests in compare.fut, which tests on a number of inputs that the different versions
of addition, multiplication and summation agree. Though having multiple implementations of
the same function might not be as relevant from a library point of view, it serves well for testing.
Indeed, it might be unlikely that the different implementation are erroneous in the same manner,
and then the test might fail. The test is on random input, though, so they might not reach a
particular corner case that fails.

Now, in the files correct_add.fut and correct_mul.fut, we test that addition and multi-
plication operators are associative and commutative, and that they give the right result on 64-bit
integers, as we can test this the build-in versions. Moreover, in correct_add_mul.fut we check
that multiplication distributed over addition. All these tests are done on random input. We have
chosen to test this with small numbers (such as 232·10-bit), as these should be large enough to
exhibit problems if there are some, but small anough that we are more likely to get into corner
cases.

In the files correct_add.fut and correct_sum.fut we also have tests that check that the
results are correct modulo 232 − 1, as this can be done entirely with the build-in operations.
Indeed, given two numbers as in 7, we have that, modulo 232 − 1

a+ b =
(n−1∑

i=0

ai2
32·i

)
+

(n−1∑
j=0

bj2
32·j

)
≡

(n−1∑
i=0

ai

)
+
(n−1∑

j=0

bj

)
(13)

since 232·k ≡ 1 modulo 232 − 1 for all k. However, the sum on the left if a sum of 32-bit integers,
so if there are not too many of them, then we are guaranteed that the computation can be done
with 64-bit integers without overflow. But if the result of our addition (232·n-bit precision) is

c =

n−1∑
i=0

ci2
32·i

then the left hand side of (13) must equal

n−1∑
i=0

ci (14)

as this is equal to c modulo 232 − 1. Likewise this result can be computed without overflow in a
64-bit integer (when n is reasonably sized), so we must have that the remainders of the left hand
side of (13) and the left hand side of (14) by division with 232 − 1 are equal.

Now, the above describes the test for addition, but the test is the same with summation. The
point is that we can calculate the remainder before and after addition and it should give the same
result. But when doing it before we can use built-in operations.

12

Lastly, we have also tried in correct_div.fut to implement a test that, given two numbers
x and y, tests that, if we calculate our division/quotient, q, of x by y and the corresponding
remainder, r, then, with our multiplication and addition, we should have x = y · q + r and
r < y. These equations uniquely determines q and r (for positive numbers), assuming that our
multiplication and addition are correct. However, for reasons that have escaped us, we have not
been able to make these work, though our python tests of the quotients and remainders indicate
that the implementation is correct.

9.2 Python tests
As mentioned earlier, the python tests tests that the big integer operations work as they should by
testing them up agains the unbounded precission integer arithmetics of Python. There are a few
simple tests, in test_add.py, test_div.py and test_mul.py, which reads three Futhark arrays.
The two inputs and the output of the given operator (the quotient in case of division), and checks
that this matches the corresponding operator in Python. The two input arrays are generated by
futhark dataset and the last one is generated by running the Futhark implementation with this
input and piping the output to a new file. These tests can all be run with make py-test.

Now, the above tests run with new random input each time, but only test a single application
of the operator. The interface.py file, however, will test the operations repeatedly, by use
of pyopencl. Indeed, running make python will start and infinite loop that generates random
numbers, calls the python functions, addition, multiplication and division and checks that the
results are correct. As opposed to the simple python tests, this also tests the remainder of the
division.

13

10 Benchmarks
All benchmarks are done on an AMD Ryzen 7 4800H processor and an NVidia RTX 2060 graph-
ics card in a laptop running Ubuntu 20.04 LTS. All times are in µs. Futhark benchmarks are
executed with futhark bench using the cuda backend.

The gmp benchmarking code can be found in bench/gmp/.
The CGBN benchmarking code can be found in bench/CGBN/benchmarks/{add|mul|div} and
built+run with make <nvidia_architecture_name> && ./{add|mul|div} given all dependen-
cies are installed. CGBN is limited to 32k bits of precision, so any benchmarks with higher precision
leaves these fields blank.

10.1 Addition
10.1.1 Single number

bits bigint.fut add_ind GMP CGBN speedup vs GMP speedup vs CGBN
3200 32 1 3 0.03x 0.09x
32k 22 1 8 0.05x 0.36x
320k 29 2 0.06x
3.2m 32 23 0.72x
32m 168 6076 36.17x
320m 1018 60352 59.28x

Table 1: Adding two numbers, varying bits of precision

10.1.2 Multiple 3200-bit numbers

of adds GMP bigint.fut CGBN
10 1 16 (44) 3
100 4 15 (45) 11
1000 44 27 (67) 14
10k 176 143 (260) 64
100k 1753 1333 (1120) 689
1m 17513 16109 (14020) 5940
10m 175982 err mem

Table 2: Varying number of pairs of values added. Times in parenthesis are from an alternative
version (add_bit_small) of add that performed notably well

14

https://www.amd.com/en/products/apu/amd-ryzen-7-4800h

10.2 Multiplication
10.2.1 Single number

bits times(fut) times(GMP) times(CGBN) speedup vs GMP speedup vs CGBN
320 95 1 3 0.01x 0.03x
3200 94 1 7 0.01x 0.07x
32k 203 28 497 0.13x 2.44x
320k 18646 797 0.04x

Table 3: Multiplying two numbers, varying bits of precision

10.2.2 Multiple 320-bit numbers

of mults bigint.fut GMP CGBN
10 80 2 3
100 68 5 3
1000 218 53 5
10k 197 468 30
100k 2720 1856 217
1m 26581 18649 1835
10m 186325 14557

Table 4:

10.3 Division

bits div (fut) div(GMP) div(CGBN)
320 1455 2 4
3200 6954 1 6
32k 53226 22 26
320k 504933 722

Table 5:

10.4 Small_division

Div Futhark-good Futhark-old GMP
10 97 1549 1
100 97 11860 1
1k 121 86564 1
10k 123 846837 14
100k 238 8438497 145
1m 481 err 1462
10m 3951 err 14568

Futhark-old run significantly better with opencl, running the 10 million case in 9 seconds

10.5 Sum
100 numbers

15

size of number *32 sum_alt sum
10 47 84
100 29 58
1k 36 69
10k 115 228
100k 963 1246
1m 8650 11239

10.6 Other tests
A good way of comparing the futhark implementation with the other libraries would be to design
a benchmark that combined operations on big-integers. The functions for fibonacci, factorial and
gcd have been coded for Futhark and compared with GMP, but the results are not reported.

11 Discussion
The results of the benchmarking show that the algorithms that have been made parallel while not
increasing the underlying work, our implementation performs better than the existing libraries
for sufficiently large numbers. Specifically, these are addition and small division (though small di-
vision has not been tested in CGBM). Regular division, which we have implemented sequentially,
performs very poorly against both CGBM and GMP, which we reason has to do with finding a
better algorithm and optimizing its implementation at a low level.

Other algorithms, for which we have found parallel implementations that increased the com-
plexity of the work done, struggle to find a competitive footing against the established big-integer
libraries. If run for arrays of large integers in parallel, the low work complexity algorithms run at
comparable speeds to the CGBM big-integers and slightly faster than purely sequential additions.

12 Improvements
Another optimization approach, utilized by GMP, is to use multiple version of the same algorithms
for different circumstances. For example, in the case of division by precise powers of 2, the problem
can be computed as a bit-shifting operation. Sequentially, this can easily be coded as a conditional
statement calling different functions.
These types of optimizations are harder to exploit in a parallel environment since a group of
threads encountering a conditional statement may need to execute both branches sequentially
to compute both results. This seems to be avoided in CGBN by limiting a group of threads
to the processing of a single number, but is not easily replicable in the more abstract language
of Futhark. There are, however, algorithms in GMP which take advantage of any information
known by the programmer at the time of writing the program, and use this information to pick
the algorithm to employ. These algorithms can then take advantage of this information, by, for
example, being able to employ a division algorithm that only works when numbers divide without
remainders.
A possible improvement strategy for this, and any other library, can always be to implement the
library directly into the compiler, taking advantage of more complex compiler primitives and low
level optimizations. While the goal of this project has been to develop a library to do parallel
operations on few, extremely large big-integers, if the library is to be made to handle parallel
operations of many smaller sized big-integers, a better strategy is to take the GCBN approach.
As discussed, some of the design decisions in the project have prioritized optimizing span over
maintaining work efficiency, reducing their performance greatly if run sequentially or when the
parallelism of the underlying machines is exceeded, which they likely would be in this use-case. For
this, sequential, highly work-optimized algorithms, such as the ones found in the GNU library can
be seen outperforming our implementation. This form of parallelism is, however, more technically
difficult to implement and would touch on few aspects of the course.

16

13 Conclusion
In conclusion, we have implemented a big-integer library for Futhark and compared it to existing
libraries for other programming languages. We have tested these against themselves and with
python scripts. This, as well as the use of sound mathematical reasoning documented in this
report make us reasonably confident in the implementation’s correctness. Because of our focus
few, large numbers, this library can outperform the other libraries in some arithmetic operations,
while being woefully uncompetitive with others.

References
[1] The Art Of Computer Programming, Volume 2: Seminumerical Algorithms, 3/E. Number vb.

2. Pearson Education, 1998. ISBN 9788177583359.

17

	Introduction
	Practical matters
	Project structure
	Python interface
	Building, testing and benchmarking

	Internal representation
	Signed integers

	Addition
	Implementation
	Neutral element
	Proof of associativity

	Sum
	Multiplication
	Division
	Division with a regular precision divisor

	Other functionality
	Comparison
	Count leading zeros
	Displaying big integers

	Tests
	Futhark tests
	Python tests

	Benchmarks
	Addition
	Single number
	Multiple 3200-bit numbers

	Multiplication
	Single number
	Multiple 320-bit numbers

	Division
	Small_division
	Sum
	Other tests

	Discussion
	Improvements
	Conclusion

