

U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

Bachelor’s project

Aleksander Junge

Reactive Benchmarking

Benchmarking in the Futhark compiler

Date: June 13 2022

Advisor: Troels Henriksen

Faculty: Faculty of Science

Institute: Department of Computer Science

Author: Aleksander Junge

Title: Reactive Benchmarking

Advisor: Troels Henriksen

Date: 13-06-2022

2

1 Abstract

This project describes a new benchmarking technique that automatically stops benchmarking

when the collected data is deemed sufficient to provide a reliable measurement. We implement

this in the context of Futhark. This automation is useful as it frees up time for the developer

who would otherwise have to adjust the number of iterations to match the execution time of

the program in question. The proposed solution consists of two phases; A first phase runs the

benchmark for half a second. Afterwards, a second phase calculates statistics of the collected

data, and keeps running more iterations until the result is deemed reliable. The new tool was

evaluated by comparing it with manually specified iteration counts on a large benchmark suite,

and was found to reach a reliable result faster than its old counterpart, as it more evenly splits

its time between programs of short and long duration. The new tool provides a mean x that

on average varies with a relative standard deviation of 3.8% between repetitions of the same

benchmark.

3

Table of content

1 Abstract 3

2 Introduction 6

2.1 Empirical Benchmarking . 6

2.2 Futhark . 7

2.3 Terminology . 7

2.4 Scope . 7

2.5 Project outline . 9

3 Related Work 10

3.1 Google benchmark . 10

3.2 Criterion . 11

4 Prior benchmarking system 14

5 Examining the data 15

5.1 The data . 15

5.2 Quantifying variation . 18

5.3 Measuring periodicity . 21

5.4 Summary . 23

6 A new benchmarking tool 24

6.1 Accuracy and convergence . 24

6.2 Design considerations . 25

6.3 A new tool . 26

7 Experimental Results 29

7.1 Reliability . 29

7.2 Validity . 31

7.3 Comparing autocorrelation . 33

7.4 Summary . 35

8 Discussion 36

8.1 Reflection on solution . 36

8.2 Future work . 37

8.2.1 Data insight . 37

8.2.2 Improving benchmarking reliability of short-running programs 37

8.2.3 Aiming for i.i.d . 38

4

8.2.4 Understanding sources of noise . 39

9 Conclusions 41

A Benchmarking methodology 42

Bibliography 43

5

2 Introduction

This section will first define what is understood by empirical benchmarking. Secondly, introduce

the reader to the Futhark language and compiler. Third, present a disambiguation of terminol-

ogy used in the project, before identifying the scope of the project. Lastly, we will finish off the

introduction with an outline of what’s to come in the remaining report.

2.1 Empirical Benchmarking

Benchmarking is the practice of measuring the performance of a computer program. The pri-

mary metric of interest is usually the execution time, which will allow the developer to compare

the relative speed of two implementations of the same program, or calculate other metrics such

as the floating-point operations per second (FLOPS).

What are common applications of benchmarking?

• A developer may want to understand the performance effect of a change to his program.

• A developer may want to compare the implementation of a program written in two different

languages.

• A programming language researcher may introduce a new algorithm, or optimization in

the compilation process and want to see what impact it has on performance.

• Benchmarking may be done to measure the underlying performance of the hardware. E.g.

running the same program on two different machine configurations.

Note that for each application, the question to be answered by benchmarking is usually con-

cerned with estimating the performance impact of some change. In fact, Kalibera et al.[1] found

that out of 122 papers published in ASPLOS, ISMM, PLDI, TACO and TOPLAS, 65 included

evaluation seeking to quantify a performance change.

Benchmarking is inherently empirical, as we base our performance estimate on quantitative

observations and measurements of the program. Thus I will refer to the person conducting the

benchmark as ’experimenter’.

If there were no variation between iterations of a benchmark, we could happily conclude

benchmarking after collecting a single measurement, sadly this is not the case. Progams may

be non-deterministic, and execution time can vary dramatically. The challenge for the experi-

menter is how to best address this uncertainty, and provide reliable estimates of performance

6

in a reasonable amount of time, without compromising the validity of the results.

Thus benchmarking is not a trivial feat for a user with limited knowledge of statistics. The

goal of this project is in part to automate the work for the user, such that less statistical knowl-

edge is required to obtain and interpret benchmark results.

2.2 Futhark

Futhark is a programming language designed for writing efficient code on massively parallel

hardware. It is a data-parallel and purely functional array language, with an optimising compiler

that generates either GPU code through OpenCL and CUDA, or multi-threaded CPU code. It is

not intended to replace general purpose languages, but may be easily integrated into projects

written in e.g. C or Python. Futhark has a built-in benchmarking tool (henceforth referred to as

”futhark bench”), which we will describe in greater detail in section 4. For more information on

Futhark see [2].

2.3 Terminology

Here we will disambiguate a few terms used throughout the report.

Iteration An iteration is the lowest level at which a benchmark is repeated. It corresponds to

running the code to be measured once.

Repetition A repetition of a benchmark, is the act of running the benchmark program e.g. futhark
bench, which may perform multiple iterations of the code to be measured.

Plateau A group of consecutive benchmark iterations that have a similar performance level.

(i.e. different from that of another group)

2.4 Scope

Jones et al.[3] describes benchmarking as a process that involves three kinds of variables af-

fecting the outcome of the benchmark. A controlled variable is a variable that the experimenter

is in direct control of (such as the chosen platform or compiler options). A random variable is

as the name suggest random (e.g. the number of hardware interrupts during an iteration or the

order of scheduling), these random factors usually lead to distributions with a long tail (skewed

to the right)[4]. The last kind of variable is an uncontrolled variable which is fixed for the duration

of the experiment, (this includes factors such as randomized algorithms used in compilation),

7

which once the binary is compiled will remain fixed and may introduce a bias.

This project won’t include any treatment of uncontrolled variables. As the Futhark compiler

doesn’t use randomness in the compilation process, meaning that compiling the same program

on the same machine will always yield the same binary. It is the job of the experimenter to

identify possible sources of bias.

We will consider controlled variables as part of the benchmark. Thus, when we benchmark

a program, it is not only the code to be run which is being measured, but also implicitly its input

size and the options with which it is run. Together these factors provide a framework that should

remain constant during benchmarking.

The last variable that concerns us is the random variable. It is in the face of randomness

that we have to provide an estimate of program performance. Later we will look to characterize

independent and time-dependent noise, each of which influences execution time and will need

to be addressed by a new tool. The underlying sources behind the noise are not of primary

interest, but will be explored to some extent in section 5.

The tool developed in this project rests on the idea that to combat noise, we should collect

more samples. Thus if we are given a set of execution times that has been distorted by the

presence of noise, we believe that the solution will ultimately be to collect more samples, in

order to gain a clearer picture of the true underlying distribution.

So what is reactive benchmarking? It is a term coined by my advisor, to describe a way of

benchmarking that reacts to the data collected so far, to determinewhether to keep runningmore

iterations or terminate (having established trust in the statistic of interest, e.g. mean execution

time). Developing such a tool as well as considering the underlying principles that would allow

for the development of similar tools, is the primary objective of this project. The main properties

we want from a new tool include:

• Automatically determine when to stop a benchmark. E.g. when the sample mean x rea-

sonably approximates the ’true mean’ µ, avoiding manually specifying that all programs

in the benchmark should run x times.

• Provide an indication of how closely x approximates µ. This might be accomplished by

a confidence-interval, which provides a span around x that we with e.g. 95% confidence

would expect µ to fall within.

8

2.5 Project outline

Section 3 covers examples of related work, here we look at other benchmarking libraries that

have some degree of automatic benchmarking. Section 4 describes the Futhark compiler’s old

benchmarking tool (the state of the benchmarking tool at the time of beginning this project). Sec-

tion 5 looks at data collected by futhark bench, to identify patterns that needs to be addressed

by a new tool. Section 6 describes the new benchmarking tool. Section 7 displays experimental

results, comparing the new tool with the old one. Section 8 discusses the obtained results, and

makes suggestions for future work. Section 9 concludes this project.

9

3 Related Work

In this section we will look at two open-source libraries for benchmarking C++ and Haskell code

respectively. The main goal is to gain inspiration. Both libraries provide sophisticated options

such as varying the input size to estimate asymptotic complexity or measure garbage collector

statistics. However, we will limit ourselves to look at how they do the actual timing, how they

see the challenge of noise, how they deal with it, and what sort of statistics they report.

3.1 Google benchmark

Google has an open-source benchmark library on github[5], for benchmarking C++ code snip-

pets (in a manner similar to unit tests).

Before benchmarking, google benchmark prints system information such as the size of every

cache level, and a snapshot of the system load, measured as the average number of processes

in the system run queue over a period of time (1, 5 and 15 minutes).

It collects results at two levels; ’iterations’ and ’repetitions’. An iteration of a benchmark is

a single execution of the code snippet to be measured, however in recognition that a single

iteration may be quite noisy (as we shall see in section 5), they continue running iterations until

0.5s has elapsed, averaging them to a single measurement. Such a 0.5s average of iterations

is a single ’repetition’.

Google benchmark first does a warm-up repetition, where it runs (and discards) 0.5s of it-

erations. Following the warm up repetition, the default setting is to collect and report a single

repetition’s average. However, they state in the user guide that ”benchmarks are often noisy

and a single result may not be representative of the overall behavior” [5], and thus allow an

option to specify a desired number of repetitions. It will then run the specified number of rep-

etitions, and do statistics on the collected data at a repetition granularity (reporting the mean,

median, and standard deviation).

In Figure 1, we see 2 different invocations of a benchmark (using 20 repetitions), which con-

structs and copies a vector of 107 ints. Despite having discarded a warm-up repetition, the first

few repetitions (each 13 iterations averaged), still underperforms subsequent repetitions. Note

also the discrepancy in performance between the two invocations.

Google benchmark measured a load over the past minute of 1.18 for the invocation seen in

blue, and 0.41 for the orange, which could explain part of the discrepancy.

10

In summary, google benchmark requires some work from the user to get a reliable result

(specifying repetition count). Additionally it may not be intuitive that the statistics are not done

directly on the individual iterations, but on the repetitions of 0.5s. Lastly we saw how providing

a measure of the system load could aid in diagnosing the noise level of a benchmark.

Figure 1: Two different invocations of google benchmark (blue/orange respectively), on a

benchmark constructing and copying a vector in C++. Measured using 20 repetitions, each

repetition is the average of 13 iterations.

3.2 Criterion

Criterion is a benchmarking library for Haskell[6]. By default, Criterion runs the benchmark for

5 seconds, though it is possible to specify a different duration. It then prints statistics, including

the standard deviation and two different means: the sample mean x as well as an estimate of

the mean using ordinary least-square regression OLS.

Figure 2 shows the output of a benchmark of a small function calculating the 5th fibonacci

number.

The plot on the left shows a kernel density estimate. It’s interpretation is similar to a his-

togram, having frequency of occurrence along the y-axis and execution time along x-axis.

11

Figure 2: The plots and statistics produced by Criterion, for a benchmark of a function calculating

the 5th fibonacci number.

The right plot is not so intuitive. Since every benchmark takes a different amount of time,

its impossible to say beforehand how many iterations will be required to reach 5s. Thus while

benchmarking, they periodically need to check the timer to see if 5s has elapsed, and if not,

determine how many iterations to do before checking again. The next number of iterations to

run is found by multiplying the last count by 1.05. Each point in the right graph, represents the

samples collected between checks of the timer. If we have a point with e.g. 1000 iterations

(x-axis), then the following point has 1000 · 1.05 = 1050 iterations. On the y-axis is the total

execution time of the corresponding set of iterations.

The “Mean execution time“ of 230ns, was obtained as:

x =
1

n

n∑
i=1

xi

However, they also use ordinary least-square regression (OLS) to estimate a mean. In

other words they try to fit a straight line to the plot on the right, by minimizing the residual sum

of squares. If the measurements were taken with minimal noise, it should be possible to fit a

straight line to the points as each point on the x-axis has 1.05 times more measurements than

its predecessor, its expected execution time should likewise be 1.05 times higher. The mean

can be found as the coefficient of the slope of the line.

The R2 goodness-of-fit is a measure of how well the line fits the points, and thus also gives

12

an idea of the noise level.

Criterion additionally provides a%measure of howmuch outliers contributed to the standard

deviation (as we will see in section 5 standard deviation is vulnerable to big outliers). However,

it is hard to interpret what is meant with an ’81.2% effect’ other than they say it is severe.

Lastly, the measurements all have an upper and lower bound found by using a technique

known as bootstrapping. This technique simulates the sampling process by random resampling

(with replacement) from the original sample. A bootstrap sample

X∗ = (x∗
1, x

∗
2, ..., x

∗
n)

is drawn from the original sample of size n, with replacement such that e.g.

(x∗
1 = x3, x

∗
2 = x3, x

∗
3 = x1)

is a possible resample of an n = 3 sample. To provide an upper and lower bound for the

mean x, they draw 100, 000 of such samples and for each calculate the statistic of interest:

x∗ =
1

n

n∑
i=1

x∗
i (1)

Rearranging these bootstrap means from lowest to highest. They obtain a lower bound of a

95% confidence interval as the 2.5th percentile of this sorted list of means, similarly the upper

bound is equal to the 97.5th percentile. Additionally they perform bias-correction and accelera-

tion to get the final confidence interval, however that is beyond the scope of this walkthrough.

In summary, Criterion uses some more advanced statistic techniques which requires some

understanding of statistics. However, they provide a lot of insight into both the actual distribution

of the samples in the form of the plots, as well as the noise present in the sampling process

(R2, confidence intervals and impact of outliers measurement). However, it is still up to the user

to judge if these measurements present an acceptable estimate, or if the benchmark should

be repeated to perhaps obtain less noisy estimates - which may be challenging for a user with

limited knowledge of statistics.

13

4 Prior benchmarking system

The Futhark compiler has a simple benchmarking tool, which works by typing:

$ futhark bench file.fut

Before collecting any samples, the tool does a ’warm-up’ iteration. This is done to get the

code and data into cache, before collecting the subsequent samples. By default, futhark bench
will run ”file.fut” 10 times, outputting the mean of these 10 iterations along with the relative

standard deviation (RSD), defined as the ratio of the sample standard deviation s to the sample

mean x:

s =

√∑n
i=1(xi − x)2

n− 1

RSD =
s

x
(2)

Additionally, we are informed of howmuch the fastest iteration beat the mean execution time

by, as well as how much slower the slowest iteration was. Below is an example output:

f i l e . f u t 61µs (RSD: 0.124 ; min : -41%; max : +182%)

It is possible to specify the desired number of iterations, for example:

$ futhark bench –runs=500 file.fut

will run file.fut 500 times. To do more statistics, the user may dump the raw results to a json

file, and do further analysis on their own.

14

5 Examining the data

In this section we will take a thorough look at benchmarking data from running futhark bench.
The aim is to give an idea of how the iterations of a single benchmark vary. We will start by pre-

senting the data at a high level. Next, we will attempt to quantify the variation that characterize

many benchmarks. Lastly, the section is concluded with a description of how to measure the

presence of dependencies and ’plateaus’.

5.1 The data

Figure 3 displays a time series plot of each of the four benchmarks. Each trace shows a quite

unique pattern. Benchmark a) seems to have multiple phases of performance improvement un-

til around iteration number 4000, where it reaches a more steady state. Benchmark b) seems

more stable throughout its whole execution, yet the performance is still time-dependent as seen

e.g. from iteration 4000 to 6000 where the average execution time drops slightly, before rising

again. Benchmark c) has some noise, spread out evenly through its execution, with no signs of

periodicity.

Benchmark d) shows the result of running a benchmark while periodically running other pro-

cesses on the GPU. Benchmarking with a high background load is undesirable as it doesn’t

provide a clear picture of the code being measured, so we include it to give an idea of what

such a trace looks like. More specifically another GPU-benchmark was run simultaneously, in

the periods around iteration 0-3000, and 6000-8000. It is notable that in these periods there

are clusters of execution times with a significant drop in performance. The benchmark suite

which was run at the same time, contained multiple smaller benchmarks, taking on the order

of 100ms, and in-between these small benchmarks are periods of non-GPU work, which is the

reason that performance improve in between the clusters.

Another way to view the data is using histograms (see figure 4). For benchmark a), we clearly

see each of the initial warm up phases as a spike in the tail of the distribution, however most of

the samples fall in a group on the left. Benchmark b), almost follows a normal distribution, this

may be because it has a much longer average execution time and is thus more robust against

random factors such as interrupts etc. (being averaged out over the span of execution).

Benchmark c) is slightly skewed to the right. As seen in the time-series data, this is not be-

cause of a warm up period but rather more sporadic spikes in the execution time. These likely

come from random factors such as scheduling or interrupts. Having a shorter execution time per

iteration, this benchmark is more vulnerable to this type of random noise. Lastly, benchmark d)

also has a right-tail, containing predominantly measurements taken while the background load

was high (another benchmark running). Having a long execution time, didn’t help against this

15

(a) warm up phases (b) slight periodicity

(c) i.i.d noise (d) high background noise

Figure 3: Time series plot of 4 benchmarks. Each benchmark was run for 10,000 iterations.

Along the x-axis is the iteration number, and on the y-axis is the execution time in µs. OpenCL
was used as the backend for compiling to the GPU. For more information on benchmarking

methodology, see Appendix A.

type of noise, as it is very time-dependent (hence some iterations will have high background

load, while others none at all).

Looking at the mean (red line) and median (blue dotted line), we see that in all cases the

median usually stays in the ’highest frequency’ group on the left. The mean on the other hand,

is dragged to the right by the tail of the distribution. It may be tempting to resolve the question

of finding a mean execution time, by simply using the median instead. As it is seems to handle

noise better. However, this approach has at least two problems. The first is in terms of how

to interpret the result. While the mean is the expected average value, the median is harder

to explain. Perhaps it can be seen as the value one would expect to most frequently appear

16

(a) warm up phases (b) slight periodicity

(c) i.i.d noise (d) high background noise

Figure 4: Histogram of the 4 benchmarks (using the same data). The red line is the mean of the

execution times while the blue dotted line displays the median execution time (50th percentile)

if throwing an n-sided dice with each iteration as a face on the dice. A more serious problem

is if the distribution is multi-modal, and we report a median that is not representative at all.[7]

Consider the distribution presented in figure 5.

Here the median is found in the mode on the right, as the 50th percentile lies in this cluster.

The mean on the other hand, is sort of in-between. Although this benchmark is ”artificial”, in the

sense that it was conjured up by increasing the background load, it goes to show that themedian

is not a solution if we want a robust tool (robust in the sense that it should be able to handle

data following an arbitrary distribution, in particular we can’t make any normality assumptions).

17

Figure 5: A histogram of a transpose benchmark, showing a clear bi-modal distribution. The

benchmark was conducted with high GPU-load. The blue dotted-line shows the median, while

the red line is the sample mean.

5.2 Quantifying variation

One thing that stands out is the high amount of variation in the benchmarks. In all four bench-

marks we observed samples that stood out in one way or another. Now we will look at how to

quantify this variation.

A first measure that comes to mind is the relative standard deviation (see equation 2), which

says something about how far from the mean the data on average is spread out. The bench-

marks had the following RSDs in order: 16.7%, 0.4%, 1.2%, 11.2%. Unsurprisingly, number 1 and

4 had quite high variation while number 2 and 3 had much smaller numbers. However, RSD

doesn’t tell us anything about where the observed variation comes from. Consider table 1, here

we see two quite different datasets that have the same mean and RSD. In the first dataset the

data is spread out evenly around the mean, while in the second dataset almost all the variation

comes from a single outlier.

Samples x RSD G

1, 3, 5, 7, 9, 11, 13, 15 8 61.2% 0.328

6, 6, 6, 6, 6, 7, 7, 7, 21 8 61.2% 0.204

Table 1: Two fictive datasets, showing µ, RSD and gini G.

18

Figure 6: Lorenz curve and gini-coefficient (G) for each of the 4 scan benchmarks. Orange curve

is perfect equality (all samples identical runtime), while the blue line shows the lorenz-curve.

Another way to look at variation is using a Lorenz-curve, commonly used in economics when

measuring inequality of income. A point on the curve (x, y) with x, y ∈ [0, 1] is defined as the

contribution of the bottom fraction x to the total sum of execution times
∑n

i=1 xi. Perfect equality

is shown as a straight diagonal line, such that e.g. the bottom 20th percentile (0.2 on the x-

axis), contributes exactly 20% to the total execution time.[8] Figure 6 shows such a curve for

each benchmark. A related statistic that provides a measure of inequality in the dataset is the

gini-coefficient G. It is defined as 2 times the area between the perfect equality line and the

lorenz curve, or in terms of the samples x:

G =

n∑
i=1

n∑
j=n

|xi − xj|

2n2x
(3)

Table 1 also displays the gini coefficient G. It measures relatively less variation than RSD

in the dataset containing an outlier. This is because RSD contains a squaring operation and

19

thus weighs outliers more heavily, while G uses the absolute value and is thus less affected by

a big value.

It is hard to say which term is more useful. As RSD puts more emphasize on outliers it is

perhaps a sensible choice if we think big outliers is the most common type of noise that we want

to avoid. However, judging from the time series plot of the 4 benchmarks in figure 3, it’s unclear

if this is really the case.

In either case, consider the following problem: We have collected the first 700 samples of

benchmark 1, reproduced in figure 7.

Figure 7: First 700 iterations of the 1st benchmark, RSD = 5.01%. Note the shift in performance

(circled) from the initial plateau.

The RSD of this subset of the benchmark is a meager 5.01%. Inspecting the plot we clearly

see that the first ∼650 samples may have been part of some warm up phase (indeed the next

3400 samples is too), meaning that we would like to continue running the benchmark - as it

has yet to converge. But the RSD doesn’t capture this time-dependent performance of the

data, and reports a low variation. To better capture these plateaus we can look to the serial

autocorrelation, discussed in the next section.

20

5.3 Measuring periodicity

Figure 8 displays lag-plots of the 4 benchmarks. A lag is a fixed displacement of a time series,

the h’th lag is the observation that happened h time points before i, e.g. lag1(x5) = x4.[9] The

original set of execution times is displayed along the x-axis, while the y-axis is the same set of

data ’lagged’ once.

Figure 8: Lag plot, showing the runtime in µs along the x-axis and the same dataset shifted 1

sample to the right along the y-axis.

In the first benchmark (containing many warm up phases), most points are scattered along

the diagonal. Thus sample xi is a good predictor of xi+1, each of the warm up plateaus are

clearly visible as its own cluster. The second benchmark is more clustered in a big oval group,

however it also has a slight diagonal shape, again indicating that sample xi is correlated with

xi+1. The third benchmark’s lag plot tells a different story. Here we see that if we have observed

a slow iteration (> 76µs), then the next iteration is unlikely to be slow - which indicates that the

performance drops are singular events, not correlated with the next iteration of the benchmark

(the reason for the grid-like structure is that the resolution of the timer is limited to 1µs). The last

benchmark also has a significant diagonal component, however there are also times where xi

21

can’t predict xi+1, as seen in the horizontal and vertical lines (likely measurements taken on the

onset or offset of a performance plateau - xi having a high background load and xi+1 none).

These lag plots can give a visual cue of whether a benchmark sample is independent or has

dependencies. Another way to detect dependencies in the sample is an autocorrelation plot,

which displays the correlation between our time series Xt and a lagged version of the same

series Xt−h, for some lag h

cor(Xt, Xt−h) =
E
[
(Xt − x)(Xt−h − x)

]
s2

(4)

A positive correlation indicates that if xi is a large value, then xi+h is probably also large.

Conversely for a negative correlation, a large xi would suggest that xi+h is relatively small. See

figure 9 for autocorrelation plots of the 4 benchmarks.

Figure 9: Autocorrelation plots of the 4 benchmarks. x-axis is the lag at which the correlation

was calculated, while the y-axis shows the value of the correlation at that lag.

22

The first benchmark has a very high autocorrelation, slowly dropping until lag ∼2700 where

the correlation is 0. This tells us that the further away from an iteration xi we move, the less

predictive power (correlation) it has, until reaching xi+2700 where they are uncorrelated. Simi-

larly for benchmark 2, however the magnitude of the correlation is a lot smaller, which makes

sense as the time-dependency of the data was less severe. Benchmark 3 seems to contain only

independent and identically distributted (i.i.d) noise, as each iteration is uncorrelated with the

others. The last benchmark shows an interesting periodical phenomenon. Remembering the

time series plot, the background noise was clustered in small groups of around 100ms, which is

very visible on this plot. Lag 1-100 has a high correlation, which decreases fast and then turns

negative as an iteration xi+120 is more likely to be in a different performance cluster from xi.

Thus the autocorrelation enables us to say something about how each sample xi relates to

a subsequent sample xi+h. We may use this to detect ’plateaus’ in the plots, i.e. as seen in

figure 7, where the best predictor of xi is xi+1.

5.4 Summary

In summary, we saw how benchmarks vary significantly from iteration to iteration. We identified

two different kinds of noise, one which was random throughout the whole execution (e.g. bench-

mark 3), and another which was time-dependent (either the result of increasing the background

load, or due to the presence of a warm up phase). We postulated that the first kind of noise,

is a bigger problem for shorter running benchmarks, as e.g. the impact of an extra interrupt

is not amortized well over a short duration of execution, whereas a longer running benchmark

will average out these sources of random noise. Conversely, the time-dependent noise is a

problem for benchmarks of all durations, as it has a more ’on/off’ character, where it in periods

significantly worsens the performance and in other periods is completely absent.

Then we moved on to characterize the variation in the benchmarks, first using the relative stan-

dard deviation and then the gini-coefficient, noting that RSD puts more emphasize on large

outliers. However, we saw that these two measures had a significant shortcoming in that they

were unable to detect the presence of multiple plateaus of performance.

Lastly we found a way to quantify the plateaus, as the autocorrelation of the samples at lag 1.

Where a high correlation suggests the presence of strong inter-iteration dependencies.

23

6 A new benchmarking tool

Now that we have studied benchmarking tools used in practice in section 3 and seen the non-

deterministic nature of the data in section 5, we are ready to construct a new tool.

In this section we will first look at how to define a notion of accuracy, which we may use to

determine when to complete a benchmark. Next, we will describe the new tool developed as

part of this project, and the design considerations that led to it.

6.1 Accuracy and convergence

As we want to run benchmarks until we have an accurate result, we should make clear what is

meant by ’accurate’. We may define accuracy, as a measure of how close the sample mean x is

to the true mean µ. However, the problem with this definition is that by definition µ is unknown.

The Law of large numbers

xn → µ as n → ∞

states that the sample mean tends toward the true mean µ, as the number of samples ap-

proaches infinity. However, to use the Law of large numbers each trial must be i.i.d, an as-

sumption that fails in our setting. It is the ’independence’ part that is not satisfied, as we saw in

section 5, benchmarks often have a strong serial autocorrelation.

However, despite being somewhat idealized, adopting this notion allows us to use the statis-

tical term known as standard error as a proxy for accuracy. The standard error (SE), estimates

how closely the sample mean x represents the true mean µ.

To describe standard error, let’s imagine that we have access to the true distribution F :

x ∼ (µF , σ
2
F)

Taking the mean x of a sample from F , would have the same expected mean of µ, but its

variance would decrease by a factor of the sample size n:

x ∼ (µF ,
σ2
F

n
)

The standard error can be seen as the standard deviation of this sample mean.[10]

SE =
σ√
n

24

To normalize the standard error, we may divide by the mean obtaining the relative standard

error (RSE):

RSE =
σ

µ
√
n

However, as we don’t have access to the true mean µ or standard deviation σ of the popu-

lation, we may estimate it by using the sample standard deviation s and mean x:

RSE =
s

x
√
n

(5)

The accuracy of this estimator depends on the sample size, as for very small sample sizes

it will systematically underestimate the standard deviation of the population. For n = 6 the bias

is about 5%, and drops rapidly for larger n (in our case, n will usually be many times higher).

6.2 Design considerations

Both google benchmark andCriterion used time as the sole criteria for when to stop benchmark-

ing (0.5s for a repetition of google benchmark, and 5s total sampling time for Criterion). Having

observed the way that many benchmarks have warm up periods, it makes sense to incorporate

an element of real time measurement in order to give it some time to ’get warm’.

If we conversely were to only look at data pertaining to the variation of the data, we could end

up terminating the benchmark prematurely, as the variation on a single plateau can be quite

low. Thus to give it time to reach a second plateau (if present at all), a minimum time threshold

makes sense.

More specifically in the case of futhark bench, it seemed that whenever there was a warm

up phase, it usually took around 0.5-1s. It also seemed that some benchmarks were more

susceptible to having a warm up phase than others. However, as of now we have no way of

determining whether a benchmark will contain a warm up phase a priori, and other architectural

explanations remain plausible, e.g. that the GPU is switching on some kind of turbo boost where

it draws more power as it comes under load, thus increasing performance after a short period.

Once we have run our benchmark for the initial time period, we should determine whether

it contained anomalies such as a warm up phase, and if so, what to do about it. In section 5,

we saw how the autocorrelation could detect the presence of dependencies between iterations

(and hence warm up periods). Thus we could calculate the autocorrelation at lag 1 to identify a

warm up period.

Next, we should determine what to do if such a period is present. Intuitively, we should keep

on collecting more samples to reduce the effect of a period that is unlikely to be representative of

25

normal performance. But how much should we continue running? And should we always keep

running more iterations if the autocorrelation remains high? Once there are multiple plateaus,

the autocorrelation will remain high for a long time despite subsequent iterations sharing an

execution time within a narrow range.

Thus, it would make sense to factor in how many iterations we have already done before

we keep running indefinitely. The RSE which can be considered as the standard deviation of

the mean x, has the property that it decreases with the square root of the sample size (see

equation 5). E.g. reducing the error by a factor of two requires four times as many samples,

while reducing it by a factor of 100 requires 10, 000 times more samples. Using the RSE has

the added benefit that it also measures the variation, thus a low RSE would come from either

a low variation or a very large sample size n, or a combination.

Thus if we incorporated the RSE as a measure, in combination with the autocorrelation, we

could set various termination conditions. For instance if the autocorrelation is high (i.e. there

are dependencies that may introduce bias), we would require a very low RSE as compensation

before terminating. Conversely, if the data seemed to only suffer from i.i.d noise, we would be

satisfied that the RSE is relatively higher. The challenge lies in making sure the initial timed

period is long enough to capture a warm up phase.

6.3 A new tool

Having gone through the design considerations, we will now summarize how the new tool works.

At a high level, the procedure can be seen in figure 10. We start by running iterations for half a

second (or at least 10 iterations), before entering the ’convergence phase’.

The convergence phase starts by checking whether the collected data satisfy a set of ’con-

vergence criteria’, which can be seen in figure 10. The criteria consists of a combination of

autocorrelation and RSE thresholds. As mentioned earlier, a high autocorrelation demands a

lower RSE as compensation. If the initial 0.5s of data doesn’t meet the criteria, we discard all

the iterations collected so far as they probably contained a warm up phase. This enables the

tool to ’restart’ but hopefully now in a warm state. This means the tool finishes a lot sooner, as

the autocorrelation would otherwise remain high for a long time.

We get the next iteration count as n
2
iterations where n was the previous number of iterations.

Once it has completed these, we recheck if the results satisfy any of our criteria. If the data

doesn’t meet the criteria, we perform another n
2
iterations and recheck. In the rare case that not

only the autocorrelation remains high, but also the RSE, we also impose a benchmarking time

26

limit of 5 minutes.

Our next desired property in addition to automatic convergence, was to provide an indica-

tor of how accurately the sample mean x represents µ (or at least a measure of the variation

involved).

To do this, we may look to Criterion for inspiration. They use bootstrapping to obtain a non-

parametric confidence interval (i.e. it doesn’t use a parameterized statistical distribution to ob-

tain the confidence interval, as most of these have an underlying i.i.d assumption).

With bootstrapping, we rearrange the resampled means x∗ in order from low to high (see

equation 1), and obtain a 95% confidence interval as the 2.5th and 97.5th percentile of this sorted

list. This also provides a measure of variation, as data that is spread out will produce a wider

confidence interval.

27

Figure 10: A schematic of the solution. All implementation details have been stripped away,

focusing on the algorithm at a high level.

28

7 Experimental Results

In this section we will evaluate the accuracy of our new tool, as well as the speed with which

it may conclude benchmarking. Our main point of comparison will be the old tool, varying the

iteration count from the default 10 iterations, to a more conservative 10, 000.

When measuring accuracy, there are two things we desire; reliability and validity. If our new

tool is reliable, it means that asked the same question (i.e. given the same benchmark under

the same conditions) it should produce the same result each time. However, although a tool

may be reliable, it may just reliably give the wrong answer each time. Thus we also want the

result to be ’valid’ in the sense that we got what we were asking for. We will use the mean

of 15 repetitions 10, 000 iterations each, as a baseline to test for validity, however we will first

determine how reliable the new tool is.

7.1 Reliability

Remembering that RSE could be considered the standard deviation of the mean, we could

perform the same benchmark a number of times, collecting the sample means x and calculate

the standard deviation of these means. We would thus obtain an indicator of how closely each

estimate of µ fall to each other - if they all end up tightly spaced (A low deviation), the result

may be considered reliable. Conversely if we obtain means that differ significantly, the tool can

be said to be unreliable.

Figure 11 is a collection of benchmarks, each represented by a dot (see appendix A, for a

reference on the benchmark suite). Each benchmark was repeated 15 times, calculating the

mean xi, and the variation between these means using RSD. The x-axis displays the average

execution time 1
15

∑15
i=1 xi, while the y-axis is the RSD of the sample means. The benchmark

suite contained benchmarks with an execution time ranging from 15µs to over 1s (note the log-

arithmic x-axis).

The old tool using 10 iterations (plot a), had an average RSD of x of 15%, which is highly

unreliable. Applying the CLT, we can say that having observed one repetition giving a mean x,

we would expect the mean of another repetition to fall in the range: [x± 30%] with a 95% prob-

ability. Using 10 iterations to obtain x left too much to chance, e.g. a warm up phase perhaps

present in one repetition but not another, or a hardware interrupt creating an outlier that isn’t

amortized well over 10 iterations.

29

On the other hand, the new tool had a much lower average RSD of x of 3.8%, this tells us

that when we have obtained a sample mean x, we can expect a subsequent repetition of the

same benchmark to produce a sample mean that 95%of the time will lie in the interval [x±7.6%].

Another thing that stands out is the relationship between the RSD and execution time. As

execution time increases, the variation in collected sample means seem to fall. The difference

is quite remarkable, for programs with an execution time < 250µs, the average RSD of x was

6.6% while for those over 250µs it was just 1.2%. The exact reason for this relationship is un-

known, it is possible that part of the explanation comes from the robustness of longer-running

benchmarks against i.i.d noise, or perhaps short-running benchmarks need a lot of iterations to

reach a high sustained performance (perhaps only achieved at some point after the initial timed

phase is discarded, which may not occur for every repetition of the same benchmark).

(a) 10 iterations (b) New tool

Figure 11: RSD of the sample mean (y-axis), against the average execution time of the 15

repetitions(x-axis). The full benchmark suite (listed in appendix A) was used.

Figure 12, displays the same relationship between RSD of x and execution time as above,

however now using 10, 000 iterations (only done on scan.fut and transpose.fut of the benchmark

suite, as it took a significant amount of time to run 15 repetitions using 10, 000 iterations). Using

a conservative 10, 000 iterations gives a lower variation, but also took a significant amount of

time. The time spent on each benchmark was proportional to its execution time, thus despite

the robustness of longer-running benchmarks, the old tool spends most of its time benchmark-

ing these.

Using 10, 000 iterations the average RSD reaches a low 2.4%, (giving a 95% confidence

interval for another repetition of [x± 4.8%]). The same tendency for higher variation in < 250µs

30

Figure 12: RSD of the sample mean (y-axis), against the average execution time of the 15

repetitions(x-axis), using 10, 000 iterations. The benchmarks found in scan.fut and transpose.fut

from the benchmark suite was used.

programs that we saw when using the new tool, also shows when using 10, 000 iterations; here

the variation is 4.5% while for those above 250µs it was 0.3%.

Thus in terms of reliability, 10, 000 iterations is ∼1.58x more reliable than the new tool (2.4%

average RSD of x vs. 3.8%), but how do they compare in the amount of time they took to finish

benchmarking scan.fut and transpose.fut? The new tool spent 4 minutes and 16 seconds,

while 10, 000 iterations took 23 minutes and 44 seconds, thus the 1.58x gain in reliability of

using 10, 000 iterations, came at a 5.6x speed penalty.

7.2 Validity

Now that we have looked at the amount of variation in the sample mean x of the same tool (i.e.

how reliably it gives the same answer to the same question), let’s see to what degree the ob-

tained sample means agree with a 10, 000 iteration baseline (averaged out over 15 repetitions).

We allow for some margin of error, as 10, 000 iterations is also only an estimate of µ.

Figure 13 displays on the y-axis the ratio of x between the conservative estimate using

10, 000 iterations (indexed to 1), the old tool using 10 iterations (green) and the new tool (red).

The benchmark suite used is transpose.fut.

31

Figure 13: Comparing the sample mean x across different tool configurations, on the trans-

pose.fut benchmark suite. The sample mean using 10, 000 iterations is used as index (blue).

Each dot represents a unique benchmark which was repeated 15 times using either 10 iterations
(green) or letting the new tool determine iteration count (red).

The mean obtained using 10 iterations seems to consistently overstate the execution time.

This is likely due to the presence of warm up phases, using 10 iterations is seldom enough to

reach a more stable state. On the other hand, the new tool agrees more closely with the results

obtained using 10, 000 iterations.

As we spent 12 minutes and 21 seconds using 10, 000 iterations and only 1 minute and 53

seconds using the new tool, and achieved quite similar means (with some margin of error), the

combination of (autocorrelation, RSE) thresholds can be said to work quite nicely for the trans-

pose.fut suite.

However, for the scan.fut collection of benchmarks, the results using the new tool deviate a

bit more from the 10, 000 iteration “baseline“, as seen in figure 14.

Again, the new tool (b) is definitely closer to the baseline than the default 10 iterations (a),

which overstates the mean most of the time. On the x-axis, the benchmarks are ordered by

execution time (as measured with 10, 000 iterations) from low to high. Thus it seems that it is

mostly for benchmarks of short duration that there is a discrepancy, and as execution time in-

crease the new tool’s mean approaches that obtained using 10, 000 iterations.

To obtain a higher degree of accuracy, we may change the weighting used between RSE

and autocorrelation, for instance doubling the RSE requirements and increasing the minimum

benchmarking time from 0.5s to 1s, which produces the ratios seen in (c). Using these more

32

(a) 10 iterations (b) new tool (c) conservative RSE thresholds

Figure 14: Comparing the sample mean x across different tool configurations, on scan.fut

benchmark suite. The sample mean of the old tool with 10, 000 iterations is used as index

(blue). Each dot represents a unique benchmark which was repeated 15 times using either 10
iterations (a), new tool determine iteration count (b), or the new tool with more conservative

weights (c).

conservative thresholds gave a sample mean that closer approximates that using 10, 000 itera-

tions, again with increasing proximity as execution time increases. However, it is ultimately a

tradeoff between speed and accuracy. Running 10, 000 iterations took 11 minutes and 25 sec-

onds, the new tool took 2 minutes and 23 seconds, and the new tool with conservative weights

took 6 minutes and 52 seconds.

7.3 Comparing autocorrelation

One factor that enables the new tool to finish faster than the old tool, is the near elimination of

warm up phases, which it would take a lot of iterations to reduce the effect of. To verify this, we

should check that autocorrelation in the results have decreased when using the new tool. Our

hypothesis is that discarding the initial warm up period, should yield an overall lower autocorre-

lation.

Figure 15 compares the autocorrelation at lag 1 (y-axis) of benchmarks from the scan.fut

suite. Each point’s autocorrelation has been averaged over 15 repetitions of the corresponding

benchmark. The benchmarks have been sorted using the autocorrelation of 10, 000 iterations

with the old tool as key.

The old tool averaged an autocorrelation of 0.52, while the new tool averaged 0.18. Thus

as we expected, the new tool produces samples that have less inter-iteration dependencies, as

warm up phases have been removed. However, part of the reason may also be that we are

spending more time doing 10, 000 iterations, which simply leaves more time for dependencies

to arise.

33

Figure 15: An autocorrelation comparison. Each point in the plot is the correlation at LAG 1

averaged over 15 repetitions of a benchmark, using the new tool (red) or 10, 000 iterations of

the old tool (blue).

When using 10, 000 iterations, it is notable that despite averaging the autocorrelation over 15

repetitions, many benchmarks still register a very high autocorrelation. Meaning that they must

have contained serial dependencies (most likely warm up phases), for most if not all of their 15

repetitions (as the autocorrelation is always stricly less than 1, getting an average of close to 1

would require: 1
15

∑15
i=1 aci = 1 ⇒ ∀i : aci = 1).

34

7.4 Summary

In summary, we first looked at reliability as how much the sample mean varied from repetition to

repetition of a benchmark. 10 iterations presented an extremely unreliable result, while 10, 000 it-

erations was quite reliable but also time-consuming - especially for longer-running benchmarks.

A middle ground was found in the new tool, which only spent a fraction of the time, but still

achieved a low variation in x across benchmark repetitions. We also made the observation that

as execution time rose, the RSD of the sample mean fell.

To say something about the validity, we compared the sample mean obtained across the

different configuration of tools. Using 10, 000 iterations of the old tool as a baseline, we saw that

for the tranpose.fut benchmark suite, the new tool obtained very similar results in a fraction of

the time. While for another suite, it sometimes differed as far as ∼ 15%, most notably when the

execution time was low. We saw how altering the weights used between autocorrelation and

RSE could reduce this deviation, and give the tool more time to converge (at a speed penalty).

Lastly, we saw how eliminating warm up phases enabled the tool to spend less time in order

to obtain an accurate result.

35

8 Discussion

In this section we will first discuss whether the new tool lives up to its goals of automation and

easing the job of benchmarking for the user. Lastly we will make suggestions for future work.

8.1 Reflection on solution

So does the new tool present a better solution for the user? As we saw in section 2.1, most

users are concerned with a relative performance comparison of different setups. As the new

tool sometimes deviates up to∼ 15% from the performance found using a higher iteration count,

it could suggest that the error is too high to be useful for performance comparisons, especially

if the performance difference to be investigated is small (e.g. ∼ 5%). However, it was mostly

benchmarks with an execution time under ∼ 200µs that had such deviation, while the deviation

was almost negligible for benchmarks over 400µs. Thus it is mostly a problem for performance

comparisons of very short-running programs.

However, it is inherently difficult to stop benchmarking at the ’right time’ as we have no way

of knowing if the performance seen so far is indicative of the performance to come in the next

iteration. As we have seen, there exists plateaus of performance, and these are only apparent

once we have actually left the plateau - thus trying to determine whether there exists another

plateau, which has a higher sustained performance than the current, would require seeing that

which has yet to happen. Thus, another way to view the solution produced in this project, is

that it may serve as a predictor of the execution time of the next iteration of a benchmark. (For

all intends and purposes it predicts it quite well, as the recent past is usually a good indicator of

the near future - but with exceptions).

A problem is also that it may be hard to understand the performance characteristics of the

benchmark from a single number, as its underlying distribution may change the story signifi-

cantly. For instance, it would be beneficial for the user to also know the modality of the distribu-

tion, as well as the noise-level which was present while benchmarking. We will address these

issues, and a few others in the future work section.

36

8.2 Future work

In the following we will look at four ideas for future work.

8.2.1 Data insight

The confidence-interval of the new tool may reveal whether the data is right-skewed or how

much variation there was (a wider interval), however making such interpretations takes ef-

fort. Perhaps it would be better to give the confidence-interval in percentage of the mean,

e.g. [−1.3%; +2.7%], as it is easier to judge than absolute values. However, further analysis of

the distribution of data would still require the user to inspect the raw json file (where the timed

phase may have been removed, further complicating analysis).

To give the user a more thorough feel of the distribution underlying the results, it should be

possible to develop a framework for plotting results. Criterion does this by giving the option of

writing to a .html file that can be rendered in a browser.

As some users may find it tedious to write to a .html file and then open that separately, an-

other path may be to output e.g. a histogram in the terminal itself, using a tool like spark[11].

Another measure that could bring a lot of insight, would be to provide an indicator of the

modality of the distribution of execution times. If there were time-dependent noise such as a

warm up phase or periodic heavy background load, it would show up as its own mode (e.g. as

seen in figure 5). To detect this, one could use the mvalue approach:

m(x) =
1

M

n∑
i=2

|xi − xi−1|

where M is the maximum bin value of the histogram, and n is the number of bins. Roughly

speaking this measures modality as the number of elevation increases and decreases in a his-

togram. A high mvalue (e.g. > 2.8) indicates multi-modality.[12] Another technique, which may

be better suited to deal with particularly noisy samples is to measure the valleys rather than the

peaks[13].

8.2.2 Improving benchmarking reliability of short-running programs

In section 7, we saw that when benchmarking programs of < 250µs duration, the average RSD

of x was 6.6%, while for those above 250µs it was a more stable 1.2%. Thus the new tool pro-

duce more uncertain results for shorter-running programs.

37

There could be many reasons for this, it could just be an artefact of the more tail-heavy dis-

tribution which is characteristic of short-running programs as they are more vulnerable to i.i.d

noise. Another factor could be that a small difference in x of e.g. 2µs influences a benchmark

of short duration more than a long-running one (2% for a 100µs benchmark, but only 0.2% for a

1000µs benchmark).

To increase the reliability of the tool when benchmarking programs of short duration, it could

be considered to find a way of running more iterations of these, without spending more time

on the slower programs. One idea could be to use the cube root 3
√
n rather than

√
n in the

denominator of RSE. This would mean that running more iterations has less of an impact as

a termination criteria. For instance for 4096 iterations, using the cube-root would increase the

RSE by a factor of 4, while for a benchmark of 64 iterations just a factor of 2.

A future line of study could also seek to uncover if there is something else which is charac-

teristic about a program of short-duration, which makes it a challenge to benchmark.

8.2.3 Aiming for i.i.d

As seen in section 7, when running multiple repetitions of the new tool, the mean x obtained

would have an average RSD of 3.8%. However, in our selection of RSE weights, we specified

that we would like to stop benchmarking only when the RSE is below 1% (or lower if the auto-

correlation is high). As the RSE can be interpreted as the expected standard deviation of x, we

see that there is a notable difference between the ideal of 1% deviation, and the actual 3.8%

observed. This is due to the fact that the iterations aren’t i.i.d, but rather have periods of higher

and lower performance.

If we could find a way to only save the execution time of an iteration once we are sure that it

is uncorrelated with the previous iteration, then we would be able to give an unbiased estimate

of µ (and use the CLT to say something about the accuracy obtained, rather than have to repeat

experiments to determine it).

As we saw in the autocorrelation plots of figure 9, due to the (sometimes abrupt) time-

dependent trends in the data, an iteration may be correlated with another iteration many lags

later, e.g. an iteration xi may still be correlated with iteration xi+1000. To obtain i.i.d samples,

we would have to discard a large fraction of all iterations, so that an iteration xi can’t serve as

a predictor of xi+h.

38

(a) time series (b) autocorrelation

(c) autocorrelation keeping only 1

in 1024 iterations.

Figure 16: An example of discarding iterations to obtain a set of data with less serial autocor-

relation. The benchmark is taken from scan.fut using 22, 000 iterations.

One way to go about doing this, would be to discard a fraction of iterations and then check

the autocorrelation of the remaining. If there are still dependencies (e.g. correlation > 0.25) at

some lag, we continue discarding data. At some point, (e.g. after keeping 1
512

iterations) the

autocorrelation will show that the iterations are uncorrelated. See figure 16 for an example.

Here we see a benchmark with a high autocorrelation. If we keep only 1 in 1024 iterations, the

autocorrelation reduces significantly c).

8.2.4 Understanding sources of noise

As we saw in section 5, the iterations of a benchmark have a high degree of time-dependent

noise. Identifying whether a benchmark is likely to contain a warm up period or other time-

dependencies a priori, will enable the tool make more informed decisions about how long to run

the benchmark for.

Onemight hypothesize that the initial warm up phase, is correlated with the state of the GPU.

As a first step we may check the power drawn by the GPU over the duration of a benchmark,

to see if they are correlated. Figure 17 displays in plot a) the power drawn in W, and in b) the

time series plot of the benchmark.

The first 0.5s was captured before the benchmark began, once the benchmark begins there

is about 200ms with ∼ 63W being drawn, after which it consumes ∼ 140W for the rest of the

benchmark. The correlation seems striking, as the first 200ms of the benchmark also has a

significantly lower performance than the remainder. Even the small fluctuations in power draw,

seem to show up as small performance swings in the time series plot.

This is however just a glance at a potential cause of warm up phases. Remembering fig-

39

(a) Power draw (b) Time series plot

Figure 17: Examining relationship between the power draw of the GPU and execution time. a)

displays the power trace in W, the first 0.5 seconds are with an idle load, then around ∼ 0.5s
the benchmark starts and runs for a little over 2 seconds. b) shows the time series plot of the

benchmark. The trace was obtained using the query functionality of nvidia-smi

ure 15, we saw that some benchmarks had a high autocorrelation for all of their 15 repetitions.

Thus a line of investigation could seek to uncover what makes the performance of these bench-

marks more time-dependent than others.

40

9 Conclusions

In summary, the tool developed in this project frees the user from specifying the iteration count

needed to obtain reliable measurements. It does this by first running through a timed phase,

which it discards if it is deemed too noisy. This led tomeasurements with less time-dependencies,

which enabled the tool to finish sooner, as it would otherwise take a lot of iterations to reduce

the effect of e.g. a warm up phase. Secondly, it enters a convergence phase where it looks to

theRSE and autocorrelation to determine if the measurements are good enough to stop bench-

marking, or if more iterations are needed. As the new tool doesn’t rely on a specified iteration

count, it is able to spend its time more evenly between benchmarking short and long-running

programs, and can thus finish benchmarking sooner than the old tool.

Lastly, we saw how the techniques and statistical indicators used by the tool are heuristic in

nature. For example the weights between RSE and autocorrelation could be used to adjust the

trade-off between speed and accuracy, while increasing the initial timed phase may enable the

tool to discover another plateau of higher performance, which it otherwise would have missed.

Although arriving at reliable measurements now takes less work and reasoning than when

using its predecessor, the new tool is by no means a silver bullet. Trying to provide a single

number that reflects the performance of a program is a dimensionality reduction that potentially

losses information along the way, hence it is perhaps best to interpret the result as a predictor

of the execution time to come, rather than an absolute truth.

41

A Benchmarking methodology

• The benchmark suites used in this project are all taken from https://github.com/diku-dk/futhark-

benchmarks.

• All benchmarks are run on the same machine with an Nvidia A100 Tensor core GPU with

40 GB of memory, and an AMD Epyc 7352 24-core CPU.

• Unless otherwise specified, all benchmarks are run (to the extent possible) without other

processes drawing resources from the GPU, this was done by checking for running pro-

cesses using nvidia-smi while benchmarking (the machine is a shared work-station ac-

cessed through ssh).

• The kind of use of the benchmarked programwewant to estimate, is that achieved through

repeated steps in a simulation i.e. each execution of the benchmark is done in a ’warm’

state, where the program code and data is already resident in memory. Flushing the cache

between runs is thus not desirable.

42

https://github.com/diku-dk/futhark-benchmarks
https://github.com/diku-dk/futhark-benchmarks

References

[1] T. Kalibera and R. Jones. Quantifying Performance Changes with Effect Size Confidence

Intervals. 2020. DOI: 10.48550/ARXIV.2007.10899. URL: https://arxiv.org/abs/2007.
10899.

[2] The Futhark Programming Language. https://futhark-lang.org/. 2022.

[3] T. Kalibera andR. Jones. “Rigorous Benchmarking in Reasonable Time.” In: 48.11 (2013),

pp. 63–74. DOI: https://doi.org/10.1145/2555670.2464160.

[4] T. Hoefler and R. Belli. “Scientific benchmarking of parallel computing systems: twelve

ways to tell the masses when reporting performance results.” In: (2015), pp. 1–12. DOI:

https://doi.org/10.1145/2807591.2807644.

[5] Google Inc. et al. benchmark. https://github.com/google/benchmark. 2022.

[6] Bryan O’Sullivan. Criterion. https://github.com/haskell/criterion. 2022.

[7] Manikandan S. “Measures of central tendency: Median andmode.” In: 2.3 (2011), pp. 214–

215. DOI: doi:10.4103/0976-500X.83300.

[8] Jean-Yves Le Boudec. Performance Evaluation of Computer and Communication Sys-

tems. EPFL Press, 2010. ISBN: 978-2-940222-40-7.

[9] NCSS Statistical software. Chapter 164: Lag Plots. https://ncss-wpengine.netdna-ssl .
com/wp-content/themes/ncss/pdf/Procedures/NCSS/Lag_Plots.pdf. 2019.

[10] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Springer, 1993. ISBN:

978-0-412-04231-7.

[11] holman. spark. https://github.com/holman/spark. 2022.

[12] Brendan Gregg. Frequency Trails: Modes and Modality. https://www.brendangregg.com/
FrequencyTrails/modes.html. 2020.

[13] Andrey Akinshin. Lowland multimodality detection. https://aakinshin.net/posts/lowland-
multimodality-detection/. 2020.

43

https://doi.org/10.48550/ARXIV.2007.10899
https://arxiv.org/abs/2007.10899
https://arxiv.org/abs/2007.10899
https://futhark-lang.org/
https://doi.org/https://doi.org/10.1145/2555670.2464160
https://doi.org/https://doi.org/10.1145/2807591.2807644
https://github.com/google/benchmark
https://github.com/haskell/criterion
https://doi.org/doi:10.4103/0976-500X.83300
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Lag_Plots.pdf
https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Lag_Plots.pdf
https://github.com/holman/spark
https://www.brendangregg.com/FrequencyTrails/modes.html
https://www.brendangregg.com/FrequencyTrails/modes.html
https://aakinshin.net/posts/lowland-multimodality-detection/
https://aakinshin.net/posts/lowland-multimodality-detection/

