
Master Thesis
-

Using Automatic differentiation to find
gradients for recurrent neural networks in

Futhark

Andreas Nicolaisen
JTC303@alumni.ku.dk

Primary supervisor: Cosmin Eugen Oancea
Secondary supervisor: Stefan Oehmcke

Submission: December 20, 2021

December 20, 2021

1 Abstract

In this report, we will explain how Backwards automatic differentiation, can
be used to transform an implementation of a recurrent neural network of
the programming language, into a program that can find gradients for the
weights that are given to the network. We will give the relevant background
for neural networks, Futhark, and gradient descent as background. We will
present different methods for finding gradients, discuss their pros and cons
and explain why we chose the method of backwards automatic differentia-
tion. We will explain how the main rewrite rule of backwards automatic
differentiation,can be used to create new rules for constructs in Futhark, and
then we will use those rule to transform an implementation of the Elman
neural network, into a program that finds gradients for the input weights.
Lastly, we will validate the results against an implementation in the machine
learning framework PyTorch, and discuss future work.

2 Introduction

In this report, we will present an attempt at performing automatic differen-
tiation, on recurrent neural networks (RNNs), with the purpose of finding
gradient to train the network with. The implementation of the recurrent neu-
ral networks is implemented in the programming language Futhark, which is
well suited for this sort of task. To do this, we will first present some relevant
background information regarding “simpler” neural networks, the gradient
descent method, as well as relevant parts of the Futhark language. We will
then explain RNNs (how they work), and give 3 examples of RNNs. We
will then discuss different ways of finding gradients, each with their advan-
tages and disadvantages, and pick one that we will use. We will then explain
how to use the method that we pick (Backwards automatic differentiation)
in Futhark, and derive some rules that we will use in the implementation.
Then we will give a brief overview of how the Elman RNN is implemented,
for normal prediction purposes. Then we will break down the implementa-
tion using the rules we derived earlier, in order to create a version of it, from
which we can get the gradients we need to train the model. Then we will
validate the implementation, against a similar implementation in PyTorch,
to make sure that we’re getting the correct gradients. We will also give some
run times for the implementation. Finally, we will conclude the project, and
discuss possible future work.

1

3 Background

3.1 Neural networks

Here, we will give a very brief introduction to how a “normal” neural network
works. We start with an input of type Rd. We want to create a model which
takes input of this shape, and makes some “prediction”, in our case it we be
an output also of type Rd. In order to make this prediction, we first pass the
values of the input to a layer of “neurons” (each neuron gets all of the input
values), which each calculates a value based on a weight, the input, and some
bias. This values is then passed to an “activation function”, which returns
a values which is taken to be the output of the neuron. For a single neuron
with an output h, the calculation looks like this, · being vector dot product:

h = σ(w · x+ b) (1)

h ∈ R (2)

b ∈ R (3)

x ∈ Rd (4)

w ∈ Rd (5)

σ ∈ R → R (6)

Once h for each neuron has been calculated, they are passed to the next
layer in the network, as can been see in figure 1, which passes to the next
layer, until it reaches the output. Using matrix-vector multiplication, we can
more efficiently calculate all of the h’s in a layer, but doing it at the same
time. If we have multiple inputs, using matrix-matrix multiplication, we can
calculate the h’s for an entire layer, for all of the inputs at the same time.
More on this later.

Activation functions

Activation functions are a set of functions, that are are used to determine
how “active” a specific neuron should be, given some input to the activation
function, which is calculated in the neuron. The result of the activation func-
tion is what is considered as the “output” of the neuron. A typical (but not
given) property of an activation function, is that it “squashes” the input to
it, into some constrained range, such as (0, 1), (−1, 1). A desirable property
is that the activation function has a known, and well behaved derivative,
since this makes it easier to find gradients when training the model (see later
sections for what the gradient is, and why finding it matters). The activation
function that we will be using is the tanh, also known as hyperbolic tangent,

2

Figure 1: Diagram of a NN, with dimensionality of 3, and with 2 hidden
layers. Each of the solid lines represents a scalar

function. There is no particular reason for why this one is chosen, other than
it is a common one, and it has a well behaved, and kwown derivative. The
formula for it is the following:

tanh(x) =
ex − e−x

ex + e−x
(7)

And its derivative is the following:

tanh�(x) = 1− tanh(x)2 (8)

3.2 Dimensionalities of inputs and hidden layers

For real-world scenarios, we might have an input dimensionality of say 50
(these will be made up numbers, but should serve to illustrate a point), but
want to have hidden layers with, say 100 in each. In order to accomplish
this, the first of the 100-“width” would be set up to only be expecting 50
inputs to each neuron, and still produce their normal outputs, typically a
single scalar each, resulting in 100 total values. Then any subsequent layers
would be set up such that each neuron would expect 100 values, and produce
a scalar values each. Similarly, we could also setup a layer with a reduced
width, compared to the preceding layer. For simplicity, in this project, we
will only be working with networks with the same dimensionality all the way
through, as in, the input, hidden layer and output sizes will all be the same.

3

3.3 Futhark

This project will be implemented using the programming language Futhark.
Futhark is a purely functional, array language supporting nested parallelism [7]
by means of second-order array combinators (SOAC), such as map, reduce,
scan, scatter, reduce-by-index [6], but also loops with in-place updates.

The constructs that we will be using in this project are map, reduce, (do)
loops, and in place updated.

map is a build in function, which takes as input a function, and an array
whose elements the function takes as an argument. It applies the function
to each of the elements, and produces a new array, with the resulting values.
Variants such as map2 exists, which takes to a function that operators on to
arguments, and two arrays whose element types correspond to those argu-
ments.

reduce is also a build in function, which takes as arguments an binary
operator, a “neutral element”, and an array. The operator has to apply to
the types of the elements in the array, and in order for the reduce to be
parallelized, the operator has to be associative. The neutral element is an
element, which has the property that when the operator is applied to any
element, and the neutral element, the result is the original element. For the
(+) operator (which is the only one we will be using with reduce), the neutral
element is 0, since a+ 0 = a.

We will also be using do loops, with in-place updates of arrays. In do
loops, we define the loop-variant(s), which in this case will include the arrays
that we want to do in-place updates to, as well as some sequence, whose ele-
ments we will loop over (for all cases here, this will be a sequence if integers).
The loop works by binding an initial value to the loop-variant(s), and then
in each iteration doing the operations that we want to, and return a new
version of the loop-variant(s) at the end of the loop body. As mentioned, if
we want to do in-place updates to an array (such as saving something from
each iteration to an array), we need to include the array in the loop-variants.
This allows the Futhark compiler to check for uniqueness.

Futhark as previously been used to speed up big-compute applications,
such as detecting landscape changes from analysis of satellite time-series
images applied at continental scale [4].

4

3.4 PyTorch

PyTorch is a machine learning framework which features automatic differen-
tiation [9], and we will be using it for validating the implementation made
in Futhark.

3.5 Gradient descent

In order to make neural networks, including recurrent ones, we need some
way of find good parameters to use. To do this, we first need to have some
notion of what makes a good parameters. This is done using some objective
function, and a training set. The model is used on the training set, with
some initial weights, and some predictions are made. The predictions are
compared with some corresponding “true values”, according to the objective
function. A common one, and the one used here, is the “mean squared error”,
abbreviated “mse”:

mse(predictions, truths) =
1

n

n�

i

(truthsi − predictioni)
2 (9)

This results in a value, telling us how good the current weights are for
predicting the true values. From this, we would the like to find a new set of
weights that would accomplish this better. To do this, we want to figure out
how the different values in the current weights influence the final result. In
other words, we want to differentiate the result with respect to the individual
weights. This is know as finding the gradients, and there are multiple ways of
doing it, some of which will be discussed in the next section. When we have
found these gradient, we will subtract their values, usually multiplied with a
“learning rate”, from the original weights. This purpose of this is to minimize
the value of the loss, or at least make it smaller then before. This process can
then be repeated for a number of times, usually some predetermined number
of times, or until the loss doesn’t change significantly.

4 What are RNNs?

Recurrent neural networks are a type of neural networks that process an
ordered “time-”series of inputs1, instead of only single inputs. Examples of
series could be a series of sensor readings, stock data at intervals for some
time period, texts in natural language or speech.

1explain

5

RNNs works like traditional neural works but in addition to taking their
normal inputs, the layers also use some internal state to calculate their out-
puts. In addition to their normal outputs, they also produce a new state,
which is used when the next input in the time series is processed. Different
weights might be used for controlling how much is taken from the input and
the existing state, for calculating the output, as well as the new state, in ad-
dition to biases. For a visualization of how the a single input passes through
a RNN, see figure 2.

Figure 2: Diagram of a RNN, with dimensionality of 3, and with 3 layers.
Each of the solid lines represents a scalar, and each of the stippled lines
represents a vector of scalars. Note here that the 3 lines coming from each
of the “Old state” boxes represents the same vector. The 3 solid lines going
to each of the “New state” boxes, is used to create a new vector.

4.1 Elman

The Elman network, is a recurrent neural network, and it was first proposed
by Jeffrey L. Elman[3]. For each neuron in the network, it uses 3 weights,
2 of them being a vector. The first one, typically called wh is a vector of
size d, d being the dimensionality of the input, the second weight being uh

also being a vector of size d, and the last one being a scalar value called bh

6

signifying the bias. The formula for calculating the output is the following,
· signifying vector dot product:

h = σ(wh · x+ uh · lasth + bh) (10)

h ∈ R (11)

bh ∈ R (12)

x ∈ Rd (13)

lasth ∈ Rd (14)

wh ∈ Rd (15)

uh ∈ Rd (16)

σ ∈ R → R (17)

Here, σ is the activation function, x is the input to the layer and lasth is
the existing state. The h that we compute here is then the new state, which
is saved and then used in place of lasth in the processing of the next input of
the sequence. Some versions of the Elman network then goes on to add an
additional bias to the h that we found, and run that through an additional
activation function, in order to find the output of the layer. The version that
we’re considering uses the same h as the output of the layer.

Like normal NNs, we can efficiently calculate the outputs, as well as the
new states, for the entire layer at the same time. For a layer the number
of neurons being w, also known as the “width” of the layers, we can do this
arranging the weights into a matrix of dimensionality Rw,d. We can then
perform matrix-vector multiplication between the arranged weights, and the
input to the layer. We will have to do this for both wh · x and uh · lasth.
We will get 2 vectors from this, which we can add together with the biases
arranged into a vector as well. The formula for this look like this, with
× being matrix-vector multiplication, the + being overloaded to perform
vector-vector addition and the semantics of σ being the activation function

7

applied element-wise (essentially like a map in Futhark):

hs = σ(whs × x+ uhs × lasths + bhs) (18)

hs ∈ Rw (19)

bhs ∈ Rw (20)

x ∈ Rd (21)

lasths ∈ Rd (22)

whs ∈ Rw,d (23)

uhs ∈ Rw,w (24)

σ ∈ Rw → Rw (25)

Further, if we have batches of data (ie. multiple series), we can calculate
the outputs and states for a layer, for the entire batch at a time. This is done
by arranging the inputs into the columns of a matrix. Then we can perform
matrix-matrix multiplication and addition, similarly to how we performed
matrix-vector multiplication and addition before.

4.2 GRU

The “gated recurrent unit” is a recurrent neural network[2]. It is more com-
plex than the Elman network and it features more weights. The formula
for computing a the values in a layer is the following (� for element-wise
multiplication, · for matrix-vector multiplication):

r = σr(wr · x+ ur · lasth + br) (26)

z = σz(wz · x+ uz · lasth + bz) (27)

n = σn(wn · x+ r � (un · lasth) + bn) (28)

h = z � (lasth) + (1− z)� n (29)

h ∈ R (30)

x ∈ R (31)

br, bz, bn ∈ Rd (32)

wr, wz, wn ∈ Rw,d (33)

ur, uz, un ∈ Rw,w (34)

σr, σz, σn ∈ Rw → Rw (35)

Again, h is the both the output and the new state of the layer. σr, σz, σn

are all activation functions, similar to the activation function used in Elman.
Similar to Elman, this can also be adapted to work with batch sets directly.

8

4.3 LSTM

We have also implemented the “Long short-term memory” RNN[8][5]

5 Finding gradients

As mentioned in the previous section, in order to train neural networks, we
need to be able to find the gradients of a set of weights. There are multiple
ways of finding these, and we will present and discuss some of them here.

5.1 Common methods

Numerical differentiation

The numerical method of finding gradients works by sampling the function in
question at separate points. It is based on the limit definition of derivatives,
and is relatively simple to implement. The formula for finding the derivative
with respect to input variable xi can be see in figure 3, with h being some
small number that is decided by the implementer.

∂f(x)

∂xi

=
f(x+ hei)− f(x)

h
(36)

Figure 3: Forward difference numerical differentiation of f, with respect to
the ith input parameter

As mentioned, it is simple to implement, since the function in question will
have to be implemented anyway, so using this to find derivatives is straight
forward. However, using it comes with multiple challenges.

First of all, we need to decide the value of h. At first, it might seem like a
good idea to pick small value for h. This is because the result will then more
closely mirror the result of the limit definition for derivatives. This might
work well, if the sizes of the input variables are small, and therefore good
numerical precision is maintained, when using floating point numbers. If the
sizes of the larger however, or we want to use floating point numbers with
fewer bits, a small value of h will lead to imprecision. If we were to pick a
lager value of h, we might maintain better numerical precision, or the same
precision with fewer bits, but the approximation that we end up with will
likely be worse. For an illustration of why this is, see figure 4

9

Figure 4: Illustration of the different outcomes, for different values of h. The
true derivative value is ≈ 0.540

A second drawback of using numerical differentiation, is that we can only
find the derivative value with respect to a single input parameter, at a time.
If the number of input parameters is small, and the function itself quick to
compute, this might be okay, but when there are many input parameters, and
the function is complex, it will quickly become very expensive. Therefore, it
is not well suited to use for computing the gradients needed when training
a neural network, since it will most often have many tune-able parameters,
and it is expensive to compute the result for each one.

Manual/Symbolic differentiation

Symbolic differentiation is in a sense the “traditional” way of differentiating
functions. We start with the original function expression, and apply a series
of known rules in order to obtain a new expression for the derivative of the
function. This is essentially a automatic version of the differentiation that
you can do by hand. While this methods gives exact derivatives, it comes
with some limitations and inefficiencies.

10

In order to do symbolic differentiation, the functions has to be closed
form. This might be fine for some models, but it excludes more complicated
control flow like if-statements.

5.2 Automatic differentiation

The method of automatic differentiation is to perform differentiation based
on how the expression is evaluation is performed, instead of the expression it-
self [1]. This is done by performing symbolic differentiation on the elementary
operations of the evaluation, and computing gradients through intermediary
values. There are 2 schemes for doing this, the forwards mode, and the back-
wards mode. They both come with advantages and disadvantages, and we
will discuss them in this section. In order to explain them best, we will use
the following function as a running example:

f(x_1, x_2) =

a = 0

b = 0

for x < 2 do

a += x_1 * x_2

b += x_1 + x_2

return (a, b)

Forward mode

In forward mode, we execute the function as we would normally, but between
each elementary step, we determine the derivative of each intermediary value
with respect to the input parameters. This derivatives can only be deter-
mined for one input parameter at a time. This is done by initializing a set of
“derivative input parameters”, all being zero, except the one we’re currently
seeking to find the derivative of, which is set to one. At each step in the
execution, we find the derivative of the intermediary value, using the exist-
ing derivatives of other intermediary values, or the derivatives of the input
parameters. See table 5

Filling out the Jacobian matrix for the example, we get (with question
marks for the values that we don’t know):

�
∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

�
=

�
8 ?
2 ?

�
(37)

11

Figure 5: Forward mode automatic differentiation, with respect to input x1

Program line Forward trace Forward derivative trace
v−1 = x1 = 3 v̇−1 = ẋ1 = 1
v0 = x2 = 4 v̇−0 = ẋ2 = 0

a = 0 v1 = 0 = 0 v̇1 = 0 = 0
b = 0 v2 = 0 = 0 v̇2 = 0 = 0
x 1 * x 2 v3 = v−1 · v0 = 12 v̇3 = v̇1 · v0 + v̇0 · v0 = 4
a += (x 1 * x 2) v4 = v1 + v3 = 12 v̇4 = v̇1 + v̇3 = 4
x 1 + x 2 v5 = v−1 + v0 = 7 v̇5 = v̇−1 + v̇0 = 1
b += (x 1 + x 2) v6 = v2 + v5 = 7 v̇6 = v̇2 + v̇5 = 1
x 1 + x 2 v7 = v−1 + v0 = 12 v̇7 = v̇1 · v0 + v̇0 · v0 = 4
a += (x 1 * x 2) v8 = v4 + v7 = 24 v̇8 = v̇4 + v̇7 = 8
x 1 + x 2 v9 = v−1 + v0 = 7 v̇9 = v̇−1 + v̇0 = 1
b += (x 1 + x 2) v10 = v6 + v9 = 14 v̇10 = v̇6 + v̇9 = 2
return a y1 = v8 = 24 ẏ1 = v̇8 = 8
return b y2 = v10 = 14 ẏ2 = v̇10 = 2

As we can see, the forwards mode AD, fills out the columns in the Jaco-
bian matrix. This means that in order to fill it out entirely, we need to run
the forwards mode as many times as we have input variables. For a small
amount of input variables, with a large amount of outputs, this seems like
an efficient method, but we will compare the two in a later section.

Formulating the forwards mode AD as a rewrite for a Futhark program,
we get the following:

let v = f(a, b) =⇒let v = f(a, b) (38)

let v̇ =
∂f(a, b)

∂a
ȧ+

∂f(a, b)

∂b
ḃ (39)

Backwards mode

In backwards mode automatic differentiation, we again execute the program
as normally, while (theoretically) saving all of the intermediary variables.
Then, we “assign” of one to one of the output variables. We then per-
form a backwards trace, were we for each elementary operation calculate the
derivatives of any variables going into it, accumulation if existing derivatives
already exist. Take for example the following 2 operations, and return:

f(v_0, v_1) =

v_2 = 5 * v_1

v_3 = v_2 * v_0

12

return v_2, v_3

We start with v0 = 4 and v1 = 3. Executing the code, we get the result
of 15, 60. Let’s say we’re interested in finding the derivatives of the input
variables, wrt. v3. To do this we start by assigning v̄2 = 0, v̄3 = 1, v̄x being
the derivative of vx. We then look at the first operation, going backwards,
namely v3 = v2 · v0, and find the derivatives wrt. to the 2 different input
variables:

∂v3
∂v2

v2 · v0 = v0

∂v3
∂v0

v2 · v0 = v2

We then multiply these derivatives with the derivative of the variable
they’re going into, and we get the derivatives of the variables wrt. the chosen
derivative for the output. Additionally, we add the existing derivative of v2
when calculating the new one. In this case it is zero, so it doesn’t make a
difference.

v̄2 = v̄3
∂v3
∂v2

v2 · v0 = 1 · v0 = 4

v̄0 = v̄2 + v̄3
∂v3
∂v0

v2 · v0 = 0 + 1 · v2 = 15

This completes finding the derivatives for the first operation (in the back-
wards direction). We then repeat the same procedure for the next operation,
first finding the expressions for the derivatives, in this case there only being
one:

∂v2
∂v1

5 · v1 = 5

We again multiply with the derivative of the “output” variable:

v̄1 = v̄2
∂v2
∂v1

5 · v1 = v̄2 · 5 = 20

This completes the backwards derivative trace of the program, and we
end up with the final values of v̄0 = v3

∂v0
= 15 and v̄1 = v3

∂v1
= 20. We can

put this into the Jacobian matrix, with question marks for the values that
we didn’t calculate here.:

J =

�∂v2
∂v0

∂v2
∂v1

∂v3
∂v0

∂v3
∂v1

�
=

�
? ?
15 20

�
(40)

13

If we then wanted to find the remaining derivatives, we would execute
the backwards trace again, with v̄2 = 1 and v̄3 = 0. This would then fill out
the other row, and we would have a complete Jacobian.

Figure 6: Backwards mode automatic differentiation, with respect to output
a
Program line Forward trace Backwards derivative trace

v−1 = x1 = 3 x̄1 = v̄−1 = 8
v0 = x2 = 4 x̄2 = v̄0 = 6

a = 0 v1 = 0 = 0
b = 0 v2 = 0 = 0

v̄0 = v̄0 + v̄3
∂v3
∂v0

= v̄0 + v̄3 · v−1 = 6

x 1 * x 2 v3 = v−1 · v0 = 12 v̄−1 = v̄−1 + v̄3
∂v3
∂v1

= v̄−1 + v̄3 · v0 = 8

v̄3 = v̄4
∂v4
∂v3

= v̄4 · 1 = 1

a += (x 1 * x 2) v4 = v1 + v3 = 12 v̄1 = v̄4
∂v4
∂v1

= v̄4 · 1 = 1

v̄0 = v̄0 + v̄5
∂v5
∂v0

= v̄0 + v̄5 · 1 = 3

x 1 + x 2 v5 = v−1 + v0 = 7 v̄−1 = v̄−1 + v̄5
∂v5
∂v−1

= v̄−1 + v̄5 · 1 = 4

v̄5 = v̄6
∂v6
∂v5

= v̄6 · 1 = 0

b += (x 1 + x 2) v6 = v2 + v5 = 7 v̄2 = v̄6
∂v6
∂v2

= v̄6 · 1 = 0

v̄0 = v̄0 + v̄7
∂v7
∂v0

= 0 + v̄7 · v1 = 3

x 1 + x 2 v7 = v−1 + v0 = 12 v̄−1 = v̄−1 + v̄7
∂v7
∂v−1

= 0 + v̄7 · v0 = 4

v̄7 = v̄8
∂v8
∂v7

= v̄8 · 1 = 1

a += (x 1 * x 2) v8 = v4 + v7 = 24 v̄4 = v̄8
∂v8
∂v4

= v̄8 · 1 = 1

v̄0 = v̄9
∂v9
∂v0

= v̄9 · 1 = 0

x 1 + x 2 v9 = v−1 + v0 = 7 v̄−1 = v̄9
∂v9
∂v−1

= v̄9 · 1 = 0

v̄9 = v̄10
∂v10
∂v9

= v̄10 · 1 = 0

b += (x 1 + x 2) v10 = v6 + v9 = 14 v̄6 = v̄10
∂v10
∂v6

= v̄10 · 1 = 0

return a y1 = v8 = 24 v̄9 1
return b y2 = v10 = 14 v̄10 0

Formulating the backwards mode AD as a rewrite for a Futhark program,
we get the following:

let v = f(a, b) =⇒let v = f(a, b) (41)

let ā+ =
∂f(a, b)

∂a
v̄ (42)

let b̄+ =
∂f(a, b)

∂b
v̄ (43)

14

Strengths and weaknesses

Overall, automatic differentiation has the advantage that it doesn’t require
us to find complicated derivative expressions. Instead we only have to find
derivatives for simple expressions (only partial derivatives in the case of back-
wards AD), for which simple rules exist. This allows us to mechanically trans-
form an existing program into a program which find the derivatives. The 2
different modes have different pros and cons with respect to each other, and
have areas in which the excel compared to the other. In the design section
we will discuss which is better for the purpose of finding gradients for neural
networks.

Automatic differentiation comes with some relevant downsides as well.
For forwards mode, we either have to store a lot of intermediary variables,
or complicate the forwards trace with computing the derivatives at the same
time. This will either take up memory, or be complicated to do, compared to
if a (relatively) simple expression for the derivative could be find. This is even
more the case for backwards AD, where we need to store the intermediary
variables (or recompute them, see later sections). For both forwards and
backwards, if there are multiple inputs or outputs respectively, we need to
run the traces multiple times, which will of course take extra time. In general,
if a simple expression for the derivative could be found, it would be more
efficient. This however might be difficult or impossible to find.

6 Design considerations

6.1 Futhark

As mentioned earlier, Futhark is a language built to enable high perfor-
mance, for big-compute applications. RNNs are an example of such, con-
sisting mainly of matrix and vector operations, for which the sizes has the
potential to be very large. It also comes with a lot of build-in functions,
which are useful for implementing RNNs in a concise manner.

6.2 Forwards or backwards mode

When training neural networks, we need to find the gradients for a large
amount of input variables (the weights), with respect to a single output, the
loss. This makes the decision on which automatic differentiation mode to
use quite clear, namely backwards mode, but for the sake of clarity, I will
briefly explain the pros and cons of the different modes in the field of finding

15

gradients for neural networks.

As we discussed in the section about forwards mode AD, we can use it to
find the derivatives of one variable, with respect to all of the output variables.
This would be great if we had a small amount of input variables, and a large
amount of output variables. But for RNNs, this couldn’t be much further
from the case. For RNNs, we have a large amount of input variables, the
weights, and only a single output variable, the loss. This would mean that
in order to find the gradient using forwards mode, we would need to execute
the function (or at least the forward trace if all intermediary values are kept)
as many times as we have weights. Hopefully, it should be clear that this
would be a very inefficient technique for finding the gradients. We would be
filling out the Jacobian matrix one column at a time, but given how there
are a lot of columns (the number of weights), this is not the best method.

Considering backwards mode, we can quickly see why this has some clear
advantages. Since we only have one output variable, we can compute all
of the gradients that we need in a single backwards trace. This is because
backwards mode fill out one row of the Jacobian matrix at a time, and we
only have one row, since we only have one output. We do however, need to
store a large amount of intermediary values to do it, or as we discuss in the
next section, recompute them. Because of the clear advantage of only having
to do one trace, this method of AD is the one that i have chosen.

6.3 Backwards AD in Futhark

From the previous sections, it should hopefully be clear that we could me-
chanically apply the rewrite rule for AD, and we would get a new program
that could calculate the derivatives that we are looking for. For programs
that consist of a straightline of scalar code (i.e., think a simple basic block),
the application of the rewrite rule is straightforward. However, the exten-
sion of that (simple) rewrite rule to language constructs such as loops, map,
reduce, or non-trivial functions is fairly non trivial.

This section investigates and presents the reasoning behind translating
such (language) constructs for the reverse-AD mode, namely loops having
statically-known counts (i.e., do loops), reduce and map.

Loops

The first construct that we examine is the (do) loop. The implementation
of for example, the Elman network involves two perfectly nested loops, so it

16

should be clear that such a rule will be useful.

Let’s first present of how a loop looks in Futhark:

1 l et loopFunct ion [m] (n : i 64) (x i n i t a l : [m] f32) : [m] f32 =
2 l et y =
3 loop (x) = (x i n i t i a l)
4 for i = 0 . . . n−1 do
5 l et r e s = body (x)
6 in r e s
7 in y

Here, the loop variant is x, which is initialized to x initial. After each
interation, the result of the body (res) is bound to x, i.e., it provides the
value of the loop-variant array x that is input to the next iteration. The
result returned in the final iteration is bound to y, which also become the
result of the enclosing function.

If we wanted to perform backwards AD on the loop, we would run the
code as we would normally, and record every operation that takes place in
its, including the values being computed—this is known as “the tape”. This
would both be complicated to do, and would likely take up a lot of memory
if n is large, and if there are a lot of intermediary variables in the body.
Instead of saving everything, we could instead just save the values of x and
the beginning of each iteration, and then recompute the values inside the
body, during the backwards trace. This way, we get to perform backwards
AD, without having to rely on a tape abstraction that remembers the result
of the performed operations. Instead, we “checkpoint” the values of the loop-
variant variables at the entry of each iteration, and the key idea is that we
can always re-execute each iteration’s body to bring to scope all the other
intermediate variables. Essentially, the forward trace of a loop, checkpoints
the loop-variant values of the loop, as demonstrated below:

1 l et loop AD primal [m] (n : i 64) (x i n i t a l : [m] f32) : [m] f32 =
2 l et x s i n i t i a l = r e p l i c a t e n (r e p l i c a t e m 0)
3 l et (x f i n a l , y) =
4 loop (xs , x) = (x s i n i t i a l , x i n i t i a l)
5 for i = 0 . . . n−1 do
6 l et xs [i] = x
7 l et r e s = body (x)
8 in (xs , r e s)
9 in (x f i n a l , y)

The statement that defines xs initial creates a two-dimensional array—

17

by means of two nested replicate expressions—meaning, for each of the n
iterations we will save its input, which is an array of length m of single-float
values. This is accomplished in the first statement of the loop let xs[i] = x.
Otherwise, the forward trace of a loop consists of the same code as the original
loop. After executing the forward trace of the program we make use of the
checkpointed information when we finally reach the the backwards trace of
the loop, which is demonstrated below:

1 l et loop AD Backwards n
2 xs checkpo in t
3 y ad j o i n t b o d y f r e e v a r i a b l e s a d j o i n t s =
4
5 l et (new y adjo int , b o d y f r e e v a r i a b l e s a d j o i n t s) =
6 loop (y ad jo in t ’ , b o dy f r e e v a r i a b l e s a d j o i n t s ’) =
7 (y ad jo in t , b o d y f r e e v a r i a b l e s a d j o i n t s)
8 for i = n−1 . . . 0 do
9 l et x = xs checkpo in t [i]

10 l et r e s a d j o i n t = body adjo int (x , y ad jo in t ’ ,
11 b ody f r e e v a r i a b l e s a d j o i n t s ’)
12 in (r e s a d j o i n t)
13 in

Here, quite a bit is happening. Let’s first explain the changed arguments.
We still have n, which is as before, but now we’re also taking xs checkpoint
which is the x final that was returned in the primal function. y adjoint and
body free variables adjoints are the existing adjoint values of y and the free
variables that could exist in the body function, as we enter into this piece
of the larger program. Notice that the loop is now running backwards, since
we’re now doing the backwards trace. We can see that at the beginning of
each iteration, we recover the state that existed, going into that iteration in
from the check pointed values. We then pass this state in to the function
body adjoint, whose responsibility is then to perform the primal and back-
wards traces, for the body itself. Just to make it clear, a transformation of
the body function has also happened in order to make it into body adjoint,
but what this transformation will be, depends on the content of the function.

Reduce

We could make a general rule for the reduce statement, that would work no
matter which operator is being used with it, but in all of the instances that
we’re using it in, it is with the plus operator. Let’s therefore focus on this
special case. First, let’s look at a reduce statement with plus as the operator:

1 l et y = reduce (+) 0 xs

18

Here, y is the result of the reduce, 0 is the neutral element for the the
operator (+) and xs is the arrary that is being summed together. Consider
an “expanded” formulation of this:

y = lefti + xsi + righti (44)

Here, xsi is the ith element in xs, lefti is the sum of all of the elements that
came before xsi, and righti is the sum of all of the elements that comes after
xsi. Let’s consider what the adjoint of xsi should be, using the backwards
AD method:

x̄si+ = ȳ
∂(lefti + xsi + righti)

∂xsi
(45)

Since ∂(lefti+xsi+righti)
∂xsi

is simply 1, we get that

x̄si+ = ȳ (46)

Here, ȳ refers to the adjoint of the result. This of course applies for all of
the elements of xs

Map

Finally, we’re also using multiple instances of the map statement. There is
one where the function given to the map has no free variables. For this case,
since the statements in the functions can’t affect the adjoints of any other
variables, than the input variables, the backwards trace is essentially just
finding the adjoint of the body itself, which is then multiplied that with the
existing adjoint for the that entry in the array that is being mapped over.

6.4 Matrix-matrix multiplication

We also have another map in the program, which does have free variables
in the body, namely matrix-matrix multiplication (and the special case of
matrix-vector multiplication). In stead of trying to come up with a rewrite
rule via the map function, let’s look at an imperative version of matrix-matrix
multiplication instead, between 2 matrices A ∈ Rm,g and B ∈ Rg,n, into a
new matrix C ∈ Rg,n:

forall i = 0 ... m-1 do

forall j = 0 ... n-1 do

c[i,j] = 0

forall k = 0 .. g-1 do

c[i,j] +=A[i,k] * B[k,j]

19

Applying the original rewrite rule on the inner most statement we get,
assuming we already know the adjoint of the result, in the form of c bar:

forall i = 0 ... m-1 do

forall j = 0 ... n-1 do

forall k = 0 .. g-1 do

a_bar[i,k] += b[k,j] * c_bar[i,j]

b_bar[k,j] += a[i,k] * c_bar[i,j]

This gives us the adjoints of the 2 matrices that we were multiplying,
which is what we sought. This imperative code, and then be transformed
into something that we can implement in Futhark.

6.5 Checkpointing and redundant computation

As we saw in section about backwards AD, we need to know the values of
the intermediary variables, in order to find th gradients. A simple way to
accomplish this, would be to simply save all of the intermediary values dur-
ing the forward pass, and then use them during the backwards pass. For an
RNN, with many layers, and long series however, this could become a huge
amount of values that need to be saved. A solution to this issue could be
to redundantly compute the values of the intermediary variables, as we need
them.

Let’s consider how backwards AD works for an RNN. The very first thing
we need to look at (with the exception of the computations regarding the
losses) is the final layer in the network. To compute the gradients, we would
then need the intermediary values used to compute the output of the final
layer. To redundantly compute these, we will need the output values of the
previous layer, which is computed in the layer previous to it, all the way
back to the first layer; Secondly, and more critically, we also need the exist-
ing states for the this and the previous layers, and in order to compute that,
we need to first have ran the RNN for all of the previous inputs, essentially
just executing the entire function again. Let’s say we did that, and found
the gradients of the very final layer. We then need to go to the second to
last layer, and essentially execute the entire function again. We could save
some of the recomputed values, so we would have to re-execute at each step,
but no matter what, we would still have to do a significant amount of re-
computation. The reason it would not make sense to save a very significant
amount of values during redundant computation, is because at that point,
we might as well just save them during the forwards pass. An idea for how
to reach a compromise between redundant computation, and not using too

20

much memory (and possibly slowing down because of it), is to introduce the
concept of checkpointing.

The idea of checkpointing, is to save some values during the forward pass,
while recomputing others during the backwards pass. An idea for which vari-
ables prioritize saving, could be those that take many operations to recom-
pute. For a general example, this could be true loop variables, especially of
outer loops. Specifically for RNNs, this would be the existing states that are
used in each iteration of the outer most loops. For Elman networks, this is
especially useful, since the state that is returned from a layer, is the same as
the output of that layer. We then only need to recompute the intermediary
variables involved with calculating the output of a layer in the first place.
These would take up a lot of memory to store (5 vectors for single series/-
matrices for batch mode), but a relatively simple to recompute if the state
and input variable are known.

The primary scheme that I have picked is to save the resulting states after
each input in the series have been processed. This approach will be compared
with a version, where the intermediary variables for computing the output
in each layer was saved, and a version where nothing was saved.

7 Implementation

I have implemented the Elman neural network, in both the forwards pass,
and the backwards trance.

7.1 Forwards trace

I have implemented 2 versions of the Elman neural network, one that han-
dles a single time series, and one that handles batches of time series. The
implementations follows the definition relatively straight forward.

In the following, we can see the implementation of a layer, for the version
that takes a single input (ie. not the batch version).

1 l et e lman layer [d]
2 (x : [d] r e a l) (l a s t h : [d] r e a l)
3 (wh : [d] [d] r e a l) (u : [d] [d] r e a l) (bh : [d] r e a l)
4 : ([d] r e a l) =
5 l et wx = matvec mul wh x
6 l et ulh = matvec mul u l a s t h

21

7 l et h = map (r e c u r r e n t l a y e r a c t i v a t i o n)
8 (vector add (vector add wx ulh) bh)
9 in h

As we can see, the bulk of the work consist of performing matrix-vector
multiplication, and then finally adding the vectors together, and running
the activation function on each of the values in the vector. The activation
function that i have chosen is the hyperbolic tangent, also known as “tanh”
which is defined like this:

tanh(x) =
ex − e−x

ex + e−x
(47)

This has been implemented pretty straight forward:

1 l et r e c u r r e n t l a y e r a c t i v a t i o n x =
2 (exp x − exp (−1.0 ∗ x)) / (exp x + exp (−1.0 ∗ x))

Since the vector-vector addition and matrix-vector multiplication will be
explained in the next section, I will omit them here. The elman layer func-
tion is called from elman predict function:

1 l et e lman pred i c t [d] [l]
2 (input : [d] r e a l) (l a s t h s : [l] [d] r e a l)
3 (wh : [l] [d] [d] r e a l) (u : [l] [d] [d] r e a l) (bh : [l] [d] r e a l)
4 : ([l] [d] r e a l) =
5 l et s t a t e i n i = r e p l i c a t e l <| r e p l i c a t e d 0
6 l et (s ta te ’ ,) =
7 loop (s , x) = (s t a t e i n i , input)
8 for i < l do
9 l et h = elman layer x l a s t h s [i] wh [i] u [i] bh [i]

10 l et s [i] = h
11 in (s , h)
12 in s tate ’

Here, we’re going though all of the layers, one after the other. Notice, that
in each iteration we’re saving h into an array, as well as passing it directly to
the next layer. This is because h acts as both the new state for that layer,
and as the output of that layer. Since we’re saving all the states/outputs
into the array, we’re just returning that directly.

Finally, we have the outer most loop:

1 l et elman rnn [n] [d] [l]
2 (inputs : [n] [d] r e a l) (f i r s t h s : [l] [d] r e a l)
3 (wh : [l] [d] [d] r e a l) (u : [l] [d] [d] r e a l) (bh : [l] [d] r e a l)
4 : [d] r e a l =
5 l et f i n a l h s ’ =

22

6 loop hs = f i r s t h s
7 for i < n do
8 l et h ’ = e lman pred i c t inputs [i] hs wh u bh
9 in h ’

10
11 l et p r ed i c t i on = f i n a l h s ’ [l −1]
12 in p r ed i c t i on

This is essentially the same as the inner loop, but instead of iterating
through the layers, we’re iterating through the elements in the time-series.
In this case, we’re considering the output of the final layer, for the final
input, to be the prediction. This is just one version, it could also be valid to
consider the output of the final layer, for each of the inputs to be the result,
but that is no the version we have chosen here.

7.2 Backwards trace

In this section, I will go through how we construct the forwards and back-
wards traces on the implememtation of the Elman network. To make it a bit
simpler, I have chosen to explain it for the non-batch version. The batch ver-
sion is mostly the same, the main differences being that is uses matrix-matrix
operations, instead of matrix-vector operations.

Outer loop

In the outer most loop of the Elman implementation, we’re iterating over the
elements in the time-series:

1 l et elman rnn [n] [d] [l]
2 (inputs : [n] [d] r e a l) (f i r s t h s : [l] [d] r e a l)
3 (wh : [l] [d] [d] r e a l) (u : [l] [d] [d] r e a l) (bh : [l] [d] r e a l)
4 : [d] r e a l =
5 l et f i n a l h s ’ =
6 loop hs = f i r s t h s
7 for i < n do
8 l et h ’ = e lman pred i c t inputs [i] hs wh u bh
9 in h ’

10
11 l et p r ed i c t i on = f i n a l h s ’ [l −1]
12 in p r ed i c t i on

Here, the loop variant is h, which is Rl,d. Using the rule from earlier, when
constructing the forwards trace, we would normally save h in the beginning
of each loop iteration. I have however chosen to save h for the first iteration

23

to the checkpoints array, before the loop begins, and then save at the end of
each loop iteration. This is simplely to pack the checkpoints, and the result
into the same array, and is merely for convinience. Here is the forwards trace,
with the checkpointing:

1 l et e lman rnn checkpo ints [n] [d] [l]
2 (inputs : [n] [d] r e a l) (f i r s t h s : [l] [d] r e a l)
3 (wh : [l] [d] [d] r e a l) (u : [l] [d] [d] r e a l) (bh : [l] [d] r e a l)
4 : [] [l] [d] r e a l =
5 l et che ckpo in t s 0 s = r e p l i c a t e (n+1) <| r e p l i c a t e l <| r e p l i c a t e d 0 .0
6 l et che ckpo in t s 0 s [0] = f i r s t h s
7
8 l et (f i n a l c h e c kpo i n t s ,) =
9 loop (checkpoints , hs) = (checkpo in t s 0 s , f i r s t h s)

10 for i < n do
11 l et h ’ = e lman pred i c t inputs [i] hs wh u bh
12 l et checkpo int s [i +1] = h ’
13 in (checkpoints , h ’)
14
15 in f i n a l c h e c k p o i n t s

The backwards trace is then a bit more complicated, here without the
initialization of adjoint values to zero:

24

1 l et (f i na l wh ad j , f i n a l u a d j , f i n a l bh ad j ,
2 f i n a l h s a d j , f i n a l i n p u t a d j) =
3 loop (wh adj , u adj , bh adj ,
4 hs adj , i nput ad j) =
5 (i n i t i a l wh ad j , i n i t i a l u a d j , i n i t i a l b h a d j ,
6 i n i t i a l h s a d j , i n i t i a l i n p u t s a d j)
7 for j < n do
8 l et i = (n−1) − j
9 −− S ta r t by g e t t i n g s t a t e in t o scope

10 l et input = inputs [i]
11 l et hs = checkpo int s [i]
12 l et hs check = checkpo int s [i +1]
13
14 −− Find ad j o i n t s o f body
15 l et (wh adj ’ , u adj ’ , bh adj ’ , hs adj ’ , input ad j ’) =
16 e lman p r ed i c t ad j o i n t
17 −− Or ig ina l input
18 input hs wh u bh
19 −− Checkpoints
20 hs check
21 −− Or i g i n a l a d j o i n t s
22 hs ad j
23
24 −− Add to e x i s t i n g a d j o i n t s
25 l et wh adj ’ = map2 mat add wh adj wh adj ’
26 l et u adj ’ = map2 mat add u adj u adj ’
27 l et bh adj ’ = mat add bh adj bh adj ’
28 l et hs ad j ’ = hs adj ’ −− Since s t a t e i s r e s e t every i n t e r a t i o n
29 l et i nput ad j [i] = input ad j ’
30 in (wh adj ’ , u adj ’ , bh adj ’ , h s ad j ’ , i nput ad j)
31
32 in (f i na l wh ad j , f i n a l u a d j , f i n a l bh ad j ,
33 f i n a l h s a d j , f i n a l i n p u t a d j)

In the beginning of the loop (notice that we’re not going backwards), we
start by recovering the value of the loop variant in from hs = checkpoints[i].
Here, we also get hs check = checkpoints[i+1]. This is not the input to the
current iteration, but is still given to the adjoint function for the body. Es-
sentially, this is because it will acts as checkpoints for a loop inside the body,
but we will elaborate on this later. The elman predict adjoint function then
returns the adjoint values it calculates. We add them to the existing adjoint
values for the weights, since they (the values of them weights themselves)
stay the same, we reset hs adj (it could be omitted, since it is not used,

25

because it is the loop variant), and then finally save the calculated adjoint
of the current input. This last part is returned, but since we have no con-
trol over the values of the inputs, it is not used for anything, but included
here for completeness. We could have given the existing adjoints to the el-
man predict adjoint function, and accumulated them there, but in order to
keep the amount of arguments from becoming large, we accumulate them
outside. This does lead to some redundent initialization of adjoints, which
might affect performance. This is the only place where we accumulate af-
terwards like this, in other places, the accumulation either takes place inside
the afjoint function, or no accumulation is necessary (ie. it is only assigned
once).

Inner loop

The forwards trace of elman predict is just the function itself, since we can
effectivily perform the checkpointing of it in elman rnn checkpoints, and the
backwards trace is quite similar to that of elman rnn, and I have thus chosen
to omit it.

Layer function

Finally, we have elman layer which forms the body of loop of elman predict.
It looks like this:

1 l et e lman layer [d]
2 (x : [d] r e a l) (l a s t h : [d] r e a l)
3 (wh : [d] [d] r e a l) (u : [d] [d] r e a l) (bh : [d] r e a l)
4 : ([d] r e a l) =
5 l et wx = matvec mul wh x
6 l et ulh = matvec mul u l a s t h
7 l et h = map (r e c u r r e n t l a y e r a c t i v a t i o n)
8 (vector add (vector add wx ulh) bh)
9 in h

Looking at this, we can see that we have a map statement, with the func-
tion being recurrent layer activation, two vector additions, and two matrix-
vector multiplications. Taking them backwards wrt. the order that they
appear, we start with the map of recurrent layer activation, which we recall
to be:

tanh(x) =
ex − e−x

ex + e−x
(48)

Since the map contains no free variables, the result of the adjoint version,
is simply the adjoints of elements in the array that is being mapped over.

26

We could attempt to performs backwards AD on the implementation of the
expressions, but more simply, we can just use the known derivative of it:

tanh�(x) = 1− tanh(x)2 (49)

We then also need to mutiply the results, with the existing adjoints for
the array, which we do, and we arrive at this function for the backwards
trace:

1 l et r e c u r r e n t l a y e r a c t i v a t i o n d e r i v a t i v e y r e s a d j =
2 (1 . 0 − ((r e c u r r e n t l a y e r a c t i v a t i o n y) ∗∗ 2 . 0)) ∗ r e s a d j

We can now look at performing backwards AD on the vector add function,
which looks like this:

1 l et vector add [n]
2 (x : [n] r e a l) (y : [n] r e a l) =
3 map (\ (i , j) −> i + j) (z ip x y)

As we can see, this is simply a map over 2 arrays, with the operator
plus, and no free variables. We know from earlier that the derivative of a
plus operation wrt. any of its inputs is simply 1. We then need to multiply
with the adjoint of the result, which we should already know, hence why the
backwards trace is essentially just a duplication of the adjoints of the results.
But for completeness, we “compute” it like this:

1 l et ve c t o r add ad j o i n t [n]
2 −− Or ig ina l inpu t s
3 (x : [n] r e a l) (y : [n] r e a l)
4 −− Adjoint o f r e s u l t
5 (r e s a d j : [n] r e a l)
6 : ([n] r ea l , [n] r e a l) =
7 (map2 (\ x −> 1 ∗ x) x r e s ad j , map2 (\ y −> 1 ∗ y) y r e s a d j)

Finally, we have matvec mul, which is implemented like this:

1 l et matvec mul [n] [m] (A: [m] [n] r e a l) (B: [n] r e a l) : [m] r e a l =
2 map (\A row −> reduce (+) 0 (map2 (∗) A row B)) A

Instead of trying to perform backwards AD on this, which is complicated
since have a map with free variables in its body, we instead looked at how
the operation was done, and reasoned that we could do it more simply. In
the previous section, we showed an imperative program, that could find the
gradients for matrix-matrix multiplication, and said that we could simply
implement that, instead of a more complicated rewrite version. Implementing
that in Futhark looks like this:

27

1 l et matmul adjoint [m] [g] [n]
2 −− Or ig ina l inpu t s
3 (a : [m] [g] r e a l) (b : [g] [n] r e a l)
4 −− Adjoint o f r e s u l t
5 (r e s a d j : [m] [n] r e a l)
6 : ([m] [g] r ea l , [g] [n] r e a l) =
7 l et a ad j = map (\ i −>
8 map (\k −> reduce (+) 0
9 (map2 (∗) b [k , :] r e s a d j [i]))

10 (i o t a g))
11 (i o t a m)
12 l et b adj = map (\ a c o l −>
13 map (\ c c o l −> map2 (∗) c c o l a c o l
14 |> reduce (+) 0)
15 (t ranspose r e s a d j))
16 (t ranspose a)
17 in (a adj , b adj)

Here, we performed some transpositions, for performance purposes, but
the result will still be the same.

With all of these steps now done, we now have a program that find the
adjoint values for the weights, with respect to the loss.

8 Evaluation

The implementation of the Elman network has been validated against an
implementation in PyTorch, on the following parameters:

• The implementation predicts the same values, given the same weights
and inputs, both in the version that only handles a single input at a
time, and the version that handles batches.

• The Backwards AD version computes the same values for the gradient,
as the PyTorch implementation. The single input version was first ver-
ified against PyTorch, and then the batch version was verified against
the single input version.

I have used both a small, generated data set in order to validate the
gradiants, as well as a larger, real world data of stock prices2

2https://www.kaggle.com/mattiuzc/stock-exchange-data/

28

I have only implemented versions that take a single input at a time, for
GRU and LSTM. I have validated that they arrive at the same output values,
for a given set of inputs and weighs. I have not implemented AD on them,
nor have I made a version that can handle batches of data.

Using a generated data-set and weights, we have the run times seen in
figure ??. This is for data-set with a series length of 25, 50 series, and a 20
layers deep Elman RNN. Given the nature of the Elman rnn, we would expect
the run-times to grow quadraticly. We can see that, especially towards the
higher input dimensionalities, it grows close to linearly. This is likely because
we obtain better saturation of the GPU, since we have more parallel work to
do.

Figure 7: Run times of data-sets of varying sizes. The test was perform on
a RTX 2080 Ti.

I didn’t manage to run PyTorch version on the GPU, for comparison
purposes, so i can’t claim anything wrt. the relative performance. In some
future work, one could do this, to see if we’re properly taking advantage
of Futhark. A parameter that you could tune on, could be “strip-mining”
the loops of the code, as in, lower to number of iterations of the loops, and
perform multiple iterations worth of work, in a single iteration. This would
lead to more redundant work in the backwards trace, but would also lead to
less memory usage. I can’t say which is faster, but it would be an interesting
parameter to investigate.

29

9 Conclusion and future work

In conclusion, we can say that it is possible to use backwards automatic
differentiation, in order to calculate gradients for recurrent neural networks,
in the programming language Futhark. This can be achieved by taking the
original rewrite rule for backwards automatic differentiation, and creating
new rules for language constructs and build in functions, in Futhark. This
can be done using checkpointed intermediary values, instead of recording all
intermediary values. These rules can then be used to systematically trans-
form an implementation of a recurrent neural network, into a program that
first performs a primal trace, recording necessary checkpoints, and then per-
forms a backwards trace, that calculates the gradients of all input values,
with respect to a singular output value, namely the result of the loss func-
tion. We have then validated that value of these gradients are correct, using
an implementation in the machine learning framework PyTorch.

10 Acknowledgments

This projects builds on an unpublished article, titled “AD for an Array Lan-
guage with Nested Parallelism”, which details how automatic differentiation
has been implemented as a compiler transformation in the Futhark compiler.
I mainly draw inspiration from the parts, were transformation rules are ex-
plained. In a similar vein, I was also given a set of slides, which explain the
transformation rules, and the mathematics behind them.

I used the “Dive into Deep Learning” book[10], for the background re-
garding neural networks, recurrent neural networks, activation functions and
gradient descent.

I used a set of slides from Stefan Oehmcke, for the background and general
understanding of recurrent neural networks, as well as the specifics of the
recurrent neural networks used here.

30

Bibliography

[1] Atılım Günes Baydin, Barak A. Pearlmutter, Alexey Andreyevich
Radul, and Jeffrey Mark Siskind. Automatic differentiation in machine
learning: A survey. J. Mach. Learn. Res., 18(1):55955637, January 2017.

[2] KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and
Yoshua Bengio. On the properties of neural machine translation:
Encoder-decoder approaches. CoRR, abs/1409.1259, 2014.

[3] Jeffrey L. Elman. Finding structure in time. abs/10.1207, 1990.

[4] Fabian Gieseke, Sabina Rosca, Troels Henriksen, Jan Verbesselt, and
Cosmin E. Oancea. Massively-parallel change detection for satellite time
series data with missing values. In 2020 IEEE 36th International Con-
ference on Data Engineering (ICDE), pages 385–396, 2020.

[5] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutńık, Bas R. Steune-
brink, and Jürgen Schmidhuber. LSTM: A search space odyssey. CoRR,
abs/1503.04069, 2015.

[6] Troels Henriksen, Sune Hellfritzsch, Ponnuswamy Sadayappan, and Cos-
min Oancea. Compiling generalized histograms for gpu. In Proceedings
of the International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’20. IEEE Press, 2020.

[7] Troels Henriksen, Frederik Thorøe, Martin Elsman, and Cosmin Oancea.
Incremental flattening for nested data parallelism. In Proceedings of the
24th Symposium on Principles and Practice of Parallel Programming,
PPoPP ’19, pages 53–67, New York, NY, USA, 2019. ACM.

[8] Sepp Hochreiter and Jurgen Schemidhuber. Long short-term memory,
1997.

[9] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,

31

and Adam Lerer. Automatic differentiation in pytorch. In NIPS 2017
Workshop on Autodiff, 2017.

[10] Aston Zhang, Zack C. Lipton, Mu Li, Alex J. Smola, Brent Werness,
Rachel Hu, Shuai Zhang, Yi Tay, Anirudh Dagar, and Yuan Tang. Dive
into deep learning, 2021.

32

