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Abstract

Today, most computers are equipped with Graphics Processing Units (GPUs). They
provide more and more computing cores and have become fundamental embedded high-
performance computing tools. In this context, the number of applications taking advan-
tage of these tools seems low at first glance. The problem is that the development tools are
heterogeneous, complex, and strongly dependent on the GPU running the code. Futhark
is an experimental, functional, and architecture agnostic language; that is why it seems rel-
evant to study it. It allows generating code allowing a standard sequential execution (on a
single-core processor), on GPU (with Compute Unified Device Architecture (CUDA) and
Open Computing Language (OpenCL) backends), on several cores of the same processor
(shared memory). To make it a tool that could be used on all high-performance platforms,
it lacks support for distributed computing Message Passing Interface (MPI). We create
a library that distributes a cellular automaton on multiple compute nodes through MPI.
The update of the cellular automaton is computed via the Futhark language using one
of the four available backends (sequential, multicore, OpenCL, and CUDA). In order to
test our library, we implement a cellular automaton in one dimension (Simple Cellular
Automaton (SCA)), in two dimensions (Game of Life), and three dimensions (Lattice-
Boltzmann Method (LBM)). Finally, with the performance tests performed, we obtain an
ideal speedup in one and two dimensions with the sequential and multicore backend, but
with LBM, we obtain a maximum of x42 with 128 tasks. When using the GPU backends,
we obtain an ideal speedup for the three cellular automata. Parallel computing shows
better performance compared to sequential or concurrent computing. For example, with
the Game of Life, we are up to 15 times faster.

Candidate: Referent teacher:
Baptiste COUDRAY Dr. Orestis MALASPINAS
Field of study: Information Technologies Engineering
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Introduction

Today, most computers are equipped with GPUs. They provide more and more computing
cores and have become fundamental embedded high-performance computing tools. In
this context, the number of applications taking advantage of these tools seems low at
first glance. The problem is that the development tools are heterogeneous, complex, and
strongly dependent on the GPU running the code. Futhark is an experimental, functional,
and architecture agnostic language; that is why it seems relevant to study it. It allows
generating code allowing a standard sequential execution (on a single-core processor), on
GPU (with CUDA and OpenCL backends), on several cores of the same processor (shared
memory). To make it a tool that could be used on all high-performance platforms, it lacks
support for distributed computing. This work aims to develop a library that can port any
Futhark code to an MPI library with as little effort as possible.

To achieve that, we introduce the meaning of distributed high-performance computing,
then what is MPI and Futhark. The MPI specification allows doing distributed comput-
ing, and the programming language Futhark allows doing high-performance computing
by compiling our program in OpenCL, CUDA, multicore, and sequential. We decide to
implement a library that can distribute cellular automaton in, one, two or three dimen-
sions. By adding Futhark on top of MPI, the programmer will have the possibilities to
compile his code in:

• distributed-sequential mode,
• distributed-multicore mode,
• distributed-OpenCL mode,
• distributed-CUDA mode.

Finally, we used this library by implementing a cellular automata in each dimension:

• a SCA in one dimension,
• the Game of Life in two dimensions,
• the LBM in three dimensions.

We perform a benchmark to ensure that each cellular automata scales correctly in the
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four modes.

The leading resources we used to carry out this project were Futhark and MPI user guide.
We also exchanged with Futhark creator Troels Henriksen.

Working method

During this project, we use Git and put the source code on the Gitlab platform of Haute
École du Paysage, d’Ingénierie et d’Architecture de Genève (HEPIA):

• Source code of the library with usage examples
• https://gitedu.hesge.ch/baptiste.coudray/projet-de-bachelor

• Source code of this report
• https://gitedu.hesge.ch/baptiste.coudray/projet-de-semestre/-/tree/report

2
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Chapter 1:

Distributed High-Performance Computing

Figure 1.1: A Distributed High-Performance Computing System

Source: Created by Baptiste Coudray

As we can see in 1.1, distributed systems are groups of networked computers that share a
common goal. They are used to increasing computing power and solve a complex problem
faster than a single machine (1). In order to do that the problem’s data are divided along

3
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each computer which can be done by communicating with each other via message passing.
Each computer executes the same program (which is a distributed program) but on a
different data. The algorithm is applied using one of this three computing methods:

1. sequential computing,
2. concurrent computing,
3. or parallel computing.

With sequential computation, the algorithm is executed step by step, each operation is
triggered only when the previous operation is completed, even when the two operations
are independent.
With concurrent computing, the problem’s data are once again split into smaller parts
in order to be shared with the threads available on the processor. Each thread applies
independently with time-slicing the algorithm on his set of data. A performance gain is
noticeable when tasks are most independent of others because they do not have to wait
for the progress of another task (thread) (2).
With parallel computing, data are also split again and the algorithm is applied simultane-
ously on the multiple processors available. Generally, we use the GPU because it contains
a thousand cores while a Central Processing Unit (CPU) contains only a hundred. Thus,
the primary goal of parallel computing is to increase available computation power for
faster application processing and problem-solving.

So, Distributed High-Performance Computing means distributing a program on multiple
networked computers and executing the algorithm using sequential, concurrent or parallel
computing.

4
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Chapter 2:

Message Passing Interface

In order to realize distributed programming, the standard MPI was created in 1993-1994
to standardize the passage of messages between several computers or in a computer with
several processors/cores (3). MPI is, therefore, a communication protocol and not a
programming language. Currently, the latest version of MPI is 4.0 which approved in
2021. There are several implementations of the standard:

• MPICH, which support for the moment, MPI 3.1,
• Open MPI, which support, for the moment, MPI 3.1

We use Open MPI throughout this project to distribute a cellular automaton across mul-
tiple compute nodes and exchange missing neighbors of a cell.

5
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2.1. Example by imitating a token ring network

To understand the basis of MPI, let us look at an example mimicking a token ring network
(4). This type of network forces a process to send a message to the message in the console,
for example, only if it has the token in its possession. Moreover, once it has emitted its
message, the process must transmit the token to its neighbor.

Figure 2.1: Imitation of a network in token ring

Source: Created by Baptiste Coudray

In this example (2.1), the node with the rank zero has first the token that it will pass to
node one, then it will give it to node two, and so on. The program ends when the token
is back in possession of the process zero: node four sends the token to node zero.

int main(int argc, char** argv) {
// Initialize the MPI environment
MPI_Init(&argc, &argv);
// Find out rank, size
int world_rank;
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
int world_size;
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

int token;
// Receive from the lower process and send to the higher process. Take care
// of the special case when you are the first process to prevent deadlock.
if (world_rank != 0) {

MPI_Recv(&token, 1, MPI_INT, world_rank - 1, 0, MPI_COMM_WORLD,

6
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MPI_STATUS_IGNORE);
printf("Process %d received token %d from process %d\n",

world_rank, token, world_rank - 1);
} else {

// Set the token's value if you are process 0
token = -1;

}
MPI_Send(&token, 1, MPI_INT, (world_rank + 1) % world_size, 0,
MPI_COMM_WORLD);
// Now process 0 can receive from the last process. This makes sure that at
// least one MPI_Send is initialized before all MPI_Recvs (again, to prevent
// deadlock)
if (world_rank == 0) {

MPI_Recv(&token, 1, MPI_INT, world_size - 1, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
printf("Process %d received token %d from process %d\n", world_rank,

token, world_size - 1);
}
return MPI_Finalize();

}

Any parallel program using MPI must call the MPI_Init function to initialize the en-
vironment, otherwise, an error message is displayed when using another MPI function.
Then, MPI_Comm_rank allows us to retrieve our ID (the node number we have), and then
with the MPI_Comm_size function, we get the number of nodes on which our program is
running, in this case five. Thanks to the node number, the node with the identifier zero,
sends the token to its neighbor via the MPI_Send function.

So, once sent, it waits for node four to send the token via the function MPI_Recv. Then,
the other nodes are waiting to receive the token from their neighbor to pass the token
in turn. The nodes communicate through the communicator MPI_COMM_WORLD, a macro-
constant designating all nodes associated with the current program.

The function MPI_Send and MPI_Recv can be blocking or non-blocking, depending on the
size of the message that we send. Indeed, there is an internal message buffer; while it is
not full, the functions will be non-blocking; otherwise, they will be blocking.

Finally, every program must terminate with the MPI_Finalize function; otherwise, the
execution ends with an error message.

7
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mpicc ring.c -o ring
mpirun -n 5 ./ring

To compile a MPI program, you have to go through the mpicc program, which is a wrapper
around GNU Compiler Collection (GCC). Indeed, mpicc automatically adds the correct
compilation parameters to the GCC program. Next, our compiled program must be run
through mpirun to distribute our program to compute nodes. Finally, the -n parameter
is used to specify the number of processes to run.

Process 1 received token -1 from process 0
Process 2 received token -1 from process 1
Process 3 received token -1 from process 2
Process 4 received token -1 from process 3
Process 0 received token -1 from process 4

Thus, we can see that the processes exchange the token each in turn until node zero
receives the token again.

8



Baptiste, Coudray - Distributed High-Performance Computing For People - Bachelor thesis - August 2021

Chapter 3:

Introduction to the language Futhark

Figure 3.1: Futhark

Source: Taken from https://commons.wikimedia.org/, ref. URL03

Futhark is a purely functional programming language for producing parallelizable code on
CPU or GPU. It was designed by Troels Henriksen, Cosmin Oancea and Martin Elsman
at the University of Copenhagen. The main goal of Futhark is to write generic code that
can compile into either:

• OpenCL,
• CUDA,
• multi-threaded Portable Operating System Interface uniX (POSIX) C,
• sequential C,
• sequential Python.

Although a Futhark code can compile into an executable, this feature reserves for testing
purposes because there is no Input/Output (I/O). Thus, the main interest is to write
particular functions that you would like to speed up thanks to parallel programming and
compile in library mode. In this mode, the compiler convert our Futhark code in sequential
C, multi-threaded POSIX C, OpenCL, or CUDA code depending on which backend we
want.

9
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3.1. Example in pure Futhark

To better understand Futhark, here is a simple example: calculating the factorial of a
number (5).

let fact (n: i32): i32 = reduce (*) 1 (1...n)
let main (n: i32): i32 = fact n

As we can see, the function fact defines the factorial of a number as the successive
multiplication of numbers from one to n through the function reduce. The program’s
entry point, main, takes as parameter a number n and calls the function fact with this
number.

futhark opencl fact.fut
echo 12 | ./fact

To compile the Futhark code, we have to specify a backend; Here we compile in OpenCL
to run the program on the graphics card, and we run the program with the number 12 as
the parameter.

479001600i32

The program calculates the factorial of 12 and therefore returns 479 001 600.

3.2. Example using Futhark C API

In this other example, we use Futhark in a C program to perform a very specific operation,
in this case to calculate the factorial of a number. We use the library mode of the Futhark
compiler, and we use the OpenCL backend to convert the Futhark code.

entry fact (n: i32): i32 = reduce (*) 1 (1...n)

In a Futhark file (fact.fut), we define the function fact like the previous example. In
library mode, the compiler convert all functions preceded with the keyword entry. Thus,
the fact function is respecting this rule in order to use it in a C code.

futhark opencl --lib fact.fut

Then you have to convert the Futhark code in library mode and specify the backend. Here,
the factorial program is converted in OpenCL. Finally, it generates a fact.h and fact.c
file, which can be included in a C program.

#include <stdio.h>
#include <stdlib.h>

10
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#include "fact.h"

int main(int argc, char **argv) {
int number = atoi(argv[1]);

/* Futhark Init */
struct futhark_context_config *futcfg = futhark_context_config_new();
struct futhark_context *futctx = futhark_context_new(futcfg);

/* Main Code */
int result;
futhark_entry_fact(futctx, &result, number);
printf("%d\n", result);

/* Futhark Free */
futhark_context_config_free(futcfg);
futhark_context_free(futctx);
return 0;

}

The program initializes a Futhark configuration and a Futhark context (futhark_context_config_new,
futhark_context_new); then, the program calls the fact function, which has been
converted in OpenCL. It is called via the function futhark_entry_fact, which takes as
arguments the Futhark context, an integer pointer to store the result, and the number
whose factorial desire.

futhark opencl --library fact.fut
gcc fact.c -c
gcc main.c -o fact fact.o -lOpenCL -lm

./fact 12
479001600

After compiling in library mode our Futhark code, we compile the generated code with
our main code via GCC. The program’s execution with the factorial of 12 returns the
correct value, i.e. 479 001 600.

11
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Chapter 4:

Cellular Automaton

A cellular automaton consists of a regular grid of cells, each in one of a finite number of
states. The grid can be in any finite number of dimensions. For each cell, a set of cells
called its neighborhood is defined relative to the specified cell. An initial state (time 𝑡 = 0)
is selected by assigning a state for each cell. A new generation is created (advancing t by
1), according to some fixed rule (generally, a mathematical function) that determines the
new state of each cell in terms of the current state of the cell and the states of the cells in
its neighborhood. Typically, the rule for updating the state of cells is the same for each
cell and does not change over time (6).

The neighborhood of a cell is defined either by the Moore neighborhood or by the Von
Neumann neighborhood. The first one defines that a cell has in a two-dimensional cellular
automaton four neighbors while the second one, eight.

Figure 4.1: Comparison between Von Neumann (left) and Moore (right) neighborhoods

Source: Created by Baptiste Coudray

The grid on the left represents the Von Neumann neighborhood, i.e., the four neighbors of
a cell. These are denoted by the four cardinal points (north, west, south, east). The grid

12
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on the right represents Moore’s neighborhood, i.e., the eight neighbors of a cell. These
are denoted by the four cardinal points and the four inter-cardinal points (northwest,
southwest, southeast, northeast).

The cellular automaton will have to use the Moore neighborhood, which means that each
cell has:

• two neighbors in one dimension,
• eight neighbors in two dimensions,
• 26 neighbors in three dimensions.

These values are valid for a cellular automaton of dimension two and a Chebyshev distance
of one. We can generalize the number of neighbors that a cell has via the formula (2𝑟 +
1)𝑑 − 1, where 𝑟 is the Chebyshev distance, and 𝑑 is the dimension.

4.1. MPI x Futhark

Our library allows distributing cellular automata automatically so that the programmer
only has to write the Futhark function to update his cellular automaton. Our library sup-
ports cellular automata of one, two, and three dimensions and with any types of data. The
use of the Futhark language allows to quickly update the state of the cellular automaton
thanks to the different backend available. Therefore, several modes are available:

• distributed-sequential, the Futhark code executes sequentially,
• distributed-multicore, the Futhark code executes concurrently to POSIX threads,
• distributed-OpenCL/CUDA, the Futhark code executes on the graphics card.

a) Communication

Communication between the different MPI tasks is necessary to recover the missing neigh-
bors and recreate the complete cellular automaton. Therefore, we create a virtual Carte-
sian topology. “A virtual topology is a mechanism for naming the processes in a commu-
nicator in away that fits the communication pattern better. The main aim of this is to
make sub-sequent code simpler. It may also provide hints to the run-time system which
allow it to optimise the communication or even hint to the loader how to configure the
processes. The virtual topology might also gain us some performance benefit.” (7)

13
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One dimension

Figure 4.2: Example of Cartesian virtual topology in one dimension

Source: Created by Baptiste Coudray

In a one-dimensional Cartesian topology like 4.2, we notice that the rows can communicate
directly with their left and right neighbors even if they are at the ends of the network.
Indeed, the MPI communicator is defined as cyclic, which avoids having to traverse the
𝑁 − 2 neighbors that separate them.

Two dimensions

Figure 4.3: Example of Cartesian virtual topology in two dimensions

Source: Created by Baptiste Coudray

In a two-dimensional Cartesian topology like 4.3, we notice that each rank can communi-
cate directly with their left, right, top, and bottom neighbors. For each row there is an
MPI communicator containing the ranks available in it:

• first communicator has Rank 0 and Rank 1,
• second communicator has Rank 2 and Rank 3.

For each column, there is an MPI communicator containing the ranks available in it:

• first communicator has Rank 0 and Rank 2,
• second communicator has Rank 1 and Rank 3.

14
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Each communicator created is cyclic, so the first rank in each the communicator created
can communicate with the last rank available in it.

When a rank needs to communicate with its diagonal neighbor, we use the default com-
municator (MPI_COMM_WORLD) to communicate directly with each other without going
through a neighbor.

b) Three dimensions

Figure 4.4: Example of Cartesian virtual topology in three dimensions

Source: Created by Baptiste Coudray

In a three-dimensional Cartesian topology like 4.4, we notice that the rows have the same
communication capabilities as a two-dimensional topology, but, in addition, they can
communicate with their front and back neighbors. Thus, two depth communicators are
created:

• one containing Rank 0 and Rank 1,
• one containing Rank 2 and Rank 3.

c) Data dispatching

The cellular automaton is shared as equally possible among the available tasks to perform
more or less the same amount of work. Thus, each task has a chunk that is a part of the
cellular automaton. This chunk match the dimension of the cellular automaton, so it can
be of dimensions one, two, or three.
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One dimension

Figure 4.5: Example of sharing a cellular automaton in one dimension

Source: Created by Baptiste Coudray

In this example (4.5), a cellular automaton of dimension one, size eight, is split between
three processes. As the division of the cellular automaton is not an integer, rank two have
only two cells, unlike the others, which have three.

Two dimensions

Figure 4.6: Example of sharing a cellular automaton in two dimensions

Source: Created by Baptiste Coudray

In this example (4.6), the cellular automaton is in two dimensions and of size 6 × 6. With
four tasks available, it can be separated into four sub-matrices of 3 × 3.
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Three dimensions

Figure 4.7: Example of sharing a cellular automaton in three dimension

Source: Created by Baptiste Coudray

In this example (4.7), the cellular automaton is in three dimensions and of size 4 × 4 × 2.
With four tasks available, it can be separated into four sub-cubes of 2 × 2 × 2.

d) Envelope

The envelope of a chunk represents the missing neighbours (at a Chebyshev distance chose
by the programmer) of the cells at the extremities of the chunk. These missing cells are
needed to compute the next iteration of the chunk of the cellular automaton that the
process has.

One dimension

Figure 4.8: Example of the envelope of a chunk in one dimension

Source: Created by Baptiste Coudray
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Using this one dimension cellular automaton (4.5), the Moore neighborhood of a cell
includes the west-neighbor and the east-neighbor. We notice that the envelope of 𝑅𝑛
includes the last cell of 𝑅(𝑛−1) % 𝑁 and the first cell of 𝑅(𝑛+1) % 𝑁 .

For example, the envelope for R0 is the west-neighbor of one, so eight and the east neighbor
of three, so four. The envelope for R1 is the west-neighbor of four, so three and the east
neighbor of six, so seven. Finally, the envelope for R2 is the west-neighbor of seven, so six
and the east neighbor of eight, so one. As we can see, the Chebyshev distance of all these
envelopes is one. The ranks exchange data via MPI using the Cartesian virtual topology.

Two dimensions

Figure 4.9: Example of the envelope of a chunk in two dimensions

Source: Created by Baptiste Coudray

Using the two-dimensional cellular automaton described above (4.6), the chunk envelope
of R0 requires eight communications. This example uses a Cartesian topology of size 2×2
(m×n), the neighbors are recovered as follows:

1. North West Neighbors are sent by 𝑅((𝑦−1) % 𝑚, (𝑥−1) % 𝑛),
2. North Neighbors, are sent by 𝑅((𝑦−1) % 𝑚, 𝑥),
3. North East Neighbors, are sent by 𝑅((𝑦−1) % 𝑚, (𝑥+1) % 𝑛),
4. East Neighbors, are sent by 𝑅(𝑦, (𝑥+1) % 𝑛),
5. South East Neighbors, are sent by 𝑅((𝑦+1) % 𝑚, (𝑥+1) % 𝑛),
6. South Neighbors, are sent by 𝑅((𝑦+1) % 𝑚, 𝑥),
7. South West Neighbors, are sent by 𝑅((𝑦+1) % 𝑚, (𝑥−1) % 𝑛),
8. West Neighbors, are sent by 𝑅(𝑦, (𝑥−1) % 𝑛).

As we can see, the Chebyshev distance of this envelope is one.

18



Baptiste, Coudray - Distributed High-Performance Computing For People - Bachelor thesis - August 2021

Three dimensions

With a three-dimensional cellular automaton like (4.7, the envelope of a chunk requires
26 MPI communications because we send:

• the eight vertices,
• the twelve edges,
• and the six faces around the chunk.
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Chapter 5:

Simple Cellular Automaton

The simplest non-trivial cellular automaton that can be conceived consists of a one-
dimensional grid of cells that can take only two states (“0” or “1”), with a neighborhood
consisting, for each cell, of itself and the two cells adjacent to it (6).

There are 23 = 8 possible configurations (or patterns, rules) of such a neighborhood. In
order for the cellular automaton to work, it is necessary to define what the state must be
at the next generation of a cell for each of these patterns. The eight rules/configurations
defined is as follows:

Table 5.1: Evolution rules for a cellule in a one dimensional cellular-automaton

Rule n° East neighbour state Cell state West neighbour state Cell next state

1 0 0 0 0
2 0 0 1 1
3 0 1 0 1
4 0 1 1 1
5 1 0 0 1
6 1 0 1 0
7 1 1 0 0
8 1 1 1 0
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5.1. Example

Figure 5.1: First and second state of a SCA

Source: Created by Baptiste Coudray

Iteration 0 is the initial state and only cell two is alive. To perform the next iteration:

• the cell (one) is born because of rule n°2,
• the cell (two) stays alive because of rule n°3,
• the cell (three) stays alive because of rule n°6.

5.2. Distributed version

With the created library, we implement this SCA previously described. To do this, we
create a Futhark elementary.fut file, which is used to calculate the next state of a part
of the cellular automaton.

let get_neighbours [n] (elem: [n]i8) : [n](i8,i8) = ...

entry next_chunk_elems [n] (chunk_elems :[n]i8) :[]i8 =
let neighbours = get_neighbours chunk_elems
let next_elems = ...
in next_elems[1:n-1]

Therefore, the elementary.fut file contains only a function that applies the rules on the
cellular automaton. As we can see, next_chunk_elems is the primary function that takes
a chunk of the cellular automaton as a parameter. This function applies the rules defined
before on every cell and returns the new value of each cell without the envelope.

void init_chunk_elems(chunk_info_t *ci) {
int8_t *data8 = ci->data;
for (int i = 0; i < ci->dimensions[1]; ++i) {

data8[i] = rand() % 2;
}

}
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void compute_next_chunk_board(struct dispatch_context *dc,
struct futhark_context *fc, chunk_info_t *ci) {

struct futhark_i8_1d *fut_chunk_with_envelope =
get_chunk_with_envelope(dc, fc, 1, futhark_new_i8_1d);

struct futhark_i8_1d *fut_next_chunk_elems;
futhark_entry_next_chunk_elems(fc, &fut_next_chunk_elems,

fut_chunk_with_envelope);
futhark_context_sync(fc);

futhark_values_i8_1d(fc, fut_next_chunk_elems, ci->data);
futhark_context_sync(fc);

/* ... Free resources ... */
}

int main(int argc, char *argv[]) {
/* ... MPI & Futhark Init ... */
const int N_ITERATIONS = 100;
int elems_dimensions[1] = {600};
struct dispatch_context *disp_context =

dispatch_context_new(elems_dimensions, MPI_INT8_T, 1);
chunk_info_t ci = get_chunk_info(disp_context);
init_chunk_elems(&ci);

for (int j = 0; j < N_ITERATIONS; ++j) {
compute_next_chunk_elems(disp_context, fut_context, &ci);
int8_t *sca = get_data(disp_context);

}
/* ... Free resources ... */

}

Finally, a C file main.c is needed to create the program’s entry point. We ini-
tialize the MPI and Futhark environment. Then, our library, via the function
dispatch_context_new, by specifying the size of the cellular automaton (600), its data
type by using a predefined type in MPI (MPI_INT8_T), and the number of dimensions
(one in this case). It returns a dispatch context that will need to be provided when
calling other functions of our library.
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The function get_chunk_info is called to get the chunk of the cellular automaton at-
tributed to the current rank. Thus, we initiate it with the values that we want with the
function init_chunk_elems.

In the temporal loop, we update our chunk using the created function compute_next_chunk_elems.
In this function, we call the Application Programming Interface (API) function
get_chunk_with_envelope from our library with the following parameters:

• the dispatch context, obtained from dispatch_context_new,
• the Futhark context, obtained from futhark_context_new,
• the Chebyshev distance,
• and a pointer to a Futhark function that converts a C array to a Futhark array.

Our API function handles the MPI communication to exchange each chunk’s missing and
needed neighbors to create the envelope of the current process’s chunk.

Thus, we call our Futhark function futhark_entry_next_chunk_elems to com-
pute the new values. Given that the function is asynchronous, the function
futhark_context_sync waits for the action to finish. Finally, we retrieve the
new values with futhark_values_i8_1d.

After all that, it is possible to retrieve the entire cellular automaton on the root node by
calling the function get_data on each task. The variable sca is not NULL if it is the root
node, and it points to the entire cellular automaton.

5.3. CPU Benchmarks

We perform benchmarks to validate the scalability of our one-dimensional distribution
when compiling in sequential, multicore, OpenCL, or CUDA mode. The bench-
marks are performed on the Haute École Spécialisée de GEnève (HES-GE) cluster
(Baobab/Yggdrasil). The sequential and multicore benchmarks are performed as follows:

• the cellular automaton is 300, 000, 000 cells in size,
• the number of tasks varies between 20 and 27,
• 15 measurements are performed, one measurement corresponds to one iteration,
• the iteration is computed 100 times.
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Table 5.2: Results for the distributed-sequential version of SCA

Number of
tasks

Average [s] Standard
Derivation [s]

Speedup Number of
measures

1 657.866 [s] ± 14.977 [s] x1.0 15
2 332.771 [s] ± 2.814 [s] x2.0 15
4 161.963 [s] ± 7.309 [s] x4.1 15
8 87.602 [s] ± 2.918 [s] x7.5 15
16 42.743 [s] ± 0.039 [s] x15.4 15
32 20.938 [s] ± 0.007 [s] x31.4 15
64 11.071 [s] ± 0.024 [s] x59.4 15
128 5.316 [s] ± 0.191 [s] x123.7 15

This table contains the results obtained by using the backend c of Futhark.

Table 5.3: Results for the distributed-multicore version of SCA

Number of
tasks

Average [s] Standard
Derivation [s]

Speedup Number of
measures

1 708.689 [s] ± 16.036 [s] x1.0 15
2 358.007 [s] ± 4.037 [s] x2.0 15
4 138.523 [s] ± 3.773 [s] x5.1 15
8 71.077 [s] ± 1.280 [s] x10.0 15
16 34.697 [s] ± 0.834 [s] x20.4 15
32 25.776 [s] ± 0.725 [s] x27.5 15
64 12.506 [s] ± 0.554 [s] x56.7 15
128 5.816 [s] ± 0.045 [s] x121.8 15

This table contains the results obtained by using the backend multicore of Futhark.
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Figure 5.2: Benchmarks of the SCA in distributed-sequential/multicore

Source: Realized by Baptiste Coudray

We compare the average computation time for each number of tasks and each version
(sequential and multicore) on the left graph. On the right graph, we compare the ideal
speedup with the distributed-sequential and multicore version speedup. The more we in-
crease the number of tasks, the more the execution time is reduced. Thus, the distributed-
sequential or multicore version speedup follows the curve of the ideal speedup. We can see
that concurrent computing does not provide a significant performance gain over sequential
computing because of the overhead of creating threads.

5.4. GPU Benchmarks

The OpenCL and CUDA benchmarks are performed as follows:

• the cellular automaton has 300′000′000 cells,
• the number of tasks varies between 20 and 23.
• 15 measurements are performed, one measurement corresponds to one iteration,
• the iteration is computed 50′000 times,
• an NVIDIA GeForce RTX 3090 is allocated for each task.

Table 5.4: Results for the distributed-OpenCL version of SCA

Number of
tasks

Number of
GPUs

Average [s] Standard
Derivation

[s]

Speedup Number of
measures

1 1 166.086 [s] ± 0.096 [s] x1.0 15
2 2 83.339 [s] ± 0.099 [s] x2.0 15
4 4 42.122 [s] ± 0.078 [s] x3.9 15
8 8 21.447 [s] ± 0.031 [s] x7.7 15
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This table contains the results obtained by using the backend opencl of Futhark.

Table 5.5: Results for the distributed-CUDA version of SCA

Number of
tasks

Number of
GPUs

Average [s] Standard
Derivation

[s]

Speedup Number of
measures

1 1 160.291 [s] ± 0.062 [s] x1.0 15
2 2 80.434 [s] ± 0.094 [s] x2.0 15
4 4 40.640 [s] ± 0.073 [s] x3.9 15
8 8 20.657 [s] ± 0.046 [s] x7.8 15

This table contains the results obtained by using the backend cuda of Futhark.

Figure 5.3: Benchmarks of the SCA in distributed-OpenCL/CUDA

Source: Realized by Baptiste Coudray

With this performance test (5.3), we compare the average computation time for each
number of tasks/GPUs and each version (OpenCL and CUDA) on the left graph. On
the right graph, we compare the ideal speedup with the distributed-opencl and cuda
version speedup. We notice that the computation time is essentially the same in OpenCL
as in CUDA. Moreover, the distributed follows the ideal speedup curve. Finally, we
notice that parallel computation is up to four times faster than sequential/concurrent
computation when executing with a single task/graphical card.
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Chapter 6:

Game of Life

The Game of Life is a zero-player game designed by John Horton Conway in 1970. It is
also one of the best-known cellular automata. The game does not require the interaction
of a player for it to evolve, it evolves thanks to these extremely simple rules:

1. a cell has eight neighbors,
2. a cell can be either alive or dead,
3. a dead cell with exactly three living neighbors becomes alive,
4. a living cell with two or three living neighbors stays alive; otherwise, it dies (8).

6.1. Example with the blinker

Figure 6.1: First state of blinker

Source: Taken from https://commons.wikimedia.org/, ref. URL04. Re-created by Bap-
tiste Coudray

A basic example is a blinker:

• the cell (one, one) and (one, three) die because they have seven dead neighbors and
one living neighbor (rule n°4),

• the cell (zero, two) and (two, two) are born because they have three living neighbors
(rule n°3),

• the cell (one, two) stays alive because it has two living neighbors (rule n°4).
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Figure 6.2: Second state of blinker

Source: Taken from https://commons.wikimedia.org/, ref. URL05. Re-created by Bap-
tiste Coudray

Thus, after the application of the rules, the horizontal line becomes a vertical line. Then,
at the next iteration, the vertical line becomes a horizontal line again.

6.2. Distributed version

We create the game of life with our library to test it with a two-dimensional cellular
automaton. The code is relatively the same as the previous example; therefore, it is not
explained, but you can find it in the Git repository.

let count_neighbours [n][m] (board: [n][m]i8) :[n][m]i8 = ...
let compute_next_board [n][m] (chunk_board :[n][m]i8)

(neighbours: [n][m]i8) :[][]i8 = ...

entry next_chunk_board [n][m] (chunk_board :[n][m]i8) :[][]i8 =
let neighbours = count_neighbours chunk_board
let next_board = compute_next_board chunk_board neighbours
in next_board[1:n-1, 1:m-1]

This is a sneak peek of the gol.fut file. Like the SCA, we only update our cellular
automaton and return it without the envelope.

void compute_next_chunk_board(struct dispatch_context *dc,
struct futhark_context *fc, chunk_info_t *ci) {

struct futhark_i8_2d *fut_chunk_with_envelope =
get_chunk_with_envelope(dc, fc, 1, futhark_new_i8_2d);

struct futhark_i8_2d *fut_next_chunk_board;
futhark_entry_next_chunk_board(fc, &fut_next_chunk_board,

fut_chunk_with_envelope);
/* ... Sync, Get values & Free resources ... */

}
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int main(int argc, char *argv[]) {
/* ... MPI & Futhark Init ... */
int board_dimensions[2] = {800, 800};
struct dispatch_context *disp_context =

dispatch_context_new(board_dimensions, MPI_INT8_T, 2);
/* ... */
const int N_ITERATIONS = 100;
for (int i = 0; i < N_MEASURES; ++i) {

compute_next_chunk_board(disp_context, fut_context, &ci);
}
/* ... Free resources ... */

}

In the C file main.c, we can see this almost the same code as for the SCA ex-
ample, but when calling dispatch_context_new we specify that this is a two-
dimensional cellular automaton. In the compute_next_chunk_board function, we call
get_chunk_with_envelope from our library with a different conversion function. It
transforms a C 2D array to a Futhark 2D array.

6.3. CPU Benchmarks

We perform benchmarks to validate the scalability of our two-dimensional distribution
when compiling in sequential, multicore, OpenCL, or CUDA mode. The benchmarks are
performed on the HES-GE cluster (Baobab/Yggdrasil).

The sequential and multicore benchmarks are performed as follows:

• the cellular automaton is 900′000′000 cells in size,
• the number of tasks varies between 20 and 27,
• 15 measurements are performed, one measurement corresponds to one iteration,
• the iteration is computed 100 times.

Table 6.1: Results for the distributed-sequential version of Game of Life

Number of
tasks

Average [s] Standard
Derivation [s]

Speedup Number of
measures

1 3471.723 [s] ± 47.092 [s] x1.0 15
2 1140.064 [s] ± 56.780 [s] x3.0 15
4 790.365 [s] ± 10.501 [s] x4.4 15
8 398.093 [s] ± 13.438 [s] x8.7 15
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Number of
tasks

Average [s] Standard
Derivation [s]

Speedup Number of
measures

16 221.687 [s] ± 4.152 [s] x15.7 15
32 100.422 [s] ± 0.068 [s] x34.6 15
64 55.986 [s] ± 1.587 [s] x62.0 15
128 28.111 [s] ± 0.263 [s] x123.5 15

This table contains the results obtained by using the backend c of Futhark.

Table 6.2: Results for the distributed-multicore version of Game of Life

Number of
tasks

Average [s] Standard
Derivation [s]

Speedup Number of
measures

1 2154.686 [s] ± 198.122 [s] x1.0 15
2 1160.921 [s] ± 77.230 [s] x1.9 15
4 502.860 [s] ± 3.465 [s] x4.3 15
8 206.818 [s] ± 4.179 [s] x10.4 15
16 106.103 [s] ± 0.450 [s] x20.3 15
32 71.463 [s] ± 0.485 [s] x30.2 15
64 39.116 [s] ± 0.489 [s] x55.1 15
128 14.008 [s] ± 0.335 [s] x153.8 15

This table contains the results obtained by using the backend multicore of Futhark.

Figure 6.3: Benchmarks of the game of life in distributed-sequential/multicore

Source: Realized by Baptiste Coudray

We notice an apparent difference between the distributed-sequential and multicore version
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when there is only one task. The multicore version is 1.6 times faster than the sequential
version. Nevertheless, both versions have a perfect speedup. The multicore version even
gets a maximum speedup of x154 with 128 tasks. This performance can be explained by
the caching of data in the processor and the use of threads.

6.4. GPU Benchmarks

The OpenCL and CUDA benchmarks are performed as follows:

• the cellular automaton has 900′000′000 cells,
• the number of tasks varies between 20 and 23.
• 15 measurements are performed, one measurement corresponds to one iteration,
• the iteration is computed 8′000 times,
• an NVIDIA GeForce RTX 3090 is allocated for each task.

Table 6.3: Results for the distributed-OpenCL version of Game of Life

Number of
tasks

Number of
GPUs

Average [s] Standard
Derivation

[s]

Speedup Number of
measures

1 1 230.144 [s] ± 0.225 [s] x1.0 15
2 2 115.400 [s] ± 0.070 [s] x2.0 15
4 4 58.019 [s] ± 0.104 [s] x4.0 15
8 8 29.157 [s] ± 0.061 [s] x7.9 15

This table contains the results obtained by using the backend opencl of Futhark.

Table 6.4: Results for the distributed-CUDA version of Game of Life

Number of
tasks

Number of
GPUs

Average [s] Standard
Derivation

[s]

Speedup Number of
measures

1 1 218.807 [s] ± 0.057 [s] x1.0 15
2 2 109.598 [s] ± 0.109 [s] x2.0 15
4 4 55.039 [s] ± 0.100 [s] x4.0 15
8 8 27.737 [s] ± 0.050 [s] x7.9 15

This table contains the results obtained by using the backend cuda of Futhark.
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Figure 6.4: Benchmarks of the game of life in distributed-OpenCL/CUDA

Source: Realized by Baptiste Coudray

With this performance test (6.4), we notice that the computation time is essentially the
same in OpenCL as in CUDA. Moreover, the distribution follows the ideal speedup curve.
Furthermore, we notice that parallel computation is up to 15 times faster than sequen-
tial/concurrent computation when executing with a single task/graphical card.
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Chapter 7:

Lattice-Boltzmann Method

“The lattice Boltzmann method (LBM) has established itself in the past decades as a valuable
approach to Computational Fluid Dynamics (CFD). It is commonly used to model time-
dependent, incompressible or compressible flows in a regime of Direct Numerical Simulation
(DNS) or Large Eddy Simulation (LES). One of its strengths lies in the ability to easily
represent complex physical phenomena, ranging from multi-phase flows to reactive and
suspension flows. The method originates in a molecular description of a fluid, based
on the Boltzmann equation, and can directly incorporate physical terms stemming from
a knowledge of the interaction between molecules. It is therefore an invaluable tool in
fundamental research, as it keeps the cycle between the elaboration of a theory and the
formulation of a corresponding numerical model short.” (9)

7.1. Distributed version

We implement the Lattice-Boltzmann Method with our library to test it with a three-
dimensional cellular automaton. The code is almost the same as the previous example,
so we focus on custom types in this example. A cell in this cellular automaton is of type
of array containing 27 floats. In MPI, there is no predeclared type of array, so we need
to create one. Thanks to our library, it is possible to do that with a minimum code.

typedef struct lbm_values {
float values[NB_VALUES];

} lbm_values_t;

int main(int argc, char *argv[]) {
/* ... MPI & Futhark Init ... */
int count = 1;
int block_lengths[] = {NB_VALUES};
MPI_Aint displacements[] = {offsetof(struct lbm_values, values)};
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MPI_Datatype types[] = {MPI_FLOAT};

MPI_Datatype lbm_type = create_type(count, block_lengths, displacements,
types);

int lbm_dimensions[3] = {400, 400, 400};
struct dispatch_context *disp_context =

dispatch_context_new(lbm_dimensions, lbm_type, 3);
/* ... Temporal loop & Free resources ... */

}

We need to declare a structure specifying a cell, so lbm_values is a struct containing an
array of 27 floats. After that, in the main function, we describe the structure as follows:

• there is one field (values),
• the first field is containing 27 values,
• we compute where is located the field values in the structure,
• values is of type MPI_FLOAT.

Finally, we call our library function create_type with the previous parameters, and it
returns an MPI_Datatype that can be pass to the function dispatch_context_new.

7.2. CPU Benchmarks

We perform benchmarks to validate the scalability of our three-dimensional distribution
when compiling in sequential, multicore, OpenCL, or CUDA mode. The benchmarks are
performed on the HES-GE cluster (Baobab/Yggdrasil). The sequential and multicore
benchmarks are performed as follows:

• the cellular automaton is 27′000′000 cells in size,
• the number of tasks varies between 20 and 27,
• 15 measurements are performed, one measurement corresponds to one iteration,
• the iteration is computed 100 times.

Table 7.1: Results for the distributed-sequential version of LBM

Number of
tasks

Average [s] Standard
Derivation [s]

Speedup Number of
measures

1 716.133 [s] ± 5.309 [s] x1.0 15
2 363.166 [s] ± 3.482 [s] x2.0 15
4 185.430 [s] ± 0.847 [s] x3.9 15
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Number of
tasks

Average [s] Standard
Derivation [s]

Speedup Number of
measures

8 93.994 [s] ± 0.566 [s] x7.6 15
16 81.266 [s] ± 8.947 [s] x8.8 15
32 41.040 [s] ± 1.590 [s] x17.4 15
64 22.188 [s] ± 0.321 [s] x32.3 15
128 17.415 [s] ± 4.956 [s] x41.1 15

This table contains the results obtained by using the backend c of Futhark.

Table 7.2: Results for the distributed-multicore version of LBM

Number of
tasks

Average [s] Standard
Derivation [s]

Speedup Number of
measures

1 695.675 [s] ± 8.867 [s] x1.0 15
2 352.925 [s] ± 4.293 [s] x2.0 15
4 181.736 [s] ± 0.695 [s] x3.8 15
8 237.983 [s] ± 0.271 [s] x2.9 15
16 79.360 [s] ± 2.185 [s] x8.8 15
32 46.285 [s] ± 0.138 [s] x15.0 15
64 24.059 [s] ± 0.061 [s] x28.9 15
128 16.614 [s] ± 1.088 [s] x41.9 15

This table contains the results obtained by using the backend multicore of Futhark.
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Figure 7.1: Benchmarks of the LBM in distributed-sequential/multicore

Source: Realized by Baptiste Coudray

Contrary to the previous benchmarks, the speedups do not follow the ideal speedup curve.
Indeed, whether in sequential or multicore, we obtain a maximum speedup with 128 tasks
of x41 when we were hoping to have a speedup of x128.

7.3. GPU Benchmarks

The OpenCL and CUDA benchmarks are performed as follows:

• the cellular automaton has 27′000′000 cells,
• the number of tasks varies between 20 and 23.
• 15 measurements are performed, one measurement corresponds to one iteration,
• the iteration is computed 3′000 times,
• an NVIDIA GeForce RTX 3090 is allocated for each task.

Table 7.3: Results for the distributed-OpenCL version of LBM

Number of
tasks

Number of
GPUs

Average [s] Standard
Derivation

[s]

Speedup Number of
measures

1 1 210.347 [s] ± 0.096 [s] x1.0 15
2 2 99.677 [s] ± 0.038 [s] x2.1 15
4 4 40.710 [s] ± 0.076 [s] x5.2 15
8 8 20.800 [s] ± 0.031 [s] x10.1 15

This table contains the results obtained by using the backend opencl of Futhark.
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Table 7.4: Results for the distributed-CUDA version of LBM

Number of
tasks

Number of
GPUs

Average [s] Standard
Derivation

[s]

Speedup Number of
measures

1 1 207.683 [s] ± 0.249 [s] x1.0 15
2 2 99.177 [s] ± 0.056 [s] x2.1 15
4 4 40.240 [s] ± 0.074 [s] x5.2 15
8 8 20.459 [s] ± 0.037 [s] x10.2 15

This table contains the results obtained by using the backend cuda of Futhark.

Figure 7.2: Benchmarks of the LBM in distributed-OpenCL/CUDA

Source: Realized by Baptiste Coudray

Like the other benchmarks (5.3, 6.4), there is very little difference between the OpenCL
and CUDA versions (computation time and speedup). We get a more than ideal speedup
with 2, 4, and 8 tasks/GPUs (x2.1, x5.2, and x10.2, respectively). Finally, we notice
that parallel computation is up to 3 times faster than sequential/concurrent computation
when executing with a single task/graphical card.
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Chapter 8:

Conclusion

In this project, we created a library allowing to distribute a one, two or three dimensional
cellular automaton on several computation nodes via MPI. Thanks to the different Futhark
backends, the update of the cellular automaton can be done in sequential, concurrent
or parallel computation. Thus, we compared these different modes by implementing a
cellular automaton in one dimension (SCA), in two dimensions (Game of Life) and in
three dimensions (LBM). Benchmarks for each backend were performed to verify the
scalability of the library. We obtained ideal speedups with the cellular automata in one
and two dimensions and with the use of the sequential and multicore Futhark backend.
With these two backends and a three-dimensional cellular automaton, we had a maximum
speedup of x41 with 128 tasks. Concerning the OpenCL and CUDA backends, they
show no difference in performance between them and for the three cellular automata, the
speedup is ideal. Parallel computing has consistently shown better performance compared
to sequential or simultaneous computing. For example, with the Game of Life, we are up
to 15 times faster.

During this work, I learnt the importance to make unit tests to valid my implementation.
Indeed, I was able to narrowing down multiple bugs that I made and make sure that
my library was still functioning when I was adding cellular automaton in two and three
dimension.

The library can be improved to obtain an ideal speedup in three dimensions with the
CPU backends. Moreover, the support of the Von Neumann neighborhood to manage
other cellular automata.
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