

U N I V E R S I T Y O F C O P E N H A G E N

D E P A R T M E N T O F C O M P U T E R S C I E N C E

Masters Thesis
Emil Vilandt Rasmussen - nbz406
Jóhann Utne - dvl176

Optimizing Convolutions for GPU Execution in Futhark

June 2, 2025

Advisor: Cosmin Eugen Oancea

Abstract

2D discrete convolutions are the fundamental part of convolutional
neural networks (CNN), and are responsible for 90% of the runtime.
Due to the parallel structure of the convolution operation, it is suitable
for GPU execution. Furthermore, due to high data re-use, it is a great
candidate for locality of reference optimizations. Futhark is a purely
functional language, with a compiler that generates efficient block-
register tiling for GEMM programs; however, it does not transform
convolution operations.

This thesis successfully explores such locality optimizations through
block-register tiling of the convolution operation in CUDA. The CUDA
versions were then used as a template for the transformations in the
Futhark compiler. However, only a handwritten kernel transformation
was achieved.

The CUDA optimizations and the handwritten kernel were eval-
uated through benchmarking and performed well. The CUDA opti-
mizations achieved between 89% and 96.3% of the peak TFLOPs of
the GPU, and the transformed kernel shows great promise, achieving
a ×3 speedup compared to the non-transformed Futhark convolution.

2

Contents
1 Introduction 5

1.1 Project Overview . 6
1.1.1 Report Structure . 6

2 Background and Related Work 7
2.1 Convolutions . 7

2.1.1 Discrete Convolutions 7
2.1.2 CNN Convolution Step 7
2.1.3 Convolution Modes . 9

2.1.3.1 Full Convolution Mode 9
2.1.3.2 Valid Convolution Mode 10
2.1.3.3 Same Convolution Mode 10

2.2 Existing Implementations . 10
2.3 CUDA Overview . 12

2.3.1 Programming Model 12
2.3.2 Memory Hierarchy . 13

2.4 Performance Considerations 14
2.4.1 Maximize Hardware Utilization 14

2.4.1.1 Multiprocessor Utilization 14
2.4.2 Maximize Memory Throughput 16

2.4.2.1 Coalesced Access 16
2.4.2.2 Shared Memory 16

2.4.3 Maximize Instruction Throughput 18
2.4.4 Minimize Memory Thrashing 19

3 Implementation 19
3.1 Convolution Optimization Transformations 19
3.2 Arithmetic Intensity . 20
3.3 Dependency Analysis . 21
3.4 Optimizing the Convolution Operation 23

3.4.1 Transformation Techniques 23
3.4.1.1 Loop Stripmining 23
3.4.1.2 Loop Interchange 24
3.4.1.3 Loop Distribution 24

3.4.2 Optimization Transformations of the Convolution Step 25
3.4.3 Grid and Block dimensions 29

3

3.5 Mapping to the GPU . 30
3.5.1 Block-tiled Version . 30
3.5.2 Register-tiling in y-Dimension 31
3.5.3 Register-tiling in y- and z-Dimensions 31

3.6 CUDA Implementation . 32
3.6.1 Naive Convolution . 33

3.6.1.1 Data Layout 33
3.6.1.2 Spacial Locality via Coalesced Access 34
3.6.1.3 Temporal Reuse and Caching 35

3.6.2 Branchless Version . 35
3.6.3 Shared Memory . 38

3.6.3.1 Copying Input Tensor to Shared Memory . . 38
3.6.3.2 Copying Filter to Shared Memory 40
3.6.3.3 Transforming the Computation toWork with

Shared Memory 41
3.6.4 Vector Loads . 42

3.6.4.1 Alignment Requirements 42
3.6.5 Same Mode Convolution 44

3.7 Futhark . 45
3.7.1 Futhark Background 45

3.7.1.1 Frontend . 45
3.7.1.2 Middle-end 45
3.7.1.3 Backend . 45

3.7.2 Overview of the Compiler 46
3.8 Incremental Flattening & Auto Tuning 46
3.9 Memory in Futhark . 47
3.10 Kernel Representation . 47

3.10.1 SegOps . 47
3.10.2 Screma . 48

3.11 Convolution in Futhark . 49
3.12 Transformation of Futhark code 50

4 Evaluation 56
4.1 Testing . 56

4.1.1 CUDA versions . 56
4.2 Benchmarking . 57

4.2.1 Hardware Description 57
4.2.2 Parameter Search . 58

4

4.2.3 CUDA Version Comparison 59
4.2.4 Futhark Evaluation . 63

5 Discussion and Further Work 64
5.1 Discussion of CUDA Results 64

5.1.1 Work Size . 64
5.2 Impact of Radius . 65
5.3 Impact of Channels . 65
5.4 Discussion of Fuhtark Kernel results 65
5.5 Further Work . 65

5.5.1 Compiler Transformations 66
5.5.2 Shared Mem in Futhark 66

6 Conclusion 66

A AI-Declaration 72

B CUDA-versions 73
B.1 Shared Memory Vector Load Version 76

1 Introduction
The convolution is a mathematical operation that combines two functions
in the continuous or discrete domain and produces a separate function by
taking the integral of the product of the two functions when one function is
reflected about the y-axis and shifted:

(f ∗ g)(t) :=
∫ ∞

−∞
f(τ)g(t− τ)dτ

Convolutions have applications in many domains, one of which is image pro-
cessing, and is a fundamental operation in Convolutional Neural Networks
(CNNs), where the convolution is applied in what is called the convolu-
tional layer. The convolution in CNNs usually takes as input a discrete
2-dimensional matrix I(x, y) and filter kernel F and produces an output ma-
trix, O(x, y) using a 2-dimensional discrete convolution:

O(x, y) =

Fwidth∑
i=1

Fheight∑
j=1

F (i, j)I(x− i, y − j)

5

I is usually an image with possibly multiple channels, and several filters may
be applied to each image. The convolutional layer takes up to 90% of the
runtime of CNNs [21], making it a prime candidate for optimization.

The discrete convolution is inherently parallel as it can process the ele-
ments of the output matrix independently. It lends itself well to implemen-
tation in languages that target highly-parallel hardware, such as general-
purpose graphics processing units (GPGPUs). CUDA [16] and Futhark [8]
are the languages focused on in this paper.

1.1 Project Overview
The goal of this project was to implement an optimizing pass in the Futhark
compiler that identifies convolution-like expressions in the source language
and produces efficient GPU code through a series of transformations on the
Futhark intermediate representation (IR), similar to the way Futhark recog-
nizes and optimizes matrix-matrix multiplications [4].

We wanted a theoretical and practical baseline of the performance we
could expect from the optimized Futhark code. To obtain this, we developed
several implementations using CUDA, starting with a naive implementation
and performing several optimizing transformations. In doing so, we discov-
ered a simple and – to our knowledge – novel approach to convolutions on the
GPU and achieved a highly performant implementation, reaching 90-96% of
the theoretical FLOPS of an A100 GPU.

Due to time constraints, we did not finish the optimizing pass in the
Futhark compiler. However, by applying a subset of the transformations
from the CUDA versions manually to the Futhark IR, we achieved roughly
50% of the theoretical FLOPS on the A100, showing that applying these
steps in the compiler pass is possible and may have significant performance
benefits.

1.1.1 Report Structure

This report begins by presenting the convolution algorithm in its base form
and defining our notation in section 2.1. Section 2.2 discusses existing imple-
mentations of convolutions on GPUs. We also provide a background section
on the CUDA programming model in 2.3, which provides necessary context
for the choices made in the CUDA implementation.

6

We show how we transformed the base convolution algorithm to a more
parallel structure in section 3.1, followed by the concrete implementation
steps in CUDA in 3.6. We also provide an overview of the work we did
concerning the Futhark version, although this work is incomplete due to
time constraints. The evaluation section shows the performance of the CUDA
implementations and compares the effects of the applied transformations.

2 Background and Related Work

2.1 Convolutions
2.1.1 Discrete Convolutions

Since CNNs operate on 2D images, a discrete 2D convolution is applied,
which has the following formula.

(f ∗ g)[m,n] =
∞∑

j=−∞

∞∑
i=−∞

f [i, j]g[n− i, n− j]

In most CNNs, the convolution step is done using a cross-correlation opera-
tion instead of convolution, which has the same formula as convolution, with
the filter input being flipped. The formula of cross-correlation is

(f ⊗ g)[n] =
∞∑

m=−∞

f [m]g[m− n]

However, since the filter weights are updated across iterations in CNNs,
the choice of doing convolution and cross-correlation is arbitrary. This re-
sults in most CNNs being implemented using cross-correlation, as the simpler
implementation of cross-correlation does not flip the filter, yet it is still con-
sidered a convolution operation. We will adopt the same convention and refer
to our implementation as a convolution despite implementing the operation
as cross-correlation.

2.1.2 CNN Convolution Step

Since Convolutional Neural Networks handle images, the inputs are 2D ma-
trices, and therefore, we focus solely on the 2-dimensional convolution. Each

7

input image consists of multiple channels that convey the information of the
picture. For example, color images can have four channels to represent the
red, green, blue, and alpha values of the picture, referred to as feature maps
[24] [10]. Thus, the shape of an input image tensor I will be.

Ic × Iheight × Iwidth

Where Ic is the number of input channels for the picture. Each channel
requires a separate filter, so for a filter with size Fheight × Fwidth, the shape
of the filter’s tensor F becomes

Ic × Fheight × Fwidth

To compute the convolution step in a CNN, a convolution operation is per-
formed for each image and filter pair, and the results are summed over,
resulting in one output channel.

Ic−1∑
i=0

conv2d(Ii, Fi)

To handle multiple output channels at each convolution step of a CNN, we
need a set of filters with shape Ic ×Fwidth ×Fheight for every output channel.
We can then describe the shape of the filters needed by denoting the number
of output channels as Oc.

Oc × Ic × Fheight × Fwidth

Pseudocode for the convolution step is shown in Figure 1 in a C-like language.

8

1 convolution_step(
2 inputs[Ic, Iwidth, IIheight],
3 filters[Oc, Ic, Fwidth, Fheight],
4 outputs[Oc, Owidth, OIheight]
5) :
6 for (o = 0; o < Oc; o++):
7 for (y = 0; y < Oheight; y++)
8 for (x = 0; x < Owidth; x++)
9 tmp = 0

10 for (n= 0; n < Ic; n++)
11 for (i = 0; i<Fheight; i++):
12 for (j = 0; j<Fwidth; j++)
13 tmp += inputs[n, y+i, x+j] *
14 filters[n,o,i,j]
15 outputs[o, y, x] = tmp

Figure 1: Convolution step
,

Where Oheight and Owidth depend on the input and filter sizes, and what
convolution ”mode” is performed. The output shape and modes are defined
in section 2.1.3

2.1.3 Convolution Modes

For convolutions, there are different “modes” that the convolution can do,
that alter the shape of the output. Depending on how the convolution should
be used, a different convolution method is necessary. Some of the most com-
mon modes are: full- , valid- and same mode [14] The modes are implemented
by padding or trimming the inputs and outputs to fit the shape needed. The
modes do not alter how a convolution is calculated, only what is retained in
the output.

To describe the modes, we will refer to the input size as Iheight and Iwidth,
the filter sizes as Fheight and Fwidth and the output size as Oheight and Owidth.

2.1.3.1 Full Convolution Mode For full convolution mode, the input
is padded in all dimensions by Fheight−1 and Fwidth−1 resulting in Ipaddedwidth =
Iwidth+Fwidth− 1 and vice versa for the height. This will result in an output
of shape:

Oheight = Ipaddedheight

9

Owidth = Ipaddedwidth

2.1.3.2 Valid Convolution Mode In the valid convolution mode, no
padding is added to the input. The output shape will result is

Oheight = Iheight − Fheight + 1

Owidth = Iwidth − Fwidth + 1

Resulting in a smaller output than the input. This project will primarily
focus on the valid convolution mode, which introduces the least amount of
overhead. This mode is what we primarily deal with in this thesis.

2.1.3.3 Same Convolution Mode In the same convolution mode, padding
is added to ensure the input and output sizes remain the same. The padding
can be added to both dimensions equally or be skewed to be overloaded at
the beginning or end. In the context of CNNs, Same convolution mode en-
ables the output to be directly used as the input again. The implementation
is the same, except for the padding and some indexing offsets.

2.2 Existing Implementations
Existing implementations of convolutions on GPUs can roughly be divided
into those that transform the data first and those that don’t.

Direct convolution: This naive implementation performs no transfor-
mation of the data and is our starting point for the implementation (see
Figure 1). The naive implementation performs relatively poorly due to la-
tencies from global memory accesses which will be discussed later. However,
A CPU implementation from [25] shows that when implemented with some
thought given to the memory layout of the input image and filters, a di-
rect convolution can reach up to 89% of the peak theoretical floating point
operations per second (FLOPS) on ARM architectures with zero memory
overhead, rivaling other existing CPU implementations. They do not imple-
ment the operation on the GPU, but they believe it should be possible. We
show that it is and attain up to 96% of the theoretical FLOPS on the A100
GPU.

10

Im2col [2] produces the output image coordinate by coordinate by over-
laying the filter over the input image producing a sort of window of the input
and filters to be processed. It then flattens these windows on which it per-
forms a GEMM operation, transforming the resulting matrix to extract the
output. This method is commonly used in existing deep learning frameworks
and often acts as a performance benchmark. A downside to the algorithm
is that it requires preprocessing of the input and copying it into a separate
buffer. Many of the input images are duplicated in the transformed data, and
thus, the algorithm has large memory requirements. However since GEMM
operations are optimized on tensor cores, it’s still very useful, if that hard-
ware is available. For GPGPUs, the memory overhead may not be worth the
ease of using existing GEMM implementations.

cuDNN [5] is a GPU deep learning library developed by NVIDIA, sup-
porting various implementations for convolutions, including the Fast Fourier
Transform (FFT), GEMM-based, implicit GEMM, Winograd, and direct
methods. cuDNN supports selecting the appropriate algorithm depending
on the dimensions of the input and filters, but shows high memory usage
in its GEMM version, because it uses the im2col, and in its FFT version,
because it uses complex numbers [11]. The Winograd is efficient for small
convolution kernels.

Im2win [11] presents a variation of the im2col method that also re-
arranges the input data but with a lower memory footprint from a more
compact data arrangement and higher performance than im2col. It shows
comparable performance with the implicit GEMM-based convolution, the
FFT convolution, and the Winograd convolution in cuDNN with a much
lower memory footprint.

Separable Filters [20]. Some optimizations can be applied when the fil-
ter of a convolution is separable, meaning it can be written as the product of
two or more simple filters (1-dimensional). Each simple filter can be applied
individually, removing the need to process large windows at a time. How-
ever, this is not a general optimization that can be applied to all convolutions.

Our implementation is a variation of the direct convolution with sev-
eral optimizations applied. It has the benefit of being a direct convolution
since it uses no additional memory other than the additional padding for the

11

allocations, which is a small constant factor.

2.3 CUDA Overview
To write efficient CUDA code, a thorough understanding of the NVIDIA
CUDA Computing Platform and Programming Model is necessary. The fol-
lowing sections cover the level of understanding necessary for implementing
the convolution in CUDA. The information is applicable across most newer
compute capabilities. We did not use any of the fancier functionality of newer
compute capabilities1.

2.3.1 Programming Model

CUDA allows the user to define functions called kernels that execute on the
GPU. The kernel specifies, the computation that each of the N available
threads on the GPU performs as opposed to the single threads in regular
CPU functions [17]. This allows large workloads to be processed partially
by each thread, resulting in a larger computation happening in parallel. In
order for the user to be able to map all the threads on the GPU to a given
part of the workload, the threads can be uniquely identified in the following
way:

The threads are divided into blocks of threads with blockDim threads in
each block. For a given thread, its block index is given by blockIdx. Within
a block, each thread gets assigned a unique threadIdx. These indices and
dimensions are 3-dimensional vectors (x, y, z) for the convenience of working
with vectors, matrices, or volumes. When calling a kernel, the user specifies
how many threads are in a block in each dimension and how many blocks to
spawn in each dimension, which defines a “grid” of blocks.

When processing one-dimensional workloads, one can simply ignore the
Y and Z dimensions, and likewise with Z when processing two-dimensional
workloads. The thread ids are laid in such a way that the X-dimension is the
innermost, followed by Y and Z. The unique ID of a thread is threadIdx.x +
blockDim.x * threadIdx.y + blockDim.x * blockDim.y * threadIdx.z.
In one-dimensional workloads, threadIdx.y and threadIdx.z are always 0.
The unique ID of a thread corresponds to its physical location on the GPU,

1“The compute capability of a [GPU] ... identifies the features supported by the GPU
hardware and is used by applications at runtime to determine which hardware features
and/or instructions are available on the present GPU.” – [17]

12

Figure 2: CUDA Thread hierarchy [17]

which will become relevant later. In Figure 2 we can see how threads are
arranged in a grid of blocks, each of which has several threads.

There is a maximum number of threads that can fit in a block. Each GPU
has several streaming multiprocessors (SM), which can process a number of
blocks at a time. Since no specific order of execution on the SM is guaranteed
by the thread execution model, thread blocks are required to be able to
execute independently.

2.3.2 Memory Hierarchy

CUDA uses a “heterogeneous” programming model wherein the CUDA threads
execute on a separate device (the GPU) as a coprocessor to the host program
running on the CPU. Each has its own available memory but allocation of
GPU memory and execution of GPU kernels is orchestrated by the CPU by
using CUDA’s allocation APIs and invoking kernels.

The CUDA threads on the device have access to a number of different
levels of memory. Each thread has a private set of registers and private
memory that only it can access. Private memory is used mostly when the
number of variables used by a thread cannot be satisfied by the registers and
must spill to private memory. The threads in a block have access to a shared
region of memory aptly named shared memory that is private across blocks,
but shared among threads in a block. Lastly, all threads across blocks have
access to global memory. Global memory accesses can be cached in L1 and
L2 caches. Shared memory accesses are very fast compared to global, and
on modern GPUs the same on-chip memory is used for both L1 and shared

13

memory. All global memory accesses are cached in L2.
Since the GPU’s memory is separate from the CPU’s, the user needs to

copy memory between them. Copying from the CPU onto the GPU copies
it into global memory. Device memory can be allocated as linear memory
using cudaMalloc, similar to a regular general-purpose allocator in C. With
these basic constructs in place, we can begin programming for the GPU.

2.4 Performance Considerations
The performance of a given application or system using GPUs is highly de-
pendent on whether or not the code strike an adequate balance of the fol-
lowing performance strategies:

1. Maximize hardware utilization

2. Maximize memory throughput

3. Maximize instruction throughput

4. Minimize memory thrashing

2.4.1 Maximize Hardware Utilization

There are different levels to consider when maximizing utilization: Applica-
tion, device, and multiprocessor. At the application level, the expectation
is that several GPU kernels are executed by launching them from the CPU
code. Device operations (kernel executions, among other things) can be en-
queued and executed at the appropriate time by the CUDA driver when
device resources are available. If no data dependencies exist between kernels,
no synchronization is needed between them and the CUDA driver is free to
schedule them as it wishes, maximizing application-level utilization.

At the device level, multiple different kernels can be executed simulta-
neously on the same device. Since our project focuses on a single kernel
implementation, we mostly consider maximizing utilization at the multipro-
cessor level.

2.4.1.1 Multiprocessor Utilization There is a maximum number of
blocks that can reside on a given multiprocessor, as well as a maximum
shared memory size and number of registers. The number of blocks launched

14

by a kernel invocation is controlled by the user specifying the launch bounds
of the kernel. The number of registers used by a kernel depends on the
variable usage of the kernel. The shared memory size is specified by the user
when invoking the kernel.

Balancing shared memory size, register use, and number of blocks can
increase occupancy (the number of threads residing on a multiprocessor),
but higher occupancy does not always translate to higher performance. It is
commonly recommended to run more threads per multiprocessor and more
threads per thread block to increase occupancy, since this in theory means
more workers to process units of work. However, high instruction-level par-
allelism and low memory latency can be achieved with fewer threads, and
this is often enough to fully utilize the hardware [22]:

At the multiprocessor level, threads are divided into units of execution
called warps (usually 32 threads). At every instruction issue time, a warp
scheduler selects an instruction that is ready to execute. It might be an
instruction for the same warp if the instruction is independent of a currently
executing instruction (exploiting instruction-level parallelism) or it might
be an instruction of another warp (exploiting thread-level parallelism). It
then issues the instruction to the active threads of the warp: those that
are participating in the current instruction. Branches may cause individual
threads within a warp to execute a different set of instructions. Those not
participating in the current instruction are said to be inactive.

Full utilization is achieved when all warp schedulers always have an in-
struction to issue for some warp during the latency of another issued in-
struction. When throughput is maximized like this, it hides the latency of
instructions, maximizing utilization. If all warp schedulers always have an
instruction to issue, it doesn’t matter if the occupancy is low.

The most common reason that an instruction is not ready to execute is if
its operands are not ready yet. If the operands all reside in registers already,
throughput is dependent on the number of independent instructions, that
can be scheduled to run. Often, and in our case, the largest operand wait-
ing times come from memory fetches, often taking several hundreds of clock
cycles. This is discussed in the next section. Another reason for instructions
not being ready is if they are guarded by some memory fence or synchroniza-
tion point. For instance, if a piece of code depends on other threads in the
block completing some action, a __syncThreads() call needs to be inserted,
causing the finished threads to wait for unfinished ones.

15

2.4.2 Maximize Memory Throughput

To maximize memory throughput, it’s important to minimize the amount of
memory transfers with low bandwidth. One aspect of this is reducing the
amount of data transfer from the CPU to the GPU. To avoid this, you want
to perform as much of a given algorithm on the GPU as possible.

Reads from and writes to device global memory also suffer from low
bandwidth compared to arithmetic instruction throughput and on-chip band-
width. The instruction throughput of reads and writes to global memory is
highly dependent on the memory addresses accessed by the threads.

2.4.2.1 Coalesced Access Global memory is accessed via 32-, 64- or
128-byte transactions. Addresses must be naturally aligned, meaning that
the address of the read must be divisible by the size of the data-type read,
i.e. divisible by 4 for floats for instance. A 32-byte transaction will be
generated even if only a single thread reads a single float, effectively dividing
throughput by 8, as the remaining 28 bytes are unused. However when
adjacent threads in a warp access adjacent elements in memory, it coalesces
the accesses into one or more of these potentially 128-byte transactions, where
all of the elements are used. Say, a warp of 32 threads reads 32 consecutive
4-byte floats. The warp coalesces the memory accesses into a single 32 · 4 =
128 byte transaction with zero wastage. Therefore, we want threads with
consecutive threadIdx.x’s to read adjacent memory locations. To ensure
that this is possible, the decision of how data is laid out in memory must
take into account the access pattern of the algorithm.

Generally, you would want all your transactions to have the largest pos-
sible size of 128 bytes, which, for instance, would serve all 32 threads in a
warp with a 4-byte float read. However, applications often need to read an
amount of contiguous values that is not divisible by the warp size, causing
additional and smaller-sized transactions with some values not being used.
For example, an algorithm may need to read 10 contiguous 4-byte floats,
resulting in a 64-byte transaction with 24 bytes being unused, and a wastage
of 37.5%.

2.4.2.2 Shared Memory While coalesced access increases global mem-
ory throughput, it’s still low compared to on-chip memory. Therefore, keep-
ing these transfers to a minimum and reusing data by keeping it in registers
or caches is crucial. One way to achieve this is through shared memory.

16

Shared memory can be seen as a user-managed cache local to each thread
block. If threads in a block read a lot of the same data, caching it explicitly
by copying it into shared memory makes sense. Shared memory is split
into evenly sized memory banks consisting of n 32-bit words. n is compute
capability dependent but 32 for 2.0 and up. Accesses to the n banks can be
served simultaneously, if different threads in a warp access different banks.
If two or more threads in a warp try to access the same bank, the accesses
must be serialized. However, if all threads in a warp read from the same
bank, the read can be broadcast to the threads simultaneously.

Below is a diagram of an optimal shared memory access pattern. No two
threads access the same bank, which is the case if threads access shared mem-
ory like this: shared_mem_array[threadIdx.x] |a| means that the bank is
accessed and |_| means that it is not. Note that the accesses in the second
line are from a different warp and will not cause a bank conflict.� �

1 (bank 0, shared_mem_array[0]) ... (bank 31, shared_mem_array[31])
2 / /
3 |a|
4 \ \
5 (warp 0, thread 0) ... (warp 0, thread 31)
6 (bank 0, shared_mem_array[32]) (bank 31, shared_mem_array[63])
7 / /
8 |a|
9 \ \

10 (warp 1, thread 0) ... (warp 1, thread 31)� �
Below is a suboptimal access pattern: a 2-way bank conflict, where two
threads access the same bank. This can occur if threads access shared mem-
ory like this: shared_mem_array[threadIdx.x * 2]. Note that threads 0
and 16 both access bank 0. The requests must be split into twice as many
conflict-free requests, halving the effective bandwidth.

17

� �
1 (bank 0, shared_mem_array[0]) ... (bank 30, shared_mem_array[30])
2 / /
3 |a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|
4 \ \
5 (thread 0) ... (thread 15)
6 (bank 0, shared_mem_array[32]) (bank 30, shared_mem_array[62])
7 / /
8 |a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|a|_|
9 \ \

10 (thread 16) ... (thread 31)� �
2.4.3 Maximize Instruction Throughput

Maximizing instruction throughput can be achieved by either reducing the
number of instructions in the PTX2 code, minimizing low throughput in-
structions or minimizing divergent thread execution within a warp due to
branches.

Reducing Number of Instructions. Pointer aliasing can prevent
the CUDA compiler from performing optimizations like instruction reorder-
ing, reusing common sub-expressions and such. This can be alleviated by
marking pointers guaranteed not to point to the same location with the
__restrict__ keyword. Synchronization points via __syncThreads() can
force some threads to idle as mentioned, so they should only be used when
necessary.

Minimizing Branching. As mentioned in 2.4.1.1, control flow instruc-
tions can cause threads within a warp to take different execution paths.
At the worst case, each thread takes a different path causing the rest of the
threads to wait, effectively making execution sequential. If a conditional only
differs across warps or there is no conditional at all, no divergence occurs.

Branch predication may also cause both paths of short ifs or switches to
be scheduled but only have their results written if the condition evaluates to
true. Loops with a statically known size will often be unrolled automatically
by the CUDA compiler, but the user can force the unrolling by using the
#pragma unroll directive. In these cases, warp divergence can never occur,
greatly increasing instruction throughput.

2“PTX defines a virtual machine and ISA [Instruction Set Architecture] for general
purpose parallel thread execution. PTX programs are translated at install time to the
target hardware instruction set.” [18]

18

Minimizing Low Throughput Instructions can be achieved by using
lower precision instructions when the higher precision is not needed or by
using intrinsic functions to have more control over the generated PTX code.

Lastly, as mentioned in 2.4.1.1, instructions not waiting for operands from
memory fetches or other dependent instructions are important.

2.4.4 Minimize Memory Thrashing

Memory thrashing can occur if an application makes a lot of memory allo-
cations and deallocations. The program may find allocation times slowing
down due to the nature of releasing memory back to the operating system.
In addition, allocations are generally slow.

It is therefore important to size the allocations upfront to the problem at
hand and avoid dynamically allocating when more memory is needed.

3 Implementation

3.1 Convolution Optimization Transformations
To go through the optimizations to the convolution operation on the GPU,
we will look at the pseudo code for a convolution, that has N input channels,
O output channels, and square filter matrices with sizeFwidth,

1 for (z = 0; z < O; z ++):
2 for (y = 0; y < Oheight; y++)
3 for (x = 0; x < Owidth; x++)
4 tmp = 0
5 for (n= 0; n < N; n++)
6 for (i = 0; i < Fwidth; i++):
7 for (j = 0; j < Fwidth; j++)
8 tmp += inputs[n, y+i, x+j] *
9 filters [n, z, i, j]

10 outputs[z, y, x] = tmp

Figure 3: Pseudo code of convolution step

where input, filters and outputs are arrays of inputs, filters and outputs
respectively. This pseudo-code maps a filter to each output channel, which
is applied to each of the N inputs, and sums up the results.

19

We can see that this has a perfect loop-nest structure for the outer di-
mensions and an inner map-reduce (redomap) composition, which is the sum
of the element-wise product between the slice of the input and the filter.

3.2 Arithmetic Intensity
From the pseudo code 3, we can obtain an overview of the number of floating-
point operations and memory accesses required, which can be used to esti-
mate the arithmetic intensity. The arithmetic intensity can then be used for
a Roofline Model performance estimate [23], which can be used to determine
whether our implementation will be compute or memory-bound.

The number of floating point operations, FP, is determined solely by the
redomap in the innermost loop. The only FPs are a multiplication followed
by an add, so 2 FP operations in the innermost loop. Therefore, the total
number of FP becomes.

FP = O ·N ·Oheight ·Owidth · (Fwidth)
2 · 2FP

We access all elements of the input and write to all elements of the output.
Therefore, the amount of bytes accessed by distinct memory accesses, with
all elements assumed to be floats, and thus having a size of 4B, is

Bytes = (N ·Nheight ·Nwidth +O ·Owidth ·Oheight +O ·N · (Fwidth)
2) · 4B

We can simplify the equation a bit by noting that we are working on a valid
convolution, and therefore, the output dimensions are upper-bounded by the
input dimensions.

Bytes < ((N +O) ·Nheight ·Nwidth +O ·N · (Fwidth)
2 · 4B

We can calculate the arithmetic intensity of the convolution operation as

Ai =
O ·N ·Oheight ·Owidth · (Fwidth)

2 · 2FP

((N +O) ·Nheight ·Nwidth +O ·N · (Fwidth)2) · 4B

From this, we can see that if the filter size is small, and there are few input
and output channels, the arithmetic intensity becomes quite small, and we
are memory-bound.

However, as the problem size grows, the amount of FP grows much faster
than the number of memory accesses, so for a greater number of channels and

20

bigger filters, the problem becomes compute-bound. Furthermore, we can ob-
serve that the filter width contributes more to memory accesses than floating-
point operations, for a constant width and height of the input. Therefore,
for very high filter widths, the convolution will be memory-bound.

The Roofline model gives an estimate for the maximum performance of
the algorithm on the GPU given by

Pmax = min(PPeak, Ai · bmax)

where PPeak is the theoretical peak FLOPS of the GPU, Ai is the arithmetic
intensity, and bmax is the maximum bandwidth of the GPU. This gives the
relation that the higher the arithmetic intensity, the better FLOPS perfor-
mance can be achieved by the GPU.

3.3 Dependency Analysis
To reason about the opportunities for GPU optimization, we perform a loop
dependency analysis on the convolution implementation [19] [6] A loop de-
pendency is defined as:

Definition 3.1 (Loop dependence). For two statements S1 and S2 in a loop
nest, there is a dependence iff ∃ iterations

→
k,

→
l such that

1.
→
k <

→
l or

→
k =

→
l and ∃ an execution path from S1 to S2 such that:

2. S1 accesses memory location M on iteration
→
k

3. S2 accesses memory location M on iteration
→
l

4. One of the accesses is write

With S1 being the source of the dependency and S1 being the sink. We are
only interested in cross-iteration dependencies for determining parallel loops.
To analyze the direction of the dependency, we use Dependency-direction
vectors.

To determine the dependency direction, we analyze the dependency from
the sink S1 in iteration

→
k to the sink S2 in iteration

→
l (

→
k ≤

→
l), and the

dependence direction vector
→
D(

→
k,

→
l)

21

1.
→
D(

→
k,

→
l)m = ”=” if

→
km =

→
l m

2.
→
D(

→
k,

→
l)m = ”>” if

→
km >

→
l m

3.
→
D(

→
k,

→
l)m = ”<” if

→
km <

→
l m

4.
→
D(

→
k,

→
i)m = ”*” if

→
km is uncomparable to

→
im

Where m denotes the depth of the loop nest. We can then use the resulting
direction vectors to form a direction matrix, which will help us determine
the parallel loops.

A loop is parallel if the execution of the loop does not cause any depen-
dencies across its iterations. Furthermore, it can also be determined by the
aforementioned direction matrix, which requires all elements in a column to
either be =, or if there is an outer loop on the row that carries the dependency
noted with < direction.

We can quickly see that the three outer loops are parallel, since the tmp
value is privatized, and the write to outputs[z,y,x] happens in iteration (x,y,z),
meaning that the loops are independent of each other and can be parallelized.
Therefore, all elements of the vector have direction =. The inner loops all
have a RAW dependency on tmp, since tmp is written to and read from
in every iteration. This results in an across-loop read-after-write (RAW)
dependency and an intra-iteration write-after-read (WAR). This means that
all the inner loops have the direction <, and can therefore not be parallelized,
since there is no outer loop with direction <. In the pseudo code below, the
dependency vectors have been noted.

1 for (z = 0; z < O; z ++):
2 for (y = 0; y < Oheight; y++)
3 for (x = 0; x < Owidth; x++)
4 tmp = 0 // [=,=,=]
5 for (n= 0; n < N; n++)
6 for (i = 0; i < Fwidth; i++):
7 for (j = 0; j < Fwidth; j++)
8 tmp += inputs[n, y + i, x + j] *
9 filters [n, z, i, j] // [=,=,=,<...]

10 outputs[z, y, x] = tmp // [=,=,=]

Figure 4: Dependency vectors

22

This means that we can safely parallelize the outer three loops while
keeping the inner loops sequential:

1 for (z = 0; z < O; z ++): // parallel
2 for (y = 0; y < Oheight; y++): // parallel
3 for (x = 0; x < Owidth; x++): // parallel
4 tmp = 0
5 for (n= 0; n < N; n++): // sequential
6 for (i = 0; i < Fwidth; i++): // sequential
7 for (j = 0; j < Fwidth; j++): // sequential
8 tmp += inputs[n, y + i, x + j] *
9 filters [n, z, i, j]

10 outputs[z, y, x] = tmp

Figure 5: Parallel loops

The inner loops create a perfect loop nest of redomap construction, and
therefore can be resolved by privatizing results and reducing the partial val-
ues. This, however, is not explored in this paper.

3.4 Optimizing the Convolution Operation
To optimize the code, we can utilize temporal locality by using Block and
register tiling [19].

Block and register tiling consists of strip mining outer loops, interchang-
ing them inwards, and distributing parallel loops.

3.4.1 Transformation Techniques

3.4.1.1 Loop Stripmining Loop stripmining consists of splitting a nor-
malized loop into two loops within a perfect loop nest. The first loop iterates
with a stride T and the inner loop iterates with a stride 1. This transfor-
mation is always safe, since the resulting transformation always executes the
same statements, in the same order.

23

1 for (int i=0; i< N; i++){
2 loop body
3 }
4

⇓
1 for (int ii=0; ii < N; ii += T){
2 for (int i = ii; i < min(ii+T, N); i++ {
3 loop body
4 }
5 }

Figure 6: Strip-mining

3.4.1.2 Loop Interchange Loop interchanges consist of changing outer
loops inward. Interchange is safe by Theorem 7 in [19] iff the permuting
the direction matrix does not result in a > direction as the leftmost non =
direction in a row.

Furthermore, Corollary 2 to Theorem 7 states that a parallel loop can
always be interchanged inwards.

1 for (i = 0; i<N; i++) { // parallel
2 for (j = 0; j < F_{width}; j++) {
3 loop body
4 }
5 }

⇓
1 for (i = 0; j < F_{width}; j++) {
2 for (i = 0; i<N; i++) { // parallel
3 loop body
4 }
5 }

Figure 7: Loop interchange example

3.4.1.3 Loop Distribution Loop distribution distributes a loop across
its statements. The transformation can be proved safe according to Theorem
9 in [19] if its dependency graph contains no cycles. However, it states as a

24

corollary that a parallel loop can always be distributed across its statements.
This requires array expansion of local variables.

1 for (i = 0; i<N; i++) { // parallel
2 tmp;
3 Statement 1
4 Statement 2
5 }
6

⇓
1 tmp[N];
2 for (i = 0; i<N; i++) {
3 Statement 1
4 }
5 for (i = 0; i<N; i++) { // parallel
6 Statement 2
7 }
8

Figure 8: Loop distribution example

3.4.2 Optimization Transformations of the Convolution Step

We block tile the three outermost parallel loops and leave the innermost loop
completely sequential. To block tile, we stripmine the consecutive loops and
interchange the resulting stride-1 loops inward. This is safe since the outer
loops are parallel.3 We block tile by tile sizes Tz, Ty, and Tx. The resulting
code after block tiling and code interchanging becomes:

3Any loop interchange would be safe, since no > dependency direction is present in the
code, and can therefore not be the leftmost element in any row, in a direction matrix

25

1 for (zz=0; zz < O; zz += Tz):
2 for (yy=0; yy < Oheight; yy += Ty

3 for (xx=0; xx < Owidth; xx += Tx

4 for (z = zz; z < min(zz + Tz, O); z++):
5 for (y = yy; y < min(yy + Ty, Owidth); y++):
6 for (x = xx; x < min(xx+ Tx, Owidth); x++):
7 tmp = 0
8 for (n= 0; n < N; n++): // sequential
9 for (i = 0; i < Fwidth; i++): // sequential

10 for (j = 0; j < Fwidth; j++): // sequential
11 tmp += inputs[n, y + i, x + j] *
12 filters [n, z, i, j]
13 outputs[z, y, x] = tmp

Figure 9: Blk-tiling

Where Tz, Ty, and Tx will also denote the tile sizes of the GPU. After loop
normalization and unrolling of the inner loops, this code will be mapped as
the ”naive” GPU version, where each thread directly maps one output value
of one output channel.

To further optimize the convolution step, we can register tile the resulting
implementation. Register tiling consists of strip mining one or more of the
outer loops in the perfect loop nest, and then interchanging them to an inner-
most position and unrolling the loop, loop distributing, and array-expanding
as necessary [19].

The transformation is safe if in the original program, it is safe to inter-
change any of the loops to the innermost position, and it is safe to distribute
the loops. We have already seen that we can always interchange the loops,
and since it is a parallel loop that is loop distributed, it is always safe.

The transformation improves temporal locality by storing and reusing
values from registers if the original loop contains invariant data across some
of the loops. In the convolution example, there is a perfect loop nest, and
the filter is invariant to both the y and x outer loops, and the inputs array
is invariant to the O outer loop. Giving us good opportunities for improving
temporal locality

We start by register-tiling the y loop by a tiling size of Ry. This also re-
sults in further stripmining the outermost yyloop. We then array-expand

26

tmp and loop distribute the inner loops (z,yy,x,). The pseudo code becomes

1 for (zz=0; zz < O; zz += Tz): // dim-z grid
2 for (yyy=0; yyy < Oheight; yy += Ty ∗Ry): // dim-y grid
3 for (xx=0; xx < Owidth; xx += Tx): // dim_x grid
4 tmp[Tz][Ty][Tx][Ry];
5 for (yy = yyy; yy < min(yyy + Ty ∗Ry, Owidth); yy+= Ry): // y-Tblock
6 for (z = zz; z < min(zz + Tz, O); z ++): // z-Tblock
7 for (x = xx; x < min(xx+ Tx, Owidth); x++): // x-Tblock
8 for (y = yy; y < min(yy +Ry, Owidth); y++): // unroll
9 tmp[z - zz,y - yyy, x - xx, y - yy] = 0

10 for (yy = yyy; yy < min(yyy + Ty ∗Ry, Owidth); yy += Ry): // y-Tblock
11 for (z = zz; z < min(zz + Tz, O); z++): // z-Tblock
12 for (x = xx; x < min(xx+ Tx, Owidth); x++): // x-Tblock
13 //conv redomap
14 for (n= 0; n < N; n++)
15 // stride 1 loop interchanged inwards
16 for (y = yy; y < min(yy +Ry, Owidth); y++): //unroll
17 for (i = 0; i<Fwidth; i++): // unroll
18 for (j = 0; j<Fwidth; j++) // unroll
19 tmp[z - zz, y - yyy, x - xx, y - yy] +=
20 inputs[n, y+i, x+j] * filters [n, z, i, j]
21

22 // loop distribution
23 for (yy = yyy; yy < min(yyy + Ty ∗Ry, Owidth); yy+= Ry): // y-Tblock
24 for (z = zz; z < min(zz + Tz, O); z ++): // z-Tblock
25 for (x = xx; x < min(xx+ Tx, Owidth); x++): // x-Tblock
26 for (y = yy; y < min(yy +Ry, Owidth); y++): // unroll
27 outputs[z, y, x] = tmp[z - zz, y - yyy, x - xx, y - yy]

Figure 10: Reg-tiling of the y dimension

When register-tiling in the y dimension, we can reuse most of the filter
values, as multiple overlapping calculations exist. For the inner loops to be
unrolled, we normalize the loops for implementation on the GPU. Then each
thread would store Ry size tile in private memory, and each thread maps Ry

outputs of one output channel.
We tile in the y dimension to avoid strided access of threads, such that

the reads to global memory are still coalesced across threads. We can further
optimize with register-tiling by tiling over the O dimension, which the input
was invariant to. This way we compute the update for multiple output
channels, reusing the same input. We tile the outer dimension by RZ . This

27

will require extending the register usage so that we can store immediate
results for Ry ∗RZ values. The transformed is shown as.

1 for (zzz=0; zzz < O; zz+= Tz ∗RZ): // dim-z grid
2 for (yyy=0; yyy < Oheight; yy += Ty ∗Ry): // dim-y grid
3 for (xx=0; xx < Owidth; xx += Tx): // dim_x grid
4 tmp[Tz][Ty][Tx][Ry][RZ];
5

6 for (zz = zzz; zz < min(zzz + Tz ∗RZ , O); zz += RZ): // z-Tblock
7 for (yy = yyy; yy < min(yyy + Ty ∗Ry, Owidth); yy+= R_y): // y-Tblock
8 for (x = xx; x < min(xx+ Tx, Owidth); x++): // x-Tblock
9 for (y = yy; y < min(yy +Ry, Owidth); y++): // unroll

10 for (z = zz; z < min(yy +RZ , O); z++)
11 tmp[z - zz, y - yyy, x - xx, y - yy, z - zz] = 0
12

13 for (zz = zzz; zz < min(zzz + Tz ∗RZ , O); z += RZ): // z-Tblock
14 for (yy = yyy; yy < min(yyy + Ty ∗Ry, Owidth); yy+= Ry): // y-Tblock
15 for (x = xx; x < min(xx+ Tx, Owidth); x++): // x-Tblock
16 //conv redomap
17 for (n= 0; n < N; n++)
18 // stride 1 loop interchanged inwards
19 for (y = yy; y < min(yy +Ry, Owidth); y++): //unroll
20 for (z = zz; z < min(zz +RZ , O); z++): //unroll
21 for (i = 0; i < Fwidth; i++): // unroll
22 for (j = 0; j < Fwidth; j++) // unroll
23 tmp[z - zz, y - yyy,x - xx, y - y y, z - zz] +=
24 inputs[n, y + i, x + j] * filters [n, z, i, j]
25

26 // loop distribution
27 for (zz = zzz; zz < min(zzz + Tz ∗Rz, O); zz += RZ): // z-Tblock
28 for (yy = yyy; yy < min(yyy + Ty ∗Ry, Owidth); yy += Ry): // y-Tblock
29 for (x = xx; x < min(xx+ Tx, Owidth); x++): // x-Tblock
30 for (y = yy; y < min(yy +Ry, Owidth); y++): // unroll
31 for (z = zz; z < min(yy +Ry, O); z ++) : // unroll
32 outputs[z, y, x] = tmp[z - zz, y - yyy, x - xx, y - yy, z - zz]

Figure 11: Reg-tiling of 2 dimensions

We can then map the parallel loops to the GPU, with further loop nor-
malization, inserting bound checks as necessary. The outer loops marked
with grid comments will be mapped to the grid, and the inner loops with
block comments will be mapped to the block. To further optimize the con-
volution, we will explore effectively copying the tiles of input and filter data

28

from global memory to shared memory. Thus, when performing the convo-
lution operation, we save the reads from global memory, allowing for more
efficient memory loads. Other optimizations, such as vector loads, will also
be explored and described in detail in section 3.6.3.2.

3.4.3 Grid and Block dimensions

The grid dimensions are determined by the choice of the block and register
tile parameters.

Gdimz =

⌈
#out channels

Tz ∗Rz

⌉
(1)

Gdimy =

⌈
Oheight

Ty ∗Ry

⌉
(2)

Gdimx =

⌈
Owidth

Tx

⌉
(3)

And the number of blocks must be given by

Gdimz ·Gdimy ·Gdimx

The block dimensions correspond directly to the tile sizes Tz, Ty, Tx., meaning
that the size of a block is

Blocksize = Tx · Ty · Tz

CUDA also requires that Blocksize ≤ 1024. Furthermore, each thread will
use Ry · Rz registers to store intermediate results, and since there is a hard-
ware limit of a maximum of 255 registers per thread, we must further have
that Ry ·Rz ≤ 255.

The choice of these tiling parameters is limited by the hardware resources,
such as the amount of shared memory size, the number of threads per block,
and registers. When choosing the parameters, it can be challenging to do
so statically, as all bounds must be respected simultaneously. Even if the
bounds are respected, it can often be beneficial to decrease or increase cer-
tain tiling parameters, depending on the problem instance. For example, if
working with a small set of output channels but with large dimensions, it
might be better to favor tiling in the y direction.

29

3.5 Mapping to the GPU
3.5.1 Block-tiled Version

We can transform the sequential code to a simplified CUDA code for the
three different versions based on the tiling described in the previous section.
We get the following CUDA kernel for the version that was only block-tiled.

1 ConvNaive(inputs, filters, outputs):
2 gidx = blockIdx.x * blockDim.x + threadIdx.x;
3 gidy = blockIdx.y * blockDim.y + threadIdx.y;
4 gidz = blockIdx.z * blockDim.z + threadIdx.z;
5 // boundary check for loop normalization of the parallel dimensions
6 if (gidz < O && gidy < Oheight && gidx < Owidth) {
7 tmp = 0
8 for (n = 0, n < N, n++)
9 for (i = 0; i<Fwidth; i++)

10 for (j = 0; j < Fwidth; j++)
11 tmp += input[n, gidy+i, gidx+j] * filters[n, gidz, i, j]
12 output[gidz, gidy, gidx] = tmp
13 }

Figure 12: Direct mapped threads

Here, the three strip-mined loops correspond to the block dimensions. To
normalize the loops, we insert bounds checks on the thread IDs.

30

3.5.2 Register-tiling in y-Dimension

1 ConvNaive(inputs, filters, outputs):
2 gidx = blockIdx.x * blockDim.x + threadIdx.x;
3 gidy = blockIdx.y * blockDim.y + threadIdx.y;
4 yy = gidy * Rz

5 gidz = blockIdx.z * blockDim.z + threadIdx.z;
6

7 tmp[Ry];
8 // register initialization
9 for (i = 0; i < Ry; i++) // normalized loop

10 if (i + yy < Oheight && gidz < O && gidx < Owidth)
11 tmp[i] = 0
12

13 // convolution redomap
14 for (n = 0, n < N, n++)
15 for (iy = 0; iy < Ry; iy++)
16 y = iy + yy // normalized loop
17 if (y < Oheight && gidz < O && gidx < Owidth) {
18 for (i = 0; i < Fwidth; i++)
19 for (j = 0; j < Fwidth; j++)
20 tmp[iy] += input[n, y + i, gidx + j] * filters[n, gidz, i, j]
21 }
22 // write to output
23 for (iy = 0; iy < Ry; iy++)
24 y = iy + yy // normalized loop
25 if (y < Oheight && gidz < O && gidx < Owidth)
26 output[gidz, y, gidx] = tmp[iy]

Figure 13: Register tiling in y dimension

The result of the transformation where the y-dimension has been register-
tiled, after normalization with the necessary boundary checks is shown in
Figure 13.

3.5.3 Register-tiling in y- and z-Dimensions

The result of the final transformation, where we tile in both the y- and z-
dimension is shown in Figure 14.

31

1 ConvNaive(inputs, filters, outputs):
2 gidx = blockIdx.x * blockDim.x + threadIdx.x;
3 gidy = blockIdx.y * blockDim.y + threadIdx.y;
4 yy = gidy * Rz

5 gidz = blockIdx.z * blockDim.z + threadIdx.z;
6 zz = gidz * RZ

7

8 tmp[Ry][RZ];
9

10 for (i=0; i < Ry; i++) :
11 for (j=0; j < RZ; i++):
12 if (i + yy < Oheight && j + zz < O && gidx < Owidth)
13 tmp[i][j] = 0
14

15 for (n = 0, n < N, n++)
16 for (iy = 0; iy < Ry; iy++)
17 y = iy + yy // normalized loop
18 for (iz = 0; iz < Rz; iz++)
19 z = iz + zz
20 if (y < Oheight && z < O && gidx < Owidth) {
21 for (i = 0; i < Fwidth; i++)
22 for (j = 0; j < Fwidth; j++)
23 tmp[iy][iz] += input[n, y+i, gidx+j] * filters[n, z, i, j]
24 }
25

26 for (iy = 0; iy < Ry; iy++)
27 y = iy + yy // normalized loop
28 for (iz = 0; iz < Rz; iz++)
29 z = iz + zz
30 if (y < Oheight && z < O && gidx < Owidth)
31 output[z, y, gidx] = tmp[iy][iz]

Figure 14: GPU reg tiled in the y- and z-dimension.

3.6 CUDA Implementation
This section details the implementation of convolutions in CUDA. We start
with the naive implementation and move on to more optimized versions. We
assume that the dimensions of the filters are known at compile-time, as well
as being square and having odd-numbered dimensions. That is, Fwidth =
Fheight = 2Fradius+1. All versions use C++ templated arguments for Fradius,
denoted FilterRadius, the data-type T and the tiling parameters Tx, Ty,

32

Tz, Ry, Rz.

3.6.1 Naive Convolution

The naive implementation corresponds to the final register-tiled version shown
in Figure 14.

3.6.1.1 Data Layout The algorithm deals with 3 tensors: one for the
input image I, one for the output image O and one for the filters F . They
have the shape shown below, as mentioned in section 2.1.2:

I : Ic × Iheight × Iwidth

F : Ic ×Oc × Fheight × Fwidth

O : Oc ×Oheigth ×Owidth

(4)

We allocate three flat arrays for the respective tensors. In the naive version,
we can simply allocate the input and output tensors with the following:

1 T *d_input;
2 T *d_output;
3 T *d_filters;
4 cudaMalloc((void**)&d_input,
5 in_num_channels * in_height * in_width * sizeof(T));
6 cudaMalloc((void**)&d_output,
7 out_num_channels * out_height * out_width * sizeof(T));
8 cudaMalloc((void**)&d_filters,
9 in_num_channels * out_num_channels * out_height * out_width * sizeof(T));

Listing 1: Allocating input tensor

The memory is laid out in the format specified in Equation 4 such that the
width is the innermost dimension for all tensors.

In Figure 15 is a view of the work performed by each thread block for a
single input channel. Blocks are marked by dashed lines. In this example,
the block-tiling in the x- and y-dimensions does not evenly divide Owidth and
Oheight respectively, which can be seen by the dashed lines overflowing the red
output-matrix. We check for these out-of-bounds accesses in Figure 14. The
input array is overlaid in blue on the figure to show which elements are read
from the input array to produce the result in the output array. An example

33

for a single thread and Y-tile is shown in the top left. The red square is the
element produced by the kernel, and the blue grid represents the values read
from the input array. The arrays do not overlap in memory, of course. The
filter radius, which is 2 in this case, is marked in green.

Figure 15: View of work performed by each thread-block for a single input
channel. The dashed lines indicate the region of the output array operated
on by each block.

3.6.1.2 Spacial Locality via Coalesced Access With this data layout,
we ensure coalesced access when reading from the input and filter tensors and
writing to the output tensor. Consider the following lines:

1 ...
2 tmp[iy][iz] += input[n, y+i, gidx+j] * filters[n, z, i, j]
3 ...

34

4 output[z, y, gidx] = tmp[iy][iz]

The input[n, y+i, gidx+j] read by the threads of the kernel will be coa-
lesced, as in each iteration of the nested for loops on i and j, threads with
adjacent gidx, i.e. the innermost thread dimension, will read adjacent el-
ements. In the filters[n, z, i, j], all threads within a warp read the
same element, given that blockDim.x * blockDim.y >= warp_size, result-
ing in a broadcast. If blockDim.x * blockDim.y < warp_size, one warp
may have two or more z-values, but the values are still broadcast to the
threads within the warp with the same z. That is, we only get an amount of
transactions equal to warp_size / blockDim.x * blockDim.y. We ensure
that blockDim.x and blockDim.y are always powers of two, so blockDim.x
* blockDim.y is as well. The output[z, y, gidx] writes are coalesced as
adjacent threads write adjacent elements.

3.6.1.3 Temporal Reuse and Caching In addition to the accesses be-
ing coalesced, the algorithm also exhibits a great deal of temporal reuse,
even in the naive version. As mentioned, all global memory accesses are
always cached in L2, and often in L1, although we can’t guarantee that
without shared memory. Imagine that we have a blockDim.x of 32 and
a FilterRadius of 1: a 3 × 3 filter. This means that the first input[n,
y+i, gidx+j] access will result in a 32 × 4 = 128 byte memory transac-
tion, which is cached at least in L2. For the block with index (0, 0, 0) and
threadIdx.y = 0 and n = 0, which means that the elements input[0, 0,
0:31] are already in the cache from the previous transaction from the same
block. In addition, the block with index (0, 0, 1) will have loaded input[0,
0, 32:63]. Therefore, in the next iteration all the threads of the first block
will be able to access their required memory via the cache, since they access
input[0, 0, 1:32], of which 31 of the values were loaded in by the same
block and 1 by the next block.

One would be tempted to think that we would not benefit from shared
memory, since so many values should be cached in L1. However, our shared
memory version is significantly faster, especially for larger filter sizes.

3.6.2 Branchless Version

As mentioned in section 2.4.3, to maximize instruction throughput, we want
to eliminate warp divergence, making sure threads within a warp execute the

35

same instructions. This can be done by eliminating branching within warps.
The bounds checking in Figure 14 is one such source of warp divergence. It’s
a subtle point, but the only check that is needed for correctness is the check
on the write to output on line 30. If this check passes, we know that the
other checks have also passed, and correctness is guaranteed. We also found
that eliminating this check did not improve performance, while eliminating
the other checks did.

Figure 16: All threads in the purple area will access the input array out of
bounds, but do not contribute to the output array.

The checks on lines 12 and 20 are not needed for correctness, but they
do prevent reads outside the bounds of our allocation. Without the checks,
the threads marked by the purple area in Figure 16 will at some point access
outside the bounds of the input array, but do not contribute to the output

36

array. What the last thread of the last block accesses can be seen in the
bottom right, marked by the blue grid as in Figure 15. We can calculate
that the threads try to access the input array as if it had the following
dimensions, also shown by the dashed blue matrix in Figure 16:

Ty ? Ry ? gridDim.y+ 2Fradius × Tx ? gridDim.x+ 2Fradius

Therefore, to avoid undefined behavior, we need to pad the input tensor to
fit this size, but only for the final input channel. This is because each input
matrix is laid out in a row-major format, and each input channel comes right
after the previous in the same allocation. Therefore, for all but the final
input channel, the threads will simply access some element on another row
for the same input channel or some element of the next input channel. In any
case, the values are not used. To make the allocation, we simply calculate
its size as in the naive version and align it up to the nearest multiple of
the final padded input channel: |Ipadded| = (Ty ? Ry ? gridDim.y+ 2Fradius) ?
(Tx ? gridDim.x+ 2Fradius) as shown in Listing 2.

1 const u64 in_size = ROUND_UP_TO_MULTIPLE_OF(
2 (u64)in_width * (u64)in_height * (u64)in_num_channels,
3 (Ty * Ry * dim_y + 2 * FilterRadius) * (Tx * dim_x + 2 * FilterRadius));

Listing 2: Calculating input size with padding

Since the results are never written by these out-of-bounds threads, the
padding can be left uninitialized.

The same can be done for the filters tensor. If #out channels is less
than Tz ∗ Rz, for some threads and some iterations, the threads may access
out of bounds. As with the input tensor, we can alleviate this problem
by padding. For the filters, we align the allocation up to be a multiple of
Tz ∗Rz ∗ Fwidth ∗ Fwidth.

Another simple optimization is unrolling for-loops with statically known
sizes, maximizing instruction parallelism. This is often done automatically
by the CUDA compiler, but in some of our testing, we found that it did not
always unroll all of our loops, and a #pragma unroll was needed. Therefore,
we chose to insert it at all points where loop unrolling was possible. Loop
unrolling increases instruction parallelism, but will also increase register us-
age, possibly leading to lower occupancy. This tradeoff is worth it in a lot of
cases [22], including ours.

37

3.6.3 Shared Memory

The next version utilizes shared memory to increase the speed of access of
commonly accessed elements in the algorithm. Each thread block will copy
a region of the input tensor as well as some of the filters to shared memory.
After the data in the shared memory has been used, thread synchronization
is necessary, before the next batch is copied to avoid race conditions among
threads.

3.6.3.1 Copying Input Tensor to Shared Memory Another direct
convolution implementation shown in [20] maps each thread in the block to
a single element in the input array. Since the output array is 2Fradius smaller
than the input array in each dimensions, their algorithm has an apron of
threads of area 2Fradius ∗ Tx + 2Fradius ∗ TY ∗ Ry − 4F 2

radius in each block
that are inactive in the computation phase. We copy to shared memory in a
way that avoids these inactive threads in exchange for slightly less coalesced
access.

In each of the sequential iterations on the input channel, we need to
copy an area of Nshared = (Ty ∗Ry + 2Fradius) ∗ (Tx + 2Fradius) at an x-offset
of blockIdx.x ∗ Tx and a y-offset of blockIdx.y ∗ Ty ∗ Ry. We re-map the
Nthreads = Tx ∗ Ty ∗ Tz available threads by calculating a flattened thread-id
like so:
threadIdx.x + threadIdx.y * Tx + threadIdx.z * Tx * Ty. The copy
is shown in Listing 3.

1 for (int i = 0; i < (Ty ∗Ry + 2Fradius) ∗ (Tx + 2Fradius); i += Nthreads) {
2 int id = i + threadIdx.x + threadIdx.y * Tx + threadIdx.z * Tx * Ty;
3 int y = id / Tx;
4 int x = id % Tx;
5 in_shared[id] = input[n, blockIdx.y ∗ Ty ∗Ry + y, blockIdx.x ∗ Tx + x)];
6 }

Listing 3: Copying the input matrix to shared memory.

If Nthreads doesn’t evenly divide the amount of elements to copy, we may
read even further out of bounds of the input array than before, so we need to
pad the input array with an additional Nthreads elements. Also, if Tx+2Fradius

is not a multiple 8, 16 or 32 (the amount of float-values to generate 32, 64, or
128 byte memory transactions), then we will not have completely coalesced

38

access. Tx +2Fradius is almost never a multiple of 8, 16, or 32, since Tx must
be a power of 2, and is always ≥ 8 in our implementation, so we cannot get
completely coalesced access unless Tx+2Fradius = 16+2∗8 = 32 for instance.

This way of copying to shared memory introduces another source of out-
of-bounds accesses. In the worst case, the last iteration of the copy reads
Nthreads − 1 elements outside the region that it should. This manifests in
threads reading extra rows. We can calculate the max size of these extra
rows as follows:

#extrarows =

⌈
dNshared/Nthreadse ∗Nthreads −Nshared

Tx + 2Fradius

⌉
The upper part of the fraction calculates the amount of extra elements being
copied, which we then divide by the row width and round up, leading to any
amount greater than 0 producing an extra row. We adjust our allocation of
the final padded input image to be

|Ipadded| = (Ty ? Ry ? gridDim.y+ 2Fradius +#extrarows) ? (Tx ? gridDim.x+ 2Fradius)

An illustration of the copy process for a single block is shown in Figure 17.

39

Figure 17: Shared memory copy. In each iteration, all threads copy a section
(marked by green tiles) of the input array into shared memory (the whole
orange area). 32 threads copy one value each in every iteration. The sizes in
the figure are relatively representative, except Tx = 10, which is not possible
as it must be a power of 2 and the small O and I dimensions.

3.6.3.2 Copying Filter to Shared Memory We use the same shared
memory allocation for the input and the filters, where the filters come directly
after the input matrix at index (Ty ∗ Ry + 2Fradius) ∗ (Tx + 2Fradius). The
copy of the input to shared memory may, as mentioned, write slightly out of
bounds, overwriting the filters in shared memory. To rectify this, we either
need to sync the threads in the block to make sure the input writes are

40

finished and the filter writes won’t be overwritten or round up the reserved
size for the input in shared memory to the nearest multiple of the number of
elements that are copied in each iteration such that no overwrites can occur
regardless of the order. We chose the latter approach as this reduced the
amount of synchronization necessary.

We need to copy Tz ∗ Rz ∗ Fwidth ∗ Fwidth elements from the filters into
shared memory. For each input channel, there are #out channels filters.
They are laid out sequentially in memory, so we can copy them into shared
memory using all of our threads, as for the input matrix. We don’t need to
worry about rows and columns here, so we get fully coalesced accesses in each
iteration. Here we can just pad the filter tensor linearly with the amount
of elements all the threads in a block can copy in each iteration: Nthreads.
We also similarly pad the shared memory size: aligning the section of shared
memory devoted to the filters up to Nthreads.

3.6.3.3 Transforming the Computation to Work with Shared Mem-
ory Now, the computation needs to work with the format of the data as
it is in shared memory. This means using the width of the copied matrix
slice of the input array, called InSharedPitch, to calculate the flattened in-
dices and not using the blockDim to account the the blocks offset, since this
was handled by the copy. We also insert a __syncthreads() call after the
computation to ensure that no threads begin the copies of the next input
channel iteration and overwrite values that are being used for the current
computation. The computation is shown in Listing 4.

41

1 for (int loop_y = 0; loop_y < Ry; loop_y++) {
2 const int y = threadIdx.y * Ry + loop_y;
3 for (int thread_cout = 0; thread_cout < Rz; thread_cout++) {
4 for (int i = 0; i < FilterWidth; i++) {
5 for (int j = 0; j < FilterWidth; j++) {
6 tmp[loop_y][thread_cout] +=
7 in_shared[InSharedPitch * (y + i) + threadIdx.x + j] *
8 filters_shared[FilterWidth * FilterWidth * (Rz * threadIdx.z +

thread_cout) + FilterWidth * i + j];
9 }

10 }
11 }
12 }
13 __syncthreads();

Listing 4: Computation using shared memory.

3.6.4 Vector Loads

The final optimization uses a trick in which each thread copies several ele-
ments by using CUDA’s 128-bit load and store instructions. This increases
the number of elements copied per thread and therefore reduces the number
of iterations taken to copy the input and filters. Our primary resource was
an article [12] from NVIDIA. The article has a figure that shows, at best, a
12.5% higher bandwidth of memory transfers using 128-bit loads. However,
”...using vectorized loads increases register pressure and reduces overall par-
allelism”[12]. This is not a problem in our case, since we often have too few
threads per block to copy the tensors in a low amount of iterations.

To make use of these 128-bit load and store instructions, we can use the
CUDA built-in float4 data-type, which is 4 floats packed into one struc-
ture: 16 bytes or 128 bits. To be generic, we can use C++ templates to
write the code to load using different data types with a single function. We
call the template parameter LoadType, which is then instantiated to e.g.
float4, float or any other 4-16 byte data-type. The amount of elements of
T loaded by each LoadType is ElementsPerLoadType = sizeof(LoadType)
/ sizeof(T). We can cast all loads to this and multiply the thread offsets
into the arrays by ElementsPerLoadType.

3.6.4.1 Alignment Requirements Reading N-byte elements requires
the address to be naturally aligned as mentioned in section 2.4.2.1, meaning

42

that the address is divisible by N . All allocations returned by CUDA are
guaranteed to be aligned to at least 256 bytes, so the first element of each
tensor will always be aligned to 16 bytes. We can also guarantee that the
second block will read at an address aligned to 16 bytes, since we always use
Tx ≥ 8 and Tx is a power of 2, so the horizontal offset of a block is always
divisible by 16 bytes: Tx ∗ sizeof(T)︸ ︷︷ ︸

divisible by 16

∗blockIdx.x.

We cannot, however, guarantee that reading the first element of a row
is aligned to 16 bytes, since the input array may not have a width that is
divisible by 16 bytes (4 floats). This means that we need to pad our input
array allocation by making the width of each row align up to 16 bytes. This
gives us a new value: the pitch of the row, row_pitch, which is however many
elements we need to skip to get to the next row in the allocation. We also
need to pad the filters tensor such that each section of Tz ∗Rz ∗Fwidth ∗Fwidth

elements is aligned to a 16 byte boundary, since each block will start its read
at this boundary. It takes

⌈
#out channels

Tz∗Rz

⌉
filters to fill out an input channel.

This, multiplied by F 2
width, is also aligned up to 16 byte boundary, giving us

filters_in_channel_pitch: how many elements to skip to get to the next
input channel.

We also need to pad the shared memory by aligning the width of input
matrix block up to be aligned to 16 bytes. The other padding requirements
explained in the previous sections can be adapted by always dealing with
the number of elements each thread can load. For instance, every place we
pad with Nthreads is changed to pad with Nthreads ∗ ElementsPerLoadType
instead. The load code for the input array and filters now looks as shown
in Listing 5. The device_index_arr_of_arr is a helper function for in-
dexing into an array of arrays with a given row pitch. NumLoadTypes and
FiltersNumLoadTypes are the amount LoadTypes that need to be loaded
into shared memory.

The full algorithm can be seen in the appendix at subsection B.1.

43

1 // Input matrix load
2 for (int i = 0; i < NumLoadTypes; i += NumThreads) {
3 const int id = i + thread_id;
4 const int y = id / InSharedLoadTypePerRow;
5 const int x = (id % InSharedLoadTypePerRow) * ElementsPerLoadType;
6 ((LoadType*)in_shared)[id] =
7 *(LoadType*)&input[device_index_arr_of_arr(
8 row_pitch,
9 height,

10 in_channel,
11 block_offset_y + y,
12 block_offset_x + x
13)];
14 }
15 // Filter load
16 for (int i = 0; i < FiltersNumLoadType; i += NumThreads) {
17 const int id = i + thread_id;
18 ((LoadType*)filters_shared)[id] =
19 *(LoadType*)&filters[
20 filters_in_channel_pitch * in_channel
21 + filters_block_offset
22 + id * ElementsPerLoadType
23];
24 }
25 __syncthreads();

Listing 5: Copy to shared memory using LoadType, typically float4

3.6.5 Same Mode Convolution

For the same mode convolution mentioned in 2.1.2, there are two differences:
One, we pad the input array in both the dimensions of the input image to be
Ipaddedwidth ×padded

height = Iwidth+2Fradius×Iheight+2Fradius and make the output-image
have the same dimensions. Two, we write at an offset of Fradius in the x and y
dimensions of the output tensor. We don’t have to worry about alignment of
these accesses, since they are not vectorized. With this implementation, the
output array can be used as the input for the next iteration of a multistep
convolution operation.

44

3.7 Futhark
3.7.1 Futhark Background

Futhark is a purely functional programming language that is statically typed,
aiming to provide a high-level functional language that compiles efficient code
for parallel hardware via CUDA, OpenCL, or multi-threaded CPU code. [8].
Parallel programs in Futhark consist of a combination of Second-Order Ar-
ray Combinators (SOACs). These features enable the Futhark compiler to
generate correct and efficient parallel code, eliminating the need to explicitly
manage memory and handle data races. This is handled later in the compiler
stages.

The Futhark compiler follows a fairly conventional architecture consisting
of three major parts: the frontend, the middle-end, and the backend. [7]

3.7.1.1 Frontend The frontend parses, type-checks, and then transforms
the Futhark source language into the Intermediate Representations (IRs)
used by the compiler’s middle-end.

3.7.1.2 Middle-end The middle-end consists of passes that accept a pro-
gram as input and produce a new program. A combination of these passes
is a pipeline.

The Middle-end starts with a program in SOAC representation, given
by the front-end. The code is transformed, depending on the pipeline, into
another representation. To produce GPU CUDA code, it is transformed to
a GPU representation.

In the tile-loop pass, a block-register tiling of General Matrix Multiplica-
tion already exists, and it is the same pass where the optimization transfor-
mation for the convolution operation should be implemented.

3.7.1.3 Backend The backend takes a program in some core IR repre-
sentation, which always contains memory information, and then translates
the program to imperative IR, also known as ImpCode. Finally, the ImpCode
is translated to a real executable language.

45

3.7.2 Overview of the Compiler

We have created a sparse overview of the Futhark compiler structure, based
on the information and figures from [9]. The GPU optimization has been
highlighted green, and the red highlight denotes the pass where the convolu-
tion optimization should be implemented.

Figure 18: Simplified compiler overview

3.8 Incremental Flattening & Auto Tuning
When generating GPU code, Futhark will generate several different versions.
The best version is then chosen at runtime, based on specific heuristics. This
generation of different code versions is referred to as incremental flattening
[3]. When passing through the code, it inserts guarded code versions, each
time it encounters a map operator, which can be mapped to some level l
of hardware parallelism. It then generates multiple versions, each of which
explores one more level of inner parallelism. The guards are implemented
with a threshold that determines the amount of parallelism at runtime. This
will generate semantically equal code versions that can utilize all possible
top-level parallelism.

Furthermore, the thresholds are autotuned using a simple stochastic auto-
tuner on the threshold parameters.

When applying incremental flattening, the different versions of the code
are structured in a tree-like way. A representation of this is shown in the
figure below from [3].

46

Figure 19: Visualization of branching structure of Incremental flattening [3]

In the figure V1..V4 is the different code versions, where each version uti-
lizes a different level of parallelization.

3.9 Memory in Futhark
Even though Futhark does not have explicit memory allocation for the user,
due to being a functional language, the compiler utilizes an extended func-
tional language with a notion of explicitly allocating memory through LMAD
representations or transforming into lower-level code [15]. The ability to al-
locate explicit memory is crucial for our optimization, since it relies on each
thread in a kernel storing multiple intermediate results.

3.10 Kernel Representation
We provide a short overview of two of the most important internal represen-
tations in the Futhark compiler for the convolution example. The overview
is based on the description from[13] and the Hackage comments [7]

3.10.1 SegOps

The GPU kernel always consists of an outer map, determining the parallel
structure. This is represented as a SegOp structure, which is either a segmap,
segscan, seghist, or a segred. It is semantically a stack of perfectly nested
maps, on top of some computation. The Segspace encodes the map structure.

SegOps has parameters describing the representation of the body, as a
level. The level describes for GPU representations, whether the SegOp is
expected to run at the thread or block level.

47

data SegOp lvl rep
= SegMap lvl SegSpace [Type] (KernelBody rep)
| SegRed lvl SegSpace [SegBinOp rep] [Type] (KernelBody rep)
| ...
deriving (eq,ord,show)

Figure 20: Definition of SegOp

For our naive direct-mapped convolution step implementation, we would
have a SegMap or SegRed construction at the thread level, where the three
outer dimensions correspond to the block dimensions.

3.10.2 Screma

Screma (ScanReduceMap) is a value constructor for the SOAC type, repre-
senting a combination of scans, reduces, and maps. The functionality of a
Screma is specified through a ScremaForm. The ScremaForm consists of a
map part, denoted as Lambda, and then an arbitrary number of scans and
reductions. If the ScremaForm only consists of map information and reduc-
tions, it would represent a redomap construct. For the convolution example,
we would only expect the loops to be in redomap form and deeply nested. A
figure illustrating the Screma construct is provided below:

Screma SubExp [Vname] (ScremaForm rep)
.
.
.
data ScremaForm rep = ScremaForm
{

ScremaLambda :: Lambda rep,
ScremaScans :: [Scan rep]
ScremaReduces :: [Reduce rep]

}
deriving (Eq, Ord, Show)

Figure 21: ScremaForm definition

48

3.11 Convolution in Futhark
To demonstrate our desired code transformation in Futhark, we will work
with an example of a convolution with multiple input and output channels
as discussed in section 2.1.2.

def conv2d [l][m][n][o][k] (inputs : [l][m][n]f32) (kernels : [l][o][k][k]f32) =
let out_m = m-k+1 -- output height
let out_n = n-k+1 -- output width
in
-- indexes and zero initialization of outputs
tabulate3d_ o (out_m) out_n (\out_channel y x ->

-- reduction across input channels
reduce (+) 0 (

map_ (iota l) (\in_channel ->
-- reduction across rows
reduce (+) 0 (

-- slice of input
map2_ (inputs[in_channel, y:(y+k),x:(x+k)] :> [k][k]f32)
(kernels[in_channel,out_channel] :> [k][k]f32) (\in_row kernel_row ->

-- redo-map
reduce (+) 0 (
map2_ in_row kernel_row (\in_val kernel_val ->

in_val * kernel_val
)

)
)

)
)

)
)

Figure 22: Convolution of multiple input-output channels in Futhark

Where we have used a modified map and tabulate where the input is the
first argument as opposed to the lambda for a better overview of the input
arrays:

49

map_ xs f ≡ map f xs

Figure 23: Map transformation

.

3.12 Transformation of Futhark code
To transform our Futhark code, listed in Figure 22, to implement some of the
optimization transformations, such as those shown in Figure 14, we start by
inspecting the IR form of the code generated by the Futhark GPU compiler
pass.

We use the command

futhark dev --gpu "conv.fut"

This generates multiple versions of possible kernel representations, according
to the general flattening principle of Futhark. To implement our optimiza-
tions, we would want a kernel that is ”parallel” in the three outer dimensions:
the number of output channels, the height of the output image, and the width
of the output image. The inner reduction should be kept sequential. This
would result in an intragroup kernel, which consists of a segOp on the thread
level, with three dimensions. To generate the desired kernel, we gave Futhark
the following attribute over the innermost map of the 3D tabulate construct.

def tabulate3d_ (dim1) (dim2) (dim3) (f) =
tabulate_2d dim1 dim2 (\i j ->
#[sequential_inner]
map (\k -> f i j k) (iota dim3))

To ensure the generation of kernels with sequential inner execution.
However, the Tile-loop pass would optimize our desired kernel away. To

circumvent this, we disabled the tile-loop pass, and then the Futhark compiler
generated the correct kernel with the following shape:

50

let {defunc_0_map_res_pretr_pretr_9606 :
[o_7512][out_m_9210][out_n_9212]f32} =

segmap(thread; ;
grid=segmap_usable_groups_9605;
blocksize=segmap_tblock_size_9604)
(gtid_9607 < o_7512, gtid_9608 < out_m_9210,

gtid_9609 < out_n_9212)
(~phys_tid_9610) : {f32} { ...

Figure 24: Segmap IR representation

Which has the desired SegOp arguments.
We transform the kernel by hand to create a prototype for the final ver-

sion. Disabling the tile loop pass is fine, as it is the same pass where our
optimizations would be implemented. Therefore, the compiler should be able
to recognize the convolution construct and apply the convolution transfor-
mations before being optimized away by another transformation.

To transform the segmap construct in Figure 24, we must define the new
register tile sizes and redefine the shapes of the input and output. The input
is modified by adding the two register dimensions and dividing the original
sizes Dimout =

o

regZ
and Dimheight =

outm
regZ

, resulting in the input shape of:

[Dimout][Dimheight][outwidth][regY][regZ]f32

For the output, in the original kernel version, each thread returns one ele-
ment, and in the transformed version, each thread will return a tile of shape.

[regY][regZ] = regY × regZ

Resulting in a new segmap

51

let {Dim_height : i64} =
sdiv_up64(out_height, 8i64)

let {Dim_out : i64} =
sdiv_up64(num_out_ch, 4i64)

let {to_rearrange_9707 :
[Dim_out][Dim_height][out_width][8i64[4i64]f32} =

segmap(thread; ; grid=segmap_usable_groups_9706;
blocksize=segmap_tblock_size_9705)
(tIdz_9708 < Dim_{out}, tIdy_9709 < Dim_{height,
tIdx_9710 < out_width_9313) (~phys_tid_9711) :
{[8i64][4i64]f32} {

Figure 25: Segmap IR representation, with regY = 8 and regZ = 4

The convolution operation is defined by nested loop constructs, precluded
by several boundary checks. In the original kernel, they have the following
nested loop reduction shape:

52

let {loop_reduce_N : f32 } = -- outer N loop
loop {loop_res_N : f32} = {0.0}

for i_1 < N do {
...
-- boundary validity check
...
-- inner filter loop

let {loop_reduce_filter1 : f32} = {
loop {loop_res_F1} = {0.0}
for i_2 < f_width do {

let {slice_index1 : i64} =
-- the index into the input slice
add(gtid_y, i_2)

-- inner filter loop
let {loop_reduce_filter2 : f32} = {

loop {loop_res_F2} = {0.0}
for i_3 < f_height do {

let {slice_index2 : i64} =
-- the index into the input slice
add(gtid_x, i_3)
let {input_val : f32} =

inputs[i_1, slice_index1, slice_index2]
let {kernel_val : f32} =

kernels[i_1, gtid_z, i_2, i_3]
let {mul_val : f32} =

fmul32(input_val, kernel_val)
let {inner_red : f32} =

fadd32(mul_val, loop_res_F2)
in {inner_red}

}
let {middle_red} =

fadd32(loop_reduce_filter2,loop_res_F1)↪→

in {middle_red}
}
let {outer_red} = fadd32(loop_reduce_filter1,loop_res_N)
in {outer_red}
}
return {returns loop_reduce_N }

Figure 26: Loop construct of convolution

53

Where we would like the loop constructs to return several elements, in-
stead of only one, by adding the necessary loops from the ”strip mining” of
the outer parallel dimensions.

To transform it with our optimizations, we start by zero-initializing the
return results of each thread, using replicate, followed by defining the start
point of each thread, with Tidy, Tidz specified in Figure 25.

let {init : [reg_y][reg_z]f32 = replicate([reg_y][reg_z], 0) }
let {y_thread_start : i64} = mul(Tidy, reg_y)
let {z_thread_start : i64} = mul(Tidz, reg_z)

Now we need to add the two loops, following the structure shown in Figure 14,
and specify that the outer loop should now return a 2D array instead of a
single element. The outer loop definition becomes:

let {loop_reduce_N : [reg_y][reg_z]f32 }
let loop {loop_res_N : *[reg_y][reg_z]f32} = init

Before the first filter loop, we add the two new loops with the structure

let {reg_y_loop_res : [reg_y][reg_zf32] }=
loop {Reg_y_loop}: *[reg_y][reg_z]f32 = {loop_res_N}

for loop_y < reg_y do {
let {thread_current_y} = add(y_thread_start, loop_y)

}
let {reg_z_loop_res : [reg_y][reg_zf32] }=

loop {Reg_z_loop}: *[reg_y][reg_z]f32 = {reg_y_loop_res}
for loop_z < reg_z do {

let {thread_current_z} = add(z_thread_start, loop_z)
}

The inner filter loops are still kept to calculate one result at a time, but now
with the updated indexing based on the added inner loops, and extra code
to write to the correct accumulator of the thread.

54

./modifed_ver --dump-cuda modified_ker.cu

Figure 28: Command for generating CUDA kernel from Futhark

let {outer_filter_loop : f32} =
loop {outer_filter_tmp : f32} = {0.0f32}
for i < filter_width do {

let {y : i64} =
add_nw64(thread_current_y, i)

let {inner_filter_loop: f32} =
loop {inner_filter_loop_tmp: f32} = {0.0f32}
for j:i64 < filter_width do {

let {x : i64} =
add_nw64(tIdx, j)

let {input_val : f32} =
inputs[in_channel, y, x]

let {filter_val : f32} =
filters[in_channel, thread_current_z, i, j]

Figure 27: Updated inner loop

Finally, to adhere to the original shape of the transformation, we rear-
range the output. This might be avoided with smarter transformation and
dimension extraction in the compiler.

A limitation of this handwritten version is that no additional bounds check-
ing was inserted, due to the amount of extra logic for the prototype. This
limits the input to only sizes that tile perfectly; otherwise, we will encounter
illegal out-of-bounds accesses. This limitation should be handled when doing
the transformation in the compiler.

After recompiling the hand-modified Futhark kernel and verifying the va-
lidity of the transformations by comparing it to the naive version, we got
Futhark to generate the CUDA kernel, to inspect it, and measure the per-
formance of the generated CUDA kernel. This will be elaborated further
on in the evaluation section 4.2.4. The CUDA kernel was generated with
the following command: The CUDA kernel itself is way too long to include.
Upon inspection of the generated kernel, it followed the desired structure of

55

declaring and then initializing a register array for each thread, with the de-
sired dimensions, followed by the desired loop-nest structure of the sequential
loops.

4 Evaluation

4.1 Testing
4.1.1 CUDA versions

To test the correctness of the CUDA convolution implementations, we com-
pared them to the only block-tiled version, where threads are directly mapped
to the output values. The direct-mapped version was first tested with small
test cases to confirm the correctness of the program. The kernels were tested
on different inputs, with varying numbers of input and output channels as
well as with different tiling-parameters to ensure no illegal out-of-bounds
accesses could occur. The following parameters were used for testing:

Parameters (Inp, InChannels, OutChannels) Description
(2048, 32, 32) Well-formed medium input
(4096, 64, 64) Well formed big input
(1500, 22, 22) Malformed smaller input
(2048, 1, 32) Well formed, one single input channel

Table 1: Testing inputs

These inputs were tested on several different permutations of register and
block tiling parameters and filter radii. A few are listed below.

(Radius, Tx, Ty, Ry, Tz, Rz) Purpose
(1, 16, 16, 3, 2, 3) Balanced tiling of x,y. odd register tiling
(1, 32, 8, 8, 4, 1) x-dim favored tiling, even register tiling
(1, 256, 1, 8, 1, 8) Only x, and register tiling
(2, 8, 2, 32, 2, 2) Heavy y-register tiling
(5, 64, 4, 4, 2, 8) Big radius, and maximum threads.

Table 2: Few test cases

56

All tests for the direct-mapped and only-y register-tiled version validate
for all inputs. For the register-tiled version in both the y and z dimensions,
certain parameter selections cause a GPU ERROR: too many resources re-
quested for launch, which indicates that too many registers are being used by
the SMs. This occurs for parameters where the number of threads equals the
maximum number of threads for each block, with register tile sizes greater
than 1. For example, the parameters (5, 64, 4, 4, 2, 8) cause the kernel not to
run at all, most likely since the total amount of registers used by the kernel
exceeds the ones available. This indicates that the tiling parameters should
be kept rather small to avoid this issue.

For all input, where we do not exceed the hardware resources of the GPU,
all kernels validate on all inputs. To reproduce the tests, please navigate to
our Github.

4.2 Benchmarking
The original goal of the project was to compare the transformed Futhark
convolution with the optimized versions created in CUDA. We do this for
the kernel generated by the hand-transformed Futhark code, mentioned in
section 3.12. We were not able to generate the transformations in the com-
piler, so no benchmarking of this could be created.

We instead created a comprehensive comparison between our different op-
timizations in CUDA to analyze the potential performance of the convolu-
tion operation. To achieve the highest performance, we evaluated a range
of different permutations of block and register tiling parameters, as well as
various configurations of filter sizes, input sizes, and the number of input
and output channels, to assess their impact on performance. We measure on
arithmetic output, in TFLOPS4 due to the general compute-bound nature
of the convolution operation.

4.2.1 Hardware Description

All benchmarking was done on the Futhark machines, provided through
DIKU. The machine has an A100 NVIDIA GPU with the following relevant
specifications:

4Tera (1012) floating point operations per second

57

Peak FP32 19.5 TFLOPS
GPU memory 40GB

GPU BandWidth 1555 GB/s

Table 3: A100 specifications

For our optimizations, we want to get as close to the peak floating-point
operations as possible.

4.2.2 Parameter Search

To benchmark our different versions, we want to use the optimal tiling pa-
rameters. For our register-titled optimized convolution, we have five different
tiling parameters to optimize, and we also use the Filter size as a parameter,
since for different convolutions in CNN, this is a known filter with a fixed
size.

The tiling parameters are Tx, Ty, Tz, Ry, Rz, and for the filter size we range
over its ”radius” r. For the tiling parameters, it is almost impossible to find all
combinations, since they will also depend very much on the input; therefore,
we limit the search space for the parameters.

(Tx, Ty, Tz) = {1..4..64}

(Ry, Rz) = {1..16}

We used a brute-force approach to analyze which combination would yield
the best performance by trying a number of different combinations. We found
that the choice of tiling parameters had a significant impact, and an incorrect
choice would result in a substantial slowdown. It was quickly discovered that
small values of Ty and Tz were preferable and that Tx should be around
≈ 32 for the best performance, across most problem instances. Therefore,
the following block tiling parameters were chosen.

Tx = 32

Ty = 2

Tz = 2

58

The register-tiling parameters were more volatile across the problem in-
stances and were, in general, chosen for the specific input. However, a general
trend was to pick Ry ≈ 10 and Rz ≈ 4

The radius was tested for the range 1−8. We did not test greater radii as
there is no real benefit of such big filter dimensions in the context of CNNs
[1]. Most filter sizes vary from 3×3 to 9×9, which corresponds to r = 1−4.

The best performance was in general observed for radii of r ≈ 4,

4.2.3 CUDA Version Comparison

To analyze the impact of the different optimizations, we benchmarked the
performance of each version on various input, channel count, and filter sizes.
The filter sizes had varying radii from 1..8. For all versions the tile sizes
mentioned in previous sections were used, and the register-tiles varied slightly
between the different radius sizes, however all versions were tested with the
same set of register tiles, Ty ∈ {5, 6, 8, 10, 13, 16} and Tz ∈ {2, 4}. Each
performance measure was done by first running a warm-up run and then
taking the average over 5 GPU runs.

The first performance benchmarking was on a ”big” input, with the fol-
lowing dimensions.

Iheight = 4096

Iwidth = 4096

Ic = 64

Oc = 64

We chose to keep the image size the same across tests, since we could reduce
the parallelism by reducing the output channel count as long as Tz ∗Rz ≤ Oc.

The results can be seen in the Figure 29. In all figures, the max theoretical
FLOPS of the A100 (19.5 TFLOPS) is shown with a red line. When the
vector load version is at its best, it reaches 18.879/19.5 = 96.3% of that. All
the optimized versions perform better than their previous counterpart, but
the vector load only has a slight edge over the non-vector load. Higher radii
are especially impacted by the shared memory optimization, with a sharp
dropoff in performance of the branchless version at R = 8.

59

naive branchless shared vector

0

2

4

6

8

10

12

14

16

18

20

radius: 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

19.5 TFLOPS

4.
34

13
.9
1

1
6.
7
4 17
.6
5

4.
86

1
5.
9

1
7.
5
5 1
8
.5
1

4.
34

15
.4
8

17
.1
9 18

.6
2

3.
79

15
.4
6

1
8.
6
6

1
8.
79

3.
49

1
4.
7
8

18
.0
6

1
8.
16

3
.3
6

1
4.
0
9

1
7
.8
9

1
8.
0
2

2
.8
5

1
3.
4
4

1
6
.8 1
7.
6
2

1
.6
5

1.
93

1
6.
43

16
.8
9

T
FL

O
PS

Figure 29: Impact of each performance optimization for input size of I ×
O × Iheight × Iwidth = 64× 64× 4096× 4096 and varying radii (shown above
version name).

To measure the impact of the channel count, additional benchmarking
was done on the same versions, but now with channel counts of 64, 32, 8,
and 1, respectively, and the radius frozen to R = 6. This radius performed
the best for lower channel counts, with all versions handling 1x1 poorly due
to the lower inherent parallelism. The results are shown in Figure 30. Again,
the optimizations all improve the performance, but the most impactful are

60

the branchless and shared memory versions.

naive branchless shared vector

0

2

4

6

8

10

12

14

16

18

20

1x1
8x8

32x32

64x64

1x1
8x8

32x32

64x64

1x1
8x8

32x32

64x64

1x1
8x8

32x32

64x64

19.5 TFLOPS

2
.6
5

7
.8
6

1
4.
53

16
.2
2

3.
47

1
4.
39

17
.9
5

18
.0
6

3.
47

1
4.
3
5

1
8.
0
5

18
.2

3
.3
6

1
4.
09

17
.8
9

1
8.
02

T
FL

O
PS

Figure 30: Impact of each performance optimization for input image size of
Iheight × Iwidth = 4096× 4096 and varying input and output channel counts:
1 × 1, 8 × 8, 32 × 32 and 64 × 64 (shown above version name). Radius is
locked at R = 6.

We chose R = 6 for the last comparison, as it performed optimally. For
the sake of a fair comparison, we have also included a figure showing the
vector load version across different radiiand channel counts. We show 1x1,
4x4, 8x8, and 32x32, as the performance jump from 1x1 is quite large, and the

61

jump from 32x32 to 64x64 is almost nothing. Changing the channel counts
is roughly equivalent to changing the input-image dimensions. Results are
shown in Figure 31. The vector load version performs relatively poorly at
R = 1 and a 1x1 channel count, but is already performing well at 4x4 and
higher radii. The tiling was changed to have Tz ∗Rz ≤ Oc where needed.

1x1 4x4 8x8 32x32

0

2

4

6

8

10

12

14

16

18

20

radius: 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

19.5 TFLOPS

2.
86

11
.2
9

16
.0
6

17
.6
6

7.
58

15
.9
6 17

.4
1 18
.3
9

12
.5
7

17
.7
5

18
.2
4

18
.5
9

14
.8
8

17
.4
4 18
.5
3

1
8.
79

16
.0
1

17
.7
4

1
8.
0
2

1
8.
2

16
.2
2

1
7.
8

18
.0
6

1
8.
2

15
.5
6

17
.8
4

17
.8
2

1
7.
8
6

14
.3
2

17
.1

17
.3
7

17
.3
3

T
FL

O
PS

Figure 31: Impact of channel count and radius on performance for the vector
load version with an input image size of Iheight × Iwidth = ×4096× 4096.

62

4.2.4 Futhark Evaluation

To benchmark the Futhark kernel, generated by our hand-modified Futhark
version discussed in Section 5.13, we utilize Futhark’s utility to load the
kernel on execution and time several runs.

./Mod_ver --load-cuda Fut_ker.cu -r 10 -t /dev/stderr -n < data/dataset_ker.in

Figure 32: Benchmarking the Futhark kernel

The kernel was tested on an input size of 2052 × 2052 × 64 × 64 and
auto-generated tiling parameters, and hard-coded register tiles of Ry = 8
and Rz = 4. The input for this version must result in output sizes that
perfectly tile into the register parameters. Otherwise, the kernel will access
out-of-bounds data due to the missing boundary checks.

The kernel was measured to obtain run times of 83.5ms on average, which
corresponds to

Futker ≈ 10.2TFLOPS

Which corresponds to about 51% of the peak performance.
We benchmarked the non-optimized version we wrote in Futhark for com-

parison, with the same input, using the futhark-bench utility with the CUDA
backend, and got a run time of 269.4ms on average, and this corresponds to

Futorig ≈ 3.19TFLOPS

Which corresponds to about 16% of the peak performance. This shows that
the modified version gets a speedup of

SpeedUp ≈ ×3.2

The benchmarking was also done for a smaller output, 1028×1028×32×32
and yielded similar results.

63

FutOrig FutKernel Branchless
0

2

4

6

8

10

12

14

16

18

20 19.5 TFLOPS

3.19

10.2

16.07

T
FL

O
PS

Figure 33: Impact of Futhark hand kernel generated from hand transformed
Futhark IR, for input image size of Iheight × Iwidth = 2052 × 2052 and input
and output channel count 64× 64. Radius is locked at R = 2.

5 Discussion and Further Work

5.1 Discussion of CUDA Results
5.1.1 Work Size

It was found through benchmarking that the performance of the kernels
gets worse if the parallel work size is too small. For instance, if the total
dimensions of O× Iwidth × Iheight go below a certain threshold. For example,
for the vectorized load version, performance starts to suffer once you go
down to small images, such as 256x256 images, with four input channels.
For R = 1 it only reaches 2.2 TFLOPs, but for R = 6 it still reaches 12.3
TFLOPS with the same tiling parameters as used for larger images. It’s
possible that choosing different tiling parameters could improve performance

64

even further.

5.2 Impact of Radius
We can see from figure 29, that as the radius value increases above r >
2 the nonshared memory versions start to decrease in performance. This
is especially evident for r = 8, where the branchless versions get ≈ ×7
performance slowdown. However, this aligns with the arithmetic intensity
previously mentioned, where we can observe that the convolution operation
becomes more memory-bound as the radius increases. This also explains
why the effect is not as evident for the shared memory versions, since the
increased number of global memory accesses does not affect them. For the
shared memory versions, we see that r = 4− 5 is optimal.

5.3 Impact of Channels
From figure 30 and figure 31 we can see that the choice of input and output
channels does not make a great impact as long as the number of channels is
> 1. If channels == 1 then we cannot tile in the z dimension of the kernel,
and the optimization becomes only tiling in the y dimension. Furthermore,
it may not fully saturate the GPU due to the reduced input size.

5.4 Discussion of Fuhtark Kernel results
We demonstrated, through benchmarking of the generated Futhark kernel,
that implementing block and register tiling can yield a ×3 speedup compared
to implementing it naively in Futhark. Futhark automatically determined
the kernels’ tiled dimensions. However, the register tiles were pre-emptively
chosen. This provides an opportunity for even better performance, as the
choice of these parameters can significantly impact performance and would
greatly benefit from auto-tuning.

There is also potential for even more performance if further optimizations
could be implemented, such as using shared memory.

5.5 Further Work
There is still work to be done to complete the optimizations in Futhark, as
we did not manage to add the transformations to the compiler.

65

When the transformations are added, we could further explore the use
of shared memory for optimization, as seen in CUDA, which significantly
contributes to performance. Other future work could involve alternative
methods to calculate the convolution operation, such as transforming the
data to utilize GEMM, or handling special cases, and therefore special kernels
for separable filters, as discussed in [20].

5.5.1 Compiler Transformations

As mentioned, the compiler transformations were never added to the Futhark
compiler, and this would be an obvious next step. This would involve pat-
tern matching the convolution operation, extracting the required dimensions,
and handling additional necessary boundary checks. For this project, further
exploration of pattern matching should be conducted to extract the dimen-
sions from the loops. The boundary checks could be handled by creating an
”epilogue,” as demonstrated for block and register tiling of tensor core com-
putation, as shown in [4]. This would allow the main part of the convolution
to be calculated efficiently without handling out-of-boundary checks, as it
would be perfectly tiled. Then, a small part of the calculations would be
handled sequentially.

5.5.2 Shared Mem in Futhark

It would also be beneficial to explore the exploitation of shared memory in
the Futhark compiler transformations. This could eliminate certain bound-
ary checks and has shown promise in improving performance. The shared
memory would be expressed through the use of LMADS [15].

6 Conclusion
This thesis has explored how to optimize the convolution calculation, used
primarily in Convolutional Neural Networks, for GPU execution, with the
goal of implementing these optimizations in the Futhark compiler. The opti-
mization exploration was achieved successfully by exploiting temporal reuse
through block and register tiling of the convolution operation in two dimen-
sions: the height of the output image and the number of output channels.
Several iterations of optimizations were explored and implemented, including

66

the use of shared memory and vector loads. The optimizations were success-
fully validated and evaluated. The Optimized convolution CUDA kernels
achieved high arithmetic performance, reaching up to 96.3% of the GPU’s
peak theoretical FLOPS.

For the Futhark language, a hand-modified kernel was created and evalu-
ated against the naive implementation in Futhark, achieving approximately
three times the speed of the naive implementation, reaching up to 51% of
the GPU’s peak theoretical FLOPS.

The handwritten kernel does, however, have strict restrictions on the in-
put dimensions, as additional boundary checking was not implemented, and
was left for the implementation in the compiler. Also, the implementation
of the optimizing transformations in the Futhark compiler was unfortunately
not completed. This leaves room for significant improvement and further
work in the compiler, including applying transformations, boundary check-
ing, and utilizing shared memory.

However, the performance increase shown by both the CUDA kernels and
the handwritten Futhark kernel compared to naive implementations demon-
strates the potential benefits of implementing optimizations in the Futhark
compiler, and we believe it is a worthwhile project for the future.

67

References
[1] Yunus Camgözlü and Yakup Kutlu. Analysis of filter size effect in deep

learning, 2020. URL: https://arxiv.org/abs/2101.01115, arXiv:
2101.01115.

[2] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance
convolutional neural networks for document processing. 10 2006.

[3] Troels Henriksen, Frederik Thorøe, Martin Elsman, and Cosmin Oancea.
Incremental flattening for nested data parallelism. In Proceedings
of the 24th Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’19, pages 53–67, New York, NY, USA, 2019.
ACM. URL: http://doi.acm.org/10.1145/3293883.3295707, doi:
10.1145/3293883.3295707.

[4] Anders L. Holst. Optimizing tensor contractions for gpu execution in
futhark. DIKU, 2024.

[5] Marc Jordà, Pedro Valero-Lara, and Antonio J. Peña. Performance
evaluation of cudnn convolution algorithms on nvidia volta gpus. IEEE
Access, 7:70461–70473, 2019. doi:10.1109/ACCESS.2019.2918851.

[6] Ken Kennedy and John R. Allen. Optimizing compilers for modern ar-
chitectures: a dependence-based approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2001.

[7] The Futhark Programming Language. Futhark-hackage com-
ments. URL: https://hackage.haskell.org/package/futhark-0.
24.3/docs/Futhark.html.

[8] The Futhark Programming Language. Why futhark?, n.d. URL: https:
//futhark-lang.org.

[9] Steffen Holst Larsen. Multi-gpu futhark using parallel streams. DIKU,
2019.

[10] Yann Lecun, Larry Jackel, L. Bottou, A. Brunot, Corinna Cortes,
John Denker, Harris Drucker, Isabelle Guyon, Urs Muller, E. Sackinger,
Patrice Simard, and V. Vapnik. Comparison of learning algorithms for
handwritten digit recognition. 01 1995.

68

[11] Shuai Lu, Jun Chu, Luanzheng Guo, and Xu T. Liu. Im2win: An
efficient convolution paradigm on gpu, 2023. URL: https://arxiv.
org/abs/2306.14316, arXiv:2306.14316.

[12] Justin Luitjens. CUDA Pro Tip: Increase Performance with Vec-
torized Memory Access. https://developer.nvidia.com/blog/
cuda-pro-tip-increase-performance-with-vectorized-memory-access/.
[Accessed 28-05-2025].

[13] Christian Marslev and Jonas Grønborg. Efficient sequentialization of
parallelism. DIKU, 2024.

[14] Brian McFee. Digital Signals Theory. 09 2023. doi:10.1201/
9781003264859.

[15] Philip Munksgaard, Cosmin Oancea, and Troels Henriksen. Compiling
a functional array language with non-semantic memory information. In
Proceedings of the 34th Symposium on Implementation and Application
of Functional Languages, IFL ’22, New York, NY, USA, 2023. Associa-
tion for Computing Machinery. doi:10.1145/3587216.3587218.

[16] NVIDIA. Cuda, release: 10.2.89, 2020. URL: https://developer.
nvidia.com/cuda-toolkit.

[17] NVIDIA. Cuda c++ programming guide v12.9, May 2025. URL: https:
//docs.nvidia.com/cuda/cuda-c-programming-guide.

[18] NVIDIA. Parallel thread execution isa version 8.8, May 2025. URL:
https://docs.nvidia.com/cuda/parallel-thread-execution/
index.html.

[19] Cosmin Eugen Oancea. PMPH Lecture Notes for the Software Track
Vol. 1, Article 1. 2018.

[20] Victor Podlozhnyuk. Image convolution with cuda. NVIDIA, 2007.

[21] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. Efficient
processing of deep neural networks: A tutorial and survey, 2017. URL:
https://arxiv.org/abs/1703.09039, arXiv:1703.09039.

[22] Vasily Volkov. Better performance at lower occupancy. Proceedings of
the GPU Technology Conference, GTC, 10, 01 2015.

69

[23] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
an insightful visual performance model for multicore architectures. Com-
mun. ACM, 52(4):65–76, April 2009. doi:10.1145/1498765.1498785.

[24] Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola. Dive
into deep learning, 2023. URL: https://arxiv.org/abs/2106.11342,
arXiv:2106.11342.

[25] Jiyuan Zhang, Franz Franchetti, and Tze Meng Low. High performance
zero-memory overhead direct convolutions. CoRR, abs/1809.10170,
2018. URL: http://arxiv.org/abs/1809.10170, arXiv:1809.10170.

70

71

A AI-Declaration

 Declaration of using generative AI tools (for students)

 ☐ I/we have used generative AI as an aid/tool (please tick)

 ☑ I/we have NOT used generative AI as an aid/tool (please tick)

 If generative AI is permitted in the exam, but you haven’t used it in your exam paper, you
 just need to tick the box stating that you have not used GAI. You don’t have to fill in the
 rest.

 List which GAI tools you have used and include the link to the platform (if possible):

 Example: [Copilot with enterprise data protection (UCPH license),
 https://copilot.microsoft.com]

 Describe how generative AI has been used in the exam paper:

 1) Purpose (what did you use the tool for?)
 2) Work phase (when in the process did you use GAI?)
 3) What did you do with the output? (including any editing of or continued work on the output)

 Please note: Content generated by GAI that is used as a source in the paper requires correct
 use of quotation marks and source referencing. Read the guidelines from Copenhagen
 University Library at KUnet .

Figure 34: AI-declaration

72

B CUDA-versions

Figure 35: Direct mapped

template <class ElTp, int radius>
__global__ void convNaive (ElTp* input, ElTp* kernel, ElTp*

output, int height, int widthIn, int widthOut, int nIn,
int N_out){

↪→

↪→

int gidx = blockIdx.x * blockDim.x + threadIdx.x;
int gidy = blockIdx.y * blockDim.y + threadIdx.y;
int gidz = blockIdx.z * blockDim.z + threadIdx.z;
if (gidx >= widthOut || gidy >= widthOut || gidz >= N_out){

return;
}
ElTp sum = 0.0f;
int r_size = 2*radius+1;
for (int c_in = 0; c_in < nIn; c_in++) {

for (int row = 0; row < r_size; row += 1) {
for (int col = 0; col < r_size; col += 1) {

int InCol = gidx + col;
int InRow = gidy + row;
sum += input[c_in * widthIn * widthIn + InRow *

widthIn + InCol] *↪→

kernel[c_in * N_out * r_size * r_size + gidz *
r_size * r_size + row * r_size + col];↪→

}
}

}
output[gidz * widthOut * widthOut + gidy * widthOut + gidx]

= sum;↪→

}

template<class ElTp, int radius, int Ry,int Rz>
__global__ void conv2DTiledRM (ElTp* input, ElTp* kernel, ElTp*

output, int height, int widthIn, int widthOut, int N_in, int
N_out) {

↪→

↪→

73

int gidx = blockIdx.x * blockDim.x + threadIdx.x;
int y0 = (blockIdx.y * blockDim.y + threadIdx.y) * Ry;
int c_out0 = blockIdx.z * blockDim.z;
if (blockDim.z != 1) {

c_out0 += threadIdx.z;
}
c_out0 = c_out0 * Rz;

ElTp tmp[Ry][Rz];
#pragma unroll
for (int i =0; i< Ry*Rz; i++){

#pragma unroll
for (int j =0; j<Rz; j++)

tmp[i][j] = 0.0;
}
if (gidx >= widthOut || y0 >= widthOut || c_out0 >= N_out) {

return;
}
int r_size = 2*radius+1;
for (int c_in = 0; c_in < N_in; c_in++) {

#pragma unroll
for (int iy = 0; iy < Ry; iy ++) {

int y = y0 + iy;
#pragma unroll
for (int ic = 0; ic < Rz; ic++) {

int c_out = c_out0 + ic;
#pragma unroll
for (int i = 0; i < r_size; i ++) {

#pragma unroll
for (int j = 0 ; j < r_size; j++){

if (y < widthOut && c_out < N_out){
tmp[iy][ic] += input[c_in * widthIn *

widthIn + (y+i) * widthIn +
(gidx+j)] *

↪→

↪→

kernel[c_in * N_out * r_size * r_size +
c_out * r_size * r_size + i *
r_size + j];

↪→

↪→

}
}

}

74

}
}

}
#pragma unroll
for (int iy = 0; iy < Ry; iy ++) {

int y = y0 + iy;
#pragma unroll
for (int ic = 0; ic < Rz; ic++) {

int c_out = c_out0 + ic;
if (c_out < N_out && y < widthOut){ // can be removed

with padding↪→

output[c_out * widthOut * widthOut + y * widthOut +
gidx] = tmp[iy][ic];↪→

}
}

}
}

75

B.1 Shared Memory Vector Load Version
template <class T, class LoadType, int FilterRadius, int Tx, int Ty, int Tz, int Rz, int Ry>
__global__ void convolution_shared_with_reduction(

T* __restrict__ input,
T* __restrict__ filters,
T* __restrict__ out,
int in_num_channels,
int in_height,
int in_row_pitch,
int filters_in_channel_pitch,
int filters_block_pitch,
int out_num_channels,
int out_width,
int out_height,
int out_row_pitch

) {
constexpr int CoutPerBlock = Tz * Rz;
constexpr int YPerBlock = Ty * Ry;
constexpr int ElementsPerLoadType = sizeof(LoadType) / sizeof(T);

constexpr int FilterWidth = 2 * FilterRadius + 1;
constexpr int FiltersSharedSize = CoutPerBlock * FilterWidth * FilterWidth;
constexpr int InSharedWidth = Tx + 2 * FilterRadius;
constexpr int InSharedPitch = ROUND_UP_TO_MULTIPLE_OF(InSharedWidth, ElementsPerLoadType);
constexpr int InSharedHeight = YPerBlock + 2 * FilterRadius;
constexpr int InSharedSize = InSharedPitch * InSharedHeight;
constexpr int NumThreads = Tx * Ty * Tz;

constexpr int FiltersNumLoadType = (FiltersSharedSize + ElementsPerLoadType - 1) / ElementsPerLoadType;

constexpr int InSharedLoadTypePerRow = (InSharedWidth + ElementsPerLoadType - 1) / ElementsPerLoadType;
constexpr int NumLoadTypes = InSharedLoadTypePerRow * InSharedHeight;

volatile extern __shared__ int shared_convolution_shared_load_LoadType[];
T* in_shared = (T*)shared_convolution_shared_load_LoadType;
T* filters_shared = &in_shared[ROUND_UP_TO_MULTIPLE_OF(InSharedSize, NumThreads * ElementsPerLoadType)];

const int block_offset_x = blockIdx.x * Tx;
const int block_offset_y = blockIdx.y * YPerBlock;
const int filters_block_offset = blockIdx.z * filters_block_pitch;

const int thread_id = threadIdx.x + threadIdx.y * Tx + threadIdx.z * Tx * Ty; // [0 : num_threads_per_block)

T tmp[Ry][Rz];
#pragma unroll

for (int i = 0; i < Ry; i++) {
#pragma unroll

for (int j = 0; j < Rz; j++) {
tmp[i][j] = 0.0;

}
}

for (int in_channel = 0; in_channel < in_num_channels; in_channel++) {
#pragma unroll

for (int load_start = 0; load_start < NumLoadTypes; load_start += NumThreads) {
const int id = load_start + thread_id;
const int block_y = id / InSharedLoadTypePerRow;
const int block_x = (id % InSharedLoadTypePerRow) * ElementsPerLoadType;
((LoadType*)in_shared)[id] =
(LoadType)&input[device_index_arr_of_arr(in_row_pitch, in_height, in_channel, block_offset_y + block_y,

block_offset_x + block_x)];↪→
}

#pragma unroll
for (int load_start = 0; load_start < FiltersNumLoadType; load_start += NumThreads) {

const int id = load_start + thread_id;
((LoadType*)filters_shared)[id] =
(LoadType)&filters[filters_in_channel_pitch * in_channel + filters_block_offset + id * ElementsPerLoadType];

}
__syncthreads();

#pragma unroll
for (int loop_y = 0; loop_y < Ry; loop_y++) {

const int y = threadIdx.y * Ry + loop_y;
#pragma unroll

for (int thread_cout = 0; thread_cout < Rz; thread_cout++) {
#pragma unroll

76

for (int i = 0; i < FilterWidth; i++) {
#pragma unroll

for (int j = 0; j < FilterWidth; j++) {
tmp[loop_y][thread_cout] +=

in_shared[InSharedPitch * (y + i) + threadIdx.x + j] *
filters_shared[FilterWidth * FilterWidth * (Rz * threadIdx.z + thread_cout) + FilterWidth * i + j];

}
}

}
}
__syncthreads();

}

#pragma unroll
for (int loop_y = 0; loop_y < Ry; loop_y++) {

const int y = block_offset_y + Ry * threadIdx.y + loop_y;
#pragma unroll

for (int thread_cout = 0; thread_cout < Rz; thread_cout++) {
const int cout = CoutPerBlock * blockIdx.z + Rz * threadIdx.z + thread_cout;
if (cout < out_num_channels && y < out_height && block_offset_x + threadIdx.x < out_width) {
out[device_index_arr_of_arr(out_row_pitch, out_height, cout, y, block_offset_x + threadIdx.x)] =

tmp[loop_y][thread_cout];↪→
}

}
}

}

77

