
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

Industrial Ph.D. Thesis

Wojciech Michal Pawlak

wmpk@simcorp.com, wmp@di.ku.dk

Accelerated Financial Algorithms
Derivative Pricing and Risk Management Applications

Department of Computer Science (DIKU): Martin Elsman, Cosmin Eugen Oancea

SimCorp: Allan Peter Engsig-Karup, Carl Balslev Clausen

January 2021

mailto:wmpk@simcorp.com
mailto:wmp@di.ku.dk

Summary

This thesis concludes a Ph.D. research project in Accelerated Financial Algorithms, con-

ducted in collaboration with DIKU and SimCorp. In it, we describe the design and imple-

mentation of common compute-intensive financial applications that combine state-of-the-art

High-Performance Computing (HPC) code optimisation techniques to harness massive par-

allelism of modern parallel hardware architectures like Graphical Processing Units (GPU).

We target the acceleration of pricing and risk management of real investment portfolios that

consist of complex derivative instruments. We demonstrate our findings through a detailed

analysis and practical accelerated implementations of common numerical algorithms. Our

research is supplemented with a feasibility study carried out using high-level data-parallel

programming languages and frameworks. We propose Futhark, which is a purely functional

array programming language, as an example of a technology that enables efficient perfor-

mance, while sustaining modularity, maintainability, and scalability of complex financial

algorithms.

We focus on high-level algorithmic specifications and code optimisations that extract

enough parallelism from a given algorithm to efficiently map it to high-throughput Graphics

Processing Units (GPUs). In particular, we use flattening techniques for non-regular nested

parallelism; target memory access patterns and size requirements through code optimisation

such as data reordering, padding, and access coalescing; introduce inspector-executor ap-

proaches to dynamically analyse and adapt to any input dataset; and provide multiple kernel

versions that together efficiently cover the entire spectrum of possible datasets.

The first contribution addresses an acceleration of a fixed-income derivatives pricing

algorithm based on the Hull-White One-Factor Lattice Method (HW1F). We introduce a

high-level algorithmic specification, which exhibits irregular-nested parallelism, and derive

and optimise two hand tuned CUDA implementations: one of which utilises the only outer

level of parallelism, while the other utilises both levels of parallelism. The second contri-

bution is an accelerated algorithm for equity derivatives pricing that uses a Least Squares

Monte Carlo Simulation Model (LSMC) following a Longstaff-Schwartz model and is im-

plemented in high-level Futhark language. We show how an auto-generated implementation

beats a manually-optimised one for certain datasets. The third contribution is a massive-

scale Monte Carlo simulation to obtain Value at Risk (MCVaR) and other portfolio market

risk measures. The simulations comprise multiple nested parallel levels executed on a di-

verse portfolio of vanilla and exotic derivatives.

i

Resumé

Denne afhandling afslutter en ph.d. forskningsprojekt i accelererede finansielle algorit-

mer, gennemført i samarbejde med DIKU og SimCorp. I denne beskriver vi udformningen

og implementeringen af almindelige beregningsintensive finansielle applikationer der kom-

binerer avancerede High-Performance Computing (HPC) kodeoptimeringsteknikker for at

udnytte massiv parallelitet af moderne parallelle hardware-arkitekturer som grafikprocessor

enheder (GPU). Vi målretter mod acceleration af prisfastsættelse og risikostyring af reelle

investeringsporteføljer, der består af komplekse afledte instrumenter. Vi demonstrerer vores

resultater gennem detaljeret analyse og praktiske accelererede implementeringer af almin-

delige numeriske algoritmer. Vi supplerer vores forskning med en teknisk gennemførlighed-

sundersøgelse udført ved hjælp af højt-niveau dataparallelle programmeringssprog og soft-

wareplatforme. Vi foreslår Futhark, som er et rent funktionelt array programmeringssprog,

som et eksempel på en teknologi, der muliggør effektiv ydeevne, samtidig opretholde mod-

ularitet, vedligeholdelsesevne og skalerbarhed af komplekse økonomiske algoritmer.

I vores forskning fokuserer vi på algoritmiske specifikationer på højt niveau samt

kodeoptimeringer, der ekstraherer tilstrækkelig parallelisme fra en given algoritme til ef-

fektivt at kortlægge det til grafikprocessor enheder (GPU’er) med høj kapacitet. Vi

bruger udfladningsteknikker til ikke-regelmæssig indlejret parallelisme; målretter hukom-

melsesadgangsmønstre og størrelseskrav gennem kodeoptimering ligesom dataregistrering,

polstring og adgang til sammenfald introducerer inspektør-eksekutor tilgange til dynamisk

analyse og tilpasse sig ethvert inputdatasæt; og leverer flere kerneversioner, der sammen

effektivt dækker hele spektret af mulige datasæt.

Det første bidrag adresserer en acceleration af fastindkomstderivatprissætning algo-

ritme baseret på Hull-White Enfaktorgittermetode (HW1F). Vi introducerer en algorit-

misk specifikation på højt niveau, der udviser uregelmæssig indlejret parallelisme, og

udlede og optimere to håndindstillede CUDA-implementeringer; hvoraf den ene udnytter

det eneste ydre niveau af parallelisme, mens den anden bruger begge niveauer af paral-

lelisme. Det andet bidrag er en accelereret algoritme for prisfastsættelse af aktierivater, der

bruger en Mindste kvadraters Regression Monte Carlo Simulationsmodel (LSMC) efter

en Longstaff-Schwartz-model og er implementeret på højt-niveau Futhark programmering

sprog. Vi viser, hvordan en automatisk genereret implementering slår en manuelt optimeret

for bestemte datasæt. Det tredje bidrag er en massiv Monte Carlo-simulering for at opnå

Value at Risk (MCVaR) og andre porteføljemarkedsrisikomål. Simuleringerne omfatter

ii

iii

mange indlejrede parallelle niveauer udført på en forskelligartet portefølje af vanilje og ek-

sotiske derivater.

Preface

This thesis was prepared at the University of Copenhagen in fulfilment of the requirements

for acquiring a Ph.D. degree by the Ph.D. candidate Wojciech Michal Pawlak. The project

work was carried out in the period between February 2017 and June 2020 at the Program-

ming Languages and Theory of Computing (PLTC) section of the Department of Computer

Science (DIKU).

The Ph.D. project was a joint industrial-academic collaboration project between DIKU

and SimCorp and was conducted under supervision of researchers and practitioners from

both (academic and industrial) environments. DIKU’s academic environment was repre-

sented by Associate Professor Martin Elsman, who was a Principal Supervisor of the Ph.D.

project, and Associate Professor Cosmin Oancea, who was a research co-supervisor. Sim-

Corp’s industrial environment was represented by Allan Peter Engsig-Karup Ph.D., who

was an Industrial Coordinator of the Ph.D. project, and Carl Balslev Clausen Ph.D., who

was a financial business co-supervisor.

SimCorp is one of the largest financial technology (fintech) companies and a leading

provider of investment management software solutions for some of the largest financial or-

ganisations worldwide. The company is headquartered in Copenhagen, Denmark. During

the project, Wojciech was employed as a Senior Research Engineer in SimCorp Technol-

ogy Labs, a part of SimCorp, which was an internal strategic innovation unit that focused

on deriving business value from new technology and enterprise architecture research. The

commercial potential of this project was tightly bound and aligned with the in-house system

performance strategy in SimCorp. The objective was to produce new state-of-the-art soft-

ware prototypes, that demonstrate the potential and guide system performance and compu-

tational acceleration in SimCorp Dimension, that is the main product offered by SimCorp.

The main motivation was tp increase the value of the compute-intensive services that are

provided to SimCorp’s clients.

The project was supported by a scholarship from Innovation Fund Denmark (Innova-

tionsfonden), which invests in new knowledge and technology, creating growth and em-

ployment in Denmark.

Copenhagen, January 2021

iv

Contents

Summary i

Resumé ii

Preface iv

Contents v

List of Figures ix

List of Tables xi

List of Code Listings xiv

List of Abbreviations xvi

1 Introduction 2
1.1 Algorithmic and Modelling Scope . 5

1.2 Specific Contributions . 7

1.3 General Contribution . 11

1.4 Thesis Structure . 12

2 Background 13
2.1 Financial Algorithms . 14

2.1.1 Computational Challenges in Finance 14

2.1.2 Derivative Pricing . 16

2.1.3 Portfolio Market Risk Measurement and Management 18

2.2 Numerical Methods . 22

2.2.1 Monte Carlo Simulation Method 22

2.3 Accelerated Computation . 23

2.3.1 Numerical Accuracy and Floating-Point Precision 23

2.3.2 Accelerator Hardware in Computational Finance 26

2.4 Parallel Programming Frameworks . 27

2.4.1 Imperative Parallel Programming Frameworks 28

v

vi Contents

2.4.2 Futhark Functional Data-Parallel Programming Language 29

2.4.3 Futhark Compiler . 31

2.4.4 Alternative Functional Data-Parallel Languages 32

2.4.5 Data-Parallel Functional Notation 33

2.5 Experimental Methodology . 34

3 Hull-White One-Factor Lattice Method (HW1F) 38
3.1 Introduction . 40

3.2 Financial Background and Algorithm . 42

3.2.1 Option as a Derivative and Bond as an Underlying Asset 42

3.2.2 Hull-White One-Factor Short Rate Model for Option Pricing 44

3.2.3 Hull-White Trinomial Tree as a Numerical Method 44

3.2.4 Motivation behind the Model and Algorithm Choice 48

3.3 Simplified Nested Data-Parallel Specification 50

3.4 GPU-OUTER: Outer-Parallel Version and Optimisations 52

3.4.1 Naive Expanded-Array Layout . 52

3.4.2 Global Padding Enables Coalesced Access 53

3.4.3 Block or Warp-Level Padding: Coalesced Access at a Small Mem-

ory Overhead . 53

3.4.4 Data Reordering Optimises One Level of Thread Divergence 54

3.5 GPU-FLAT: Flattening Two-Level Parallelism 54

3.5.1 Flat-Parallel Version in Fast Shared Memory 55

3.6 Experimental Evaluation . 59

3.6.1 Datasets . 59

3.6.2 Result Validation . 60

3.6.3 Performance Results . 62

3.7 Related Work . 66

3.7.1 Accelerated Implementations of Lattice Methods 66

3.7.2 Compiler Techniques . 69

3.8 Conclusion . 69

4 Least Squares Monte Carlo Simulation (LSMC) 71
4.1 Introduction . 73

4.2 Monte Carlo Simulation and American Option Pricing 74

4.3 The Longstaff-Schwartz Algorithm . 75

4.3.1 Least Squares Regression . 75

4.3.2 Detailed Algorithmic Structure . 77

4.4 Naive Implementation . 78

4.5 Mathematical Considerations . 78

4.5.1 Building a Pseudo-Inverse Efficiently 80

4.6 Optimised Algorithm and Implementation 81

Contents

Contents vii

4.6.1 Path Generation . 82

4.6.2 Preparation of Singular Value Decomposition 84

4.6.3 Main Regression Loop . 85

4.7 Experimental Results . 87

4.7.1 Accuracy . 88

4.7.2 Performance Validation Case . 89

4.7.3 Performance Scalability Tests . 89

4.8 Related Work . 93

4.8.1 Accelerated Implementations of Monte Carlo Simulations 93

4.9 Conclusion . 93

5 Monte Carlo Value at Risk Simulations (MCVaR) 95
5.1 Introduction . 97

5.2 Risk Measures . 100

5.2.1 Value at Risk (VaR) . 101

5.2.2 Expected Shortfall (ES) . 101

5.2.3 Component Risk . 101

5.3 Nested Simulations in Monte Carlo Repricing Approach 101

5.3.1 Problem Assumptions . 102

5.3.2 External Simulation: Market Scenario Generation 103

5.3.3 Internal Simulation: Derivative Pricing 103

5.4 Accelerated Implementation . 104

5.4.1 Technical Challenge . 104

5.4.2 Random Number Generation . 105

5.4.3 Equity Option Portfolio Generation 107

5.4.4 Outer Parallelism Level: Market Scenario Generation 111

5.4.5 Inner (Nested) Parallelism Level: Derivative Pricing 113

5.4.6 Risk Measure Calculation . 122

5.5 Experimental Results . 124

5.5.1 Validation Test . 125

5.5.2 Random Number Generation . 125

5.5.3 Equity Option Portfolio Generation 131

5.5.4 Outer Parallelism Level: Market Scenario Generation 132

5.5.5 Inner (Nested) Parallelism Level: Derivative Portfolio Pricing . . . 132

5.5.6 Complete Risk Workflow using PRNG 137

5.5.7 Complete Risk Workflow with BSMC and QRNG 140

5.6 Related Work . 140

5.7 Conclusion . 142

6 Conclusion 143
6.1 Evaluation and Discussion . 143

Contents

viii Contents

6.2 Future Work . 145

References 147

A Domain of Quantitative Finance 163
A.1 Mathematical Finance . 163

A.2 Computational Finance . 164

A.3 Financial Engineering . 164

B Business Concepts 166
B.1 Financial Industry . 166

B.2 Investment Managers . 166

B.3 Regulation . 167

Contents

List of Figures

3.1 A trinomial tree as in Boyle (1986) [Boy86] that shows a tree construction

procedure for a stochastic variable S. 45

3.2 A Hull-White Tree [HW94], which is a trinomial tree with a bounded width

that incorporates the mean reversion phenomenon. 45

3.3 Best performance in GFlopSPEC/s for FP64 on D1 (CPU1 and GPU1, upper

chart) and FP32 on D2 (CPU2 and GPU2, lower chart) across all datasets.

Devices are described in Section 2.1). Datasets U1, U2, R1, R2, R3, S1, S2 are

described in Section 3.6.1. Best runtime for each dataset is specified in ms in

parentheses next to dataset abbreviation. 62

4.1 Execution time comparison of CUDA (Ref) and Futhark (V2). Absolute per-

formance is presented for a fixed number of 1 024 000 paths. Execution time is

given in ms. 91

4.2 Execution time comparison of CUDA (Ref) and Futhark (V2). Absolute per-

formance is presented for a fixed number of 100 steps. Execution time is given

in ms. 92

4.3 CUDA (Ref) and Futhark (V2) are compared in terms of execution times. Ab-

solute performance is presented for different combinations of number of time

steps and paths. Execution time is given in ms. 92

5.1 Calculation of VaR and ES from the P/L probability distribution of the gain in

the portfolio value as presented in [Hul18]. Losses are negative gains, con-

fidence level is X%, VaR level is equal to V , and ES is the greyed-out space

under the curve (integral) between −∞ and −V 100

5.2 Runtimes [µs] and Speedups of PRNG and QRNG for Random Number Gen-

eration using 10 steps and variable number of paths executed on CPU3 and

GPU1. The last three bars in each # Paths group represent a speedup of CUDA

over Multicore execution for Q100, Q10, and P , respectively. 126

5.3 Runtimes [µs] and speedups of PRNG and QRNG for Random Number Gen-

eration using 100 steps and variable number of paths executed on CPU3 and

GPU1. The last three bars in each # Paths group represent a speedup of CUDA

over Multicore execution for Q1000, Q100, and P , respectively. 128

ix

x List of Figures

5.4 Stochastic simulation paths that are produced by external simulation for Market

Scenario Generation using a PRNG. RF is spot price S0. 50 paths (different

MS) and 50 steps (time horizon in days). 129

5.5 Stochastic simulation paths that are produced by external simulation for Market

Scenario Generation using a QRNG. RF is spot price S0. 50 paths (different

MS) and 50 steps (time horizon in days). 129

5.6 Runtimes [µs] and speedups of Market Scenario Generation using 10 steps for

a 10 day horizon and variable number of external paths for MSs executed on

CPU3 and GPU1. PRNG is used for RN generation and the portfolio distri-

bution comprise both European and American Equity options. The last three

bars in each # Ext Paths group represent a speedup of CUDA over Multicore

execution. 133

5.7 Runtimes [µs] and speedups of European Option Portfolio Pricing using BSMC

algorithm. We use 10 steps for time horizon and variable number of external

and internal paths for MSs executed on CPU3 and GPU1. PRNG is used for RN

generation. The last four bars in each # Ext Paths group represent a speedup of

CUDA over Multicore execution. 134

5.8 Runtimes [µs] and speedups of American Option Portfolio Pricing using LSMC
algorithm. We use 10 steps for time horizon and variable number of external

and internal paths for MSs executed on CPU3 and GPU1. PRNG is used for RN

generation. The last four bars in each # Ext Paths group represent a speedup of

CUDA over Multicore execution. 136

5.9 Runtimes [µs] and speedups of Random (Mixed) Options Portfolio Pricing us-

ing BSMC and LSMC algorithms. We use 10 steps for time horizon and vari-

able number of external and internal paths for MSs executed on CPU3 and

GPU1. PRNG is used for RN generation. The last four bars in each # Ext Paths

group represent a speedup of CUDA over Multicore execution. 137

5.10 Comparison of measurements for Complete Risk Workflow that uses Random

(Mixed) Options Portfolio Pricing using BSMC and LSMC algorithms. We use

10 steps for time horizon and variable number of external and internal paths

for MSs executed on CPU3 and GPU1. PRNG is used for RN generation. The

last four bars in each # Ext Paths group represent a speedup of CUDA over

Multicore execution. 138

List of Figures

List of Tables

2.1 Device Specification. CPUs are dual-socket and have a 2-way Hyper-Threading

(HT) enabled, so the effective number of CPU hardware threads is 4× the num-

ber of CPU cores. For instance, for 26-core CPU1 we have effectively 104

threads to run multithreaded computations in parallel. CC stands for Compute

Capability, a unit that NVIDIA uses to describe the GPU feature set (both hard-

ware and software). 36

2.2 Computational and memory resources comparison and evolution demonstrated

on the example of two GPU generations used in the work, an older GTX 780 Ti
GPU from 2013 optimised for graphics and FP32 operations and a later V100
GPU from 2018 optimised for compute and FP64 operations. 37

3.1 Set of model and trinomial tree method parameters for the HW1F validation.

The case comprises various fixed-rate bonds that differ in their embedded op-

tionalities. 61

3.2 HW1F pricing accuracy is compared with a production-ready benchmark for

different types of options and model parameters. The differences in significant

digits is marked in red. 61

3.3 Summary of GPU-OUTER and GPU-FLAT performance P in GFlopSPEC/s and

required global device memory M64 for FP64 in GB. Speedup and memory

difference are specified as a ratio between the unoptimised (V ns
o1 /V ns

f1) and the

most optimised versions (V ws
o4 /V ws

f3). 63

4.1 Comparison between results from the original paper (FDMorig and LSMCorig)

and LSMC implementations in CUDA and Futhark, LSMCCUDA and LSMCFuthark,

respectively. The strike price of the put option is 40 and the risk-free rate is

0.06. The remaining parameters are as indicated. All LSMC simulations are

done with 100 000 paths and 50 time steps per year. 88

4.2 Set of model and simulation parameters for the American option pricing. We

provide an option price obtained from a different numerical method (binomial

tree) for reference. 89

xi

xii List of Tables

4.3 Execution times for the verification case. Ref is the original CUDA bench-

mark, while V1 is Futhark compiled to OpenCL and V2 is Futhark compiled to

CUDA. Both total and partial execution times for each part of the algorithm are

shown. The execution times are given in ms and averaged based on 250 runs.

Path denotes the Path Generation part, SVD the SVD Preparation, and Main
the Main Regression Loop. In ∆ column, we compare the speedups against the

slowest execution time. The obtained values are presented in Val column. . . . 90

5.1 Runtimes [µs] of PRNG and QRNG for Random Number Generation using 10

steps and variable number of paths executed on CPU3 and GPU1. The last

three columns present a speedup of CUDA over Multicore execution for Q100,

Q10, and P , respectively. 127

5.2 Runtimes [µs] of PRNG and QRNG for Random Number Generation using 100

steps and variable number of paths executed on CPU3 and GPU1. The last

three columns present a speedup of CUDA over Multicore execution for Q1000,

Q100, and P , respectively. We cannot execute Q1000 case for 1 024 000 paths

on GPU1, because we run out of device memory. 128

5.3 Speedups of PRNG over QRNGs for Random Number Generation using 10 and

100 steps and variable number of paths executed on CPU3 and GPU1. We

cannot execute Q1000 case for 1 024 000 paths on GPU1, because we run out of

device memory. 128

5.4 Runtimes [µs] and speedups of Equity Option Portfolio Generation for all port-

folio holdings and distributions used in our experiments executed on CPU3 and

GPU1. 131

5.5 Runtimes [µs] of Market Scenario Generation of Multicore runs on CPU3 for

all MS numbers and portfolio holding numbers. 133

5.6 Runtimes [µs] of Market Scenario Generation of CUDA runs on GPU1 for all

MS numbers and portfolio holding numbers. 133

5.7 Speedups CUDA / Multicore for Market Scenario Generation for all MS num-

bers and portfolio holding numbers. 133

5.8 Runtimes [µs] of European Option Portfolio Pricing for all MS numbers and 2

different small portfolio holding numbers. Multicore on CPU3 and CUDA on

GPU1 runs for different number of external and internal paths. 135

5.9 Speedups of European Option Portfolio Pricing for all MS numbers and 2 dif-

ferent small portfolio holding numbers. CUDA / Multicore for different number

of external and internal paths. 135

5.10 Runtimes [ms] for American Option Portfolio Pricing for all MS numbers and

2 different small portfolio holding numbers. Multicore on CPU3 and CUDA on

GPU1 runs for different number of external and internal paths. 136

List of Tables

List of Tables xiii

5.11 Speedups of American Option Portfolio Pricing for all MS numbers and 2 dif-

ferent small portfolio holding numbers. CUDA / Multicore for different number

of external and internal paths. 136

5.12 Runtimes [ms] for Random (Mixed) Options Portfolio Pricing for all MS num-

bers and 2 different small portfolio holding numbers. Multicore on CPU3 and

CUDA on GPU1 runs for different number of external and internal paths. . . . 137

5.13 Speedups of Random (Mixed) Options Portfolio Pricing for all MS numbers and

2 different small portfolio holding numbers. CUDA / Multicore for different

number of external and internal paths. 138

5.14 Runtimes [ms] for Complete Risk Workflow that uses Random (Mixed) Options

Portfolio Pricing and PRNG for all MS numbers and 2 different small portfolio

holding numbers. Multicore on CPU3 and CUDA on GPU1 runs for different

number of internal paths. 139

5.15 Speedups of Complete Risk Workflow that uses Random (Mixed) Options Port-

folio Pricing and PRNG for all MS numbers and 2 different small portfolio

holding numbers. CUDA / Multicore for different number of internal paths. . . 139

5.16 Device memory requirements for Complete Risk Workflow that uses Random

(Mixed) Options Portfolio Pricing, PRNG for RNs, and BSMC and LSMC al-

gorithms for all MS numbers and 2 different small portfolio holding numbers.

Multicore on CPU3 and CUDA on GPU1 runs for different number of internal

paths. We use 10 steps for time horizon and variable number of external and

internal paths. 139

5.17 Comparison of runtimes between sequential Seq and parallel CUDA versions

using QRNG (Sobol RNs). Portfolio comprise only European options priced

with BSMC algorithm. The runtime consists of the whole algorithm execution.

The runtimes are given in milliseconds. Single-precision floating-point num-

bers are used. Portfolio consists of 100 positions. The path-dependent version

of BSMC is used. The number of steps for BSMC pricing is fixed to 50 steps. . 140

List of Tables

List of Code Listings

2.1 A subset of Data-Parallel Second-Order Array Combinators (SOAC), which

constititute the operator semantics in Futhark. Only operators used in the

work are listed. 35

3.1 Nested-Parallel Implementation of HW1F. 51

3.2 Flat-Parallel Implementation of HW1F. We omit the second backward prop-

agation loop as it has a similar code structure. 56

4.1 Futhark code for the naive LSMC algorithm. 79

4.2 The high-level view of the implemented optimised algorithm structure pre-

sented as a combination of parallel constructs. It consists of 3 parts with

n denoting the number of paths and m denoting the number of time steps.

transpose performs matrix transposition. 81

4.3 Main function of the optimised Futhark implementation of the LSMC. . . . 82

4.4 Futhark code for the Path Generation part. 84

4.5 Futhark code for the SVD preparation part. 86

4.6 Futhark code for the main regression loop. It consists of a computation of

βs for assessing the continuation value with a subsequent update of the cash

flows. 87

5.1 Futhark function for the generation of the pseudo-RNs. 106

5.2 Call to Futhark Sobol library for the generation of the quasi-RNs from

Sobol sequence. 108

5.3 Futhark code for the generation of the portfolio of European equity options. 110

5.4 Futhark code for the generation of MSs through simulation of different un-

derlying equity paths for each of the derivative positions in the portfolio.

It starts with generating RNs reused across external simulations using the

RNG specified on the input. Spot S0 is the only simulated RF. The paths

are generated using GBM. 112

5.5 Simplified Futhark code for BSMC pricing for a path-dependent option.

The . . . symbol denotes code or function arguments omitted for brevity. . . 116

5.6 Simplified Futhark code that executs European option pricing by passing

the relevant parameters to BSMC parallel implementation. busDinY is the

number of business days in the year by default set to 250. The . . . symbol

denotes code or function arguments omitted for brevity. 117

xiv

List of Code Listings xv

5.7 Simplified Futhark code that executs American option pricing by passing

the relevant parameters to LSMC parallel implementation shown in List-

ing 4.3 and described in Section 4.6. busDinY is the number of business

days in the year by default set to 250 The . . . symbol denotes code or func-

tion arguments omitted for brevity. 120

5.8 Code excerpt for Inner Nested Simulations: MCVaR with LSMC. Calcu-

late the longest maturity in the portfolio. Generate RNs reused across inter-

nal simulations. Calculate prices for the European and American options in

the portfolio in two separate functions. The sizes of baseEuOptPfHPrices

and baseUsOptPfHPrices arrays are unknown at the compile time as

the composition of the portfolio is dynamically specified at runtime. This

fact limits the compiler optimization possibilities. 121

5.9 Code excerpt for Inner Nested Simulations: MCVaR with LSMC. Calcu-

late VaR based on portfolio gains/losses in different simulated MSs. 123

List of Code Listings

List of Abbreviations

ATM At-the-Money.

AVX2 Advanced Vector Extensions 2 (256-bit).

BSMC Black-Scholes Monte Carlo simulation.

CDF Cumulative Density Function.

CES Component Expected Shortfall.

CUDA Compute Unified Device Architecture.

CVaR Component Value at Risk.

EOD End-of-Day.

EOM End-of-Month.

ES Expected Shortfall.

FDM Finite Difference Method.

GBM Geometric Brownian Motion stochastic process.

GPGPU General-Purpose Graphical Processing Unit.

GPU Graphical Processing Unit.

HPC High-Performance Computing.

HW1F Hull-White One-Factor Short Rate Model for Option Pricing.

ITM In-the-Money.

LSMC Least Square Monte Carlo for American Option Pricing.

MCVaR Monte Carlo simulation for Value-at-Risk.

xvi

List of Abbreviations 1

MPI Message Passing Interface.

MROU Mean-reverting Ornstein-Uhlenbeck stochastic process.

MS Market Scenario.

OpenCL Open Computing Language.

OpenMP Open Multi-Processing.

OTC Over-the-Counter.

OTM Out-of-the-Money.

P/L Profit and Loss.

PDE Partial Differential Equation.

PRNG Pseudo-Random Number Generator.

QRNG Quasi-Random Number Generator.

RF Risk Factor.

RN Random Number.

RNG Random Number Generator.

SDE Stochastic Differential Equation.

SIMT Single instruction, multiple threads.

SM Streaming Multiprocessor.

SOAC Second-Order Array Combinators.

SVD Singular Value Decomposition.

VaR Value at Risk.

List of Abbreviations

Chapter 1

Introduction

This work deals with the application of High-Performance Computing (HPC) and high-level

programming language techniques executed on massively parallel hardware to accelerate fi-

nancial algorithms. Although the focus is on applications in finance, the underlying numer-

ical algorithms can be applied to many engineering disciplines such as computational fluid

dynamics or climate change prediction. The advanced techniques proposed in this work

enable significant efficiency gains through increased computational speed and improved ac-

curacy. These performance benefits may generate significant competitive advantages in all

industries that apply such numerical methods.

Financial Perspective

One significant challenge that companies currently face is the need to process massive

amounts of data, and do this quickly and efficiently; the financial industry is at the forefront

of this challenge. Although the industry has access to a vast amount of data, taking advan-

tage of it requires specialised approaches. In this sense, analysing such data through compu-

tational methods has become a key driver of research and innovation in High-Performance

Computational Finance. Around 10% of all TOP500 supercomputing power is used for

financial computation workloads [TOP20]. A large part of this intensive use of computa-

tional power can be attributed to two broad classes of applications: (i) complex financial
instrument pricing, which represent monetary contracts between entities and are traded in

the markets at a large scale, as well as (ii) financial risk management, which has moved

into the regulatory spotlight since the recent financial crisis of 2007–2008.

The first stems from the fact that complex financial instruments, such as most deriva-

tive products, are compute-intensive as the price of most instruments cannot be expressed

through closed-form solutions, but instead require numerical approximations. These nu-

merical approximations are based on simulating many variables, often over a long period of

time in the future. Simulating one set of variables over one time path can be regarded as one

scenario and the more scenarios that are simulated, the more accurate the price. Dealers,

who trade such products, rely on instrument prices that are as accurate as possible. In fact,

2

3

the more accurate the price the dealers have at their disposal, the more precise the profit

margin they can calculate in advance, which in turn generates a competitive advantage.

The second is mainly driven by the ambition of financial market regulators to strengthen

the resilience and stability of the global financial system. In the early years of financial risk

management, the estimation of all risk types was mostly based on relatively simple mod-

els, as practitioners focused on the ease of applicability rather than accuracy. Currently the

regulators steadily switch from vaguely defined and unrestrictive regulation to direct en-

forcement of advanced and sophisticated approaches that have well-defined requirements

such as Basel III regulatory framework. These advanced methods lead to the introduction

of more accurate and thus more complex calculation methods. The aforementioned deal-

ers need to adjust their models to follow these requirements to actively participate in the

markets. As a result, they become more confident about the risk that they carry in their

portfolios.

Software Engineering Perspective

As a consequence, financial organisations are currently much more inclined to seriously

consider the software engineering aspects of the applications that they introduce in their

workflows. Ease of code implementation as well as code maintainability, scalability, and

reliability, are among the most important factors to be considered in the modern era of

many-core computing. The main challenge is the fact that the legacy code bases cannot

take advantage of this modern hardware-software paradigm without manual adaptation. In-

troduction of HPC with focus on an efficient use of available hardware resources always

involves a significant implementation effort. We claim that the goal of the software engi-

neers should be then to build solutions and tools that make this process as smooth and safe

as possible. In attempt to address this challenge in our research work, we explore the current

advances in this field from the engineering angle and base our conclusions on a analysis of

a series of quantitative experiments.

The first thesis of our work is: constructs in high-level programming languages make

it possible to express complex code structures that are present in practical algorithms from

the financial domain. At first glance, a high degree of performance optimisations is al-

ready achievable with the constructs that are available in the established parallel program-

ming frameworks and application programming interfaces (APIs) such as CUDA (Com-

pute Unified Device Architecture from NVIDIA), OpenCL (Open Computing Language), or

OpenMP (Open Multi-Processing). They are considered to be mature, mainly because they

offer a rich tooling and library ecosystem. However, since inception these technologies have

always been challenged in widespread and large-scale industry adoption due to their funda-

mental imperative nature and primary focus on low-level hardware-specific concepts, which

leads to a steep learning curve. Effectively, development in the area of parallel programming

frameworks is mainly driven by a limited number of specialised engineers that work on di-

rectly optimising these technologies for generic use cases, while other companies revert to

Chapter 1. Introduction

4

making calls to their constrained APIs. We recognise that a certain level of manual code op-

timisation is always going to be required, but claim that, for a vast majority of applications,

it is significantly more effective to focus on the algorithmic considerations, while automat-

ing the code optimisation process. To support our hypothesis, we decide to shift our focus

away from the tools that are currently used in the industry and attempt to show that the sit-

uation can be remedied with an alternative programming approach. We choose a high-level

hardware-agnostic technique that stems from the latest research in functional programming

languages and compiler technology. In our experiments, we observe that the aforementioned

high-level constructs can be efficiently mapped to the parallel hardware architecture by an

aggressively optimising compiler, effectively hiding complexities of manual parallel code

implementation. This feature make the software development process more time efficient

and safe. Simultaneously, our results demonstrate that the auto-generated code matches the

performance of the manually-optimised.

Business Potential

The industry focuses on meeting their cost-efficiency requirements, which, in particular, are

high on the agenda at many financial organisations. We recognise that several approaches

exist to meet these objectives, at least when it comes to software applications. Therefore,

the second thesis of our work is: compute-efficient algorithms, parallel code implemen-

tations, and new hardware design that is focused, among others, on energy-efficiency are

the most effective and reliable means to make compute-intensive financial computations

cost-effective. To illustrate the potential of combining all these concepts, we choose two

types of representative applications from the financial domain and adapt them to use these

techniques. The applications not only expose a code structure that is typical for financial

algorithms, but also lend themselves to aggressive algorithmic and implementation optimi-

sations that in the end show to benefit their performance. Again, the high-level program-

ming approach, which partially automates the optimisation work and allows developers to

focus on algorithmic work, is a valuable alternative to a manual implementation process in

popular frameworks, which offer a fine-grained control over parallelism.

High performance in computation is the key to success in finance, as portfolio analytics

can be perceived as a creative exercise. This ongoing repetitive process, combined with

work on the latest available market data, pose a challenging real-time requirement for mod-

ern analytical modelling. Analysts initially start with only a rough idea of the current state

of the portfolios, most often based on their experience, and filter the available data to even-

tually reach the conclusions, upon which they can use in their strategic decisions. Therefore,

the critical insights, which can change the course of the financial business, depend directly

on the techniques and resources that analysts have at their disposal. Analysis results vary

greatly, because the systems with long minute-to-hour response times interrupt the analyst’s

work and reduce the opportunity of creativity, which is essential for analysing and adapting

to the constantly changing markets. Rapid execution and frequent alteration for insightful

Chapter 1. Introduction

1.1. Algorithmic and Modelling Scope 5

feedback loops is crucial for sufficient exploration of the model space.

At the same time, financial organisations, including investment managers, are notori-

ously secretive about the models, the algorithms, and the technology that they use. The

competition between participants in the financial markets is fierce, so, naturally, they do not

share the critical information that can give them a competitive edge. As a result, accelerated

computing has to a large extent not been adopted by financial organisations. However, at

the same time there are several undisclosed institutions from the financial industry that op-

erate a supercomputer ranked in the aforementioned TOP500 list year after year [TOP20].

Taking into account the costs of establishing and operating such computational machines, it

is evident that there exists a huge demand for such strategic resources.

The increased computational performance, as well as the scalability provided by parallel

programming and massively parallel hardware such as Graphical Processing Units (GPUs)

mean that investment managers are able to increase business at the same time as having

tighter control of their risk exposures. With market spreads tightening, it is more difficult

to make money and hence it is also more important to be stricter when managing risk to

minimise the risk of losses. In addition, GPUs, which are designed for high-throughput

computing, open new opportunities, for example, by making it tractable to evaluate larger

portfolios in shorter periods of time or by enabling analysts to model more complex risk

relationships. With an increase in the number of new algorithms being developed, we see

an advancement in the mathematical models and trading strategies being deployed on GPUs.

Other examples of such future applications include intra-day portfolio risk and performance

analysis, and use of Monte Carlo simulations for a calibration of complex derivative pricing

models. These applications were prohibitively expensive 10 years ago, but with modern

parallel software and hardware environments, they can be considered mature enough and

ready for production.

1.1 Algorithmic and Modelling Scope

This work comprises material that can guide quantitative analysts and developers, who work

in finance, into the realm of HPC and parallel programming. From a financial perspective,

we present implementations of three distinct algorithms that are often used by practitioners,

who work daily with large investment portfolios. Two algorithms come from the derivative

pricing domain and one from risk management.

In this work, we focus on portfolios of complex exotic derivative instruments. The mar-

kets for exotic derivatives are rather illiquid, that is, they are traded infrequently compared

to vanilla derivatives such as interest swaps and futures. In other words, a constant price

discovery process for exotic instruments does not exist, which stands in contradiction to the

liquid markets for vanilla instruments. Furthermore, generally speaking, no analytical solu-

tion or closed-form formula exists to compute accurate prices for such exotic instruments.

In this case, an accurate price can only be obtained through approximation. Such approxi-

Chapter 1. Introduction

6 1.1. Algorithmic and Modelling Scope

mations involve the use of numerical methods such as Tree Lattices and Finite Differences

that construct grids and Monte Carlo techniques that run simulations.

The first algorithm that we investigate is popular in fixed income and interest rate deriva-

tive markets. Here, we want to determine a price of an exotic derivative instrument, a

Multi-Callable Floating-Rate Bond, that has a complex cash flow structure and an embed-

ded option that can be exercised at any point in time. In addition, we assume that the

derivative instrument is based on a value of a single underlying asset, that is, an interest rate

characterised by a yield curve (a term structure of rates). For practical reasons, we need a

model that has an ability to calibrate to the current market data. The suitable mathemati-

cal model that adheres to the aforementioned constraints is the classical One-Factor Short

Interest Rate Model proposed by Hull and White in the series of their articles published in

1990s [HW93; HW94; HW96]. To solve this model, we follow the method proposed in

the paper and implement a Trinomial Tree Lattice Model. However, we adjust it further to

handle the chosen derivative instrument. We abbreviate and refer further to this algorithm

as HW1F.

The second algorithm is frequently used in the equity derivative markets. In this case,

we focus on a valuation methodology for American-style stock options. In contrast to a Eu-

ropean stock option, an American option can be exercised at any point in time in the future.

Therefore, the valuation problem is in fact a maximisation problem at each point in time in

the future with a goal to find the most profitable exercise date. Longstaff and Schwartz, in

their, by now classical, article from 2001 [LS01], suggest a numerical solution based on a

Monte Carlo simulation supplemented with a Least Squares regression to approximate the

value of such a derivative instrument. We abbreviate and refer further to this algorithm as

LSMC.

The third algorithm comes from the portfolio risk analysis domain. The application is

a standard and versatile method to calculate measures that track portfolio value changes

and is used to manage investment portfolios of any size and any distribution of assets. The

method assumes that future portfolio profits and losses (P/Ls) are described by a suitable

probability distribution that itself is based on prices determined using pricing models. The

most frequently used risk measures are Value at Risk (VaR) and Expected Shortfall (ES).

They can be calculated at the portfolio and instrument levels to determine individual risk

contributions. Practitioners use several standard calculation methods to produce these risk

measures. These measures vary in (i) how much computation they require and (ii) how

well they approximate the P/L distribution in the case the portfolio contains more complex

derivatives. As we focus on a portfolio of complex derivative instruments that can only be

approximated with numerical methods, we choose the most versatile and generic method of

a Monte Carlo simulation. To evaluate the risk exposure involved in a portfolio, we need

to be able to assess the prices of its holdings. Therefore, we use a Monte Carlo method for

derivative pricing described earlier, and use them as inputs for the consecutive aggregation

algorithms. We abbreviate and refer further to this algorithm as MCVaR.

Chapter 1. Introduction

1.2. Specific Contributions 7

1.2 Specific Contributions

The specific contributions of this work relate to how we implement the financial algorithms.

Our main goal is to enable the algorithms to be executed efficiently on modern accelerator

hardware. We choose a specific platform, General-Purpose Graphical Processing Units

(GPGPU), because the massive parallelism offered by thousands of cores as well as the

Single Instruction Multiple Threads (SIMT) programming model makes it suitable for our

investigations. We propose to achieve our goal by using modern software techniques that

expose parallelism in such a way that it can be mapped efficiently to parallel hardware.

Hull-White One-Factor Lattice Method (HW1F) for Fixed-Income
Derivatives Pricing

We introduce contributions that address the main algorithmic challenge of the examined nu-

merical method, that is the fact that the tree lattices vary highly in size in the realistic port-

folio cases. This variability in tree dimensions leads to the issue of workload divergence be-

tween threads that handle the derivative pricing. We propose two different implementations

in the CUDA parallel programming framework that differ in how much parallelism they

extract from the algorithm. Based on our experiments, we conclude that providing different

versions of the same code (known as multiversioning) is the best approach to handle to any

portfolio data input. Additionally, we propose and discuss various relevant optimisations

and show that, if manually applied with care, the resulting implementation is faster than the

code produced with a state-of-the-art aggressively-optimising compiler. A detailed evalu-

ation demonstrates the high impact of the proposed optimisations, as well as the comple-

mentary strengths and weaknesses of the two GPU code implementations. The two CUDA

implementations are on average 6.3× faster than a data parallel code produced with a state-

of-the-art aggressively-optimising compiler. Moreover, our two GPU implementations are

on average 2.9× faster than our well-tuned CPU-parallel implementation using OpenMP

multithreading and AVX2 (Advanced Vector Extensions) vectorisation to take advantage of

104 CPU cores. We supplement our results with a detailed validation case that compares

our results with a trusted benchmark on a set of different instruments and model parameters.

Finally, they are by 3-to-4 orders of magnitude faster than an OpenMP-parallel implemen-

tation using the popular QuantLib library. We emphasise that the numerical method and

the optimisations that we apply are transferable to other engineering disciplines. HW1F
pricing model uses a bounded tree, but any Finite-Difference Method that solves a SDE or

PDE (Stochastic or Partial Differential Equation) problem similarly uses a bounded grid in

both spatial and temporal dimensions. Hence our optimisation techniques are applicable to

solving multiple PDEs with grids that are variant in time and space.

The first contribution is the GPU-OUTER implementation of the algorithm, which opti-

mises only the outer (per instrument) parallelism level of the HW1F algorithm and maps

individual instruments to separate threads that handle the instruments in isolation. This im-

Chapter 1. Introduction

8 1.2. Specific Contributions

plementation efficiently sequentialises inner parallelism and performs the minimal number

of memory accesses. However, it uses only global memory, and does not fully solve the

issue of divergence. We show a series of optimisations that address the thread divergence,

memory footprint and spatial locality of memory accesses. The optimisations are applied to

input data before the computational kernel execution.

The second contribution is the GPU-FLAT implementation, which exploits both paral-

lel levels present in the algorithm, that is, not only across the instruments, but also within

the tree width associated with the individual instrument. This implementation optimises

both levels of divergence and uses predominantly fast shared memory for better temporal

locality. However, flattening negatively affects the instructional overhead through indirect

accesses and parallel constructs of logarithmic depth (segmented scan). We observe that

the spatial dimension of the tree is parallel and map it efficiently to groups of threads that

cooperate to handle one or several instruments in parallel. This implementation adheres

better to the modern GPU architecture with more shared memory available and enables use

of this faster memory for thread communication. The trade-off is that we need to perform

a dynamic inspector-executor analysis to preprocess input data before we execute the ac-

tual computational kernel. The particular flattening step of mapping several valuations to

a thread group of a fixed size is highly non-trivial and is a key contribution of this work.

Finally, the technique for GPU-FLAT is also beneficial in a distributed-memory (cluster) set-

ting as bin-packing optimises communication and load balancing, while flattening enables

intra-node parallelism.

In absolute terms, we can price a portfolio of 100 000 exotic fixed-income derivatives,

characterised by a random distribution of tree dimensions, in 1.2ms on a NVIDIA Tesla

V100 PCIe GPGPU using GPU-FLAT implementation. GPU-OUTER implementation wins

on GTX 780 Ti on random and uniform datasets, because (i) the divergence overhead is

avoided and (ii) the impact of using shared memory, which is the main GPU-FLAT optimi-

sation, on this GPU architecture generation is smaller. In general, the proposed series of

optimisations, which address the issues of thread divergence, memory footprint, and spatial

locality of memory accesses, need to be currently introduced manually in code, or alterna-

tively be dealt with by an optimising compiler. Our results exhibit the non-trivial areas that

can be improved in the current optimising compilers such as inspector-executor methods for

reorganising datasets to map them efficiently to parallel architectures. To address this, we

demonstrate the necessary steps to generalise our approach and enable our optimisations to

become a part of such a compiler architecture.

This work was compiled and submitted in different forms to conferences and journals

from a computer science domain, where it underwent a full peer-review process. The ex-

perimental research in the current state is under a submission and review process for a

domain-specific peer-reviewed conference in supercomputing. In addition, partial results of

this work were presented at two poster sessions that were part of Programming and Tuning

Massively Parallel Systems (PUMPS) summer school that took place in Barcelona, Spain in

Chapter 1. Introduction

1.2. Specific Contributions 9

June 2017 as well as at the Ph.D. Forum collocated with 32nd IEEE International Parallel

and Distributed Processing Symposium (IPDPS ’18) that took place in Vancouver, Canada

in May 2018.

Least Squares Monte Carlo Simulation (LSMC) for American Equity Option
Pricing

We propose an approach that addresses the main performance bottleneck of the Least Squares

Monte Carlo simulation, that is, the regression (optimisation) backward part. This inher-

ently sequential part is used to find the optimal exercise time for American options.

The first contribution is a detailed description of the steps that we take to reformulate

the mathematical problem to enable partial parallelism in the sequential part. The approach

is based on matrix transformations from linear algebra and allows us to isolate the majority

of the computation that can be performed in parallel as well as significantly decrease the

size of the matrices that are multiplied with each other. The mentioned workload is then

precomputed before entering the main sequential loop and saved in global memory for reuse

in the loop.

The second contribution is the accelerated parallel implementation in Futhark, a high-

level functional data-parallel language, that targets GPUs as the compute platform. We

study the feasibility and performance efficiency of expressing a complex financial numeri-

cal algorithm with high-level functional parallel constructs. We achieve performance com-

parable to, and in particular cases up to 2.5× better than, an implementation optimised by

NVIDIA CUDA engineers. In absolute terms, we can price a vanilla put option, which is

a particularly simple instance of an American option, with 1 million simulation paths and

100 time steps in 17ms on a NVIDIA Tesla V100 PCIe GPGPU. Furthermore, the high-level

functional specification is much more accessible to financial-domain experts than the origi-

nal low-level CUDA code, thus promoting code maintainability and facilitating algorithmic

changes.

The LSMC experimental work was presented at two functional programming confer-

ences. An extended abstract that showed our initial results was presented at ACM SIGPLAN

International Workshop on Functional High-Performance and Numerical Computing (FH-

PNC ’19), which was a part of the ACM SIGPLAN International Conference on Functional

Programming (ICFP ’19), that took place in Berlin, Germany in August 2019. The full work

was presented at International Symposium on Implementation and Application of Func-

tional Languages (IFL ’19) that took place in Singapore in September 2019. Consequently,

this part of the thesis has been published in the Conference Proceedings of International

Symposium on Implementation and Application of Functional Languages (IFL ’19).

Chapter 1. Introduction

10 1.2. Specific Contributions

Monte Carlo Value at Risk Simulations (MCVaR) for Portfolio Market Risk
Measurement

The MCVaR algorithm is based on the generation of hundreds of thousands of market sce-

narios that simulate the future portfolio changes. They are used to construct an accurate

approximation of the P/L distribution for a derivative portfolio. Such distribution enables

a calculation of risk measures such as VaR or ES that are obtained from combinations and

aggregations of the portfolio prices in the simulated market scenarios. In our case, Monte

Carlo simulations are used to both generate the market scenarios and to price the derivative

portfolio. In particular, as we deal with a portfolio of complex exotic derivatives, we arrive

at a nested simulation problem. When we revaluate a portfolio in each of the future market

scenarios, we execute a Monte Carlo simulation for each of portfolio holdings. In other

words, for each scenario, the portfolio needs to be fully revaluated using simulated input

parameters. This nesting structure has a substantial impact on the GPU memory that ef-

fectively prohibits executing pricing simulations in parallel at the innermost-level, because

each of the pricing simulations can alone consume majority of the GPU memory. We anal-

yse the risk workload in our implementation by measuring the execution times of Multicore

and CUDA targets compiled from Futhark code. We measure execution times of each of

its parts and conclude that portfolio pricing part is responsible for majority of the execu-

tion time of the complete risk workflow. The portfolio repricing in all market scenarios

takes up to 30× on CPU and 747× on GPU longer than the second most expensive part,

that is, market scenario generation. Risk measure calculation is insignificant, even when

we calculate the risk measure contributions to portfolio holdings such as CVaR and CES.

Furthermore, we prove our initial hypothesis that we are restricted in our experiments to

a sequential execution of portfolio repricing in market scenarios, because MCVaR in cur-

rent implementation consumes prohibitively large amounts of memory in the pricing part.

It is especially evident for cases with LSMC algorithm used for pricing American Option

Portfolio. The already optimised parallel structure of pricing implementations use all the

GPU compute and memory resources for cases with many sample paths, effectively pro-

hibiting pricing of many portfolio holdings at the same time. However, in our experiments

we still observe up to 18.7× speedup of GPU execution over CPU execution using 32-core

on cases, where the inner parallelism over sample paths in the internal pricing simulations

is large such as 1 024 000. In particular, we compare execution times between multicore

CPU and many-core GPU platforms. For the largest measured input, the GPU version

takes 5.9 s and achieves 3.8× speedup over the highly multithreaded CPU version on a

portfolio with 10 holdings. The largest single instrument portfolio case that we manage to

execute comprises 10 000 MSs priced using 1 024 000 paths. The GPU version takes 41 s

and achieves a speedup of 11.2× over CPU version. This proves that GPUs are suited for

large risk workloads, if we can efficiently map all innermost parallelism (on pricing level) to

the core structure of the GPU architecture. We conclude that further optimisations that tar-

get memory footprint reduction are necessary to extract more performance from the parallel

Chapter 1. Introduction

1.3. General Contribution 11

implementation of a complete risk workflow. However, at the current implementation state

this needs be achieved through changes in the algorithm. To address these shortcomings, we

propose further investigations in use of Quasi-Random Numbers for our implementation. To

our knowledge, this is a first large-scale study and application of functional programming

to a complete financial risk management workflow.

The first contribution is the implementation of several optimisations for minimising the

memory footprint, for instance, through reuse of the intermediate sample paths. The code

is implemented in the high-level data-parallel Futhark language, that can be easily adapted

for other portfolio instruments.

The second contribution is the approach to deal with a heterogeneous portfolio of differ-

ent instruments by grouping them dynamically by computational requirements. The com-

putational workload is not equal among instruments, which results in a thread divergence.

For example, one can valuate thousands of European options in the same time for one Monte

Carlo simulation run for an American option.

1.3 General Contribution

From the research perspective, there are two main contributions of this work. The first con-

tribution is an analysis and the practical implementations of selected computational chal-

lenges that are present in the field of quantitative finance. The second contribution is a

feasibility analysis of using high-level programming languages and frameworks to achieve

efficient performance while sustaining modularity, maintainability, and scalability in the

implementation of complex financial algorithms. We achieve this through implementing

algorithmic prototypes using parallel programming technologies and state-of-the-art code

optimisation techniques. We test them on synthetic datasets that simulate different realistic

scenarios in financial markets. The discussed results provide a guideline and show how to

bridge new technologies to real production systems.

Our work connects advanced results in many disparate research fields. We use standard

models from mathematical finance that are well-established in the industry. In the area of

computer science, we make extensive use of technologies that are based on the state-of-the-

art research in high-level functional programming languages and compiler techniques. In

each of the chapters, we provide a focused literature review that attempts to position our

specific contributions in the current research spectrum in the specialised areas that we in-

vestigate. It is specified in a designated related work section in the end of each experimental

chapter, where we relate explicitly to relevant research for each specific contribution from

financial and computer science perspectives. Some other contributions are common and can

span across chapters as they, for example, relate to specific research in general programming

languages and compilation approaches.

Chapter 1. Introduction

12 1.4. Thesis Structure

1.4 Thesis Structure

The thesis is organised in a following structure.

Chapter 1 sets the scene for the work by providing an overview of the general problem

that we deal with in our research, motivates the work presented in the thesis, and

gives a summary of the contributions. We focus on how the three research chapters

contribute to the overall work thesis.

Chapter 2 introduces some necessary theoretical concepts that are common for all the con-

ducted experiments that are described in the consequent three chapters. Furthermore,

we look at considerations and implications of this work from a financial, a computer

science, and a business perspective.

Chapter 3 is the first research chapter that presents our work on HW1F and discusses our

approach to accelerating algorithms from the fixed-income derivative pricing domain.

Chapter 4 is the second research chapter that introduces our work on LSMC and discusses

our work on acceleration of equity derivative pricing.

Chapter 5 is the third and last research chapter that draws inspiration and builds on some of

the work described in the previous two chapters and provides a detailed presentation

as well as a discussion of our MCVaR experiments and work on accelerated risk

analysis.

Chapter 6 concludes the thesis with the main findings of the work and gatherers some

promising new directions for future work that we identified during the work on the

project.

Chapter 1. Introduction

Chapter 2

Background

The first thesis of our work is: constructs in modern high-level programming language al-

low us to express complex practical algorithms from the financial domain and have our

implementation compiled into an efficient parallel code using an optimising compiler. The

second thesis of our work is: compute-efficient algorithms, parallel code implementations,

and new hardware design that is primarily focused on energy efficiency, are the most effec-

tive and reliable means to make compute-intensive financial computations cost-effective. As

a result, this work blends techniques from diverse areas of computational finance, numeri-

cal analysis and computer science to demonstrate means to efficiency of financial software

implementations.

Computational Finance defines the practical problems in the financial domain using

mathematical models that are abstractly expressed using parameterised equations. We choose

specific workloads that are recognised as common, and simultaneously are compute-intensive.

From a practical point of view, we consider an application workload to be compute-intensive,

if (i) it consists of a large number of repetitive mathematical operations applied to large

bulks of market data and (ii) it needs to be executed in long-lasting batch jobs rather than

on demand, because, for instance, the execution time of its standard sequential code imple-

mentation is too long for use during working hours.

Numerical Analysis provides us with the algorithmic tools to discretise and approximate

the financial models. In this work, we mostly use classical numerical methods used broadly

in many other science and engineering fields. Our main focus is on how to implement these

numerical algorithms to build efficient software solutions that can run on modern parallel

hardware architectures with the best possible performance. To achieve this, we need to

first select the best-suited models from the portfolio of mathematical finance, then apply

mathematical transformations where applicable to adapt the code for parallel computation.

Computer Science delivers the tools to implement software that not only makes effi-

cient use of hardware resources and executes quickly, but also enables us to write code that

is reliable, scalable, and maintainable. From a software engineering perspective, we aim to

express algorithmic complexities and constantly changing logical rules in high level abstrac-

tions. This is preferred to delving into the implementation of low-level intrinsic functions,

13

14 2.1. Financial Algorithms

which are used for heterogeneous and parallel hardware architectures. With this view in

mind, we look at the modern parallel programming frameworks and high-level functional

languages that enable programming parallel hardware. We identify high performance com-

puting techniques and optimisations that benefit the efficiency of financial software.

Theoretical concepts in this chapter are common for all the experiments conducted in

this work. In contrast, the following three chapters provide specific and detailed presen-

tation of each experiment. Furthermore, in this chapter we examine considerations and

implications of this work from financial and computer science points of view.

2.1 Financial Algorithms

Computational finance uses many quantitative approaches known from other engineering

disciplines. For instance, the financial industry bases their business on mathematical mod-

elling to describe phenomena that occur in the financial markets. As markets become

fiercely competitive, the need for high-performance computing to simulate and solve these

models increases. The situation is further accentuated by the rise of big datasets and real-

time data streams that force investment managers to process and analyse data at constantly

increasing pace. We examine the field and identify concrete workloads that expose compu-

tational challenges. Subsequently, we focus on two specific challenges in our HPC research,

because they expose algorithmic patterns and scalability issues with regard to a large num-

ber of complex mathematical computations as well as large dataset sizes. Exotic derivative

pricing as well as portfolio market risk measurement and management are fundamental to

the business of all financial organisations today. In this section, we attempt to show why

this is a case.

For a general overview of the quantitative finance domain, we refer to Appendix A,

where we provide a more detailed classification of its subareas as well as their typical ap-

plications. For a more detailed overview of the business setting of this work, we refer to

Appendix B, where we specify who the typical users of these applications are, and provide

more motivation regarding why it is relevant for them to pursue these techniques.

2.1.1 Computational Challenges in Finance

It is not a coincidence that the numerical algorithms that are most widely used in finance

happen also to be the ones that are the most compute-intensive. This aspect leads to a

greater-than-ever reliance on high computational power, that an efficient combination of fast

numerical algorithms and sophisticated massively parallel hardware can exploit. Computing

applications which dedicate most of their execution time to computational demands are con-

sidered compute-intensive, whereas computing applications which require large volumes of

data and dedicate most of their processing time to Input/Output and data manipulation are

considered memory-intensive or data-intensive.

Some of the factors that impact the computation time of a financial application are:

Chapter 2. Background

2.1. Financial Algorithms 15

• Complex mathematical models that use multiple correlated stochastic variables to

represent changes that drive the financial markets.

• Numerical methods that use simulations, lattices, and grids to discretise and approxi-

mate the mathematical models.

• A demand for a high accuracy of market variables as well as resulting prices and risk

measures that depend on them.

• Real-time high-frequency streams of market data available online that are fed as in-

puts to the computations.

• A necessity to perform immediate calculations for diverse input model parameters on

demand for intra-day reporting.

In this work, we deal with two specific computational challenges that share all the above

factors, that is, exotic derivative pricing and market risk management of large investment

derivative portfolio. However, the financial domain is, in fact, rich in compute-intensive

applications, which can all be characterised by the aforementioned factors. A list of appli-

cations, that is far from being exhaustive, consist of the following examples:

• Parameter calibration of the derivative pricing models based on optimisation algo-

rithms such that the model prices are consistent with market prices [GMS19].

• Stress testing and what-if analysis for portfolio risk management.

• Modelling financial time series and dependencies between them [MFE15].

• Modelling and calculation of key ratios for other types of portfolio risks such as

credit, operational, model, etc. [MFE15].

• Modelling extreme tail events in finance [MFE15].

• Computing xVA valuation adjustments, such as CVA, DVA, FVA, KVA, MVA, etc. for

hedging against an aggregated counterparty risk of default.

• Investment portfolio optimisation under different market conditions and constraints [CPT18;

GMS19].

• Performance measurement on multi-level portfolio investment structures that com-

prise arbitrarily-nested aggregation levels, such as countries, sectors, currencies, in-

strument types, etc., characterised by diverse cardinalities.

• Backtesting of trading strategies on historical data.

We mention these applications merely for the sake of completeness and do not discuss

them in further detail. With that said, we want to emphasise that the aforementioned chal-

lenges are built from the same set of fundamental computational building blocks, so most

Chapter 2. Background

16 2.1. Financial Algorithms

of the generic implementation techniques covered in this work can be directly applied to

efficiently solve them. Therefore, we are especially motivated to focus on the modularity

and reusability, if we identify which algorithms are the most fundamental and start by op-

timising them. A clear example of an interdependence between financial workloads is the

link between pricing and calculating measures for risk management. It is impossible to cal-

culate risk measures if we do not know the individual prices of the portfolio instruments.

In such a case, if single pricing alone does not exhaust the hardware resources, we can be

far more certain to hit the limits when running it multiple times simultaneously to calculate

risk measures. In other words, risk management can be perceived as executing pricing at a

large scale. As a consequence, when we increase the efficiency of pricing, we immediately

impact the overall performance of risk management workloads. Chapter 5 describes such

a case, where at the risk level we benefit from the performance optimisations introduced at

the pricing level, because we reuse our Monte Carlo implementation from Chapter 4.

2.1.2 Derivative Pricing

Despite centuries of academic study, no one can with certainty claim to know what ex-

actly comprise the price of financial assets and what makes it change. It follows from the

fact that markets have an infinite number of factors that drive them. Therefore, the best

we can do is to prepare a model of how the markets and prices behave. The art of build-

ing successful models for derivative pricing is the ability to balance critically determining

factors for valuing and hedging a financial instrument while maintaining simplicity in de-

sign. The complexity is increased by adding more risk factors that are market variables that

change over time, such as an equity price or interest rate. The balance is the key here as

the model needs to be tractable and feasible to compute in satisfactory time to be of any use

in practice. However, for some cases adding risk factors is inevitable, because there exist

derivative types that are constructed deliberately to derive their price directly from many

classes of underlying risk factors.

Stochastic Processes

We use stochastic processes to model changes in market behaviour. Different stochastic pro-

cesses exist: Arithmetic Brownian Motion, Geometric Brownian Motion, Geometric Brow-

nian Bridge, Ornstein-Uhlenbeck mean-reverting process, Poisson process, etc. All these

stochastic processes can be used to model changes of risk factors that influence derivative

prices and portfolio risk. Volatility, which is a measure of the uncertainty of the return re-

alised on an asset, is the main variable driving the value of derivative instruments. In reality,

the larger the volatility of an asset underlying an option, the larger the change in the option

value.

Chapter 2. Background

2.1. Financial Algorithms 17

Early-Exercise and Path-dependent Options

European Call and Put options are simple types of options that are popular in the financial

markets, because there exist explicit closed-form formulas that allow us to price such op-

tions, for instance, a well-known Black-Scholes model. In practice, if we have a formula,

we do not need to use Monte Carlo simulations for vanilla options. However, this fact is no

longer true for option contracts that have non-trivial cash flows during their lifetime.

Early-exercise options like Bermudan and American options are one example, which

we cover in more detail in the next chapters. The underlying asset or assets that the contract

relates to can be bought or sold at the agreed strike price prior to the contract maturity, which

is the end of the lifetime of the contract. Early-exercise optionality increases the value

of any financial instrument, because it gives an option holder a right to quit the financial

contract at any time. With some simple exceptions, it is infeasible to model such a multi-

faceted optimisation problem with a simple parameterised formula, and thus we need a

numerical method to approximate its value. We deal with American and Bermudan options

in Chapter 3, where we use a lattice-based numerical method to approximate their value.

Furthermore, we price American options in Chapter 4.

Other examples are path-dependent options, for which the payoff, that is, the payment

received by an option holder, depends on the history up until the exercise date, which is the

date when the contract becomes invalidated. There are many types of option payoffs that

are path-dependent to cater for the needs of investors. Several standard examples are:

Basket option An option that depends on the price of multiple underlying assets.

Asian option An option that depends on an average asset price during the lifetime of the

option before maturity.

Barrier option An option that depends on the price of the underlying asset breaching a

predetermined barrier level.

Cliquet options A series of ATM options, where each successive option becomes active

when the previous one expires.

All the above options need a numerical approximation like a Monte Carlo simulation,

where a payoff is evaluated on each time step up until maturity. We show these different ex-

amples to illustrate the fact that the complexity of the underlying computations in a generic

Monte Carlo simulation does not influence the structure of the algorithm, but rather the

number of output results that we need to produce to calculate final exotic option payoffs.

Naturally, the latter requires more mathematical computations as well as more memory for

intermediate and final results. Additionally, these options cover many different underlying

asset classes, that is, variables that the price of an option or other derivative depends on. The

underlying variables can comprise equities, foreign exchange, commodities, interest rates,

Chapter 2. Background

18 2.1. Financial Algorithms

inflation, credit, as well as any hybrid combinations thereof. We describe a possible integra-

tion of path-dependent options in a portfolio that we consider in Chapter 5. We investigate

how they can be priced using a Monte Carlo simulation.

Scripting Languages

When we deal with complex exotic derivatives, we fairly quickly conclude that it is difficult

to express all the multiple transactions and cash flows over a lifetime of such an instrument.

A contract scripting language is a specialised Domain Specific Language (DSL) that is

used to separate an instrument definition from a generic pricing algorithm. The language

describes contract payoffs in a structured and generic fashion. It can be used to express

the aforementioned early-exercise and path-dependent options in a modular way. In fact,

it has already been proven that it can be used to express any arbitrary derivative contract.

A classical example is LexiFi [PES00] that uses algebraic representation for the contract

payoffs. Other work in the area, as presented in [BBE15; And+06; Ege+17; AE18], shows

that scripting languages for financial contracts is an active field of research. We do not deal

with scripting languages in this work, but we emphasise that high-level abstractions used

in functional programming that we apply throughout work can be easily combined with

scripting DSLs to build generic pricing engines. Such an approach is one way to increase

the functional coverage of our implementations.

2.1.3 Portfolio Market Risk Measurement and Management

This section defines the main financial concepts connected with measuring and managing

market risk of investment portfolios.

Risk Management Practice

At present, risk management and analysis is a core part of the day-to-day operations in the

financial industry. Responsiveness is the key feature of modern financial risk management

applications, because their value is dependent on how fast they can deliver estimates to

risk measures like VaR, which is the most popular example. They need to be accessible

on demand when portfolio managers make key investment decisions, for example, for pre-

deal limit checking, that is performed to verify if the risks that the future transactions will

introduce in the portfolio do not break regulatory compliance rules or investment capital

limits. Furthermore, the applications allows investment managers to meet more widespread

systematic stress testing standards that over the recent years have been strictly enforced by

regulatory agencies. The middle office is the critical department of any investment manage-

ment (in fact any financial) organisation that deals with market risk management and who

hold a critical function. Primarily, they want to understand the market risk profiles of the

portfolios that they manage. The ordinary profile includes both short-term P/L volatilities

and long-term economic risk. Portfolio managers want to quantify how much risk they have

Chapter 2. Background

2.1. Financial Algorithms 19

amassed in their portfolios and how the total risk compares with their stated risk appetite.

Furthermore, they want the group to develop and win regulatory approval of fair treatment

of risk-weighted assets, to allow an investment manager to obtain the highest efficiency out

of its capital allocation. They use risk measures like VaR to model the risk profile. While the

requirements for market risk modelling are rather consistent among investment managers,

actual practices vary considerably.

Market Risk

Market risk measures the uncertainty of future profits or losses (P/Ls) that results from

changes in market factors (risk factors). Risk factors are prices, interest rates, implied

volatilities, FX rates, etc. In other words, they are a complete set of the model parameters

that are used in pricing an instrument portfolio. To analyse and report the market risk in the

portfolio, we need to apply a risk model. For instance, we combine the relevant instrument

pricing and risk factor models that are computed independently from each other, and then

apply them to portfolio holdings that are of interest to us.

The goal of market risk measurement is to forecast portfolio return changes based on

risk factor changes, their volatility and correlations over time. Risk factors are what makes

the portfolio returns change over time. The volatility describes how much the change varies

over time. The correlation determines how probable the risk factors are to move together in

a given time horizon. As a result, a market risk model evaluates the P/L probability distri-

bution of gains and losses (negative gains) to approximate the future value of the analysed

portfolio.

Risk Models

Efficient generation of realistic market scenarios, that is, sampling from the joint distribu-

tion of risk factors, is one of the most important and challenging problems in quantitative

finance.

Historically, sampling from an easy-to-calibrate parametric model of a risk distribution,

which is usually represented by a closed-form formula, was a standard solution. An ex-

ample is a multivariate normal distribution of risk factor logarithmic (non-negative) returns

for equity instruments or a Gaussian copula combining a multivariate normal dependence

structure with heavy-tailed univariate marginal distributions of individual risk factors that

are primarily used for credit instruments. However, although a parametric model is often

a poor approximation of reality, mainly its simplicity makes it useful in practice. The goal

is to describe the key features of the risk factor distribution with a handful of parameters,

achieving the best possible fit to either the empirical distribution derived from the historical

data or the prices of traded instruments observed in the market at the time of model cal-

ibration. In fact, making the parametric model too complex leads to overfitting and poor

generalisation.

Chapter 2. Background

20 2.1. Financial Algorithms

A realistic dependence structure is even more difficult to model. A typical parametric

approach used in most Monte Carlo risk engines starts with modelling the dynamics of rele-

vant risk factors independently, and then imposes a dependence structure by correlating the

corresponding stochastic processes. The stochastic processes are, almost invariably, Brow-

nian motions, and the linear correlations between them are enough to construct the joint

distribution of risk factors. The key statistics of the return distribution of the risk factors are

its first four moments, that is, mainly mean and standard deviation (variance), but also skew-

ness and excess kurtosis, as well as its correlation and tail behaviour. Building a dynamic

risk forecast of a global, multi-asset portfolio often requires a choice between a comprehen-

sive fine-grained but possibly complex model and a simple but granular approximated one.

There are different types of risk models, among others:

Parametric First-order Delta or Second-order Delta-Gamma approaches are based on Tay-

lor series expansions in the risk factors.

Simulation Historical or Monte Carlo approaches are described in more detail in the next

paragraph.

In this work, we choose to work with the simulation approach, because of its high

computational requirements.

Risk Simulation Models

Simulation models do not make any assumptions about distribution of holdings returns, un-

like the analytical models. Instead, the distribution of portfolio holding returns is produced

by simulating different market scenarios and repricing the holdings with input from these

scenarios. Simulation approaches include:

Monte Carlo is a method based on random generation of the market data scenarios. P/L

distribution is directly dependent on the chosen distribution of the risk factors, for

example, normal distribution or Student’s t-distribution.

Historical is an intuitive method based on reusing historical data as market data scenarios.

History repeats itself, so the distribution of holdings return is probable. The volatility

and correlations between risk factors are already embedded in the historical data, so

no assumptions about the risk factor or P/L distribution.

These two methods differ merely in how we simulate the market scenarios. Once we

have the pricing input data, the portfolio valuation and risk measure calculations are identi-

cal.

In this work, we take a Monte Carlo approach to market scenario simulations. Monte

Carlo simulations are often compute-, but also memory-intensive, and lead to much longer

reaction times compared with the simpler, but less accurate historical simulation. An indus-

trial survey found that average MCVaR runtime ranges between 2 and 15 hours [Meh+12].

Chapter 2. Background

2.1. Financial Algorithms 21

In stressed environments, where more risk factors are taken into account, these simulations

take days on average. As a result, only about 15 percent of investment managers surveyed

use Monte Carlo simulations as their main approach [Meh+12]. The remaining majority of

the organisations do not use them at all or use Monte Carlo techniques in limited circum-

stances, for example, on some complex portfolios or specific risk models.

In reality, the issues of market data quality are often much more important to the in-

vestors than the sheer volume of information and the resulting computational challenge.

For instance, two main problems with historical simulation are selecting the correct histor-

ical period to represent expectations about the future, as well as maintaining the data for

the selected period. Furthermore, risk models tend to malfunction, when the used data is of

low quality, for example data values that exceed their defined limits. Investment managers

that use long time series in their historical simulation, for example more than 5 years, often

have gaps in data. As a result, they need to use custom algorithms to backfill missing data.

On top of that, the burden of computation resulting from enormous volumes is slightly less

relevant today. Not only the on-premise IT infrastructure at the financial organisations has

already been expanded, but also cloud resource consumption is wide spread. We describe

to some degree this important trend of using cloud resources through an infrastructure as a

service model in Section 2.3.2.

Market Scenario Evaluation Methods

This section shows that a calculation of risk measures like VaR or ES involves a combination

of a suitable approach to market data scenario generation and the instrument revaluation. In

general, to calculate risk measures we first need to establish the P/L distribution of the port-

folio over the time horizon. The different calculation techniques vary in the computation

complexity and their applicability to particular financial instruments. In general, we differ-

entiate two main evaluation methods that translate simulated market data scenarios into the

required P/L distribution:

Full Revaluation Each risk factor for each holding is reevaluated in each market scenario.

This requires an evaluation of a time series for each risk factor over the time horizon.

Partial Revaluation Only the initial scenario is fully valuated. For the remaining scenar-

ios the prices of holdings are approximated with Taylor expansions using sensitivities

to the relevant risk factors. The sensitivities, which are also known as the “Greeks”

in derivative pricing, are first-order Delta or second-order Delta-Gamma approxima-

tions.

Most investment managers opt to use partial revaluation for linear instruments and

vanilla derivatives, because in this case both approaches produce identical results. How-

ever, full revaluation is a more flexible approach that allows a portfolio manager to adjust

individual risk factors and correlation assumptions more accurately. For complex non-linear

derivatives, full revaluation provides a more accurate and realistic calculation of risk that is

Chapter 2. Background

22 2.2. Numerical Methods

relevant when the significant risks are present, for instance, in the tails of the P/L distribu-

tion. In fact, despite the extra cost in time and complexity, the full revaluation is mandatory

for the non-linear instruments. On top of that, this approach requires a larger number of risk

factors than sensitivity simulation. In particular, the Monte Carlo approach requires at least

5000–10 000 scenarios to make the model statistically valid in a common case. On the one

hand, in full revaluation, appropriate use of pricing models is crucial to the accuracy of risk

measure estimates, because each portfolio instrument is reevaluated in each scenario. In-

vestment managers that use a partial revaluation in this case neglect higher-order risks. On

the other hand, in time of high market volatility, executing the full revaluation frequently

enough turns out to be infeasible for practical purposes. In such circumstances, most invest-

ment managers use the approximation approach through partial revaluation. In this work,

we choose to address a combination that is not only most compute-, but also most memory-

intensive: Monte Carlo simulations with the full revaluation approach. We describe our

experiments in more detail in Chapter 5.

2.2 Numerical Methods

2.2.1 Monte Carlo Simulation Method

Monte Carlo is a leading methodology and an essential ingredient in many quantitative in-

vestigations. Essentially, a Monte Carlo simulation is based on the generation of random

objects or processes by means of a computer to model a real-life system such as the evolu-

tion of the stock market. There are three typical uses of Monte Carlo simulations: sampling,

estimation and optimisation. In this work, we are using it to sample from a distribution.

Monte Carlo methods all share the commonality that they rely on random number gen-

eration to solve deterministic problems. These methods are especially useful for simulating

phenomena with significant uncertainty in inputs and systems with many coupled degrees of

freedom. This makes intuitive sense, as the market is difficult to model, has high dimension-

ality properties, and has infinitely amounts of data to be sampled from. The use of Monte

Carlo techniques in financial option pricing was popularised in a classic reference [Gla04].

Recently, there have been some significant advances in Monte Carlo techniques for stochas-

tic differential equations, which are used to model many financial time series, in particu-

lar, [Gil08] and subsequent papers. The Monte Carlo method has also proved particularly

useful in the analysis of the risk of large portfolios of financial instruments, such as mort-

gages [MFE15].

Due to tis nature, numerical methods like a Monte Carlo simulation can easily bene-

fit from both multithreaded computation on an accelerated compute node and distributed

computing at scale. In fact, this approach is a prime example of “embarrassingly parallel”

computations. At the same time, a Monte Carlo approach to simulations is simple and in-

tuitive enough to apply by practitioners. Most importantly, this simulation approach is the

most flexible of all numerical methods, because at its core, it is simply a generic integra-

Chapter 2. Background

2.3. Accelerated Computation 23

tion scheme. In other words, there are no simulation restrictions to the type of a stochastic

process as long as it can be described using an arbitrarily complex SDE. Even for models

with an analytic solution, Monte Carlo simulation is a suitable tool for testing an imple-

mentation, for example, to check prices calculated with a complex analytical solution. One

of the advantages of Monte Carlo method is that its expected error does not depend on the

dimensionality of the problem. In fact, for problems in higher dimensions, a Monte Carlo

simulation is often the only feasible approximation strategy. However, its generic nature

comes with a computational price. As a numerical technique, a standard Monte Carlo sim-

ulation is not sufficiently efficient for practical use, as the sampling error only decreases

with the square root of the number of samples,
√
N . In other words, we need to increase the

number of simulation paths by 2 orders (100×) if we want to increase the accuracy of the

Monte Carlo estimation for the expected value by one order (10×). Several techniques exist

that improve the convergence rate of a Monte Carlo simulation, such as Quasi Monte Carlo

approach, that we cover in more detail in Section 5.4.2. Other approaches such as antithetic

or importance sampling are demonstrated to reduce the computational burden of the Monte

Carlo approach. However, we do not attempt to introduce them in our experiments at this

stage. In this work, we make extensive use of Monte Carlo methods in Chapters 4 and 5.

2.3 Accelerated Computation

We stress again that Computational Finance is a field where all data is an approximation.

This fact makes it different to other engineering disciplines, where we can physically mea-

sure quantities to some feasible degree. The feedback loop make it possible for us to test

our hypothesis in reality and then adjust our computer simulations. In contrast, the factors

that drive financial markets are not directly measurable as they are only statistical and thus

abstract notions, which are based on stochastic events. We describe them using SDE equa-

tions based on stochastic calculus and build algorithms to approximate the solution. The

situation is due to some of the mathematical problems in finance are basically too complex

to grasp by a simple closed-form formula with several parameters and a finite sequence of

elementary operations. The solution to such a complex problem can instead benefit from

a fast approximation algorithm. A fast algorithm is one that quickly converges to an ac-

curate solution with an acceptable accuracy to a given significant digit. Modern computer

hardware is highly-optimised for such computations based on decades of research in the

field [Tre08]. In this section, we focus on the numerical details of the algorithms and the

current adoption of massively parallel hardware in the financial sector.

2.3.1 Numerical Accuracy and Floating-Point Precision

In general, numerical algorithms in finance need to be as accurate as possible, but at the

same time relatively fast to compute. We start by defining the concepts of numerical accu-

Chapter 2. Background

24 2.3. Accelerated Computation

racy and the floating-point precision as they are fundamental to the computations that we

perform in this work.

Accuracy We need to know the number to a specific decimal point, because of its relevance

in a given application. Accounting is one financial area, where numbers need to be

exact to a certain degree to enable an updated and detailed financial status of the

company.

Precision A decimal or real number that can have an infinite number of significant numbers

past its decimal point needs to be represented by a limited number of bits representing

a floating-point number. Thus, it can be represented only to a certain degree. In

practice, this translates to around 11 significant digits for FP32 and 17 for FP64.

One example are computations that involve decimal values that have vastly different expo-

nents need a number representation with larger floating-point precision. Another example

from the financial domain are computations that involve large nominals, which represent

the number of holdings in an individual portfolio instrument, for instance, number of shares

in a given stock equity.

Let us consider an arbitrary portfolio, where we have a large position, that is represented

by number of holdings in a particular instrument, and another position that is relatively small

in an investment fund that comprises 1000s of different shares. On the one hand, from the

computational point of view, the large number of holdings (nominal) in the same instrument,

means a risk of running into a floating-point overflow, in a situation when we multiply the

instrument price with a large nominal, The IEEE-754 standard prohibits the representation

of such a large number accurately in the hardware memory. On the other hand, simulta-

neously small values need to be handled accurately too. For instance, a common practice

is to buy shares in various investment funds that itself consist of large numbers of shares

in various instruments. Effectively, the nominals at the lowest fund constituent level, often

represented as fractions per each instrument, can be infinitesimally small. Now let us con-

sider what happens when we want to aggregate all positions in the same instrument across

our portfolio. We assume that we not only invest in the large share of the given instrument

directly, but also indirectly through the fund. From the computational point of view, it leads

to a well known situation in numerical analysis, that addition of a large floating-point num-

ber to a relatively small one leads to numerical inconsistencies, if treated without sufficient

care.

FP32 vs. FP64 Precision

From the example in the previous paragraph, we can clearly see that the issue of the suffi-

cient floating-point precision often accompanies the numerical algorithms. Finance is not

an exception with its ongoing discussion about how many significant digits are satisfactory

to represent the prices of financial instruments. Traditionally, double-precision (64-bit, fur-

ther abbreviated FP64) is the most common choice due to the number of significant digits

Chapter 2. Background

2.3. Accelerated Computation 25

required for tracking prices. The viability of using less precise single-precision (32-bit,

further abbreviated FP32) floating-point numbers is a matter of an ongoing debate in the

financial sector. On the one hand, many practitioners, especially working in the back of-

fice, consider FP32 as a prohibitively imprecise number representation for their accounting

needs. The investment managers are obliged to report calculation numbers in their portfo-

lios precisely due to, for example, regulatory compliance. Moreover, traders, and analysts at

the front office need high precision for their mathematical models that grow in complexity.

Lowering the precision has a negative impact on the numerical accuracy of an algorithm

and diminishes the benefits of the higher approximation accuracy introduced by the models

that take more risk factors into account. The impact of truncation errors increases as they

involve computations of relatively small changes in these risk factors. Nevertheless, a care-

ful choice and implementation of the numerical algorithms for this purpose is important as

well. On the other hand, the computational advantages of using FP32 can possibly outweigh

the need for higher FP64 precision. Use cases in middle office such as risk management or

portfolio performance analysis are based on a large number of statistical samples rather than

high precision. In particular risk use cases, less accurate approximations are acceptable or

even preferable, so FP64 is, in fact, not needed at all (see 2.1.3). As a side note, 128-bit

or even 256-bit floating-point precision is considered, at least for the purpose of back office

accounting. Currently, the largest institutional investment managers that deal with portfo-

lios worth upwards of a trillion dollars run into technical issues, where FP64 is simply not

enough to save the value of the portfolio in a database. Effectively, it is a choice between

accuracy and speed, and we always need to accept technical and cost trade-offs.

FP16 Precision

The half-precision 16-bit FP16 floating-point numbers can speed up computation and save

up memory space even more than FP32, especially on the specialised tensor cores. This

precision has been popularised lately due to its use in training of Deep Neural Networks

(DNNs). These networks require massive amounts of matrix-matrix multiplications, which

use so called tensors that are operations on small matrices, that are acceptable to be highly

inaccurate (weights of neurons), but need to be fast. As a consequence, the adoption of

Data Science and Machine Learning techniques is well under way in finance. For instance,

just over the recent 2 years we have observed an active interest in applying Deep Learn-

ing techniques to accelerate derivative pricing, which is a workload that involves massive

computations on tensors. In concluding Section 6.2 we present a couple of published ex-

amples of promising work in a domain of Machine Learning applied to financial algorithm

acceleration. In the meantime, we cannot use such low precision in our case, because the

insufficient number of accurate significant digits leads to the lack of required numerical ac-

curacy in our simulations. As a result, the algorithms, which we investigate in this work,

cannot converge to a result with an acceptable error.

Chapter 2. Background

26 2.3. Accelerated Computation

Impact of Parallelism

The differences in the results returned by parallel implementations due to non-deterministic

execution order are another technical issue. Operations are not executed in the same se-

quence, so they can yield different results in different executions, even provided with the

same input. In general, different parallel architectures follow the IEEE-754 standard closely.

However, as the discrepancies happen already on the level of the instruction set, their causes

are hard to track. In addition, the effect is accentuated further by the fact that accelerator

architectures like GPUs usually use optimised mathematical instructions at this level. This

makes the GPU results hard to compare with the CPU ones, because the low-level algo-

rithms might differ substantially.

2.3.2 Accelerator Hardware in Computational Finance

As the focus of hardware innovation shifted away from Moore’s Law and greater clock

speeds, hardware designs moved from single core architectures to multi-core. This funda-

mentally changed the application execution model, from a single instruction at a time to a

set of parallel instructions on many symmetric cores. In fact, future silicon performance

wins will come from architectural innovation, rather than from transistor density scaling.

Massively parallel accelerators have been widely adopted for number crunching because

of their vast compute capability, highly competitive compute-to-energy ratio, and unprece-

dented memory bandwidth. For example, GPU programming with parallel frameworks

like CUDA are increasingly viewed as viable technologies for substantial performance im-

provements of various calculations in financial applications. The highly regular structure

of linear algebra primitives frequently used in statistical models can benefit from an enor-

mous reduction of execution time when using GPUs. In fact, major banks and investment

managers have mostly reported successful deployment of GPU solutions to date.

Computational Libraries

Historically, financial software libraries were optimised for single threaded execution on

traditional CPUs. A prime example is the open-source QuantLib library that started as a

single threaded library, and only recently started being adapted for thread safety. In the

meantime, a mature ecosystem of GPU-based generic libraries, both proprietary and open-

source, has grown steadily since the launch of CUDA in 2007. Among them, we can find full

solutions with vendor locked code from specialised financial software companies, who pro-

vide custom deployment and maintenance, open source solutions like QuantLib, standalone

libraries to link from higher level languages such as Python, R or MATLAB, or wrappers

around single threaded code.

Chapter 2. Background

2.4. Parallel Programming Frameworks 27

Low-Level GPU programming

Investment managers, that prefer to keep full control of the GPU execution of their code,

still need to hire quantitative developers with a knowledge of GPU programming to imple-

ment and maintain their software. It is not straightforward to work with, because single

threaded C or C++ programming is still a standard in the financial industry. Learning curve

of switching to CUDA is steep. In fact, most of the difficulty in using parallel programming

frameworks, which is not specific to CUDA only, is the lack of experience in thinking using

parallel programming concepts. The next challenge is to understand how to work with the

thread hierarchy and memory management, as well as how to make use of it to improve

performance and scalability of the application. For example, CPUs have multiple layers of

automatic caching to help mitigate the effect of the memory wall. In contrast, GPUs have

typically a two-level memory hierarchy with an inner memory, which is shared among a

relatively small group of threads, for instance, at most 128 KBs on V100. Although GPUs

have impressively fast memory, the ratio of computation to memory speed is even more

uneven than on a CPU. As a consequence, accessing memory efficiently is of critical im-

portance to obtain performance improvements.

Cloud computing

Recently large financial corporations have started to migrate their operations to cloud ser-

vices. Since the cloud providers follow a pay-per-use business model, their customers can

use an opportunity to reduce the overall cost of operation (TCO). The advantages associated

with commodity compute architectures, such as GPUs or other accelerators like FPGAs [De

15] and specialised ASICs, have recently granted them a secure place and widespread sup-

port in infrastructure services offered by large cloud service providers. This is accompanied

by a proliferation of enterprise-ready services based on open-source technologies, that are

driven by community-based development. It is becoming more frequent for cloud providers

not to limit compute capable hardware solely to large enterprise customers, but rather make

them readily available as a service for the general public to use. Operational costs can

be tracked and adjusted based on demand using responsive and metered pricing. More-

over, cloud-based compute resources are virtually boundless in scale, which are especially

important for distributed computing workloads that execute on clusters of interconnected

hardware and use programming paradigms like MPI. Finally, it is becoming more common

for the latest accelerator devices to be quickly adopted first in the cloud, before other en-

vironments like academic clusters catch up. This fact effectively brings down the cost of

computational acceleration.

2.4 Parallel Programming Frameworks

Parallel programming denotes programming using multiple hardware cores or processors

to gain speed. Task parallelism is the simultaneous execution on multiple cores of many

Chapter 2. Background

28 2.4. Parallel Programming Frameworks

different functions across the same or different datasets. In contrast, data parallelism, or

SIMD, is the simultaneous execution on multiple cores of the same function across an ar-

ray of data elements. In this work, we focus on both many-core parallel programming for

SIMT or SIMD execution model, GPGPU programming and, to a lesser degree, multi-core

parallel programming for CPU programming. We use CUDA low-level imperative GPU

programming style as well as OpenMP multithreading and AVX2 vectorisation in HW1F
experiments (see Chapter 3). For CUDA we provide some essential details in Section 2.4.1.

Using Futhark, which is described in Sections 2.4.2 and 2.4.3, we can introduce parallel

programming in a high-level declarative programming setting and have the compiler per-

form the automatic dynamic analysis and aggressive code optimisation. We use Futhark

extensively in our LSMC and MCVaR experiments (see Chapters 4 and 5).

2.4.1 Imperative Parallel Programming Frameworks

Recent activities of major chip manufacturers, such as Intel, NVIDIA, AMD, and IBM, make

it evident that future designs of microprocessors and thus large HPC systems will be hy-

brid or heterogeneous in nature. We need specialised languages to program them and en-

able parallel processing. Currently, if we program in an imperative language like C or

C++ and want to have full control over multithreaded execution on a multi-core CPU, we

most often use a directive-based approach using OpenMP or, ever since the C++11 stan-

dard was introduced, a more fine-grained approach offered by a well-integrated Standard

Threading Library. These technologies are mature and fully portable across compilers, op-

erating systems and CPU hardware. On the contrary, if we want to program a massively

parallel GPU, we have a choice of a handful of technologies that have matured over the

recent 10 years. NVIDIA develops the CUDA programming toolkit, which is the most pop-

ular choice on their GPU hardware. The other choices are a portable OpenCL API and a

directive-based OpenACC programming model. Apart from the mentioned technologies,

most popular languages today have some kind of an accelerator-enabled backend. For

instance, for GPU programming Python ecosystem offers language wrappers (PyCuda),

GPU-enabled libraries (CuPy, RAPIDS cuDF and cuML, Dask) and even Python-CUDA

compilers (Numba). Most of these are contributed to and supported by NVIDIA developers.

Most popular scientific libraries got their accelerated counterparts that work and scale in the

new hybrid and heterogeneous microprocessor configurations. MAGMA, OCCA and Kokkos

are just a few examples of HPC libraries that manage to bridge the gap between many-core

CPUs and special purpose hardware and accelerators, especially GPUs, that have already

outpaced traditionally general-purpose CPUs in floating-point performance some time ago.

NVIDIA claims that modern GPU generations like Volta and Turing are bandwidth-

optimised, general-purpose, parallel processors that implement the C++ execution model

and can run C++ code. Moreover, the CUDA platform that NVIDIA has built around its

Tesla GPUs, with frameworks like Thrust, CUB, and libraries like cuBLAS or cuRAND,

all of which we use in this project, have made it a lot more straightforward to program

Chapter 2. Background

2.4. Parallel Programming Frameworks 29

GPUs. However, it still involves low-level imperative programming, which is challenging,

but rewarding if maximal control of threading is required. To yield good performance,

the programmer needs to understand the architectural design principles of the device and

have specialised knowledge of imperative code transformations, such as loop interchange,

loop distribution, or block and register tiling, for optimising the degree of parallelism and

locality of reference. To achieve this, dependence analysis needs to be done manually to

reason about the loop-based optimisations, for example, to decide if it is safe to execute a

given loop in parallel, or to interchange two loops.

As we use solely NVIDIA hardware and software technologies in this work, we adhere

to CUDA, not OpenCL terminology, described below.

Thread in CUDA is equivalent to a work-item in OpenCL.

Thread block is equivalent to a work-group.

Kernel Grid is equivalent to a NDRange.

Local memory is equivalent to private memory.

Shared memory is equivalent to local memory, typically resident in L1 Cache of size at

most 128 KB.

The CUDA threads are executed in a lockstep as a warp, which is a group of most com-

monly 32 neighbouring threads. The GPU groups threads that execute the same instruction

into a warp and then executes them in parallel on CUDA cores. Besides warps, the threads

are further grouped in thread blocks, which are assigned to a Streaming Multiprocessor

(SM). Kernel grid has its assigned computer kernel and is mapped to a whole GPU device,

that comprise several SMs. Each SM executes instructions in a SIMT fashion.

2.4.2 Futhark Functional Data-Parallel Programming Language

Distributed and asynchronous processing of interdependent tasks across multiple compute

units which can be cores in multi-core CPUs, accelerators, or even whole compute nodes, is

challenging. It involves management of complex communication among tasks and threads

as well as non-trivial synchronisation patterns. The manual design of the aforementioned

dependencies is time consuming and error prone. In the ideal case, this low-level layer of

complexity is hidden from the developer. We seek a high-level language that allows us to

overcome all the aforementioned issues, and instead focus our attention on the algorithmic

considerations.

In the last decade, functional programming has gained in popularity due to its declara-

tive characteristics which are effective for parallel computing. Data-parallel programming

models seem to be a valid solution to this challenge. They express parallelism declaratively

using higher-order language constructs, which build programs from a nested composition

of implicitly parallel array operators, which are rooted in the mathematical structure of list

Chapter 2. Background

30 2.4. Parallel Programming Frameworks

homomorphisms. These rich semantics allow high-level reasoning and exploring the large

space of strategies for efficiently mapping parallelism in application to the hardware. We

reason about the asymptotic (work and depth) properties of our code and consider rele-

vant flattening transformations, which convert (all) arbitrarily-nested parallelism to a more-

restricted representation that can be directly mapped to the hardware.

Array-oriented programming languages usually implement data parallelism, because ar-

rays are naturally suited for bulk operations on uniform data. Such languages not only boost

the software development productivity, but also provide high-performance parallel execu-

tion. As an abstraction, the languages directly mirror high-level mathematical abstractions

of linear algebra that are commonly used in financial modelling as well as other engineer-

ing sciences. Furthermore, as a language feature, array orientation exposes regular control

flow and exhibits structured data dependencies. As a consequence, it makes a programming

language more suitable for various types of program analysis, which are focused on code

optimisation and correctness. Finally, many modern computer architectures, particularly

highly parallel architectures such as GPUs and FPGAs, are best equipped for an efficient

execution of array operations.

Futhark is a statically typed data-parallel functional array language. The language is

based on a ML or Haskell style syntax and is equipped with a number of Second-Order

Array Combinators (SOAC), such as map, reduce, scan, and filter. The Futhark

source language features a higher-order module system [Els+18], polymorphism, and lim-

ited support for higher-order functions [HHE18]. Functions cannot be stored in arrays or

returned by conditional expressions. Just as higher-order functions and modules are elimi-

nated entirely at compile time, using a no-overhead approach, arrays of records (or tuples)

are turned into records of flat arrays. The language also features a uniqueness type system

and explicit sequential loop constructs, which, together with support for array-updates,

enable an implementation of imperative-like algorithm in a functional style.

Motivation for Functional Approach

We want to motivate some virtues of functional programming approach that can be particu-

larly valuable to domain experts, that are most often non-technical. Anyone who programs

in parallel low-level languages targeting multi-core architectures and does it on a regular

basis, observes right away a lack of explicit kernel setup or device memory management

in declarative languages. Code remains agnostic to the underlying platform. The aggres-

sive optimisation and parallelisation compiler applies complex code analysis at compilation

time to identify suitable performance optimisations. This means that the same Futhark code

base, which is functional, is also portable across architectures. The same is compiled to a

sequential binary running on one CPU core as well as to another one running on a mas-

sively parallel GPU utilising all its parallel cores efficiently. Moreover, when working with

Futhark, one focuses more on expressing algorithms using and combining the SOACs that

mimic the higher-order functions found in conventional functional languages. In Futhark,

Chapter 2. Background

2.4. Parallel Programming Frameworks 31

they have sequential semantics, but permit parallel execution, and as such are compiled

to parallel code. This means that Futhark enables compilation to high-performance par-

allel code, but still is expressive enough for implementation of non-trivial programs. The

purely functional nature of Futhark allows the compiler to apply more high-level optimi-

sation, which is its main advantage. In terms of performance portability, Futhark supports

nested parallelism, so the code can be further autotuned to efficiently support all the avail-

able parallelism exposed by the hardware. Otherwise, we face a rather cumbersome and

time-consuming task that we need to perform manually.

2.4.3 Futhark Compiler

The Futhark compiler supports aggressive fusion of parallel constructs [HO13], and spe-

cialised code generators for key parallel operators, such as scanomap, redomap, and

segred compositions [HLO16; LH17]. Essentially, since all available parallelism is as-

sumed to be explicit in the program, Futhark can be seen as a “sequentialising” compiler

that attempts to efficiently sequentialise the parallelism in excess of what the hardware can

support, thus enabling opportunities for locality of reference optimisations.

In this sense, the compiler supports a code transformation, named moderate flatten-

ing [Hen+17], that translates arbitrarily-nested, but regular parallelism to a flat representa-

tion that in a common case can be directly and efficiently mapped to the underlying GPU

hardware. In general, we deal with “regular” parallelism when the size of the inner-parallel

operators is invariant to the outer-parallel nested level. Whereas perfectly-nested parallel

constructs can easily be translated to flat parallelism, it is not straightforward to do so with

imperfectly-nested constructs.

Furthermore, the Futhark compiler implements incremental flattening [Hen+19], a no-

tion of generating multiple code versions in situations where the optimal optimisation strat-

egy is sensitive to the input dataset. In this case, the multiple kernel versions are autotuned

globally and thresholds are introduced to determine which version is applied. As a result, in

most cases, one program offers sub-optimal on all possible inputs. For example, the optimal

GPU code for dense matrix multiplication depends on the sizes of the matrix dimensions. If

enough parallelism is available in the outer two parallel levels, then the dot-product dimen-

sion is sequentialised, thus enabling various tiling strategies that optimise temporal locality.

Otherwise, the inner dimension is also executed in parallel.

However, given a problem exhibiting irregular parallelism, the Futhark programmer is

required to implement the flattening strategy manually, which is not necessarily straightfor-

ward. The programmer can choose to use a padding approach to flattening and thereby treat

all problems to be of the same size. Although this approach can be theoretically work inef-

ficient, in practice it can be the most efficient strategy to use. We note here, that a parallel

algorithm is work efficient if the work (that is, the number of operations) performed by the

algorithm is of the same asymptotic complexity as the work performed by the best known

sequential algorithm that solves the same problem. An alternative strategy is to apply a

Chapter 2. Background

32 2.4. Parallel Programming Frameworks

full-flattening approach, which leads to a work efficient algorithm, but which is most prob-

ably not efficient in practice. Currently, the Futhark compiler generates GPU code that use

CUDA or OpenCL API as a backend. It can also compile code to run on a multi-core CPU

through POSIX Threads or OpenCL. For all the experiments in this work, we use CUDA,

and in Chapter 4 also to OpenCL for comparison of the compilation outcome. In Chapter 5,

we additionally use the recently-introduced Multicorebackend.

Finally, interoperability between parallel languages and mainstream programming envi-

ronments that are focused on productivity is an issue of practical importance. Futhark sup-

ports integration with various mainstream programming environments, which can greatly

increase its usability in, for instance, larger financial applications. In this sense Futhark

provides specialised code generators [Hen+16] to languages such as Python or C, that

allow computational kernels that are written in Futhark to be easily integrated in larger

mainstream projects. An illustrative example is the acceleration of the BFAST-Monitor al-

gorithm in Python that detects changes in landscape, such as deforestation, by analysing

massive amounts of satellite images [Gie+20]. The limitation of Futhark is its lack of sup-

port for foreign functions to be called from Futhark code, albeit certain algorithms, such

as radix sorting and matrix multiplication, are more efficiently implemented in specialised

CUDA libraries such as cuBLAS and CUB. Other research-oriented parallel languages pro-

vide even less integration support. A potential solution could build on the idea of using an

interface definition language to specify the interface of type-parameterised software compo-

nents [OW05b; OW05a; Chi+04], which can be compiled to create standardised wrappers

for client or implementation code for each of the supported parallel languages.

2.4.4 Alternative Functional Data-Parallel Languages

Some functional language approaches target a generation of an efficient data-parallel GPU

code for applications implemented using high-level array language constructs. Such high-

level approaches include:

SaC [GS03; GS06; GTS11], a functional array-based language featuring a parallelisable

with-loop construct,

Obsidian [SSC11; CSS12; Sve11],

Accelerate [Cha+11], which are both domain specific languages embedded in Haskell.

None of these approaches, however, feature arbitrarily nested parallelism. Approaches that

support arbitrarily nested parallelism include the seminal work on flattening of nested par-

allelism in NESL [Ble96; Ble90], which was extended to operate on a richer set of values

in Data-parallel Haskell [Cha+07], and the work on data-only flattening [ZM12]. However,

such general compiler-based flattening is challenging to implement efficiently in practice,

particularly on GPUs [BR12]. Other promising attempts at compiling NESL to GPUs in-

clude Nessie [RS15], which is still under development, and CuNesl [ZM12], which aims at

Chapter 2. Background

2.4. Parallel Programming Frameworks 33

mapping different levels of nested parallelism to different levels of parallelism on the GPU,

but lacks critical optimisations such as fusion.

Imperative approaches typically rely on low-level analysis of nested loops using affine

indexing and branch conditions for discovering and optimising parallelism, for example the

polyhedral model [Pou+11; Bon+08]. Since the affine domain is too restrictive in practice,

several techniques use explicit annotations to extend the applicability of polyhedral transfor-

mations [RKC16; CSS15]. Other techniques rely on more dynamic analysis coupled with

multi-version code generation, for example to identify sufficient conditions under which

loops are parallel [MH99; OR11; OR15] or to optimise locality of reference and communi-

cation [SHO18; DK99; Rav+14; OM08; Oan+05]. In this sense, our implementation uses

multi-version code generation facilities in Futhark [Hen+19] to adapt the compilation to the

particularities of datasets and hardware.

2.4.5 Data-Parallel Functional Notation

In this section, we present types and semantics of data-parallel operators that are used in

this work.

We use i32 and real to denote the type of a 32-bit integer and FP32 or FP64 numbers,

respectively, [n]α to denote the type of an array with n elements of type α, [a1, . . ., an]

to denote an array literal, and (a, b) to denote a tuple (record) value. Function f applied

to two arguments a and b is written as f a b (without any parenthesis or commas).

The notation supports the usual unary and binary operators as well as (normalised)

let bindings, that is, let a = e1 let b = e2 . . . in en, and are similar to a block of

statements followed by a return denoted by a keyword in. In-place updates to array ele-

ments are permitted and are written as let arr[i] = x. A uniqueness type mechanism

supports such updates without any effect on language purity [Hen+17].

Furthermore, the notation supports a conditional if statement

if c then e1 else e2

with semantics similar to the ternary operator c ? e1 : e2 from C programming lan-

guage, as well as a sequential loop expression:

loop (x1, . . ., xm) = (x10, . . ., xm0) for i < n do e.

Here, x1...m are loop-variant variables that are initialised for the first iteration with in-scope

variables x1...m
0 . The loop executes iterations i from 0 to n-1, and the result of the loop-

body expression e provides the values of x1...m for the next iteration. The initialisation part

can be syntactically omitted, that is, loop (x1, . . ., xm) for i < n do e is legal. In

such cases, the initialisation refers to in-scope variables bearing the same name (x1...m).

Chapter 2. Background

34 2.5. Experimental Methodology

Above all, the notation supports several key parallel array operators. Their types and se-

mantics are shown in Listing 2.1. We shortly describe each of the operators and supplement

them with an example, where relevant. The iota operator applied to integer n creates an

array with elements from 0 to n-1, that is, an iteration space.

The replicate operator applied to integer n and a value v (replicate n v) creates

an array of length n with all elements having a value v.

The map is a SOAC operator that applies its function argument f to each element of the

input array as, resulting in an array of the same length. The function can be declared in

the program or can be an anonymous (λ) function. For instance, map (λa → a + 1) as

adds 1 to each element of as. map2 SOAC operator likewise applies its function argument

f to corresponding elements from its two input arrays as and bs.

The reduce SOAC operator successively applies a binary-associative operator ⊙ to all

elements of its input array as, where e⊙ denotes the neutral element of ⊙.

scan (also known as parallel-prefix sum) [Ble89] is a SOAC operator that is similar to

reduce operator, except that it produces an array of the same length n containing all prefix

sums of its input array as. The inclusive scan (scaninc) starts with the first element of

the array as. The exclusive scan (scanexc) starts with the neutral element e⊙.

Segmented scan SOAC operator (segscan) has semantics of scan applied to each

subarray in an irregular array of subarrays. The latter has a flat representation that con-

sists of (i) a flag array composed of 0s and 1s, where each 1 denotes a start position

of a separate subarray, and (ii) a length-matching flat array that contains all elements of

all subarrays, ordered accordingly. For example, if flag = [1,0,1,0,0,0,1] denotes

an array with three rows, having two, four, and one elements, respectively, segscaninc

(+) 0 flag [1,2,3,4,5,6,7] results in array [1,3,3,7,12,18,7]. In particular,

segscan operator can be implemented in terms of a scan operator with a modified oper-

ator [Ble89], for example, for segscaninc:

λ(f1,v1) (f2,v2) → if f2 != 0 then (f1|f2,v2) else (f1|f2,v1⊙v2)

The filter SOAC operator removes all elements in the input array as that do not sat-

isfy the predicate p. For example, filter (<0) [1,-1,2,3,-2] = [-1, -2], where

p = (<0).

The last SOAC operator scatter updates the array xs in-place at indices contained

in the index array is with the values contained in the array as, except that out-of-bounds

indices are ignored, that is, not updated. For example, in Listing 2.1, value b1 is not written

in the result because its index -1 is out of bounds.

2.5 Experimental Methodology

We use two Linux systems that are described in Table 2.1 across the experiments presented

in the Chapters 3, 4, and 5 (Sections 3.6, 4.7, and 5.5).

Chapter 2. Background

2.5. Experimental Methodology 35

iota : (n : i 3 2) → [n] i 3 2
iota n = [0 , . . . , n −1]

replicate : (n : i 3 2) → α → [n]α
replicate n v = [v , . . . , v]

map : ∀n . (α → γ) → [n]α → [n]γ
map f [a1 , . . . , an] = [f a1 , . . . , f an]

map2 : ∀n . (α → β → γ) → [n]α → [n]β → [n]γ
map2 g [a1 , . . . , an] [b1 , . . . , bn] = [g a1 b1 , . . . , g an bn]

reduce : ∀n . (α → α → α) → α → [n]α → α
reduce ⊙ e⊙ [a1 , . . . , an] = a1 ⊙ . . . ⊙ an

scan : ∀n . (α → α → α) → α → [n]α → [n]α
scaninc ⊙ e⊙ [a1 , . . . , an] = [a1 , a1 ⊙ a2 , . . . , a1 ⊙ . . . ⊙ an]
scanexc ⊙ e⊙ [a1 , . . . , an] = [e⊙ , a1 , . . . , a1 ⊙ . . . ⊙ an−1]

sgmscan : ∀n . (α → α → α) → α → [n] i 3 2 → [n]α → [n]α
sgmscaninc ⊙ e⊙ [. . . , 1 , 0 , . . . , 0 , 1 , . . .]

[. . . , ak
1 , ak

2 , . . . , ak
n , ak+1

1 , . . .] =
[. . . , ak

1 , . . . , ak
1 ⊙ . . . ⊙ ak

n , ak+1
1 , . . .]

filter : ∀n . (bool → α) → [n]α → [n]α
filter (<0) [1 , −1 ,2 , 3 , − 2] = [−1 , −2]

scatter : ∀n ,m. [n]α → [m] i 3 2 → [m]α → [n]α
scatter [a0 , a1 , a2 , a3 , . . . , an−1]

[2 , −1 , 0 , 3]
[b0 , b1 , b2 , b3] =
[b2 , a1 , b0 , b3 , . . . , an−1]

Listing 2.1: A subset of Data-Parallel Second-Order Array Combinators (SOAC), which
constititute the operator semantics in Futhark. Only operators used in the work are listed.

The compute-oriented NVIDIA Tesla V100 PCIe GPGPU, based on the Volta architec-

ture [NVI17; Jia+18], is equipped with 80 Streaming Multiprocessors (32 FP64 cores per

SM) that offer a total 7 TFlop/s FP64 peak performance (14 TFlop/s for FP32). The PCIe

3.0 x16 interconnect bandwidth is 32 GB/s (transfer from/to host main memory). The peak

global memory bandwidth (transfer from/to global device memory) is 900 GB/s and peak

shared memory bandwidth is 13.8 TB/s. In contrast, for GTX 780 Ti the respective band-

widths are 336 GB/s and 3.9 TB/s. In our experiments we observe also that the measured

shared memory bandwidth is closer to the peak for V100 than for GTX 780 Ti.

In the V100 generation the shared memory is merged with L1 Data Cache, so its total

capacity per SM can be set up to 96 KB. In our experiments, we use a default size of shared

memory, that is 48 KB. We do not test the performance on the separate 640 Tensor Cores

as we do not use half FP16 precision for the reasons specified in Section 2.3.1. The impact

of using shared memory is higher with newer GPUs, because the shared memory size per

Chapter 2. Background

36 2.5. Experimental Methodology

D1

CPU1 Dual-socket 26-core 2-way HT (104 CPU threads)
Intel Xeon Platinum 8167M CPU at 2.00GHz

RAM 754 GB DDR RAM

GPU1

NVIDIA Tesla V100 PCIe GPGPU
Generation: Volta, CC 7.0
Compute: 2560 Volta FP64 cores, 80 SMs (32 FP64 cores per SM)
Memory: 16 GB HBM2 global, up to 96 kB shared

CUDA 11.2 and 460.32.03 compute driver

OS Ubuntu 20.04

D2

CPU2 Dual-socket 8-core 2-way HT (32 CPU threads)
Intel Xeon E5-2650 v2 CPU at 2.60GHz

RAM 128 GB DDR RAM

GPU2

NVIDIA GeForce GTX 780 Ti PCIe GPU
Generation: Kepler, CC 3.5
Compute: 2880 Kepler FP32 Cores, 15 SMs (192 FP32 cores per SM)
Memory: 4 GB GDDR5 global, 48 kB shared

CUDA 10.2 and 440.33.01 compute driver

OS openSUSE 12.3

D3
CPU3 Dual-socket 8-core 2-way HT (32 CPU threads)

Intel Xeon Platinum 8272CL CPU at 2.60GHz

RAM 64 GB DDR RAM

OS Ubuntu 20.04

Table 2.1: Device Specification. CPUs are dual-socket and have a 2-way Hyper-Threading
(HT) enabled, so the effective number of CPU hardware threads is 4× the number of CPU
cores. For instance, for 26-core CPU1 we have effectively 104 threads to run multithreaded
computations in parallel. CC stands for Compute Capability, a unit that NVIDIA uses to
describe the GPU feature set (both hardware and software).

CUDA core and bandwidth seem to grow faster than global memory bandwidth. Table 2.2

shows the improvements of V100 over GTX 780 Ti, cards from two GPU generations.

Finally, we want to note that all the experiments are performed on Linux platforms,

which in fact has in the recent years become a standard platform for running HPC work-

loads. During the course of the project, we have developed some of the source code on

Windows platforms, but we do not perform any benchmark runs on Windows for the exper-

iments that we describe in this work.

Chapter 2. Background

2.5. Experimental Methodology 37

V100 GTX 780 Ti Per-Core ∆

#Cores, #SMs, #Cores per SM 5120, 80, 64 288, 15, 192
Shared memory size per SM 48KB (max: 96KB) 48KB 3×
Peak Shared Memory Bandwidth 13.8 3.9 2×
Peak Global Memory Bandwidth 900 336 1.5×

Table 2.2: Computational and memory resources comparison and evolution demonstrated
on the example of two GPU generations used in the work, an older GTX 780 Ti GPU
from 2013 optimised for graphics and FP32 operations and a later V100 GPU from 2018
optimised for compute and FP64 operations.

Chapter 2. Background

Chapter 3

Hull-White One-Factor Lattice
Method (HW1F)

Abstract

This chapter reports on the acceleration of a standard, lattice-based numerical al-
gorithm that is widely used in finance for pricing a class of fixed-income vanilla deriva-
tives. We start with a high-level algorithmic specification, exhibiting irregular-nested
parallelism, which is challenging to map efficiently to GPU hardware. From it we
systematically derive and optimise two CUDA implementations, which utilise only the
outer or all levels of parallelism, respectively. A detailed evaluation demonstrates

1. the high impact of the proposed optimisations,

2. the complementary strength and weaknesses of the two GPU versions,

3. that they are on average 6.3× faster than a matching data parallel code auto-
generated by a state-of-the-art aggressively-optimising compiler, and that

4. they are on average 2.9× faster than our well-tuned CPU-parallel implemen-
tation (OpenMP multithreading and AVX2 vectorisation), and by 3-to-4 order
of magnitude faster than an OpenMP-parallel implementation using the popular
QuantLib library.

Section 3.1 introduces the specific derivative pricing problem that is present in the
fixed-income markets, motivates the importance of accelerated implementation,
outlines our approach, and summarises the main contributions.

Section 3.2 presents the relevant financial background necessary to understand the
problem and the algorithm used to solve it. Subsection 3.2.1 gives a minimal de-
scription of the financial instruments that are priced in this part. Subsection 3.2.2
describes the essential mathematics behind the used financial model. Subsec-
tion 3.2.3, then, examines in depth the algorithm that is used to differentiate the
model.

Section 3.3 presents the data-parallel structure of the pricing algorithm with emphasis
on how the algorithm can be parallelised.

38

39

Section 3.4 shows how on-level GPU-OUTER implementation uses only the outer level
of parallelism, while optimising spatial locality, memory footprint and (partially)
thread divergence by data reordering.

Section 3.5 derives and discusses the two-level GPU-FLAT implementation which flat-
tens the nested parallelism at block level, thus optimising both levels of diver-
gence and which executes mostly in the fst shared memory.

Section 3.6 presents the methodology, the experiments and their results as well as the
detailed evaluation to demonstrate the impact of proposed optimisations, and the
overall performance of the GPU code versions and discusses the results.

Section 3.7 relates the work to other projects on acceleration for similar pricing prob-
lems and compares the used optimisation techniques with the current research.

Section 3.8 concludes on the main outcomes.

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

40 3.1. Introduction

3.1 Introduction

Pricing is a fundamental computational component for the risk management of any invest-

ment portfolio. It applies mathematical modelling and compute-intensive algorithms to

accurately approximate the value of any complex financial derivative instrument. A deriva-

tive is a contract that derives its value from other, more basic instruments like fixed-income

bonds. A classic example is an Over-the-Counter (OTC) instrument baring a custom cash

flow, which is not liquid (not traded frequently enough) and thus its price cannot be observed

at the exchange (or marked to market). In this case, the price needs to be approximated by

a mathematical model (or marked to model) that parametrises certain features that have an

impact on the behaviour. The model needs first to have its parameters calibrated with the

current market situation to yield a meaningful result to practitioners. The calibration is usu-

ally based on the simpler more liquid exchange-traded instruments, for which prices are

quoted in the market.

Modern derivative portfolios, managed by large institutional investors, consist usually of

a large number of such contracts, which differ significantly in their characteristics and cash

flows. This diversity has a severe impact on the required computational effort. In addition,

the combined size of the whole interest rate derivative market alone is immense with the

notional number currently outstanding in the order of hundreds of trillions of American

dollars [Int].

This chapter reports on the GPU (and CPU) parallelisation of an algorithm that solves

a standard pricing model, which is commonly used in practice. Hull-White One-Factor

Short-Rate (HW1F) model [HW94] defines the instrument value by a stochastic differential

equation, that represents the random changes in the interest rate over time. The algorithm

used to discretise and solve them is a Trinomial Tree, a lattice-based numerical method pro-

posed and described in detail in [HW94; HW96]. In this method, pricing a single derivative

instrument comprises two main stages. The forward stage builds a tree of bounded width,

representing the propagation of the interest rate until the maturity of the underlying bond is

reached. The tree has bounded width, because the interest rate tends to revert to the mean

value over time. The backward stage then performs the instrument valuation from matu-

rity back to the current time. The computational structure thus consists of two sequential

time-series loops, with number of iterations equal to the height of the tree, in which each

iteration performs several semantically-parallel operations, which have the same length as

the bounded width of the tree. For example, the forward step computes each node at the

current level from 3 nodes at the previous level in the tree.

Practical use cases require pricing a (large) portfolio of instruments, which gives raise

to an outer level of parallelism, as instruments can be priced independent of each other.

Practical use cases require pricing a (large) portfolio of instruments, which, in principle, can

be parallelised in a straightforward manner by mapping individual instruments to different

threads. All current approaches related to the acceleration of this pricing method:

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

3.1. Introduction 41

• have considered the simple case in which all trees that have the same width and height,

and

• have utilised only the outer parallelism level of the instruments in the batch, while

sequentialising the inner parallelism available in the valuation of one instrument.

Section 3.7 comprise a survey and a comparison with the current research.

The main challenge is related to the fact that in realistic scenarios the width and height

of the trees is highly variant across the portfolio instruments. This gives raise to a case of

irregular-nested parallelism that is difficult to map efficiently to GPU hardware. In partic-

ular, related approaches, surveyed in detail in Section 3.7, either assume the homogeneous

case [HT05; Ger04] in which all trees have the same height and width, or acknowledge

the problem, but do not offer a solution [Gra+13]. To our knowledge, this work is the first

to address the GPU-acceleration of the HW1F model solved by the bounded trinomial-tree

numerical method. Related work considers other pricing models or numerical methods used

to solve them.

This chapter studies this challenging case of a heterogeneous portfolio, and reports on

two parallelisation strategies and their subsequent optimisations.

The first strategy follows the common wisdom that the outer levels of parallelism are

more profitable to exploit than the inner ones. As such, given a big enough portfolio, it

sequentialises the inner parallelism and performs one instrument valuation per thread. Sec-

tion 3.4 presents our implementation of this strategy, named GPU-OUTER, together with

a set of optimisations aimed at improving memory footprint and spatial locality (that is,

coalesced accesses to global memory).

In particular, the high variance of widths and heights across a portfolio introduces two

levels of thread divergence on GPU. These levels correspond (i) to the sequential time loop

of variant height and (ii) to the inner width-parallel operations, which are sequentialised.

GPU-OUTER allows to optimise one level of divergence, but not both; for example, by pre-

computing the widths (or heights) of the instrument’ trees, and by sorting the portfolio in

decreasing order of their widths (or heights).

The second strategy is to optimise (i) the height level of divergence by sorting as before,

and (ii) the width level by efficiently exploiting the (irregular) inner level of parallelism

at thread block level, which also allows to maintain most of the data in the fast (shared +

register) memory.

The idea is (i) to pack instruments into bins, such that their summed widths fit the size of

the thread block (bin), and then (ii) to “flatten” (merge) the available two-level parallelism.

The first level corresponds to the instruments in a bin, and the second level corresponds to

the width-length parallel operations that appear in the implementation of each instrument.

The flattening step is highly non-trivial and is a key contribution of this work. In Sec-

tion 3.3, we document it by presenting an initial simplified nested-parallel specification that

uses operators such as map and reduce. In Section 3.5, we then demonstrate how flatten-

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

42 3.2. Financial Background and Algorithm

ing is performed for the specific application, that is a subject of this chapter, resulting in a

program named GPU-FLAT.

A detailed experimental evaluation on two NVIDIA GPUs shows that:

• The proposed optimisations (data reordering, padding, coalescing global memory ac-

cesses) have high impact: for GPU-OUTER as high as 6.0× and on average 4.1× and

for GPU-FLAT as high as 5.8× and on average 2.7×.

• GPU performance is sensitive to both dataset and hardware characteristics. On older

GPU hardware, GPU-OUTER is slightly faster than GPU-FLAT by a factor as high as

2.3× and on average 1.8× on large portfolios with constant or randomly-distributed

heights and widths. GPU-FLAT is faster in all the other cases, that is, on small port-

folios (3.4× on average), or when the distribution of dimensions (widths or heights)

is skewed (as high as 15.3× and on average 5.9×) or even random on newer GPU

hardware (1.8×).

• To demonstrate that the current compiler technology does not currently support the

proposed optimisations, we compare GPU-OUTER and GPU-FLAT with “matching”

implementations written in the data-parallel language Futhark [Hen+17]. Our best

CUDA version is faster than Futhark on all datasets by a factor as high as 29.8× and

on average 6.3×.

• Finally, the best GPU version is faster by a factor as high as 6.7× and on average

2.9× than our tuned multithreaded and vectorised CPU implementation (OpenMP +

AVX2), named CPU-MT+VECT. In addition, our CPU implementation is 3− 4 orders

of magnitude faster than an OpenMP-parallel implementation built on the popular

QuantLib library [Bal21; Bal14], named QUANTLIB-PAR.

3.2 Financial Background and Algorithm

3.2.1 Option as a Derivative and Bond as an Underlying Asset

Fixed-income Instruments like Bonds

In this work, we deal with a specific class of bond instruments, that are heavily traded in

fixed income markets by the largest financial institutions. The debt market, where bonds,

among others, are traded, is by far the largest and most liquid of all the financial markets.

Bonds are characterised by a cash flow during their lifetime. We consider a bond paying a

coupon rate on specified dates up until bond maturity. The value of coupons is most often

fixed for fixed-rate bonds, but varies for floating rate notes (FRNs) depending on some

agreed reference rate. The payment dates are usually periodical, but we assume they can

occur on any future date. The bonds having a cash flow are traded more frequently as they

offer larger premiums in contrast to zero-coupon bonds. However, due to the fixed coupon,

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

3.2. Financial Background and Algorithm 43

the market value of a fixed-rate bond is susceptible to fluctuations in interest rates, and

therefore has a significant amount of interest rate risk.

Derivative Instruments like Options

A derivative (a contract) derives its own value from the value of the underlying asset. A

call or put bond option is a derivative contract that gives an investor the right, but not

the obligation, to, respectively, buy or sell the underlying bond for a predetermined strike

price at a future exercise date before the bond maturity. In general, options as financial

instruments are used for hedging of portfolio risks or market speculation.

Embedded (Callable, Puttable) Options

In the domain of fixed income instruments, a call is used to benefit from a decline in interest

rates and a respective increase in bond prices, while a put from the inverse, an increase in

interest rates and a respective decrease in bond prices. These options are considered to be

embedded in the bonds and valued together accordingly. In a practical setting, a call option

on a callable or redeemable bond gives the bond issuer the right to redeem the bond. The

bond holder has sold a call option to the issuer. The issuer is protected and receives an

opportunity to refinance its debt at a more attractive rate. On the other hand, a put option on

a puttable or retractable bond gives the holder the right to demand early redemption. The

holder has purchased a put option and receives a protection against an unattractive rate.

Option Types and Styles

We differentiate traditional vanilla options and more complex and custom exotic options.

A call or a put are typical examples of vanilla options. Furthermore, we differentiate a few

styles of a vanilla options. Exercise time of the options determines its style. European can

only be exercised on one particular date, while Bermudan, on many specific, usually peri-

odical, dates, and American, on any date up until the last agreed exercise date. Analytical

formulas exist for an immediate and exact valuation of European options, but the value of

the other two can only be approximated by numerical methods. Exotic options differ from

vanilla options in their payment structures, expiration dates, and payoff functions. They are

based on the assumption that the underlying asset varies over time, that leads to more hybrid

investment alternatives. In fact, exotic options are often packaged as financial products and

customised to fit the needs of the investor.

Instrument Assumptions

In this work, we deal with a multi-callable or puttable bond with a fixed or floating coupon.

We focus on Bermudan or American optionality, but capture any bond cash flow. Moreover,

we assume that bonds have only one underlying factor, an interest rate of the currency, they

are traded in. For a more detailed descriptions of the interest rate derivatives, we suggest

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

44 3.2. Financial Background and Algorithm

the standard literature on derivative pricing [Hul17] as well as material focused on interest

rate instruments [BM06; AP10].

3.2.2 Hull-White One-Factor Short Rate Model for Option Pricing

One of the most popular short-rate models for interest rate derivative pricing is Hull and

White (1990, 1994a) [HW90; HW94]. We consider a one-factor model, which has a single

source of risk or uncertainty, a short rate, that is an interest rate applicable at instantaneous

or very short periods of time. The model is based on a diffusion stochastic process, which

describes a probabilistic evolution of a random short rate over future time. The process

assumes the future interest rates are a function of the initial ones with their movement

reverting to the mean over time.

In this work, we consider a simplified version of the Hull-White extension of the Vasicek

model, where volatility σ and mean reversion rate a parameters are constant. In strict math-

ematical terms, the dynamics of HW1F are expressed by a Stochastic Differential Equation

(SDE):

dr = [θ(t)− ar]dt+ σdW (3.1)

The equation defines a continuous process, which can be decomposed into a drift term

and volatility (Brownian motion) term. The drift coefficient of (first) dt term in the Equa-

tion 3.1 drives the evolution of the process. The term includes the constant short rate r,

function θ(t), mean-reversion rate a and an infinitely small increment of time dt. r fol-

lows a mean-reverting Ornstein-Uhlenbeck (MROU) stochastic process, that is pulled back

toward a central value with a rate a. θ(t) is a deterministic function of time chosen to fit

the theoretical bond prices to the market yield curve and defines the average direction that

r moves with rate a at time t. The volatility coefficient of (second) dW term in the Equa-

tion 3.1 determines the amount of “noise” or variability of a process, and as such models

risk. The term comprises of volatility σ and the stochastic variable dW , which follows the

random normal distribution with mean 0 and standard deviation 1. In practice, σ models

the absolute level of short rate volatility, while a determines the relative volatilities of long

and short rate. A high value of a causes short-term rate movements to damp out fast, and

thus reduce the long-term volatility. HW1F is an arbitrage-free model and, as such, is ap-

preciated by the practitioners for its ability to reproduce an arbitrary market yield curve and

enable calibration of model parameters to the observed market prices.

3.2.3 Hull-White Trinomial Tree as a Numerical Method

Hull and White (1994a, 1996) [HW94; HW96] outline a trinomial tree construction pro-

cedure for solving HW1F model. We present an algorithmic procedure and refer to the

original research for a more rigorous mathematical description of the method.

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

3.2. Financial Background and Algorithm 45

Figure 3.1: A trinomial tree as in Boyle (1986) [Boy86] that shows a tree construction
procedure for a stochastic variable S.

Figure 3.2: A Hull-White Tree [HW94], which is a trinomial tree with a bounded width
that incorporates the mean reversion phenomenon.

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

46 3.2. Financial Background and Algorithm

Forward Propagation: Tree Construction

The tree is constructed in a breadth-first (in this work, width-first) manner. It starts from the

root, which corresponds to the current time, and ends at the leaves, which correspond to the

bond maturity time. The nodes at a certain height level denote possible values for the short

rate at that time step. The tree height is defined by the remaining time to the maturity T of

the bond, specified as a year fraction. The tree width is determined by the mean reversion

rate a (the lower the rate the wider the tree), specified as a basis point. The height varies

across bonds, while the width is determined by a calibration of a to the current market data

to estimate the volatility of the underlying interest rate. Moreover, both dimensions depend

on the frequency of time steps, that is, how often we monitor changes in the interest rate.

Every bond depends on a term structure (or a yield curve), a relationship between interest

rates and maturity terms. It represents a market expectation of interest rate evolution over

future time, and in practice is constantly updated based on the market situation. The original

chapter [HW94] introduces two stages in the forward propagation, tree construction and

tree displacement, which implies that the whole tree is traversed twice.

The first stage constructs a preliminary tree, where θ(t) = 0 and initial value r = 0.

We define r as a continuously compounded ∆t-period rate. We denote the expected value

across a ∆t-period r(t+∆t)− r(t) as −ar(t)∆t and the variance of r(t+∆t)− r(t) as

σ2∆t. The time step size is ∆t = T/n, where T is the bond maturity and n is the number

of desired time steps. The interest rate step size is then ∆r = σ
√
3∆t, which is a theoretical

choice. ∆t progresses along height, while ∆r are distributed along the width. We denote

the tree node by (i, j) for which t = i∆t and r = j∆r, where i denotes the time step along

the height, and j the rate step along the width. By convention, the node in the middle of a

tree level has index j = 0.

A trinomial tree represents a random propagation of the interest rate in time. In our

case, the value of node (i, j) is the Arrow-Debreu price Qi,j , which corresponds to the

value of a security that pays 1 if node (i, j) is reached and 0 otherwise. In Figure 3.1, the

weights on the edges represent the probabilities of transitions from one value to the other.

The tree is considered “trinomial”, because the computation of each node value at a current

time step i depends on three node values from the previous time step i− 1. In particular, at

each node there is a choice u,m and d to branch upward, horizontally, and downwards, with

probabilities pu, pm, and pd, respectively, where pm + pu + pd = 1, as in Figure 3.1. The

tree probabilities are dependent on a chosen n and a and are chosen to match the expected

change and variance of ∆r over the next interval ∆t, and are calculated from equations for

each branching.

In practice, the total sum of branching probabilities becomes negative or greater than

1 for large negative or positive values of j. To mitigate this problem, Hull and White

propose to subdivide the original short-rate trinomial tree into two time regions along the

height dimension to obtain a Hull-White tree. They match parameters of their model with

empirical observations and determine that the region changes from one to the other, when

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

3.2. Financial Background and Algorithm 47

the step index reaches jmax = −0.184/M , where M = e(−a∆t) − 1. In particular, the

normal region propagates the probabilities as in an ordinary trinomial tree from time 0 to

some particular height i, at which width of the tree reaches 2jmax +1. The bounded region

(from time i + 1 onwards) changes what happens with the probabilities at the boundary

widths jmax and −jmax.

In more detail, the current node (i, j) contributes to the three nodes at the next time step

(i+ 1), as follows:

• if j = −jmax then horizontally to node j, and upwards to nodes j + 1, and j + 2;

• if j = jmax then horizontally to node j, downwards to nodes j − 1, and j − 2;

• otherwise horizontally, upwards, and downwards to nodes j, j +1 and j − 1, respec-

tively.

Figure 3.2 shows an example, where jmax = 2, width is 5, height is 6, i ∈ [0, 5] and

j ∈ [−2, 2].

The change in the tree geometry not only allows for bounding a width dimension, which

makes the algorithm more tractable from a computational perspective, but also leads to

faster tree construction (less nodes to traverse) and more accurate pricing (the algorithm

converges faster). We use this fact in Section 3.5 to extract parallelism from the tree al-

gorithm and efficiently map the implementation to the GPU architecture, where amount of

parallelism we can exploit is limited by hardware. However, the most important motiva-

tion from the modelling perspective is the fact that this tree geometry intuitively fits the

empirical observation that the interest rate reverts to the mean over time. In other words,

particular high and low interest rates values are considered unlikely to happen. The current

market situation in 2020s questions this assumption and forces us to reevaluate our models.

The Hull-White model treats interest rates as normally distributed. This leads to scenarios

in which interest rates are negative, though there is a low probability of this occurring as a

model output.

The second stage adjusts the constructed tree from the first stage to match the initial

term structure observed in the market. We displace the nodes (that is, the Arrow-Debreu

prices Q) at time i∆t by an amount αi, that is, the new value of Qi,j in the displaced tree

is then equal to Qi,j + αi. The value of αi is determined from a sum of Arrow-Debreu

prices Q across all nodes at the previous time step (i − 1) and the bond price P (0, i) with

maturity in the current time step i. In particular, α0, α1, α2, . . . for time steps 0, 1, 2, . . .

are determined successively to ensure that the prices of zero-coupon bonds with maturities

∆t, 2∆t, 3∆t, . . . are matched, respectively.

Our implementation combines the tree construction and displacement stages, by per-

forming them one after another at each time step to avoid traversing the tree twice.

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

48 3.2. Financial Background and Algorithm

Backward Propagation: Option Pricing

Once the complete term structure has been calculated at each node, the tree can be used to

value a wide range of derivatives. We use a backward propagation to value a bond with

embedded options from the maturity back to the current time at the root. At each step we

adjust for the cash flows, accrued interest or the eventual option exercise and discount the

bond price. We end up with the estimated bond price as of the calculation day at the root of

the tree. This computation reuse α values computed during forward propagation.

In the following sections, Qs denotes the Arrow-Debreu prices, which are computed in

the forward propagation stage and Cs denotes the bond prices with an embedded option-

ality computed in the backward propagation stage. Finally, we note that both forward and

backward propagations need to be implemented as sequential loops, because the values of

the current time step depend on those computed in the previous time step.

3.2.4 Motivation behind the Model and Algorithm Choice

In this section, we present a number of arguments that motivate our model and algorithmic

choice.

Versatile Pricing Model

First of all, we emphasise that although in this work we use the Hull-White model to find the

price of a callable bonds with a Bermudan or American optionality, in practice the model

is commonly used to price many other exotic interest rate derivatives like multi-legged

interest rate swaps, bermudan swaptions, or spread options. Our proposed implementation

optimisations are also applicable to these other types of derivatives.

Parallelisation Enables Simultaneous Valuations

By parallelising HW1F Trinomial Tree algorithm, we enable a valuation of many instru-

ments at the same time, which is highly beneficial for risk workloads like MCVaR that

valuate thousands of instruments against millions of scenarios. Therefore, fast valuation

is a building block for larger computational workloads, where performance is expected to

scale with the size of the input. In fact, we need a large number of trees available in big

computation cases to reach an optimal performance on a massively parallel architecture like

a GPU. An alternative method that can be used in a HW1F case are Monte Carlo simula-

tions. This approach is popular on GPUs, because of an embarrassingly-parallel nature of

the algorithm. Sets of paths are independent of each other map and can thus be directly to a

large number of threads available on a GPU.

Real-time Computation Enables New Use Cases

Let us define real-time performance execution as one that executes in a matter of a single

second. One use case that is a realistic candidate for a real-time computation is a portfolio

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

3.2. Financial Background and Algorithm 49

risk analysis. It requires ad-hoc simulations, where a change in one position in portfolio

requires full portfolio repricing. In an ordinary case with typical sequential implementation,

an analysis on a relatively small portfolios is the only feasible option. However, if pricing

one tree is sub-millisecond than large portfolios with thousands of positions can be repriced

on demand in real-time, Such a case is an improvement for portfolio decision-making.

Trade-offs between Execution Time and Accuracy

Let us now focus on the trade-off between the execution time and accuracy. Each HW1F
tree itself can comprise of arbitrarily large number of nodes that are determined by its height

and width dimensions. In this work, we constrain us to relatively small trees dimensions and

still manage to get significant execution time speedups, because we are able to efficiently

group and then map many smaller trees to all threads available to handle them in parallel and

maximise the GPU occupancy. However, the same is true, if we increase the dimensions of

the trees for these instruments, for which it is necessary. The way how we map tree nodes

to threads does is indifferent to the size of the tree as long as it is bounded and smaller

than the maximal number of threads that can be executed at the same time on aSM. The

better the approximation the more accurate is the price. We achieve that using a more fine-

grained lattice. The consecutive changes (differences) between tree nodes in rate and time

dimensions are decreased and the size of the tree grows as a result. If we can handle many

nodes in parallel, we can handle better approximations faster. As a result, some trees, that

are infeasible to run under practical time constraints, can now be processed. We present an

example, where we show an advantage of having high accuracy. In our experiments, tree

height is at most equal to 1200, which allows for high accuracy in representing any bond

cash flow during its lifetime, for instance, on a day-by-day basis. Let us now assume an

extreme case where we have one time step for each business day in the year, 252 of them a

year. 1200 time steps means that we can represent about 5 years until bond maturity, which

is a realistic case. Let us further assume a case where there are semi-annual coupons on a

fixed-rate bond during the lifetime of the bond with a early-exercise opportunity on each

day (an American option). Due to daily treatment of the time steps, we can map a coupon to

an exact day. Moreover, width has a limit of 1024, which enables a fine-grained treatment

of short-rate probability value. This number of nodes across width allows us to handle the

changes in the underlying stochastic process with a sufficient accuracy for industrial needs.

As a result of such a setup, we can simulate changes in interest rate on a day-by-day basis

with high accuracy.

Tractability

Our choice of a model that can be represented by a bounded trinomial tree is also motivated

by the tractability of this numerical method, which is a valuable feature for practitioners.

The trinomial tree, as well as the binomial tree, gives us tractability, because we have the

possibility to test for early-exercise at each time step in the tree, for example, each day, until

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

50 3.3. Simplified Nested Data-Parallel Specification

the maturity of an option. With this approach, we do not need to reduce the number of mon-

itoring dates. One more model feature follows from the fact that a tree can be represented

as αs vector. Thus, a portfolio manager can save the tree in this form and retrieve it later

for offline inspection.

Comparison with Other Models

Lattice models are more computationally stable and accurate in low dimensions (one-factor,

one stochastic process) than other numerical methods. The first alternative numerical meth-

ods that can be used for solution of HW1F model is a Finite-Difference Method, for exam-

ple through a standard Crank-Nicolson discretisation scheme. The problem is formulated

as a PDE and then discretised as a grid of finite differences to approximate bond and op-

tion prices. In fact, binomial and trinomial trees are perceived as easy to use alternatives

to FDM for implementing one-factor models of the short rate. FDM are similar to lattice

methods, because a trinomial tree can be seen as a particular implementation of an explicit

FDM. FDM suffer from their own complications like (i) finding accurate assumptions to the

boundary conditions and (ii) adapting the procedure to match the initial term structure. The

second alternative is to use a Monte Carlo simulation in forward step to generate random

paths for changes in bond prices. This method requires SDE formulation of the model.

Model Extensions

As shown by Hull and White (2001) the tree building procedure can be extended to ac-

commodate non-equal time steps and values for a and σ that are functions of time. Hull

and White (2016) show that their method can be expanded to three dimensions, where two

curves are used to price exotic options. Hull and White (2017) generalises the idea of tree

construction to accommodate in a realistic way the existence of or a possible future occur-

rence of negative interest rates.

3.3 Simplified Nested Data-Parallel Specification

This section uses functional notation that was introduced in Section 2.4.5 to present the

nested-parallel structure of the pricing algorithm defined in Section 3.2.3.

In comparison to a lower-level loop-based notation, such as CUDA, the functional

notation has the advantage that it (i) enables a concise specification of all available (nested)

parallelism in terms of well-known data-parallel operations such as map, reduce, and

scan, and (ii) allows to demonstrate at a high level the rewrite rules, that are applied to

derive GPU-FLAT. However, we omit the description of the rewrite rules in this work.

Listing 3.1 sketches the (simplified) implementation of the pricing algorithm, which

nevertheless accurately captures the nested-parallel structure. The main function (at the

bottom of the Listing 3.1) receives a portfolio of instruments and performs a valuation of

each by an outer embarrassingly-parallel map operation, that can be easily distributed across

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

3.3. Simplified Nested Data-Parallel Specification 51

1 let valuate (ins : Instrument) : real =
2 let (w,h) = f1(ins)
3 let Qs = replicate w 0.0
4 let Qs[w/2+1] = f2(ins)
5 let αs = replicate h 0.0
6 let α_i = f3(ins)
7 let αs[0] = α_i
8 let (_,αs) =
9 loop (Qs, α_i, αs) for i < h-1 do

10 let Qs’ = map (λj →
11 let q0 = Qs[j]
12 let q1 = if j > 0 then Qs[j-1] else 1.0
13 let q2 = if j < w-1 then Qs[j+1] else 1.0
14 in g1(i, j, α_i, q0, q1, q2)
15) (iota w)
16 let α_v = reduce (+) 0.0 Qs’
17 let α_i’= g2(α_v, ins)
18 let αs[i+1] = α_i’
19 in (Qs’, α_i’, αs)
20 let Cs = replicate w 100.0
21 let Cs =
22 loop (Cs) for ii < h-1 do
23 let i = h - 2 - ii
24 let α_i = αs[i]
25 in map (λj →
26 let c0 = Cs[j]
27 let c1 = if j > 0 then Cs[j-1] else 1.
28 let c2 = if j < w-1 then Cs[j+1] else 1.
29 in g3(i, j, α_i, c0, c1, c2)
30) (iota w)
31 in Cs[w/2+1]
32

33 let main (portfolio : []Instrument) =
34 map valuate portfolio

Listing 3.1: Nested-Parallel Implementation of HW1F.

threads, GPUs, or nodes. We can use such an approach, because, according to our portfolio

assumptions, each instrument depends only on a single unique underlying asset.

Function valuate receives an instrument data as an argument and computes its price

approximation. Computation starts by determining the width w and height h of the trinomial

tree (at line 2), and by initialising arrays Qs of size w (lines 3-4) and αs of size h (lines 5-7).

The two sequential loops of indices i and ii implement the forward and backward tree

propagation.

The first loop (lines 9-19) fills in the values of an array αs. First, the map operation

of length w (at lines 10-15) computes each element across width at the current time step

(height) level in the tree, that is, Qs’[j], by aggregating the three different values belonging

to the previous time step level, that is, Qs[j-1], Qs[j], Qs[j+1]. Note that only the

current and previous time step elements across width levels, rather than the entire tree, are

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

52 3.4. GPU-OUTER: Outer-Parallel Version and Optimisations

manifested in memory by arrays Qs’ and Qs.) The newly created array Qs’ is then summed

up, through the reduce operation at line 16. and provides the value of αs[i+1]. Note that

both parallel operations occur inside the outer map operation that is applied to the whole

portfolio, and thus giving raise to nested parallelism. Finally, the resulted values of Qs’,

α_i’ and αs are bound to the loop-variant variables Qs, α_i and αs for the next iteration.

The second loop (lines 22-30) traverses the tree backwards, from the maturity to the

present date. At each step, the iteration computes the prices associated to the current width

level by a similar map operation. The price of the instrument today is at the root of the tree,

corresponding to Cs[w/2+1] after the loop.

3.4 GPU-OUTER: Outer-Parallel Version and Optimisations

GPU-OUTER is derived by mapping each instrument to one thread, thus sequentialising the

inner parallelism available in the valuate function. While most of the low-level (CUDA)

implementation is straightforward, one non-trivial issue refers to the fact that arrays such

as Qs and αs need to be expanded across all valuations in the portfolio and to be stored

in global memory. There exists no suitable statically-known upper bound for their length,

and as such they cannot be stored in CUDA shared memory. This section discusses two

performance critical optimisations. The first finds a good layout for the expanded arrays,

Qsexp and αsexp. The optimisation enables coalesced access to global memory, while min-

imising the memory pressure. The second diminishes the overhead of one of the two levels

of thread divergence, that arises from the per-thread computation across both the width w

and the height h of the tree. The optimisation addresses the cases, where both w and h vary

significantly across threads (instruments).

3.4.1 Naive Expanded-Array Layout

We assume that the portfolio consists of n instruments. Subsequently, we determine a

naive layout by using a map to pre-compute the width and height of each of the n trees

into two arrays ws and hs. We sum up these two arrays to produce the total length of

Qsexp and αsexp. Next, we compute the starting offsets into Qsexp of the logically-local

arrays Qs, one for each iteration of the outer map, by applying a scanexc operation on

ws. The operation results in an array named Qs_offs. For example, the logical ar-

rays Qs corresponding to iteration (thread) i of the outer map is represented by the slice

Qsexp[Qs_offs[i]:Qs_offs[i+1]] of length ws[i]. Similar considerations apply to

αsexp. The inspector code is presented below, where unzip transforms an array-of-tuples

to a tuple-of-arrays, that is,

unzip [(a1,b1),. . .,(an,bn)] = ([a1,. . .,an], [b1,. . .,bn]).

1 let (ws, hs) = unzip (map f1 portfolio)

2 let Qs_offs = scanexc (+) 0 ws

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

3.4. GPU-OUTER: Outer-Parallel Version and Optimisations 53

3 let αs_offs = scanexc (+) 0 hs

4 let len_Qsexp = Qs_offs[n-1] + ws[n-1]

5 let len_αsexp = αs_offs[n-1] + hs[n-1]

In practice, the implementation of the parallel inspector above fuses the map and the

two scan operations, leading to an efficient code, especially if the operation is based on

a single-pass scan implementation [MG16]. However, this layout is problematic, because

it leads to poor spatial locality. Consecutive threads access global memory with a large

stride, that is equal to the values of w (or h). This leads to accessing global memory in an

uncoalesced fashion, which can be prohibitively expensive on GPUs.

3.4.2 Global Padding Enables Coalesced Access

Matters can be improved by computing the maximal width wm and height hm across all

n trees and padding each local array to this size, that is, Qsexp and αsexp are now two-

dimensional arrays of sizes n×wm and n×hm, respectively. Modulo thread divergence (im-

balanced) issues, fully coalesced access to global memory can be achieved by working with

the transposed versions of Qsexp and αsexp. The inner array dimension of size n is indexed

by the thread (instrument) number, hence consecutive threads access consecutive memory

locations, thus achieving coalesced access to global memory. The main downside is a po-

tential explosion in the memory footprint, for instance, under skewed distribution of width

or height values.

3.4.3 Block or Warp-Level Padding: Coalesced Access at a Small Memory
Overhead

The memory explosion can be remedied by padding at finer granularity, for example, at

thread block or warp level. Let us denote the block (or warp) size by B. Padding is then

accomplished by (i) finding the maximal width (and height) for each group of B instrument

trees, (ii) followed by padding to the maximal size within the group, and (iii) by work-

ing with the transposed version of the arrays, as before. In the following we assume for

simplicity that n is a multiple of B.

1 let wbs’ = reshape (n/B, B) ws

2 let wbmax = map (reduce (+) 0) wbs’

3 let pad_lens = map (λw → w*B) wbmax

4 let blk_offs = scanexc (+) 0 pad_lens

The implementation of the parallel inspector is shown above: (i) the precomputed array

of widths (heights) is reshaped as a n
B × B two-dimensional array, then (ii) a segred

operation finds the maximal width of each group, (iii) the padded lengths of each group is

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

54 3.5. GPU-FLAT: Flattening Two-Level Parallelism

obtained by multiplying the maximal widths by B, and (iv) the start offsets into the expanded

array for each block (warp) are computed by a scanexc operation.

For example, the expanded array for block b is the slice

Qsexp
b = Qsexp[blk_offs[b]:blk_offs[b+1]],

which is seen as a two-dimensional array of shape B × wbmax[b], This means, that the

start-index of logically-local array Qs corresponding to local thread i is

blk_offs[b] + i*wbmax[b].

To obtain coalesced access, the implementation manifests the transpose of Qsexp
b of

shape wbmax[b] × B. The operation requires that we find the maximal width and height

for group at the level, and then pad and transpose at that level, which can be achieved using

scanexc.

3.4.4 Data Reordering Optimises One Level of Thread Divergence

The code in Listing 3.1 exhibits two levels of divergence, because the body of the valuate

function is executed (sequentially) by each thread, which corresponds to an instrument

in the map over the entire portfolio. The recurrences appearing inside valuate are (i)

the two forward- and backward-traversal loops of count h, and (ii) the enclosed (inner)

map-reduce computations of length w. Since both the height h and width w of the tree

varies significantly across instruments, it follows that both parameters are sources of a

thread divergence and their combination further exacerbates it. For example, if two threads

executing in lockstep have (w1,h1)=(1,m) and (w2,h2)=(m,1), then their execution

takes O(m2) time, rather than the expected O(m) time. With the GPU-OUTER implemen-

tation, one of the levels of divergence (but not both) can be optimised by a pre-processing

step that sorts the portfolio of instruments after the heights or widths of their corresponding

trees. In practice, sorting in the decreasing order of the widths (rather than heights) is more

beneficial because it improves the degree of coalesced access to frequently-accessed array

such as Qs and Cs, especially for the version performing padding at block or warp level. To

conclude, we report that all pre-processing (inspector) overheads are small, because they

sum up to under 2% of the total execution time.

3.5 GPU-FLAT: Flattening Two-Level Parallelism

This section demonstrates how the GPU-FLAT implementation, which utilises both levels

of parallelism, is derived from the nested-parallel code of Listing 3.1, in a way that simul-

taneously optimises (i) both levels of divergence and (ii) temporal locality. We keep the

discussions here intuitive and specific to the trinomial tree algorithm. However, the trans-

formation can be formalised by a set of inference (rewrite) rules that can be integrated in the

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

3.5. GPU-FLAT: Flattening Two-Level Parallelism 55

repertoire of a compiler. We omit presentation and discussion of the rewrite rules, because

they are not considered a contribution of this work.

Essentially, GPU-FLAT uses both levels of parallelism, which allows to simultaneously

optimise (i) the temporal locality and (ii) both levels of divergence. The idea is to first

sort the instruments in decreasing order of their heights, thus optimising the divergence

of the forward and backward traversal loops. Then we pack the input (instruments) into

bins, such that the summed widths of their trees do not exceed the thread block size, which

determines the capacity of the bin. We choose the maximal size 1024 that is the upper bound

on the number of threads in a thread block. The two parallel levels, one of the instruments

in a bin and the other of the inner parallelism inside valuate function, are then combined

(flattened) and mapped at the thread block level, while the parallelism across bins is mapped

on the CUDA grid.

On the one hand, this implicitly optimises the width-level of thread divergence, because

the flattened parallelism has roughly the size of the thread block. On the other hand, tem-

poral locality is also optimised because the data created by inner-parallel operations (inside

valuate), such as the arrays Qs and Cs, is maintained in fast (scratchpad or shared) mem-

ory. The array αs is maintained in global memory, in the same manner as in GPU-OUTER,

because it is not guaranteed to fit in the shared memory. Moreover, it is again padded and

transposed at block level to optimise coalescing and memory footprint. Unfortunately, the

flattening transformation introduces two issues: instructional overhead and shared memory

or register pressure.

3.5.1 Flat-Parallel Version in Fast Shared Memory

Listing 3.2 shows the code that is obtained from applying the flattening transforma-

tion. In this section, we make an extensive use of the functional notation described in

Section 2.4.5, because we need the parallel-basic constructs (reduce, segscan), or oth-

erwise it is infeasible to demonstrate the transformation producing GPU-FLAT.

The bin array corresponds to a batch of q instruments, for which summed widths are

less than the thread block size. The result is an array of length q of real numbers denoting

the prices of these instruments at the current time. The flat code is obtained by distributing

the (outer) map operation, that is applied over the q instruments of the bin, around each let

statement of the original valuate function shown in Listing 3.1. In essence, distributing

the map (i) across a scalar statement results in a map of size q, and (ii) across a parallel

operation of size width results in a parallel operation of size Σq−1
k=0widthk, that is padded

to thread block size.

For brevity and clarity of exposition, our discussion in Listing 3.2 (and the inference

rules) ignores the complications related to (i) padding parallel arrays to thread block size and

(ii) using the non-trivial offsets in the arrays of all instruments and of αs corresponding to

the sub-arrays of the current block. Despite being tedious to derive, they are straightforward

to add.

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

56 3.5. GPU-FLAT: Flattening Two-Level Parallelism

1 let valuatebin (q: i32) (bin: [q]Instrument) : [q]real =
2 let (ws,hs) = map f1 bin
3 let Bw = scanexc (+) 0 ws
4 let lenflat = Bw[q-1] + ws[q-1]
5 let tmp = map2 (λs b → if s == 0 then -1 else b) ws Bw

6 let flag = scatter (replicate lenflat 0) tmp (replicate q 1)
7 let tmp = scaninc (+) 0 flag
8 let outinds = map (λx → x-1) tmp
9 -- map (λw → iota w) ws

10 let tmp = map (λf → 1-f) flag
11 let inninds = sgmscaninc (+) 0 flag tmp
12 -- map (λw → replicate w 0) ws
13 let Qss = replicate lenflat 0.0
14 -- map2 (λQs w → Qs[w/2+1] = f2(ins)) Qss ws
15 let tmp_i = map2 (λb w → b + w/2 + 1) Bw ws
16 let tmp_v = map f2 bin
17 let Qss = scatter Qss tmp_i tmp_v
18 -- init regular (transposed) hmax×q matrix αssT

19 let hmax = reduce max 0 hs
20 let αis = map f3 bin
21 let αssT = scatter (replicate (hmax*q) 0.0) (iota q) α_is
22

23 -- map-loop interchange; loop count padded to hmax-1
24 let(_,_,αssT) =
25 loop(Qss,α_is,αssT) for i < hmax-1 do
26 -- map2 (λis α_i→map (. . .) is) inninds α_is
27 let Qss’ = map2 (λj oi →
28 let (b,h) = (Bw[oi], hs[oi])
29 in if i ≥ h-1 then Qss[b+j]
30 else
31 let q0 = Qss[b+j]
32 let q1 = if j > 0 then Qss[b+j-1] else 1.0
33 let q2 = if j < w-1 then Qss[b+j+1] else 1.0
34 in g1(i, j, α_is[oi], q0, q1, q2)
35) inninds outinds

36 -- map (reduce (+) 0) Qss’
37 let scQs = sgmscaninc (+) 0.0 flag Qss’
38 let α_vs = map2 (λb w → scQs[b+w-1]) Bw ws
39 -- map(λα → α[i+1] = g2(. . .)) αss
40 let tmp_i = map2 (λh k →
41 if i ≥ h-1 then -1 else (i+1)*q + k) hs (iota q)
42 let α_is’ = map2 g2 α_vs bin
43 let αssT = scatter αssT tmp_i α_is’
44 in (Qss’, α_is’, αssT)
45 let Css = replicate lenflat 100.0
46 . . .

Listing 3.2: Flat-Parallel Implementation of HW1F. We omit the second backward propa-
gation loop as it has a similar code structure.

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

3.5. GPU-FLAT: Flattening Two-Level Parallelism 57

Listing 3.2 starts by computing the widths and heights of the trees for all the q instru-

ments (line 2). In practice, the widths and heights are precomputed by an inspector, which

is separated from the original code. We run in before the main kernel in the preliminary

steps, where the instruments are first sorted after their heights to optimise the divergence

of the sequential loops, and then their widths. We need to use this approach to pack the

instruments into bins.

For demonstration, we assume that q=2, and the widths and heights are ws=[2,4] and

hs=[4,3]. Lines 3-11 compute three helper arrays (flag, outinds and inninds) that are

used in the code transformation. The first array flag is the flag component in the flat-

representation of an irregular array of shape ws, such as Qss. We recall that the flag arrays

are required by segscan operations. An irregular array of shape [2,4] has two rows of

lengths 2 and 4, respectively, and its flag array marks with 1 the start of each subarray and

has 0 elements, otherwise. It follows that we expect flag to be equal to [1,0,1,0,0,0].

We compute flag by applying a scanexc on ws, resulting in Bw=[0,2], then by com-

puting the total number of elements lenflat = 2 + 4 = 6, and finally, by the scatter

operation at line 6, that writes 1s at the indices in Bw=[0,2] into an array of 6 (equal to

lenflat) 0s, hence flag=[1,0,1,0,0,0], as expected.

The second array outinds records, for each of the width entries associated with an in-

strument, the index of that instrument in the current bin. Thus, we expect outinds to be

equal to [0,0,1,1,1,1]. We compute it by applying scaninc to the flag array, which

results in [1,1,2,2,2,2], and by subtracting 1 from each obtained element (lines 7-8).

The final array inninds is the expansion of iota w across the q widths, hence we expect

inninds to be equal to [0,1,0,1,2,3]. We compute inninds at lines 10-11 by negating

the flag array, resulting in [0,1,0,1,1,1], and applying segscaninc on the result under

the flag array flag, that is, independent scan on the two logical rows of two and four

elements, respectively.

Lines 12-17 in Listing 3.2 are the flattening across q instruments of the lines 3-4 in

Listing 3.1, which initialises Qs elements to zeroes and sets index w/2+1 to value f2(opt).

The zero-initialisation of Qs is translated to replicate of length lenflat, that is, the

summed widths of the q instruments, The update at index w/2+1 is translated to a scatter

on the expanded Qss, in which

• the updated indices are computed at line 15 by summing the offset in Qss of each

instrument, denoted by b∈Bw, with w/2+1, where w∈ws, and

• the updated values are the result of mapping f2 on the q instruments at line 16.

The initialisation of αss, the expansion of αs, is obtained by padding each row to the

maximal height hmax of the q instruments, hence total length is q×hmax, and by using a

scatter to overwrite the first entry in every row with the result of calling f3. This pro-

cedure is implemented in lines 19-21, except that αssT , transpose of αss, is used to

achieve coalesced access to global memory. Next, the forward loop is padded to count

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

58 3.5. GPU-FLAT: Flattening Two-Level Parallelism

hmax, the outer map of length q is interchanged inside the loop, and the outer-map distri-

bution continues on the loop-body statements.

Lines 27-35 correspond to flattening the map, that is applied to iota w to compute

array Qs’ in Listing 3.1, lines 10-15. Since the flattened code corresponds to applying the

original map simultaneously to all entries of all q instruments, it is translated to map2 over

inninds and outinds in such a manner that:

• inninds is precisely the expansion of iota w across the q instruments, hence j takes

the same values as in Listing 3.1.

• outinds is used to access values that are the same across the width threads assigned

to process the current instrument, but are needed by each thread. We recall that

the outinds values record the index of each instrument in each of the width entries

associated with it. For example, outinds is used to (indirectly) index into length-q

arrays Bw, hs and αλ_is to compute the start offset b into array Qss, the height h

and the α value corresponding to the current instrument, respectively.

• The body of the mapped function is protected by if i≥h-1 condition, that checks that

the tree traversal has not already terminated for the current instrument, because the

loop count is padded to maximal value hmax. If so, then the input value of Qss is

directly returned.

The code between lines 37-38 is the flattening across all q instruments of the (original)

reduce at line 16 in Listing 3.1, which sums up the values of array Qs’. This procedure

is implemented by first performing segscaninc on the expanded array Qss’, which by

definition, computes the q corresponding sums in the last entry of each logical subarray of

the result scQs. Then these last entries are extracted by map operation of length q. The

index of the last entry of the ith subarray is Bw[i]+ws[i]-1, because Bw and ws record

the offset and the size of each subarray, respectively.

Finally, lines 40-43 implement the expansion of the update to αs[i+1] at line 18 in

Listing 3.1. This procedure is translated to a scatter that updates αssT at the q flat-

indices belonging to row i+1 (stored in tmp_i) with the values tmp_v obtained by applying

g2 to all α_vs and instruments in the batch. Note that if the loop index i is greater or

equal than the logical loop count h-1 then the return index is -1, hence the update is

ignored. Similar ideas apply for the translation of the backward loop, which is not shown.

Our CUDA implementation of GPU-FLAT fuses aggressively the inner-parallel operations

and reuses shared memory buffers whenever possible: for example, Qss, Qss’, Css, Css’

use the same buffer. Arrays of size q are typically stored in the shared memory (since they

save register space), and arrays outinds and inninds are held in registers. The shortcomings

of GPU-FLAT are following: (i) it introduces instructional overhead, that is, the code is

more complex than the nested-parallel one, (ii) it introduces significant register pressure

and that (iii) the parallel operations of size q underutilise the block-level parallelism, which

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

3.6. Experimental Evaluation 59

is typically much larger than q. In particular, NVIDIA CUDA compiler nvcc reports that

74 − 76 registers per thread are used by default and a speedup of up to 1.66× is achieved

by limiting the number of registers to 32.

3.6 Experimental Evaluation

We run the experiments and compare the performance on two systems, D1 and D2, de-

scribed in Section 2.5.

We measure total application execution time, excluding host-device memory transfers,

but including kernel execution as well as all preprocessing steps, such as data reordering

and bin-packing, that involve extra computation. It is our deliberate choice not to overlap

computation and memory transfers, to obtain a fair comparison among different runs and

technologies. However, for the tested datasets the time involved in memory transfers has

an insignificant impact on total execution time (less than 1%). Execution times are aver-

aged across 10 runs (standard deviation < 1.5%) and are reported in GFlopSPEC/s, which

counts the number of floating-point operations as they appear in the high level specification

(GPU-OUTER). We argue that GFlopSPEC/s is better suited for comparing across differ-

ent implementations of the same algorithm, because it represents normalised runtime. In

contrast, we risk that GFlop/s reports the slower version as having better performance.

3.6.1 Datasets

The evaluation uses 7 synthetic datasets that not only model the instrument distributions

in real portfolios used in practice, but also, more importantly, clearly demonstrate different

workload divergence properties and our performance improvements. All datasets consist of

100 000 valuations, except for U1, which uses 3000 and is intended to measure the impact

of under-utilising hardware parallelism by GPU-OUTER. Portfolios have diverse sizes in

practice, so U1 is also realistic.

U1 and U2 use constant width 259 and height 606 across all trees (hence no divergence).

These datasets represent a case, where we price a single instrument against many different

market scenarios, where one class of the risk factor parameters varies, for example yield

curves. In such a case, although the tree dimensions do not change, the values at the tree

nodes do.

R1, R2, and R3 (R*) use random distributions of widths and heights in intervals [7, 511]

and [13, 1200], respectively. R1 uses uniform distribution for both, R2 uses uniform and

standard-normal distributions for widths and heights, respectively, while R3 does the oppo-

site. These datasets model an instrument distribution typical for an interest-rate derivative

portfolio. The results indicate that such datasets exhibit similar performance.

Finally, S1 and S2 (S*) present skewed distributions. In S1 1% of the dataset consists of

widths and heights in the interval [461−511] and [1082−1200], respectively, while the rest

has widths and heights uniformly distributed in [7−57] and [12−131]. S2 presents the same

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

60 3.6. Experimental Evaluation

figures, but separates skewness over dimensions: 1% combines skewed widths with uniform

heights and another 1% the reverse. These distributions imitate a portfolio case often met in

practice, where a small set of bonds have significantly different characteristics, for instance,

much longer maturities or much smaller volatilities than the remaining majority of bonds.

Our optimisation techniques address such an example of an extreme workload divergence,

that inflict huge performance penalties GPU architectures.

We emphasise that it is realistic to consider portfolio composed of instruments with

diverse heights and widths of their trees. For instance, the tree height depends among others

on the underlying bond maturity, which can be arbitrarily large. The tree width depends,

among others, on the interest rate volatility, which is usually obtained through calibration of

the liquid vanilla interest rate derivatives traded in the markets. We can expect a significant

variation here as well, since there exist many different types of interest rates and vanilla

instruments, and on that they are connected with some particular currency that the rate is

denominated in.

3.6.2 Result Validation

To validate our HW1F results and be confident that they are correct and sufficiently accu-

rate, we compare them with the output from a Hull-White model implementation in C++

that is a part of an internal SimCorp pricing library. This library has been developed and

used in production environments by SimCorp clients for decades, so we can trust that the

modelling approach is accurate for our purposes and the prices that it produces are correct.

We choose a fixed-rate bond (see Section 3.2.1) case with different embedded optionali-

ties, as described in Section 3.2.1. Different input parameters and instrument characteristics

are presented in Table 3.1. We choose deliberately to exemplify the impact of various rele-

vant model parameters on the final instrument price. We include both call and put options,

as described in Section 3.2.1, as well as all three optionality styles, European, Bermudan,

and American, as described in 3.2.1. We want to demonstrate that the option prices are sen-

sitive to changes in model parameters and are different for different types and complexities

of instruments.

We present the validation results in Table 3.2. We want to stress that the inconsistencies

in price values do not step from parallel execution or a iterative numerical method artefacts.

They follow from different implementation of the model, where the internal library has a

more sophisticated implementation of calendar dates as well as it supports variable time

step, while our implementation keeps the time differences between steps fixed. This feature

allows the model to map the time steps to actual exercise date exactly and incorporates

an impact of time differences between days in the model (weekends, holidays, etc.). This

leads to slight changes in the probability values in the nodes and αs, which aggregate to a

different resultant price.

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

3.6. Experimental Evaluation 61

Instrument 9-year fixed rate bond

Model Parameters

Coupon Annual 10.0 (9×)
Repayment 100.0 at maturity (1×)
Yield Curve (YC) type Zero curve based on zero-coupon bonds
YC Rates Discounting method Continuous compounding
YC Interpolation method Linear
Calendar Convention Actual/365
Strike price (K) 63.0
Mean Reversion Rate a 10%
Volatility (σ) 1%
Option-Adjusted Spread (OAS) 3 cases: 0.0, 1.0, 10.0

Optionality Exercise dates

European Option At the end of the 3rd year
Bermudan Option For 8 years every 6th month
American Option At the end of each of 8 years once a month (every

date)

Time steps/Early Exercise dates 1 per month

Table 3.1: Set of model and trinomial tree method parameters for the HW1F validation.
The case comprises various fixed-rate bonds that differ in their embedded optionalities.

w/o OAS spread w/ 1.0 OAS spread w/ 10.0 OAS spread

Optionality Benchmark HW1F Benchmark HW1F Benchmark HW1F

European Call 78,826609 78,870576 76,770095 76,812798 60,562330 60,597479
European Put 116,031936 116,126855 108,791987 108,880131 63,570053 63,614187

Bermudan Call 69,374872 69,375598 68,684580 68,685299 56,257581 56,287480
Bermudan Put 116,031936 116,126855 108,791987 108,880131 64,150250 64,133718

American Call 69,374872 69,375598 68,684580 68,685299 56,257581 56,286167
American Put 116,031936 116,126855 108,791987 108,880131 64,150250 64,178329

Table 3.2: HW1F pricing accuracy is compared with a production-ready benchmark for
different types of options and model parameters. The differences in significant digits is
marked in red.

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

62 3.6. Experimental Evaluation

3.6.3 Performance Results

We start a discussion of our performance results by mentioning that we compare perfor-

mance of our implementations to the external QuantLib library [Bal21; Bal14]. We adapt

its relevant pricing modules to be thread-safe and implement an OpenMP multithreaded

version, QUANTLIB-PAR, that makes each library call run in parallel on the outer valuation

level. However, despite this obvious optimisation, we still obtain 3-to-4 order of magnitude

speedups with both our multi-core CPU implementation CPU-MT+VECT as well as both

GPU-OUTER and GPU-FLAT kernels, when compared to the QUANTLIB-PAR. Consequently,

we do not proceed to compare and discuss these experimental results any further.

U1 (45.0 ms) U2 (1159.0 ms) R1 (1175.0 ms) R2 (1178.0 ms) R3 (1235.0 ms) S1 (58.0 ms) S2 (32.0 ms)
0

200

400

600

800

1000

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
]

12
6

86
6

47
4

46
9 47

7

59

21
1

66
9 74

1
85

9
85

9
81

8 90
4

68
6

25
5

36
9 37

9
38

0
37

4
33

6

26
4

70

47
4

18
0 21

7
17

8

33 14

28
1 35

3

18
8

18
8

18
7

57 23

gpu-outer
gpu-flat
cpu-mt+vect
futhark-outer
futhark-flat

U1 (220.0 ms) U2 (3069.0 ms) R1 (4554.0 ms) R2 (4476.0 ms) R3 (4566.0 ms) S1 (377.0 ms) S2 (166.0 ms)
0

50

100

150

200

250

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
]

68

22
9

15
5 15

8
15

5

25

76
96 98 10

0
10

0
99 97 93

34 34
51 52 41

65

4252

11
7

59 66 59

22
9

71 77

41 41 41

13 5

gpu-outer
gpu-flat
cpu-mt+vect
futhark-outer
futhark-flat

Figure 3.3: Best performance in GFlopSPEC/s for FP64 on D1 (CPU1 and GPU1, upper
chart) and FP32 on D2 (CPU2 and GPU2, lower chart) across all datasets. Devices are de-
scribed in Section 2.1). Datasets U1, U2, R1, R2, R3, S1, S2 are described in Section 3.6.1.
Best runtime for each dataset is specified in ms in parentheses next to dataset abbreviation.

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

3.6.
E

xperim
entalE

valuation
63

R1 R2 R3 S1 S2

GPU-OUTER P 64
D1 P 32

D2 M64 P 64
D1 P 32

D2 M64 P 64
D1 P 32

D2 M64 P 64
D1 P 32

D2 M64 P 64
D1 P 32

D2 M64

V ns
o1 103 29 3.42 84 27 3.42 85 26 3.42 56 13 0.52 92 32 0.52
V ws
o1 69 24 3.42 61 23 3.42 60 21 3.42 54 12 0.52 77 24 0.52

V ns
o2 97 33 6.55 103 35 6.55 114 44 6.55 48 21 6.40 101 41 6.40
V ws
o2 423 114 6.55 427 120 6.55 427 136 6.55 57 23 6.40 189 52 6.40

V ns
o3 103 45 6.47 109 49 6.28 120 53 5.98 49 23 0.82 111 52 0.82
V ws
o3 461 154 3.62 454 157 3.58 461 154 3.60 58 24 0.56 210 75 0.55

V ns
o4 108 45 6.38 114 49 6.14 126 53 5.77 49 23 0.82 115 53 0.82
V ws
o4 474 155 3.53 469 158 3.51 477 155 3.52 59 25 0.54 211 76 0.53

Speedup/Mem.∆ × 4.60 5.34 1.03 5.58 5.85 1.03 5.61 5.96 1.03 1.05 1.92 1.04 2.29 2.38 1.02

GPU-FLAT P 64
D1 P 32

D2 M64 P 64
D1 P 32

D2 M64 P 64
D1 P 32

D2 M64 P 64
D1 P 32

D2 M64 P 64
D1 P 32

D2 M64

V ns
f1 521 69 1.98 529 70 1.98 496 66 1.98 266 37 1.83 118 17 1.83
V ws
f1 553 73 1.98 554 73 1.98 525 72 1.98 268 33 1.83 119 15 1.83

V ns
f2 517 69 1.98 526 70 1.98 492 66 1.98 266 36 1.83 118 16 1.83
V ws
f2 550 73 1.98 552 73 1.98 524 71 1.98 268 33 1.83 119 15 1.83

V ns
f3 740 87 1.30 779 91 1.21 710 84 1.26 783 97 0.24 577 76 0.24
V ws
f3 859 100 1.09 859 100 1.10 818 99 1.09 904 97 0.17 686 93 0.17

Speedup/Mem.∆ × 1.65 1.45 0.55 1.62 1.43 0.56 1.65 1.50 0.55 3.40 2.62 0.09 5.81 5.47 0.09

Table 3.3: Summary of GPU-OUTER and GPU-FLAT performance P in GFlopSPEC/s and required global device memory M64 for FP64 in GB. Speedup and
memory difference are specified as a ratio between the unoptimised (V ns

o1 /V ns
f1) and the most optimised versions (V ws

o4 /V ws
f3).

C
hapter

3.
H

ull-W
hite

O
ne-Factor

Lattice
M

ethod
(H

W
1F

)

64 3.6. Experimental Evaluation

GPU optimisations

Performance measures in GFlopSPEC/s are reported in Table 3.3 on machines D1 and D2
across 5 datasets, (R*) and (S*). GPU-OUTER (o) and GPU-FLAT (f) use FP64 (64) on D1
and FP32 (32) on D2. Version V1 corresponds to a version that does not optimise for coa-

lesced global memory accesses, while the remaining versions achieve coalescing by padding

and transposing at global (V2), block (V3) or warp level (V4), respectively. Superscripts ns

and ws correspond respectively to versions without and with data reordering through sorting

(in descending order). For GPU-OUTER the trees are sorted by width first, while for GPU-

FLAT by height first. Column M64 reports the memory footprint in GB for FP64 versions.

FP32 versions use half of the M64. The uniform datasets U* are not reported in Table 3.3,

because, due to constant tree dimensions, sorting, and block or warp level padding optimi-

sations do not yield a significant effect on the performance.

Main observations for GPU-OUTER are:

• The impact of memory coalescing optimisation varies across U* and devices. On D1
it results in a minor 1.1× speedup on U1, but a large 20× speedup on U2. On D2 the

optimisations results in 2.7× for U1 and 14.1× for U2. The other two optimisations

have negligible impact.

• Our optimisations, data reordering and coalescing by padding, have small or even

negative impact when applied in isolation. For example, on D1 and R1 , the unop-

timised version V ns
o1 is in fact 1.5× faster than V ws

o1 . However, when combined they

have significant impact: between 4.6 − 5.96× on R* and between 1.05 − 2.38× on

S* datasets.

• Warp-level padding V ws
o4 achieves coalescing at the cost of a modest 3% increase in

global memory footprint (M64) w.r.t. V ns
o1 . Moreover, it is the fastest version on all

datasets and on both D1 and D2. In comparison, V ws
o2 increases M64 by 1.9× and

12.3× on R* and S* datasets.

Important observations for GPU-FLAT are:

• The impact of optimisations on R* is smaller than with GPU-OUTER: V ws
f3 is about

1.6× faster and uses 55% of the memory of the unoptimised version (V ns
f1).

• The impact of reordering is positive in most cases, but is relatively small, for example

sorting alone produces a speedup as high as 1.2×.

• The impact of optimisations is much higher on the skewed datasets S*, for example,

on S2, reordering and coalescing at block level (V ws
f3) account for speedup factors

5.8× and 5.5× on D1 and D2.

• V ws
f3 also reduces the memory footprint by 11× in comparison to V ns

f1 on S*.

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

3.6. Experimental Evaluation 65

GPU-FLAT vs. GPU-OUTER

Figure 3.3 compares the performance of the best versions of GPU-FLAT (V ws
f3) and GPU-

OUTER (V ws
o4).

• The performance of GPU-FLAT is stable across datasets, between 669 − 904 on D1
and 93 − 100 GFlopSPEC/s on D2, while the performance of GPU-OUTER is highly

variant.

• On the R* datasets, GPU-FLAT is about 1.8× faster than GPU-OUTER on the newer

hardware D1, but about 1.55× slower on D2.

• GPU-FLAT is significantly faster than GPU-OUTER on (i) the skewed datasets S*, be-

cause it Optimises better the divergence and locality of reference by the use of shared

memory, and (ii) the small dataset U1, because the outer parallelism given by 3000

valuations is insufficient to utilise the hardware well.

• Finally, latest hardware seems to benefit GPU-FLAT, which performs better than GPU-

OUTER on D1 across all datasets, except for U2, where it is only 1.17× slower. For

instance, on S1, GPU-FLAT is 15.3× faster than GPU-OUTER on D1, but only 3.9×
faster on D2.

GPU vs. CPU

Figure 3.3 compares the best GPU-OUTER and GPU-FLAT configurations with our multi-

core implementation using OpenMP multithreading and AVX2 vectorisation, named CPU-

MT+VECT. Even though we use powerful CPUs with 104 (D1) and 32 (D2) hardware

threads, the GPU versions are faster than the CPU-MT+VECT, with speedups as high as

6.7× on U2 and 3.8× on R3, and on average 2.4× on D1 and 3.3× on D2. On the one

hand, we do not observe any case, where CPU-MT+VECT is faster than GPU-FLAT. On

the other hand, for particular combinations of datasets and devices CPU-MT+VECT is faster

than GPU-OUTER, for example, on D1 CPU-MT+VECT is 2.0× faster on small U1 due to

insufficient GPU parallelism and 5.7× on skewed S1, while being only 1.3 faster on S2
due to thread divergence. These results are a reason why GPU-FLAT is a preferred version

on the aforementioned datasets. On machine D2, which has a smaller number of cores,

the performance gains of CPU-MT+VECT diminish. The only faster case is 2.6× on S1.

Nevertheless, GPU-FLAT is always faster than CPU-MT+VECT.

As presented in Table 2.1, we note that CPU1 in D1 machine is an expensive and pow-

erful system with 104 hardware threads, whereas CPU2 in D2 has 32. In comparison to this

powerful CPU, cost efficiency favours GPU hardware.

CUDA vs. Futhark

Furthermore, to demonstrate that current compiler technology does not effectively support

the code transformations presented in this work, we compare the performance of GPU-

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

66 3.7. Related Work

OUTER and GPU-FLAT to the auto-generated code implemented in the data-parallel lan-

guage Futhark [Hen+17; Hen+19]. Figure 3.3 presents the performance results for these

two matching implementations executed on D1 and D2. FUTHARK-OUTER uses only the

outer level of parallelism and matches the GPU-OUTER code structure from Listing 3.1.

FUTHARK-FLAT utilises both levels of parallelism, and is intended to match the GPU-FLAT

version, except that, due to compiler limitations, flattening is performed globally across all

valuations (rather than at block level), and the intermediate results are recorded in global

(rather than shared) memory. The best CUDA version is faster than Futhark by a factor as

high as 29.8× and on average 6.3× on all datasets.

3.7 Related Work

3.7.1 Accelerated Implementations of Lattice Methods

In practice, the trinomial tree numerical method is the standard choice for solving the

HW1F model. It is especially suited for pricing low-dimensional bond instruments, that

we focus on in this work, which depend on 1 or 2 underlying factors. Its clear advantage

lays in its simple deterministic execution path, that enables valuation tractability. In com-

parison, methods based on Monte Carlo simulations are more general, but they are also

more compute-intensive, and introduce the randomness element, which distorts the under-

standing of the pricing process. We are unable to find work that applies GPU acceleration

to the exactly same problem. Thus, we relate our work to the current research in the field

that addresses comparable problems, and focus on the main performance inhibitor, namely

the divergence introduced by the trees having different dimensions.

Grauer-Gray et al. (2013) [Gra+13] adapt QuantLib implementation of Bond and Repo

pricing through iterative bootstrapping and adapt it to work with GPUs. They implement

and compare different GPU programming frameworks like HMPP and OpenACC apart

from standard CUDA and OpenCL. Although none of the experiments use a trinomial tree,

the authors report an experiment on a diversified bond portfolio, where they parallelise the

computation on the outer level, across all the instruments, in the manner that we do in GPU-

OUTER. They achieve a speedup of up to 40 − 80× compared to original sequential code.

Just like us, they identify the issue of thread divergence, as well as numerous global memory

accesses, but they do not propose any solution to address it.

Schabauer et al. (2008) [SHP08] also present an outer-level parallelisation scheme for

pricing path-dependent interest rate products on bounded trinomial lattices that resembles

GPU-OUTER. They use Fortran and MPI for distributed computing across as many as 16

nodes with single-core CPUs and report speedups of up to 13× depending on the tree height

and number of compute nodes. However, their evaluation uses a homogenous set of trees,

which does not exhibit workload divergence across priced instruments. Like us, they iden-

tify a large number of intermediate communications between lattice nodes on the innermost

level (across tree width) to be a performance issue, but abandon parallelisation on this level

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

3.7. Related Work 67

in their implementation. We remark that our technique for GPU-FLAT addresses this is-

sue and improves the performance. Valuations can be bin-packed across nodes, and inner

parallelism can be exploited in shared memory at node level.

Gerbessiotis (2003) [Ger03] describes a distributed implementation for a trinomial tree

method for pricing vanilla equity options. They use MPI and achieve up to about 16×
speedup on 16 dual-core CPUs. They address a problem of a single trinomial tree computa-

tion, that has a large number (32768 or 65536) of time steps. Therefore, the parallelism on

the outer level does not exist. As such, they apply a technique that divides the computation

of the tree into blocks, which are then computed in parallel on different nodes. The blocks

are constructed in such a way to minimise the communication between compute nodes.

This approach addresses issues that occur when using an unbounded tree and thus cannot

be directly compared to GPU-FLAT.

GPU parallelisation of a simpler binomial lattice method is better represented in the

literature.

Gui et al. (2013) [Gui+13] parallelise the binomial tree model using CUDA to price a

standard vanilla equity option. The problem is restricted to the specialised case when the

tree dimensions are the same across options, thus no divergence occurs. The approach is

to exploit inner parallelism by pricing each option on one thread block, which is much less

challenging than the procedure for flattening irregular parallelism used for GPU-FLAT.

Suo et al. (2015) [Suo+15] use GPUs, through CUDA and OpenCL, to implement bi-

nomial tree method and compare it with a Monte Carlo simulation to price a single vanilla

equity option. They introduce two tree parallelisation schemes. The first uses many thread

blocks to price one tree, where each of the thread blocks handles many tree nodes. The

second addresses the synchronisation issues of the first approach and minimises communi-

cation between thread blocks by taking advantage of a triangular shape of the binomial tree.

Such an approach is mainly applicable to unbounded trees, and cannot be easily extended

to price in parallel a portfolio, where trees have different dimensions.

Gerbessiotis (2004) [Ger04] is the first to consider acceleration of a binomial method

for pricing an option using a distributed setup, but they price many identical instruments

with trees that have the same dimensions. The approach resembles GPU-OUTER, but does

not consider divergence issues.

Zhang et al. (2012) [ZLM12] present a hybrid implementation that constructs and tra-

verses a binomial tree on CPU and GPU simultaneously to price a single American equity

option. Their technique however does not naturally extend to a portfolio of options hav-

ing irregular tree dimensions. It partitions a binomial tree into blocks of multiple levels

of nodes, and assigns each such block to multiple processors. Each block, processed in a

sequential order backwards from the leaf nodes, is divided into sub-blocks of equal size

(except the last one), which are processed in parallel by distinct processors. In their experi-

ments however, they price a single instrument and only vary the number of time steps in the

tree. In addition, they identify the benefit of using of on-chip shared memory to reduce the

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

68 3.7. Related Work

number of accesses to the off-chip device memory.

Zubair and Mukkamala (2008) [ZM08] show a binomial tree implementation on a

single- and multi-core processor for pricing a single vanilla equity option. They propose

two algorithms that take advantage of hierarchical model of memory to maximise locality

of data access. They use cache and register blocking techniques for improving the perfor-

mance. These approaches can be mapped to GPUs.

Huang and Thulasiram (2005) [HT05] develop parallel algorithms for pricing path-

dependent American exotic options with up to 10 underlying assets using binomial tree

method. They use MPI model to program multi-core CPUs and consider the performance

changes due to different number of time steps for a variable number of assets. However, the

options they consider have trees of the same dimensions, and thus they do not address the

problem of workload divergence.

Other work studies different numerical methods to solve the Hull-White pricing model.

Theiakos et al. (2015) [The+15] target GPUs, but price a mortgage contract with one

underlying by using a Finite Difference Method (FDM) to solve the problem. Dang et al.

(2012, 2013, 2014) [DCJ12; DCJ13; DCJ14] use GPUs to price cross-currency interest rate

derivatives having multiple risk factors and path-dependent features. They also use FDM

to solve the high-dimensional system of partial differential equations. Both approaches

consider that the all instruments share the same grid dimensions (no divergence).

Bernemann et al. (2010) [BSS10] use GPUs, but use Monte Carlo simulations and

more sophisticated Heston Hull-White model with local volatility to price structured equity

instruments. We mention that this extended version of the model can only be solved using

a Monte Carlo simulation. Finally, a large body of work is dedicated to GPU acceleration

of Monte Carlo simulations used for pricing derivatives [Alb07; Lee+10; Oan+12; NL11],

model calibration [And+16] or risk management [DCK09].

Finally, Albenese (2007) [Alb07] price a number of different callable instruments by

means of a large lattice implemented on a GPU. In fact, they argue that short rate mod-

els and are better suited for GPU architectures then market models, that are considered to

be more advanced and precise. However, the latter can only be solved using expensive

Monte Carlo simulations. They consider portfolios of consecutively more sophisticated in-

struments, but the complex mathematical approach that they use to formulate the pricing

problem using semi-analytical formulas allows them to reduce it to a large matrix-matrix

multiplications, which are implemented efficiently using standard BLAS-3 function calls.

They also assume that all the required discounted transition probability kernels and data

structures that describe cash-flows fit the available device memory. They organise the pric-

ing functions for all the instruments in the portfolio in a large matrix, where one column

vector is attributed to one instrument, and perform the backward induction collectively on

the entire portfolio. This work is an example of using formulas available for some short-

rate models and redefining a problem algorithmically so it suits massively parallel hardware,

and such cannot be directly compared to our approach, where parallelism is extracted from

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

3.8. Conclusion 69

a classical approach to parallelism.

In conclusion, we are unaware of any work aimed at accelerating on GPUs the HW1F
model solved by bounded trinomial tree for pricing a portfolio of callable bonds. However,

the techniques applied to generate GPU-FLAT and to optimise GPU-OUTER seem feasible to

be applied to other compute-intensive pricing methods.

3.7.2 Compiler Techniques

Our implementation draws inspiration from a number of compiler techniques. The GPU-

FLAT version builds on the flattening transformation [Ble+94; BR12], which maps irregular

nested parallelism into a sequence of flat-parallel ones. There are two key differences here.

The first one is that flattening pushes all sequential recurrences outside the parallel code,

and it introduces many prefix-sum operations that are executed in global memory and thus

limit performance gains. Instead, we bin-pack inner parallelism at block level so that it

can be efficiently executed in shared memory. The second difference is more subtle and

refers to the fact that the traditional flattening transformation replicates variables that are

unbounded in the inner parallel constructs. This procedure leads to a possible memory

explosion, which prevents the use of shared memory. In comparison, our procedure does not

expand such variables, but instead indirectly accesses them by means of auxiliary arrays,

such as outinds, inninds, Bw in Listing 3.2. The latter can be seen as part of the shape

representation of an irregular array of arrays, reused between similarly-shaped arrays, such

as Qss and Css.

Finally, our techniques for optimising the two-level divergence by sorting after the tree

dimensions are inspired by data reordering transformations aimed at improving locality

and communication patterns [SCF03], and by inspector-executor restructuring transforma-

tions [SHO18; RAP95; OR11]. However, we are not aware of any compiler framework

that is able to generate the GPU-FLAT code version from the nested-parallel specification of

Figure 3.1. The same is true for the GPU-OUTER optimisations. The work presented in this

chapter provides useful insights into how to integrate such techniques into the repertoire of

a compiler.

3.8 Conclusion

This chapter investigates the problem of providing an efficient GPU acceleration to a model,

that is commonly used in practice, which uses a bounded trinomial-tree numerical method to

price a class of derivative instruments based on one underlying interest rate. The instruments

are characterised by non-trivial cash flows and Bermudan or American optionality.

The main challenge resides in the fact that, in practice, the portfolio instruments are

characterised by trees of very different dimensions. This leads to high performance penalties

due to a thread divergence overhead and suboptimal memory access patterns.

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

70 3.8. Conclusion

In this regard, we identify several relevant optimisation techniques, but we omit a

demonstration the rewrite rules that are necessary for compiler integration. We start from a

high-level specification that makes explicit all the available (nested) parallelism in terms of

data-parallel basic constructs (map and reduce), and show how to systematically derive

and optimise two different low-level CUDA implementations. GPU-OUTER prices each in-

strument on a different thread, while GPU-FLAT exploits the parallelism available inside the

valuation of each instrument by bin-packing instruments to block level, and by efficiently

flattening this parallelism in the shared memory.

In addition, we present several transformations aimed (i) at improving spatial locality

and memory footprint, by padding intermediate arrays at block or warp levels and by operat-

ing on a transposed-array layout, and (ii) at optimising the thread divergence, by reordering

the instruments by their widths and/or heights.

Finally, we present a detailed experimental evaluation that demonstrates that (i) the pro-

posed optimisations have high impact when they are applied together, and much-reduced

impact in isolation, (ii) GPU-FLAT is more efficient than GPU-OUTER in most cases, es-

pecially on recent GPU hardware, (iii) current compiler infrastructure does not support

the proposed code transformations, for example, our GPU implementations outperform

the Futhark-generated code, and (iv) our GPU implementation is faster than our parallel

(OpenMP multithreading + AVX2 vectorisation) CPU implementation, and it outperforms

by 3− 4 orders of magnitude the multi-core implementation using QuantLib library, which

is commonly used in practice.

In terms of point (i), we stress that thread divergence, is caused by lock-step execution

and fixed by data reordering in our implementation. The uncoalesced accesses are fixed by a

combination of padding snd transposition. These two are independent sources of overhead,

which “hide” each other. In other words, threads, that are waiting due to divergence, result

in fewer in-flight memory transactions, whose latency is better hidden by multithreading.

The observed and total overhead is closer to the maximal of the two overheads, rather than

the sum. Thus, both overheads need to be optimised before observing significant perfor-

mance gains. The same is true for optimisations such as constant folding, copy/constant

propagation, and common subexpression elimination, which are only effective when ap-

plied together, and not in isolation.

Chapter 3. Hull-White One-Factor Lattice Method (HW1F)

Chapter 4

Least Squares Monte Carlo
Simulation (LSMC)

Abstract

We study the feasibility and performance efficiency of expressing a complex finan-
cial numerical algorithm with high-level functional parallel constructs. The algorithm
that we investigate is a Least Squares regression-based Monte Carlo simulation for
pricing American options.

We propose an accelerated parallel implementation in Futhark, a high-level func-
tional data-parallel language, that targets GPUs as a computational platform. We
achieve a performance comparable to, and in particular cases up to 2.5× faster than,
an implementation optimised by NVIDIA CUDA engineers.

In absolute terms, we can price a put option with 1 million simulation paths and
100 time steps in 17 ms on a NVIDIA Tesla V100 GPU. Furthermore, the high-level
functional specification is much more accessible to the financial-domain experts than
the low-level CUDA code, and thus promotes code maintainability and facilitating al-
gorithmic changes.

Section 4.1 introduces the specific derivative pricing problem that is present in the eq-
uity markets, motivates the importance of accelerated implementation, outlines
our approach, and summarises the main contributions.

Section 4.2 provides rudimentary background to American option pricing.

Section 4.3 examines the problem solved by our application and describes the high-
level algorithm for American option pricing.

Section 4.4 shows how American option pricing algorithm can be naively implemented
in Futhark language.

Section 4.5 provides a detailed description of the linear algebra transformations re-
quired to extract partial parallelism from the traditionally sequential optimisation
part and significantly reduce the sizes of matrices and computational burden.

Section 4.6 discusses the three parts of the implementation. It demonstrates how we
can turn the inefficient version of the algorithm into a more efficient version

71

72

targeting GPUs. We also describe the design and implementation choices that
were necessary for obtaining an efficient version of the algorithm.

Section 4.7 presents the methodology, the experimental test cases and discusses the
results.

Section 4.8 relates the work to other projects on acceleration for similar pricing prob-
lems and compares the used optimisation techniques with the current research.

Section 4.9 summarises the main findings of our work.

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

4.1. Introduction 73

4.1 Introduction

Pricing American options is a fundamental business case in the financial services sector,

because such financial instruments are widely traded in the derivative markets. American

options can be exercised at any time between the present date and the time to maturity.

This aspect puts them in contrast to European options, that can only be exercised at their

maturity. In the usual case, the option holder is expected to exercise the option as soon

as it is more profitable to do so rather than wait until its expiration. Effectively, the value

of an American option is the value achieved by exercising it at the optimal time. This

embedded optimisation (optimal stopping) problem is the main challenge. Assuming no

general closed-form formula solutions [Hau07] exist, we attempt to approximate the option

value accurately with a numerical simulation. which is a memory-exhaustive and time-

consuming computational effort. It has to be significantly reduced to become acceptable

for time-critical applications in financial practice. Therefore it is a compelling case for

accelerating the computation on highly parallel hardware, such as GPUs.

Currently, the most efficient accelerated simulations are implemented in dedicated lan-

guages and frameworks. Most examples are implemented in CUDA [Abb+14; FP13; PW12],

but there are also implementations in other technologies like OpenCL [Var+15b; Bru+15],

MPI [Cho+08], OpenMP [Zha+17], etc. [CHL15]. The challenge with these implemen-

tations is the poor expressibility, which makes them inaccessible to domain experts. A

specialist developer has to be appointed to implement and maintain such kind of code.

An interaction between domain experts and developers is needed every time a change in

the algorithm is required. It also results in code that is difficult to maintain. On top of

that, the developer needs to be aware of the low-level properties of the underlying hard-

ware architecture, and have good knowledge of code transformation aimed at optimising

potentially-conflicting factors such as locality of reference and degree of parallelism.

We propose a functional approach to the implementation of an accelerated option pric-

ing model. The use of high-level parallel constructs lets us express the algorithm in an

intuitive manner, without the implementation concerns of mapping the code to the architec-

ture. The Futhark language and the optimising compiler behind this language are used to

simplify the implementation process [Hen+17].

The main contributions of this work are the following:

1. We present a high-level data-parallel implementation of the Longstaff-Schwartz al-

gorithm for pricing American options using a Monte Carlo Simulation with Least

Squares Regression (abbreviated LSMC) [LS01]. The implementation serves as a

reference implementation and can easily be ported to other functional languages.

Moreover, the algorithm makes explicit the available parallelism by using high-level

data-parallel constructs.

2. We give a detailed description of the algorithmic changes required to achieve an effi-

cient parallel implementation of the LSMC algorithm.

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

74 4.2. Monte Carlo Simulation and American Option Pricing

3. We present an optimised efficient version of the algorithm and describe how the orig-

inal algorithm is reimplemented in Futhark to achieve performance results that in

most cases matches a CUDA version, which is a hand-tuned implementation of the

algorithm, implemented in a dedicated low-level programming model by CUDA en-

gineers. In addition, we present specific cases, in which Futhark version achieves up

to 2.5× speedup over the CUDA version.

4.2 Monte Carlo Simulation and American Option Pricing

An option contract is defined by its payoff function. For the vanilla-type options like calls

and puts, it compares the strike price K and the current asset spot price S and thereby

determines the cash flow of an option. The strike price K is an agreed fixed price, at which

the option holder can buy (in case of a call) or sell (in case of a put) the underlying asset.

The spot price S is a price of the underlying asset like stock or commodity, that the option

derives its value from. S varies over the time. This progression in time is random and

thus can be described using a stochastic process. Such a process is defined by a SDE,

which cannot be solved directly using a closed-form formula. Instead, we use a numerical

simulation method.

In practice, the Monte Carlo simulation is the most widely used and robust method

for solving general SDE problems, and option pricing problems in particular. It is popular

in the quantitative finance community, because (1) it is relatively simple to parallelise and

(2) it allows for complex instrument pricing that depend on many underlying assets. Such

instruments cannot be priced with deterministic methods such as FDM or lattice models

suitable for low-dimensional instruments. In fact, a Monte Carlo simulation is the only

numerical method that can be used for multi-factor pricing in dimensions greater than four,

because pricing many underlying assets lead to a system of equations that is too complex to

express with a regular grid, which is a discretisation of PDEs in many dimensions [Gla04].

The Monte Carlo Simulation method is based on two theorems of probability theory.

The first one is the Strong Law of Large Numbers, which guarantees the convergence of a

certain series of independent random numbers having the same distribution to a value of an

integral. The second is the Central Limit Theorem, which determines the convergence rate

of the first law [Bil12; Shi16].

In a standard Monte Carlo simulation, the paths of the state variables are simulated

forward in time, which is, in particular, the case for pricing European options. Given an

option payoff, a forward (future) price is determined for each path at the maturity date. To

estimate the present price of the instrument, the future cash flows, that is, prices in different

points in future time, have to be discounted to the present time using some established

discount (interest) rate. We perform it to adjust the price with a time value of money that

states that the money sum available now is worth more than the identical sum in the future.

Finally, an unbiased estimate of the current option price is a mean average of these prices.

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

4.3. The Longstaff-Schwartz Algorithm 75

In contrast, the American option pricing progresses backward in time. First, the op-

timal exercise price is determined at the maturity and later is recursively propagated and

discounted backward in time using dynamic programming until the current time. The cur-

rent price is estimated this way. Although an American option can be exercised at any time,

the exercise times are discretised and restricted to a fixed set of times, for example, daily or

monthly. The overall goal here is to provide an approximation of the optimal stopping rule

that maximises the value of the American option.

At the maturity t = T , the option holder exercises the in-the-money (ITM) option,

that is, if the value of the exercised option generates a positive cash flow. For instance,

in case of a call option spot price higher than the strike price is preferable, while for put

option the inverse is favourable. For any other time ti, the holder needs to choose whether

to exercise the option or continue holding it. The option value is at the maximum if the

exercise happens as soon as the immediate exercise cash flow is greater than or equal to

the continuation value, that is, the discounted expected option value at the next instance in

time. However, this continuation value at any given time ti is not known, so it needs to be

estimated.

In practice, we want to price large portfolios of options through simulation within sec-

onds for real-time decision making. We assume that GPUs, which allow for a high degree

of parallelism due to its massive number of cores, are a good fit for such large computational

workloads.

4.3 The Longstaff-Schwartz Algorithm

Several authors have proposed the use of regression to estimate continuation values from

simulated paths and thereby enable American option pricing through simulation. It is, es-

pecially, the initial studies of [Car96], the most renown [LS01] as well as [TV01], who

performed similar studies at the same time. There are two reason that motivate the choice

of Longstaff-Schwartz approach [LS01] for our implementation. It is the algorithm with

the most widespread adoption in the financial industry and it is based on a Monte Carlo

simulation that is easy to parallelise. In addition, we mention that the authors of [CLP02]

prove the convergence of the Longstaff-Schwartz algorithm and analyse the dependence of

its convergence rate on the number of simulated paths.

4.3.1 Least Squares Regression

To start with, we turn our focus to the core challenge of the algorithm, that is the estimation

of the continuation valuesCi at each time step i. Let us assume that Sij is an asset spot price

at time step i on a path j. Each continuation value Ci(Sij) is the regression of the option

value in the next time step on the value of Sij in the current time step and path. The proce-

dure is to approximate Ci by a linear combination of basis functions of the current state and

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

76 4.3. The Longstaff-Schwartz Algorithm

use regression to estimate the best coefficients for this approximation. The approximation

accuracy depends on the choice of functions used in the regression.

Following the Longstaff-Schwartz approach, we apply an ordinary Least Squares re-

gression across the simulated paths at any given time ti to estimate the continuation value

Ci. The Least Squares regression is a method for finding approximate solutions to over-

determined systems of linear equations, that is, there are more equations to solve than

variables to choose. The method minimises the sum of the squares of the errors in the

equations [BV18]. However, since the decision to exercise the option is relevant only when

the option is in-the-money, we regress only paths that are in-the-money. This choice results

in an improved algorithmic efficiency without negative impact on accuracy. Both the con-

vergence of the algorithm and how the algorithm converges with the number of simulated

paths were analysed in [CLP02].

To begin with, the ITM paths are parameterised using a quadratic polynomial β0 +

β1Sij + β2S
2
ij , where Sij is a variable, an asset spot price at a time step i, here for some

ITM path j. In particular, each term of a polynomial, a monomial with basis 1, x, x2, . . . , is

a basis function. We chose to use up to second order polynomials in the basis. Having said

that, we mention that this choice is usually left as a parameter to the algorithm. In contrast,

we deliberately settle on a particular type of basis function. This makes it possible to im-

plement specialised versions of matrix transformations, and as a result enable performance

optimisations. The number of used polynomials matches the number of different time steps

i, because one regression is performed for each step. A point cloud of asset spot prices Sij,

distributed for each path across the time steps, is obtained from a simulation. The regres-

sion problem is then to find, separately for each of these time steps, the best fit in terms of

β coefficients and basis functions for a quadratic polynomial. We discuss this procedure

further in Section 4.6.

Essentially, we deal with an overdetermined system of equations, because the number

of equations is larger than the number of unknown coefficients. In our experiments we use

3β coefficients. For the sake of presentation, let us assume we solve a system of equations

Ax = b. We minimise the objective function ∥ Ax − b ∥2 by finding a variable vector x̂

from all possible choices of x. In other words, it is a least squares approximate solution to

∥ Ax̂ − b ∥26∥ Ax − b ∥2. In our case, we assume that the number of ITM paths itm is

significantly larger than the number of the basis functions (3). It follows that A is a tall data

matrix of size itm×3 and b is a data column vector of size itm. The variable of this system

of equations is the column vector x of size 3. In particular, A is a matrix of powers of asset

spot prices Si built from the chosen polynomial. b is a vector of cash flows V̂i dependent

on the payoff function p(Si), specific for an option that is priced. Finally, x is a vector of

polynomial coefficients βk, that we want to fit with the least squares method. We arrive at

the following system of equations:

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

4.3. The Longstaff-Schwartz Algorithm 77

1 S0 S2
0

. . .

1 Sj S2
j

. . .

1 Sitm−1 S2
itm−1

β0

β1

β2

 =

p(S0)

. . .

p(Sj)

. . .

p(Sitm−1)

(4.1)

The textbook solution for solving this Least Squares problem is to multiply both sides

byAT , resulting inATAx̂ = AT b. SinceATA is a square matrix, we can now multiply both

sides with its inverse what leads us to the unique solution: x̂ = (ATA)−1AT b. This follows

from a fundamental assumption of the least squares method that the columns of matrix A

are linearly independent, therefore ATA is always invertible. The matrix (ATA)−1AT is

the pseudo-inverse of the matrix A, denoted A†. The approach to constructing A† is the

main algorithmic challenge and the source for optimisations. There exist different methods

to buildA†. For the first naive implementation, we use the formula directly, applying matrix

multiplication, transpositions, and inversion on A. In Section 4.5.1, we present an efficient

algorithm for a pseudo-inverse construction, adapted for massive parallelism offered by

GPUs.

4.3.2 Detailed Algorithmic Structure

The generic structure of a simulation algorithm that uses a linear least squares regression

according to Longstaff-Schwartz algorithm [Gla04] can be summarised as follows.

We assume as input we are given the number of time steps m, the number of paths n,

and the option-specific payoff function pi(Sij), where Sij is an asset spot price at time step

i and path j. Payoff pi is discounted back from the maturity T (time step m− 1) to current

time (time step i).

A generic linear combination of basis functions is denoted by a polynomial function

ψi : Rr → R and constant coefficients βik, where r is the highest degree of the chosen

polynomial with each term being a basis function k = 0, . . . , r − 1. Moreover, βi =

[βi0, . . . , βim−1] and ψ(Si)T = [ψ0(Si), . . . , ψm−1(Si)]
T .

1. Generate a matrix W (n,m) of random numbers drawn from a standard normal dis-

tribution.

2. Using W , simulate (by forward induction) n independent paths S0j , . . . , Sm−1j , j =

0, . . . , n − 1 of Geometric Brownian Motion stochastic processes for the underlying

asset prices.

3. At the last step m − 1 (at maturity T), compute the option value V̂mj = pm(Smj),

j = 0, . . . , n− 1 applying the payoff function p at the last step m− 1.

4. Apply backward induction for each step i = m− 2, . . . , 1 to compute cash flows:

a) Select the ITM paths.

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

78 4.4. Naive Implementation

b) Build the matrix ψi from asset prices Si and the right hand side cash flows vector

V̂i+1 only for the ITM paths for the Least Squares linear equation ψi(Si)βi =

V̂i+1(Si+1).

c) Use regression to calculate β̂i by solving a pseudo-inverse

ψ(Si)
† = (ψ(Si)

Tψ(Si))
−1ψ(Si)

T

in

β̂i = ψ(Si)
†V̂i+1(Si+1).

d) Approximate the continuation function Ĉi(Si) = β̂iψ(Si)
T .

e) Decide to early-exercise based on the value of the continuation function Ĉi for

each ITM path j:

V̂ij =

{
pi(Sij), pi(Sij) > Ĉi(Sij);

V̂i+1,j , pi(Sij) < Ĉi(Sij).
(4.2)

5. Return V̂0 = (V̂10 + · · ·+ V̂1n−1)/n discounted to time step i = 0.

4.4 Naive Implementation

We first present a Futhark implementation of the naive LSMC algorithm, as specified in

the original paper. The Futhark function lsmc_naive, which implements the main part of

the algorithm is listed in Figure 4.1. The function takes as arguments (1) a two-dimensional

array containing generated paths, (2) the maturity time (T) as a year fraction, (3) a risk-free

interest rate r used for discounting, and (4) a payoff function pFun.

We want to emphasise that, in our Futhark implementation of LSMC, we follow the

same algorithmic choices as taken by NVIDIA in their CUDA implementation [Dem14].

However, we can not find any published material on the exact linear algebra transforma-

tions that are carried out. decide to specify the process in detail in the following sections.

Therefore, we present the algorithmic consideration and an efficient approach to an imple-

mentation of a financial algorithm for a widespread case of a Monte Carlo simulation for

American Option Pricing, which is frequently reimplemented across financial institutions.

Our work is, to our knowledge, the first state-of-the-art high-level implementation approach

to this particular problem available to the public.

4.5 Mathematical Considerations

The main inefficiency of the naive (straightforward) implementation of the LSMC algo-

rithm is the necessary computation of a full A† = (ATA)−1AT matrix at each time step.

We optimise this by means of a linear algebra reformulation and an algorithmic refinement,

which aims to separate the part of the computation of A†, that is intrinsically sequential and

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

4.5. Mathematical Considerations 79

1 let lsmc_naive [paths] [steps] (Ss: [paths][steps]real)
2 (T: real) (r: real) (pFun: real → real)
3 : real =
4 let Sst = transpose Ss
5 let dt = T / (real (steps-1))
6 -- compute discount factors
7 let disc =
8 map (λi → exp(r*real(-(i+1))*dt)) (iota (steps-1))
9 -- prepare initial payoffs

10 let Ps = map (λji →
11 let j = ji / steps
12 let i = ji % steps
13 in if i < steps-1 then zero else pFun(Ss[j,i])
14) (iota (paths*steps))
15 -- iteratively update the payoffs going backwards
16 let (Ps, _) = loop (Ps, h) = (Ps, steps - 1) while h >= 1 do
17 -- compute paths that are in-the-money
18 let selectedpaths =
19 filter (λj → pFun(Sst[h,j]) > zero) (iota paths)
20 -- prepare for and perform regression
21 let Y = map (λj →
22 map (λi → disc[i]*Ps[j*steps + h+i]) (iota (steps-h))
23 |> reduce (+) zero) selectedpaths
24 let Xt = map (λi →
25 map (λj → Sst[h,j] ** (real i)) selectedpaths) (iota 3)
26 let X = transpose Xt
27 let β = Mat.matvecmul_row
28 (Mat.matmul Xt X |> Mat.inv) (Mat.matvecmul_row Xt Y)
29 let exVals = map (λj → pFun(Sst[h,j])) selectedpaths
30 let contVals = map (λj →
31 let sst = Sst[h,j]
32 in loop (racc,sacc) = (0.0,1.0) for k < 3 do
33 (racc + sacc * regY[k], sacc * sst)
34) selectedpaths |> (.1)
35 let (updInds, updVals) = map (λji →
36 let j = ji / steps
37 let i = ji % steps
38 let j’ = selectedpaths[j]
39 in if (contVals[j] < exVals[j])
40 then if (i != h)
41 then (j’ * steps + i, zero)
42 else (j’ * steps + i, exVals[j])
43 else (-1, zero)
44) (iota ((length selectedpaths)*steps)) |> unzip
45 let Ps = scatter Ps updInds updVals
46 in (Ps, h - 1)
47 -- compute the discounted mean
48 let prices = map (λj →
49 map (λi → disc[i]* Ps[j*steps + i+1]) (iota (steps-1))
50 |> reduce (+) zero
51) (iota paths)
52 in Stats.mean prices

Listing 4.1: Futhark code for the naive LSMC algorithm.

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

80 4.5. Mathematical Considerations

has dependencies within the time-step loop from the one that does not have these issues.

The latter, “independent” part can thus be precomputed in parallel before the time-step loop

is entered. The algorithmic change consists, at a very high level, of working with a QR

decomposition of A = QR, where the R matrices have small dimensionality (3 × 3 in

our case) and can be efficiently precomputed in parallel for all time steps. With this, the

computation inside the time-step loop is reduced to A† = R−1QT .

Furthermore, the QT matrix is not manifested in memory at any moment, but rather

computed on the fly from the sample matrix and fused in the multiplication with R−1. This

requires some redundant computation, but in a general case it significantly decreases the

number of accesses to global memory, which are orders of magnitude slower than scalar

arithmetic. Finally, the sample matrix is computed in transposed layout to optimise spatial

locality, that is, coalesced accesses to global memory on GPU.

4.5.1 Building a Pseudo-Inverse Efficiently

We take our design goals into consideration and change the algorithm to adhere to parallel

computation on GPUs. This approach was first adapted in the original CUDA implementa-

tion by NVIDIA that we are trying to match in performance [Dem14; NVI].

For the sake of brevity, we assume that we work with one system of equations Ax = b,

although one per each time step i needs to be solved. We follow the standard practice by

applying Singular Value Decomposition (SVD) A = UΣV T to reduce the dimensions of A

and build the Moore-Penrose pseudo-inverse of a tall matrix A† = V Σ−1UT . Next, A† is

used to compute the solution x̂ = V Σ−1UT b.

Thus, our goal is to build A† efficiently, because we need to construct one matrix A

for each time step. Naive SVD computation of A requires extensive execution time and

memory. To remedy this problem, we start with a QR decomposition of A = QR, and use

the fact that R is much smaller than A. We specialise the algorithm to work with a 3-degree

parametrisation using a quadratic polynomial. As a result, in our case R is of size 3 × 3.

We compute SVD of R = URΣRV
T
R to build the SVD of A = QURΣRV

T
R .

The QR factorisation is typically performed using Householder transformation. Its

naive application involves 3×n×nmemory access, which is the number of matrix elements

that need to be updated. In contrast, the efficient solution comes from the observation that

in our case matrix R can be constructed using only 8 scalars:

S0, S1, S2,

itm−1∑
i=0

S0
i ,

itm−1∑
i=0

S1
i ,

itm−1∑
i=0

S2
i ,

itm−1∑
i=0

S3
i ,

itm−1∑
i=0

S4
i ,

where Si is the asset spot price on the ITM path i. Three first scalars are asset spot prices

for the first ITM paths found when traversing the paths from path 0. The first sum can be

translated to a total number of ITM paths found. The remaining four sums are consecutive

powers (1, . . . , 4) of spot prices associated with each found ITM path. These scalars are

prepared as part of SVD preparation. We implement a custom function that uses these

scalars to build the matrix R.

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

4.6. Optimised Algorithm and Implementation 81

Furthermore, QR factorisation provides us with a simple formula for the pseudo-inverse.

We use the fact that A is left-invertible, so its columns are linearly independent. We have

ATA = (QR)T (QR) = RTQTQR = RTR,

so

A† = (ATA)−1AT = (RTR)−1(QR)T = R−1R−TRTQT = R−1QT .

The final equation that we solve in the main loop for each time step is then as follows:

x̂ = R−1QT b. The R−1 is precomputed for each time step before the loop using SVD like

this: R−1 = VRΣ
−1
R UT

R . The orthogonal matrix QT = R−TAT does not need to be stored

for each time step and can instead be computed on-the-fly. We again use the fact that (1)

R−1 is by now already precomputed using SVD and (2) matrix A can itself be computed

on-the-fly, where, for our case, each row comprises 3 elements: 1, Sij , S2
ij , that is, it can be

computed from vector Si that consists of asset spot prices for ITM paths for a given time

step i. Naturally, they need to be processed in transformed form.

4.6 Optimised Algorithm and Implementation

We do not claim any contributions to this algorithm and instead closely follow the im-

plementation proposed by NVIDIA [Dem14; NVI]. We focus on the goal to match the

performance of this public benchmark implementation. The obtained algorithm outlined

in Figure 4.2 is implemented using a nested composition of sequential loops and parallel

map, reduce, and scan constructs.

1 -- Path Generation
2 map(n)
3 loop(m)
4 transpose
5 -- SVD Preparation
6 map(m)
7 loop(n)
8 scan(chunk)
9 map(n) |> reduce(n)

10 map(n)
11 map(m)
12 -- Main Regression Loop
13 loop(m)
14 map(n)
15 map(n)
16 reduce(n)

Listing 4.2: The high-level view of the implemented optimised algorithm structure pre-
sented as a combination of parallel constructs. It consists of 3 parts with n denoting the
number of paths and m denoting the number of time steps. transpose performs matrix
transposition.

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

82 4.6. Optimised Algorithm and Implementation

The code in Figure 4.3 demonstrates the main lsmc_opt function of the optimised

algorithm. The function takes the following arguments: (1) number of time steps m, (2)

number of paths n, (3) a function to verify if the option is ITM is_itm, (4) a payoff func-

tion payoff, (5) the time step size dt as a fraction of year, (6) initial asset spot price at

the current day S0, (7) a risk-free interest rate r used for discounting, (8) volatility σ, (9)

seed for Random Number Generator and 2 helper parameters that determine the amount

of computation that is performed sequentially. The function returns the calculated option

price.

In the next sections, we give a detailed description of the implementation and optimisa-

tion involved in the algorithm. The three main parts of the algorithm are: path generation in

Section 4.6.1, SVD preparation in Section 4.6.2, and main regression loop in Section 4.6.3.

Each section is accompanied with a code listing presenting a Futhark implementation of a

function that implements the given part.

1 let lsmc_opt (m: i32) (n: i32)
2 (is_itm: real → i32)
3 (payoff: real → real) (dt: real)
4 (S0: real) (r: real) (σ: real) (seed: i32)
5 (min_itm: i32) (CHUNK: i32)
6 : real =
7 -- Path Generation
8 let paths = generate_samples_and_paths
9 prng_seed m n S0 dt r σ payoff

10 -- SVD Preparation
11 let Sst = transpose paths
12 let (svds, all_otms) = prepare_svds Sst is_itm
13 min_itm CHUNK
14 -- Main Regression Loop
15 let expmrdt = exp(-r*dt)
16 let (cashflows, _) =
17 loop (cashflows, i) = (Sst[m - 1], m-2)
18 while i >= 0 do
19 let βs = compute_βs is_itm svds[i] Sst[i]
20 cashflows all_otms[i]
21 let new_cashflows = update_cashflows payoff
22 expmrdt βs Sst[i] all_otms[i] cashflows
23 in (new_cashflows, i - 1)
24 in expmrdt * (reduce (+) zero cashflows) / n

Listing 4.3: Main function of the optimised Futhark implementation of the LSMC.

4.6.1 Path Generation

The computational effort of a Monte Carlo simulation is determined by the number of paths

and time steps. A large number of paths n, that is usually 100 000 to 1 000 000, needs to be

generated to obtain an accurate value approximation [Gla04]. In American option pricing

case, the number of time steps m is bound to the number of early-exercise opportunities

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

4.6. Optimised Algorithm and Implementation 83

and is usually much smaller than n. Path generation part consists of two sub-parts: random

number generation and path generation.

For the random number generation purposes in the first part, we use Newer “Minimum

standard” PRNG in a parallel skip-ahead manner. The Futhark code is ported from C im-

plementation of minstd_rand. After seeding the RNG, we draw m × n random samples

by splitting the RNG into n sub-RNGs for each path and than sequentially drawing a sample

for each time step of the given path. The samples are independent from each other. For the

process, that we want to simulate, we need samples drawn from Gaussian (standard normal)

probability distribution. We achieve it in two steps. First, we draw samples from uniform

probability distribution using the RNG. Afterwards, we use the Inverse Normal Cumula-

tive Density Function (CDF) to produce normally-distributed samples out of the generated

uniforms. As there exists no exact formula for Inverse Normal CDF, we need to use an

approximation algorithm. We implement the Beasley-Springer-Moro algorithm known for

its speed and accuracy following the procedure described in [Gla04].

For the simulation purposes in the second part, every sample needs to be turned into

an asset spot price instance at every simulation time step or, alternatively, an early-exercise

opportunity. We chose the standard Geometric Brownian Motion GBM(r, σ2) with a mean

(drift) equal to the risk-free interest rate r and variance (diffusion) equal to a square of

volatility σ2. We use the generated normally-distributed samples to simulate a stochastic

process. In practice, as the process is a Markov chain, we know that the current step is

independent of the past realisations of the process.

In our case, we deal with one stochastic factor, an underlying asset spot price, as the

priced American option is only dependent on one underlying variable. This means the paths

are independent from each other. This allows us to parallelise the generation efficiently

across the paths by having one thread generate one whole path. Nevertheless, we want

to emphasise that our assumption of one underlying is not a limitation to parallelism in the

implementation. Many stochastic processes can be generated in parallel as long as we adjust

the simulations with the correlations between the stochastic variables, a necessary step in

practice.

The code in Figure 4.4 presents a compact Futhark implementation of path generation.

For each path and step, UnifRealDist.rand function draws first a single random num-

ber from a uniform distribution. Then function compute_gbm_normal_step transforms

it to a standard normal distribution and computes a current GBM step. It uses function

NormRealDist.invNormalCdf to approximate the Inverse Normal CDF of a uniform

sample. At the last time step the cash flow is always known, because the option is invali-

dated and we cannot exercise it any more after that time step. Therefore, the value is set to

the payoff value.

Performance Enabler We gain most performance here by fusing the random sample gen-

eration and path generation together into one step like in lines 21–29 in the code in Fig-

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

84 4.6. Optimised Algorithm and Implementation

ure 4.4. We perform these actions for each step based on the observation that we work on

the same array for both actions as well as each sample is independent from the all other

ones. This way we read from and write to the device global memory only once and thereby

save the redundant intermediate memory accesses, that are costly to execute compared to

compute instructions.

1 let compute_gbm_normal_step
2 (drift: real) (vol: real) (x: real)
3 : real =
4 drift * exp(vol * (NormRealDist.invNormalCdf x))
5

6 let generate_samples_and_paths
7 (seed: i32) (m: i32) (n: i32)
8 (S0: real) (dt: real) (r: real) (σ: real)
9 (payoff: real → real)

10 : [n][m]real =
11 let rng = minstd_rand.rng_from_seed [seed]
12 let rn_range = (0.0, 1.0)
13 let rngs = minstd_rand.split_rng n rng
14 let drift = exp((r-0.5*σ*σ)*dt)
15 let dtSigma = σ * r_sqrt(dt)
16 in map (λr →
17 let path = replicate m 0.0
18 let (path’, _, _) =
19 loop (path, rng, acc) = (path, r, 1.0)
20 for i < m do
21 let (rng, num) = UnifRealDist.rand rn_range rng
22 let W = compute_gbm_normal_step drift dtSigma num
23 let acc’ = acc * W
24 let v = acc’ * S0
25 let v’ =
26 if i < m - 1
27 then v
28 else payoff v
29 let path[i] = v’
30 in (path, rng, acc’)
31 in path’
32) rngs

Listing 4.4: Futhark code for the Path Generation part.

4.6.2 Preparation of Singular Value Decomposition

This part is run before entering the main regression loop and covers the main algorithmic

optimisation. The main advantage of this approach is that SVD for R in each time step can

be processed in parallel. As R is small, the intermediate variables easily fit into registers of

one streaming multiprocessor (SM). The number of SVD matrices to prepare depends on the

number of time stepsm. This part is compute-intensive, but at the same time the parallelism

is limited by the fact that m is usually much smaller than n. A sequential loop is needed to

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

4.6. Optimised Algorithm and Implementation 85

find the first three ITM paths to get the asset spot prices to build R matrix. In the body of

prepare_svds function, the eight required scalars are gathered and computed. They are

subsequently passed to svd_3x3 function that performs the QR decomposition and SVD

decomposition for R and R−1. It start with assembling the R matrix from the 8 scalars

and afterwards uses the iterative Jacobi method to determine the inverse matrix R−1. The

function returns 6 upper elements of matrix R and 6 upper elements of the inverse matrix

R−1, as the matrices are orthogonal.

Performance Enabler The key to performance here is the fact that we not only perform

computation in parallel on the outer level across all time steps m, but we also enable inner

parallelism in computation for each of the time steps itself.

First of all, SVD preparation benefits significantly from the intra-group parallelism in

the first map (lines 5–31 in the code in Figure 4.5), that finds the first three ITM paths. The

spot prices on these paths are needed for construction of matrix R. It works by taking the

CHUNK paths at one time and working on them in parallel. It is achieved by a combination

of parallel constructs like map, reduce, scanexc and scatter. CHUNK parameter de-

pends the level of intra parallelism here. The smaller its value, the faster this part performs.

However, the value cannot be smaller than a number of ITM paths, that are needed for con-

structing R SVD matrices. In our implementation, it is determined by min_itm parameter

and fixed to 4, one more than dimension size of R. The next optimisation that benefits

the overall performance is the application of segmented reduction in the lines 33–48 that

enables parallelism in gathering the remaining 5 scalars. Afterwards, a map in the line 49

works in parallel across time steps, but internally, for each time step, it uses the matching

scalars to compute sequentially the partial SVD in svd_3x3 call.

4.6.3 Main Regression Loop

This part is where the least squares system of equations is regressed, the continuation value

is computed and the cash flow per each time step is updated. It can be seen in the code in

Figure 4.3 in lines 16–23. This loop has m − 1 iterations. The computation in the loop is

greatly simplified in the SVD preparation step, which is performed before entering the loop,

because most of the sequential computation is performed there. The code in Figure 4.6

shows the implementation. Function compute_βs computes β coefficients required for

regression through a multiplication of pseudo-inverse A† and cash flow vector. Afterwards,

the update_cashflows estimates a payoff based on βs for each path and determines

continuation value for each of them, comparing the estimated payoff with a current payoff

of the option.

Performance Enabler Due to the SVD preparation before start of the main regression

loop, the computational work in each loop iteration is significantly reduced. The other rea-

son is the reduced size of the matrices that are being processed. All the remaining computa-

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

86 4.6. Optimised Algorithm and Implementation

1 let prepare_svds [m] [n] (Sst: [m][n]real)
2 (is_itm: real → i32)
3 (min_itm: i32) (CHUNK: i32)
4 : ([m][12]real, [m]i32) =
5 let svds = map (λSs →
6 let svds = replicate 12 zero
7 -- Loop to find 3 first ITM paths
8 let (svds, _, _, _) = unsafe
9 loop (svds, found_paths, path_offs, exit)

10 = (svds, 0, 0, false)
11 while (!exit && found_paths < 3
12 && path_offs < n) do
13 let Ss_chunked = map (λi →
14 if i + path_offs < n
15 then Ss[i+path_offs]
16 else zero) (iota CHUNK)
17 let itms = map is_itm Ss_chunked
18 let exit = reduce (&&) true <| map (==0i32)
19 itms
20 let scn_ms = scanExc (+) 0 itms
21 let tot_sum = scn_ms[CHUNK-1] + itms[CHUNK-1]
22 let inds = map2 (λin_m sm →
23 if in_m == 1i32 && found_paths+sm < 3
24 then found_paths+sm
25 else -1)
26 itms scn_ms
27 let svds = scatter svds inds Ss_chunked
28 let found_paths = found_paths + tot_sum
29 in (svds, found_paths, path_offs+CHUNK, exit)
30 in svds
31) Sst
32 let (ms, sums, all_otms) = unzip3 <|
33 map (λSs →
34 let itms = map is_itm Ss
35 let ms = reduce_comm (+) 0i32 itms
36 let sums = map2 (λin_m S →
37 if in_m == 1i32
38 then (S, S*S, S*S*S, S*S*S*S)
39 else (zero, zero, zero, zero)
40) itms Ss
41 |> reduce_comm tuple4_sum_op
42 (zero, zero, zero, zero)
43 let all_otm =
44 if (ms < min_itm)
45 then 1i32
46 else 0i32
47 in (ms, sums, all_otm)
48) Sst
49 let svds = map3 svd_3x3 ms sums svds
50 in (svds, all_otms)

Listing 4.5: Futhark code for the SVD preparation part.

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

4.7. Experimental Results 87

tion is performed in parallel across n paths. In Figure 4.6, compute_βs use a map in line 9

followed by a reduce line 17. The update_cashflows follows with one more map in

line 24. The performance of the loop is highly dependent on the number of time steps, as

they need to be processed sequentially, because of data dependency between consecutive

time steps.

1 let compute_βs [n] (is_itm: real → i32)
2 (svds: [SLOTS]real) (Ss: [n]real)
3 (cashflows: [n]real)
4 : [](real, real, real) =
5 let R00 = svds[0]
6 -- Initialise R and W matrices from svds
7 -- and compute inverse of R and W
8 λdots
9 in map2 (λS i →

10 -- Compute Qis. The elements of the Q matrix
11 -- in the QR decomposition.
12 λdots
13 let cashflow = if (is_itm S) == 1i32
14 then cashflows[i] else zero
15 in (WI0*cashflow, WI1*cashflow, WI2*cashflow)
16) Ss (iota n)
17 |> reduce_comm tuple3_sum_op (zero, zero, zero)
18

19 let update_cashflows [n]
20 (payoff: real → real) (expmrdt: real)
21 (β: [](real,real,real))
22 (Ss: [n]real) (cashflows: [n]real)
23 : [n]real =
24 map2 (λS path →
25 let old_cashflow = expmrdt * cashflows[path]
26 let cur_payoff = payoff S
27 let (β0, β1, β2) = β
28 let estimated_payoff =
29 (β0 + β1 * S + β2 * S * S) * expmrdt
30 in
31 if cur_payoff <= estimated_payoff
32 then old_cashflow
33 else cur_payoff
34) Ss (iota n)

Listing 4.6: Futhark code for the main regression loop. It consists of a computation of βs
for assessing the continuation value with a subsequent update of the cash flows.

4.7 Experimental Results

In this section, we present different experimental tests and discuss their results. We validate

the accuracy of the simulations and measure the performance of the implementation by

comparing it against other established benchmarks. We run the experiments on D1 system

described in Section 2.5.

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

88 4.7. Experimental Results

4.7.1 Accuracy

To start with, we compare the pricing results with an established benchmark to validate

correctness of our implementation. Table 4.1 presents a comparison of different implemen-

tations of American Option Pricing. We are pricing an American put option with a fixed

strike and constant risk-free rate. The remaining parameters vary as specified in the original

paper by Longstaff-Schwartz [LS01]. Columns FDMorig and LSMCorig denote the results

from the original paper. The two remaining columns comprise LSMC results for CUDA

implementation, that we used as a benchmark algorithm, and our Futhark implementation.

In addition, we mention that the LSMC simulation from the original paper uses antithetic

sampling, which cuts the number of random samples in half. This algorithmic optimisation

leads to a reduced variance of the sample paths as well as an improvement in the overall

accuracy of the simulation.

The simulation results compared to FDM method have a low error. The difference

between simulation results varies slightly for different sets of parameters, but, in general,

they are insignificant and are the outcome of using different RNGs. The same is valid for

both the original CUDA and Futhark implementations.

S0 σ T FDMorig LSMCorig LSMCCUDA LSMCFuthark

36 0.20 1 4.478 4.472 4.460 4.465
36 0.20 2 4.840 4.821 4.821 4.826
36 0.40 1 7.101 7.091 7.077 7.092
36 0.40 2 8.508 8.488 8.514 8.518
38 0.20 1 3.250 3.244 3.232 3.239
38 0.20 2 3.745 3.735 3.736 3.739
38 0.40 1 6.148 6.139 6.131 6.147
38 0.40 2 7.670 7.669 7.670 7.661
40 0.20 1 2.314 2.313 2.307 2.313
40 0.20 2 2.885 2.879 2.873 2.878
40 0.40 1 5.312 5.308 5.290 5.319
40 0.40 2 6.920 6.921 6.914 6.909
42 0.20 1 1.617 1.617 1.613 1.612
42 0.20 2 2.212 2.206 2.205 2.205
42 0.40 1 4.582 4.588 4.578 4.590
42 0.40 2 6.248 6.243 6.231 6.234
44 0.20 1 1.110 1.118 1.104 1.104
44 0.20 2 1.690 1.675 1.682 1.680
44 0.40 1 3.948 3.957 3.945 3.952
44 0.40 2 5.647 5.622 5.628 5.637

Table 4.1: Comparison between results from the original paper (FDMorig and LSMCorig)
and LSMC implementations in CUDA and Futhark, LSMCCUDA and LSMCFuthark, respec-
tively. The strike price of the put option is 40 and the risk-free rate is 0.06. The remaining
parameters are as indicated. All LSMC simulations are done with 100 000 paths and 50
time steps per year.

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

4.7. Experimental Results 89

4.7.2 Performance Validation Case

Model Parameters Value

Option Type, Payoff Put, max(K − S)
Initial Spot price (S0) 80.0
Strike price (K) 90.0
Time to maturity (T) 1 year
Risk free rate (r) 5%
Volatility (σ) 30%

Simulation Parameters

Time steps/Early Exercise dates 100
Paths 1 024 000

Ref. value (Binomial Tree) 13.804

Table 4.2: Set of model and simulation parameters for the American option pricing. We
provide an option price obtained from a different numerical method (binomial tree) for
reference.

The pricing test case is presented in Table 4.2. It is an example of a typical put option

that is ITM on the calculation day. The performance results are presented in Table 4.3. The

correctness is validated against the benchmark binomial tree numerical method for the same

problem. We want to obtain a value that is as close as possible to this benchmark. Futhark

compiler is able to translate high-level functional language to different backend parallel

languages. We test CUDA (V1) and OpenCL (V2) backends, and observe identical execu-

tion times for both versions. In terms of the speedups, Ref is only 1.11× faster than V2,

what can be considered insignificant. Furthermore, we do not observe large discrepancies

in terms of partial execution times among the three main parts of the algorithm. This fact

demonstrates that Futhark auto-generated low-level code is similar in complexity and on

par in performance with one that is hand-tuned.

Indeed, some parts of the algorithm run faster, while other can benefit from further

optimisation, for example changing the algorithm. For instance, The (17%) overhead in

Path part is due to choice and an internal implementation of the RNG. We have used a

different RNG than Ref, which uses CURAND_RNG_PSEUDO_MRG32K3, a member of the

Combined Multiple Recursive family of pseudo-random number generators. On the other

hand, the 13% speedup in Main stems from a more optimal handling of memory copies in

comparison to Ref. Furthermore, the effect is amplified, because the loop has 99 iterations.

4.7.3 Performance Scalability Tests

In this section, we present the performance scalability results of our experiments.

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

90 4.7. Experimental Results

Path SVD Main Total ∆ Val

Ref 4.7 (30%) 1.8 (12%) 8.9 (58%) 15.4 1.11× 13.778
V1 8.0 (47%) 1.4 (8%) 7.7 (45%) 17.1 1.00× 13.789
V2 8.0 (47%) 1.4 (8%) 7.7 (45%) 17.1 1.00× 13.789

Table 4.3: Execution times for the verification case. Ref is the original CUDA benchmark,
while V1 is Futhark compiled to OpenCL and V2 is Futhark compiled to CUDA. Both total
and partial execution times for each part of the algorithm are shown. The execution times
are given in ms and averaged based on 250 runs. Path denotes the Path Generation part,
SVD the SVD Preparation, and Main the Main Regression Loop. In ∆ column, we compare
the speedups against the slowest execution time. The obtained values are presented in Val
column.

Fixed Number of Paths, Various Number of Time Steps

As the next step we test the scalability behaviour of Futhark implementation V2 by grad-

ually changing the number of time steps or paths. These two dimensions are the main pa-

rameters that determine the size of the computation involved in a Monte Carlo simulation.

Consequently, we reuse the test case from Table 4.2 and compare against the benchmark

Ref for different combinations of these two simulation parameters.

First of all, we fix the number of paths to a relatively high number 1 024 000 and test

against 5 different numbers of time steps. High number of paths allows for massive paral-

lelism across the path dimension and thus full utilisation of the GPU hardware. Figure 4.1

shows the results of this experiment. Contributions of three algorithmic parts are distin-

guished and sum up to a total execution time for each tested case.

The main observation is that for the low number of time steps Futhark V2 is faster than

benchmark CUDA Ref. In particular, for very few time steps like 10, it is ∼ 2.5× faster.

The difference diminishes with increasing number of time steps to match at ∼ 100 time

steps. For more time steps, Ref is slightly faster than V2, but the ratio is maintained with

increasing time steps. For instance, it is 1.25× faster for 250 time steps.

The next observation is that for the large number of time steps the Path part grows much

faster and becomes the main computational bottleneck. It takes 40% for 10 time steps, but

more than 52% for 250. This slower execution time is caused by necessary transposition of

the layout, which the sampled paths matrix is organised in, from one ordered by the paths to

the one ordered by time steps. As a result, we enable coalesced accesses to global memory

on GPU across time steps that benefits the performance of SVD part. We also experience

that the contribution of SVD part decreases with more time steps. The V2 implementation is

more efficient, because it always executes faster than one in Ref. Finally, we achieve better

performance on the sequential part Main by ensuring that we do not launch any device-to-

host memory transfers. On GPU architectures such transfers introduce significant execution

delays. Hence, the solution is to keep all intermediate data on the device if possible. As a

side note, compute_βs and update_cashflows functions in 4.6 exchange an array of βs

that is computed sequentially, not in parallel, as it only comprises of 3 elements.

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

4.7. Experimental Results 91

10 25 50 100 250
Time Steps

0

10

20

30

40

Ru
nt

im
e

[m
s]

Absolute Performance for fixed # Paths = 1.024.000
CUDA: Path
CUDA: SVD
CUDA: Main
Futhark: Path
Futhark: SVD
Futhark: Main

Figure 4.1: Execution time comparison of CUDA (Ref) and Futhark (V2). Absolute per-
formance is presented for a fixed number of 1 024 000 paths. Execution time is given inms.

Fixed Number of Steps, Various Number of Paths

We observe analogous scalability, when the number of paths is increased. Futhark V2 is

faster than benchmark CUDA Ref on low number of paths. In particular, for 10 240 paths, it

is ∼ 1.25× faster. The difference diminishes with increasing number of time steps to match

at ∼ 1 024 000 paths.

Various Number of Time Steps and Paths

Figure 4.3 presents the results for different combinations of time steps and paths. The

ratio between them is kept so, that the required work as well as memory requirements are

constant. These cases saturate the memory available on V100. We can see that the impact

of the time steps on the overall execution time is slightly higher than the number of paths.

For V2 it goes from 39 ms to 45 ms. The execution time changes, because the computations

in Main loop that need to be run one step at a time. In general, the performance of both

Ref and V2 is stable across different configurations, which shows that Futhark matches the

CUDA performance. We can observe that Futhark V2 is slightly (1 ms to 13 ms) slower

than Ref on all cases.

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

92 4.7. Experimental Results

1024 10240 256000 1024000 2048000
Paths

0

5

10

15

20

25

30
Ru

nt
im

e
[m

s]

Absolute Performance for fixed # Time Steps = 100
CUDA: Path
CUDA: SVD
CUDA: Main
Futhark: Path
Futhark: SVD
Futhark: Main

Figure 4.2: Execution time comparison of CUDA (Ref) and Futhark (V2). Absolute per-
formance is presented for a fixed number of 100 steps. Execution time is given in ms.

63 x 4096000 125 x 2048000 250 x 1024000 500 x 512000 1000 x 256000
Time Steps x # Paths

0

10

20

30

40

50

Ru
nt

im
e

[m
s]

Absolute Performance for various # Time Steps x # Paths
CUDA: Path
CUDA: SVD
CUDA: Main
Futhark: Path
Futhark: SVD
Futhark: Main

Figure 4.3: CUDA (Ref) and Futhark (V2) are compared in terms of execution times.
Absolute performance is presented for different combinations of number of time steps and
paths. Execution time is given in ms.

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

4.8. Related Work 93

4.8 Related Work

We present the related work that is specific for acceleration of LSMC problem.

4.8.1 Accelerated Implementations of Monte Carlo Simulations

The most efficient implementations of Monte Carlo simulations for American option pric-

ing are implemented in low-level dedicated data-parallel languages and frameworks, For

instance, there are many examples using CUDA [Abb+14; FP13; PW12; Zha+17]. Other

efficient parallel implementations are based on task-parallel approaches [Cho+08; CHL15],

which are suitable for multi-core architectures. We are not aware of any accelerated imple-

mentations of American option pricing using functional languages.

Previous work has investigated the use of Futhark for implementing Monte Carlo sim-

ulations for European option pricing [And+16; Oan+12]. Even though European option

pricing is simpler than, and in fact it is a special case of, American option pricing, the previ-

ous work covered a number of advanced features that the present work does not consider. In

particular, the previous work on European option pricing considered European options with

multiple underlying assets, Sobol sequence generation [HEO18], and options that are path

dependent, which are options with a price that not only depends on the value of the underly-

ing instrument at maturity, but also on its intermediate values. Using the module language

features of Futhark, it is possible to parametrise the implementation in such a way that mul-

tiple underlying assets and path dependence are supported by the implemented American

pricing engine. We consider such advanced features future work. Due to code modularity,

it is also straightforward to replace a pseudo-RN generation (PRNG) with a quasi-RN one

that uses Sobol sequences (QRNG).

4.9 Conclusion

In this work, we present the results of the accelerated implementation of a well-known

LSMC algorithm for a common financial use case of American Option Pricing. We choose

to use a high-level functional approach to the implementation, express the algorithm using

succinct parallel constructs and let the optimising compiler auto-generate an efficient par-

allel code that targets massively parallel hardware. For this purpose, we use the Futhark

language and address GPUs as a suitable compute platform. We demonstrate that with this

approach it is possible to achieve the execution times that are, in general, at the same level

as the hand-tuned implementations in dedicated languages like CUDA, but there exist par-

ticular smaller cases, where the implementation beats the benchmark by up to 2.5×. This

promising finding motivates further work on the optimisation compiler and the algorithm.

We consider the high-level functional specification as being much more suitable and

accessible for the financial-domain experts than the low-level dedicated code, that is usu-

ally implemented by expert software developers. Its expressibility and modularity enables

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

94 4.9. Conclusion

code maintainability, hiding the implementation details targeting particular parallel archi-

tecture, and instead turning focus to algorithmic and domain-specific consideration. It also

facilitates algorithmic changes, so prevalent in the financial industry, for example due to a

multitude of financial instruments traded in the global markets.

This work has a potential to be integrated as a module in a larger risk management

system aimed at large investment portfolios. Such modular and fast pricing capabilities

enriched with, for example, sensitivity calculations, can be combined into standard Value at

Risk (VaR) or more involved Value Attribution (xVA) risk portfolio analytics [Hul18].

Chapter 4. Least Squares Monte Carlo Simulation (LSMC)

Chapter 5

Monte Carlo Value at Risk
Simulations (MCVaR)

Abstract

We accelerate Monte Carlo simulations for estimating the key risk measures like
Value at Risk (VaR) and Expected Shortfall (ES) using high-level data parallel language
to target highly parallel architectures like GPUs. The nested Monte Carlo simulations
that involve compute-intensive simulations for both MS generation and revaluation of
the portfolio instruments are the most flexible approach to the computation of risk mea-
sures. We analyse the risk workload in our implementation by measuring the execution
times of Multicore and CUDA targets compiled from Futhark code. We measure exe-
cution times of each of its parts and conclude that portfolio pricing part is responsible
for majority of the execution time of the complete risk workflow. The portfolio repric-
ing in all MSs takes up to 30× on CPU and 747× on GPU longer than the second
most expensive part, that is, MS generation. Risk measure calculation is insignificant,
even when we calculate the risk measure contributions to portfolio holdings such as
CVaR and CES. Furthermore, we prove our initial hypothesis that we are restricted
in our experiments to a sequential execution of portfolio repricing in MSs, because
MCVaR in current implementation consumes prohibitively large amounts of memory
in the pricing part. It is especially evident for cases with LSMC algorithm used for
pricing American Option Portfolio. The already optimised parallel structure of pricing
implementations use all the GPU compute and memory resources for cases with many
sample paths, effectively prohibiting pricing of many portfolio holdings at the same
time. However, in our experiments we still observe up to 18.7× speedup of GPU ex-
ecution over CPU execution using 32-core on cases, where the inner parallelism over
sample paths in the internal pricing simulations is large such as 1 024 000. For the
largest measured input, the GPU version takes 5.9 s and achieves 3.8× speedup over
the highly multithreaded CPU version on a portfolio with 10 holdings. The largest
single instrument portfolio case that we manage to execute comprises 10 000 market
scenarios priced using 1 024 000 Monte Carlo paths. The GPU version takes 41 s and
achieves a speedup of 11.2× over CPU version. This proves that GPUs are suited for
large risk workloads, if we can efficiently map all innermost parallelism (on pricing

95

96

level) to the core structure of the GPU architecture. We conclude that further optimi-
sations that target memory footprint reduction are necessary to extract more perfor-
mance from the parallel implementation of a complete risk workflow. However, at the
current implementation state this needs be achieved through changes in the algorithm.
To address these shortcomings, we propose further investigations in more efficient use
of quasi-random numbers in our implementation.

Section 5.1 outlines the context of the research, explains the identified gap in the prob-
lem, presents the main original ideas in the solution, and summarises contribu-
tions.

Section 5.2 establishes the necessary financial background for software implementa-
tions addressing the problems in risk management and analysis.

Section 5.3 identifies and explains the nested parallel structure of the problem.

Section 5.4 shows how we derive a Futhark implementation of the nested simulation
and describes the proposed optimisations.

Section 5.5 describes the experimental approach and various test cases as well as dis-
cusses the performance impact of each implementation and optimisation.

Section 5.6 compares our work with previous research in the area.

Section 5.7 concludes the chapter and discusses the main outcomes.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.1. Introduction 97

5.1 Introduction

Risk management of large investment portfolios involves large-scale calculations on an

daily basis. Portfolios across investment managers vary in size and instrument composition.

They usually include diverse set of illiquid derivative instruments that do not have a price

quoted in the markets. For such exotic derivatives, Monte Carlo simulations 1 are often the

only viable approach to get an accurate price approximation from a suitable mathematical

model. Moreover, to assess the risk in portfolio with a certain confidence we approximate

the distribution of relevant risk factors (RFs) 2 that have an impact on the portfolio. We

choose an analysis date in the future, for which we want to asses the risks of our invest-

ments. The next step is to estimate the evolution of each RF from calculation date (usually

today) over a given future time horizon. The goal is to estimate values of the RFs on the

analysis date and then use them as input to price each portfolio holding. For RF estimation,

Monte Carlo simulation is, again, a most versatile choice, as it can assume any RF distribu-

tion. A desired distribution is obtained through a generation of synthetic market scenarios

(MSs) 3 that specify RF values, in a stochastic way using random numbers (RNs) 4 , for

each date over time horizon. As a result, MSs, when combined together, cover the complete

space of RF values for the risk distribution of the portfolio.

Although Monte Carlo simulations are a robust approach, they need a significant num-

ber of samples to be accurate. In effect, Monte Carlo simulations are traditionally consid-

ered to suffer from high computational complexity. We aggravate the complexity further,

because we want to not only generate MSs through simulation, but also use a Monte Carlo

simulation to revaluate each derivative in the portfolio in each of these scenarios. Certainly,

this flexible approach leads to a larger set of nested simulations that is a problem tradition-

ally considered as computationally infeasible. At present, investment managers run such

workloads as EOD batch jobs that run over night to prepare the results for the next day,

because most often they cannot meet the compute power requirements. Even worse, they

need to repeat this costly and time-consuming process from scratch on every business day

as they cannot keep their analytics up-to-date on a running basis. When we work with risk

analysis, we forecast future values instead of working with historical data. However, the

today data that can be considered historical is fed as input to the simulation. Therefore,

the results today are not going to be of any value tomorrow, and also cannot be reused in

the calculation on the next day. As a result, we need to perform these simulations from

scratch and this is a process most often not fast enough to be executed many times during

the business hours. This prohibits application of such simulations in intra-day on-demand

usage of portfolio rebalancing or what-if simulations. Moreover, lack of intra-day recalcu-

1For clarity and not to repeat ourselves, wherever it is applicable we refer to a Monte Carlo simulation as
just a simulation further in this chapter, because this is the only method (or algorithm) to perform a stochastic
simulation that we consider and use in this chapter.

2We abbreviate a risk factor to RF further in this chapter, because we use this concept frequently.
3We abbreviate a market scenario to MS further in this chapter, because we use this concept frequently.
4We abbreviate a random number to RN further in this chapter, because we use this concept frequently.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

98 5.1. Introduction

lations leads to the portfolio composition remaining constant throughout the day. This is

an unrealistic assumption and huge restriction in the time of highly-volatile markets. This

is also means that investment managers do not have the high-level up-to-date picture of

the portfolio risk situation at any given moment. This severely impacts their flexibility and

confidence in taking investment decision. To alleviate the described situation, the goal of

our work is to enable nested Monte Carlo simulations for the on-demand, real-time and

continuous risk measurement of complex portfolios through use of efficient algorithms and

accelerated software implementations.

The nested simulations result in a P/L vector that approximates the risk distribution of

a portfolio. Based on these vectors, we calculate the key ratios (measures), that are a set

of descriptive indicators that the regulation authorities standardise and market participants

coordinate among each other to track risk in their portfolios. In our work, we choose to

calculate not only Value at Risk (VaR) and Expected Shortfall (ES) for the whole portfolio,

but also for each of its components (abbreviated CVaR and CES, respectively) to determine

how each instrument and a corresponding RFs contribute to a complete portfolio risk. We

follow the industry practice and use MCVaR abbreviation to identify the whole process of

nested simulations for the calculation of key ratios like VaR.

We attempt to verify if GPU acceleration of MCVaR enables VaR estimation of large

portfolios with thousands of RFs and hundreds of thousands of future MSs within seconds.

Despite the compute power of the modern GPUs, MCVaR is still a large computational

problem that requires extensive memory resources to track the intermediate computation

results. In consequence, our implementation needs to take into account the extensive, but

still finite compute capabilities and limited memory resources of a modern GPU. For in-

stance, 16 GB of device memory on a V100-generation architecture puts a hard limit on

the number of simulations we can perform at any time. Furthermore, for practical reasons

we need to assume any distribution of instruments in the portfolio. Even though we use

simulations for each instrument, the required workload size differs across pricing models

for these instruments. This fact leads to divergence between individual computations. To

address this issue, we need to group computations in a way that maps to a GPU most ef-

ficiently and execute them in a sequence that minimises the thread divergence. Lastly, we

need to consider the number of pricing computations that we can run in parallel as this risk

problem has three potential levels of parallelism as specified below.

1. Outer-level parallelism across MSs.

2. Inner-level parallelism across portfolio holdings.

3. Innermost-level parallelism across the sample paths of the simulation for derivative

pricing.

The input parameters determine the size of each level of parallelism.

1. The common number of MSs determines the outer level.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.1. Introduction 99

2. The number of portfolio holdings determines the inner level.

3. The common number of sample paths for each simulation pricing determines inner-

most level.

By common, we refer to the fact that all MS and pricing simulations use the same number

of sample paths. Our approach is to parallelise or sequentialise each level depending on

the input parameters to identify the most efficient configuration for each input case. For

instance, we can parallelise the outer level and sequentialise the remaining nested ones.

To meet the requirements of real-time MCVaR computations, we combine the devel-

opment productivity of the Futhark programming language, algorithmic optimisations, and

the high-performance capabilities of the highly-parallel code that is compiled for execution

on GPU. High-level functional orientation of Futhark allows us to prototype fast as well

as modularise the code to enable reuse. The described risk problem is itself scalable in

nature, because revaluations across market data scenarios are independent from each other.

We harness this fact to map the problem to the GPU architecture. Moreover, we reuse and

build on top of the derivative pricing implementations from Chapter 4. In this regard, we

combine the pricing workloads for individual portfolio holdings to build a larger portfolio

pricing workload. As a result, large number of simulations provide us with sufficiently large

floating-point computations to fully utilise the massive parallelism of a GPU. For this pur-

pose, we exploit the inbuilt moderate parallelism functionality of the Futhark compiler, by

manually tweaking the code to guide the compiler.

To map the risk problem to a GPU, we need to optimise for memory footprint and reuse

the intermediate results. We address a problem of divergence between different types of

pricing algorithms by grouping the calculations together by their computational complex-

ity. The other algorithmic optimisation that we introduce is to use statistical properties and

domain knowledge to adapt the algorithm to generate only a single set of RNs for each MS

and reuse them across internal (pricing) simulations. Our functional-oriented codebase is

high-level, platform agnostic, maintainable, and expandable. These characteristics are cru-

cial for risk management software, because these highly-heterogeneous applications evolve

considerably over their deployment time to adapt to ever-changing financial markets. At

the same time, these applications need to scale effortlessly to meet changing functional and

non-functional requirements.

We evolve the application from a naive implementation by applying algorithmic opti-

misations to reduce the memory footprint and reach a performance speedup on the parallel

hardware platforms, to enable on-demand and real-time execution, rather than EOD and

overnight. We asses the performance of these simulations on a synthetic mixed portfolio of

European and American equity options. We describe the code implementations as well as

discuss the experimental results of our MCVaR acceleration work. We discuss the perfor-

mance impact of different parallelisation techniques and optimisations that we implement.

In particular, we compare execution times between multicore CPU and parallel GPU plat-

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

100 5.2. Risk Measures

forms. For the largest measured input , the GPU version takes 5.9 s and achieves 3.8×
speedup over the highly multithreaded CPU version on a portfolio with 10 holdings. The

largest single instrument portfolio case that we manage to execute comprises 10 000 MSs

priced using 1 024 000 paths. The GPU version takes 41 s and achieves a speedup of 11.2×
over CPU version.

5.2 Risk Measures

In this section, we describe the mathematics behind the commonly used portfolio risk mea-

sures (or key ratios) that we deal with in this chapter. We calculate a total VaR and ES

risk measures for the whole derivative portfolio. In addition, we calculate their component

equivalents per portfolio holding, CVaR and CES, to asses contribution of each RF to the

whole portfolio risk. All mentioned risk measures use the sorted P/L vector, which is cal-

culated across MSs. We calculate the component ratios through aggregation of component

prices across MSs. When we calculate risk measures, we need to typically decide on the

confidence level, the time horizon, and the statistical distribution for the individual RFs. The

last component can only be accurately modelled using simulations. The choice of distribu-

tion determines how realistic the RF model is. Moreover, particular distributions are better

in describing the fat tails that represent improbable extreme market events. We describe

the computational complexity of calculating these measures by using a simulation in Sec-

tion 5.3. Here, we only provide minimal description to be able to match the linear algebra

transformations and formulas to the implementation code. For more detailed and generic

description of the mathematics behind these measures, we refer to standard reference in risk

management [Hul18; MFE15].

Figure 5.1: Calculation of VaR and ES from the P/L probability distribution of the gain
in the portfolio value as presented in [Hul18]. Losses are negative gains, confidence level
is X%, VaR level is equal to V , and ES is the greyed-out space under the curve (integral)
between −∞ and −V .

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.3. Nested Simulations in Monte Carlo Repricing Approach 101

5.2.1 Value at Risk (VaR)

Value at Risk (VaR) is a standard measure used by portfolio managers to asses the amount of

money that can be lost or gained over a specific time horizon given some confidence level.

VaR measures the risk at a particular confidence level, points to a critical scenario, and

indicates the estimated losses for that scenario, that is, it only describes what happens at but

does not describe what happens beyond in the tail to the left of the VaR level. Therefore, VaR

is a single P/L value at a particular index in the P/L vector. For example, VaR at 99.0 percent

captures 1-day-in-100 events. We make an assumption that holdings remain constant over

the time horizon.

VaRα(Lt+τ) = inf
l∈R

{Ft+τ (l) > α} =

N∑
i=1

hi
∂VaRα

∂hi
(5.1)

VaR is a not a subadditive measure, which means that the risk measure for two portfolios

after they have been merged should be no greater than the sum of their risk measures before

they were merged.

5.2.2 Expected Shortfall (ES)

Expected Shortfall (which is abbreviated ES, and is also called Conditional VaR) is closely

related to VaR and its confidence level. In contrast to VaR, ES is the average of the estimated

P/L in the tail to the left of VaR. In other words, ES is a mean of an aggregation of a subset of

P/Ls in this vector. This measure indicates how large the loss is on average for the scenarios

not covered by the confidence level.

ESα(Lt+τ) =
1

1− α

∫ 1

α
VaRγ(Lt+τ)dγ =

N∑
i=1

hi
∂ESα
∂hi

(5.2)

Furthermore, in comparison with VaR, ES is subadditive.

5.2.3 Component Risk

We calculate the marginal contributions of individual holdings to the risk measure of the

whole portfolio. These measures give insights into which holding in reality increases the

portfolio risk and how large is its impact.

compVaRi
α = hi

∂VaRα

∂hi
≈ −khiSi (5.3)

compESiα = hi
∂ESα
∂hi

≈ −qhiSi (5.4)

5.3 Nested Simulations in Monte Carlo Repricing Approach

This section describes the computational structure of the nested simulation problem.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

102 5.3. Nested Simulations in Monte Carlo Repricing Approach

5.3.1 Problem Assumptions

Practical risk modelling is a complex application that depends on many parameters and

consists of many intermediate steps. Our goal is to build the core computation engine for

a risk modelling application. Therefore, to allow us to focus on its main computational

challenges in our experiments, we need to make some assumptions and put constraints on

the risk modelling problem. As a result, the resulting model is less practical and realistic,

but sustains the structure of the complete workflow that allows us to draw conclusions about

its overall performance. In fact, once we have the core implemented, the application can

be then made more practical by using its modularity and gradually extending it to support

more functionality.

We make the following assumption in our experiments.

1. We look at a problem of assessing financial risk of an investment portfolio that con-

sists of a varying number of European and American equity options.

2. We use nested simulations and a full revaluation approach, so we not only use simu-

lations to generate MSs, but also use them to price the portfolio instruments.

3. We choose short time horizons of 1 day or 10 days, but longer horizons are also met

in practice.

4. We set the confidence level to 99% in our experiments, but 95% and 99.9% are also

commonly used in practice.

5. Each individual instrument depends on many different RFs. However, we only simu-

late a single characteristic RF using a standard stochastic process, while we keep the

remaining constant.

6. Equity derivatives are dependent on a spot price modelled with a log-normal GBM

stochastic process. The volatility and risk-free rate are constant over time horizon.

7. RFs are not correlated with each other, that is, their individual correlations across

time steps are equal to 0. As a result, we assume a covariance matrix of RFs to be an

identity matrix.

8. We do not change the instrument composition of the portfolio over the time horizon,

that is, there are no transactions during the simulated time horizon.

a) We assume no cash flows on the portfolio instruments, so its modelled price

determines the value of each instrument on each given date.

b) There are no reinvestments in the original instruments, so the nominals do not

change.

c) The set of RFs driving the portfolio risk is fixed over the time horizon.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.3. Nested Simulations in Monte Carlo Repricing Approach 103

9. Time steps in simulations are always equal to one day.

10. We use fixed ranges to initialise the values of the RFs to be able to recreate our

experiments.

11. We use a fixed seed for RNGs to be able to recreate our experiments.

In a realistic setup, we compute correlations between individual RF returns along their

evolution in time and build a covariance matrix for each time step. This way we adhere to

an intuitive and observable market phenomenon that the changes in any given RF influence

the remaining to variable degree.

In contrast to single-underlying options, from a computational point of view, a simu-

lation of the derivatives that derive their value from the behaviour of multiple RFs grows

linearly, proportional to the number of these factors. In other words, for each underlying

asset or RF we use a separate sample path. In fact, for practical purposes, adding more RFs

and underlyings assets is always accompanied with an extra computational cost on pricing

level, because we need to calculate correlations between the processes for these underlying

assets.

5.3.2 External Simulation: Market Scenario Generation

We start with simulating a RF distribution. At this stage, we need to generate MSs to

simulate how the portfolio reacts to different changes in RFs. RFs are a proxy to translate

future conditions in the financial market. Each MS in a simulation is defined by an individual

sample path that propagates one time step at a time to simulate “what can happen the next

day”. In our experiments, we deal with daily time series. We generate up to 100 000 MSs

for each of the RFs in the portfolio. We choose to use a simulation to generate different MSs

as it allows us to generate any probability distribution for the relevant RFs. The probability

distribution that we choose is the normal distribution, because the stochastic process that

we use in simulation is based on this distribution. For the RF driving equity derivatives, we

use GBM to simulate spot prices of underlying stocks over the specified time horizon.

5.3.3 Internal Simulation: Derivative Pricing

To asses a value of a portfolio at the time horizon at each MS, we need to find a price

of each instrument on that date. The classical numerical approaches to derivative pricing

involve simulations, apart from lattice models and finite-difference methods, to solve under-

lying stochastic and partial differential equations. In finance, a more generic Monte Carlo

simulation estimates the value of a financial instrument in contexts where we cannot use

faster more specialised methods like analytic, numerical integration, or FDM. This means

that we can apply the derivative pricing models that we describe in Chapter 4.As we notice

there, the pricing itself requires extra computational power as well as high FP64 precision

to yield accurate approximations to the future prices of derivative instruments.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

104 5.4. Accelerated Implementation

Market Scenario Generation provides us with an input to pricing. We take the simulated

RF, the spot price S0, on the last day of the simulated time horizon and set it as an initial

spot price in our derivative pricing model. We then simulate the process until the maturity

of the given derivative. In this project the priced portfolio consists of different instruments

that require different models. For European Equity Options, we use a pricing algorithm

that is also based on a Monte Carlo simulation for a standard Black-Scholes pricing model

(BSMC). We achieve a better approximation accuracy at the cost of the computational com-

plexity by increasing the number of paths used for pricing one instrument. On top of that,

to investigate the required computational effort, we investigate European path-dependent

option pricing, such as barrier options with the knock-out feature, the Asian options with

the averaging feature and the lookback options with a payoff dependent on the realised ex-

tremum value of the underlying asset price. If necessary, we can easily extend the latter

model with cash flows varying over the lifetime of a derivative, for example, for dividends

paid out on a regular basis. For each simulated path, we can control the number of steps, to

match the cash flow dates. Finally, for American Equity Options, we use the Least Squares

Monte Carlo simulation, described in Chapter 4.

5.4 Accelerated Implementation

In this section, we provide a detailed description of our implementation of the risk measure-

ment system in Futhark that incorporates all functionality that we describe in the earlier

theoretical sections.

5.4.1 Technical Challenge

Performance-oriented implementations that target highly parallel computing platforms like

GPUs are highly sensitive to implementation factors such as data layout or placement and

thread synchronisation. For highly-numerical applications like risk analysis, these factors

lead to code that is infeasible to read and maintain. In standard parallel programming frame-

works, complex algorithmic logic blends with verbose low-level optimisations that address

thread and memory management. We tackle this problem and motivate use of high-level

languages for such use cases to hide the aforementioned low-level implementation details.

The actual end goal is to allow the financial domain experts, who typically are not trained

to deal with the more sophisticated technical challenges, to write high-performance code on

modern architectures.

At a first sight, a simulation procedure for MCVaR calculation is well-suited for a

GPU, because the problem involves a large amount of computation, has multiple levels of

parallelism, and is embarrassingly parallel on each level. These characteristics are reflected

in code structure as a simulation handles each sample path, while pricing each instrument

in each MS in isolation, independently from all the others. In fact, the bulk of computation

originates from our choice of a repricing evaluation method for the risk problem. We choose

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.4. Accelerated Implementation 105

to revaluate each instrument in a portfolio, which can consist of hundreds of thousands of

different instruments. At the same time, the risk flow assumes a small set of input parame-

ters, and outputs a compact set of risk measures as a result. Favourably, these features lead

to a small number of host-device memory operations between simulation steps, as the inter-

mediate results are saved and reused locally in the device global memory. On the contrary,

extensive use of device memory comes at a cost and leads to an increased memory footprint

of the computation at any given time, which, in fact, effectively limits how many MSs and

instruments can be handled in parallel. Therefore, to address and minimise these memory

problems, we propose a set of algorithmic optimisations and make an effort to reuse data

where applicable.

As mentioned before, the algorithmic structure of MCVaR involves nested simulations.

On the outer risk level we generate MSs that use a simulation. MSs are shared among

instruments and in general can be generated independently from pricing. On the contrary,

the MS step has to complete before we move to the instrument pricing, because MSs are

its input. Afterwards, on the inner pricing level each instrument in the portfolio is again

priced using a simulation in each scenario. In more detail, the steps in the naive sequential

implementation of MCVaR algorithm are as follows:

1. Value the portfolio today using the current values of RFs.

2. Sample once from the multivariate normal probability distribution of the ∆xi.

3. Use the sampled values of the ∆xi to determine the value of each RF at the end of

time horizon.

4. Revalue the portfolio at the end of time horizon using RF values from previous step.

5. Subtract the value calculated in step 1 from the value in step 4 to determine a sample

∆P .

6. Repeat steps 2 to 5 many times to build up a probability distribution for ∆P .

7. Use probability distribution to calculate risk measures like VaR or ES.

5.4.2 Random Number Generation

To perform any Monte Carlo simulation, we need ot generate RNs. We use two types of

Random Number Generators (RNG) to produce RNs for simulations.

PRNG Pseudo-random numbers that use Minimal Standard minstd_rand generator.

QRNG Quasi-random numbers that use Sobol sequences.

Selection of RNG does not only influence the rate of convergence of a simulation, but also,

more importantly, has a significant impact on the performance of the whole simulation

provided that the RN sequences are generated in parallel. We use RNs in each level of

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

106 5.4. Accelerated Implementation

simulations that all comprise MCVaR. For each of the levels, we generate a separate matrix

of RNs, because each of the simulations can have different dimensions.

PRNG using minstd_rand

We use a fixed seed for the PRNG to be able to recreate our experiments.

Listing 5.2 show how we use PRNG in our implementation.

1 module UnifRealDist =
2 uniform_real_distribution f64 minstd_rand
3

4 let getPRNGs
5 (seed: i32)
6 (rngCount: i64)
7 =
8 let rn_range = (zero, one)
9 let rng = UnifRealDist.engine.rng_from_seed [seed]

10 let (rng, _) = UnifRealDist.rand rn_range rng
11 let rngs = UnifRealDist.engine.split_rng rngCount rng
12 in (rn_range, rngs)
13

14 let getMinStdRandPRNs
15 (seed: i32)
16 (pathCount: i64)
17 (stepCount: i64)
18 (convert: real → real)
19 : [pathCount][stepCount]real
20 =
21 let (rn_range, rngs) = getPRNGs seed pathCount
22 in map (λrng_init →
23 let path = replicate stepCount zero
24 let (path’, _) =
25 loop (path, rng) = (path, rng_init) for i < stepCount do
26 let (rng, num) = UnifRealDist.rand rn_range rng
27 let path[i] = convert num
28 in (path, rng)
29 in path’
30) rngs

Listing 5.1: Futhark function for the generation of the pseudo-RNs.

QRNG using Sobol sequences

Sobol sequences are quasi-random low-discrepancy number sequences often used in Monte

Carlo simulations. They are superior to traditional PRNGs for solving numeric integration

problems, where a Monte Carlo simulation is most often used. The goal for numerical

integration is to fill the many-dimensional hypercube as evenly as possible. Because of its

low discrepancy, Sobol sequences span the integration space better than PRNGs avoiding

the holes and clusters that are inevitable with random sequences of pseudo-RNs that follow

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.4. Accelerated Implementation 107

a less structured pattern. This feature also means that we need less numbers to converge to

the satisfactory solution.

Sobol sequences may be multi-dimensional and a key property of using Sobol sequences

is that we can freely choose the number of points that should span the multi-dimensional

space. In contrast, if we set out to use a simpler uniform sampling technique for spanning

two dimensions, we can only span the space properly if we choose the number of points

to be in the form x2, for some natural number x. This spanning problem becomes worse

for higher dimensions[EHO18]. The choice of direction numbers determines how many

independent dimensions of Sobol sequences we can generate. The most widely used direc-

tion number sets are the ones prepared by Joe and Kuo [JK03; JK08] with dimension up

to 21 201 as well as by Jäckel [Jäc02] with dimension up to 8 129 334. Convergence rate

for QRNG with Sobol sequences is 1/n, while for QRNG the rate is only 1/sqrt(n). Sobol

sequences are problematic, because they need to be generated all at once. They are usually

stored in a fixed size array, so the number of dimensions needs to be known at the compile

time. This leads to a large memory footprint.

Listing 5.2 shows how we use QRNG in our implementation.

Normallly-Distributed Random Numbers

We want to sustain some realism in our distribution. Thus, the next step is to convert the gen-

erated uniformly-distributed RNs to normal distribution. This is typically achieved through

computation of the inverse of Cumulative Density Function (CDF) of a Normal Distribution.

We need to approximate the function, because no specific closed-form formula for normal

distribution exists. There exist different algorithms that vary in computational complexity.

We choose the Beasley-Springer-Moro approximation algorithm following [Gla04, p. 68,

fig. 2.12 & 2.13] and implement it as a Futhark invNormalCdf function. We gather the

implementations of this and other probability conversion algorithms in a norm_real_dist

custom Futhark module for convenience and reusability. In general, it is beneficial to as-

semble such a library of reusable statistical algorithms, because function like the inverse

CDF are a commonly used in different financial applications. Furthermore, we implement

the getNormValRange function to ensure that the values that we draw are in a specific

interval.

5.4.3 Equity Option Portfolio Generation

In a real production setup, the current state of the portfolio is retrieved from the database

and the updated market data, for instance, instrument prices or volatilities for calibration,

are streamed to the system in real-time from a market data provider. At the current setup,

we assume, for the sake of brevity, that we are not provided with a realistic portfolio and

do not have access to the realistic market data. Instead, we choose to generate input test

data on-the-fly. We create a portfolio of a size specified at the input and populate it with

different derivative instruments: in-the-money (ITM), at-the-money (ATM) and out-of-the-

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

108 5.4. Accelerated Implementation

1 open import "lib/github.com/diku-dk/sobol/sobol-dir-1000"
2 open import "lib/github.com/diku-dk/sobol/sobol"
3

4 let maxSmallQRNGDim = 10i64
5 module SmallSobolQRNG = Sobol sobol_dir {
6 let D = maxSmallQRNGDim }
7 let maxMediumQRNGDim = 100i64
8 module MediumSobolQRNG = Sobol sobol_dir {
9 let D = maxMediumQRNGDim }

10 let maxLargeQRNGDim = 1000i64
11 module LargeSobolQRNG = Sobol sobol_dir {
12 let D = maxLargeQRNGDim }
13

14 let getSobolQRNs (sobolRnT: rngType) (chunkIndex: i32)
15 (pathCount: i64) (stepCount: i64)
16 : [pathCount][stepCount]real
17 =
18 let QRNs = match sobolRnT
19 case #QRNGSMALL → SmallSobolQRNG.chunk chunkIndex pathCount
20 case #QRNGMED → MediumSobolQRNG.chunk chunkIndex pathCount
21 case #QRNGLARGE → LargeSobolQRNG.chunk chunkIndex pathCount
22 case _ → MediumSobolQRNG.chunk chunkIndex pathCount
23

24

25 in map (λi → map (λj → QRNs[i, j])
26 (iota stepCount)) (iota pathCount)
27

28 let getRNs
29 (rnT: rngType)
30 (seed: i32)
31 (pathCount: i64)
32 (stepCount: i64)
33 : [pathCount][stepCount]real
34 =
35 match rnT
36 case #PRNG →
37 getMinStdRandUnifDistPRNs seed pathCount stepCount
38 case #QRNG →
39 getSobolQRNs #QRNGMED seed pathCount stepCount
40 case #QRNGSMALL →
41 getSobolQRNs #QRNGSMALL seed pathCount stepCount
42 case #QRNGMED →
43 getSobolQRNs #QRNGMED seed pathCount stepCount
44 case #QRNGLARGE →
45 getSobolQRNs #QRNGLARGE seed pathCount stepCount
46 case _ →
47 getMinStdRandUnifDistPRNs seed pathCount stepCount

Listing 5.2: Call to Futhark Sobol library for the generation of the quasi-RNs from Sobol
sequence.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.4. Accelerated Implementation 109

money (OTM) European and American options. Listing 5.3 presents the code for this part

of MCVaR calculation.

Four of them describe the instrument type and cash flow In our case, seven different

variables characterise each derivative. and are fixed at the instrument creation, when two

counterparties make an agreement on the contract between each other. The remaining three

are RFs are external to the contract, are subject to change over time, and impact the value of

the derivative during its lifetime. Based on choice of the pricing model, these RFs are used

as input parameters to the model.

Option Style The choice is between European or American options. In our implemen-

tation, the style determines the choice of pricing algorithm. European options are

priced with BSMC, whereas American options with LSMC algorithm.

Option Type A vanilla options that we support in our implementation are a Call or a Put.

This parameter determines the option payoff depending on the current market situa-

tion.

Maturity/Step Count Maturity T of the option determines when the last date that the op-

tion can be exercised on. We use a year as the maturity time unit, so the values can be

fractional. Using model parameters expressed as annual values is a standard practice

in derivative pricing. Step Count is derived from the maturity and is expressed in

equally sized time steps, that is, available business days during the year. We need a

day value representation to be able to deduct it from time horizon, that is in practice

much shorter than the opinion maturities and expressed in days rather than in years.

In addition, step count is necessary to determine the number of sequential loop iter-

ation in the approximation algorithms.

Strike Price The exercise price K of the option.

Spot Price The spot price S0 of the equity underlying the option.

Risk-Free Rate The interest rate r used for discounting of the option.

Volatility The annual volatility σ of the option used for the derivative pricing. For risk

measurement purposes, the annual volatility is scaled to a daily form by dividing the

annual value by
√
250, where 250 is the assumed average number of business days in

the year.

The above-mentioned values are randomly drawn from a standard normal distribution

and assigned to each portfolio instruments. To achieve that, we need to generate RN se-

quences for each of the variables. The process is simple, because the fixed number of

dimensions is known at the compile time. To start with, we use PRNG or QRNG to generate

7 independent sequences of random values in a uniform distribution. In our case, we fix

the intervals at the compile time to allow us to recreate the experiments. Year values for

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

110 5.4. Accelerated Implementation

maturity as well as percent values of interest rate and volatility need to be scaled so they

match the right unit. In our experiments we apply both daily and annual variables, so we

need to pay special attention to which one we use, and we adapt our code to use annual or

daily volatility across risk and pricing parts, respectively.

1 type TEquityOptData = {
2 OptionStyle : i8 -- option style: 0: EU, 1: US
3 , OptionType : i8 -- option type, 0: Call, 1: Put
4 , StepCount : i32
5 , T : real -- maturity, [years]
6 , K : real -- option strike price
7 , S0 : real -- spot price at initial time 0
8 , r : real -- risk-free rate
9 , σ : real -- volatility

10 }
11

12 let generateEquityOpt
13 (optDimRNs: [optDimCount]real)
14 (pfDist: EPfDist)
15 (termStepCount: i32)
16 : TEquityOptData
17 =
18 -- Risk Factor Value Intervals
19 let (minOptStyle, maxOptStyle, minOptType, maxOptType,
20 minT, maxT, minK, maxK, . . .) : (real, . . .) = . . .
21

22 let T =
23 ((getNormValRange optDimRNs[2]
24 (minT*busDinY) (maxT*busDinY) 1000) / busDinY)
25 in
26 {
27 . . .
28 StepCount = r2i (T * i2r (termStepCount)),
29 T = T,
30 K = (getNormValRange optDimRNs[3] minK maxK 100),
31 . . .
32 }
33

34 let generateEquityOptPf [pfHCount]
35 (RNs: [pfHCount][optDimCount]real)
36 (pfDist: EPfDist)
37 (termStepCount: i32)
38 : [pfHCount]TEquityOptData
39 =
40 map (λnums →
41 generateEquityOpt nums pfDist termStepCount
42) RNs
43

44 -- Generate American/European Equity Option portfolio
45 let pfHs : [pfHCount]TEquityOptData =
46 generateEquityOptPf pfGenRNs pfDist termStepCount

Listing 5.3: Futhark code for the generation of the portfolio of European equity options.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.4. Accelerated Implementation 111

5.4.4 Outer Parallelism Level: Market Scenario Generation

This part describes a simulation implementation that allows us to simulate changes in RFs

over the specified time horizon to use them to asses the P/L distribution, which is then in

the final step used to compute the risk measures. In our implementation, we represent a MS

as a set of RF values on a analysis date. We are usually interested in the MS on the day

at the end of time horizon. The time horizon defines the number of business days into the

future that we want to calculate the risk measures for the portfolio. The typical choice used

in practice is 1 day or 10 days (2 business weeks), but it is not unusual to see longer time

horizon like 1 month or 1 year.

In a realistic setup all RF values change over time, but in our case we simulate changes

in only a single RF, that is, spot price S0. We keep values of the other RFs constant over the

time horizon. We make this assumption to simplify the problem for the sake of presentation.

Moreover, we assume that each option in the portfolio has a different underlying equity that

use a different spot price S0 at the initial step for each of them. At the same time, we assume

no correlation between any two equities.

The simulation uses GBM process to generate different stock path evolutions for each

portfolio instrument. Again, in a realistic setup, a separate and suitable stochastic process

is used for to simulate changes in each of the RFs. For interest rate, it can be a MROU

stochastic process described in Chapter 3. To simulate changes in volatility, a popular choice

is GARCH time series model. It is also beneficial to take into account the correlations

between all these stochastic processes. Simulating each of these processes comes with their

own computational cost.

Listing 5.4 presents the code for this part of MCVaR calculation. Market Scenario Gen-

eration is again based on RNs that come from PRNG or QRNG. We generate a separate RN

set for this purpose. We draw them upfront from uniform distribution and pass them to the

generation function, which translates them to normal distribution using inverse CDF. This

time we fuse it with the computation of a GBM step in a separate compute_gbm_normal_step

function.

We need to simulate spot price values on each of the days up until time horizon, for

each of the MSs. To achieve this, we need the other RFs, that is, the initial risk-free interest

rate and volatility for each portfolio instrument. We get them from the portfolio generation

step. Time horizon determines the number of steps in the external MCVaR simulation, that

is, extStepCount. This dimension of the simulation is sequential in its nature and cannot

be parallelised, because there are data dependencies between the consecutive steps. The

number of MS is the input to MCVaR algorithm. Number of MSs determines the number

of sample paths in the external simulation, that is, extPathCount. This dimension of the

simulation can be parallelised, because each sample path can be generated independently.

We end up with a computational problem of producing an array of size extPathCount

× extStepCount of real numbers. However, following our problem assumptions, we

can simplify the computation and output and array of size extPathCount. We are able

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

112 5.4. Accelerated Implementation

to do it, because we simulate one RF and only need the intermediate spot values inside

the generation function. More importantly, we are only interested in values at the time

horizon for each of the MSs, which can be found in the last step of the simulations. We

pass the result values as model parameters to derivative pricing, which is the next step. This

implementation involves a fast map-reduce in line 22. We generate two separate MS sets

for European and American options. This structure stems from the fact that different option

types are driven by different RFs. Such approach gives us flexibility to adjust the RFs for

each them in isolation.

1 let generateEquityMSsForPfH
2 (extPathCount: i64)
3 (extStepCount: i64) -- time horizon
4 (rnT: rngType)
5 (S0: real)
6 (r: real)
7 (σ: real)
8 : [extPathCount][]real
9 =

10 let seed = getUniqueSeedExt S0 r σ
11 let extRNs : [extPathCount][extStepCount]real =
12 getRNs rnT seed extPathCount extStepCount
13 let extStepCountp1 = extStepCount + 1
14 let dt = one / businessDaysInYear
15 let drift = r_exp((r-half*σ*σ)*dt)
16 let dtVol = σ * r_sqrt(dt)
17 let Ws = map (computeGbmNormalStep drift dtVol) (flatten extRNs)
18 let paths = map (λpath →
19 map (λday → if (day == 0) then S0 else Ws[path*extStepCount + day-1])
20 (iota extStepCountp1)
21) (iota extPathCount)
22 in map (reduce (*) one) paths
23

24 . . .
25 let euOptPfMSs : [][extPathCount]real =
26 map (λpos →
27 generateEquityMSsForPfH extRNs pos.S0 pos.r pos.σ)
28 euOptPfHs
29 let usOptPfMSs : [][extPathCount]real =
30 map (λpos →
31 generateEquityMSsForPfH extRNs pos.S0 pos.r pos.σ)
32 usOptPfHs
33 . . .

Listing 5.4: Futhark code for the generation of MSs through simulation of different un-
derlying equity paths for each of the derivative positions in the portfolio. It starts with
generating RNs reused across external simulations using the RNG specified on the input.
Spot S0 is the only simulated RF. The paths are generated using GBM.

Performance Enabler

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.4. Accelerated Implementation 113

1. Both PRNG or QRNG can be used to obtain RNs for MS generation that uses outer

simulations, but QRNG fills the sample space more uniformly and thus approximates

more accurately the distribution of relevant RFs. However, if number of scenarios is

small, the calculated risk measure values vary considerably, because simulated values

across MSs differ from each other. In a practical case the number of MSs needs to be

large, at least 10 000, to account for enough variability in market data.

2. The simulated RNs cannot be reused across portfolio holdings (pfHs). We cannot

reuse the same set of scenarios, that is, sample paths of the outer simulation, across

all portfolio derivative holdings, because each holding is described by a unique set of

model parameters. We use these model parameters to generate in isolation a set of

MS that only describes the evolution of that particular holding. In other words, we

make an assumption that these MSs are uncorrelated with MSs generated for the other

holdings.

3. In our case, external simulations comprise sample paths of spot prices for equities

(stocks) that underlie each derivative in the portfolio. We have a one-to-one mapping,

because each derivative depends only on a single underlying. This assumption means

that we simulate the same kind of RF for different types of holdings in the same time

horizon. Thus, we have no thread divergence in this part of the algorithm.

5.4.5 Inner (Nested) Parallelism Level: Derivative Pricing

In this section, we describe our implementation of the internal simulation that is used to

price each portfolio holding in each MS simulated in the external simulation. As described

in Section 5.4.3, portfolios in our case consist of both European and American options. We

price the former with BSMC algorithm and the latter with LSMC algorithm.

As described in Section 2.1.2, a simulation can price a derivative with any optionality

and cash flow structure. For example, it can price a path-dependent option, which payoff

depends on how the underlying asset performs during the whole lifetime of the option,

Alternatively, it can price an option that depends on many underlying assets. Consequently,

with a simulation the choice of possible options to price is only limited by the existence of

a stochastic processes and the capability of the pricing model to grasp its variability. The

general structure of the algorithm remains the same and do not depend on the pricing model

we decide to choose.

Memory requirements across simulations vary highly due to differences in option char-

acteristics and input parameters used in pricing model. On the one hand, for European

options we only need to store an array of size equal to the number of paths used for each RF

that we simulate, because we only need values at the maturity of the option. On the other

hand, for American options, which is depended on the whole time series data, we need to

store RF information about each time step on each sample path. This means we need to

store a two-dimensional array of size equal to a number of paths × a number of time steps.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

114 5.4. Accelerated Implementation

This procedure is repeated for each RF that we simulate. When we price path-dependent

options, we need to accumulate even more information when we propagate through path

over time. For example, for a barrier option we track the maximum and minimum value of

the RF per path, whereas for the Asian option we track an average value per path. Obvi-

ously, keeping track of this additional information introduces a computational complexity

and extra memory footprint for each value on each path. The extra cost is proportional to

the number of time steps and paths. In contrast, when we add a new underlying asset that

an option depends on, the computational complexity grows linearly by a number of assets,

because each of them is described by its own set of sample paths with a number of time

steps. On top of that, we also want to incorporate the correlations between different simu-

lated RFs. To achieve that, we build an additional square covariance matrix of the size equal

to the number of RFs used in the derivative pricing. Nevertheless, options with many un-

derlyings or multiple RFs, which drive their value, as well as treating correlations between

them are beyond the scope of our experiments in this chapter.

The BSMC can only be used to price European options with a single exercise date at the

option maturity. Some path-dependent options can also be priced with this model as long

as we track the relevant data to compute a payoff functions of such an option.

The value of any derivative is dependent on its future value. In other words, we can

only derive a value of a derivative at a certain time if we know if is going to be exercised

subsequently or not, as well as if it occurs before or at its maturity. As a results, we need

to know the evolution of the option over its whole lifetime up until its maturity. Option

maturities are often significantly longer than the risk time horizon used in MCVaR. While

a typical time horizon is 1 day or 10 days into the future, the option maturities are set months

into the future. To compute the value at the end of time horizon, we move the initial point

for derivative pricing to the time horizon by deducting the time horizon business days from

the overall maturity of the option.

In conclusion, we approximate the distribution of the stock price outcomes over the

remaining lifetime of the option to calculate the expected value. We need RNs to execute a

simulation. Each time step along the sample path represents one dimension, for example,

modelling a 1-year option with 250 time steps means that we have 250 dimensions. This in

turn means that we need 250 independent RN sequences, each of length equal to the number

of sample paths. Again, we use PRNG or QRNG to generate RNs. We then use the RNs and

GBM process, which underlies the Black-Scholes model, to generate stock price paths for

simulation. At this point, we emphasise that this model can be replaced, if necessary, with

more sophisticated stochastic processes like, for example, Heston model with a stochastic

volatility that changes randomly over time. As a result, We relax the assumptions about

constant volatility and incorporate more realistic features in our modelling.

In the simulation, we use an iterative method to discretise the GBM[] process over time

steps of the sample path. The most basic, but at the same time most popular, iterative

method is the Euler-Maruyama scheme. We use the scheme to simulate each sample path.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.4. Accelerated Implementation 115

In addition, we need to be careful about how we treat the process increments when using

this scheme. Consequently, we apply logarithmic scaling to ensure that the spot prices do

not end up being negative.

In the Euler-Maruyama scheme, parallelism exists in both spatial and temporal dimen-

sions. We are thus able to flatten the array that contains stochastic variables and compute

each step independently. To compute increments of the process, we use scan operation.

The result of this operation allow us to track the evolution of the option along future time to

check for early-exercise or path-dependent features. Finally, to compute the final expected

value of the option, we reduce paths with a sum operator and 0 neutral element.

European Path-Dependent Option Pricing with BSMC

In this section, we describe the implementation of BSMC that is used to price a European

option. In Listing 5.6 we show Futhark code that prepares input for pricing European equity

option portfolio with the bsmc parallel implementation.

We start with pricing each holding in the portfolio at the start of the time horizon to

then aggregate the prices and get the base portfolio price on the calculation day. From

a computational perspective, the code comprise nested parallel maps first over portfolio

holdings, then over MSs and finally over sample paths used for option pricing.

In bsmc_genPaths function that we call for each portfolio holding we generate a set of

sample paths using PRNG. We apply an optimisation that reduces the memory requirements

of the simulation. We normalise the values in the paths in the internal simulation by setting

the initial spot price S0 to 1.0 before passing it to bsmc_genPaths function in lines 24–

26. The normalisation enables a path reuse across MSs for each portfolio holding. In other

words, we make an assumption that RNs that are used for each MS are the same. We treat

the RN vector as an input to the Monte Carlo simulation and expect the same output. To

illustrate this situation better, let us compare a stochastic Monte Carlo simulation with a

deterministic numerical method like a lattice method from Chapter 3. For the same input

parameters, it always returns the same values. This is valid, because we are pricing different

holdings in the same MSs. Market scenario describes a specific market For each MS, we

need to initialise RNG with a different seed. We simply shift all the values on each path by

the spot price taken from the given MS.

The result is a vector of spot prices of size of intPathCount, because we only need

to know the spot price at the maturity. Once we have spot prices at the maturity for a

normalised case, we multiply the normalised spot price by the spot price from MS, ap-

ply the option payoff function to each path using map, reduce all the paths with sum

operator, apply the discounting and divide it by the number of paths (intPathCount).

bsmc_pricePaths function in lines 19–32 executes the above procedure and returns a

price of a European option.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

116 5.4. Accelerated Implementation

1 let bsmc_genPathsPathDep
2 (seed: i32) (pathCount: i32) (stepCount: i32)
3 (T: real) (S0: real) (b: real) (σ: real)
4 : [pathCount][stepCount]real =
5 . . .
6 in map (λrn →
7 let path = replicate stepCount zero
8 let (path’, _, _) =
9 loop (path, rng, acc) = (path, rn, S0)

10 for i < stepCount do
11 let (rng, num) = UnifRealDist.rand rn_range rng
12 let W = computeGbmNormalStep drift dtSigma num
13 let acc’ = acc * W
14 let path[i] = acc’
15 in (path, rng, acc’)
16 in path’
17) rngs
18

19 let bsmc_pricePathDep_Denorm [pathCount]
20 (normSs: [pathCount][stepCount]real) (T: real) -- years
21 (S0: real) (r: real) (payoffFun: real → real)
22 : real =
23 let normSs_PathDep : [pathCount](real, real, real, real) =
24 map (λS_path →
25 map (λS_step → (S_step, S_step, S_step, S_step)) S_path
26 |> reduce_comm tuple4_diff_op (one, zero, zero, zero)
27) normSs
28 let payoffs = map (λ(S, avgS, minS, maxS) →
29 payoffFun (S0 * S, S0 * avgS, S0 * minS, S0 * maxS))
30 normSs_PathDep
31 let sum = reduce (+) zero payoffs
32 in ((r_exp (-r*T)) * sum) / (i2r pathCount)
33

34 let bsmc_priceFullPathDep
35 (seed: i32) (pathCount: i32) (stepCount: i32)
36 (opT: t_optT) (T: real) (K: real) (H: real) (k: real)
37 (S0: real) (r: real) (b: real) (σ: real)
38 : real =
39 let payoffFun
40 ((S, avgS, minS, maxS) : (real, real, real, real))
41 : real = . . .
42 let Ss : [pathCount][stepCount]real =
43 bsmc_genPathsPathDep seed pathCount stepCount T S0 b σ
44 in bsmc_pricePathDep Ss T r payoffFun

Listing 5.5: Simplified Futhark code for BSMC pricing for a path-dependent option. The
. . . symbol denotes code or function arguments omitted for brevity.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.4. Accelerated Implementation 117

1 let priceEuPathDepOptPfHs [pfHCount] [extPathCount]
2 [intPathCount] [maxIntStepCount]
3 (extStepCount : i32)
4 (intRNs : [intPathCount][maxIntStepCount]real)
5 (pfMSs : [pfHCount][extPathCount]real)
6 (pfHs : []TEquityOptData)
7 : (real, []real, [extPathCount]real, [][extPathCount]real)
8 =
9 -- Calculate price of the portfolio on the calculation day

10 let basePfHPrices : []real =
11 map (λpos → bsmc_priceFullPathDep . . .) pfHs
12 let basePfPrice : real = reduce (+) zero basePfHPrices
13

14 -- Calculate price for each scenario and each holding
15 -- at VaR time horizon
16 let msPfHPrices : [pfHCount][extPathCount]real =
17 map (λpos →
18 . . .
19 let intStepCount =
20 pfHs[pos].StepCount - extStepCount
21 let T =
22 (pfHs[pos].T * busDinY - (i2r extStepCount))/busDinY
23 let normSTs =
24 bsmc_genPathsPathDep_Norm . . . intPathCount intStepCount
25 T one -- normalise by setting S0 = 1.0
26 pfHs[pos].r pfHs[pos].σ
27 in
28 map (λmsS0 →
29 bsmc_pricePaths_Denorm normSTs T msS0 pfHs[pos].r . . .
30) pfMSs[pos]
31) (iota pfHCount)
32

33 -- Sum holding prices for each λMS{}
34 -- to get λMS{} portfolio prices
35 let msPfPrices =
36 map (reduce (+) zero) (transpose msPfHPrices)
37 in (basePfPrice, basePfHPrices, msPfPrices, msPfHPrices)

Listing 5.6: Simplified Futhark code that executs European option pricing by passing the
relevant parameters to BSMC parallel implementation. busDinY is the number of business
days in the year by default set to 250. The . . . symbol denotes code or function arguments
omitted for brevity.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

118 5.4. Accelerated Implementation

American Option Pricing with LSMC

In this section, we describe our approach to pricing a portfolio of American options for the

aim of successive calculation of its risk measures. A simulation for pricing American op-

tions is on average at least two orders of magnitude more compute- and memory-intensive

than a corresponding simulation for European options. The American pricing algorithm

not only saves all steps across all simulation sample paths, but also performs a backward

regression part that traverses all these paths from maturity to the calculation day. The first

constraint leads to a memory allocation for a two-dimensional array of size intPathCount

× intStepCount, which severely restricts the number of parallel pricing simulations, es-

pecially when the intPathCount and intStepCount are large. In our experiments we

assume that in the worst case we want to use up to 1 000 000 sample paths and up to 3

years of weekly time steps. in LSMC pricing to get an accurate approximation to American

option price. As a result, the memory requirements of saving in worst case (1 000 000 ×
150 × 8 B = 1.12 GB) make it infeasible to price several MSs at the same time on modern

GPUs (Table 2.1), not to mention parallel processing of several portfolio holdings. The sec-

ond constraint is caused by data dependency between time step results, thereby involving a

sequential processing of price values across sample paths one time step at a time, which is

described in Section 4.3.1. Consequently, we need to adapt the computational structure of

the code for sequential execution on the aforementioned outer simulation levels of portfolio

holdings and MSs. In particular, we begin with an outermost sequential loop over portfolio

holdings in lines 17–42 and inside of it nest a second sequential loop over MSs in lines 31–

40. On the innermost level for each MS we execute a parallel implementation of American

option pricing using a LSMC algorithm. We describe the corresponding pricing algorithm

in more detail in the context of a single instrument in Section 4.6. In particular, Listing 4.3

presents the code implementation.

Listing 5.7 demonstrates Futhark code that prepares input parameters for pricing Amer-

ican equity option portfolio with the parallel LSMC implementation in function lsmc_opt.

In priceUsOptPfHs function, we start by calculating the base price of the portfolio on the

calculation day, that is, in case of MCVaR at the start of time horizon. Portfolio pricing

in involves pricing each of portfolio holdings in isolation followed by summarising the re-

sults. The next step involves pricing each portfolio holding in each MS. Here, we follow the

analogous procedure to the one described for BSMC in Section 5.4.5. We reuse the sample

paths across the simulated MSs, but generate a separate set of RNs for each portfolio hold-

ing. Function lsmc_generateSst is responsible for generation of RNs that are reused

for all pricing calls for given MS by normalising the spot by setting S0 = 1.0. In fact,

lsmc_generateSst is the same as generate_samples_and_paths in Listing 4.4, ex-

cept it does not compute payoff on the last step and the resulting paths are returned in trans-

posed form. Afterwards, we price each portfolio holding using lsmc_pricePaths_par.

We adjust, that is, denormalise, the initial normalised spot price for each MS by multiplying

the spot values on each path and each step by the original initial spot price. We retrieve the

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.4. Accelerated Implementation 119

necessary initial value from MS structure pfMSs[pos, ms] at the VaR time horizon. This

time we price the portfolio holdings at the end of VaR time horizon in future, so this hori-

zon expressed in days needs to be subtracted from each options maturity. Finally, we sum

holding prices for each MS to get MS portfolio prices in the same way as for base portfolio

price.

As a result, the parallel structure of Futhark adheres to the memory requirements con-

straints. While the portfolio pricing in base scenario is performed in parallel in line 10, the

portfolio pricing in different simulated MSs in lines 17–42 is done in a sequential loop.

Each portfolio holding is priced one after another in each MS in a sequential manner. How-

ever, inside the loop iteration for MS, we have an innermost parallel level, because we

derivative pricing itself uses a parallel implementation of the LSMC pricing.

Grouping Options for Pricing at Portfolio Level

This section moves on to describe in greater the approach we take to pricing a portfolio

that comprise several different instrument types. We repeat that to find a value of an in-

vestment portfolio that comprise many instruments, we need to first know the value of each

instrument, which comes from pricing it in isolation. Each instrument is priced with a dif-

ferent model and often a different numerical method is used to solve it. In our case, we

deal with a portfolio of various European, path-dependent, and American options. A naive

approach involves pricing such instruments together in parallel, that leads to a divergence

in a computational workload among threads. To remedy this problem, an intuitive approach

is to differentiate instruments based on their type and handle their pricing by grouping them

together in batches.

We implement the grouping in the code excerpt shown in the Listing 5.8. This part of

the main risk function groups instruments in batches based on their instrument type. PfH

or pfH abbreviations in the variable names in all Listings in this chapter stand for portfolio

holding. EuOpt prefix in the variable names denotes a European option, while UsOpt is

an American Option. ext prefix indicates the external simulation, while int is the internal

simulation. Finally, base prefix denotes a value of a portfolio variable at the calculation

day, while ms indicates the portfolio variables in MSs. We launch the inner simulations to

price European and path-dependent options using priceEuPathDepOptPfHs function in

Listing 5.6 from Section 5.4.5 and American options using priceUsOptPfHs function in

Listing 5.7 from Section 5.4.5.

Performance Enabler

1. We reuse sample paths across MSs for each portfolio holding. During each internal

simulation for derivative pricing, all parameters besides spot price are kept constant

across MSs. That means we assume that the only RF that changes in each MS is

the one that we simulated in the external simulation. We obtain the spot price at the

end of time horizon from each of market data scenarios that are simulated during

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

120 5.4. Accelerated Implementation

1 let priceUsOptPfHs [pfHCount] [extPathCount]
2 (extStepCount : i32)
3 (intPathCount : i32)
4 (pfMSs : [pfHCount][extPathCount]real)
5 (pfHs : []TEquityOptData)
6 : (real, []real, [extPathCount]real, [][extPathCount]real)
7 =
8 -- Calculate price of the portfolio on the calculation day
9 let basePfHPrices : []real =

10 map (λpos → . . . in lsmc_opt . . .) pfHs
11 let basePfPrice : real = reduce (+) zero basePfHPrices
12

13 -- Calculate price for each scenario and each holding
14 -- at VaR time horizon
15 let msPfHPrices_init =
16 map (λ_ → replicate extPathCount zero) (iota pfHCount)
17 let msPfHPrices : *[pfHCount][extPathCount]real =
18 loop msPfHPrices = msPfHPrices_init
19 for pos < pfHCount do
20 . . .
21 let intStepCount =
22 pfHs[pos].StepCount - extStepCount
23

24 let T =
25 (pfHs[pos].T * busDinY - (i2r extStepCount))/busDinY
26 let normSst : [intStepCount][intPathCount]real =
27 lsmc_generateSst . . . intPathCount intStepCount
28 T one -- normalise by setting S0 = 1.0
29 pfHs[pos].r pfHs[pos].σ
30

31 let msPfHPrices_pos_init = replicate extPathCount zero
32 let msPfHPrices_pos : *[extPathCount]real =
33 loop msPfHPrices_pos : *[extPathCount]real =
34 msPfHPrices_pos_init
35 for ms < extPathCount do
36 let price =
37 lsmc_pricePaths_par normSst . . .
38 T pfMSs[pos, ms] pfHs[pos].r . . .
39 let msPfHPrices_pos[ms] = price
40 in msPfHPrices_pos
41 let msPfHPrices[pos] = msPfHPrices_pos
42 in msPfHPrices
43

44 -- Sum holding prices for each λMS{}
45 -- to get λMS{} portfolio prices
46 let msPfPrices =
47 map (reduce (+) zero) (transpose msPfHPrices)
48 in (basePfPrice, basePfHPrices, msPfPrices, msPfHPrices)

Listing 5.7: Simplified Futhark code that executs American option pricing by passing the
relevant parameters to LSMC parallel implementation shown in Listing 4.3 and described
in Section 4.6. busDinY is the number of business days in the year by default set to 250
The . . . symbol denotes code or function arguments omitted for brevity.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.4. Accelerated Implementation 121

1 . . .
2 let (baseEuOptPfPrice, baseEuOptPfHPrices,
3 msEuOptPfPrices, msEuOptPfHPrices) : (real, []real,
4 [extPathCount]real, [][extPathCount]real) =
5 priceEuPathDepOptPfHs
6 extStepCount intRNs euOptPfMSs euOptPfHs
7 let (baseUsOptPfPrice, baseUsOptPfHPrices,
8 msUsOptPfPrices, msUsOptPfHPrices) : (real, []real,
9 [extPathCount]real, [][extPathCount]real) =

10 priceUsOptPfHs
11 extStepCount intPathCount usOptPfMSs usOptPfHs
12

13 let basePfPrice = baseEuOptPfPrice + baseUsOptPfPrice
14 let basePfHPrices : [pfHCount]real =
15 concat_to pfHCount baseEuOptPfHPrices baseUsOptPfHPrices
16 let msPfPrices : [extPathCount]real =
17 map2 (+) msEuOptPfPrices msUsOptPfPrices
18 let msPfHPrices : [pfHCount][extPathCount]real =
19 concat_to pfHCount msEuOptPfHPrices msUsOptPfHPrices
20 . . .

Listing 5.8: Code excerpt for Inner Nested Simulations: MCVaR with LSMC. Calculate
the longest maturity in the portfolio. Generate RNs reused across internal simulations. Cal-
culate prices for the European and American options in the portfolio in two separate func-
tions. The sizes of baseEuOptPfHPrices and baseUsOptPfHPrices arrays are
unknown at the compile time as the composition of the portfolio is dynamically specified at
runtime. This fact limits the compiler optimization possibilities.

external simulation. We then observe that two independent external simulations use

two independent RN sets. Therefore, spot prices in two separate market data scenarios

cannot be the same.

2. Because the same RNs are reused and all other pricing parameters are constant, the

internal simulation for each MS generates the same paths. We can obtain exactly same

set of paths for each internal simulation if we set the spot price to 1 and compute a

normalised version only once, and then shift the all paths by multiplying every value

by a spot price that comes from external simulation for each MS. The shift means

that we reuse the normalised paths by a simple multiplication of values on each path

and each step by the spot price from the given external simulation. This saves the

memory, because we load only a single one-dimensional array (for European options

or two-dimensional for American options) per MS in memory at any time for a further

reuse. We save also computational time, because we do not need to generate paths

every time.

3. For European option, we only need to save the spot values at the option maturity,

because the pricing requires only the values at the last time step. For European path-

dependent options, we need additional values for each path at the maturity step, that

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

122 5.4. Accelerated Implementation

is, we need an average spot price avgS over the whole path for an Asian option and

a minimum minS as well as a maximum spot maxS over the whole path for a barrier

option. In contrast, for American option we need to save all steps for all paths, which

means that we need to save a full two-dimensional array.

5.4.6 Risk Measure Calculation

The last essential step is to calculate the risk measures for the portfolio at the end of time

horizon, that is, at time τ in future. As mentioned, this calculation is based on the future

P/L distribution of the portfolio. To asses the P/L distribution of the portfolio, we need to:

1. calculate the base portfolio value at the start of time horizon t0,

2. calculate the value of each of the portfolio instruments in each simulated MS at the

end of time horizon τ ,

3. sum instrument values to get the portfolio value for each scenario at τ ,

4. subtract base portfolio value at t0 (step 1) from portfolio values at τ for each MS (step

3),

5. sort the portfolio changes (step 4) in the ascending order from the largest loss to the

largest gain.

We notice that in our case the value of the spot price S0 is the value of the initial spot price at

t0 (the initial time step 0). It is different for each of the portfolio instruments. We calculate

risk measures based on the value of spot at τ (the time step timeHorizonDayCount - 1).

The portfolio P/L changes over the time horizon τ from the above procedure are represented

as a P/L vector the describes the simulated P/L distribution over the specified time horizon..

The largest portfolio loss is indicated by the MS with the largest negative portfolio value.

Analogously, the largest portfolio gain is indicated by the MS with the largest positive port-

folio value. Now we have all the components to calculate any risk measures for the portfolio

at the end of time horizon τ .

We are mostly interested in the left tail of the distribution, where we observe the largest

losses. Risk measures like VaR or ES that treat the largest losses consider only this part

of the distribution. Each risk measure is accompanied by its probabilistic confidence level

α that corresponds to the percentile of the distribution. The most popular choice for the

confidence level are 95, 99 and 99.9%. Because our P/L vector is sorted, we can directly

index the critical scenario that lays on the confidence level. VaR is the (negative) value of

the P/L vector element at the index associated with the confidence level, whereas ES is the

mean of the values up to that index. For example, for 100 MSs sorted in the ascending order

the 99th percentile of the P/L distribution is located at the index 1 of the sorted P/L vector.

Listing 5.9 presents the described procedure for risk measure calculation implemented

in Futhark.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.4. Accelerated Implementation 123

1 let calculateRiskMeasures [extPathCount] [pfHCount]
2 (basePfPrice: real)
3 (basePfHPrices: [pfHCount]real)
4 (msPfPrices: [extPathCount]real)
5 (msPfHPrices: [pfHCount][extPathCount]real)
6 (α: real)
7 : ([extPathCount]real, real, real, . . .,
8 [pfHCount]real, [pfHCount]real, . . .)
9 =

10 let pfPricePnLs =
11 map (λprice → price - basePfPrice) msPfPrices
12 let (sortPfPricePnLs, sortIndices) =
13 zip pfPricePnLs (iota extPathCount)
14 |> radix_sort_float_by_key (.0) r_num_bits r_get_bit
15 |> unzip
16 let percIndex = extPathCount - r2i (α * i2r extPathCount)
17 let VaR = sortPfPricePnLs[percIndex]
18 let ES = Stats.mean sortPfPricePnLs[0 : percIndex + 1]
19 . . .
20 -- component VaR for each holding
21 let varIndex = sortIndices[percIndex]
22 let (compVaRs, compDeltaVaRs)
23 : ([pfHCount]real, [pfHCount]real) =
24 map2 (λbasePfHPrice msPfHPrices →
25 let comp = msPfHPrices[varIndex] - basePfHPrice
26 in (comp, comp / VaR * hundred)
27) basePfHPrices msPfHPrices |> unzip2
28 -- let compDeltaVaRs = map (λcomp →) compVaRs
29 -- component ES for each holding
30 let esIndices = sortIndices[0 : percIndex + 1]
31 let (compESs, compDeltaESs)
32 : ([pfHCount]real, [pfHCount]real) =
33 map2 (λbasePfHPrice msPfHPrices →
34 let comp = Stats.mean (
35 map (λmsPfHPrice → msPfHPrice - basePfHPrice)
36 (map (λpos → msPfHPrices[pos]) esIndices)
37)
38 in (comp, comp / ES * hundred)
39) basePfHPrices msPfHPrices |> unzip2
40 -- let = map (λcomp → comp / ES * hundred) compESs
41 in (sortPfPricePnLs, VaR, ES, deltaVaR, deltaES,
42 compVaRs, compDeltaVaRs, compESs, compDeltaESs)
43

44 . . .
45 let (sortPfPricePnLs, VaR, ES, . . .
46 compVaRs, compDeltaVaRs, compESs, compDeltaESs) =
47 calculateRiskMeasures
48 basePfPrice basePfHPrices msPfPrices msPfHPrices α
49 . . .

Listing 5.9: Code excerpt for Inner Nested Simulations: MCVaR with LSMC. Calculate
VaR based on portfolio gains/losses in different simulated MSs.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

124 5.5. Experimental Results

5.5 Experimental Results

We run the experiments on D1 system described in Section 2.5. All code is implemented

in Futhark. For each of our experiments, we build two versions of executables: Multicore

compiled with Futhark multicore backend targeting multicore CPUs and CUDA com-

piled with Futhark cuda backend targeting GPUs. Multicore uses POSIX Threads, also

known as pthreads, libraries in Linux to spawn many concurrent threads for execution on

multicore CPUs. We have also experimented with OpenCL backend on CPU3 and GPU1.

At the time of experiments, we are not able to successfully start a benchmark run on CPU3
platform that was using the latest OpenCL driver from Intel. On GPU1, the execution time

results are consistently slower than matching ones for the CUDA backend. Therefore, we

decide to abandon it entirely in our MCVaR experiments. That is why. we revert to using

Multicore backend We execute Multicore versions on CPU3 (32 threads) on and CUDA

version on GPU1 (V100) (refer to Section 2.5). We note here that we select a CPU plat-

form with a 16 hyper-threaded cores that is classified as a HPC-grade server system, which

is optimised for compute-intensive workloads. Alternatively, it can easily be considered to

be a many-core platform. We claim that it is more fair to compare a V100 system against

a multi-threaded execution on a CPU platform that has access to a substantial number of

threads than measure speedups against sequential runs. This is even more evident, when

we consider workloads for risk analysis, which are normally executed on clusters of dis-

tributed computation nodes. We consistently execute each benchmark run 5 times to reduce

the deviations in the measurements. Using more runs makes prohibitively long for feasi-

ble measurements on larger workloads, which in any case are not as sensitive to deviations

caused by system operations, etc., as short micro- and millisecond runs. In our long-running

MCVaR experiments on the chosen platforms, we observe that the measurements become

stable with Relative Standard Deviation > 0.01, if they take more than 10ms on GPU1 and

100ms on CPU3. The experiment case sizes are mainly motivated by (i) domain knowl-

edge based on the client cases observed in the industry (that is, the number of MSs and

the number of portfolio holdings), but restricted by (ii) memory available to the GPU1 de-

vice. We deduce the latter based on our experiments, because we are able to run all the

Multicore cases on CPU3, but on larger cases we run into memory overflows on GPU1.

It is especially evident in RN generation, American Option Portfolio pricing and the full

risk workflow runs described in the next sections. In the result presentation, we mainly put

emphasis on comparing speedups between CUDA execution over Multicore. All our exper-

iments in this section are performed using FP64numbers. The missing data in Tables and

Figures are due to the fact that our CUDA version runs out of memory during its execution

on GPU1.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.5. Experimental Results 125

5.5.1 Validation Test

We are unable to find a matching implementation in a different technology to compare our

whole setup with in a structured manner. However, as our calculations are built on top of

the pricing components from the other chapters, we have a proof that they are correct on the

fundamental level. For instance, LSMC was validated in 4.7.2. Our risk workflow comprise

revaluation of portfolio holdings in various MSs, which in practical terms means that we call

the validated pricing functions with different inputs.

5.5.2 Random Number Generation

Efficient RN generation is fundamental to our MCVaR implementation, because we need to

generate large matrices of RNs for both external and internal simulations. In the experiments

in this section, we try to verify if we can generate Sobol number sequences in parallel fast

enough for risk analysis purposes, and investigate how they compare in performance with

ordinary PRNGs like minstd_rand. We need to asses (i) which RNG is more suitable,

that is, gives us a satisfactory approximation to a uniform distribution, with less samples

required, and (ii) which one of them generates RNs faster. We asses the performance of

RNGs in isolation, that is, the result of our experiments is a matrix of size pathCount ×
stepCount. As the returned RNs are generic, the matrix can then be passed as input for

further processing to the consecutive steps in our risk workflow, that is, portfolio generation,

MS generation or pricing parts for further processing.

We run experiments for two different types of random generators that we describe in

Section 5.4.2, PRNG and QRNG. As mentioned in Section 5.4.2, in current Futhark sobol

module we need to specify the dimension of QRNG at compile time. Based on the input

datasets in our Full Workflow experiments, described in the next sections, we make an as-

sumption that we need three different dimensions D – 10, 100, and 1000. We initialise three

different QRNGs with the mentioned D and denote themQ10,Q100, andQ1000, respectively,

when we present the results. In our tests, we generate all the RNs in a single run. Moreover,

we denote PRNG as P in the presentation of the results.

We use the same seeds to initialize both types of RNGs. However, for QRNG their func-

tion is different than for PRNG, because it is used to determine, which dimensional vector

to start with. The low-numbered dimensional vectors do not exhibit sufficient variability of

RNs for practical purposes. For PRNG, it is a start of a sequence of RNs. For purpose of

parallel execution, each thread needs to get its own seed for sequences to be unique. The

split_rng functions from random Futhark library resolves this issue for us.

Execution along pathCount dimension is fully parallelised for both RNGs, because the

paths for our purposes can be generated in isolation. With PRNG we can choose an arbitrary

stepCount, because we draw RNs along the stepCount dimensions one at a time. With

QRNG we can also choose an arbitrary stepCount, but QRNG first draws D RNs. After-

wards, if stepCount is less than D of an initialised QRNG, we trim RNs in each generated

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

126 5.5. Experimental Results

vector D to fit to stepCount and we execute this process in parallel for all vectors along the

pathCount. We use a map operation on the (flattened) matrix to filter out the RNs. This

procedure is necessary, because the current implementation of sobol module forces us to

specify the dimensionality at the module initialisation. stepCount is an obvious dimen-

sion to choose not only because we need independent RNs in this dimension to simulate a

propagation of a stochastic process, but also because stepCount >> pathCount for any

practical use case that we considered. In addition, based on the domain knowledge we can

expect this dimension to change less often, because in risk analysis time horizons, which are

expressed in days equal to stepCount for daily reporting, are usually set to particular low

fixed values such as 1 day, 10 days, 14 days or 1 month for reporting purposes. Effectively,

it is mostly pathCount that determines the accuracy of the simulation.

The main motivation behind use of high-dimensional QRNG is a flexibility it gives in

runtime. The range of steps that we can specify is higher, because we can draw any number

that we need for stepCount. However, such approach has two negative consequences.

Firstly, keeping redundant RNs in global memory is a wasteful use of scarce resources,

especially because they are never going to be used. We have to remember that RN is FP64

kept in GPU global memory. Secondly, the trim step introduces an additional memory copy,

because the operation cannot be done in-place to sustain memory alignment for coalesced

memory accesses, when RNs is going to be consumed in consecutive workflow steps. On

top of that, adding the trim step to QRNG allows us to generalise the Random Number

Generation process, because the RN matrix dimensions returned by PRNG and QRNG are

the same.

1024 10240 102400 1024000
Paths

102

103

104

105

Ru
nt

im
e

[
s]

 (l
og

)

61
1 82

3

21
81

7

17
99

06

66
4

65
6

66
14

24
14

1

10
0

18
6

11
14

57
92

98

22
9

15
40

15
46

3

39
55

20
7

15
05

21 19

66

53
3

Random Number Generation - PRNG vs. QRNG - 10 steps
(Multicore, Q100)
(Multicore, Q10)
(Multicore, P)
(CUDA, Q100)
(CUDA, Q10)
(CUDA, P)

0

5

10

15

20

25

30

Sp
ee

du
p

[×
]

6.2

3.6

14
.2

11
.6

17
.0

11
.9

32
.0

16
.0

4.8

9.8

16
.9

10
.9

(Speedup, Q100)
(Speedup, Q10)
(Speedup, P)

Figure 5.2: Runtimes [µs] and Speedups of PRNG and QRNG for Random Number Gener-
ation using 10 steps and variable number of paths executed on CPU3 and GPU1. The last
three bars in each # Paths group represent a speedup of CUDA over Multicore execution for
Q100, Q10, and P , respectively.

Figure 5.2 and Table 5.1 shows runtime results for different executions of RN genera-

tion, when the requested stepCount is equal to 10. We compare P , Q10, and Q100 on 4

different pathCounts. First of all, we verify our hypothesis that QRNG, which generates

too many redundant RNs that are subsequently trimmed, is a high cost to pay for runtime

flexibility that it provides. If we consider the difference between Q10 and Q100, we can

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.5. Experimental Results 127

Runtime [µs] Multicore CUDA ∆(×)
RNG Q100 Q10 P Q100 Q10 P Q100 Q10 P
Paths

1024 611 664 100 98 39 21 6.2 16.8 4.7
10240 823 656 186 229 55 19 3.6 11.8 9.4
102400 21817 6614 1114 1540 207 66 14.2 31.9 16.7
1024000 179906 24141 5792 15463 1505 533 11.6 16.0 10.9

Table 5.1: Runtimes [µs] of PRNG and QRNG for Random Number Generation using 10
steps and variable number of paths executed on CPU3 and GPU1. The last three columns
present a speedup of CUDA over Multicore execution for Q100, Q10, and P , respectively.

see that generating 100 instead of just 10 severely degrades the overall performance, espe-

cially for large pathCount such as 102 400 (7.4× speedup on CUDA) or 1 024 000 (10.3×
speedup on CUDA). Furthermore, same behaviour is observed on Multicore and CUDA

runs, but on a GPU it is much more evident, because it is always faster to draw an exact

number of required Sobol numbers (Q10 for 10 steps case).

In the risk workflow, RNs, both in their pure, but also in a processed form, for instance,

as normally distributed RNs in path generation or Stock prices S in MS generation, are the

primary data kept in the memory. In general, on CPUs in comparison to GPUs we have

more RAM memory at our disposal to store many RNs for reuse, which definitely helps

when executing larger cases. On GPUs, we have to be more prudent and manage how

many RNs we store at any given time, otherwise we risk a memory overflow. This is why,

code versions that generate RN matrices in one step and put them in memory for further

reuse, are preferred on CPUs, while drawing RNs on demand, usually next to the code, that

consequently processes them, is a preferred approach on GPUs. In other words, ratio of

instructions per RN matrix to the memory transfer time of the matrix needs to be low on a

GPU.

In case of performance comparison of CUDA and Multicore runs, we note that CUDA

consistently outperforms Multicore on all benchmarks, both all RNGs, pathCounts, and

stepCounts. We note the highest observed speedups of 32× on 102 400 paths and 10

steps for Q10 (Table 5.1) and 22.3× on 10 240 paths and 10 steps for Q100 (Table 5.2).

Moreover, CUDA speedups are on average larger for QRNGs (19.1× for Q10, 12.6× for

Q100, and 12.9× for Q1000) than for PRNG (7.4×). QRNGs seem to benefit more from

larger parallelism on a GPU.

Figure 5.3 and Table 5.2 shows runtime results for different executions of RN gener-

ation, when the requested stepCount is equal to 100. When we increase the number of

stepCount, we continue to observe the same correlations. First of all, we are unable to

generate 1024000× 1000 matrix on GPU1, with our current code implementation, because

it means we are out of available memory. GPU1 has 16 GB of global memory, and this

matrix takes 1024000 × 1000 × 8B, that is 8 GB. When we try to trim it, we copy it to a

new matrix of the same size and effectively run out of memory. This exemplifies an issue

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

128 5.5. Experimental Results

1024 10240 102400 1024000
Paths

102

103

104

105
Ru

nt
im

e
[

s]
 (l

og
)

Random Number Generation - PRNG vs. QRNG - 100 steps
(Multicore, Q1000)
(Multicore, Q100)
(Multicore, P)
(CUDA, Q1000)
(CUDA, Q100)
(CUDA, P)

0

5

10

15

20

Sp
ee

du
p

[×
]

9.5
10

.2

19
.1

0.0

9.8

22
.3

17
.3

16
.3

3.1 3.0

5.9 5.5

(Speedup, Q1000)
(Speedup, Q100)
(Speedup, P)

Figure 5.3: Runtimes [µs] and speedups of PRNG and QRNG for Random Number Gener-
ation using 100 steps and variable number of paths executed on CPU3 and GPU1. The last
three bars in each # Paths group represent a speedup of CUDA over Multicore execution for
Q1000, Q100, and P , respectively.

Runtime [µs] Multicore CUDA ∆(×)
RNG Q1000 Q100 P Q1000 Q100 P Q1000 Q100 P
Paths

1024 6294 644 156 662 66 51 9.5 9.8 3.1
10240 21100 5159 353 2066 231 118 10.2 22.3 3.0
102400 297785 28717 4540 15631 1663 771 19.1 17.3 5.9
1024000 2181173 260589 40289 0 15968 7329 0.0 16.3 5.5

Table 5.2: Runtimes [µs] of PRNG and QRNG for Random Number Generation using 100
steps and variable number of paths executed on CPU3 and GPU1. The last three columns
present a speedup of CUDA over Multicore execution for Q1000, Q100, and P , respectively.
We cannot execute Q1000 case for 1 024 000 paths on GPU1, because we run out of device
memory.

Version Multicore CUDA
∆(×) Q10/P Q100/P Q1000/P Q10/P Q100/P Q1000/P
Paths

1024 6.6 4.1 40.3 1.9 1.3 13.0
10240 3.5 14.6 59.8 2.9 2.0 17.5
102400 5.9 6.3 65.6 3.1 2.2 20.3
1024000 4.2 6.5 54.1 2.8 2.2 0.0

Table 5.3: Speedups of PRNG over QRNGs for Random Number Generation using 10 and
100 steps and variable number of paths executed on CPU3 and GPU1. We cannot execute
Q1000 case for 1 024 000 paths on GPU1, because we run out of device memory.

of keeping RNs in memory all at one time.

Table 5.3 shows a comparison of speedups of PRNG over 3 QRNG variants, Q10 with

D = 10,Q100 with D = 100, andQ1000 with D = 1000, that determine available stepCount.

Q10 is used to get 10 steps for each path, while Q100 and Q1000 are used to get 100 steps.

They are matched with P on 10 steps and 100 steps, respectively. In general, QRNGs with

less direction vectors D are faster, but they can never match PRNG on the same number

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.5. Experimental Results 129

of pathCount. Even executed in parallel per path and on a GPU they are still going to

be slower to generate and take more space in memory, because the generation procedure

is more sophisticated and they depend on sequences of RNs generated already (sequential

process).

Figure 5.4: Stochastic simulation paths that are produced by external simulation for Market
Scenario Generation using a PRNG. RF is spot price S0. 50 paths (different MS) and 50
steps (time horizon in days).

Figure 5.5: Stochastic simulation paths that are produced by external simulation for Market
Scenario Generation using a QRNG. RF is spot price S0. 50 paths (different MS) and 50
steps (time horizon in days).

Figures 5.4 and 5.5 visualise the outcome of putting the RNs in practice. In particular,

they are used here to obtain the results of an external simulation for market scenario gener-

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

130 5.5. Experimental Results

ation, but can equally well be perceived as a result of any general simulation, for instance,

for pricing. A visualisation of an internal simulation looks exactly the same, but paths and

steps are different and they vary among products. Conceptually, each internal simulation

starts in the last step of each external simulation path finished and generates a new set of

internal simulation paths. The simple example compares performance of PRNG and QRNG

on just 50 paths and 50 steps. However, it is sufficient to observe that QRNG is noticeably

better than PRNG in filling the same sample space on each time step (day) in a uniform

fashion.

Experiment Proposal to Validate QRNGs for Complete Risk Workflow

The results of our experiments conducted so far are inconclusive in terms of answering the

question of validity and preference of using QRNGs over PRNGs. We have verified so far

that we need to (i) be careful about the dimensionality D of Sobol number generators not to

draw numbers that are redundant and instead match D exactly to out runtime needs as well

as (ii) reduce the number of pathCount for QRNGs to match the runtime performance of

PRNGs. On top of that, the result of our experiments agrees with the fundamental notions

behind a difference between Quasi- and Pseudo-RNs, where former take longer to generate,

but instead cover the distribution space in a more uniform manner. As a result, QRNGs are

solely used in practice to reduce the number of samples that are required to approximate

the same distribution PRNGs. To motivate the use of QRNGs, we need to first asses how

many Quasi-RNs we need to math the approximation quality of an arbitrary of Pseudo-RN

and build a mapping between them. In our case, as we cannot change the dimensionality of

the required QRNG, because of the application requirements (stepCount is fixed), we can

only focus on reducing pathCount that we use. In other words, the paths are our samples

for reduction. We propose an experiment to be conducted in future to verify the theory

behind the QRNG’sO(N−1) convergence rate and build an automatic mapping function that

returns a minimal required number of Quasi-RNs to match the approximation quality of a

standard PRNG for given number of N . The result would give us insights into the effective

performance of QRNGs in comparison to PRNGs from not only a parallelisation angle,

but also algorithmic efficiency. An experiment would involve running QRNGs and PRNGs

side by side with different seeds on a series of increasing pathCount and measuring the

standard deviation of the resultant approximate variable, for instance, a price, when the RNs

would be feeded to a pricing function. So far, we have not assessed if using QRNGs with

their specific requirements are a better fit for our risk workloads.

Experiment Proposal to Reduce the Number of Generated Quasi-RNs

Another experiment that we would plan to conduct is to base the sample generation on a

single dimensional vector instead of generating stepCount independent vectors for each

step. This would severely reduce the number of Sobol RNs kept in the memory in one time.

To fill up the required RN matrix space of pathCount × stepCount, we would use shuf-

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.5. Experimental Results 131

fling techniques based on PRNG to rearrange the generated vector in random permutations.

The expressibility of QRNGs is expected not to be reduced for practical use cases like ours.

They would not be directly expressed in the memory, but rather drawn on demand. The

current code would need to be adapted for such operation, because in this approach the in-

dependent paths cannot be generated in parallel across threads any more as the propagation

is performed across the steps dimension.

5.5.3 Equity Option Portfolio Generation

We start our complete risk workflow with generation of the equity portfolio. The portfo-

lio, which we analyse, is generated during runtime and represents a possible distribution of

derivatives in a realistic portfolio. This is not a compute-intensive step, as the results in Ta-

ble 5.4 demonstrate, because the portfolio sizes in our experiments do not allow for a lot of

parallelism in this part. In general, we observe that the more portfolio holdings (pfHCount

or # PfH) we generate, the more speedup we get on CUDA execution time, with the largest

observed being 6× for 1000 portfolio holdings. Because all options in the portfolio, no

matter their type or style, are dependent on changes over time in a single underlying RF and

all remaining model parameters are constant (they do not change over time), the number of

variables that define every portfolio holding is the same and is equal in our implementation

to 11 different variables in total. This changes when the generated portfolio is more complex

and each of the holdings depends on a different number of parameters. In our experiments,

we use only PRNG as a source of RNs from which we generate parameters to define port-

folio holdings. We simulate three different portfolio holding distributions: a portfolio that

consists of only European options, that are priced with the BSMC algorithm, a portfolio that

consists of only American options, which are priced with the LSMC algorithm, and mixed

random portfolio that comprise both mentioned option styles. The holding distribution in

the mixed portfolio follows uniform distribution. The generated options in portfolios have,

among others, different maturities, which lead to different number of time steps, that are

used in pricing. The differences in maturities between portfolio holdings lead to workload

divergence if the holdings are priced in parallel.

Runtime [µs] Multicore CUDA ∆(×)
Pf Dist. Eu Rand Us Eu Rand Us Eu Rand Us
PfH

5 12 28 2 31 32 32 0.4 0.9 0.1
25 22 28 19 33 34 34 0.7 0.8 0.6
50 25 24 22 34 34 34 0.7 0.7 0.6
100 35 40 34 40 34 33 0.9 1.2 1.0
500 136 145 127 35 38 35 3.9 3.8 3.6
1000 203 206 205 36 35 34 5.6 5.9 6.0

Table 5.4: Runtimes [µs] and speedups of Equity Option Portfolio Generation for all port-
folio holdings and distributions used in our experiments executed on CPU3 and GPU1.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

132 5.5. Experimental Results

5.5.4 Outer Parallelism Level: Market Scenario Generation

In our experiments, we use only PRNG as a source of RNs, which we process further to turn

them into RF values for MSs. For all our experiments that generate Market Scenarios, we

use a term unit that corresponds to 1 business week or 5 business days. We fix time horizon

(number of external steps - # Ext Steps) to 10 that corresponds to 50 business days. The

choice of different numbers of MSs (# Ext Paths) for the benchmark setup is motivated by

the domain knowledge that. We try to imitate a workload for different types of investment

manager use cases A small asset manager corresponds to a workload case with a range

between 1000 and 6000 RFs (that map 1:1 to portfolio holdings in our setup based on our

assumptions) and between 1000 and 10 000 MSs. A large asset manager corresponds to a

workload case with > 20000 RFs and > 100000 MSs. As we see in the next experiments

due to a limited device memory available, we are restricted to pricing one MS at a time, that

is, one external path is used at any time. We consider it a realistic assumption, because in a

practical scenario with many RFs impacting the value of the portfolio holding, the memory

footprint of one MSs is in any case prohibitively large for parallel pricing on one GPU

device. However, solely for MS generation, which precedes the portfolio pricing part, the

parallel execution can be treated as segmapwith a reduce on the innermost level because

its both dimensions (# Ext Paths × # Ext Steps) are regular for all # PfH portfolio holdings.

reduce operation across # Ext Steps is small (10 steps) in comparison to # Ext Paths for

all cases.

We focus on comparison of the speedups between Multicore and CUDA runs as pre-

sented in Figure 5.6 and Table 5.7. Table 5.5 presents the runtimes of Multicore runs, while

Table 5.6 – the runtimes of CUDA runs. From the speedup results, we can clearly deduce

that the increased parallelism in map operation across the level of MSs benefits from the

GPU architecture the most when the portfolio is small (# PfH = 1, 10, 100), with the largest

56.4× speedup on a single instrument portfolio. For larger portfolio with 1000, 6000, or

20 000 holdings, the difference diminishes to 17.6× on average for 100 000 MSs, and is

stable with increasing # Ext Paths (number of MSs). It means that the nested parallelism on

the inner map MS level does not fully exhaust the GPU device capabilities, and as such is a

candidate for further tuning. Finally, we are unable to check the behaviour on all large asset

manger cases, because we run out of device memory on GPU1.

5.5.5 Inner (Nested) Parallelism Level: Derivative Portfolio Pricing

We do not measure Portfolio Pricing in isolation. Portfolio Generation and Market Sce-

nario Generation timings are included in these measurements, because they are required

in the process. However, in our experiments we observe that the portfolio pricing takes

significantly more time than any other part of the complete risk workflow. These are the

largest cases that we mange to benchmark across all three differentiate As mentioned in

Section 5.5.3, we consider three different portfolio distributions in our experiments. We do

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.5. Experimental Results 133

10 100 1000 10000 100000
Ext Paths

101

102

103

104

105

106

Ru
nt

im
e

[
s]

 (l
og

)

Market Scenario Generation - all portfolio holdings and distributions
(Multicore, 1)
(Multicore, 10)
(Multicore, 100)
(Multicore, 1000)
(Multicore, 6000)
(Multicore, 20000)
(CUDA, 1)
(CUDA, 10)
(CUDA, 100)
(CUDA, 1000)
(CUDA, 6000)
(CUDA, 20000)

0

10

20

30

40

50

Sp
ee

du
p

[×
]

0.3 1.3
4.0

19
.6

56
.4

4.0 4.3
8.1

52
.9

28
.1

4.6 5.3

15
.5

31
.8

29
.8

10
.8 13

.3
12

.6
17

.4

0.0

20
.0

12
.7 13

.1
17

.8

0.0

17
.1

12
.8

12
.5

0.0 0.0

(Speedup, 1)
(Speedup, 10)
(Speedup, 100)
(Speedup, 1000)
(Speedup, 6000)
(Speedup, 20000)

Figure 5.6: Runtimes [µs] and speedups of Market Scenario Generation using 10 steps
for a 10 day horizon and variable number of external paths for MSs executed on CPU3
and GPU1. PRNG is used for RN generation and the portfolio distribution comprise both
European and American Equity options. The last three bars in each # Ext Paths group
represent a speedup of CUDA over Multicore execution.

PfH 1 10 100 1000 6000 20000
Ext Paths

10 17 214 271 737 2419 6338
100 65 237 344 2355 13074 43185
1000 237 495 2585 21507 122978 405393
10000 1218 8523 50238 272630 1666341 0
100000 9361 45149 470151 0 0 0

Table 5.5: Runtimes [µs] of Market Scenario Generation of Multicore runs on CPU3 for
all MS numbers and portfolio holding numbers.

PfH 1 10 100 1000 6000 20000
Ext Paths

10 50 54 59 68 121 371
100 51 55 65 177 1028 3384
1000 60 61 167 1704 9356 32374
10000 62 161 1580 15626 93386 0
100000 166 1609 15753 0 0 0

Table 5.6: Runtimes [µs] of Market Scenario Generation of CUDA runs on GPU1 for all
MS numbers and portfolio holding numbers.

PfH 1 10 100 1000 6000 20000
Ext Paths

10 0.3 4.0 4.6 10.8 20.0 17.1
100 1.3 4.3 5.3 13.3 12.7 12.8
1000 4.0 8.1 15.5 12.6 13.1 12.5
10000 19.6 52.9 31.8 17.4 17.8 0.0
100000 56.4 28.1 29.8 0.0 0.0 0.0

Table 5.7: Speedups CUDA / Multicore for Market Scenario Generation for all MS numbers
and portfolio holding numbers.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

134 5.5. Experimental Results

not manage to test all combinations of (# PfH, # Ext Paths, # Int Paths), on all three portfolio

distributions, so we only report results on these, on which we managed to collect all three

measurements.

European Options Portfolio Pricing

The results are collected in Figure 5.7. Runtimes are presented in Table 5.8, while speedups

in Table 5.9. In case of the European option portfolio, we observe large speedups of CUDA

version over Multicore of up to 44.5× on a single portfolio holding, 10 000 MSs and 102 400

internal paths used in BSMC pricing algorithm, as well as 39.1× on 10 portfolio holdings,

1000 MSs and 102 400 internal pricing paths. These are also the largest cases that we mange

to benchmark across all three portfolio cases.

The general high performance in this European option case is mainly due to all three

simulation nested levels being processed in parallel. Portfolio pricing runtime is in order of

100ms for CUDA runs. It is possible, because, in contrast to American, European options (i)

require only a forward propagation step in pricing (BSMC algorithm), which processes each

path in isolation, so it can be easily mapped to GPU threads, as well as (ii) are expressed in

memory in a form of a flat FP64 array of # Int Paths size that consist of option payoffs at

their maturity.

(1, 10) (1, 100) (1, 1000) (1, 10000) (1, 100000) (10, 1000)
PfH,# Ext Paths

103

104

105

106

Ru
nt

im
e

[
s]

 (l
og

)

Inner (Nested) Parallelism Level: European Option Portfolio Pricing - Eu portfolio holdings, all market scenarios
(Multicore, 1024)
(Multicore, 10240)
(Multicore, 102400)
(Multicore, 1024000)
(CUDA, 1024)
(CUDA, 10240)
(CUDA, 102400)
(CUDA, 1024000)

0

10

20

30

40

Sp
ee

du
p

[×
]

0.0
3.0

4.3

8.9

7.0

0.0

5.9
7.2

12
.6

37
.1

5.3

0.0

21
.4

29
.5

31
.8

44
.5

4.9

39
.1

35
.5

34
.3

27
.3

30
.6

0.0 0.0

(Speedup, 1024)
(Speedup, 10240)
(Speedup, 102400)
(Speedup, 1024000)

Figure 5.7: Runtimes [µs] and speedups of European Option Portfolio Pricing using BSMC
algorithm. We use 10 steps for time horizon and variable number of external and internal
paths for MSs executed on CPU3 and GPU1. PRNG is used for RN generation. The last
four bars in each # Ext Paths group represent a speedup of CUDA over Multicore execution.

Pricing Portfolio of American Options Portfolio Pricing

The results are collected in Figure 5.8. Runtimes are presented in Table 5.10, while speedups

in Table 5.11. In case of the American option portfolio, we observe largest speedups of

CUDA version over Multicore of up to 19.7× on a single portfolio holding, only 10 MSs

and significant 1 024 000 internal paths used in LSMC pricing algorithm, but observe only

a modest 4.2× speedup on a case with 10 portfolio holdings, 1000 MSs and 102 400 internal

pricing paths.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.5. Experimental Results 135

Runtime [µs] Multicore CUDA
Int Paths 1024 10240 102400 1024000 1024 10240 102400 1024000

PfH # Ext Paths

1 10 0 1567 9632 90973 0 264 450 2562
100 678 1660 13645 113100 225 231 462 3293
1000 1008 3447 28153 272777 234 273 885 9975
10000 3159 23587 191172 1912371 353 635 4296 62548
100000 28122 193146 1835794 0 4010 36619 378129 0

10 1000 0 0 470469 0 0 0 12038 0

Table 5.8: Runtimes [µs] of European Option Portfolio Pricing for all MS numbers and 2
different small portfolio holding numbers. Multicore on CPU3 and CUDA on GPU1 runs
for different number of external and internal paths.

∆(×)
Int Paths 1024 10240 102400 1024000

PfH # Ext Paths

1 10 0.0 5.9 21.4 35.5
100 3.0 7.2 29.5 34.3
1000 4.3 12.6 31.8 27.3
10000 8.9 37.1 44.5 30.6
100000 7.0 5.3 4.9 0.0

10 1000 0.0 0.0 39.1 0.0

Table 5.9: Speedups of European Option Portfolio Pricing for all MS numbers and 2 dif-
ferent small portfolio holding numbers. CUDA / Multicore for different number of external
and internal paths.

In general, in American option portfolio case the speedups are on average 3× smaller

than for European options. Here, only the innermost parallel level of # Int Paths is ex-

tracted. With current implementation, it is impossible to price on higher level due to mem-

ory requirements of LSMC algorithm that efficiently maps to all available parallelism on

the GPU. is mainly due to all three simulation nested levels being processed in parallel.

This time, portfolio pricing is still in order of hundreds of ms for CUDA runs, but Multi-

core version is significantly faster on same cases. Firstly, American option pricing require

both a parallel forward, but also sequential backward propagation step in pricing (LSMC
algorithm), which still processes each path in isolation, at least in forward step. Secondly,

in contrast to European options each computation is are expressed in memory in a form of

a two-dimensional FP64 array of #IntPaths×#IntSteps, because this time we need to

keep the whole history through the option lifetime for the backward step.

Random (Mixed) Options Portfolio Pricing

The results are collected in Figure 5.9. Runtimes are presented in Table 5.12, while speedups

in Table 5.13. In case of the Random option portfolio, we observe largest speedups of CUDA

version over Multicore of up to 19.4× on a single portfolio holding, only 10 MSs and signif-

icant 1 024 000 internal paths used in LSMC pricing algorithm, but observe only a modest

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

136 5.5. Experimental Results

(1, 10) (1, 100) (1, 1000) (1, 10000) (1, 100000) (10, 1000)
PfH,# Ext Paths

101

102

103

104

105

Ru
nt

im
e

[m
s]

 (l
og

)
Inner (Nested) Parallelism Level: American Option Portfolio Pricing - Us portfolio holdings, all market scenarios

(Multicore, 1024)
(Multicore, 10240)
(Multicore, 102400)
(Multicore, 1024000)
(CUDA, 1024)
(CUDA, 10240)
(CUDA, 102400)
(CUDA, 1024000)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sp
ee

du
p

[×
]

0.0 0.1 0.0 0.0 0.0 0.0

2.5

0.7 0.4 0.4 0.4 0.0

4.6

2.9
2.3 2.3 2.3

4.2

19
.7

13
.3

11
.2

11
.0

0.0 0.0

(Speedup, 1024)
(Speedup, 10240)
(Speedup, 102400)
(Speedup, 1024000)

Figure 5.8: Runtimes [µs] and speedups of American Option Portfolio Pricing using
LSMC algorithm. We use 10 steps for time horizon and variable number of external and
internal paths for MSs executed on CPU3 and GPU1. PRNG is used for RN generation.
The last four bars in each # Ext Paths group represent a speedup of CUDA over Multicore
execution.

Runtime [ms] Multicore CUDA
Int Paths 1024 10240 102400 1024000 1024 10240 102400 1024000

PfH # Ext Paths

1 10 0 15 65 925 0 6 14 47
100 6 39 362 5454 56 59 125 411
1000 26 244 2916 45659 558 590 1242 4062
10000 217 2298 28502 447222 5581 5870 12390 40609
100000 2133 23042 288019 0 55457 58538 124467 0

10 1000 0 0 145305 0 0 0 34329 0

Table 5.10: Runtimes [ms] for American Option Portfolio Pricing for all MS numbers and
2 different small portfolio holding numbers. Multicore on CPU3 and CUDA on GPU1 runs
for different number of external and internal paths.

∆(×)
Int Paths 1024 10240 102400 1024000

PfH # Ext Paths

1 10 0.0 2.5 4.6 19.7
100 0.1 0.7 2.9 13.3
1000 0.0 0.4 2.3 11.2
10000 0.0 0.4 2.3 11.0
100000 0.0 0.4 2.3 0.0

10 1000 0.0 0.0 4.2 0.0

Table 5.11: Speedups of American Option Portfolio Pricing for all MS numbers and 2 dif-
ferent small portfolio holding numbers. CUDA / Multicore for different number of external
and internal paths.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.5. Experimental Results 137

3.8× speedup on a case with 10 portfolio holdings, 1000 MSs and 102 400 internal pricing

paths. In general, these results follow the pattern of the American option portfolio results.

The reason is that the single portfolio holding consists of an American option. In case of 10

portfolio holdings, the bottleneck is still on pricing American option, as LSMC algorithm is

significantly more complex than BSMC algorithm. In conclusion, the number of American

options in Random portfolio determines the overall workflow performance.

(1, 10) (1, 100) (1, 1000) (1, 10000) (1, 100000) (10, 1000)
PfH,# Ext Paths

101

102

103

104

105

Ru
nt

im
e

[m
s]

 (l
og

)

Inner (Nested) Parallelism Level: Random (Mixed) Options Portfolio Pricing - Rand portfolio holdings, all market scenarios
(Multicore, 1024)
(Multicore, 10240)
(Multicore, 102400)
(Multicore, 1024000)
(CUDA, 1024)
(CUDA, 10240)
(CUDA, 102400)
(CUDA, 1024000)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sp
ee

du
p

[×
]

0.0 0.1 0.0 0.0 0.0 0.0

1.6

0.7 0.4 0.4 0.4 0.0

4.8

2.8
2.3 2.3 2.3

3.8

19
.4

13
.1

11
.3

11
.2

0.0 0.0

(Speedup, 1024)
(Speedup, 10240)
(Speedup, 102400)
(Speedup, 1024000)

Figure 5.9: Runtimes [µs] and speedups of Random (Mixed) Options Portfolio Pricing
using BSMC and LSMC algorithms. We use 10 steps for time horizon and variable number
of external and internal paths for MSs executed on CPU3 and GPU1. PRNG is used for RN
generation. The last four bars in each # Ext Paths group represent a speedup of CUDA over
Multicore execution.

Runtime [ms] Multicore CUDA
Int Paths 1024 10240 102400 1024000 1024 10240 102400 1024000

PfH # Ext Paths

1 10 0 11 67 914 0 7 14 47
100 7 39 364 5400 56 59 128 412
1000 25 248 2923 45890 561 583 1244 4070
10000 215 2305 28547 454042 5564 5845 12380 40612
100000 2123 22731 284797 0 55683 58717 124399 0

10 1000 0 0 22278 0 0 0 5921 0

Table 5.12: Runtimes [ms] for Random (Mixed) Options Portfolio Pricing for all MS num-
bers and 2 different small portfolio holding numbers. Multicore on CPU3 and CUDA on
GPU1 runs for different number of external and internal paths.

5.5.6 Complete Risk Workflow using PRNG

For the measurements of Complete Risk Workflow, we select a Random Options Portfolio

from the last section. The results are collected in Figure 5.10. Runtimes are presented in

Table 5.14, while speedups in Table 5.15. In case of the Random option portfolio, we again

observe largest speedups of CUDA version over Multicore of up to 18.7× on a single port-

folio holding, only 10 MSs and significant 1 024 000 internal paths used in LSMC pricing

algorithm, but observe only a modest 3.7× speedup on a case with 10 portfolio holdings,

1000 MSs and 102 400 internal pricing paths. Both runtime and speedup results follow the

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

138 5.5. Experimental Results

∆(×)
Int Paths 1024 10240 102400 1024000

PfH # Ext Paths

1 10 0.0 1.6 4.8 19.4
100 0.1 0.7 2.8 13.1
1000 0.0 0.4 2.3 11.3
10000 0.0 0.4 2.3 11.2
100000 0.0 0.4 2.3 0.0

10 1000 0.0 0.0 3.8 0.0

Table 5.13: Speedups of Random (Mixed) Options Portfolio Pricing for all MS numbers
and 2 different small portfolio holding numbers. CUDA / Multicore for different number of
external and internal paths.

pricing results from the previous section. This means that most of the time is spent in port-

folio repricing part. In fact, when compared with the second most expensive part based on

the collected runtimes in Table 5.6, which is MS generation, the portfolio repricing in all

MSs takes up to 30× longer on CPU and 747× longer on GPU than that part. This fact

leads us to conclusion that the most important optimisation that we can introduce at the

current stage is to reduce the memory footprint of the internal simulation, so more MSs can

be priced in parallel as it is a case for European Option Portfolio. We propose to

(1, 10) (1, 100) (1, 1000) (1, 10000) (1, 100000) (10, 1000)
PfH,# Ext Paths

101

102

103

104

105

Ru
nt

im
e

[m
s]

 (l
og

)

Complete Risk Workflow using PRNG - Rand portfolio holdings, all market scenarios
(Multicore, 1024)
(Multicore, 10240)
(Multicore, 102400)
(Multicore, 1024000)
(CUDA, 1024)
(CUDA, 10240)
(CUDA, 102400)
(CUDA, 1024000)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sp
ee

du
p

[×
]

0.2 0.1 0.1 0.0 0.0 0.0
1.1 0.7 0.4 0.4 0.4 0.0

4.1

2.9
2.3 2.4 2.3

3.7

18
.7

13
.5

11
.2 11

.3

0.0 0.0

(Speedup, 1024)
(Speedup, 10240)
(Speedup, 102400)
(Speedup, 1024000)

Figure 5.10: Comparison of measurements for Complete Risk Workflow that uses Random
(Mixed) Options Portfolio Pricing using BSMC and LSMC algorithms. We use 10 steps for
time horizon and variable number of external and internal paths for MSs executed on CPU3
and GPU1. PRNG is used for RN generation. The last four bars in each # Ext Paths group
represent a speedup of CUDA over Multicore execution.

GPU Memory Requirements

For Complete Risk Workflow, in addition to the runtimes, we also measure the maximum

memory footprint that is recorded during its execution on a GPU. The results are presented

in Table 5.16. In case of the Random option portfolio, we observe the largest memory

requirement for CUDA version for cases with the largest number of # Int Paths, that is,

1 024 000, that is equal to around 668 MB for a single American Option. The number of

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.5. Experimental Results 139

Runtime [ms] Multicore CUDA
Int Paths 1024 10240 102400 1024000 1024 10240 102400 1024000

PfH # Ext Paths

1 10 2 11 65 917 8 10 16 49
100 7 40 368 5623 58 61 127 415
1000 28 258 2898 45353 558 592 1241 4061
10000 246 2445 29182 457097 5571 5884 12375 40573
100000 2387 24488 289275 0 55497 58997 123872 0

10 1000 0 0 21998 0 0 0 5902 0

Table 5.14: Runtimes [ms] for Complete Risk Workflow that uses Random (Mixed) Options
Portfolio Pricing and PRNG for all MS numbers and 2 different small portfolio holding
numbers. Multicore on CPU3 and CUDA on GPU1 runs for different number of internal
paths.

Int Paths 1024 10240 102400 1024000
PfH # Ext Paths

1 10 0.2 1.1 4.1 18.7
100 0.1 0.7 2.9 13.5
1000 0.1 0.4 2.3 11.2
10000 0.0 0.4 2.4 11.3
100000 0.0 0.4 2.3 0.0

10 1000 0.0 0.0 3.7 0.0

Table 5.15: Speedups of Complete Risk Workflow that uses Random (Mixed) Options
Portfolio Pricing and PRNG for all MS numbers and 2 different small portfolio holding
numbers. CUDA / Multicore for different number of internal paths.

portfolio holdings and the portfolio distribution make a difference here when we deal with

more holdings. As we can see for a case with 10 portfolio holdings, 1000 MSs and 102 400

internal pricing paths, we record a smaller memory footprint of 205MB, although there are

10 different options considered.

Device Memory [KB] CUDA
Int Paths 1024 10240 102400 1024000

PfH # Ext Paths

1 10 1737 11197 68556 684156
100 1739 11199 68558 684158
1000 1760 11220 68579 684179
10000 2710 11431 68790 684390
100000 25550 25658 70899 0

10 1000 0 0 210298 0

Table 5.16: Device memory requirements for Complete Risk Workflow that uses Random
(Mixed) Options Portfolio Pricing, PRNG for RNs, and BSMC and LSMC algorithms for
all MS numbers and 2 different small portfolio holding numbers. Multicore on CPU3 and
CUDA on GPU1 runs for different number of internal paths. We use 10 steps for time
horizon and variable number of external and internal paths.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

140 5.6. Related Work

5.5.7 Complete Risk Workflow with BSMC and QRNG

The execution times of the whole algorithm are gathered in Table 5.17. We can observe

significant speedups as we increase the number of MSs. This increases the parallelism on

the outer level. We test pricing on the increasing number of simulation paths, which exposes

more parallelism on the inner levels. For larger combinations of paths and steps, we run out

of device memory, because we keep all the generated Sobol RNs at all times. We need

to investigate the approach where we recompute the Sobol numbers when necessary. It

can yield better performance and allows to approximate the risk with a larger number of

paths and steps. We also consider running these benchmark cases on Multicore and CUDA

backends.

Ext Paths # Int Paths Seq CUDA ∆(×)

100 100 120 13 9,23
100 1000 1171 53 22,09
100 10000 11705 398 29,41
100 20000 23406 788 29,70
100 30000 35173 1182 29,76
100 40000 47067 1570 29,98

1000 100 734 25 29,36
1000 1000 6872 83 82,80
1000 10000 68151 633 107,66
1000 20000 136100 1242 109,58
1000 30000 204070 1833 111,33

10000 100 6864 126 54,48
10000 1000 63702 360 176,95
10000 10000 634892 2730 232,56
10000 20000 1282457 5383 238,24
10000 30000 1905676 8035 237,17

Table 5.17: Comparison of runtimes between sequential Seq and parallel CUDA versions
using QRNG (Sobol RNs). Portfolio comprise only European options priced with BSMC
algorithm. The runtime consists of the whole algorithm execution. The runtimes are given
in milliseconds. Single-precision floating-point numbers are used. Portfolio consists of 100
positions. The path-dependent version of BSMC is used. The number of steps for BSMC
pricing is fixed to 50 steps.

5.6 Related Work

We identify two distinct lines of research work that we consider comparable to our efforts

in terms of the addressed risk problem and use of GPUs for accelerated implementation.

Dixon et al. [DCK09; DCK12; Dix+12] implement two accelerated versions of a Delta-

Gamma approximation method to calculate VaR. The method that they describe differs from

a Monte Carlo method that we apply mainly in how the loss function is evaluated. They

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

5.6. Related Work 141

apply the partial revaluation approach mentioned in Section 5.2 instead of a full revaluation

approach like we do. The RFs are mathematically reduced to a few of them that represent

most of the loss function distribution. Delta-Gamma approach uses the “Greeks”, in particu-

lar ∆, the first moment and Γ, the second distribution moments of the time series that repre-

sent the RFs log returns. This technique applies a Taylor expansion to approximate the price

changes over the course of time. This method works well for the vanilla derivative instru-

ments as they can be approximated by a quadratic function. However, for all other highly

non-linear, exotic derivative instruments (such as bonds with call/put options, swaptions,

credit derivatives, etc.) and instruments that are highly volatile (or where volatility impacts

are not linear) and illiquid, full revaluation method is recommended as the approximation

methods yield less accurate values. They achieve 127× speedup with their parallel CPU

implementation and 538× with their GPU implementation. They compare the speedups

against naive baseline implementations on CPU and GPU, respectively. They do so to em-

phasise the impact of the 3 types of optimisations that they apply. Firstly, they propose to

reformulate the loss function approximations with a set of linear algebra transformations.

A matrix-matrix multiplication is replaced with matrix-vector multiplication to reduce the

amount of necessary computation. This approach is specific to the approximation that they

use, so we cannot consider such a change to the algorithm based on the underlying math-

ematics. Secondly, they make use of Sobol sequences to generate uniformly-distributed

RN to enable faster numerical convergence for the loss function approximation. As de-

scribed in Section 5.4.2, we agree with the superiority of quasi-RN. However, in the current

implementation of Futhark library, we identify a problem with using a fixed number of di-

mensions that needs to be known upfront at the compile time. The number of dimensions

is equal to the number of time steps in the simulations. This fact limits the application

functionality, because the parameter is not specified in the input to the application. Then

they use Box-Muller sampling method to transform the uniform RNs to standard Gaussian

(normally-distributed) RNs. They claim that the standard error converges twice as fast for

single-precision floating-point numbers in comparison to the Beasley, Springer, and Moro

Inverse Normal CDF approximation that we choose. However, in our experiments our focus

is on the FP64 floats. Thirdly, they conclude that merging data-parallel kernels is beneficial

for the overall performance. They do it manually as they use the low-level C++, CUDA

and cuBLAS library in their implementation. This step is automated for us as Futhark ker-

nel fuses the SOACs that implement the kernels in an efficient manner to reduce redundant

memory operations.

Varela et al. [Var+15b; Var+15a; VW17; Var+17; VW18] implement a full Nested Sim-

ulation for MCVaR. Just like us, they consider the estimation of VaR and component VaR

using nested Monte Carlo simulations. They use OpenCL for portability and investigate the

performance of their implementation across CPU, GPU and FPGA architectures. They also

scale the size of their simulations to evaluate the runtime variations of different parallelisa-

tion techniques. The main algorithmic optimisation that they propose is to generate a set of

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

142 5.7. Conclusion

RNs once in a separate step and then reuse them for external simulations. The set of RNs is

then reused across simulations for MS generation, that is, for each type of the instrument we

use the same set of RNs. They apply the same optimisation step for internal simulation to

price the derivative instruments in the portfolio, but here a separate set of RNs is necessary

for each individual MS. We adapt the same optimisation in our work. We also price the dif-

ferent types of instruments (European, American, etc.) separately to minimise the impact of

work divergence across different pricing models. In [Var+17], they present their implemen-

tation in Python, a general-purpose high-level programming language that is extensively

used in the financial industry today. It is well suited for rapid prototyping and has a rich

library ecosystem, but at the same time lacks the runtime performance. They compensate

this by utilising PyOpenCL library to enable high-performance computations and target 4

different heterogeneous platforms. A Futhark program likewise can be translated to Python

code that uses PyOpenCL to invoke OpenCL kernels.

5.7 Conclusion

The MCVaR algorithm is based on a generation of hundreds of thousands of MSs to simu-

late the future portfolio changes, which are necessary to build an accurately the P/L distribu-

tion of a portfolio. The distribution gives a solid foundation for calculation of risk measures

like VaR or ES that are obtained from combinations and aggregations of the portfolio prices

in the simulated MSs. In our case, Monte Carlo simulations are used to both generate the

MSs and to price the derivative portfolio. In particular, as we deal with a portfolio of com-

plex exotic derivatives, we end up with a nested simulation problem, as revaluation of the

portfolio involves itself a series of simulations. In other words, for each scenario, the port-

folio needs to be fully revaluated using simulated input parameters. Clearly, this nesting

significantly impacts the device memory requirements.

We conclude that the high-level parallel structure of the code is determined by the com-

plexity of the instruments that the portfolio consists of. It is not possible to revaluate instru-

ments with the algorithms that have vastly different computational requirements. We are

thus forced to group the instruments based on the computational intensity of their pricing

algorithm, identify parts that have to be executed in a sequential fashion and execute them

in common batches.

We discover that the significant memory requirements of a MCVaR algorithm, even

in a standard case, still exceed the memory capabilities of the modern powerful GPUs.

The high-level implementations need to be thus amended with guideline expressions that

instruct the compiler to use specific optimisations or abandon parallel execution completely

in certain parts of code. Compiler is unable to deduce an efficient if the algorithm itself is

not optimally handling the large number of intermediate data that it produces to compute

the final risk measure results.

Chapter 5. Monte Carlo Value at Risk Simulations (MCVaR)

Chapter 6

Conclusion

6.1 Evaluation and Discussion

At it core, this thesis investigates the problem of providing an efficient acceleration to a

set of different derivative pricing and risk management applications that are commonly

used in investment management practice. We mainly target the GPU platform and use

Futhark and CUDA programming technologies and focus on extracting parallelism from

the chosen algorithms. With this goal in mind, we conclude by summarising the general

observations and outcomes and taking a general look ath impact of our investigation results.

We implement two derivative pricing models, one for fixed-income (HW1F in Chapter 3)

and another for equity markets (LSMC in Chapter 4). To solve these models, we use two

distinct numerical algorithms that we parallelise to a high degree. Subsequently, we attempt

to combine them and build a risk measurement workflow that can be used to and identify

the inherent portfolio risks (MCVaR in Chapter 5).

For HW1F, we identify that multiple versions of code are required to cover a whole

spectrum of different input data parameters. The problem is characterised by a high variance

in dimensions of the data, which leads to variable sizes of data structures that result in

high thread divergence and irregular memory accesses. These challenges combined with

the intrinsic nested parallelism on two levels of the numerical method make it non-trivial

to map the method to a GPU architecture, which is based on regular thread blocks. In

particular, in the first GPU-OUTER version, each thread works on a valuation of a single

instrument in isolation. We show that this implementation can be refined by a set of generic

optimisations. However, there still exist more parallelism available to exploit inside the

valuation of the instrument. We demonstrate this in the second GPU-FLAT version, which

instead assigns each thread to work with one tree node. This requires that we distribute

the instruments among thread blocks in a way that minimises the number of idle threads

at any given time. We use low-level CUDA programming framework and compare it with

the low-level code that is auto-generated from high-level Futhark code. CUDA gives us

the verbosity and the ability to fine-tune the relevant optimisations that help us achieve

increased performance. Futhark compiler in the current version is not able to apply such

143

144 6.1. Evaluation and Discussion

optimisations automatically.

For LSMC, we deal with an algorithm, that consists of two parts. The first part is em-

barrassingly parallel, because it can be divided into chunks of simulation paths, that can

be executed in isolation and mapped directly to threads. On the contrary, the second part is

inherently a sequential problem. Extracting parallelism and mapping it efficiently to a paral-

lel architecture involves non-trivial linear algebra transformations and fundamental changes

to the underlying numerical algorithm. Our investigation exemplifies the fact that with-

out thorough understanding of the algorithm and a combination of concepts from finance,

mathematics, and computer science, we are not able to optimise numerical implementations

through parallelisation, because the generic optimisations might not be suitable for the ex-

isting algorithmic structure. Therefore, to reduce the software development burden, and

focus instead on exploring different algorithms, we choose to use a high-level functional

approach for this implementation. We express the algorithm using data-parallel constructs

and let the optimising compiler auto-generate an efficient parallel code that targets mas-

sively parallel GPU hardware. As a result, the performance matches the state-of-the-art

CUDA implementation, which is hand-tuned by NVIDIA experts, on the majority of cases

and manages to outperform the benchmark on particular small cases. This promising finding

motivates further work on the optimisation compiler and the algorithm. Based on our work,

we consider the high-level functional specification as being more suitable and accessible for

the financial-domain experts than the low-level dedicated code, that is usually implemented

and optimised by expert software developers. Its expressibility and modularity enables code

maintainability, hides the implementation details that target particular parallel architecture,

and turns our focus to algorithmic and programming-specific considerations. The high-level

approach facilitates future algorithmic changes, which are common in constantly changing

financial industry, for instance, it needs to be simple to adapt to a multitude of new and

custom financial instruments introduced in the global markets.

In the last case MCVaR we demonstrate a potential of integrating the modules with fast

pricing capabilities in a broader risk management system that is aimed at large and diverse

derivative investment portfolios. We implement classical risk measure computations for a

portfolio of exotic options using a Monte Carlo simulation, which is a method deemed to

be overly compute-intensive for a practical use on complex derivative portfolios. Using

Monte Carlo simulations in risk workflows leads to a large nested simulation with multiple

levels of parallelism that cannot be simply mapped to GPU architecture to be executed in

parallel. However, as we turn again to high-level programming, it is easy to modularise and

adapt the code for fast computation. On top of that, we introduce algorithmic optimisations

like grouping instruments of common computational complexity and reusing simulation

paths where it is statistically valid to reduce the amount of data processed. Moreover, we

introduce implementation optimisations like sequentialising the outer levels of parallelism,

so we do not run out of limited GPU device memory, while still performing computation in

parallel.

Chapter 6. Conclusion

6.2. Future Work 145

All these contributions, when combined together and backed by the experimental re-

sults, demonstrate that it is a worthwhile and viable commitment to accelerate different

financial algorithms using modern parallel programming languages and frameworks to pre-

pare them for execution on highly parallel architectures.

6.2 Future Work

During work on the project, we identified various opportunities and improvements that we

consider valuable and worth further investigation.

For HW1F, one valuable improvement would be to build on top of the multiversioning

approach and introduce an Inspector-Executor module that determines which kernel version

is used based on the input dataset. Moreover, it would be valuable to check the impact of

the applied optimisations on a bounded grid to solve the same pricing problem with a PDE

approach and a FDM numerical method. Such an approach would be more generic and

could be extended beyond finance to other scientific and engineering fields. In addition, we

would need to specify a set of generic rewrite rules to integrate the proposed optimisation

techniques in an aggressively-optimising compiler like the one for Futhark.

The advantages of LSMC approach would be even more vivid if we would test the

performance on a derivative instrument dependent on many multiple risk factors. We would

need to increase the necessary number of paths and hence more computation would be done

per each time step. In such a multi-dimensional case, the Monte Carlo simulation would

become even more compute-bound and hence even better suited for execution on massively

parallel GPUs. Another option would be to use a more sophisticated pricing model like

Heston model that introduces a second stochastic risk factor. A benchmark like STAC-

A2 [STA20] from Securities Technology Analysis Center is a test benchmark that we could

use to compare the achieved performance.

Besides the immediate potential algorithmic improvements to Monte Carlo simulations

proposed in Section 5.5.2, there are at least three directions that we could consider in the

future. The first improvement for MCVaR would be to adapt it fully for HW1F pricing and

trinomial trees, because current Futhark implementation is not using all the introduced opti-

misation and thus is significantly slower than CUDA implementations. The second improve-

ment would prepare the implementation for realistic use cases extend the number of simu-

lated risk factors in the market scenario generation step, as well as add correlation between

different risk factors. The third improvement would be to connect our research with previ-

ous work done on financial workloads implemented in Futhark like, for instance, [And+16].

Finally, we mention that the EOM workflows for reporting purposes add yet another scal-

ing factor, because they provide one more outermost parallel level in form of assessing risk

measures across multiple portfolios that comprise holdings in different instruments.

All experiments would also benefit from tests on different types of accelerators, most

importantly FPGAs that are growing in popularity in finance, especially in high-frequency

Chapter 6. Conclusion

146 6.2. Future Work

trading. We would able to achieve this, because the high-level portable implementation in

Futhark is compiled to a portable compute backend OpenCL code, which is supported on

any accelerator platform.

Another natural next step to extend the risk experiments in this work would be to in-

troduce Algorithmic Adjoint Differentiation (AAD) for the calculation of the risk factor

sensitivities. As demonstrated in this work, the main goal of quantitative research and

derivative pricing libraries is measuring portfolio risk, not the valuation itself. To take in-

formed investment decisions, we want to asses the contributions and portfolio changes that

we need to introduce to hedge the portfolio market risk or perform a regulatory adjustment

for our derivative portfolio. One of the main achievements of the financial theory is the

discovery that hedge ratios correspond to differential sensitivities. The goal is therefore to

produce fast and accurate differentials of the valuation function. The determination and

implementation of the valuation function is merely a step on the path towards this, because

a valuation function must be defined before it can be differentiated. The work of [GG06;

CJM17; Cap11] introduced the concepts of AAD to the field of computational finance. In

addition, AAD can also be performed on GPUs [TLN13; Gre+16]. Standard references on

the topics of AAD are [GW08; Nau12; Sav19]. The natural step would be to introduce an

automatic differential approach to a high-level programming language like Futhark.

Finally, the thriving field of Machine Learning [Bis06; HTF09], in particular Deep

Learning [GBC16], drives most of the current research in software acceleration and par-

allel hardware architectures. In the financial domain, these two fields has driven most of the

original research in the recent two years, especially in the areas of derivative pricing and

risk measurement [Pra18]. It is common today to propose approaches that use the output

from simulations, which are presented in this work, to train Deep Neural Networks (DNNs)

on the synthetic data. Once trained, a DNN can be used to infer prices in real-time and on

demand. An acceleration of the whole workload is achieved, because the DNN is trained

offline in batches on precomputed data. However, when used online on a previously unseen

data, the DNN can infer price and risk results at a speed of a closed-form formula, which

is far beyond the capabilities of any simulation-based system, which is built on top of clas-

sical numerical methods. These approaches work with an arbitrarily sophisticated financial

models and are now use for real-time exotic derivative pricing [FG18; McG18; HMT19;

LOB19], market data generation and model calibration [Liu+19]. On top of that, the perfor-

mance is further impacted, because these techniques usually use the reduced floating-point

precision and tensor cores deployed in the latest GPU generations.

Chapter 6. Conclusion

References

[Abb+14] Lokman A. Abbas-Turki et al. “Pricing Derivatives on Graphics Processing

Units Using Monte Carlo Simulation”. In: Concurrency and Computation:

Practice and Experience 26.9 (June 25, 2014), pp. 1679–1697. ISSN: 15320626.

DOI: 10.1002/cpe.2862. URL: http://doi.wiley.com/10.

1002/cpe.2862 (visited on January 31, 2021).

[AE18] Danil Annenkov and Martin Elsman. “Certified Compilation of Financial Con-

tracts”. In: Proceedings of the 20th International Symposium on Principles and

Practice of Declarative Programming. PPDP ’18. New York, NY, USA: ACM,

2018, 5:1–5:13. ISBN: 978-1-4503-6441-6. DOI: 10.1145/3236950.3236955.

URL: http://doi.acm.org/10.1145/3236950.3236955.

[Alb07] Claudio Albanese. Callable Swaps, Snowballs and Videogames. SSRN Schol-

arly Paper ID 1018468. Rochester, NY: Social Science Research Network,

September 1, 2007. URL: https://papers.ssrn.com/abstract=

1018468 (visited on January 31, 2021).

[And+06] Jesper Andersen et al. “Compositional Specification of Commercial Contracts”.

In: International Journal on Software Tools for Technology Transfer 8.6 (2006),

pp. 485–516.

[And+16] Christian Andreetta et al. “FinPar: A Parallel Financial Benchmark”. In: ACM

Transactions on Architecture and Code Optimization 13.2 (June 27, 2016),

pp. 1–27. ISSN: 15443566. DOI: 10.1145/2898354. URL: http://

dl.acm.org/citation.cfm?doid=2952301.2898354 (visited

on January 31, 2021).

[AP10] Leif B. G. Andersen and Vladimir V. Piterbarg. Interest Rate Modeling. Volume

1: Foundations and Vanilla Models. London ; New York: Atlantic Financial

Press, February 6, 2010. 492 pp. ISBN: 978-0-9844221-0-4.

[Bal14] Luigi Ballabio. Implementing QuantLib. Leanpub, June 8, 2014. URL: https:

//leanpub.com/implementingquantlib (visited on January 31,

2021).

[Bal21] Luigi Ballabio. QuantLib, A free/open-source library for quantitative finance.

https://www.quantlib.org/. January 31, 2021.

147

https://doi.org/10.1002/cpe.2862
http://doi.wiley.com/10.1002/cpe.2862
http://doi.wiley.com/10.1002/cpe.2862
https://doi.org/10.1145/3236950.3236955
http://doi.acm.org/10.1145/3236950.3236955
https://papers.ssrn.com/abstract=1018468
https://papers.ssrn.com/abstract=1018468
https://doi.org/10.1145/2898354
http://dl.acm.org/citation.cfm?doid=2952301.2898354
http://dl.acm.org/citation.cfm?doid=2952301.2898354
https://leanpub.com/implementingquantlib
https://leanpub.com/implementingquantlib
https://www.quantlib.org/

148 References

[BBE15] Patrick Bahr, Jost Berthold, and Martin Elsman. “Certified Symbolic Manage-

ment of Financial Multi-Party Contracts”. In: Proceedings of the 20th ACM

SIGPLAN International Conference on Functional Programming. 20th ACM

SIGPLAN International Conference on Functional Programming. ICFP ’15.

August 2015, pp. 315–327. DOI: 10.1145/2784731.2784747. URL:

https://dl.acm.org/doi/abs/10.1145/2784731.2784747.

[Bil12] Patrick Billingsley. Probability and Measure. John Wiley & Sons, January 20,

2012. 586 pp. ISBN: 978-1-118-34191-9. Google Books: a3gavZbxyJcC.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning. Informa-

tion Science and Statistics. New York: Springer, 2006. 738 pp. ISBN: 978-0-

387-31073-2.

[Ble+94] Guy E Blelloch et al. “Implementation of a Portable Nested Data-Parallel Lan-

guage”. In: Journal of parallel and distributed computing 21.1 (1994), pp. 4–

14.

[Ble89] Guy E. Blelloch. “Scans as Primitive Parallel Operations”. In: Computers,

IEEE Transactions 38.11 (1989), pp. 1526–1538.

[Ble90] Guy E Blelloch. Vector Models for Data-Parallel Computing. Vol. 75. MIT

press Cambridge, 1990.

[Ble96] Guy E. Blelloch. “Programming Parallel Algorithms”. In: Communications of

the ACM (CACM) 39.3 (1996), pp. 85–97.

[BM06] Damiano Brigo and Fabio Mercurio. Interest Rate Models - Theory and Prac-

tice: With Smile, Inflation and Credit. 2nd edition. Berlin ; New York: Springer,

August 2, 2006. 982 pp. ISBN: 978-3-540-22149-4.

[Bon+08] Uday Bondhugula et al. “A Practical Automatic Polyhedral Parallelizer and

Locality Optimizer”. In: Proceedings of the 29th ACM SIGPLAN Conference

on Programming Language Design and Implementation. PLDI ’08. New York,

NY, USA: ACM, 2008, pp. 101–113. ISBN: 978-1-59593-860-2. DOI: 10.

1145/1375581.1375595. URL: http://doi.acm.org/10.1145/

1375581.1375595.

[Boy86] Phelim P. Boyle. “Option Valuation Using a Three Jump Process”. In: 1986.

[BR12] Lars Bergstrom and John Reppy. “Nested Data-Parallelism on the GPU”. In:

Proceedings of the 17th ACM SIGPLAN International Conference on Func-

tional Programming. ICFP ’12. New York, NY, USA: ACM, 2012, pp. 247–

258. ISBN: 978-1-4503-1054-3. DOI: 10.1145/2364527.2364563. URL:

http://doi.acm.org/10.1145/2364527.2364563.

References

https://doi.org/10.1145/2784731.2784747
https://dl.acm.org/doi/abs/10.1145/2784731.2784747
http://books.google.com/books?id=a3gavZbxyJcC
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1145/1375581.1375595
http://doi.acm.org/10.1145/1375581.1375595
http://doi.acm.org/10.1145/1375581.1375595
https://doi.org/10.1145/2364527.2364563
http://doi.acm.org/10.1145/2364527.2364563

References 149

[Bru+15] Christian Brugger et al. “Reverse Longstaff-Schwartz American Option Pric-

ing on Hybrid CPU/FPGA Systems”. In: 2015 Design, Automation Test in

Europe Conference Exhibition (DATE). 2015 Design, Automation Test in Eu-

rope Conference Exhibition (DATE). March 2015, pp. 1599–1602. DOI: 10.

7873/DATE.2015.0688.

[BSS10] André Bernemann, Ralph Schreyer, and Klaus Spanderen. “Pricing Structured

Equity Products on GPUs”. In: 2010 IEEE Workshop on High Performance

Computational Finance. 2010 IEEE Workshop on High Performance Compu-

tational Finance. November 2010, pp. 1–7. DOI: 10.1109/WHPCF.2010.

5671821.

[BV18] Stephen Boyd and Lieven Vandenberghe. Introduction to Applied Linear Al-

gebra: Vectors, Matrices, and Least Squares. 1 edition. Cambridge University

Press, June 30, 2018. 457 pp.

[Cap11] Luca Capriotti. “Fast Greeks by Algorithmic Differentiation”. In: The Journal

of Computational Finance 14.3 (2011), p. 34.

[Car96] Jacques F. Carriere. “Valuation of the Early-Exercise Price for Options Us-

ing Simulations and Nonparametric Regression”. In: Insurance: Mathemat-

ics and Economics 19.1 (December 1, 1996), pp. 19–30. ISSN: 0167-6687.

DOI: 10.1016/S0167-6687(96)00004-2. URL: http://www.

sciencedirect.com/science/article/pii/S0167668796000042

(visited on January 31, 2021).

[Cha+07] Manuel M. T. Chakravarty et al. “Data Parallel Haskell: A Status Report”. In:

Int. Work. on Decl. Aspects of Multicore Prog. (DAMP). 2007, pp. 10–18.

[Cha+11] Manuel MT Chakravarty et al. “Accelerating Haskell Array Codes with Multi-

core GPUs”. In: Proc. of the Sixth Workshop on Declarative Aspects of Multi-

core Programming. ACM. 2011, pp. 3–14.

[Chi+04] Y. Chicha et al. “Parametric Polymorphism for Computer Algebra Software

Components”. In: Proc. 6th International Symposium on Symbolic and Nu-

meric Algorithms for Scientific Comput. Mirton Publishing House, 2004, pp. 119–

130.

[CHL15] Ching-Wen Chen, Kuan-Lin Huang, and Yuh-Dauh Lyuu. “Accelerating the

Least-Square Monte Carlo Method with Parallel Computing”. In: The Jour-

nal of Supercomputing 71.9 (September 1, 2015), pp. 3593–3608. ISSN: 1573-

0484. DOI: 10.1007/s11227-015-1451-7. URL: https://doi.

org/10.1007/s11227-015-1451-7 (visited on January 31, 2021).

References

https://doi.org/10.7873/DATE.2015.0688
https://doi.org/10.7873/DATE.2015.0688
https://doi.org/10.1109/WHPCF.2010.5671821
https://doi.org/10.1109/WHPCF.2010.5671821
https://doi.org/10.1016/S0167-6687(96)00004-2
http://www.sciencedirect.com/science/article/pii/S0167668796000042
http://www.sciencedirect.com/science/article/pii/S0167668796000042
https://doi.org/10.1007/s11227-015-1451-7
https://doi.org/10.1007/s11227-015-1451-7
https://doi.org/10.1007/s11227-015-1451-7

150 References

[Cho+08] A. R. Choudhury et al. “Optimizations in Financial Engineering: The Least-

Squares Monte Carlo Method of Longstaff and Schwartz”. In: 2008 IEEE

International Symposium on Parallel and Distributed Processing. 2008 IEEE

International Symposium on Parallel and Distributed Processing. April 2008,

pp. 1–11. DOI: 10.1109/IPDPS.2008.4536290.

[CJM17] Luca Capriotti, Yupeng Jiang, and Andrea Macrina. “AAD and Least-Square

Monte Carlo: Fast Bermudan-Style Options and XVA Greeks”. In: Algorithmic

Finance 6.1-2 (October 21, 2017), pp. 35–49. ISSN: 21585571, 21576203. DOI:

10.3233/AF-170201. URL: http://www.medra.org/servlet/

aliasResolver?alias=iospress&doi=10.3233/AF-170201

(visited on January 31, 2021).

[CLP02] Emmanuelle Clément, Damien Lamberton, and Philip Protter. “An Analysis of

a Least Squares Regression Method for American Option Pricing”. In: Finance

and Stochastics 6.4 (October 1, 2002), pp. 449–471. ISSN: 0949-2984. DOI:

10.1007/s007800200071. URL: https://doi.org/10.1007/

s007800200071 (visited on January 31, 2021).

[CPT18] Gérard Cornuéjols, Javier Peña, and Reha Tütüncü. Optimization Methods in

Finance. 2 edition. Cambridge, United Kingdom ; New York, NY: Cambridge

University Press, September 20, 2018. 348 pp. ISBN: 978-1-107-05674-9. DOI:

10.1017/9781107297340. URL: /core/books/optimization-

methods-in-finance/8A4996C5DB2006224E4D983B5BC95E3B

(visited on January 31, 2021).

[CSS12] Koen Claessen, Mary Sheeran, and Bo Joel Svensson. “Expressive Array Con-

structs in an Embedded GPU Kernel Programming Language”. In: Work. on

Decl. Aspects of Multicore Prog DAMP. 2012, pp. 21–30.

[CSS15] Prasanth Chatarasi, Jun Shirako, and Vivek Sarkar. “Polyhedral Optimizations

of Explicitly Parallel Programs”. In: Proceedings of the 2015 International

Conference on Parallel Architecture and Compilation (PACT). PACT ’15. Wash-

ington, DC, USA: IEEE Computer Society, 2015, pp. 213–226. ISBN: 978-1-

4673-9524-3. DOI: 10.1109/PACT.2015.44. URL: https://doi.

org/10.1109/PACT.2015.44.

[DCJ12] Duy Minh Dang, Christina C. Christara, and Kenneth R. Jackson. “An Effi-

cient Graphics Processing Unit-Based Parallel Algorithm for Pricing Multi-

Asset American Options”. In: Concurrency and Computation: Practice and

Experience 24.8 (June 10, 2012), pp. 849–866. ISSN: 1532-0626. DOI: 10.

1002/cpe.1784. URL: http://onlinelibrary- wiley-com/

doi/full/10.1002/cpe.1784 (visited on January 31, 2021).

References

https://doi.org/10.1109/IPDPS.2008.4536290
https://doi.org/10.3233/AF-170201
http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/AF-170201
http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/AF-170201
https://doi.org/10.1007/s007800200071
https://doi.org/10.1007/s007800200071
https://doi.org/10.1007/s007800200071
https://doi.org/10.1017/9781107297340
/core/books/optimization-methods-in-finance/8A4996C5DB2006224E4D983B5BC95E3B
/core/books/optimization-methods-in-finance/8A4996C5DB2006224E4D983B5BC95E3B
https://doi.org/10.1109/PACT.2015.44
https://doi.org/10.1109/PACT.2015.44
https://doi.org/10.1109/PACT.2015.44
https://doi.org/10.1002/cpe.1784
https://doi.org/10.1002/cpe.1784
http://onlinelibrary-wiley-com/doi/full/10.1002/cpe.1784
http://onlinelibrary-wiley-com/doi/full/10.1002/cpe.1784

References 151

[DCJ13] Duy Minh Dang, Christina C. Christara, and Kenneth R. Jackson. “A Highly

Efficient Implementation on GPU Clusters of PDE-Based Pricing Methods for

Path-Dependent Foreign Exchange Interest Rate Derivatives”. In: Computa-

tional Science and Its Applications ICCSA 2013. International Conference

on Computational Science and Its Applications. Springer, Berlin, Heidelberg,

June 24, 2013, pp. 107–126. DOI: 10.1007/978-3-642-39640-3_8.

URL: http://link-springer-com/chapter/10.1007/978-3-

642-39640-3_8 (visited on January 31, 2021).

[DCJ14] Duy Minh Dang, Christina C. Christara, and Kenneth R. Jackson. “Graphics

Processing Unit Pricing of Exotic Cross-Currency Interest Rate Derivatives

with a Foreign Exchange Volatility Skew Model”. In: Concurrency and Com-

putation: Practice and Experience 26.9 (June 25, 2014), pp. 1609–1625. ISSN:

1532-0626. DOI: 10.1002/cpe.2824. URL: http://onlinelibrary-

wiley-com/doi/10.1002/cpe.2824 (visited on January 31, 2021).

[DCK09] Matthew Dixon, Jike Chong, and Kurt Keutzer. “Acceleration of Market Value-

at-Risk Estimation”. In: Proceedings of the 2nd Workshop on High Perfor-

mance Computational Finance (Portland, Oregon). WHPCF ’09. New York,

NY, USA: ACM, 2009, 5:1–5:8. ISBN: 978-1-60558-716-5. DOI: 10.1145/

1645413 . 1645418. URL: http : / / doi . acm . org / 10 . 1145 /

1645413.1645418 (visited on January 31, 2021).

[DCK12] Matthew Dixon, Jike Chong, and Kurt Keutzer. “Accelerating Value-at-Risk

Estimation on Highly Parallel Architectures”. In: Concurrency and Compu-

tation: Practice and Experience 24.8 (June 10, 2012), pp. 895–907. ISSN:

15320626. DOI: 10.1002/cpe.1790. URL: http://doi.wiley.

com/10.1002/cpe.1790 (visited on January 31, 2021).

[De 15] Christian De Schryver. FPGA Based Accelerators for Financial Applications.

Springer, 2015.

[Dem14] Julien Demouth. Monte-Carlo Simulation of American Options with GPUs.

http://on-demand.gputechconf.com/gtc/2014/presentations/

S4784-monte-carlo-sim-american-options-gpus.pdf. Pre-

sentation at NVIDIA GPU Technology Conference. 2014.

[Dix+12] Matthew Dixon et al. “Chapter 25 - Monte CarloBased Financial Market Value-

at-Risk Estimation on GPUs”. In: GPU Computing Gems Jade Edition. Ed.

by Wen-mei W. Hwu. Applications of GPU Computing Series. Boston: Mor-

gan Kaufmann, January 1, 2012, pp. 337–353. ISBN: 978-0-12-385963-1. DOI:

10.1016/B978-0-12-385963-1.00025-3. URL: http://www.

sciencedirect.com/science/article/pii/B9780123859631000253

(visited on January 31, 2021).

References

https://doi.org/10.1007/978-3-642-39640-3_8
http://link-springer-com/chapter/10.1007/978-3-642-39640-3_8
http://link-springer-com/chapter/10.1007/978-3-642-39640-3_8
https://doi.org/10.1002/cpe.2824
http://onlinelibrary-wiley-com/doi/10.1002/cpe.2824
http://onlinelibrary-wiley-com/doi/10.1002/cpe.2824
https://doi.org/10.1145/1645413.1645418
https://doi.org/10.1145/1645413.1645418
http://doi.acm.org/10.1145/1645413.1645418
http://doi.acm.org/10.1145/1645413.1645418
https://doi.org/10.1002/cpe.1790
http://doi.wiley.com/10.1002/cpe.1790
http://doi.wiley.com/10.1002/cpe.1790
http://on-demand.gputechconf.com/gtc/2014/presentations/S4784-monte-carlo-sim-american-options-gpus.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4784-monte-carlo-sim-american-options-gpus.pdf
https://doi.org/10.1016/B978-0-12-385963-1.00025-3
http://www.sciencedirect.com/science/article/pii/B9780123859631000253
http://www.sciencedirect.com/science/article/pii/B9780123859631000253

152 References

[DK99] Chen Ding and Ken Kennedy. “Improving Cache Performance in Dynamic

Applications through Data and Computation Reorganization at Run Time”. In:

Proceedings of the ACM SIGPLAN 1999 Conference on Programming Lan-

guage Design and Implementation. PLDI ’99. New York, NY, USA: ACM,

1999, pp. 229–241. ISBN: 1-58113-094-5. DOI: 10.1145/301618.301670.

URL: http://doi.acm.org/10.1145/301618.301670.

[Ege+17] Benjamin Egelund-Müller et al. “Automated Execution of Financial Contracts

on Blockchains”. In: Business & Information Systems Engineering 59.6 (2017),

pp. 457–467.

[EHO18] Martin Elsman, Troels Henriksen, and Cosmin E. Oancea. Parallel Program-

ming in Futhark. Department of Computer Science, University of Copenhagen,

November 2018. URL: https://futhark-book.readthedocs.io.

[Els+18] Martin Elsman et al. “Static Interpretation of Higher-Order Modules in Futhark:

Functional GPU Programming in the Large”. In: Proceedings of the ACM on

Programming Languages 2 (ICFP July 2018), 97:1–97:30. ISSN: 2475-1421.

DOI: 10.1145/3236792. URL: http://dl.acm.org/citation.

cfm?doid=3243631.3236792.

[FG18] Ryan Ferguson and Andrew Green. Deeply Learning Derivatives. September 6,

2018. arXiv: 1809.02233 [cs, q-fin]. URL: http://arxiv.org/

abs/1809.02233 (visited on January 31, 2021).

[FP13] Massimiliano Fatica and Everett Phillips. “Pricing American Options with Least

Squares Monte Carlo on GPUs”. In: Proceedings of the 6th Workshop on High

Performance Computational Finance (Denver, Colorado). WHPCF ’13. New

York, NY, USA: ACM, 2013, 5:1–5:6. ISBN: 978-1-4503-2507-3. DOI: 10.

1145/2535557.2535564. URL: http://doi.acm.org/10.1145/

2535557.2535564 (visited on January 31, 2021).

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. Adap-

tive Computation and Machine Learning series. The MIT Press, 2016. ISBN:

978-0262035613.

[Ger03] Alexandros V. Gerbessiotis. “Trinomial-Tree Based Parallel Option Price Val-

uations”. In: Parallel Algorithms and Applications 18.4 (December 1, 2003),

pp. 181–196. ISSN: 1063-7192. DOI: 10.1080/10637190310001633655.

URL: https://doi.org/10.1080/10637190310001633655 (vis-

ited on January 31, 2021).

[Ger04] Alexandros V. Gerbessiotis. “Architecture Independent Parallel Binomial Tree

Option Price Valuations”. In: Parallel Computing 30.2 (February 1, 2004),

pp. 301–316. ISSN: 0167-8191. DOI: 10.1016/j.parco.2003.09.003.

URL: http://www.sciencedirect.com/science/article/

pii/S0167819103001753 (visited on January 31, 2021).

References

https://doi.org/10.1145/301618.301670
http://doi.acm.org/10.1145/301618.301670
https://futhark-book.readthedocs.io
https://doi.org/10.1145/3236792
http://dl.acm.org/citation.cfm?doid=3243631.3236792
http://dl.acm.org/citation.cfm?doid=3243631.3236792
https://arxiv.org/abs/1809.02233
http://arxiv.org/abs/1809.02233
http://arxiv.org/abs/1809.02233
https://doi.org/10.1145/2535557.2535564
https://doi.org/10.1145/2535557.2535564
http://doi.acm.org/10.1145/2535557.2535564
http://doi.acm.org/10.1145/2535557.2535564
https://doi.org/10.1080/10637190310001633655
https://doi.org/10.1080/10637190310001633655
https://doi.org/10.1016/j.parco.2003.09.003
http://www.sciencedirect.com/science/article/pii/S0167819103001753
http://www.sciencedirect.com/science/article/pii/S0167819103001753

References 153

[GG06] Michael B. Giles and Paul Glasserman. “Smoking Adjoints: Fast Monte Carlo

Greeks”. In: Risk (January 2006), pp. 88–92. URL: http://web.comlab.

ox.ac.uk/oucl/work/mike.giles/finance.html.

[Gie+20] Fabian Gieseke et al. “Massively-Parallel Change Detection for Satellite Time

Series Data with Missing Values”. In: Procs. of 36th IEEE International Con-

ference on Data Engineering. ICDE’20. IEEE, 2020.

[Gil08] Michael B. Giles. “Multilevel Monte Carlo Path Simulation”. In: Operations

Research 56.3 (June 1, 2008), pp. 607–617. ISSN: 0030-364X. DOI: 10.1287/

opre.1070.0496. URL: https://pubsonline.informs.org/

doi/10.1287/opre.1070.0496 (visited on January 31, 2021).

[Gla04] Paul Glasserman. Monte Carlo Methods in Financial Engineering. New York:

Springer, 2004. ISBN: 978-0-387-00451-8.

[GMS19] Manfred Gilli, Dietmar Maringer, and Enrico Schumann. Numerical Meth-

ods and Optimization in Finance. 2 edition. Cambridge: Academic Press, Au-

gust 30, 2019. 638 pp. ISBN: 978-0-12-815065-8.

[Gra+13] Scott Grauer-Gray et al. “Accelerating Financial Applications on the GPU”. In:

Proceedings of the 6th Workshop on General Purpose Processor Using Graph-

ics Processing Units. ACM, March 16, 2013, pp. 127–136. ISBN: 978-1-4503-

2017-7. DOI: 10.1145/2458523.2458536. URL: http://dl.acm.

org/citation.cfm?id=2458523.2458536 (visited on January 31,

2021).

[Gre+16] Felix Gremse et al. “GPU-Accelerated Adjoint Algorithmic Differentiation”.

In: Computer Physics Communications 200 (March 2016), pp. 300–311. ISSN:

00104655. DOI: 10.1016/j.cpc.2015.10.027. URL: https://

linkinghub.elsevier.com/retrieve/pii/S0010465515004099

(visited on January 31, 2021).

[GS03] Clemens Grelck and Sven-Bodo Scholz. “SaC - From High-Level Program-

ming with Arrays to Efficient Parallel Execution”. In: Parallel Processing Let-

ters 13 (September 2003), pp. 401–412. DOI: 10.1142/S0129626403001379.

[GS06] Clemens Grelck and Sven-Bodo Scholz. “SAC - A Functional Array Language

for Efficient Multi-Threaded Execution”. In: International Journal of Parallel

Programming 34.4 (2006), pp. 383–427.

[GTS11] Jing Guo, Jeyarajan Thiyagalingam, and Sven-Bodo Scholz. “Breaking the

GPU Programming Barrier with the Auto-Parallelising SAC Compiler”. In:

Procs. Workshop Decl. Aspects of Multicore Prog. (DAMP). ACM, 2011, pp. 15–

24.

References

http://web.comlab.ox.ac.uk/oucl/work/mike.giles/finance.html
http://web.comlab.ox.ac.uk/oucl/work/mike.giles/finance.html
https://doi.org/10.1287/opre.1070.0496
https://doi.org/10.1287/opre.1070.0496
https://pubsonline.informs.org/doi/10.1287/opre.1070.0496
https://pubsonline.informs.org/doi/10.1287/opre.1070.0496
https://doi.org/10.1145/2458523.2458536
http://dl.acm.org/citation.cfm?id=2458523.2458536
http://dl.acm.org/citation.cfm?id=2458523.2458536
https://doi.org/10.1016/j.cpc.2015.10.027
https://linkinghub.elsevier.com/retrieve/pii/S0010465515004099
https://linkinghub.elsevier.com/retrieve/pii/S0010465515004099
https://doi.org/10.1142/S0129626403001379

154 References

[Gui+13] Yechen Gui et al. “High Performance Implementation of Binomial Option Pric-

ing Using CUDA”. In: GPU Solutions to Multi-scale Problems in Science and

Engineering (2013), pp. 201–214. DOI: 10.1007/978-3-642-16405-

7_12. URL: http://link-springer-com/chapter/10.1007/

978-3-642-16405-7_12 (visited on January 31, 2021).

[GW08] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles

and Techniques of Algorithmic Differentiation. Second. Other Titles in Ap-

plied Mathematics. Society for Industrial and Applied Mathematics, January 1,

2008. 448 pp. ISBN: 978-0-89871-659-7. DOI: 10.1137/1.9780898717761.

URL: https : / / epubs . siam . org / doi / book / 10 . 1137 / 1 .

9780898717761 (visited on January 31, 2021).

[Hau07] Espen Gaarder Haug. The Complete Guide to Option Pricing Formulas. 2 edi-

tion. New York: McGraw-Hill Education, January 8, 2007. 492 pp. ISBN: 978-

0-07-138997-6.

[Hen+16] Troels Henriksen et al. “APL on GPUs: A TAIL from the Past, Scribbled in

Futhark”. In: Proceedings of the 5th International Workshop on Functional

High-Performance Computing - FHPC 2016. The 5th International Workshop.

Nara, Japan: ACM Press, 2016, pp. 38–43. ISBN: 978-1-4503-4433-3. DOI:

10.1145/2975991.2975997. URL: http://dl.acm.org/citation.

cfm?doid=2975991.2975997 (visited on January 31, 2021).

[Hen+17] Troels Henriksen et al. “Futhark: Purely Functional GPU-Programming with

Nested Parallelism and In-Place Array Updates”. In: Proceedings of the 38th

ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation. PLDI 2017. New York, NY, USA: ACM, 2017, pp. 556–571. ISBN:

978-1-4503-4988-8. DOI: 10.1145/3062341.3062354. URL: http:

//doi.acm.org/10.1145/3062341.3062354.

[Hen+19] Troels Henriksen et al. “Incremental Flattening for Nested Data Parallelism”.

In: Proceedings of the 24th Symposium on Principles and Practice of Parallel

Programming. PPoPP ’19. New York, NY, USA: ACM, 2019, pp. 53–67. ISBN:

978-1-4503-6225-2. DOI: 10.1145/3293883.3295707. URL: http:

//doi.acm.org/10.1145/3293883.3295707.

[HEO18] Troels Henriksen, Martin Elsman, and Cosmin E. Oancea. “Modular Accel-

eration: Tricky Cases of Functional High-Performance Computing”. In: Pro-

ceedings of the 7th ACM SIGPLAN International Workshop on Functional

High-Performance Computing - FHPC 2018. The 7th ACM SIGPLAN Inter-

national Workshop. St. Louis, MO, USA: ACM Press, 2018, pp. 10–21. ISBN:

978-1-4503-5813-2. DOI: 10.1145/3264738.3264740. URL: http:

//dl.acm.org/citation.cfm?doid=3264738.3264740 (visited

on January 31, 2021).

References

https://doi.org/10.1007/978-3-642-16405-7_12
https://doi.org/10.1007/978-3-642-16405-7_12
http://link-springer-com/chapter/10.1007/978-3-642-16405-7_12
http://link-springer-com/chapter/10.1007/978-3-642-16405-7_12
https://doi.org/10.1137/1.9780898717761
https://epubs.siam.org/doi/book/10.1137/1.9780898717761
https://epubs.siam.org/doi/book/10.1137/1.9780898717761
https://doi.org/10.1145/2975991.2975997
http://dl.acm.org/citation.cfm?doid=2975991.2975997
http://dl.acm.org/citation.cfm?doid=2975991.2975997
https://doi.org/10.1145/3062341.3062354
http://doi.acm.org/10.1145/3062341.3062354
http://doi.acm.org/10.1145/3062341.3062354
https://doi.org/10.1145/3293883.3295707
http://doi.acm.org/10.1145/3293883.3295707
http://doi.acm.org/10.1145/3293883.3295707
https://doi.org/10.1145/3264738.3264740
http://dl.acm.org/citation.cfm?doid=3264738.3264740
http://dl.acm.org/citation.cfm?doid=3264738.3264740

References 155

[HHE18] Anders Kiel Hovgaard, Troels Henriksen, and Martin Elsman. “High-Performance

Defunctionalization in Futhark”. In: Symposium on Trends in Functional Pro-

gramming (TFP’18). September 2018.

[HLO16] Troels Henriksen, Ken Friis Larsen, and Cosmin E. Oancea. “Design and GPGPU

Performance of Futhark’s Redomap Construct”. In: Proceedings of the 3rd

ACM SIGPLAN International Workshop on Libraries, Languages, and Com-

pilers for Array Programming - ARRAY 2016. The 3rd ACM SIGPLAN In-

ternational Workshop. Santa Barbara, CA, USA: ACM Press, 2016, pp. 17–

24. ISBN: 978-1-4503-4384-8. DOI: 10.1145/2935323.2935326. URL:

http://dl.acm.org/citation.cfm?doid=2935323.2935326

(visited on January 31, 2021).

[HMT19] Blanka Horvath, Aitor Muguruza, and Mehdi Tomas. Deep Learning Volatil-

ity. SSRN Scholarly Paper ID 3322085. Rochester, NY: Social Science Re-

search Network, January 24, 2019. URL: https://papers.ssrn.com/

abstract=3322085 (visited on January 31, 2021).

[HO13] Troels Henriksen and Cosmin Eugen Oancea. “A T2 Graph-Reduction Ap-

proach to Fusion”. In: Proceedings of the 2nd ACM SIGPLAN Workshop on

Functional High-Performance Computing - FHPC ’13. The 2nd ACM SIG-

PLAN Workshop. Boston, Massachusetts, USA: ACM Press, 2013, p. 47. ISBN:

978-1-4503-2381-9. DOI: 10.1145/2502323.2502328. URL: http:

//dl.acm.org/citation.cfm?doid=2502323.2502328 (visited

on January 31, 2021).

[HT05] Kai Huang and Ruppa K. Thulasiram. “Parallel Algorithm for Pricing Amer-

ican Asian Options with Multi-Dimensional Assets”. In: 19th International

Symposium on High Performance Computing Systems and Applications (HPCS’05).

19th International Symposium on High Performance Computing Systems and

Applications (HPCS’05). May 2005, pp. 177–185. DOI: 10.1109/HPCS.

2005.38.

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-

tistical Learning: Data Mining, Inference, and Prediction, Second Edition.

2nd ed. Springer Series in Statistics. New York: Springer-Verlag, 2009. ISBN:

978-0-387-84857-0. URL: //www.springer.com/gp/book/9780387848570

(visited on January 31, 2021).

[Hul17] John Hull. Options, Futures, and Other Derivatives. 10th ed. Pearson Educa-

tion, 2017.

[Hul18] John Hull. Risk Management and Financial Institutions. Fifth edition. Hobo-

ken, NewJersey: John Wiley & Sons, Inc, 2018. ISBN: 978-1-119-44811-2.

References

https://doi.org/10.1145/2935323.2935326
http://dl.acm.org/citation.cfm?doid=2935323.2935326
https://papers.ssrn.com/abstract=3322085
https://papers.ssrn.com/abstract=3322085
https://doi.org/10.1145/2502323.2502328
http://dl.acm.org/citation.cfm?doid=2502323.2502328
http://dl.acm.org/citation.cfm?doid=2502323.2502328
https://doi.org/10.1109/HPCS.2005.38
https://doi.org/10.1109/HPCS.2005.38
//www.springer.com/gp/book/9780387848570

156 References

[HW90] John Hull and Alan White. “Valuing Derivative Securities Using the Explicit

Finite Difference Method”. In: The Journal of Financial and Quantitative Anal-

ysis 25.1 (March 1990), p. 87. ISSN: 00221090. DOI: 10.2307/2330889.

JSTOR: 2330889.

[HW93] John Hull and Alan White. “One-Factor Interest-Rate Models and the Valua-

tion of Interest-Rate Derivative Securities”. In: The Journal of Financial and

Quantitative Analysis 28.2 (June 1993), p. 235. ISSN: 00221090. DOI: 10.

2307/2331288. JSTOR: 2331288.

[HW94] John Hull and Alan White. “Numerical Procedures for Implementing Term

Structure Models II: Two-Factor Models”. In: The Journal of Derivatives 2.2

(November 30, 1994), pp. 37–48. ISSN: 1074-1240, 2168-8524. DOI: 10.

3905/jod.1994.407908. URL: https://jod.pm-research.

com/content/2/2/37 (visited on January 31, 2021).

[HW96] John Hull and Alan White. “Using Hull-White Interest Rate Trees”. In: The

Journal of Derivatives 3.3 (February 29, 1996), pp. 26–36. ISSN: 1074-1240,

2168-8524. DOI: 10.3905/jod.1996.407949. URL: http://jod.

iijournals.com/lookup/doi/10.3905/jod.1996.407949

(visited on January 31, 2021).

[Int] Bank for International Settlements. OTC derivatives outstanding. https://

www.bis.org/statistics/derstats.htm. (Visited on January 31,

2021).

[Jäc02] Peter Jäckel. Monte Carlo Methods in Finance. Wiley Finance Series. Chich-

ester, West Sussex, England: J. Wiley, 2002. 222 pp. ISBN: 978-0-471-49741-7.

[Jia+18] Zhe Jia et al. Dissecting the NVIDIA Volta GPU Architecture via Microbench-

marking. April 18, 2018. arXiv: 1804.06826 [cs]. URL: http://arxiv.

org/abs/1804.06826 (visited on January 31, 2021).

[JK03] Stephen Joe and Frances Y. Kuo. “Remark on Algorithm 659: Implementing

Sobol’s Quasirandom Sequence Generator: ACM Transactions on Mathemati-

cal Software: Vol 29, No 1”. In: ACM Transactions on Mathematical Software

(TOMS) (2003). URL: https://dl.acm.org/doi/abs/10.1145/

641876.641879 (visited on January 31, 2021).

[JK08] Stephen Joe and Frances Y. Kuo. “Constructing Sobol’ Sequences with Better

Two-Dimensional Projections”. In: SIAM Journal on Scientific Computing 30.5

(July 2008), pp. 2635–2654. ISSN: 10648275. DOI: 10.1137/070709359.

URL: https://search.ebscohost.com/login.aspx?direct=

true&db=a9h&AN=34835527&site=ehost-live (visited on Jan-

uary 31, 2021).

References

https://doi.org/10.2307/2330889
http://www.jstor.org/stable/2330889
https://doi.org/10.2307/2331288
https://doi.org/10.2307/2331288
http://www.jstor.org/stable/2331288
https://doi.org/10.3905/jod.1994.407908
https://doi.org/10.3905/jod.1994.407908
https://jod.pm-research.com/content/2/2/37
https://jod.pm-research.com/content/2/2/37
https://doi.org/10.3905/jod.1996.407949
http://jod.iijournals.com/lookup/doi/10.3905/jod.1996.407949
http://jod.iijournals.com/lookup/doi/10.3905/jod.1996.407949
https://www.bis.org/statistics/derstats.htm
https://www.bis.org/statistics/derstats.htm
https://arxiv.org/abs/1804.06826
http://arxiv.org/abs/1804.06826
http://arxiv.org/abs/1804.06826
https://dl.acm.org/doi/abs/10.1145/641876.641879
https://dl.acm.org/doi/abs/10.1145/641876.641879
https://doi.org/10.1137/070709359
https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=34835527&site=ehost-live
https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=34835527&site=ehost-live

References 157

[Lee+10] A. Lee et al. “On the Utility of Graphics Cards to Perform Massively Parallel

Simulation of Advanced Monte Carlo Methods”. In: J. Comp. Graph. Stat 19.4

(2010), pp. 769–789.

[LH17] Rasmus Wriedt Larsen and Troels Henriksen. “Strategies for Regular Seg-

mented Reductions on GPU”. In: Proceedings of the 6th ACM SIGPLAN Inter-

national Workshop on Functional High-Performance Computing. FHPC 2017.

New York, NY, USA: ACM, 2017, pp. 42–52. ISBN: 978-1-4503-5181-2. DOI:

10.1145/3122948.3122952. URL: http://doi.acm.org/10.

1145/3122948.3122952.

[Liu+19] Shuaiqiang Liu et al. “A Neural Network-Based Framework for Financial Model

Calibration”. In: Journal of Mathematics in Industry 9.1 (September 5, 2019),

p. 9. ISSN: 2190-5983. DOI: 10.1186/s13362- 019- 0066- 7. URL:

https://doi.org/10.1186/s13362-019-0066-7 (visited on

January 31, 2021).

[LOB19] Shuaiqiang Liu, Cornelis W. Oosterlee, and Sander M. Bohte. Pricing Options

and Computing Implied Volatilities Using Neural Networks. January 25, 2019.

arXiv: 1901.08943 [cs, math, q-fin]. URL: http://arxiv.

org/abs/1901.08943 (visited on January 31, 2021).

[LS01] Francis A. Longstaff and Eduardo S. Schwartz. “Valuing American Options

by Simulation: A Simple Least-Squares Approach”. In: The Review of Finan-

cial Studies 14.1 (January 1, 2001), pp. 113–147. ISSN: 0893-9454. DOI: 10.

1093/rfs/14.1.113. URL: https://academic.oup.com/rfs/

article/14/1/113/1587472 (visited on January 31, 2021).

[McG18] William A. McGhee. An Artificial Neural Network Representation of the SABR

Stochastic Volatility Model. SSRN Scholarly Paper ID 3288882. Rochester,

NY: Social Science Research Network, November 21, 2018. URL: https:

//papers.ssrn.com/abstract=3288882 (visited on January 31,

2021).

[Meh+12] Amit Mehta et al. “Managing Market Risk: Today and Tomorrow”. In: McK-

insey & Company McKinsey Working Papers on Risk 32 (2012), p. 24.

[MFE15] Alexander J McNeil, Rüdiger Frey, and Paul Embrechts. Quantitative Risk

Management: Concepts, Techniques and Tools. Revised. Princeton University

Press, 2015. 720 pp. ISBN: 978-0-691-16627-8. URL: https://press.

princeton.edu/books/hardcover/9780691166278/quantitative-

risk-management.

[MG16] Duane Merrill and Michael Garland. “Single-Pass Parallel Prefix Scan with

Decoupled Lookback”. In: 2016.

References

https://doi.org/10.1145/3122948.3122952
http://doi.acm.org/10.1145/3122948.3122952
http://doi.acm.org/10.1145/3122948.3122952
https://doi.org/10.1186/s13362-019-0066-7
https://doi.org/10.1186/s13362-019-0066-7
https://arxiv.org/abs/1901.08943
http://arxiv.org/abs/1901.08943
http://arxiv.org/abs/1901.08943
https://doi.org/10.1093/rfs/14.1.113
https://doi.org/10.1093/rfs/14.1.113
https://academic.oup.com/rfs/article/14/1/113/1587472
https://academic.oup.com/rfs/article/14/1/113/1587472
https://papers.ssrn.com/abstract=3288882
https://papers.ssrn.com/abstract=3288882
https://press.princeton.edu/books/hardcover/9780691166278/quantitative-risk-management
https://press.princeton.edu/books/hardcover/9780691166278/quantitative-risk-management
https://press.princeton.edu/books/hardcover/9780691166278/quantitative-risk-management

158 References

[MH99] Sungdo Moon and Mary W. Hall. “Evaluation of Predicated Array Data-Flow

Analysis for Automatic Parallelization”. In: Int. Symp. Princ. and Practice of

Par. Prog. (PPoPP). 1999, pp. 84–95.

[Nau12] Uwe Naumann. The Art of Differentiating Computer Programs. 1 edition. Philadel-

phia: Society for Industrial and Applied Mathematics, January 26, 2012. 356 pp.

ISBN: 978-1-61197-206-1.

[NL11] Fredrik Nord and Erwin Laure. “Monte Carlo Option Pricing with Graphics

Processing Units”. In: Int. Conf. ParCo. 2011.

[NVI] NVIDIA. NVIDIA Developer Blog Code Samples repository at GitHub. https:

//github.com/NVIDIA- developer- blog/code- samples/

tree/master/posts/american-options. (Visited on January 31,

2021).

[NVI17] NVIDIA. NVIDIA Tesla V100 GPU Architecture. NVIDIA Corporation, 2017.

URL: https://images.nvidia.com/content/volta-architecture/

pdf/volta-architecture-whitepaper.pdf (visited on January 31,

2021).

[Oan+05] C. E. Oancea et al. “Distributed Models of Thread-Level Speculation”. In: Pro-

ceedings of the PDPTA’05. 2005, pp. 920–927. URL: http://www.csd.

uwo.ca/~coancea/Publications.

[Oan+12] Cosmin E. Oancea et al. “Financial Software on GPUs: Between Haskell and

Fortran”. In: Proceedings of the 1st ACM SIGPLAN Workshop on Functional

High-Performance Computing. FHPC ’12. New York, NY, USA: ACM, 2012,

pp. 61–72. ISBN: 978-1-4503-1577-7. DOI: 10.1145/2364474.2364484.

URL: http://doi.acm.org/10.1145/2364474.2364484.

[OM08] Cosmin E. Oancea and Alan Mycroft. “Set-Congruence Dynamic Analysis for

Software Thread-Level Speculation”. In: Procs. Langs. Comp. Parallel Com-

puting. 2008, pp. 156–171.

[OR11] Cosmin E. Oancea and Lawrence Rauchwerger. “A Hybrid Approach to Prov-

ing Memory Reference Monotonicity”. In: Languages and Compilers for Par-

allel Computing. International Workshop on Languages and Compilers for Par-

allel Computing. Springer, Berlin, Heidelberg, September 8, 2011, pp. 61–75.

DOI: 10.1007/978-3-642-36036-7_5. URL: https://link-

springer-com/chapter/10.1007/978-3-642-36036-7_5

(visited on January 31, 2021).

[OR15] Cosmin E. Oancea and Lawrence Rauchwerger. “Scalable Conditional Induc-

tion Variables (CIV) Analysis”. In: Proceedings of the 13th Annual IEEE/ACM

International Symposium on Code Generation and Optimization. CGO ’15.

Washington, DC, USA: IEEE Computer Society, 2015, pp. 213–224. ISBN:

References

https://github.com/NVIDIA-developer-blog/code-samples/tree/master/posts/american-options
https://github.com/NVIDIA-developer-blog/code-samples/tree/master/posts/american-options
https://github.com/NVIDIA-developer-blog/code-samples/tree/master/posts/american-options
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://www.csd.uwo.ca/~coancea/Publications
http://www.csd.uwo.ca/~coancea/Publications
https://doi.org/10.1145/2364474.2364484
http://doi.acm.org/10.1145/2364474.2364484
https://doi.org/10.1007/978-3-642-36036-7_5
https://link-springer-com/chapter/10.1007/978-3-642-36036-7_5
https://link-springer-com/chapter/10.1007/978-3-642-36036-7_5

References 159

978-1-4799-8161-8. URL: http://dl.acm.org/citation.cfm?id=

2738600.2738627.

[OW05a] C. E. Oancea and S. M. Watt. “Domains and Expressions: An Interface be-

tween Two Approaches to Computer Algebra”. In: Proceedings of the ACM

ISSAC 2005. 2005, pp. 261–269. URL: http://www.csd.uwo.ca/

~coancea/Publications.

[OW05b] Cosmin E. Oancea and Stephen M. Watt. “Parametric Polymorphism for Soft-

ware Component Architectures”. In: Proceedings of the 20th Annual ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,

and Applications. OOPSLA 05. San Diego, CA, USA: Association for Com-

puting Machinery, 2005, pp. 147–166. ISBN: 1595930310. DOI: 10.1145/

1094811.1094823. URL: https://doi.org/10.1145/1094811.

1094823.

[PES00] Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. “Composing Con-

tracts: An Adventure in Financial Engineering (Functional Pearl)”. In: Int.

Conf. on Funct. Prog. (ICFP). 2000, pp. 280–292.

[Pou+11] Louis-Noël Pouchet et al. “Loop Transformations: Convexity, Pruning and

Optimization”. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. POPL ’11. New York,

NY, USA: ACM, 2011, pp. 549–562. ISBN: 978-1-4503-0490-0. DOI: 10.

1145/1926385.1926449. URL: http://doi.acm.org/10.1145/

1926385.1926449.

[Pra18] Marcos Lopez de Prado. Advances in Financial Machine Learning. 1 edition.

New Jersey: Wiley, February 21, 2018. 400 pp. ISBN: 978-1-119-48208-6.

[PW12] Gilles Pagès and Benedikt Wilbertz. “GPGPUs in Computational Finance:

Massive Parallel Computing for American Style Options”. In: Concurrency

and Computation: Practice and Experience 24.8 (2012), pp. 837–848. ISSN:

1532-0634. DOI: 10.1002/cpe.1774. URL: http://onlinelibrary.

wiley.com/doi/abs/10.1002/cpe.1774 (visited on January 31,

2021).

[RAP95] Lawrence Rauchwerger, Nancy Amato, and David Padua. “A Scalable Method

for Run Time Loop Parallelization”. In: Int. Journal of Par. Prog 26 (1995),

pp. 26–6.

[Rav+14] Mahesh Ravishankar et al. “Automatic Parallelization of a Class of Irregular

Loops for Distributed Memory Systems”. In: ACM Transactions on Parallel

Computing 1.1 (October 2014), 7:1–7:37. ISSN: 2329-4949. DOI: 10.1145/

2660251. URL: http://doi.acm.org/10.1145/2660251.

References

http://dl.acm.org/citation.cfm?id=2738600.2738627
http://dl.acm.org/citation.cfm?id=2738600.2738627
http://www.csd.uwo.ca/~coancea/Publications
http://www.csd.uwo.ca/~coancea/Publications
https://doi.org/10.1145/1094811.1094823
https://doi.org/10.1145/1094811.1094823
https://doi.org/10.1145/1094811.1094823
https://doi.org/10.1145/1094811.1094823
https://doi.org/10.1145/1926385.1926449
https://doi.org/10.1145/1926385.1926449
http://doi.acm.org/10.1145/1926385.1926449
http://doi.acm.org/10.1145/1926385.1926449
https://doi.org/10.1002/cpe.1774
http://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1774
http://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1774
https://doi.org/10.1145/2660251
https://doi.org/10.1145/2660251
http://doi.acm.org/10.1145/2660251

160 References

[RKC16] Chandan Reddy, Michael Kruse, and Albert Cohen. “Reduction Drawing: Lan-

guage Constructs and Polyhedral Compilation for Reductions on GPU”. In:

Proceedings of the 2016 International Conference on Parallel Architectures

and Compilation. PACT ’16. New York, NY, USA: ACM, 2016, pp. 87–97.

ISBN: 978-1-4503-4121-9. DOI: 10 . 1145 / 2967938 . 2967950. URL:

http://doi.acm.org/10.1145/2967938.2967950.

[RS15] John Reppy and Nora Sandler. “Nessie: A NESL to CUDA Compiler”. In:

(January 2015).

[Sav19] Antoine Savine. Modern Computational Finance: AAD and Parallel Simula-

tions. Hoboken, New Jersey: John Wiley & Sons, Inc, 2019. 1 p. ISBN: 978-1-

119-53954-4 978-1-119-53952-0.

[SCF03] Michelle Mills Strout, Larry Carter, and Jeanne Ferrante. “Compile-Time Com-

position of Run-Time Data and Iteration Reorderings”. In: Proceedings of the

ACM SIGPLAN 2003 Conference on Programming Language Design and Im-

plementation. PLDI ’03. New York, NY, USA: ACM, 2003, pp. 91–102. ISBN:

1-58113-662-5. DOI: 10.1145/781131.781142. URL: http://doi.

acm.org/10.1145/781131.781142.

[Shi16] Albert N. Shiryaev. Probability-1. 3rd ed. Graduate Texts in Mathematics,

Probability. New York: Springer-Verlag, 2016. ISBN: 978-0-387-72205-4. URL:

https://www.springer.com/gp/book/9780387722054 (visited

on January 31, 2021).

[SHO18] Michelle Strout, Mary Hall, and Catherine Olschanowsky. “The Sparse Poly-

hedral Framework: Composing Compiler-Generated Inspector-Executor Code”.

In: Proceedings of the IEEE PP (August 2018), pp. 1–15. DOI: 10.1109/

JPROC.2018.2857721.

[SHP08] Hannes Schabauer, Ronald Hochreiter, and Georg Ch Pflug. “Parallelization

of Pricing Path-Dependent Financial Instruments on Bounded Trinomial Lat-

tices”. In: Computational Science ICCS 2008. International Conference on

Computational Science. Springer, Berlin, Heidelberg, June 23, 2008, pp. 408–

415. DOI: 10.1007/978-3-540-69387-1_46. URL: http://link-

springer-com/chapter/10.1007/978-3-540-69387-1_46

(visited on January 31, 2021).

[SSC11] Joel Svensson, Mary Sheeran, and Koen Claessen. “Obsidian: A Domain Spe-

cific Embedded Language for Parallel Programming of Graphics Processors”.

In: Proceedings of the 20th International Conference on Implementation and

Application of Functional Languages. IFL’08. Hatfield, UK: Springer-Verlag,

2011, pp. 156–173. ISBN: 978-3-642-24451-3. URL: http://dl.acm.

org/citation.cfm?id=2044476.2044485.

References

https://doi.org/10.1145/2967938.2967950
http://doi.acm.org/10.1145/2967938.2967950
https://doi.org/10.1145/781131.781142
http://doi.acm.org/10.1145/781131.781142
http://doi.acm.org/10.1145/781131.781142
https://www.springer.com/gp/book/9780387722054
https://doi.org/10.1109/JPROC.2018.2857721
https://doi.org/10.1109/JPROC.2018.2857721
https://doi.org/10.1007/978-3-540-69387-1_46
http://link-springer-com/chapter/10.1007/978-3-540-69387-1_46
http://link-springer-com/chapter/10.1007/978-3-540-69387-1_46
http://dl.acm.org/citation.cfm?id=2044476.2044485
http://dl.acm.org/citation.cfm?id=2044476.2044485

References 161

[STA20] Securities Technology Analysis Center STAC. STAC-A2 Benchmark Suite. https:

//stacresearch.com/a2. 2020. (Visited on January 31, 2021).

[Suo+15] Simon Suo et al. “GPU Option Pricing”. In: Proceedings of the 8th Work-

shop on High Performance Computational Finance. ACM, November 15, 2015,

p. 8. ISBN: 978-1-4503-4015-1. DOI: 10.1145/2830556.2830564. URL:

http://dl.acm.org/citation.cfm?id=2830556.2830564

(visited on January 31, 2021).

[Sve11] Joel Svensson. “Obsidian: GPU Kernel Programming in Haskell”. Ph.D. The-

sis. Chalmers University of Technology, 2011.

[The+15] Alexios Theiakos et al. Ultra-Fast Scenario Analysis of Mortgage Prepayment

Risk. SSRN Scholarly Paper ID 2799643. Rochester, NY: Social Science Re-

search Network, February 9, 2015. URL: https://papers.ssrn.com/

abstract=2799643 (visited on January 31, 2021).

[TLN13] Jacques du Toit, Johannes Lotz, and Uwe Naumann. “Adjoint Algorithmic Dif-

ferentiation of a GPU Accelerated Application”. In: 2013.

[TOP20] TOP500. List of 500 fastest supercomputers in the world. https://www.

top500.org/lists/. 2020.

[Tre08] Lloyd N. Trefethen. “Numerical Analysis”. In: The Princeton Companion to

Mathematics. Princeton University Press, 2008, pp. 604–615.

[TV01] John N. Tsitsiklis and Benjamin Van Roy. “Regression Methods for Pricing

Complex American-Style Options”. In: IEEE Transactions on Neural Net-

works 12.4 (July 2001), pp. 694–703. ISSN: 1045-9227. DOI: 10.1109/72.

935083.

[Var+15a] Javier Alejandro Varela et al. “Optimization Strategies for Portable Code for

Monte Carlo-Based Value-at-Risk Systems”. In: Proceedings of the 8th Work-

shop on High Performance Computational Finance - WHPCF ’15. The 8th

Workshop. Austin, Texas: ACM Press, 2015, pp. 1–8. ISBN: 978-1-4503-4015-

1. DOI: 10.1145/2830556.2830559. URL: http://dl.acm.org/

citation . cfm ? doid = 2830556 . 2830559 (visited on January 31,

2021).

[Var+15b] Javier Alejandro Varela et al. “Pricing High-Dimensional American Options

on Hybrid CPU/FPGA Systems”. In: FPGA Based Accelerators for Financial

Applications. Ed. by Christian De Schryver. Cham: Springer International Pub-

lishing, 2015, pp. 143–166. ISBN: 978-3-319-15407-7. DOI: 10.1007/978-

3-319-15407-7_7. URL: https://doi.org/10.1007/978-3-

319-15407-7_7 (visited on January 31, 2021).

References

https://stacresearch.com/a2
https://stacresearch.com/a2
https://doi.org/10.1145/2830556.2830564
http://dl.acm.org/citation.cfm?id=2830556.2830564
https://papers.ssrn.com/abstract=2799643
https://papers.ssrn.com/abstract=2799643
https://www.top500.org/lists/
https://www.top500.org/lists/
https://doi.org/10.1109/72.935083
https://doi.org/10.1109/72.935083
https://doi.org/10.1145/2830556.2830559
http://dl.acm.org/citation.cfm?doid=2830556.2830559
http://dl.acm.org/citation.cfm?doid=2830556.2830559
https://doi.org/10.1007/978-3-319-15407-7_7
https://doi.org/10.1007/978-3-319-15407-7_7
https://doi.org/10.1007/978-3-319-15407-7_7
https://doi.org/10.1007/978-3-319-15407-7_7

162 References

[Var+17] Javier Alejandro Varela et al. “Real-Time Financial Risk Measurement of Dy-

namic Complex Portfolios with Python and PyOpenCL”. In: Proceedings of

the 7th Workshop on Python for High-Performance and Scientific Computing

(Denver, CO, USA). PyHPC’17. New York, NY, USA: ACM, 2017, 3:1–3:10.

ISBN: 978-1-4503-5124-9. DOI: 10 . 1145 / 3149869 . 3149872. URL:

http://doi.acm.org/10.1145/3149869.3149872 (visited on

January 31, 2021).

[VW17] Javier Alejandro Varela and Norbert Wehn. “Near Real-Time Risk Simulation

of Complex Portfolios on Heterogeneous Computing Systems with OpenCL”.

In: Proceedings of the 5th International Workshop on OpenCL (Toronto, Canada).

IWOCL 2017. New York, NY, USA: ACM, 2017, 2:1–2:10. ISBN: 978-1-4503-

5214-7. DOI: 10.1145/3078155.3078161. URL: http://doi.acm.

org/10.1145/3078155.3078161 (visited on January 31, 2021).

[VW18] Javier Alejandro Varela and Norbert Wehn. “Running Financial Risk Manage-

ment Applications on FPGA in the Amazon Cloud”. In: 2018.

[Zha+17] Shuai Zhang et al. “Mapping of Option Pricing Algorithms onto Heteroge-

neous Many-Core Architectures”. In: The Journal of Supercomputing 73.9

(September 1, 2017), pp. 3715–3737. ISSN: 1573-0484. DOI: 10 . 1007 /

s11227 - 017 - 1968 - z. URL: https : / / doi . org / 10 . 1007 /

s11227-017-1968-z (visited on January 31, 2021).

[ZLM12] Nan Zhang, Chi-Un Lei, and Ka Lok Man. “Binomial American Option Pricing

on CPU-GPU Hetergenous System”. In: Engineering Letters 20.3 (September

2012), pp. 279–285. ISSN: 1816093X. URL: https://search.ebscohost.

com/login.aspx?direct=true&db=a9h&AN=82189139&site=

ehost-live (visited on January 31, 2021).

[ZM08] Mohammad Zubair and Ravi Mukkamala. “High Performance Implementa-

tion of Binomial Option Pricing”. In: Computational Science and Its Applica-

tions ICCSA 2008. International Conference on Computational Science and

Its Applications. Springer, Berlin, Heidelberg, June 30, 2008, pp. 852–866.

DOI: 10.1007/978-3-540-69839-5_64. URL: http://link-

springer-com/chapter/10.1007/978-3-540-69839-5_64

(visited on January 31, 2021).

[ZM12] Yongpeng Zhang and Frank Mueller. “CuNesl: Compiling Nested Data-Parallel

Languages for SIMT Architectures”. In: Proceedings of the 2012 41st Interna-

tional Conference on Parallel Processing. ICPP’12. Washington, DC, USA:

IEEE Computer Society, 2012, pp. 340–349. ISBN: 978-0-7695-4796-1.

References

https://doi.org/10.1145/3149869.3149872
http://doi.acm.org/10.1145/3149869.3149872
https://doi.org/10.1145/3078155.3078161
http://doi.acm.org/10.1145/3078155.3078161
http://doi.acm.org/10.1145/3078155.3078161
https://doi.org/10.1007/s11227-017-1968-z
https://doi.org/10.1007/s11227-017-1968-z
https://doi.org/10.1007/s11227-017-1968-z
https://doi.org/10.1007/s11227-017-1968-z
https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=82189139&site=ehost-live
https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=82189139&site=ehost-live
https://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=82189139&site=ehost-live
https://doi.org/10.1007/978-3-540-69839-5_64
http://link-springer-com/chapter/10.1007/978-3-540-69839-5_64
http://link-springer-com/chapter/10.1007/978-3-540-69839-5_64

Appendix A

Domain of Quantitative Finance

At present, the financial industry is one of the key drivers for developments in computer sci-

ence, in particular HPC. This domain deals with an efficient implementation of numerical

algorithms that extract the computational power of parallel or distributed hardware to solve

complex scientific and engineering models in a fast and accurate manner. To achieve per-

formance in computational finance, we need to combine knowledge from different fields.

The theoretical background encompasses concepts from economy (financial market the-

ories, flow of money in society) theoretical mathematics (measure theory), and statistics

(probability, stochastic calculus). The practical application of the theory involves applied

mathematics (numerical methods), data science (data engineering) as well as the computa-

tional and computer science techniques, that this work focuses on.

Finance is a subfield of the economics social sciences and studies quantitative aspects

of the flow of money in society. Finance can be further divided into multiple areas that vary

from purely theoretical to more applied ones. To cast a light on the diversity of the financial

domain, we start with a high-level description of these subareas as well as list the main

techniques and applications they are concerned with. Even though a transparent division is

not a trivial task, we benefit from developing a clear understanding of their multiple differ-

ences. Furthermore, this process is highly relevant for our research, as we want to focus

our investigations on the fundamental areas with the largest impact as well as approach the

most frequent issues of the financial applications from the algorithmic and computational

perspective. Therefore, this section proceeds to define and outline the delicate distinctions

of the three quantitative areas of finance, Mathematical Finance, Computational Finance

and Financial Engineering. The concepts and techniques from each of the above fields are

used to a varying degree throughout this work to establish an application background for

our software implementation work.

A.1 Mathematical Finance

This area (also known as Financial Mathematics or Quantitative Analysis) is concerned with

the application of mathematics to finance and is mainly focused on building the theoretical

163

164 A.2. Computational Finance

basis for mathematical models used to describe financial phenomena that are observed in

the markets. The area is mainly based on methods from statistics and econometrics. and

deals with analytical modelling of evolution of financial systems over time. The theory

is mainly based on Stochastic Calculus, where stochastic and partial differential equations

are formulated to model behaviour of financial assets. These quantitative models are then

applied on extremely large datasets to analyse financial markets and instruments traded in

them.

A.2 Computational Finance

This area is an applied field of computer or computational science, which deals with han-

dling large volumes of the financial data and developing suitable algorithms that are applied

to mathematical models to analyse financial markets and securities. This field most often

requires massive computational effort to extract knowledge from raw data. The majority

of research in this field is focused on the techniques for finding accurate solutions to theo-

retical models. We achieve it through efficient numerical approximation methods that can

be computed under feasible and finite time constrains. For instance, we always apply nu-

merical methods when no analytical solution exists represented by a sufficiently accurate

closed-form formula, that can be calculated immediately. In fact, most of the mathematical

models that are used currently in finance and engineering are too sophisticated to be solved

analytically, and thus can only be solved using a numerical method. This greatly emphasises

the importance of this field.

Computational Finance studies various applications such as:

• financial data engineering, which involves gathering, processing, and storing data in

large amounts originating from various sources,

• validating data consistency and completeness, so it can be used in production,

• back-testing investment and trading strategies,

• optimising computational algorithms for fast performance and efficient resource use.

A.3 Financial Engineering

In broad sense, this field puts the theoretical models and scientific methods to a test in

practice by applying them to realistic workflows in the financial industry. In this sense,

Mathematical and Computational Finance can be considered as subfields of Financial En-

gineering. This field explores how to best match the proposed scientific and engineering

tools with the requirements and needs of the practitioners. Obviously, one size does not fit

all, as use cases and the necessary depth of sophistication in modelling varies across the

investment managers. The techniques need to be adapted to suit their needs.

Some of the common financial applications are:

Appendix A. Domain of Quantitative Finance

A.3. Financial Engineering 165

• financial instrument trading and speculation,

• pricing financial assets and their derivatives,

• hedging the investment portfolio risks,

• portfolio risk management,

• portfolio performance analysis and reporting,

• building custom portfolios for clients based on instruments available in the market,

• development of algorithmic trading strategies,

• financial restructuring for the need of corporate finance,

• underwriting liability insurance,

• or creation of new bespoke financial instruments through scripting techniques.

All three fields are strongly entangled and involve a multi-disciplinary mix of skills in

finance, mathematics, and computer science. In addition, financial engineers need to under-

stand not only a quantitative, but also qualitative side of the problem at hand. They have

to understand holistically what is the role and the impact of their actions on the financial

system. Here, we identify two main forces driving the development of financial modelling,

which are areas of an active practitioners’ and research work today. The first is a thriv-

ing field of Behavioural Finance, that studies the influence of psychology on behaviour

of financial investors and analysts, often used to asses investor’s risk appetite or analyse a

general market sentiment that is then fed into algorithmic trading strategies. The second is

the highly involved regulation process that governs the current markets and is described in

more detail in the next paragraph.

Appendix A. Domain of Quantitative Finance

Appendix B

Business Concepts

B.1 Financial Industry

The efficiency requirements of financial applications are determined by the specific use

cases and data complexity of the market participants that use them. In this work, we take

a perspective of the buy-side, the large investment managers that invest their multi-billion

$ assets under management in all types of financial markets. Such a group of investors is

primarily concerned with sustaining their assets. Thus, they are mainly concerned with risk

management of their investment portfolios at any given time. In contrast, the sell-side, with

banks being a primary example, operate creating and selling new financial instruments for

the buy-side investors to buy. Banks are thus primarily concerned with accurate prices for

the financial instruments, that they offer to their clients. Thereby they adjust the margins

that they charge and yield profits.

B.2 Investment Managers

There are three main groups of investment managers: asset owners, asset managers and

asset service providers. In general, they need common software functionalities, but they

differ fundamentally in the nature of their business, which is resembled in the ratio between

portfolios and number of instruments they deal with. For computational point of view, it has

a direct impact on the scale and complexity of the algorithms. In the context of investment

management, asset owners are financial organisations who own assets under management

and their business is dependent on how they manage them. Example organisations are life

and pension funds, sovereign wealth funds, or insurance companies. They usually manage

a small number of well-diversified portfolios, but each of them comprise thousands of dif-

ferent financial instruments. In contrast, asset managers are financial organisations that, as

part of their business, manage assets and investments on behalf of their clients, who them-

selves are asset owners. Example organisations are mutual funds for private investors, asset

management departments for institutional investors, wealth management for retail investors

with large assets, and national treasury management. They usually manage thousands of

166

B.3. Regulation 167

different portfolios, but each of them is more focused and comprise significantly smaller

number of different instruments. Moreover, the instruments tend to be much more complex,

because they are custom-tailored for clients of the asset managers. Asset service providers,

such as custodians, provide different financial services to their clients to support the opera-

tional and administrative aspects of investment management process.

B.3 Regulation

Investment managers around the world need to adhere to the rules laid out by different

regulatory authorities if they want to be involved in trading and managing investments in the

public markets. We differentiate a set of global rules that every financial organisation needs

to follow as well sets of local (national or regional) market rules. Regulation continues to

broaden and deepen as public sentiment becomes less and less tolerant for any appearance

of preventable errors and inappropriate business practices. Some examples of regulatory

frameworks that in the recent time came into force in the European Union are:

Basel I–IV A constantly evolving four-pillar legislation for the banking industry that sets

out rules governing minimum capital banks must hold against market and credit risk

exposures. The most recent is the Basel Pillar IV that introduces Fundamental Review

of the Trading Book (FRTB).

Solvency I–III A three-pillar directive for the insurance industry that concerns the amount

of capital they must hold to reduce the risk of insolvency.

The regulations oblige the investment managers to introduce the risk models that are a

subject of this work. As a result, they experience an increased reliance on computational

resources as they forced to periodically report their assets and risk measures to abide with

the regulation.

Appendix B. Business Concepts

	Summary
	Resumé
	Preface
	Contents
	List of Figures
	List of Tables
	List of Code Listings
	List of Abbreviations
	Introduction
	Algorithmic and Modelling Scope
	Specific Contributions
	General Contribution
	Thesis Structure

	Background
	Financial Algorithms
	Computational Challenges in Finance
	Derivative Pricing
	Portfolio Market Risk Measurement and Management

	Numerical Methods
	Monte Carlo Simulation Method

	Accelerated Computation
	Numerical Accuracy and Floating-Point Precision
	Accelerator Hardware in Computational Finance

	Parallel Programming Frameworks
	Imperative Parallel Programming Frameworks
	Futhark Functional Data-Parallel Programming Language
	Futhark Compiler
	Alternative Functional Data-Parallel Languages
	Data-Parallel Functional Notation

	Experimental Methodology

	Hull-White One-Factor Lattice Method (HW1F)
	Introduction
	Financial Background and Algorithm
	Option as a Derivative and Bond as an Underlying Asset
	Hull-White One-Factor Short Rate Model for Option Pricing
	Hull-White Trinomial Tree as a Numerical Method
	Motivation behind the Model and Algorithm Choice

	Simplified Nested Data-Parallel Specification
	gpu-outer: Outer-Parallel Version and Optimisations
	Naive Expanded-Array Layout
	Global Padding Enables Coalesced Access
	Block or Warp-Level Padding: Coalesced Access at a Small Memory Overhead
	Data Reordering Optimises One Level of Thread Divergence

	gpu-flat: Flattening Two-Level Parallelism
	Flat-Parallel Version in Fast Shared Memory

	Experimental Evaluation
	Datasets
	Result Validation
	Performance Results

	Related Work
	Accelerated Implementations of Lattice Methods
	Compiler Techniques

	Conclusion

	Least Squares Monte Carlo Simulation (LSMC)
	Introduction
	Monte Carlo Simulation and American Option Pricing
	The Longstaff-Schwartz Algorithm
	Least Squares Regression
	Detailed Algorithmic Structure

	Naive Implementation
	Mathematical Considerations
	Building a Pseudo-Inverse Efficiently

	Optimised Algorithm and Implementation
	Path Generation
	Preparation of Singular Value Decomposition
	Main Regression Loop

	Experimental Results
	Accuracy
	Performance Validation Case
	Performance Scalability Tests

	Related Work
	Accelerated Implementations of Monte Carlo Simulations

	Conclusion

	Monte Carlo Value at Risk Simulations (MCVaR)
	Introduction
	Risk Measures
	Value at Risk (VaR)
	Expected Shortfall (ES)
	Component Risk

	Nested Simulations in Monte Carlo Repricing Approach
	Problem Assumptions
	External Simulation: Market Scenario Generation
	Internal Simulation: Derivative Pricing

	Accelerated Implementation
	Technical Challenge
	Random Number Generation
	Equity Option Portfolio Generation
	Outer Parallelism Level: Market Scenario Generation
	Inner (Nested) Parallelism Level: Derivative Pricing
	Risk Measure Calculation

	Experimental Results
	Validation Test
	Random Number Generation
	Equity Option Portfolio Generation
	Outer Parallelism Level: Market Scenario Generation
	Inner (Nested) Parallelism Level: Derivative Portfolio Pricing
	Complete Risk Workflow using PRNG
	Complete Risk Workflow with BSMC and QRNG

	Related Work
	Conclusion

	Conclusion
	Evaluation and Discussion
	Future Work

	References
	Domain of Quantitative Finance
	Mathematical Finance
	Computational Finance
	Financial Engineering

	Business Concepts
	Financial Industry
	Investment Managers
	Regulation

