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Abstract—We present and evaluate an implementation tech-
nique for histogram-like computations on GPUs that ensures both
work-efficient asymptotic cost, support for arbitrary associative
and commutative operators, and efficient use of hardware-
supported atomic operations when applicable. Based on a sys-
tematic empirical examination of the design space, we develop a
technique that balances conflict rates and memory footprint.

We demonstrate our technique both as a library implementa-
tion in CUDA, as well as by extending the parallel array language
Futhark with a new construct for expressing generalized his-
tograms, and by supporting this construct with several compiler
optimizations. We show that our histogram implementation taken
in isolation outperforms similar primitives from CUB, and that
it is competitive or outperforms the hand-written code of several
application benchmarks, even when the latter is specialized for
a class of datasets.

Index Terms—GPU, parallelism, functional programming

I. INTRODUCTION

Parallel programming can be made accessible to the non-
expert programmer by providing high-level building blocks,
such as map, scan (prefix sum), or reduce, that can be
implemented efficiently just once, and then reused as library
routines. A key question then is: which building blocks should
be provided, and how should they be implemented? In this pa-
per we make the case for a new building block, the generalized
histogram, which can be used in a wide range of problems, as
detailed in section VI. We show how to implement it efficiently
on GPUs as well as how to represent it within the IR of an
optimising compiler.

Consider k-means clustering, which partitions n d-
dimensional points into k clusters, such that each point belongs
to the cluster with the nearest centroid. The typical algorithm
has three steps: (1) for each point, find the cluster with the
nearest centroid; (2) recompute cluster centroids as the average
of the points having that cluster as the nearest; (3) repeat
until convergence. Step (2) can be further divided into two
substeps: (2a) compute the number of points assigned to each
cluster; (2b) sum the points belonging to each cluster, and then
divide by the number of points. While these two steps can be
expressed using standard map/scan/reduce building blocks,
this is in practice not efficient.1 Instead, we note that these
steps actually correspond to a generalization of histograms.

A histogram computes for each element of some input array
an integral bin number, then counts how many elements belong
to each bin. A simple case is illustrated in C-like pseudocode

1This is because such histograms requires sorting in the general case. We
measure the impact in Section V-B.

int bins[H] = {0, ..., 0}
for(int i = 0; i < N; i++) {
j = input[i];
bins[j]++;

}

(a) Normal histogram computation.

int bins[H] = {0⊕, ..., 0⊕}
for(int i = 0; i < N; i++) {
(j, v) = f(input[i])
bins[j] = bins[j] ⊕ v;

}

(b) Generalized histogram computation
with operator⊕ and neutral element 0⊕.

Fig. 1. Normal & generalized histograms with k buckets and n input elements.

in Figure 1a. A generalized histogram allows an arbitrary
operator ⊕ with a neutral element 0⊕, instead of just integer
addition. Further, the bin number and the value passed to ⊕ is
computed from the input elements with an arbitrary function
f . This is illustrated in Figure 1b. The standard histogram can
be obtained by setting ⊕ to integer addition and making f(x)
return the pair (x, 1). If ⊕ is associative, then the histogram
can be computed in parallel. For better efficiency, we also
require that ⊕ is commutative.

There are two main challenges for efficiently computing
generalized histograms on GPUs. The first is reducing the
amount of bin conflicts, where multiple threads simultaneously
try to update the same bin. Such conflicts are resolved by se-
quentialising the conflicting updates, which may significantly
hinder the efficiency of parallel execution. A way to alleviate
this problem is to compute multiple subhistograms, and then
combine them at the end. At one extreme, each thread may
be given its own subhistogram, which completely eliminates
bin conflicts, but potentially incurs significant memory and
operational overhead. At the other extreme, all threads share
the same histogram. This has no memory or operational
overhead, but suffers from conflicts, as noted above.

The second challenge is keeping the resident memory set
small enough to fit some spot in the memory hierarchy, for
example in shared memory2 or in the L2 global memory cache.
This is addressed by performing a multi-pass traversal of the
input, in which each pass updates a range of bins small enough
to fit the desired memory level.

Both solutions implement a classic time-space tradeoff, but
they have conflicting effects, as subhistogramming increases
the amount of memory used, which may no longer fit in the
desired memory level. Prior work studies specific instances
of these trade-offs, typically in the simpler setting of pure
histograms. For example, subhistograms have been maintained

2We use CUDA terminology in which “shared memory” refers to the
scratchpad/fast memory.
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per-thread or per-warp in shared memory [1], [2], [3], [4], with
the multi-pass technique used when the subhistograms exceed
the amount of shared memory [3]. However, no prior work
systematically explores these trade-offs or the development of
adaptive schemes to balance this tension for histograms of
arbitrary size, sparsity, operator and element type.

This paper develops an adaptive technique for computing
generalized histograms of arbitrary operators and sizes on
contemporary GPUs, by utilising available hardware-supported
atomic operations in either global or shared memory. Further,
a generalized histogram abstraction is added to the Futhark
programming language, along with type-driven compiler op-
timization for the abstraction, and is also implemented as a
standalone library, which can be invoked from CUDA code.

We first observe that any histogram operator can be imple-
mented by means of one of three atomic primitives: it is either
directly supported by GPU hardware (e.g., atomicAdd), or
can be implemented by means of atomicCAS—if the element
type is up to a 64-bit word—or less efficiently, by implement-
ing a spinlock with atomicExch. We then develop an analytic
model that predicts good values for the multi-histogram and
multi-pass degrees for a given hardware, operator, histogram
size and sparsity, where the latter can be estimated by means
of a simple inspector that relies on input sampling. We validate
our model by implementing and measuring the performance
of a CUDA library for computing generalized histograms.

We use these findings to add a generalized histogram
construct to Futhark. The language construct is aimed at
generality, and can for example be nested inside sequential
and/or parallel code. At compiler level, we support efficient
compilation of the construct by code transformations that:

• vertically fuse the parallel loops (maps) producing the
indices and values arrays with the histogram computation,
such that those arrays are not manifested in memory;

• horizontally fuse independent histogram computations
whose inputs originate in the same array;

• perform loop distribution and interchange to separate
batch histogram computations from the rest of parallel
code, thus enabling code generation;

• avoids whenever possible the use of spinlocks in favour
of the other two primitives. For example a k-length
vectorized addition would by default be performed inside
a critical region, but instead, it can be implemented by k
independent atomicAdd operations.

Finally, we present an empirical evaluation demonstrating
that (1) our analytical model produces good estimations of
the multi-histogram and multi-pass degrees for both shared
and global memory, (2) that the performance of the compiler
implementation outperforms an implementation using CUB [5]
on three operators that exercise all three atomic primitives, and
(3) that the compiler implementation matches or outperforms
the hand-written code of several reference implementations
(e.g., loop inl1100 in 435.gromacs, k-means, histo, tpacf ).

II. MOTIVATION FOR GENERALIZED HISTOGRAM AS A
PROGRAMMING PRIMITIVE

Histograms are an important statistical tool for data analysis
and are used by many computational algorithms from various
fields, such as data mining and image processing. In the fol-
lowing we focus on motivating the applicability of generalized
histograms, albeit the techniques we present apply equally well
to “pure” histograms (which increment by one).

An important research direction in the area of Symbolic
Data Analysis is to summarize massive amounts of data by
various statistical representations, and to adapt analyses such
that they are performed directly on the summarized data. A
widely-used representation is that of histogram-valued data,
a.k.a., categorical histogram: in simple words, the difference is
that, rather than each individual incrementing one bin by one,
each individual now updates a constant number of neighboring
bins (categories) with contributions that sum up to one [6].

Histogram-valued data has been used in a number of analy-
ses from the fields of machine learning and image processing,
for example principle component analysis [7], learning deci-
sion trees [8], image similarity [9] and registration [10].

Another example of the use of generalized histograms is in
the visualization of large scale datasets, where the number of
data points is reduced through data binning and aggregation
to generate a new set of data points with a much smaller size
[11], [12].

Other notable examples of applications that use generalized-
histogram computations are (i) the structural-mechanics
benchmark 454.calculix3 from SPEC2006, (ii) the high-
performance implementation of gradient boosting [14] in the
XGBoost library, and (iii) the z-buffering algorithm [15] from
the field of computer graphics, which uses argmin as the
combining operator of the histogram. Similarly, Parboil’s histo
benchmark uses saturated-integer addition as operator.

Having the notion of generalized histogram in the language
helps the user to analyze parallelism by deconstructing it
into building-blocks constructs. For example, Section V-D
demonstrates that our histogram-based, but otherwise naive
implementation of k-means is competitive with the kmcuda
library [16], which is used in production and which applies
algorithmic improvements. Similarly, we show in Section V-C
that gromacs is essentially a histogram computation.

Our solution can also be used to directly extend frame-
works that lack specialized support for histogram computa-
tions, such such as PyTorch [17]. The easy integration is
enabled by Futhark supporting specialized code generators
to C+OpenCL/CUDA and Python+OpenCL [18]. We demon-
strate such a scenario at the end of Section V-D, in the
context of an image-registration technique [10] whose PyTorch
implementation uses a sort-scan approach to implement the
histogram computation step. Using the proposed histogram
construct results in two-order of magnitude speedups. Finally,
having generalized histograms as a language construct:

3Loop mafillsm_do7 covers 74% of the sequential runtime and primar-
ily consists of generalized-reductions computations [13].



α input array element type
β value type of the generalized histogram
⊕ : β → β → β, associative and commutative operator
0⊕ : β the neutral element of ⊕
f : α→ (int, β), function producing an

index/value pair for updating the histogram
N length of the input array
H number of histogram bins (typically H ≤ N )
S count of the sequential multi-pass loop

Hchk

⌈
H
S

⌉
number of bins processed in a single pass

L shared memory size (bytes)
L2 L2 cache size (bytes)
L2lnsz the L2 cache line size (bytes)
Thw the maximal number of concurrent hardware threads
T min(Thw, N), i.e., concurrent threads utilized
B maximal CUDA block size
C number of threads cooperatively working

on the same subhistogram
M histogram’s multiplication degree
RF denotes the average fraction of distinct bins that

are accessed by groups of H consecutive elements.
K thread blocks per histogram (in batched case)
Nout number of batched histograms we are computing

Fig. 2. Summary of notation.

• promotes performance portability: rather than porting
each application to each hardware, specialized backends
can be written once for each platform and used for diverse
applications;

• enables efficient implementation of other language exten-
sions such as automatic differentiation [19] (AD), e.g.,
in reverse-mode AD, a histogram construct may enable
more efficient translation rules than the one obtained by
differentiating its low-level implementation.

III. PROTOTYPING A SOLUTION AT A HIGH LEVEL

A. Design Space Exploration

This section discusses the pros and cons of several possible
generalized histogram implementations, which are shown in
Figure 3, where input and histo denotes the input (of
length N ) and histogram (of H bins) arrays, respectively.
Throughout the paper we will define and make use of many
symbolic quantities. For future reference, the important ones
are summarized in Figure 2.

Assuming that f takes O(1) time, the sequential algorithm,
shown in Figure 1b, has O(N) work and span, because there
are N sequential loop iterations.

Listing 1 shows an extreme point of the design space: all
T threads apply f in parallel, and then concurrently update
the corresponding elements of the same histo array. This
approach has optimal O(N) work, but may have suboptimal
span, due to bin conflicts. For example, if the number of active
threads A is much larger than the number of bins H , then at

β histo[H] = {0⊕, ..., 0⊕}
forall (int i = 0; i < N; i++) {
(j, v) = f(input[i]);
atomic { histo[j] ⊕= v; } }

Listing 1. Fully atomic: O(N) work, but potential for frequent conflicts

β histos[T][H];
forall (int t=0; t<T; t++) {
forseq (int j=0; j<H; j++)
histos[t][j] = 0⊕;

forseq (int i=t; i<N; i+=T) {
(j, v) = f(input[i]);
histos[t][j] ⊕= v;

} }
histo = map (reduce (⊕) 0⊕) (transpose histos)

Listing 2. Data parallel, efficiently sequentialized: O(N +H · T ) work

β histos[T/C][H]; //assumes C | T
forseq(int off = 0; off < H; off += Hchk) {
forall(int tt = 0; tt < T; tt += C) {
forall(int j=off; j<min(off+Hchk,H); j++)
histos[tt/C][j] = 0⊕;

forall(int t=tt; t<tt+C; t++) {
forseq(int i=t; i<N; i+=T) {
(j, v) = f(input[i]);
if ( off ≤ j < min(off+Hchk, H) )
atomic{histos[tt/C][j] ⊕= v;}

} } } }
histo = map (reduce (⊕) 0⊕) (transpose histos)

Listing 3. Data parallel and atomics: O(N + H·T
C

) work, reduced conflicts

jvs = sort_by_fst (map f input);
(js,vs) = reduce_same_index (⊕) jvs;
histo = scatter {0⊕,...,0⊕} js vs;

Listing 4. Sort and scan: O(N) work, O(logN) span
Fig. 3. Possible Generalized Histogram Implementations.

least A ÷ H atomic updates will occur at the same time on
the same element and will be sequentialized.

Listing 2 shows a data-parallel implementation, in which
the parallelism in excess is efficiently sequentialized: each of
the T threads maintains its own subhistogram by initializing it
with 0⊕ and then updating it with the elements corresponding
to its chunks of the input.4 The partial subhistograms, stored in
histos, are finally summed elementwise, by first transposing
histos, and then by summing up each of the resulting rows,
i.e., map (reduce (⊕) 0⊕) (transpose histos).
This approach does not use atomics, yet is fully parallel,
but may require suboptimal work O(N + H · T )—which is
inefficient when, for example, H is close to N .

The design point taken in this paper, sketched in Listing 3,
is to combine the idea of a sequential multi-pass traversal
of the input with an adaptive middle-ground between the
approaches sketched in Listings 1 and 2. The multi-pass
traversal is aimed at enabling the computation to fit in some
level of memory—e.g., shared memory or L2 cache—and is
implemented by the outer sequential loop of index off, in
which each iteration/pass processes only histogram indices
in [off, off+Hchk]. This is achieved at the expense of
redundantly computing f for each input element in every pass.

4The sequential traversal of the input chunk with stride T results in
coalesced access to global memory on GPU.



Further, instead of each thread maintaining its own subhisto-
gram, C threads cooperatively build one partial subhistogram
by means of atomic updates. Assuming for simplicity that C
divides T , it follows that there are M = T

C groups of C
threads, with each group operating on a different subhistogram,
hence the computation across groups is independent.

The cooperation level C implements a trade-off between
work overhead and bin conflict rates. Assuming that the count
of the multi-pass loop S = dH ÷Hchke is a constant, we
observe that choosing C = min(T,Hchk ÷ k) for some
constant k preserves the optimal work complexity

O(N+H·M) = O(N+H·T
C
) = O(N+max(H, k·S·T )) = O(N)

under the assumption that T and H are smaller than N ,
which is the common case (otherwise C = T is best). Finally,
increasing k decreases C and thus the number of bin conflicts.

An important question that we will answer in Sec-
tions III-C and III-D is how to choose values for S and M
that not only make sense from an asymptotic standpoint, but
also result in good performance for arbitrary histogram size,
sparsity, element type and hardware characteristics.

For completeness, Listing 4 shows an implementation based
on sort and prefix sum (scan) operators: (1) f is applied to
each input-array element, i.e., map f input, (2) the result is
sorted in increasing order of its keys/indices, (3) all consecu-
tive values corresponding to the same key are summed by ⊕,
and (4) optionally, the sums are published at their indices in
histo. Assuming radix sort is used, this approach has optimal
work O(N) and span O(logN) complexities, and offers stable
performance in practice because it is not affected by how the
keys are spatially distributed.

The last two approaches complement each other. We expect
the atomic-based approach to be fastest on most datasets, be-
cause sorting requires significant data movement. Conversely,
adversarial datasets for the atomic-based approach can be
easily built, for example when H � N and/or when the
conflict rate is high (only a few distinct keys).

The rest of the paper will discuss the approach of listing 3,
as it cannot be implemented by the user in a deterministic
(data-) parallel language, as these typically do not provide
atomic update primitives. We assume that the user will explic-
itly select between the sort-and-scan approach—which can be
provided by a library—and the one implemented with atomics.

B. Type-Driven Selection of the Atomic Primitive

This section discusses the implementation of the atomic-
update primitive implied by the atomic keyword in the
pseudocode of Figure 3. Our aim is to support generalized
histograms as a second-order language construct, operating
over arbitrary element types β and combining operators
⊕ : β × β → β. This is possible since modern hardware
supports a hierarchy of synchronization primitives that trade
off performance for generality of use, and a sufficient subset
of these are available through CUDA and OpenCL. Similarly,
we aim to use the most efficient primitive supported by the
hardware, by statically discriminating based on the type β and
by pattern matching whenever possible the ⊕ operator:

template<class T> struct indval{uint32_t index; T value;};

__global__ void locMemHist(int N, int H, int Hchk, int T,
int M, int off, α* input, β* histos) {

extern __shared__ volatile int loc_hists[];
int tid= threadIdx.x, lhid = (tid % M)*Hchk;
int gid = blockIdx.x*blockDim.x + tid;
// initialize subhistograms and locks
for(int i=tid; i < M*Hchk; i+=blockDim.x) {

loc_hists[i] = 0⊕;
} __syncthreads();
// compute shared-memory histograms
for(int i = gid; i < N; i += T) {

struct indval<β> iv = f<β>(input[i], H);
if( iv.ind >= off && iv.ind < min(H, off+Hchk) )
atomicUpdate( lhid+iv.ind-off, iv.val

, ⊕, loc_hists, NULL);
} __syncthreads();
// reduce block histos and copy to global memory
for(int i=tid; (i<Hchunk) && (off+i< H); i+=blockDim.x){
β acc = loc_hists[i];
for(int j = 1; j < M; j++)

acc = acc ⊕ loc_hists[i+j*Hchk];
histos[blockIdx.x*H + off + i] = acc;

} }

Fig. 4. Sketch of CUDA kernel for generalized histograms. For the lock-based
implementation, one also needs to allocate, initialize and use a shared-memory
array of locks (instead of NULL).

HDW: This class of operators correspond to those directly
supported by the hardware. For example, integer addition
(atomicAdd), min/max, and bitwise and/or operations are
typically supported, and CUDA also supports float addition.

CAS: If β is some 32 or 64-bit type, then we use the com-
pare and exchange primitive (atomicCAS), where (j,v)
denotes the index-value pair to be updated:

β assumed, old = histo[j];
do { β new = old ⊕ v;

assumed = old;
old = atomicCAS(&histo[j], old, new);

} while (assumed != old);

XCG: Any other type β and operator ⊕ will use
a busy-waiting strategy implemented by means of
the atomicExch primitive and an array of locks:
while(!done) {

int done = 0;
if(atomicExch(&locks[j], 1) == 0) {

histo[j] = histo[j] ⊕ v;
mem_fence();
locks[j] = 0; done = 1;

} }

C. Computing Histograms in Shared Memory

This section presents the GPU kernel code together with our
strategy of choosing the cooperation level C—or the per-block
multi-histogram degree M—for the case when the histogram
is computed in CUDA shared memory.

Figure 4 shows the CUDA kernel used for experimentation,
which computes a chunk of size Hchk—starting at position
off—of a histogram of length H from an N -element input ar-
ray. loc_hists is the shared-memory array of subhistogram
chunks to be computed by the current CUDA block, hence its
length is M ·Hchk. Otherwise, the code is a direct translation
of the pseudocode of Figure 3: the M subhistograms are
first initialized, then they are computed by means of atomic
updates—where atomicUpdate is selected as explained in



Section III-B—and finally the M histograms computed by
the current block are combined. Thus, the result is a global
memory array that stores one histogram per block; these are
further reduced with a second kernel.

The access pattern into loc_hists is chosen such that
groups of M consecutive threads access M different his-
tograms, as demonstrated by the computation of lhid =
(tid % M) * Hchk. The rationale is that such strided
access significantly reduces the number of conflicts appearing
across several consecutive groups/warps of threads executing
in lockstep.5 In comparison with the “naive” approach of
consecutive threads cooperating on the same sub-histogram,
this optimization produces speedups as high as 2 − 3× for
the optimal cooperation C level, and as high as one order of
magnitude for larger values of C.

1) Automatically Selecting M and S for Shared Memory:
The strategy comes down to choosing the highest multi-
histogram degree M—or lowest C—that still fits in shared
memory (of size L). If the histogram is too big to fit, then
we use a multi-pass strategy by splitting the histogram into
chunks of maximal size Hchk that fit in L.6 Section V-A
demonstrates that, depending on the operator type, computing
in shared memory with values of S between 2 and 6 can be
faster than computing in global memory.

We use the maximal block size B = 1024, and for simplic-
ity of exposition we assume that this matches the maximal
number of concurrent threads per SM, such that one block
utilizes the whole amount of shared memory L on an SM.7

We denote by elsize the size of the histogram element
(sizeof(β)) to which we add 4 bytes when explicit locking
is used (the XCG case). The strategy of choosing M and S is
formalized by the following equations:

blocks = dT/Be m′ = min
( L

elsize
,
⌈ N

blocks

⌉)
/H (1)

M = max(1, min(bm′c, B)) C =
⌈ B
M

⌉
(2)

len =
L

elsize ·M
S =

⌈ H
len

⌉
Hchk =

⌈H
S

⌉
(3)

D. Computing Histograms in Global Memory

Computing histograms in global memory follows a similar
strategy, except that we aim at fitting in the L2 cache rather
than in shared memory. This complicates things, because when
the histogram is sparse, some of the histogram’s memory

5Within a thread block, only several warps truly execute in parallel; the
rest execute concurrently to hide latency. Thus, spreading the accesses of
consecutive threads across histograms minimizes the number of conflicts.

6The intuition here is that the overhead of redundant computation required
by the multi-pass technique dominates the overhead introduced by having
even high bin-conflict rates in shared memory; it follows that it does not pay
off to reduce the conflict rates at the expense of increasing the multi-pass
count S (which will allow a higher M ).

7In practice, the maximal number of concurrent threads per SM may be
a multiple k of the maximal block size B. A more rigorous treatment is to
preferentially use L÷k shared memory per block, and only in the case when
M = 1 still does not fit, then spawn only one block per SM, which utilizes
the whole amount of shared memory.

blocks will never be brought into cache, making the resident
set smaller. It follows that the same L2 cache can accommo-
date a higher M for sparse histograms in comparison to the
case when indices are uniformly distributed.

We start by computing a race factor RF , which estimates
the histogram’s sparsity. RF denotes the average fraction of
active bins—i.e., for a given RF we expect that on average,
H ÷RF bins are accessed by H consecutive input elements.
RF can be cheaply approximated by an inspector that samples
groups of H consecutive input elements: for each group, a
parallel scatter operation writes 1 at the resulted indices in an
H-length array of zeros, followed by summing up the array.8

RF is obtained by averaging the results of the sampled groups.
We use RF to compute a race-expansion factor of the L2

cache size as:

RACEexp = max
(
1.0,

kRF ·RF
min(1.0, L2lnsz ÷ el

avg
size)

)
(4)

where kRF = 0.75 was chosen experimentally, and elavgsize

is the average size of the histogram element. The intuition
behind the formula is that, if all the data associated with a
bin fills exactly one cache line, and only H

RF bins are active,
then expanding the multi-histogram degree by a RF factor
would still result in the same cache behavior as the uniformly-
distributed histogram. However, if the bin data is less than
the cache-line size—and assuming the worst case in which
no two active bins share a cache line—then L2lnsz − elavgsize

space is wasted on each cache line. It follows that we need to
divide RF with L2lnsz ÷ el

avg
size to match the cache behaviour

of uniformly-distributed indices.
For the HDW and CAS cases, elavgsize is the size of β. For the

XCG case, it depends on the memory layout:
1) if the histogram element and the lock are contiguously

laid out in memory, then elavgsize = sizeof(β) + 4.
2) if the histogram element has contiguous memory

layout—i.e., array of tuples layout—but the locks are
stored in a separate array then elavgsize =

sizeof(β)+4
2 .

3) if β = (α1, . . . , αu) such that each αi∈{1,...,q} has
contiguous layout, but each of them and the locks are
stored in different arrays—i.e., tuple of arrays layout—
then elavgsize =

sizeof(α1)+...sizeof(αq)+4
q+1 .

With this refinement, we derive Hchk as the maximal his-
togram chunk that still fits in L2 and allows for a cooperation
level of at most H/kctmin, for some small kctmin (chosen as 2):

Cmax = min
(
T,

H

kctmin

)
Mmin = max

(
1,
⌊ T

Cmax

⌋)
S =

⌈ Mmin ·H · elavgsize

fL2 · L2 ·RACEexp
⌉

Hchk =
⌈H
S

⌉ (5)

In the formula for S—the number of sequential passes—
the nominator is the memory space required by the multi-
histogram degree Mmin corresponding to Cmax, and the

8Furthermore, RF can be multiplied by an average factor estimating how
many bins share a cache line; this can also be computed relatively cheaply
by a segmented-scan operation.



denomiator represents the expanded L2 size. FL2 denotes the
fraction of the L2 cache used for histograms (chosen as 0.4).

After computing Hchk, we may still be in the case where
the multi-histogram degree that fits in the L2 cache is larger
than the one imposed by kctmin. To this purpose, we recompute
the minimal and maximal C and M that still fits in L2.

In the formula below, we chose u = 2.0 for atomic add,
because its hardware implementation is more robust and it
accommodates a smaller M ; the computation of kmax can be
intuitively interpreted as the minimal number of (histogram)
elements per active thread that fit in the L2 cache.

C = min
(
T,
u ·Hchk

kmax

)
M = max

(
1,
⌊T
C

⌋)
;

where u =

{
1.0 for CAS, XCG

2.0 for HDW

kmax =
min

(
FL2·L2·RACEexp

elsize
, N

)
T

(6)

IV. IMPLEMENTATION IN THE FUTHARK COMPILER

Futhark is a purely functional data-parallel array language
that supports regular nested parallelism, with a compiler that
generates CUDA or OpenCL code for GPUs. Except where
noted, we use the CUDA backend for our measurements in
this paper, but the exact same implementation technique is
also used to generate OpenCL. Syntactically, Futhark resem-
bles a mixture of OCaml and Haskell, and is based on the
programmer making parallelism explicit via the use of parallel
constructs, rather than through complex compiler analysis.
In particular, parallelism is expressed via second-order array
combinators (SOACs), such as map and reduce, appearing
to the programmer as ordinary higher-order functions, but
are treated specially by the compiler. Futhark is intended
to be significantly more productive than low-level CUDA
programming, but with comparable performance.

Section IV-A presents the compiler IR for generalized
histograms, Section IV-B presents the rewrite-rules for hori-
zontal and vertical fusion, Section IV-C briefly discusses how
(batched) histogram computations are extracted from arbitrary
code, and Section IV-D addresses vectorized operators.

A. Compiler Intermediate Representation

In the following, we write z(n) to range over sequences of
n objects. Depending on context, the elements of the sequence
may have separators, or be merely juxtaposed. For example,
we may use the same notation to shorten a function application
f v(n) ≡ f v1 · · · vn or a tuple (v(n)) ≡ (v1, . . . , vn).

Context determines which separator, if any, is intended. For
more complicated sequences, where not all terms under the bar
are variant, the variant term is subscripted with i. For example,
([d]vi

(n)
)=([d]v1, .., [d]vn) and ([di]vi

(n)
)=([d1]v1, .., [dn]vn)

The type of integer arrays with n elements is written as
[n]int. The most important parallel construct is map, with the
usual semantics, which we extend to operate on an arbitrary
number of input arrays that have the same size (here m):

for (int j = 0; j < d; j++) {
((i1, v1),. . .,(ik, vk)) = f(vs1[j], . . ., vsn[j]);

if i1 >= 0 && i1 < length(dest1)
{ dest1[i1] = dest1[i1] ⊕1 v1 }
...
if ik >= 0 && ik < length(destk)
{ destk[ik] = destk[ik] ⊕k vk }

}
Fig. 5. Pseudocode, assuming that all arrays vs have length d, corresponding
to genhist (vs(n)) f ((desti,⊕i, 0⊕i )

(k)
).

F1 (vertical fusion: map into genhist):

genhist (e(n),map g xs, e(m)) f ops
⇓

genhist (e(n), xs, e(m))

(λy(n) x z(m) → f y(n) (g x) z(m)) ops

(Applies only if none of the arrays mentioned in ops alias xs
or occur as free variables in g.)

F2 (horizontal fusion of genhist):

(genhist e(n) f ops(a), genhist e(m) g ops(b))
⇓

genhist (e(n), e(m))

(λx(n)y(m) → (f x(n), g y(m))) (ops(a), ops(b))

(Applies only if the intersection of e(n) and e(m) is nonempty.)

Fig. 6. Fusion rules for genhist.

map f x(n) = [f xi[0]
(n)
, . . . , f xi[m− 1]

(n)
]

Generalized histograms are made available as the function
genhist. To permit fusibility, the type is fairly complicated,
and can be skipped without significantly impacting under-
standing of the paper:

genhist : ∀dx(k)α(k)β
(n)
.

([d]βi
(n)

)→ (β
(n) → (int, αi

(k)
))

→ (([xi]αi, αi → αi → αi, αi)
(k)

)

→ ([xi]αi
(k)

)

genhist computes k simultaneous histograms (each with
its own operator and neutral element), based on n input arrays
of the same length, from which elements are passed to a
function that constructs k pairs of bin numbers and values. The
semantics are illustrated in imperative pseudocode in Figure 5.

B. Horizontal and Vertical Fusion

The Futhark compiler performs two kinds of fusion: verti-
cal (producer-consumer) fusion avoids intermediate results in
memory, and horizontal fusion merges two otherwise indepen-
dent operations over same input arrays. The genhist fusion
rules are shown on Figure 6. The rules are applied greedily



via dataflow graph reduction [20], which is not necessarily
optimal, but performs well in practice.

The vertical fusion rule F1 handles the case where an input
array to genhist comes from a map, in which case the map
can be inlined directly in genhist.

The horizontal fusion rule F2 combines two adjacent
genhists that have the same arrays as input into a single
genhist that computes multiple histograms. While this
reduces the number of accesses to global memory, the resulting
histograms may no longer fit in shared memory. There is
therefore a risk that aggressive application of rule F2 can
be harmful to application performance. We have not yet
encountered this issue in real programs.

C. Extracting Histograms from Nested Parallelism

Futhark permits regular nested data parallelism, which
means that genhist constructs can occur within an arbi-
trary amount of nested maps and other looping constructs.
The compiler applies a flattening technique, involving loop
distribution and interchange, to isolate parallel constructs such
as genhist, optionally with perfect map nests on top [21].
These expressions that are passed on to the code generator in
the form of genhist constructs enclosed in maps, represent-
ing batched or segmented histograms. For example,

map (λxs ys→ genhist xs f (ys,+, 0)) xss yss

computes a histogram for each array xs in two-dimensional
array xss. The computation of Nout H-bin histograms can
be done by treating it as a single Nout ×H-bin histogram on
a flattened input array (xss in the above example). However,
this is not necessarily optimal, as it discards locality informa-
tion. In our implementation, when H fits in shared memory,
we instead assign K thread blocks to each histogram, with the
usual subhistogramming for small H . We set

K =
⌈T ÷B
Nout

⌉
which guarantees that the amount of exploited parallelism is at
least T . Our shared memory implementation does not support
a single thread block computing multiple batched histograms
simultaneously. While this example shows only a single map
on top of genhist, our implementation permits any number.

D. Optimizing Vectorised Operators

It is sometime useful to compute histograms where the
operator is of the form map ⊕ for some ⊕, corresponding
to a generalization of vector addition. The resulting histogram
then contains an array in each bin. By section III-B, such
an operator would necessarily require the XCG strategy, since
no available atomic can update an entire vector at a time.
However, our compiler detects the case where the operator has
this vectorised form, and applies the atomic update on each
element of the vector, rather than the vector as a whole. This
causes simultaneous updates of the same bin to be interleaved,
but this is safe because we are still properly synchronising the
updates to the elements of the vector in each bin.

M,S shared H=31 127 505 2K 6K 12K 24K 48K
HDW/CAS 396,1 96,1 24,1 6,1 2,1 1,1 1,2 1,4
XCG 132,1 32,1 8,1 2,1 1,2 1,3 1,6 1,12

M,S global H=12K 24K 48K 192K 384K 768K 1.5M
HDW RF=1 23,1 11,1 5,1 1,1 1,1 1,2 1,3
HDW RF=63 69,1 34,1 17,1 4,1 2,1 1,1 1,1
CAS RF=1 46,1 23,1 11,1 2,1 1,1 1,2 1,3
CAS RF=63 138,1 69,1 34,1 8,1 4,1 2,1 1,1
XCG RF=1 15,1 7,1 3,1 1,1 1,2 1,3 1,5
XCG RF=63 69,1 34,1 17,1 4,1 2,1 1,1 1,1

TABLE I
THE VALUES OF (M,S) COMPUTED BY OUR ANALYTICAL MODEL FOR

SHARED (TOP) AND GLOBAL MEMORY (BOTTOM), RESPECTIVELY.

V. EXPERIMENTAL EVALUATION

This section is organized as follows: Section V-A validates
our design point for shared and global memory by comparing
model-driven selection of the multi-histogram degree with a
range of fixed choices on a representative set of histogram
sizes and operators. Section V-B compares our compiler
implementation with CUB for the same set of histogram
sizes and operators, section V-C shows the applicability of
generalized histograms to the 435.gromacs benchmark from
SPEC CPU2006, and section V-D compares our compiler
implementation with several applications from standard bench-
mark suites, and details on the compiler optimizations that
provide performance gains. All experiments are run on an
NVIDIA RTX2080 Ti (Turing architecture) with CUDA 10.1
and L = 48KiB, L2 = 5.5MiB, Thw = 69632. Reported
runtimes do not include the time for transferring the pro-
gram input and result arrays between device and host. All
runtimes are the average of at least a hundred consecutive
runs. Our experiments have also been run on other GPUs
(e.g., RTX2070, GTX1050 Ti) with similar results. All code
is publicly available9.

A. Model Validation

Figure 7 shows the runtime for computing histograms for
various H and under various multi-histogram degrees in shared
and global memory; see caption for details. We used an input
of 50 million elements, where the input array holds uniformly
distributed 32-bit integers (α), and the index result of f for
an input elm is obtained by the formula iv.ind = (elm
% max(1, H/RF))*RF. Thus, RF = 1 corresponds to a
uniform distribution of indices, while increasing RF directly
increases the bin-conflict rate since only H ÷ RF bins are
actively used (with a stride equal to RF ).

The operator is chosen as follows to demonstrate the three
atomic-update implementations of section III-B:

HDW: 32-bit integer addition (β = int);
CAS: 24-bit saturated addition (β = int);
XCG: argmax, receiving (index,value) pairs and picking

pair with the largest value, using the index as tie-
breaker (β = (int,int)).

9https://github.com/diku-dk/futhark-sc20
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Fig. 7. Runtimes for shared- and global memory histograms computed with our CUDA implementation, on NVIDIA RTX2080 Ti. The experiment uses
block sizes 1024 and 256 for shared and global memory, Thw = 69632 and an input of 50 million integers. The number of bins of the tested histograms
are: H = 31, 127, 505, 2K, 6K, 12K, 24K, 48K, 192K, 384K, 768K, 1.5M. Shared memory uses M0 = 1 and Mk∈{1,3,6,9} = k ·

⌊
B

min(H,B)

⌋
. Whenever

Mk ·H does not fit in shared memory, the multi-pass strategy is used. For global memory, M ∈ {1, 4, 8, 16, 32} do not use multi-passing. “Auto” denotes
automatic selection of M and S based on our analytical model.

We compare automatic selection of (M,S) in Table I and
denoted by “Auto”—with a set of statically-chosen values:
For shared memory we use Mk∈{1,3,6,9} =

⌊
k·B

min(H,B)

⌋
, and

M0 = 1, and we use the multi-pass technique accordingly
whenever Mk · H is too large to fit in shared memory. For
global memory we compared with multi-histogram degrees
{1, 4, 8, 16, 32}, which do not use the multi-pass technique.

The top graphs correspond to the input being uniformly
distributed to bins (RF = 1), while the bottom graphs
correspond to sparse histograms, in which H consecutive
elements hit only H ÷ 63 distinct bins (RF = 63).

• Our strategy produces near-optimal (M,S) values. The
maximal slowdown with respect to the best static choice
of (M,S) is 5%.

• In the case of HDW, shared memory, the static choice of
M1 is near optimal as well.

• For the remaining cases, no fixed/static choice of (M,S)
is close to producing near-optimal results, for all his-
togram sizes and RF values. For example:

– In the HDW case in global memory with RF = 1,
M = 1 is about 9× slower than Auto for H = 1.5M
because it does not use the multi-pass strategy. The
other choices of M are significantly worse.

– The differences become much more pronounced for

the cases of CAS and XCG. For example, in the case
of shared-memory CAS with RF = 1, M1 is near
optimal, but for RF = 63, the same M1 results in
2.6−12.8× slowdowns for all histograms up to 2K.

• Table I demonstrates that our analytical model takes into
account histogram sparsity: RF = 63 has higher multi-
histogram degree M or smaller multi-pass degree S than
RF = 1, and still produces near-optimal performance in
comparison with the static choices of M,S.

• The results in Figure 7 support a simple compiler heuris-
tic for choosing the switching point between shared and
global memory: if the multi-pass degree S computed for
the shared-memory is less or equal to 3, 4 and 6 for HDW,
CAS, XCG, respectively, then the histograms are computed
in shared memory, otherwise in global memory. This is
not perfect: for example for CAS with RF = 1, H = 48K
requires 4 passes and is mapped to shared memory, in
spite of being 1.08× slower than the global memory
version (but for RF = 63 it pays off since execution
in shared memory is about 2× faster in this case).

B. Comparison with CUB

We compare our library with CUB 1.8.0 [5], on the same
operators, input and histogram lengths as in figure 7. We
have used CUB’s HistogramEven for the HDW case, and



Speedup vs CUB H=31 127 505 2K 6K 12K 24K 48K 192K 384K 768K 1.5M
CUB-HDW (miliseconds) 1.40 1.34 1.44 1.55 1.44 9.39 22.13 29.66 36.87 39.20 42.00 46.59
FUT-HDW RF=1 (speedup) 3.4× 3.3× 3.5× 3.6× 3.1× 19.6× 24.7× 22.5× 30.5× 32.6× 32.7× 27.5×
FUT-HDW RF=63(speedup) 3.4× 3.2× 3.5× 3.7× 3.1× 20.3× 25.2× 22.5× 29.9× 31.8× 33.9× 14.4×
CUB-CAS (miliseconds) 2.40 3.52 3.84 4.96 5.17 5.37 5.57 6.45 6.80 7.00 7.22 8.09
FUT-CAS RF=1 (speedup) 3.9× 5.7× 6.2× 7.9× 8.1× 8.1× 4.4× 2.7× 2.7× 2.8× 2.8× 2.6×
FUT-CAS RF=63 (speedup) 3.9× 4.9× 4.1× 5.0× 5.4× 5.4× 4.0× 2.6× 1.9× 2.0× 2.0× 2.2×
CUB-XCG (miliseconds) 6.75 9.29 11.11 13.57 14.83 15.94 17.06 18.11 20.11 21.28 22.44 23.28
FUT-XCG RF=1 (speedup) 4.0× 5.5× 6.5× 7.8× 5.9× 4.9× 2.8× 2.3× 2.7× 3.1× 3.0× 2.0×
FUT-XCG RF=63 (speedup) 2.6× 1.6× 1.6× 1.9× 1.7× 2.2× 2.0× 1.8× 2.0× 2.4× 2.7× 2.7×

TABLE II
SPEEDUP OF FUTHARK-GENERATED (FUT) CODE OVER CUB; CUB RUNTIME IS SHOWN IN MILISECONDS.

SortKeys followed by ReduceByKey for the CAS and XCG
case. Our measurements favor CUB in several ways: (1) we do
not account for the runtime of CUB’s inspectors and neither
for the creation of the key-value pairs, and (2) we run the CUB
implementation on uniformly-distributed indices.10

Table II presents the speedup of Futhark generated code for
RF = 1 and RF = 63 in comparison with CUB: For HDW,
Futhark is only 3.1− 3.7× faster for histogram lengths of up
to 12K, after which the speedup increases dramatically.

For CAS and XCG, Futhark gets the upper hand even when
RF = 63. The shared memory histograms shows the higher
speedups—for example greater than 7× on H = 2K—while
the global memory speedups are between 1.8− 3.1×.

This demonstrates the overhead of using the sorting-based
approach to computing generalized histograms that we alluded
to in the introduction.

C. Case Study: 435.gromacs from SPEC CPU2006

Molecular dynamics simulations do not immediately come
to mind for histograms, yet an essential part of 435.gromacs
can be expressed as generalized histograms. Specifically, we
implement a simplified form of loop inl1100 in Futhark.
This loop is an important code pattern and a representative
computational kernel, because similarly-structured loops—
such as inl1130, inl1000—account for about 90% of the
sequential execution runtime of 435.gromacs [13]. In one run,
the loop updates the forces of a number nri of 3D particles
and their associated neighbors, which are looked up by means
of indirect arrays (iinr and jjnr). Its structure is as follows:
for(int n=0; n<nri; n++) {
int i3=3*iinr[n]; float fix1=0,fiy1=0,fiz1=0;
for(int k=jindex[n]; k<jindex[n+1]; k++) {
int j3 = 3*jjnr[k];
float tx11 = ..., ty11 = ..., tz11 = ...;
fix1 += tx11; fiy1 += ty11; fiz1 += tz11;
faction[j3] -= tx11; faction[j3+1] -= ty11;
faction[j3+2] -= tz11;

}
faction[i3] += fix1; faction[i3+1] += fiy1;
faction[i3+2] += fiz1;

}

Our experiment uses the reference dataset, but it expands the
input to loop inl1100 by merging together the largest 22

10Histogram sparsity does not significantly changes the performance of
the key-sorting version of CUB, because such a data-parallel implementation
performs the same work, irrespective of sparsity.

inputs on which the loop is called during CPU execution.
The resulting dataset has nri=30657, the total number of
neighbors is nrj=jindex[nri]=1380160, and the total
number of particles is 23178, which leads to histogram of size
69534, because the forces are computed on each of the three
dimensions.11 Sampling the dataset revealed that the histogram
is sparse, with a race factor RF = 79.

We use for comparison a straightforward CUDA implemen-
tation that flattens the parallelism of the outer and inner loops,
and in which each thread performs six atomic updates (to
faction) to simulate the interaction between a particle and
a neighbor. The runtimes and relative speedups are shown in
Table III. We report performance in two settings:

HDW: Using the hardware support for atomic-float addi-
tion (HDW) results in comparable performance, with
Futhark having a small disadvantage (0.91×).

CAS: We also test the case when the atomic updates are
implemented by means of CAS, for example because
AMD GPUs are typically programmed via OpenCL,
which does not support a primitive for atomic-float
addition; for consistency we use the OpenCL back-
end of Futhark. To reduce the number of (dynamic)
races we restructured the Futhark program to per-
form one update per thread, e.g., faction[j3],
faction[j3+1], and faction[j3+2] are up-
dated by consecutive threads. The restructuring was
relatively easy in Futhark, requiring about 20 new
lines of code, but it would be tedious in a low-level
CUDA/OpenCL implementation. The Futhark imple-
mentation with RF = 79 results in 2.65× speedup
in comparison to the CUDA version. Furthermore,
accounting for the race factor has a significant im-
pact: the version using RF = 79 results in multi-
histogram degree M = 22 and is responsible for
1.6× application-level speedup in comparison with
the version using RF = 1, which results in M = 6.

11The reason for expanding the dataset is that the input of one loop run is
too small to utilize well the GPU parallelism. Furthermore, the small input
seems to be an artifact of a chunking technique aimed at optimizing the
locality of CPU execution: in file fnbf.c, inl1100 is actually called on
different chunks from a parallel loop, which justifies expanding the dataset.



D. Other Application Benchmarks

This section compares Futhark to prior implementations of
common problems or published benchmarks that make use of
generalized histograms. Results are summarised in Table III.

1) k-means clustering: This application partitions a set of
n points in d-dimensional space into k clusters, such that the
distance from each point to the cluster centre is minimised.
This involves two histograms: one that counts the number
of points belonging to each cluster, and one that counts the
sum of the individual points for each cluster. Assuming arrays
membership : [n]int,points : [n][d]f32, this can be
expressed as follows:

(genhist membership (λc→ (c, 1)) (replicate k 0, (+), 0),

genhist (membership,points) (λ(c, p)→ (c, p))

(replicate k (replicate d 0),

map (+),replicate d 0))

Note that the second histogram uses vector addition
(map (+)) as its operator. The two histograms share an
input array (membership), and so are fused horizontally,
but because the points array is a factor d larger, the impact
is neglible. We compare the Futhark implementation against
kmcuda: a CUDA implementation of Yinyang k-means [16]
(https://github.com/src-d/kmcuda). We benchmark with n =
100000, d = 256, k = 1024, where the histograms do not fit
in shared memory, and slightly outperform kmcuda. We note
that the kmcuda implementation is optimised for large k, and
does not scale well for small k, with Futhark being about 30×
faster for k = 5.12

2) Parboil: From Parboil [22] we take two benchmarks.
histo computes a histogram with 996 × 1024 bins, where
the operator is saturated integer addition. We use Parboils
opencl_nvidia implementation, as this one performed the
best on our hardware. tpacf computes two sets of 100 batched
histograms of 22 bins each. Parboil implements this using 200
thread blocks, each of which compute a 22-bin histogram in
shared memory. The Futhark compiler instead fuses the two
histogram computations horizontally and launches K = 300
thread blocks (see Section IV-C), each of which compute
two partial 22-bin histograms, which are then combined by
a segmented reduction. This is advantageous because in Par-
boil’s case, the two thread blocks computing a histogram pair
will have significant overlap in which memory they access.
In Futhark, the same memory accesses will contribute to two
histograms, thus saving bandwidth.

3) CUDA samples: The CUDA SDK contains two his-
togram implementations specialised for different bin counts
(64 and 256). For 64 bins, each thread is given its own
private subhistogram. For 256 bins, each subhistogram is
shared between the threads in a warp. In both cases, the
subhistograms are stored in shared memory, and a final reduc-
tion pass computes the final histogram. This is similar to our
approach. The CUDA implementations outperform Futhark

12We use Futhark’s OpenCL backend for this benchmark, as NVIDIAs
CUDA kernel compiler seems to unroll an inner loop too aggressively,
reducing the speedup for k = 5 to 10×.

435.gromacs loop inl1100 (N = 4140480, H = 69534)
Workload CUDA Futhark Speedup
HDW 333µs 362µs 0.91×
CAS 2432µs 919µs 2.65×

k-means clustering
Workload kmcuda Futhark Speedup
k = 1024 4.2s 3.7s 1.14×
k = 5 2.98s 0.097s 30.72×

Parboil benchmarks
Benchmark Parboil Futhark Speedup
histo 1.74ms 0.37ms 4.70×
tpacf 916ms 810ms 1.13×

CUDA samples
Workload CUDA Futhark Speedup
H = 64 250µs 261µs 0.95×
H = 256 230µs 277µs 0.83×

Image Registration Implementation [10]
Workload PyTorch Futhark Speedup

(cuda) (pyopencl)
N = 2M,H = 2809 258ms 1.95ms 132×
N = 8M,H = 41209 3331ms 7.10ms 469×

TABLE III
SPEEDUP ON APPLICATION BENCHMARKS.

because the histogram input is conceptually a byte sequence.
The CUDA implementation has each thread read a full 32-bit
word, which is then used to perform four index/value updates.
With genhist, each input element produces only a single
index/value pair, and so Futhark’s memory accesses are less
efficient, as threads read only a single byte at a time.

4) Image Registration [10]: Finally, we compare with a
PyTorch implementation of the image registration technique
from Darkner and Sporring [10], which builds on the technique
of Locally Orderless Images [23] and requires computating lo-
cal intensity histograms. Since PyTorch [17] does not support
a generalized histogram construct, the implementation uses a
sort-scan approach, in which the values corresponding to the
same (unique) key are grouped together—by using PyTorch’s
unique and split constructs—and then they are summed
together to produce the histogram result.

We present the histogram computation in a C-style, loop-
based pseudocode that is more accessible than the original
implementation and is straightforwardly translated to Futhark:
void interp(float x, float* vals) {
float t = x - floor(x);
vals[0] = (-t3+3.0*t2-3.0*t+1.0)/6.0;
vals[1] = (3.0*t3-6.0*t2+4.0)/6.0;
vals[2] = (-3.0*t3+3.0*t2+3.0*t+1.0)/6.0;
vals[3] = t3/6.0;

}
// min_x, min_y and max_x, max_y are the minimal and
// maximal elements of dimensions x and y of array inp.
int h1 = max_x - min_x + 4, h2 = max_y - min_y + 4;
float* histo = (float*)calloc(h1*h2, sizeof(float));

for(int k=0; k<N; k++) {
float x = inp[k].x, y = inp[k].y;
float vals1[4], vals2[4];
interp(x, vals1); interp(y, vals2);
int ind1 = x - min_x, ind2 = y - min_y;

for(int i=0; i<4; i++) {
for(int j=0; j<4; j++) {

histo[(ind2+i)*h1 + (ind1+j)] += vals1[i] * vals2[j];
} } }



The input is an N-element array of two-dimensional points.
For each point inp[k], and for each dimension x and
y, the function interp computes four contributions which
always sum up to one and which are stored in arrays
vals1 and vals2. The outer product of the contributions
(vals1[i]*vals2[j],∀0 ≤ i, j < 4) is used to update a
4× 4 neighborhood in the histogram.

Table III shows the running times for the histogram compu-
tation step (i) of the original PyTorch implementation running
with CUDA and (ii) of the Futhark implementation, which
is easily integrated with the Python program by means of
Futhark’s pyopencl (Python+OpenCL) code generator [18].
We report 132× and 469× speedups in favor of Futhark on
two random datasets, in which the input has length N = 2·106
and 8 · 106 and with histograms of sizes h1 · h2 = 53 · 53,
which is computed in shared memory, and h1 ·h2 = 203 ·203,
which is computed in global memory, respectively. The high
speedups demonstrate the usefulness of supporting histograms
as a language construct, rather than relying on the users
to assemble their own implementations out of lower-level
constructs.

VI. RELATED WORK

Pure Histograms. A body of work has investigated CUDA
accelerated (pure) histogram implementations. Podlozhnyuk
proposes two methods [4] for histograms of size 64 and 256
bins, which maintain subhistograms in shared memory, at
thread and warp level, respectively. Since atomics were not yet
supported in hardware, the access to warp-level subhistograms
was implemented with a software-tagging scheme, which
exploits that the threads in a warp execute in lockstep.

Independently, Shams and Kennedy propose two methods
for computing histograms on GPUs [3]. The first maintains
subhistograms at warp level in shared memory, and is similar
to the one of Podlozhnyuk, except that the multi-pass strategy
is applied in order to support histograms of arbitrary bin count.
The second method is aimed at sparse histograms, and it relies
on a collision-free structure, implemented as a H × T matrix
in global memory, in which each of the T threads owns a
subhistogram. Furthermore, the high latency of global memory
is amortized by packing a number of bins in a double word
maintained in shared memory, and by updating the global
memory subhistogram only when that double word is about
to overflow. (This technique assumes increment as operator.)

Nugteren et al. examine a fixed scenario, where the input
is a 2048 × 2048 8-bit pixel image, from which it computes
a histogram with 256 bins [24]. The work examines several
techniques for reducing the race conflicts, for example, (1) the
input is shuffled by block transposition, because images tend
to have correlated pixels, or (2) each thread processes a chunk
of consecutive pixels, even if this introduces uncoalesced
accesses. These techniques assume images as input.

Brown and Snoeyink present a collision-free technique for
computing histograms with 256 bins [1]. The idea is to
maintain per-thread partial subhistograms in register memory,
by using 8-bit bin counters (instead of 32-bit integers). Before

overflow can happen (every 63 elements) the partial results
are accumulated in a shared-memory histogram, maintained
at CUDA block level, by performing a linear serial scan of
the bit counts, collectively, with all the threads in the block.
This method also assumes pure histogram computations.

Gómez-Luna et al. propose an implementation [25] appli-
cable to histograms up to 4096 bins where a bin size is 32
bits. Similar to us, they compute histograms in shared memory
by choosing the maximal subhistogram degree that fits shared
memory, but do not consider global memory or sparsity.

In comparison with this body of work, our implementation
and related optimizations are applicable to arbitrary operators
rather than just integer increment. Moreover, our analytical
model takes into account the sparsity of the histogram and
determines near-optimal values for the combination of multi-
histogram and multi-pass degrees, while allowing the compu-
tation to be carried out in either shared and global memory.

Sort-Scan Implementations. Another body of work is
aimed at designing the implementation such as its performance
is oblivious to the race factor. An example was already
presented in Listing 4, where the input is sorted according
to the bin number it falls into, followed by key reduction.
Such solutions are complementary to our approach, and the
comparison with the CUB library hints that the sweet point in
performance is a relatively-high bin-conflict factor.

In the same spirit, Dhanasekaran and Rubin present a
generalized histogram algorithm on GPUs [26], in which
subhistograms are maintained at CUDA block level. The idea
is that the input to a CUDA block is chunked and each chunk
is partially sorted in shared memory, by means of an indirect
(permutation) array, which is computed by using atomicAdd
operations. Then an segmented reduction is performed through
the indirect array, such as work items corresponding to the
same bin are reduced.

Language and Compiler Implementations. Ravi et al.
propose compiler and runtime support for computing gener-
alized reductions on heterogeneous hardware [2]. Much of
the work is aimed (i) at the compiler analysis required for
identifying such computations (supported on known commu-
tative operators such as addition), (ii) at generating the host
and device code and (iii) at the work distribution schemes
required for cooperatively performing the computation on both
CPU and GPU. The implementation has each thread compute
its own subhistogram, which are merged at the end, and are
possibly maintained in shared memory if they fit.

Similarly, Reddy et al. extend the Pencil framework [27]
with support for generalized reductions [28] for known com-
mutative operators. They report the extensions necessary for
integrating reductions in polyhedral analysis and code gen-
eration for GPU hardware, which also supports fusion. The
implementation seem to maintain one subhistogram per CUDA
block whenever the histogram fits in shared memory, or
otherwise, all threads work directly on one histogram, which
is stored in global memory.

Finally, Accelerate [29] offers the permute function which
has similar semantics with generalized reductions. Similar to



our work, the operator is statically translated to the most
efficient hardware-supported atomic primitive for the given
element type, and defaults to a spinlock in general. In Ac-
celerate, vectorized histogram operators are implemented with
a spinlock and the code-generation and optimization support is
simpler because Accelerate does not allow nested parallelism.

We observe that the imperative language and compiler
solutions do not allow for arbitrary histogram operators, and
no solution utilizes the multi-pass strategy or takes into
consideration histogram sparsity.

VII. CONCLUSIONS

We have defined the notion of a generalized histogram
construct and presented a GPU implementation strategy. As an
advancement over prior work, our analytical model predicts
the best combination of the multi-histogram and multi-pass
degrees for a given histogram size, operator element type,
and sparsity. We have experimentally validated our analytical
model by comparing performance of its selected parameter
against fixed parameter choices.

We have fully integrated the generalized histogram
construct—nestable inside arbitrary parallel code—in Futhark,
a high-level parallel programming language and compiler,
isolating the programmer from having to know low-level
details of GPU programming. Vectorized operators, which
would naively require locking, are instead implemented by a
sequence of efficient atomic operators, such as atomicAdd
and atomicCAS. Our experimental validation shows that
benchmark problems implemented in Futhark with general-
ized histograms are at least comparable to hand-written code
and existing library solutions, and often significantly faster,
ranging from ×0.83 slowdown to ×30 speedup.
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