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Abstract

Futhark is a data-parallel functional programming language with a compiler capable of gener-
ating efficient GPGPU code. Prior work by Sebastian Paarmann introduced an experimental
WebGPU backend, enabling a small subset of Futhark programs to be run in web browsers.
This project addresses some of the key remaining limitations of the WebGPU backend.

Using a test-driven development approach, we refine the backend by removing constraints
and implementing missing functionality, such as built-in transpose and copy kernels, in-kernel
function calls and copies, and support for special floating point values like NaNs and infinities.
We show that, while supporting 64-bit atomics is impossible under the current WebGPU
specifications, 8- and 16-bit atomics can be emulated despite their lack of native support.

Our testing demonstrates improved functionality across a range of representative programs,
confirming the reliability of these improvements. Despite these advancements, major limita-
tions remain, significantly constraining the WebGPU backend’s practical usability for running
larger high-performance data-parallel computations in web environments.
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1 INTRODUCTION

1 Introduction

Futhark [6] is a purely functional, data-parallel array programming language. It offers a machine-
neutral programming model and an optimizing compiler able to generate both GPGPU code
and multithreaded C code. A variety of fully functional GPU backends are supported, allowing
Futhark programs to target OpenCL, Cuda and HIP. Previous work by Sebastian Paarmann [11]
has recently expanded this list to include the new WebGPU API, allowing Futhark programs
to run in a browser while still taking advantage of the GPU. While largely functional, major
limitations of the WebGPU backend remain, greatly limiting its practical use. This project
seeks to build on top of Paarmann’s work, addressing some of the limitations of the WebGPU
backend.

In Section 2, we give an introduction to the relevant background on GPU programming,
WebGPU, the Futhark compiler and the existing WebGPU backend and its limitations. We also
provide necessary background on memory models of relevance to our implementation work
on atomics. Section 3 describes the implementation details of adding atomic operations to the
WebGPU backend, implementing built-in kernels, and supporting in-kernel function calls and
copy operations. We also give a quick overview of other minor bug-fixes and improvements
made throughout this project, such as supporting infinite and NaN floats. In Section 4, we
outline our testing and reevaluate the state of the WebGPU backend after our improvements.
We also discuss what limitations remain and the feasibility of implementing them in future
work.
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2 BACKGROUND

2 Background

2.1 Implementation Approach

Since the starting point for the project was an already semi-functional compiler, we opted to take
advantage of the huge suite of existing test programs and employ a test-driven development
strategy. For each limitation we decided to tackle, we would identify a set of test programs that
were failing to compile or returned wrong results and iteratively modify the WebGPU backend
until the tests compiled and succeed. Through this process, we would often discover new issues
and limitations not discovered in Paarmann’s work

2.2 The GPU Programming Model

We begin by giving a high-level introduction the GPGPU programming model. The description
provided in this section is based on the programming model defined by OpenCL and CUDA,
as these are the APIs the Futhark compiler was originally designed around1. As such, much
of the existing terminology in the compiler is borrowed from OpenCL and CUDA. Moreover,
many of the Futhark compiler’s internal assumptions on what capabilities are provided by the
compilation target have been inherited from OpenCL. When we later introduce WebGPU in
Section 2.3, we will see how it breaks some of these assumptions. For the remainder of this
section, we will stick to CUDA terminology.

CUDA and OpenCL follow a heterogeneous programming model where the CPU coordinates
execution and offloads parallel workloads to the GPU. The CPU handles sequential logic and
manages memory, while the GPU accelerates compute-intensive tasks through massively
parallel execution. Unlike CPUs, we cannot control the GPU directly, but instead have to program
it indirectly through software layers like the CUDA runtime and GPU drivers. We refer to the
CPU as the host and the GPU as the device. This heterogeneous model assumes that the host
and device each maintain their own separate memory spaces referred to as host memory and
device memory respectively [4, p. 17].

Programs run on the device are referred to as kernels. In both CUDA and OpenCL, kernels are
written as functions in a dialect of C/C++ with some additional language extensions. To ensure
predictable execution and efficient parallelism on the GPU, the CUDA/OpenCL C++ dialects
impose some constraints on the programmer such as disallowing dynamic memory allocations
[4, p. 269] and limiting recursion2 [4, pp. 83, 437].

When the host dispatches work to the GPU, it specifies how many threads should execute
and organizes them into a grid of thread blocks as illustrated in Figure 1. Each thread block
consists of threads that are expected to execute together on a single streaming multiprocessor,
and are thus able to synchronize efficiently and share data through shared memory [4, p. 12].
Blocks are required to execute independently, allowing them to be scheduled in any order
across the available cores [4, p. 13].

Threads within a block can share data through shared memory, which is expected to be much
faster than the (also much larger) global memory visible to all threads across blocks [4, p. 34].
Note that this does not include host threads. The memory is still located on the device, making
accesses from the host very slow.

1Specifically OpenCL, with CUDA being added later by Jakob Stokholm Bertelsen as part of his BSc project [3].
2Kernels cannot be recursive. Recursive function calls are limited, as call stack cannot grow dynamically.
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Grid

Global Memory

Thread Block Thread Block
Shared Memory Shared Memory

Figure 1: Threads are organized into thread blocks, which are organized in grids. Shared
memory can only be accessed by threads within a block, while global memory can be accessed
across blocks.

In CUDA and OpenCL, both shared and global memory is accessed through C-style pointers
to untyped blocks of memory, allowing for arbitrary casting and pointer arithmetic. While the
Futhark compiler restricts its usage of pointer arithmetic to indexing, it generally assumes
C-like pointers that can be freely cast and treated as values. As we will see in the next section
however, pointers are much more restrictive in WebGPU.

2.3 WebGPU

WebGPU is an API exposing the capabilities of GPU hardware to web browsers. Unlike CUDA or
OpenCL, WebGPU is not a native API that interacts directly with the hardware drivers. Instead,
WebGPU has been designed as a higher-level API that efficiently maps to modern native graphics
APIs like Vulkan, DirectX 12 and Metal [10, §1]. A browser’s WebGPU implementation essentially
acts as an abstraction layer sitting between web apps and the underlying native GPU API.

While primarily targeted at 3D graphics workloads, WebGPU (unlike its predecessor WebGL)
also provides first-class support for general-purpose GPU compute. As a web API, WebGPU
has the unique design goal of maximising portability as one of its main focuses. The WebGPU
standard should be implementable on top of a variety of native APIs and can thus only expose
capabilities supported by all of them. This design focus has naturally led to an API that differs
greatly from the CUDA/OpenCL programming model.

The differences already begin at the basic terminology. In WebGPU, kernels are referred
to as shaders and thread blocks become workgroups. Table 1 lists a comparison of basic CUDA
and WebGPU terminology. Throughout this report, we will switch freely between these terms
depending on the context.

CUDA WebGPU
Kernel Shader
Thread Invocation
Thread block Workgroup
Global memory Storage memory
Shared memory Workgroup memory

Table 1: Comparison of basic CUDA and WebGPU terminology.
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Owing to its roots as a graphics API, WebGPU embraces an explicit resource binding model
heavily influenced by the design of native graphics APIs like Vulkan and DirectX 12. In WebGPU,
shaders declare precise binding groups and indices for every resource it will access (e.g. buffers
or textures). The host must then create matching bind groups that map actual GPU resources
to these declared slots before dispatching workloads. This stands in stark contrast to the CUDA
programming model, where resources are simply passed as kernel parameters. While this
simpler model is nice for general-purpose compute workloads targeted by CUDA, the explicit
approach taken by graphics APIs is preferable for 3D graphics applications, as it allows the GPU
driver to minimize state transitions and resource usage in multi-stage rendering pipelines.

Instead of writing kernels in a C-dialect, WebGPU follows the tradition of graphics APIs like
Vulkan and DirectX where shaders are written in a separate shading language like GLSL or
HLSL. The shader code is then passed to the WebGPU API at runtime to create create a shader
module, which in turn can be used to create a compute pipeline. Once this pipeline and its
corresponding bindings have been bound, the host can dispatch a grid of workgroups to run
the shader on the GPU. The workgroup dimensions are specified in the shader code, while grid
dimensions are specified when dispatching from the host.

Instead of using an existing shading language, WebGPU opted to define it’s own shading
language called WGSL [2]. As we will see, the capabilities exposed by this language are greatly
restricted compared to those of CUDA or OpenCL kernels.

2.3.1 WGSL

The WebGPU Shading Language (WGSL) is a simple statically typed imperative language used to
express programs that run on the GPU. WGSL is used for writing shaders that will be executed
in both rendering and compute pipelines. For this project, we are only concerned with the latter
use case. As a simple example of a compute shader using most WGSL features of relevance for
this project, consider the simple memcpy shader listed in Figure 2.

1 override block_size_x: i32;
2 override block_size_y: i32;
3 override block_size_z: i32;
4
5 struct Parameters {
6 dst_offset: i32,
7 src_offset: i32,
8 n: i32
9 }
10
11 @group(0) @binding(0) var<uniform> args: Parameters;
12 @group(0) @binding(1) var<storage, read_write> src: array<u32>;
13 @group(0) @binding(2) var<storage, read_write> dst: array<u32>;
14 @compute @workgroup_size(block_size_x, block_size_y, block_size_z)
15 fn memmove(@builtin(global_invocation_id) global_id: vec3<u32>) {
16 if (i32(global_id.x) >= args.n) { return; }
17
18 let i: i32 = i32(global_id.x);
19 dst[args.dst_offset + i] = src[args.src_offset + i];
20 }

Figure 2: Example of a WGSL compute shader, which performs a memcpy between two buffers
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WGSL only supports basic types like booleans, 32-bit signed and unsigned integers, 32- and
16-bit floating point numbers, and user-defined structures. As a shading language, WGSL also
has first-class support for composite types for 2, 3 and 4-dimensional vectors and matrices.
Array types can either be fixed-size or runtime-sized. Special atomic types are provided for
32-bit integers, with no other types supporting atomic operations. Finally, WGSL has limited
support for pointer types. These will be described in detail later.

WGSL has three kinds of value declarations for assigning names to immutable values:
const declarations specify a name for a value known at shader module creation time [2, §7.2.1].
override declarations give a name to a pipeline-overridable constant, the value of which is
specified when creating a pipeline [2, §7.2.2]. Finally let declarations are used for values that
are fixed each time the let statement is executed at runtime [2, §7.2.3].

For mutable values, a variable declaration is used to create a name for a memory location.
Unlike value declarations, variable declarations can thus be the basis of a pointer value, since
they have an associated memory location [2, §7.1]. Variables also have an associated address
space specifying its visibility. These are listed in Table 2.

Address Space Visibility Scope Memory Space
storage All threads in dispatch Module Global
uniform All threads in dispatch Module Global
workgroup Threads in the same workgroup Module Shared
private Single thread of dispatch Module Local
function Single thread of dispatch Function Local

Table 2: List of available address spaces for variable declarations. Variables in all but the
function address space must be declared in module scope.

WGSL pointers are much more restrictive compared to its C counterpart: WGSL pointers
are not storable, meaning they cannot be be assigned to a variable declaration. No arithmetic
can be performed on a pointer and casting a pointer to a different type is not possible. Finally,
there is no way to allocate or free memory from a heap. These restrictions are in place in order
to guarantee that a pointer always points to the base address of a live object [2, p. 6.9.4].

Earlier we mentioned how array types can be either fixed-size or runtime-sized. However,
only arrays in the storage address space are allowed to be runtime-sized. This means that
ptr<workgroup,array<i32>> is not a valid pointer type, while ptr<storage,array<i32>>
is. As WGSL doesn’t allow generic functions, all pointer parameters for a function must have a
fully specified pointer type, meaning separate functions must be implemented for working with
values in different address spaces. Additionally, a function taking a pointer to an array in shared
memory only works for a specific size, since workgroup arrays cannot be runtime-sized.

Finally, it should be noted that the limitations of WGSL compared to CUDA kernels do not
stem from inherent hardware constraints, but are rather the result of higher-level design
decisions aimed at ensuring broad compatibility across various platforms and graphics APIs.
Ultimately, on a given device, both WGSL and CUDA kernels are compiled down to native code
defined by the same equally capable GPU ISA. How the capabilities of an ISA are exposed to the
programmer is an API- and language-level design decision. CUDA and WebGPU/WGSL have
simply made different design decisions.
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2.4 The Futhark Compiler

A complete description of the Futhark compiler is beyond the scope of this project, but we
here give a quick overview. At a high level, the Futhark compiler has a fairly conventional
architecture: A frontend parses and type checks programs before transforming them into an
intermediate representation. This IR is then processed by a sequence of compiler passes in
the middle-end, which ultimately outputs an optimized IR variant. The different IR variants
mainly differ in how they express parallelism. For this project, the main IR of relevance is
the GPUMem variant, which expresses parallelism through flat segmented operations designed
to match the semantics of GPU kernels. This is the variant used by the CUDA, OpenCL and
WebGPU backends.

In the backend, the immediate representation is translated to an imperative IR called
ImpCode. Both kernel and host code are expressed as ImpCode, although with different ex-
tensions, such as a kernel launch operation for the host. In the CUDA/OpenCL backends,
device-side ImpCode is then translated to their respective C variants after which the host-side
ImpCode is translated to C code. Instead of generating host code for the GPU API directly, the
compiler targets an internal GPU abstraction layer provided by a hand-written C runtime. This
layer is shared between all GPU backends, with each GPU API providing its own implementation.
The final output of the compiler is thus a single combined C program that can be compiled
directly or used as a library.

2.4.1 The WebGPU backend

The WebGPU backend is a bit more involved. Since the internal C runtime provides an imple-
mentation of the GPU abstraction layer targeting the native WebGPU API, host-code can be
translated to C much like the other GPU backends. However, device-side code has to be compiled
to WGSL instead of C. This process involves translating ImpCode into an AST matching a subset
of WGSL, which is then pretty-printed to actual WGSL code. As we will see in Section 2.4.2, this
transformation is not without its pitfalls.

To run the resulting WebGPU C program in the browser, the C code is compiled into
WebAssembly using Emscripten. To access the WASM module in the browser, the WebGPU
backend also generates a JavaScript wrapper that exposes a nicer interface to the generated
WASM. Websites can then run the compiled Futhark programs on the GPU through this
JavaScript interface. For a more complete description of the WebGPU backend, we refer to
Sebastian Paarmann’s thesis [11].
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2.4.2 ImpCode and WGSL

As we have already seen in Section 2.3.1, WGSL is in many ways more a limiting compilation
target than the established CUDA and OpenCL targets. As a result, despite being a very simple
imperative language, ImpCode makes some assumptions about the underlying capabilities
exposed by the compilation target that do not match up with those provided by WGSL.

An example of this divergence in views is the handling of signedness. In ImpCode, integer
types have no associated signedness. Instead, signedness is a property of individual operations.
This differs from WGSL which uses different types for signed and unsigned values, with the
semantics of operations like comparisons then depending on the type. The approach taken
by the backend to handle this discrepancy was to always declare variables in WGSL as being
signed, and then implement unsigned ImpCode operations like umax_i32 in a WGSL prelude
prepended to all generated WGSL kernels. This prelude is also used to emulate primitive types
expected by ImpCode, such as 8- and 16-bit integers, that are not provided in WGSL.

1 alias i16 = i32;
2
3 fn norm_i16(a: i16) -> i32 {
4 if (a & 0x8000) != 0 { return a | bitcast<i32>(0xffff0000u); }
5 return a & 0x0000ffff;
6 }
7
8 fn add_i16(a: i16, b: i16) -> i16 {
9 return norm_i16(a + b);
10 }
11
12 fn read_i16(buffer: ptr<storage, array<atomic<i16>>, read_write>, i: i32) -> i16 {
13 let elem_idx = i / 2; // Index of i32 containing i16 at index i
14 let idx_in_elem = i % 2; // Index of i16 inside the i32
15
16 let v = atomicLoad(&((*buffer)[elem_idx]));
17 return norm_i16(v >> bitcast<u32>(idx_in_elem * 16));
18 }

Figure 3: Examples of a helper functions defined in the WGSL prelude used to emulate the
otherwise unsupported i16 datatype. i16 values are packed in i32s

The biggest difference in philosophies is how memory is viewed. In ImpCode, a memory
variable first has to be declared with a DeclareMem statement. This is roughly equivalent to
declaring a pointer in C – the variable initially doesn’t point to any memory block. Note that
unlike a C pointer, ImpCode memory variables also carry an associated memory space, such as
global or shared memory. Before the declared block can be accessed, it first has to be the target
of an Allocate or SetMem statement. An Allocate statement allocates a block of memory
and assigns it to the target memory variable. A SetMem statement on the other hand, does not
perform an allocation, but can instead be thought of as a simple pointer assignment: It simply
changes which memory block a name refers to.

This view is fundamentally incompatible with how memory is handled in WGSL, where
pointers are explicitly typed and defined as not being storable. In other words, WGSL does not
allow reassigning pointers, preventing SetMem from being implemented properly. As we will
see in the evaluation section (4), this is one of the major limitations preventing the backend
from running larger, more complex, real-world Futhark programs.
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2.4.3 Limitations of the WebGPU backend

While functional, there are still many features that lack proper support in the WebGPU backend,
with the lack of SetMem statements mentioned earlier being a big one. Some of the other
limitations identified by Paarmann in his thesis [11, pp. 35-36] are listed in Figure 4. We here
give a more detailed description of the limitations of concern for this project.

• 64-bit floats and 64-bit division.

• Support for floating-point NaN and infinities.

• In-kernel error handling.

• Various ImpCode statements like SetMem, Copy and DeclareMem for ScalarSpace.

• Atomic operations for types other than 32-bit integers.

• Uniform control flow analysis violations conflicts with atomic types in shared memory.

• Memory fences.

• Various built-in transpose and copy kernels.

Figure 4: Summary of known limitations of the WebGPU backend at the beginning of the project.
Adapted from Figure 6.1 of Paarmann’s thesis [11]

A relatively simple limitation is the lack of support for floating-point NaN and infinities. This
is a surprisingly big problem for the backend, as the compiler freely emits special floats for
common operations like f32.minimum. Programs using these operations will fail to compile
or potentially return incorrect results at runtime [11, p. 36]. This is a limitation inherited
from WGSL, which deviates from the IEEE-754 floating-point standard. We describe our
workarounds in Section 3.5.

Another big limitation is the lack of atomic operations for types other than 32-bit integers.
This limitation is carried over from WGSL, which itself only has very limited support for atomics.
Their absence causes a lot of Futhark programs to break, since the Futhark compiler relies
on atomics for common operations like histogram computation. In Section 3.1, we describe
how simulating most of the atomic operations used by Futhark can be accomplished using
the limited atomics supported by WGSL. The necessary background on memory models and
atomics for understanding the details of our implementation is provided in Section 2.5.

The lack of built-in transpose and copy kernels also causes issues in many Futhark programs.
These are hand-written generic kernels that the compiler expects backends to provide. They
were only left out of Paarmann’s work due to time limitations [11, p. 38], so there is no technical
reason for why they cannot be ported to WGSL. We describe their implementation in Section 3.2.

While some of the missing ImpCode statements like SetMem would require a major refactor
of the backend to emulate [11, p. 37], we describe the implementation of in-kernel function
call statements in Section 3.3 and Copy statements in Section 3.4. Adding support for the copy
statement fixed some optimization passes performed by the compiler that previously would
trip up the WebGPU backend.

Finally, we briefly briefly describe our implementation of DeclareMem statements target-
ing ScalarSpace in section 3.6. This section also contains a brief summary of other small
additions, improvements and bug-fixes for the backend that were implemented during this
project, but which did not warrant an entire section by themselves. They were nonetheless
critical in improving the stability of the WebGPU backend.
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2.5 Memory Models
In order to reason about correct multithreaded execution, the semantics of shared memory3

must be clearly defined through an unambiguous memory model [1, p. 91]. Fundamentally, a
memory model just defines the set of values a load operation in a program may return. Unlike
for single-threaded execution, there is no immediately obvious answer to this and there may
be multiple correct behaviours [9, Ch. 3]. When must a memory operation by one thread be
visible to another thread?

The memory model defines an interface between a program and the underlying executing
hardware. Compilers rely on the memory model defined by the instruction set architecture
(ISA) of a processor to perform optimizations on programs that do not change their behaviour.
Likewise, a programmer must be familiar with the memory model defined by their high-level
language of choice to write correct multithreaded programs. We here give a quick introduction
to some common memory models as well as how to reason about them.

2.5.1 Strong Memory Models

When a program is executed on a single processor, a programmer can safely rely on the fact
that the result of the execution will be as if all operations had been executed sequentially in
program order. The most natural way to view the execution of a multithreaded program might
then be to view multithreaded execution as simply interleaving the steps of the sequentially
executing threads. This is the sequential consistency (SC) model introduced by Lamport [7].

Consider the following simple example listed in Table 3. We assume all variables are
initialized to zero.

Thread 1 Thread 2
store x 1 store y 1
load r1 y load r2 x

Table 3: What values are allowed in r1 and r2 after execution?

Executing this program under a SC memory model, the only possible final states for(r1,r2)
are (1,0), (0,1) and (1,1). An outcome of (0,0) is not possible, since it would one of the
loads to be memory ordered before a store. This is not possible under SC, since such a re-
ordering would violate the store-then-load program order in the example.

In practice however, SC doesn’t play nice with hardware optimizations like write buffers
and has thus been abandoned by vendors over performance concerns [9, Ch. 4]. Instead, ISAs
like x86 adopted the total store order (TSO) model, which loosens the constraint that stores be
ordered before loads. This has the consequence that (0,0) is a valid final state for (r1,r2)
after executing Table 3 under TSO. If this execution is undesirable, the programmer will have
to insert a memory fence between the stores and loads.

A memory fence specifies that all memory operations program-ordered before the fence
must be ordered before any memory operations program-ordered after the fence. Inserting
fences between the stores and loads thus prevents the loads and store from being reordered.

SC and TSO are both known as strong memory models, since they (mostly) respect the
per-thread program order of memory operations. However, by relaxing ordering constraints
to only the orders specified by programmers, weak memory models seek to further improve
performance by enabling more hardware and software optimizations [9, Ch. 5].

3In this context, shared memory simply refers to any memory accessed by multiple threads.
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2.5.2 Weak Memory Models

Consider the simple example program listed in Table 4 (adapted from [9, Ch. 5]). Line numbers
are listed in the first column, and we again assume all variables are initialized to zero. The
intention behind this program is clear: Thread 2 should wait for thread 1 to signal that it has
updated x and y before they are loaded in thread 2. And this is indeed what happens when
executed under SC and TSO: Both require that the x and y stores are ordered before the flag
update. Likewise, the flag load in thread 2 must be ordered before the x and y loads.

Thread 1 Thread 2
1 store x 1 load r1 flag
2 store y 1 if (r1 != 1) goto 1
3 store flag 1 load r2 x
4 load r3 y

Table 4: What orderings are needed for correct execution?

But SC and TSO also enforce some unnecessary orderings in this program: The x store
must be ordered before the y store and the x load must be ordered before the y load. However,
correct execution of this program only requires that the x and y stores are ordered before the
flag store, and that the loads are ordered after the flag load. If we weakened our memory model
to get rid of these excess ordering requirements, implementations could be freed up to employ
more aggressive optimizations, increasing performance [9, Ch. 5].

In a relaxed memory model, loads and stores are unordered unless they operate on the same
address. If order is needed, a fence has to be used. Disregarding all orderings like this initially
seems to break all intuition one might have about the program, but it is the model favoured by
GPUs as well as CPU ISAs like ARM and RISC-V. It is now perfectly legal for r2 and r3 to end up
containing zeros. To ensure correct execution, we have to insert a fence after the x,y stores
and above the x,y loads4.

Thread 1 Thread 2
1 store x 1 load r1 flag
2 store y 1 if (r1 != 1) goto 1
3 fence fence
4 store flag 1 load r2 x
5 load r3 y

Table 5: Correct implementation of Table 4’s program under a relaxed memory model.

In practice, relaxed memory models like the one used in ARM use release consistency (RC).
Under RC, normal memory operations are still unordered, but we now introduce acquire and
release operations as well. For a release operation, we require that any preceding loads/stores
must be visible before the release, while an acquire operation must be visible before any
succeeding loads or stores. Essentially, a release operations introduces a preceding fence
while an acquire operation introduces a succeeding fence [9, Ch. 5].

4One might think that only adding the fence between stores in thread 1 is sufficient. This is not the case, however.
Under relaxed memory ordering, there is no reason why the x and y loads in thread 2 should be ordered after the flag
load. A compiler would for example be perfectly within its right to reorder the loads above the flag check.
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2.5.3 Memory Models in GPUs

While many of the memory model concepts introduced so far also apply to GPUs, there are
significant architectural differences between GPUs and CPUs that slightly complicates the
memory model. The main difference is the hierarchical organization of execution units in
GPUs. Traditionally, GPUs were narrowly designed for accelerating embarrassingly parallel
graphics workloads that only required little data sharing and synchronization. Whereas CPU
threads are “equal”, the threads of a GPU are grouped into workgroups, which in turn are
grouped into kernels. Early GPUs therefore only supported a bulk-synchronous programming
model where threads within a workgroup could synchronize with execution barriers, but global
memory communication between workgroups of a kernel was disallowed due to the lack of a
rigorous memory model [8, p. 2].

To expose this hierarchical organization of threads to the programmer, memory models
for GPUs introduced the notion of scope. In the Vulkan memory model (which is also the one
used by WebGPU), the scope of an atomic operation is defined as the “sets of shader invocations
that must obey the requested ordering and atomicity rules of the operation” [5, Appendix B]. In other
words, which sets of threads have to synchronize with the operation?

The idea of scoping synchronization operations arises from the simple observation that,
in most cases, a thread only needs to be synchronized with the neighbouring threads in its
workgroup [8, p. 3]. We would be wasting a lot of performance if GPU fences always had to
synchronize with all other threads executing on the device. By allowing software to scope its
synchronization operations, hardware can avoid unnecessarily propagating synchronization
mechanisms beyond the boundaries of the desired scope [8, p. 3].

Scope Synchronized Invocations
Device All threads executed on the device.
QueueFamily All threads executed by queues in a given queue family.
Workgroup All threads of a workgroup.

Table 6: Selected memory scopes defined by Vulkan [5, §9.25]

In WGSL, atomic operations are scoped based on the address space of the pointer we are
accessing. The scopes used by WGSL are defined in the Vulkan spec (see Table 6). For pointers
in the workgroup address space, the Workgroup scope is used, while the QueueFamily scope
is used for pointers in the storage address space. For this project, we are only concerned
with kernels executing on the same compute queue, so the distinction between Device and
QueueFamily is not important.
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3 The WebGPU Futhark Backend

3.1 Atomics

The Futhark compiler makes use of atomic operations on all integer types and supports atomic
floating point addition. This complicates translating ImpCode to WGSL, as only atomic types
for 32-bit signed and unsigned integers are supported on WGSL [2, §6.2.8].

3.1.1 Atomic 8- and 16-bit operations

Since smaller integer types like i8 and i16 already are represented by full i32s in the WebGPU
backend, we can simulate atomic operations on them using by just updating the 8/16 bits of an
atomic<i32> using a compare-and-swap loop on the full i32.

However, while i8 and i16s are represented as i32s, the actual memory layout of i8 and
i16 values differs depending on the address space. For storage buffers (global memory), we
want to keep the memory layout of buffers coherent with the layout on the host, since they are
often copied directly between host and gpu. As such, i8 and i16s are packed into i32s, such
that the lower and upper 16 bits of a i32 are used for two different i16s, and similarly for i8s.

This means that, when performing our compare-and-swap (CAS) loop on an i32, we have
to make sure we are only modifying the correct 8 or 16 bits. When the compiler wants to
perform an atomic operation on the ith 8-bit value of a buffer, we thus have to first index the
i32 buffer at i / 4 and then index the i32 value as an array of four i8s at i % 4. Expressions
for obtaining a pointer to the appropriate i32 and calculating the offset within the i32 are
generated by the compiler and then used as arguments for the actual atomic operation. As
an example of what the implementation of these atomic operations looks like in WGSL, see
Figure 5 with our implementation of atomic addition of an i8 value.

1 atomic_add_i8_global(p: ptr<storage, atomic<i32>, read_write>, offset: i32, x: i8) {
2 let shift = bitcast<u32>(offset * 8); // i8 is stored in bits [shift : shift+8]
3 loop {
4 let old = atomicLoad(p);
5
6 // Extract i8 from the i32, perform operation, and shift back up
7 let val = i32(add_i8(norm_i8(old >> shift), x)) << shift;
8 // Clear the old bits for the i8 in the i32, keep the rest
9 let rest = old & ~(0xff << shift);
10
11 // OR the updated value with the remaining unmodified bits and CAS
12 if (atomicCompareExchangeWeak(p, old, val | rest).exchanged) {
13 return norm_i8(old >> shift);
14 }
15 }
16 }

Figure 5: WGSL implementation of atomic addition of an i8 using a CAS loop.

Since shared memory buffers are never copied directly to or from the host, this packing is
not done in the workgroup address space, where i8 and i16 just take up a full i32 each5.

5While this wastes a lot of memory on padding, it means that we do not have to mark i8 and i16 buffers as
atomic if they are never accessed atomically. At the time of Paarmann’s thesis, this was necessary for generating
workgroupUniformLoads, as they did not work on atomic values [11, pp. 22-23]. This was recently changed, however,
so they now work with atomic values as well [2, §17.11.4]. See https://github.com/gpuweb/gpuweb/pull/5141.
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Atomic operations on values in shared memory are thus much simpler to implement, as we
do not have to bother maintaining the other bits of the i32, but can just swap the entire i32
directly:

1 atomic_add_i8_shared(p: ptr<workgroup, atomic<i32>>, x: i8) -> i8 {
2 var old = atomicLoad(p);
3 while (!atomicCompareExchangeWeak(p, old, add_i8(norm_i8(old), x)).exchanged) {
4 old = atomicLoad(p);
5 }
6
7 return norm_i8(old);
8 }

3.1.2 Floating-point operations

A similar approach can be taken for handling atomic operations on floats, where we can combine
bitcast<f32>’s with atomic exchanges to simulate atomic operations. This approach was
already used as a fall-back option in the CUDA and OpenCL backends to emulate atomic floating
point operations on platforms without native support.

1 fn atomic_fadd_f32_shared(p: ptr<workgroup, atomic<i32>>, x: f32) -> f32 {
2 var old: f32 = x;
3 var ret: f32;
4 while (old != 0.0f) {
5 ret = bitcast<f32>(atomicExchange(p, 0)) + old;
6 old = bitcast<f32>(atomicExchange(p, bitcast<i32>(ret)));
7 }
8 return ret;
9 }

For 16-bit floating point operations, we again have to pack them into atomic<i32> values
like we did for i16. However, instead of extracting and updating values from an i32 with
bitwise operations, we can simply bitcast the i32 to a vec2<f16> and index the vec2 with
the offset.

1 fn atomic_read_f16_global(p: ptr<storage, atomic<i32>, read_write>, offset: i32) {
2 return bitcast<vec2<f16>>(atomicLoad(p))[offset];
3 }

To implement the atomic fadd_16 operation, we pack the f16 we want to operate on into
a vec2<f16> at the specified offset and zero the other entry. This value can then be added
directly to the old value stored at the specified address, allowing us to implement the fadd
with the same basic CAS loop used for i8 and i16 operations.

1 fn atomic_fadd_f16_global(p: ptr<storage, atomic<i32>, read_write>,
2 offset: i32, x: f16) {
3 var val = vec2<f16>(0.0); val[offset] = x;
4 var old = bitcast<vec2<f16>>(atomicLoad(p));
5 while (!atomicCompareExchangeWeak(p, bitcast<i32>(old), bitcast<i32>(old +

val)).exchanged) {↪→

6 old = bitcast<vec2<f16>>(atomicLoad(p));
7 }
8
9 return old[offset];

10 }
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A limitation of our implementation is that we now pad 16-bit floating point values in shared
memory like we do for 16-bit integers. This limitation is a result of having to use the same
function signature established by the other atomic_*_shared functions, which do not include
an offset argument for indexing into the atomic<i32> value being operated on.

3.1.3 Atomic 64-bit operations

While adding limited support for 64-bit atomic operations in the future has been considered6,
it still looks years off. At the time of writing, simulating atomic operations for 64-bit values in
WGSL is not possible given the current memory model and provided atomic operations. As an
initial crude attempt at implementing 64-bit atomics, one might consider simply guarding i64
values with a lock to simulate atomic operations:

1 while (!atomicCompareExchangeWeak(p_flag, 0, 1).exchanged); // Acquire lock
2 *p_val = add_i64(*p_val, v); // Store new i64
3 atomicStore(p_flag, 0); // Release lock

However, this implementation is incorrect. In fact, it is impossible to write a correct spinlock
in WGSL. The reason for this is that all atomic operations in WGSL use relaxed memory ordering.
Quoting the WGSL specification:

[WGSL §17.8] Atomic Built-in Functions

All atomic built-in functions use a relaxed memory ordering. This means synchronization
and ordering guarantees only apply among atomic operations acting on the same memory
locations. No synchronization or ordering guarantees apply between atomic and non-
atomic memory accesses, or between atomic accesses acting on different memory locations.

As such, it is impossible to establish any happens-before relationships7. If thread A
acquires the lock, updates p_val and then releases the lock, it is perfectly legal for the write to
not be visible to some other thread B that acquires the lock at a later time. In fact, the compiler
would be completely within its rights to reorder the first two lines, such that the store operation
is program-ordered7 before the compare exchange.

In order to establish the necessary happens-before relationships, such that any writes to
p_val must be visible to the next thread that acquires the lock, WGSL would have to expose
support for release-acquire memory semantics:

1 while (!atomicCompareExchangeWeak(p_flag, 0, 1, Order::Acquire ).exchanged);
2 *p_val = add_i64(*p_val, v);
3 atomicStore(p_flag, 0, Order::Release );

The release-acquire memory semantics are already well-defined in the Vulkan memory
model [5, Appendix B] used by WebGPU: An atomic write with acquire semantics must not be
reordered against any read or write that is program-ordered after it, while an atomic write with
release semantics must not be reordered against any read or write that is program-ordered
before it. Together, release and acquire operations can act as synchronization operations
between different threads to guarantee that writes that happened before the release in one
thread are visible after the acquire in another thread.

6https://github.com/gpuweb/gpuweb/issues/5071
7As defined in the Vulkan memory model [5, Appendix B], which is also the model followed by WGSL [2, §14.5]
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How about using a memory fence then? CUDA provides memory fence functions for
enforcing sequentially consistent ordering of memory accesses. For example, the device-
scoped __threadfence() can be used to ensure that no writes to memory made by the calling
thread after the call to __threadfence() are observed by any thread as occurring before any
write to all memory made by the calling thread before the call to __threadfence() [4, §10.5].
Such a fence would allow us to implement the spinlock as follows:

1 while (!atomicCompareExchangeWeak(p_flag, 0, 1).exchanged);
2 threadfence();
3 *p_val = add_i64(*p_val, v);
4 threadfence();
5 atomicStore(p_flag, 0);

Unfortunately, no such memory fences exist in WGSL. As a last-ditch effort, one might
consider using a full memory barrier instead of a fence. WGSL provides theworkgroupBarrier
and storageBarrier functions which use AcquireRelease7 memory semantics [2, §14.5.4].
Unfortunately, these are of no use either, since the WGSL also mandates that control barriers
only be executed in uniform control flow [2, §15.6.1]. Additionally, all control barriers use work-
group scope [2, §14.5.3], so they would not provide strong enough guarantees for simulating
atomics on global memory.

3.1.4 Handling multiple signedness

As mentioned in Section 2.4.2, the WebGPU backend always declares variables as being signed,
and then implements functions for performing operations with the proper signedness in the
WGSL prelude. However, this was previously not done for atomic operations. Since only 32-bit
atomics were supported before, native WGSL atomics like atomicMax were just used directly.
To ensure the semantics of these atomic operations were correct, the backend would go through
all uses of buffers to make sure they were always used at the same signedness and then declare
the type of the buffer in that signedness. If multiple signednesses were used, an error would
be raised and the Futhark program would fail to compile.

To lift this limitation, we now declare all buffers of atomic integers as signed. While this
does mean that we have to emulate 32-bit unsigned atomic max/min operations using a CAS
loop (see Figure 6), we consider it an acceptable trade-off, as many programs using unsigned
min/max operations previously would completely fail to compile due to the mixed-signedness
limitation.

3.2 Built-in Kernels

While most kernels are generated by the compiler custom to the specific program being
compiled, some generic kernels for transpositions of multidimensional arrays and copies that
require some non-contiguous indexing are instead hand-written and included in all programs.

In total, there are five different built-in kernels, each of which has four variations for
operating on 1-, 2-, 4- and 8-byte data. In the CUDA/OpenCL backend, these variations are
automatically generated by a big C macro. As WGSL does not have a preprocessor, we instead
opted to implement the five kernels in separate WGSL files and then generate the different
variations as part of the codegen of the WebGPU backend using basic search and replaces for
element types and function names.
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1 fn atomic_smax_i32_shared(p: ptr<workgroup, atomic<i32>>, x: i32) -> i32 {
2 return atomicMax(p, x);
3 }
4
5 fn atomic_umax_i32_shared(p: ptr<workgroup, atomic<i32>>, x: i32) -> i32 {
6 var old = atomicLoad(p);
7 while (!atomicCompareExchangeWeak(p, old, umax_i32(old, x)).exchanged) {
8 old = atomicLoad(p);
9 }
10
11 return old;
12 }

Figure 6: To handle usage of atomic types at multiple signedness, we declare all atomic values
as signed, and then emulate unsigned operations with a CAS loop.

As an example of how these kernels were implemented in WGSL, the implementation of the
built-in map_transpose_small kernel is listed in Figure 7. The parameter struct has been
omitted for space reasons, but they should be self-explanatory. 64-bit arguments like buffer
offsets are truncated to 32 bits. Occurrences of NAME are replaced with 1b, 2b, 4b or 8b with
ELEM_TYPE correspondingly being replaced by i8, i16, i32 or i64.

1 @group(0) @binding(0) var<uniform> args: MapTransposeParameters;
2 @group(0) @binding(1) var<storage, read_write> dst_mem: array<ELEM_TYPE>;
3 @group(0) @binding(2) var<storage, read_write> src_mem: array<ELEM_TYPE>;
4 @compute @workgroup_size(block_size_x, block_size_y, block_size_z)
5 fn map_transpose_NAME_small(@builtin(global_invocation_id) global_id: vec3<u32>) {
6 let dst_offset = args.dst_offset[0]; // truncate i64 arguments to i32
7 let src_offset = args.src_offset[0];
8 let global_id_0 = i32(global_id.x);
9

10 let our_array_offset = global_id_0 / (args.y_elems * args.x_elems) *
args.y_elems * args.x_elems;↪→

11 let x_index = (global_id_0 % (args.y_elems * args.x_elems)) / args.y_elems;
12 let y_index = global_id_0 % args.y_elems;
13
14 let odata_offset = dst_offset + our_array_offset;
15 let idata_offset = src_offset + our_array_offset;
16 let index_in = y_index * args.x_elems + x_index;
17 let index_out = x_index * args.y_elems + y_index;
18
19 if (global_id_0 < args.x_elems * args.y_elems * args.num_arrays) {
20 write_ELEM_TYPE(&dst_mem, odata_offset + index_out,

read_ELEM_TYPE(&src_mem, idata_offset + index_in));↪→

21 }
22 }

Figure 7: Source code for the built-in map_transpose_small kernel.

The write and read functions called at the end of Figure 7 are part of the WGSL prelude
that gets prepended to all WGSL kernels mentioned in Section 2.4.2. Since WGSL has no native
support for non-32-bit integers, these helper functions are necessary to correctly access small
8- or 16-bit values from dst_mem and src_mem that are packed in 32-bit integer buffers.
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3.2.1 The shared C runtime
One difference between WGSL and other backends is how pointers to global memory are passed
to kernels. In CUDA/OpenCL, we can simply pass pointers to global memory like any other
kernel parameter. This is not the case for WGSL, however, where we instead have to bind
a storage buffer when launching a kernel. In the existing WebGPU backend, there was an
assumption that these bindings always were listed as the last arguments in a kernel launch call
on the host. This assumption is only guaranteed in the WebGPU codegen however, and did not
exist in the other backends since the order in which pointers are passed to a CUDA/OpenCL
kernel doesn’t matter.

As such, the shared C runtime for CUDA/OpenCL/WebGPU didn’t respect this assumption
when launching built-in kernels, causing problems for the WebGPU implementation of the
internal GPU abstraction layer. Since the ordering of arguments is of no consequence to the
other backends, we made the design decision to enforce this assumption in the shared C
runtime to accommodate WebGPU.

Another modification to the WebGPU C runtime was how the built-in kernels are compiled
to shader modules. Currently, the WebGPU backend generates a single huge WGSL program
containing all the generated kernels which is then compiled into a single shader module in the
C runtime. When implementing the built-in kernels, we decided to output each built-in kernel
in its own isolated WGSL program instead of appending them all to the main WGSL program.
The WebGPU C runtime then generates a separate shader module for each built-in kernel.

3.3 In-kernel function calls
In general, the Futhark compiler aggressively inlines function calls in kernels. As such, their
omission in Paarmann’s original work doesn’t cause any issues when running small programs.
When the programs get larger however, or if they, like the example below, use the #[noinline]
attribute, the compiler will emit function calls in the kernel ImpCode.

1 def f (x: f32) = (2*x, 4*x)
2 def main = map (\x -> let (a, b) = (#[noinline] f x) in a)

When translating ImpCode kernels to WGSL, the backend first runs some passes that
generate any declarations that should be added before the compute shader itself (e.g. override
constants). To implement function calls, we added a new pass that scans the kernel body for
function calls and ensures any unknown functions are generated and declared before the
kernel itself. This loosely follows the approach taken by the OpenCL backend.

Unlike WGSL, which only allows functions to return a single value, Futhark allows multiple
return values. To handle this discrepancy, we used the same approach as the existing C-backend,
where return value destinations are passed as pointer arguments to the function. Thef function
from the Futhark listing above is thus translated into the following WGSL function signature:

1 fn futrts_f_4659(x_5328: f32, prim_5404_out: ptr<function, f32>,
2 prim_5405_out: ptr<function, f32>)

Multi-destination ImpCode Call statements are then translated as follows:

1 var lifted_lambda_res_5398: f32;
2 var lifted_lambda_res_5399: f32;
3 futrts_f_4659(eta_p_5397, (&lifted_lambda_res_5398), (&lifted_lambda_res_5399));

Due to time constraints, we have only implemented support for primitive arguments and
return values for in-kernel functions. Memory parameters are still not supported.
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3.4 In-kernel copies

Another missing ImpCode statement is the Copy statement for in-kernel copies. A Copy
specifies a type, the shape of the copy to perform, and the actual source and destination
buffers, along with arguments for the offsets and strides to use when accessing them.

To translate these statements into WGSL, we construct nested loops based on the dimen-
sionality of the shape, iterating over each dimension to compute the corresponding indices in
the source and destination buffers. These indices are calculated as linearized addresses using
the provided offsets and strides for each buffer. The indices are then used to perform a read
from the source buffer and write to the destination buffer. A lightly adapted version with added
comments of our implementation is listed in Figure 8.

1 -- | Generate a WGSL.Stmt from an ImpCode Copy with type pt
2 genCopy pt shape (dst, dst_space) (dst_offset, dst_strides) (src, src_space)

(src_offset, src_strides) = do↪→

3 -- Generate a WGSL expression for each shape dimension
4 shape' <- mapM (genWGSLExp . untyped . unCount) shape
5
6 -- For each iteration, calculate linearized address for source and destination
7 -- and generate a WGSL read and write using these indices:
8 body <- do
9 -- Linearized address calculated by adding offset to dot product of the

10 -- shape iterators with their respective strides:
11 -- dst_i = dst_offset + i_0 * dst_stride[0] + i_1 * dst_stride[1] + ...
12 let dst_i = dst_offset + sum (zipWith (*) is' dst_strides)
13 src_i = src_offset + sum (zipWith (*) is' src_strides)
14 read' = genReadExp pt src_space src src_i -- src[src_i]
15 in genArrayWrite pt dst_space dst dst_i read' -- dst[dst_i] = read'
16
17 -- Generate nested loops based on the shape dimensionality around the element copy
18 pure $ loops (zip iis shape') body
19 where
20 (zero, one) = (WGSL.VarExp "zero_i64", WGSL.VarExp "one_i64")
21 is = map (VName "i") [0 .. length shape - 1]
22 is' :: [Count Elements (TExp Int64)]
23 is' = map (elements . le64) is
24 iis = map nameToIdent is
25
26 -- Given an array of identifiers and loop bounds, generate nested for loops,
27 -- with a given WGSL statement as the innermost body:
28 -- for (i_0 = 0; i < shape[0]; i++) {
29 -- for (i_1 = 0; i < shape[1]; i++) {
30 -- ...
31 -- body;
32 loops :: [(WGSL.Ident, WGSL.Exp)] -> WGSL.Stmt -> WGSL.Stmt
33 loops [] body = body
34 loops ((i, n) : ins) body =
35 WGSL.For i zero
36 (wgslCmpOp (CmpUlt Int64) (WGSL.VarExp i) n)
37 (WGSL.Assign i $ wgslBinOp (Add Int64 OverflowWrap) (WGSL.VarExp i) one)
38 (loops ins body)

Figure 8: Annotated implementation of generating a WGSL in-kernel copy.
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3.5 Floating-point infinities and NaNs

WGSL floats generally follow the IEEE-754 standard for 32- and 16-bit floats with some small,
but rather significant, deviations. The most important of these is how infinities and NaNs
are handled. A WGSL implementation may assume that infinities and NaNs are not present
during shader execution. If a runtime expression yields an infinity or NaN, “the result will be
an indeterminate value of the target type.” [2, §15.7.2] As a result, “some functions (e.g. min
and max) may not return the expected result due to optimizations about the presence of NaNs
and infinities.” [2, §15.7.2]

This is problematic for Futhark which explicitly exposes infinities and NaNs in its standard
library. Additionally, the compiler uses infinities as neutral elements for common operations
like f32.minimum. Despite not being mandated by the WGSL spec however, NaNs and infinities
seemed to work as expected whenever they were generated at runtime on the platforms we
tested8. The main problem was thus how to assign a float variable to infinity or NaN when the
WGSL spec mandates that “infinities and NaNs generated before shader execution will generate
errors” [2, §15.7.2].

To get around this restriction, we bitcast a u32 literal with a bit pattern corresponding to an
infinity or NaN. Directly bitcasting such a literal was caught by the WGSL compiler, so we have
to wrap it in a helper function.

1 fn f32_inf_helper() -> u32 { return 0x7f800000u; }
2 fn f32_inf() -> f32 { return bitcast<f32>(f32_inf_helper()); }
3
4 fn f16_neg_inf_helper() -> u32 { return 0xfc00u; }
5 fn f16_neg_inf() -> f16 { return bitcast<vec2<f16>>(f16_neg_inf_helper())[0]; }

By adding functions for generating infinities and NaNs to the WGSL prelude, the WGSL
codegen can simply assign a float to special value by calling one of these functions.

1 handleSpecialFloats :: T.Text -> Double -> WGSL.Exp
2 handleSpecialFloats s v
3 | isInfinite v, v > 0 = WGSL.CallExp (s <> "_inf") []
4 | isInfinite v, v < 0 = WGSL.CallExp (s <> "_neg_inf") []
5 | isNaN v = WGSL.CallExp (s <> "_nan") []
6 | otherwise = WGSL.FloatExp v

The Futhark compiler also expects the runtime of the compilation target to provide isinf
and isnan functions for determining if a given float is infinite or a NaN. To implement this in
WGSL, we bitcast the float to an unsigned integer, extract the exponent and mantissa bits, and
determine whether it is infinite or a NaN according to the IEEE-754 rules for how the bits of a
float are interpreted, as described in [2, §15.7.1]. For example, if a float is infinite, the exponent
field will be all 1s while the mantissa is zero.

1 fn futrts_isinf32(x: f32) -> bool {
2 let exponent = (bitcast<u32>(x) >> 23) & 0xFF;
3 let mantissa = bitcast<u32>(x) & 0x7fffff;
4
5 // If the exponent field is all 1s, and mantissa is zero, x is an infinity.
6 return (exponent == 0xff) && (mantissa == 0);
7 }

8We tested in Chrome with a discrete NVIDIA 3050ti laptop GPU and an embedded AMD 680M GPU
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Likewise, for a NaN, the exponent field will be all 1s while the mantissa is non-zero. To
extract the bits of a 16-bit float, we again use the trick of packing it in a vec2<f16> before
bitcasting to an u32.

1 fn futrts_isnan16(x: f16) -> bool {
2 let bits = bitcast<u32>(vec2<f16>(x, 0.0));
3 let exponent = (bits >> 10) & 0x1F;
4 let mantissa = bits & 0x3ff;
5
6 // If the exponent field is all 1s, and mantissa is nonzero, x is a NaN.
7 return (exponent == 0x1f && mantissa != 0);
8 }

From our limited testing, these implementations work as expected when using infinities
and NaNs in Futhark code, although we cannot guarantee that they are functional across WGSL
implementations on different browsers and GPUs due to the lack of guarantees from the WGSL
specification on how special floating point values are handled.

3.6 Other additions and bug-fixes

Throughout the project, we encountered various minor issues, some of which were not dis-
cussed in Paarmann’s thesis [11]. While fixing these was an important step in improving the
robustness of the WebGPU backend, they did not all warrant a section by themselves. We here
summarize the issues we encountered, and how they were solved. For a complete list of all
contributions to the backend from this project, see Figure 11 in the appendix.

Out-of-date WebGPU runtime At the beginning of the project, programs generated by the
WebGPU backend failed to compile, as the shared C runtime for host code had been modified
without updating the WebGPU implementation accordingly.

64-bit integer literals If a 64-bit integer literal is specified in ImpCode, the WebGPU backend
will have to split it into two 32-bit values stored in a vec2<i32>. We found that the backend
was only extracting the bottom 24 bits of the low and high 32-bits of 64-bit integer literals.
This meant that a 64-bit -1 literal was translated into a vec2<i32>(0xffffff, 0xffffff),
which when read as a signed 64-bit integer would be 72057589759737855.

Mixed 32/64-bit operations Mixing 32- and 64-bit integers in binary operations is not sup-
ported in the generated WGSL runtime, but the compiler was attempting to generate them
for histogram constructs. This was resolved by making the compiler sign-extend the 32-bit
integer to 64-bits before operating on the them.

Multiline comments The WebGPU backend would sometimes generate multiline comments
in WGSL code. However, the pretty-printer for outputting these comments to WGSL did not
properly handle multiline comments, causing only the first line to be commented which
resulted in shader compilation errors.

1 -- Before: Multi-line comments would spill out below the "//" line
2 pretty (Comment c) = "//" <+> pretty c
3 -- After: Each line of a comment gets "//" prepended.
4 pretty (Comment c) = vsep (map ("//" <+>) (pretty <$> T.lines c))
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Negation The WebGPU backend was erroneously translating unary negations to the logical
negation operator ! for float and integer types. For floating-point types, we instead want to
output a minus sign, while we for integer types have to call neg_* helper functions to handle
negations of 8-, 16- and 64-bit integers not natively supported in WGSL.

Hanging tests While testing, we found that a lot of tests would hang when run. This was
caused by the default max message size of the WebSocket opened by the webgpu test runner
being very small, breaking tests taking anything beyond trivially-sized arrays as inputs. This
was solved by increasing the max message size to 1 GiB.

Out-of-memory crashes when testing As our test inputs increased in size, however, we
started running into out-of-memory crashes. The WebGPU test runner would previously read
binary input data from a file, encode it to b64 string and send send it over a WebSocket. The
JavaScript wrapper would then decode the string back to binary data. For large input data, this
decoding step resulted in out-of-memory crashes that froze the browser. Instead of sending
input data as b64 encoded strings, we now send a path to the binary test input file, allowing the
JavaScript wrapper to fetch it directly without having to decode anything.

DeclareMem statements in ScalarSpace As mentioned in Section 2.4.3, the DeclareMem
statement forScalarSpacehad not been implemented yet. In the Futhark compiler,ScalarSpace
refers to a statically sized array of some primitive type in private memory on the GPU. To
translate this into WGSL, we declare a statically sized array of the given type. The ScalarSpace
type specifies the shape of the array as a list of constants. These are multiplied together into a
big constant WGSL expression that is then used as the size parameter for the array.

1 -- | The ScalarSpace DeclareMem case in the main genWGSLStm function
2 genWGSLStm (DeclareMem name (ScalarSpace vs pt)) =
3 pure $ WGSL.DeclareVar
4 (nameToIdent name)
5 (WGSL.Array (wgslPrimType pt) (Just $ wgslProduct vs))

GPU copies within buffers The shared C runtime provides a gpu_memcpy function for copy-
ing blocks of memory around in device memory. To implement this function in WebGPU, the
copyBufferToBuffer function was used. Unlike its CUDA and OpenCL equivalents, however,
the WebGPU function does not allow the source and destination buffers to be the same [10, §13.4].
As this condition was not checked in the WebGPU backend’s gpu_memcpy implementation,
Futhark programs would simply crash if the compiler attempted to move blocks of memory
around within a buffer with a gpu_memcpy.

This issue was another example of the disconnect between capabilities assumed by the
existing compiler, and what WebGPU actually provides. As a temporary solution, we modified
gpu_memcpy to allocate a temporary GPU buffer if the source and destination buffers are
identical and then call copyBufferToBuffer twice. As an alternative solution that would
avoid this allocation, we considered implementing a built-in memmove kernel that could be
launched to perform the move instead. However, we did not have time to test out this approach.
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4 Evaluation

4.1 Testing

The Futhark compiler comes with a large suite of test programs. To evaluate the robustness of
the WebGPU backend, we ran some selected groups of tests that focus on different aspects of
the compiler.

The primitive suite contains tests for primitive types, operations on them, and some
built-in functions. The tests themselves are very simple, but they are useful for evaluating our
coverage of basic built-in functions and types. To test codegen for more complicated compiler
transformations, we also run the noinline, intragroup and hist test suites, which should
be representative of the more challenging compiler transformations.

The noinline suite tests test our implementation of in-kernel function calls. The soacs
suite tests that we can compile basic second-order array combinators like maps, scans and
reduces correctly. The hist suite contains tests generating various histogram constructions,
while intragroup tests further stress-test more complex compiler transformations.

Running these test suites, we get the results listed in Table 7. We list the total number of test
cases, along with the number of passing and failing cases. We have split failing test cases into
fail and error columns in order to distinguish between tests that compile, but exhibit incorrect
behaviour (fail), and those who fail to compile (error).

Test Suite Count Pass Fail Error
primitive 489 359 11 119
soacs 81 57 11 13
hist 106 89 5 12
intragroup 74 57 5 12
noinline 15 11 2 2

Table 7: Test results for the Futhark WebGPU backend at the end of the project. Number of test
cases (i.e. not test programs) are listed, with most programs having 2-10 test cases. Cases that
fail to compile with a reported error are listed in the error column, while tests that compile but
exhibit incorrect behaviour are listed in the fail column.

Overall we find that, while most tests pass, a large number of tests currently fail with a
compiler error when using the WebGPU backend. This is especially prevalent in theprimitive
suite, where a lot of tests use unsupported features like 64-bit floats or 64-bit atomics. For some
of the more complicated tests from the other suites, the lack of support for SetMem statements
also causes issues. It should be noted, however, that the number of tests failing to compile
is likely heavily inflated. The primitive suite especially contains lots of test programs with
different cases for 16-, 32- and 64-bit floats. However, since the 64-bit case doesn’t compile,
all three cases of the program will be counted as failing to compile. We simply have not had
enough time to properly filter out these erroneous test failures.

All suites also have a handful of tests that compile, but either return the wrong result or,
more commonly, fail at runtime due to a WebGPU assertion or JavaScript exception. We now
go over what exactly causes these failures.
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4.1.1 Failure causes

If we exclude tests that fail to compile, there are only three test programs from the primitive
suite that fail. All of these failures are caused by missing primitive operations that haven’t been
implemented yet. These are listed in Table 8.

Test Failure mode Reason
mad_hi.fut 32/64-bit test cases fail. 32/64-bit mad_hi not supported.
mul_hi.fut 32/64-bit test cases fail. 32/64-bit mul_hi not supported.
u64_division.fut All test cases fail. 64-bit division not properly supported.

Table 8: Remaining failing primitive tests (excluding tests that fail to compile).

Failure causes for the remaining failing tests of the other suites are listed in Table 9. This
list includes both runtime failures and compile-time errors. We find that all 11 of the failing
soacs test cases are caused by an exception being raised in the JavaScript code generated by
Emscripten. While we have not had time to properly investigate this issue, it seems to related
to Emscripten’s handling of async function calls in WASM, resulting in in a function expecting
a i64 parameter being called without any arguments.

Failure cause Suite Affected tests
Buffer used at different types hist horizontal-fusion
Dispatched grid too large intragroup big0
Memory parameters in GPU function noinline noinline3
No in-kernel error handling noinline noinline2 & noinline4
JavaScript BigInt conversion exception soacs All failing tests

hist large & large2d

Table 9: Failure causes of note for remaining failing tests.

The intragroup/big0.fut test generates host code that attempts to dispatch a number
of workgroups that exceeds the maximum compute workgroups allowed per grid dimension by
WebGPU. This is not caught as a compile error, but instead causes the test to crash at runtime.
We also ran into this issue when running larger programs (see Table 10 of the following section)
or attempting to benchmark large datasets.

Some tests also fail to compile with errors caused by limitation not discussed so far. The
backend for example currently generates a compile error if a single memory buffer is used at
different types. This causes the hist/horizontal-fusion.fut test to fail to compile.

While we have implemented in-kernel function calls, device functions still do no support
memory parameters, causing the noinline/noinline3.fut test to fail to compile. The
remaining failures from the noinline suite are caused by the lack of in-kernel error handling,
as two of the noinline test cases expect the output to be a divide-by-zero error reported from
the kernel. This feature is still not supported in the WebGPU backend.
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4.1.2 Running larger programs

To test our implementation on some larger programs that more closely resemble real-world use-
cases of Futhark, we attempted to run some of the programs from the futhark-benchmarks
repository9. Examples of programs from this suite include implementations of algorithms like
kmeans and pagerank, as well as programs like a mandelbrot renderer, kmeans clustering and
a small fluid simulation. The results of running all the programs from the accelerate and
finpar suites are listed in Table 10

Program Compiles Functional Notes
fluid yes yes Passes tests.
hashcat yes yes Passes tests.
kmeans yes yes Passes tests.
mandelbrot yes partially Large tests crash: Grid size limit.
tunnel yes partially Large tests crash: Grid size limit.
LocVolCalib yes partially Large tests crash: Grid size limit.
canny yes no Wrong results.
nbody-bh yes no Number of storage buffers exceeds 10.
pagerank yes no Number of storage buffers exceeds 10.
crystal no no Buffer used at multiple types.
fft no no Generates SetMem statements.
nbody no no Generates SetMem statements.
smoothlife no no Uses 64-bit atomics.

Table 10: Results of running larger futhark-benchmark programs.

When attempting to run these larger programs however, we ran into a new critical limitation
of the WebGPU backend affecting thenbody-bh andpagerankprograms. All WebGPU-enabled
devices specify a set of limits, constraining its capabilities. These limits are validated by all API
calls, and will cause an assertion if violated. The maxStorageBuffersPerShaderStage limit
here proved to be problematic for the nbody-bh and pagerank test programs. By default, this
limit only allows 8 storage buffers to be bound in a given kernel dispatch [10, §3.6.2]. While
this default represents the minimum required limit for a WebGPU-compliant device, most
devices will, in practice, support a higher threshold, which can be requested during WebGPU
device creation.

However, while the device itself may support it, the actual WebGPU implementation might
not. We found that on Dawn, the WebGPU implementation for Chromium, the highest limit
supported is 10 storage buffers per shader stage. This is a somewhat arbitrary limit unique to
Chromium10. On our devices, for example, Firefox allows requesting a limit of up to 64 storage
buffers.

4.2 Benchmarking

To benchmark our implementation, we ran all the functional programs from Table 10 through
futhark-bench and compared with timings with the CUDA backend. All results are listed in
Table 11. We here find that the Futhark backend generally runs ∼4x slower than the CUDA
backend.

9https://github.com/diku-dk/futhark-benchmarks
10This restriction has existed since October 2023 and seems unlikely to change anytime soon, as raising it would re-

quire a more extensive refactor of the Dawn Metal backend: https://issues.chromium.org/issues/366151398
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4 EVALUATION

However, WebGPU notably beats the CUDA backend for large datasets in the fluid and
LocVolCalib benchmarks, while still being slower or only matching CUDA for small inputs.
These 2-6x performance gains for some programs were very surprising, but they remained
consistent across multiple benchmark runs. We have not had time properly investigate these
results.

WebGPU CUDA
Benchmark Case Mean 95% CI Mean 95% CI
LocVolCalib small 405.10 [ 398.85, 410.03] 441.56 [ 439.66, 443.98]

medium 451.40 [ 449.01, 453.69] 893.68 [ 890.47, 897.66]

fluid medium 45.18 [ 40.93, 49.47] 9.54 [ 8.62, 10.48]
large 349.09 [ 343.53, 358.35] 2204.43 [2199.84, 2207.83]

hashcat rockyou 44.56 [ 43.15, 46.25] 12.36 [ 12.26, 12.47]

kmeans trivial 28.68 [ 24.98, 33.63] 1.74 [ 1.65, 1.85]
50000 310.86 [ 301.81, 319.79] 35.74 [ 32.74, 41.11]
200000 394.17 [ 383.31, 409.18] 52.42 [ 49.04, 57.36]

mandelbrot 800 6.39 [ 5.83, 7.31] 0.79 [ 0.77, 0.80]
1000 9.92 [ 6.97, 13.97] 1.17 [ 1.15, 1.18]
2000 16.28 [ 15.41, 18.09] 3.11 [ 3.07, 3.17]
4000 40.23 [ 38.33, 44.54] 11.16 [ 11.10, 11.22]

tunnel 800 7.43 [ 6.17, 8.95] 1.14 [ 1.13, 1.16]
1000 11.37 [ 10.57, 13.03] 1.65 [ 1.63, 1.68]
2000 27.26 [ 25.28, 30.10] 6.37 [ 6.29, 6.45]
4000 87.04 [ 84.28, 90.93] 24.93 [ 24.20, 25.15]

Table 11: Benchmark results for selected futhark-benchmarks programs. The arithmetic
mean runtime and 95% confidence intervals across 10 runs for each test case are listed. All
timings are in milliseconds. Benchmarked on an NVIDIA 3050ti laptop GPU. WebGPU running
in Chrome 137. CUDA running in WSL.

We also ran a microbenchmark targeting the built-in transpose kernels. By varying the
shape of the input array, the compiler will generate calls to our different built-in transpose ker-
nels. When using a small 4-by-4 array as input for example, the map_transpose_small kernel
is launched. For the remaining kernels, we use inputs with 10 million entries corresponding
to datasets of about 10, 20, 40 and 80 MiB for 1-, 2-, 4-, and 8-byte element sizes respectively.
The source program for benchmarking 4-byte transpose kernels is listed in Figure 9. Identical
input shapes and sizes were used for other element sizes.

1 -- entry: transpose_i32
2 -- random input { [3162][3162]i32 } auto output -- default
3 -- random input { [5000000][2]i32 } auto output -- low_width
4 -- random input { [2][5000000]i32 } auto output -- low_height
5 -- random input { [4][4]i32 } auto output -- small
6 entry transpose_i32 (xs: [][]i32) = transpose

Figure 9: Excerpt from the Futhark program used for benchmarking built-in transpose kernels.
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Running these tests on the WebGPU and CUDA backends with futhark-bench, we get
the results listed in Table 12. From these results, we can draw a few conclusions. Looking at
the reported runtimes for the small kernel, we see that WebGPU is an order of magnitude
slower than CUDA, suggesting that the generated WebGPU programs suffer from much higher
overhead than their CUDA equivalents. This mirrors the results found in Paarmann’s thesis
[11, p. 40]

When scaling up to larger datasets, however, this difference shrinks significantly, as seen
in the default, low_width and low_height tests. Here, WebGPU is in some cases almost
equivalent with CUDA when using 4-byte element sizes. For smaller 1- and 2-byte elements
however, CUDA is significantly faster. This is likely due to the lack of native support for these
smaller data types in WebGPU, forcing the WebGPU backend to emulate them with 32-bit
atomics. This also explains why the 1- and 2-byte transposition kernels have near-identical
runtimes, where whereas CUDA sees an almost 2x performance decrease when moving from 1-
to 2-byte elements.

WebGPU CUDA
Kernel Type Mean 95% CI Mean 95% CI
default 1b 16.54 [15.86, 17.51] 4.51 [ 4.48, 4.55]

2b 16.76 [15.89, 18.84] 6.28 [ 6.24, 6.32]
4b 10.33 [ 9.95, 10.76] 10.51 [10.44, 10.60]
8b 15.32 [13.84, 17.53] 22.85 [22.34, 23.30]

low_width 1b 13.34 [11.80, 16.57] 2.24 [ 2.23, 2.25]
2b 14.38 [12.57, 16.91] 4.95 [ 4.93, 4.97]
4b 13.69 [11.95, 16.38] 8.60 [ 8.56, 8.67]
8b 11.99 [10.84, 13.82] 15.66 [15.50, 15.91]

low_height 1b 13.34 [11.90, 15.57] 2.43 [ 2.42, 2.45]
2b 13.09 [11.74, 15.30] 4.95 [ 4.04, 4.07]
4b 13.04 [11.49, 15.48] 7.73 [ 7.71, 7.78]
8b 11.11 [10.31, 12.82] 15.40 [15.34, 15.48]

small 1b 8.46 [ 6.00, 13.96] 0.20 [ 0.19, 0.21]
2b 7.93 [ 5.93, 11.01] 0.19 [ 0.18, 0.19]
4b 7.25 [ 6.32, 9.00] 0.20 [ 0.19, 0.20]
8b 7.38 [ 6.18, 9.92] 0.19 [ 0.18, 0.20]

Table 12: Benchmark results for the built-in map_transpose kernels. The arithmetic mean
runtime and 95% confidence intervals across 10 runs for each test case are listed. All timings
are in milliseconds. Benchmarked on an NVIDIA 3050ti laptop GPU. WebGPU running in
Chrome 137. CUDA running in WSL.

Surprisingly, we also see that the WebGPU backend beats CUDA’s runtime when using 8-byte
elements. Like the previous results from Table 11 however, we have not had time to properly
investigate the cause of this performance difference.

4.3 Remaining limitations

Finally, we summarize the remaining limitations discussed in this section Figure 10. This can
be viewed as an updated version of the list from Figure 6.1 of Paarmann’s thesis [11, p. 36].
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• 64-bit floats.

• 64-bit atomic operations.

• The SetMem statement in ImpCode.

• Some primitive operations like 64-bit division and 32/64-bit mul_hi and mad_hi.

• Some large programs violate the maxStorageBuffersPerShaderStage limit.

• Some large programs violate the maxComputeWorkgroupsPerDimension limit.

• Memory fences.

• Small types still waste a lot of padding in shared memory.

• In-kernel error handling.

• Buffer re-use between multiple types causes a compilation error.

• Some programs raise JavaScript BigInt conversion exceptions.

• Memory parameters in GPU functions.

Figure 10: Summary of current limitations of the WebGPU backend.

4.4 Future Work

While the WebGPU backend at this point is robust enough to compile and run non-trivial
Futhark programs, more work is needed to bring it to parity with the other existing backends.
Beyond implementing missing primitive operations like 64-bit versions of mul_hi, mad_hi
and division, future work would entail continuing to lift compiler restrictions specific to the
WebGPU backend.

An example of such a restriction, is the backends inability to handle buffer reuses with
multiple types. The Futhark compiler will sometimes re-use buffers within a kernel as a
memory-saving optimization. If this results in a buffer being accessed at multiple types, the
WebGPU backend will generate a compile error. Future work could look into disabling this
optimization for the WebGPU backend if the buffer re-use cannot be done with the same type.

A lot of memory is currently being wasted on padding in shared memory when using 8- and
16-bit integers on the WebGPU backend. Part of Paarmann’s reasoning for introducing this
limitation, was the fact that the built-in workgroupUniformLoad WGSL function did not allow
accessing atomic types. This restriction was recently lifted (April 2025)11 however, and the
WGSL spec now lists an overloaded version for pointers to atomic types [2, §17.11.4]. Future
work could investigate if this could be exploited to allow packing small integer types in shared
memory.

The most problematic restriction still enforced by the WebGPU compiler is the lack of
support for SetMem statements. Investigating this problem was outside the scope of this project,
but Paarmann’s original thesis suggested a potential workaround involving using an index to
track what buffer a name is referring to at runtime. The compiler would then generate code to
access the correct variable at runtime depending on the index value [11, p. 37]. How best to
solve this remains an open question.

11See https://github.com/gpuweb/gpuweb/issues/5124
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Another big limitation of running Futhark programs on WebGPU is the max storage buffer
count per kernel limit. While this is a problem with Chrome’s WebGPU implementation, a
potential workaround could be to make the Futhark compiler coalesce storage buffers into a
few large buffers, and then associating each name referring to a storage buffer with an offset.
The code generation for all buffer accesses would then have to be modified to take this offset
into account.

Finally, future work could look into properly supporting different web browsers. For this
project, we only concerned ourselves with getting Futhark programs to run in the Chrome
browser. While WebGPU at the time of writing still isn’t enabled by default in other browsers,
Firefox has a functional implementation in Firefox Nightly builds,12 and Apple recently (June 9)
announced that WebGPU would be coming to their next release of Safari.13 We briefly attempted
to run some Futhark programs on Firefox, but found that their WGSL compiler has reserved
the i8, i16 and i64 keywords that the Futhark WGSL runtime uses as type aliases.

5 Conclusion

In this project, we have continued work on the experimental WebGPU backend for the Futhark
compiler, addressing key limitations and bringing it closer to feature parity with the existing
backends. Our contributions include implementing support for atomic operations, built-in
transpose and copy kernels, as well as implementing in-kernel copies and function calls. A
complete list of our contributions can be found in Figure 11 of the appendix.

We show that with our improvements, the backend now passes the majority of compiler
test cases evaluated in this project. Likewise, we find that the WebGPU backend is capable
of compiling and correctly executing some of the more complex benchmarking programs –
none of which compiled before our contributions. Major limitations still remain, however, and
continued future work is needed if WebGPU is to reach parity with the existing OpenCL, CUDA
and HIP backends.

At the start of this project, the WebGPU backend had fallen out of date with the rest of the
Futhark compiler, rendering it unable to generate any functional programs. An important
contribution of this project has thus been to simply keep the effort to add a fully-functional
WebGPU backend alive. We hope that future work will continue this effort such that WebGPU
eventually can become a viable compilation target for Futhark on par with the likes of OpenCL
and CUDA.

12See https://github.com/gpuweb/gpuweb/wiki/Implementation-Status
13See https://webkit.org/blog/16993/
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Appendix

Summary of Contributions

• Implemented atomic operations for non-i32 types.

• Implemented built-in transpose and copy kernels

• Implemented in-kernel copies.

• Implemented in-kernel function calls.

• Implemented the DeclareMem statement for ScalarSpace.

• Implemented support for special floating point infinities and NaNs.

• Removed limitation on mixing atomic operations with different signedness.

• Added workaround for performing gpu_memcpy within WebGPU buffers.

• Added support for requesting the max supported device limits when requesting device.

• Fixed a bug with negation of floats and integers.

• Fixed a bug with how 64-bit integer literals were generated.

• Fixed a bug with multiline comments.

• Fixed out-of-memory crashes and hangs when testing with large inputs and outputs.

• Fixed shader compilation errors for histograms, caused by mixing 32- and 64-bit integers.

• Updated the WebGPU C runtime to match recent changes to the shared runtime.

• Standardized parameter ordering of built-in kernels in the shared C runtime.

Figure 11: Summary of bug-fixes, improvements and added capabilities to the WebGPU
backend contributed by this project.

Declaration of using generative AI tools

□ I/we have used generative AI as an aid/tool.

⊠ I/we have not used generative AI as an aid/tool.

List which GAI tools you have used and include the link to the platform:

Not applicable.

Describe how generative AI has been used in the exam paper:

Not applicable.
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