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Motivated by the limitations of conventional coarse-grained molecular dynamics for simulation of large
systems of nanoparticles and the challenges in efficiently representing general pair potentials for rigid bodies, we
present a method for approximating general rigid body pair potentials based on a specialized type of deep neural
network that maintains essential properties, such as conservation of energy and invariance to the chosen origins
of the particles. The network uses a specialized geometric abstraction layer to convert the relative coordinates
of the rigid bodies to input more suitable to a conventional artificial neural network, which is trained together
with the specialized layer. This results in geometric representations of the particles optimized for the specific
potential. The network can be trained directly on scalar values to fit a model without explicit gradient and then
used to efficiently evaluate the force and torque on the particles resulting from the potential. The concept is
demonstrated with an atomistic interaction model for carbon nanotubes and the resulting model is compared
with a common type of coarse-grained model optimized for the same potential, with even very small networks
comparing favourably and larger networks achieving up to two orders of magnitude lower cost. The sensitivity
to noise in the training data is investigated and the model is found to strongly reject noise up to 12.5% given a
dataset of 107 samples. The performance of a proof-of-concept implementation is demonstrated on a variety of
hardware, showing the models viability for large-scale simulations. Furthermore, generalization to soft bodies
and potentials for polydisperse systems are discussed.
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I. INTRODUCTION

Understanding the behavior of nanoparticles in dispersions
is important in many contexts, as the structures they form
determine both macroscopic properties of the dispersions
themselves and the materials that can be assembled from them
in processes like spinning, spraying, and drying [1,2]. Ex-
perimental methods for characterizing these structures, such
as small-angle x-ray scattering, typically provide limited and
indirect information that is difficult to interpret without a
strong hypothesis. Even with complete structural data, fully
understanding the mechanisms that govern the assembly pro-
cesses through this top-down approach might not be possible.
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Particle simulations provide another perspective that al-
lows more direct observation of structures as they form and
control over the mechanisms involved. Along with diffusion
and externally applied forces, the interactions between parti-
cles are essential to the assembly processes. Due to the high
surface-to-volume ratios at the nanoscale, molecular inter-
actions at interfaces between particles cannot be neglected.
Furthermore, the nonadditive nature of fundamental interac-
tions at this scale, as described by Batista et al. [3], and
geometric complexity of some types of nanoparticles, make
mean field approaches like the Derjaguin-Landau-Verwey-
Overbeek (DLVO) theory [4,5] inapplicable. These problems
can sometimes be overcome with atomistic simulation, which
can in many cases accurately predict behavior in processes
like self-assembly [3]. However, many observable phenomena
governed by these interactions occur at scales far beyond what
can feasibly be simulated atomistically. A common approach
to solving this issue is the use of coarse-grained molecu-
lar dynamics, where atomistic models are reduced such that
each nanoparticle can be represented by a smaller number of
point particles. This allows the use of conventional molecular
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dynamics software, but also inherently limits the model in
some ways. The particle interaction can only be a sum of
point−point interactions, and since each point particle needs
to be tracked, there is a lot of redundant state, especially in the
case of relatively rigid particles. Internal degrees of freedom
in the particle representation can also limit the possible length
of time steps in a simulation to avoid numerical instability and
nonphysical oscillations, decreasing the accessible timescales.

Modeling the particles as rigid bodies solves these issues,
but introduces a new set of problems. The relative coordinate
space of point particles is just R1, but the relative coordinate
space of general rigid bodies is significantly more complex,
having both a relative position and orientation, for a total of
six degrees of freedom. It is difficult to interpolate in this
coordinate space using conventional methods. While several
simplified models for special cases such as ellipsoids [6]
exist and have been used for qualitative studies of certain
properties [7], quantitatively relating these to real systems
becomes difficult. Accurately and efficiently representing the
more general rigid body interaction required for many types
of nanoparticles remains challenging.

Assuming that an accurate, but expensive to evaluate, inter-
action model exists, interpolation of the interaction potential
becomes an attractive option, as this would enable its ap-
plication in larger systems where direct evaluation for all
interactions would be infeasible. However, interpolation in
this coordinate space is difficult due to the combination of
both position and orientation. The simplest general represen-
tation is an R3 vector r for the position and a unit quaternion
q for orientation. Many methods for interpolation in R3 exist,
and while less straightforward, it is also possible to interpo-
late functions on the surface of the hypersphere that the unit
quaternion represents [8]. The methods of interpolation are,
however, difficult to combine, and the number of data points to
densely represent a function in the (r, q) space with adequate
resolution is large. For every point in the relevant R3 domain,
a function on the hypersphere must be defined. Assuming
a grid of n × n × n points with n3 points on the surface of
the hypersphere at each grid point, the cost of increased res-
olution scales with O(n6), which makes higher resolutions,
require not only much more input data, but also more working
memory for efficient evaluation. Furthermore, depending on
the geometry of the interacting particles, the required angular
resolution to avoid particles passing through each other can lo-
cally be quite high. Take, for example, high aspect-ratio rods,
with origins defined at their midpoints (Fig. 1). If the point
of contact is close to the end of one particle, the minimum
angular resolution to ensure at least one data point with an
overlapping, and thus high energy, configuration, to prevent
the rod from rotating through the other particle will be ∼L/2D
points per radian, scaling linearly with the aspect ratio. Given
the above scaling, an aspect ratio of 10 : 1 would require a
minimum of ∼109 data points. Since this data is likely to be
quite sparse in terms of actual close interaction, in most cases
it should be possible to find a representation that is much more
compact.

Approximating the interaction with a neural network
stands out as a possible solution, and similar machine learn-
ing methods have been used to apply density functional
theory−based potentials in atomistic simulations. An early

FIG. 1. Two rod-shaped rigid bodies, each with a position and
orientation in the global coordinate system.

example of this is the work of Behler et al. [9], who used
a method that applied neural networks to values describing
the geometric environment of each individual atom. Later,
Chmiela et al. [10] developed an efficient gradient machine
learning approach, which was able to achieve good results
for small molecules with relatively small datasets. This was
then improved by Dragoni et al. [11] with the added use of
symmetries in the molecule to further reduce the amount of
training data needed. More recently, Kabylda et al. [12] used
a optimized descriptor scheme to describe molecular config-
urations of extended molecules for more efficient application
of machine learning potentials. For rigid bodies, methods like
Lagrangian graph neural networks have also been applied by
Bhattoo et al. [13] to simulate systems of connected particles,
such as chains.

This study explores the use of neural networks for the ap-
plication of approximating rigid body pair potentials to enable
large-scale simulation of nanoparticles. Through systematic
consideration of desirable properties for this specific applica-
tion, a specialized network architecture is gradually designed
that improves performance and guarantees coordinate invari-
ance and physical properties such as energy conservation. In
addition, the network model is compared with a conventional
coarse-grained model for carbon nanotubes (CNTs).

II. APPLICATION OF THE INTERACTION MODEL

The use of a neural network in this context, as shown in
Fig. 2, can broadly be split into two parts: preprocessing,
which happens before simulation and results in a trained
model, and interaction, which uses the trained model to
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FIG. 2. Schematic showing the different process components in
the context of a dynamic simulation, separated into prepossessing,
which happens once for each type of interaction, and the simulation,
where forces and torques are generated by evaluating the network
for each pair of particles and integrated to produce new coordinates
at each time step.

compute the interaction between particles, resulting in forces
and torques that can be used to time step a simulation.

Since the network operates on relative coordinates, to apply
the network to the interaction between two particles in a
simulation, their global coordinates (ra, qa) and (rb, qb) must
be converted to relative coordinates, which can be defined as
the distance vector and relative orientation

dab = q−1
a (rb − ra)qa

qab = q−1
a qb. (1)

The force and torque output from the network ( f ab, tab)
must then similarly be converted back to force and torque vec-
tors acting on both particles in the global coordinate system.
For particle a, the vectors are just rotated back

f a = qa f abq−1
a

ta = qatabq−1
a , (2)

and for particle b, the reaction force and torque

f b = − f a

tb = −ta + (rb − ra) × f a (3)

are calculated. The forces and torques on each particle from
different interactions can then be summed in the global coor-
dinate system.

III. NETWORK ARCHITECTURE

The naive approach to using a neural network for ap-
proximating torque and force vectors, shown in Fig. 3(a),
simply employs a fully connected deep neural network, as
described by Nielsen [14], fitted to each vector component.
There are several problems with this naive approach that
render it unsuitable for the intended application, but which
can be addressed by developing a specialized network struc-
ture, that by construction guarantees certain properties of the
approximation.

A. Force and torque from back-propagation

While it is possible to directly fit the network to approx-
imate each component of the force and torque vectors, this
approach is problematic. Since each of the fitted functions
is arbitrary, in general energy will not be conserved in the
interaction. The network will also need to be larger, with
more parameters, requiring more training data. Additionally,
it requires force and torque data for training, instead of just a
potential, which might be difficult to compute for some mod-
els. It is preferable to instead fit the network to the potential
itself, and then differentiate the network to get the force and
torque, as seen in Fig. 3(b).

In machine learning, back-propagation is most commonly
used to calculate the gradient of the cost function of the net-
work parameters, to optimize the parameters through gradient
descent. It can, however, also be used to calculate the gradient
of the network output, in this case, the potential itself. The gra-
dient of the relative position and orientation can be converted
into force and torque vectors as

f ab = ∂U

∂dab
(4)

and

tab = f ab × dab − 1

2
Q

∂U

∂qab
, (5)

respectively, where

Q =

⎡
⎢⎢⎣

−q1 −q2 −q3

q0 q3 −q2

−q3 q0 q1

q2 −q1 q0

⎤
⎥⎥⎦. (6)

.

B. Geometric abstraction layer

In theory, any general purpose function approximator can
be fitted to a rigid body potential. However, the nature of
the relative coordinate space, with its translational and rota-
tional components, lead to poor behavior for some relatively
common types of potentials. An example of this is the in-
teraction of high aspect-ratio rods. For contacts far from the
origins of the respective rods, the sensitivity to the relative
orientation becomes extremely high, leading to locally large
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FIG. 3. Network architectures of increasing complexity and specialization, starting from the naive solution and gradually adding features to
improve the properties of the model. Arrows show the flow of information through the network during evaluation, starting from the coordinates
and ending at the forces and torques. (a) Network trained directly on force and torque vectors. (b) Network trained on potential, force and torque
calculated through back-propagation to ensure energy conservation. (c) Network with geometric abstraction layer that transforms coordinates
with an optimised point representation that provides coordinate invariance and improves convergence. (d) Network with a smooth, finite cutoff
which enables O(n) scaling in systems with many particles.

gradients that are hard to fit accurately. The fitting of the
model also becomes dependent on the origins chosen for
each particle, since these will affect how easy it is to fit an
approximation.

To avoid this problem, the coordinates can be converted
to a form that more directly represents the geometry of the

interaction. Here, this is achieved by going back to a point
representation, where distances are easily defined. Choosing
a point in the coordinate system of each particle, pai and pbi,
the distance between these points

di(dab, qab) = ∣∣dab − pai + qab pbiq
−1
ab

∣∣ (7)
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FIG. 4. During the optimization process, the points move to bet-
ter represent the particle geometry. For these cylindrical particles,
the points quickly converge to the axes of the particles, thereby
finding the symmetry in the interaction. Contrary to what might be
expected, the optimized configuration includes points that lie outside
the envelope of the particles. Crucially, the ends of the particles
are connected, which appears to be the most important distance
measures. (a) Before optimization and (b) After optimization.

becomes a reduced relative coordinate for the rigid bodies.
By itself, one such pair of points is not very useful since
so much information is lost in the reduction, but combining
several such pairs (Fig. 4) results in a flexible coordinate
representation. The optimal set of pairs depends on the un-
derlying geometry of the interaction. Viewing this conversion
as the first layer in an artificial neural network, as seen in
Fig. 3(c), with the point positions as parameters, is convenient
since this allows for the simultaneous optimization of both
the geometric representation and the potential approximation
based on it. Since the point positions are optimized, the ability
to fit the model becomes independent on the origins chosen for
each particle.

The local gradient of the potential for each point, calculated
through back-propagation, can be interpreted as a force acting
on it. Adding the forces and resultant torques,

f ab = −
∑

i

∂V

∂ pai
(8)

tab = −
∑

i

pai × ∂V

∂ pai
(9)

gives the force and torque between the rigid bodies. The
distance between two points is problematic to use directly,
because the gradient is undefined when the points coincide,
which may happen since points can be outside the boundaries
of the particles. This can be solved by separating them by a
fixed distance w in a fourth dimension, to create a modified
distance

d∗
i =

√
w2 + d2

i , (10)

which is smooth over the whole domain, for all w �= 0.
Since w is part of the particle representation, it should be
selected based on the scale of the particle geometry. A very
small w will have a negligible smoothing effect, and a very
large w will smooth the function to the point that it cannot fit
to training data. It should, therefore, be chosen to be a small
but relevant particle length scale for the potential it is being
fitted to.

C. Smooth cutoff

For practical application of a pair potential on a large
system of particles, a cutoff is needed to limit the number of
interactions that need to be evaluated and avoid O(n2) scaling
with the number of particles. To conserve energy in a system
with a finite cutoff, the potential must go smoothly to zero at
the cutoff. This property can be ensured by multiplying the
output of the network with a function with these properties,
as seen in Fig. 3(d). If this smooth cutoff is included in the
model during optimization, the parameters are optimized to
partially compensate for the shape of the cutoff function while
maintaining the desired boundary condition.

Preferably, the cutoff should be set such that all relevant
parts of the interaction space are kept while excluding as much
as possible of the space where the interaction is negligible.
For low aspect-ratio particles, a spherical cutoff is acceptable,
but for higher aspect-ratio particles, a spherical cutoff would
result in many evaluations where the particles are far apart.
A viable option for rods is to use the minimum distance be-
tween line segments instead of the center-center distance. The
minimum distance can be found by solving a small quadratic
optimization problem, as shown in Appendix B 1.

To achieve a smooth transition to zero the function,

φ(d ) =
{

d � 1 → d2n(n(d2 − 1) − 1)) + 1
d > 1 → 0

(11)

is applied to the calculated normalized distance dnorm =
d/dcutoff . For integer n > 0, φ goes smoothly from one to
zero as the cutoff is approached. As seen in Fig. 5, higher n
give a more sudden cutoff and keeps the value approximately
constant in a larger part of the domain.

D. Cost and data normalization

Given the intended application of the network, accuracy
at all inputs are not of equal importance. Since high-energy
states are less likely to occur during simulation of a sparse
particle system, they should be given lower weights in the
optimiszation to minimize total simulation error. This is also
helpful since many potentials commonly used in molecular
dynamics, such as the Lennard-Jones and Coloumb potentials,
are singular, which would be impossible to accurately repli-
cate with a network using nonsingular activation functions.
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FIG. 5. The scaling factor φ, from Eq. (11) as a function of the
normalized distance d for a smooth cutoff.

This weighting can be achieved by using a suitable cost
function in the optimization. The cost function quantifies how
poor the fit is given the exact values Vref and approximated
values Vnet at a point, and its gradient is used in the optimiza-
tion process. High-energy configurations can be given lower
weight by introducing a threshold value Vmax, over which the
cost function becomes less sensitive to deviations. To be use-
ful for gradient descent optimization, the function also needs
to have a usable gradient over the whole domain. The function

C(Vref ,Vnet ) =
(

ln
(

1 + e
−Vref
Vmax

)
− ln

(
1 + e

−Vnet
Vmax

))2
(12)

was derived by modifying the common quadratic cost func-
tion to use a soft truncation of both the reference potential and
the approximated potential. As seen in Fig. 6, this results in
a function that gradually becomes less sensitive to deviations

FIG. 6. Logarithm of cost as a function of Vref and Vnet , normal-
ized to Vmax.

FIG. 7. Convergence for different data sets as a function of
(Vmax). The subset of lower energy configurations where the particles
are not overlapping, defined by (d � 2r + σLJ ), shows a different
trend to the full set which highlights the compromise between dif-
ferent energy levels.

as both Vref and Vnet exceed Vmax, but remains sensitive when
either value is lower. The value of (Vmax) therefore determines
the relative importance for different energy levels in the opti-
mization process, which, as shown in Fig. 7, leads to a change
in the fitting depending on the region.

This concludes the development of the network architec-
ture; we now proceed to the evaluation of the method.

IV. COMPARISON WITH CONVENTIONAL
COARSE-GRAINED MODEL

To demonstrate the ability to approximate interaction po-
tentials with this type of neural network, several networks
of different sizes are trained on datasets from a well-defined
atomistic potential. The resulting networks are compared with
a common type of coarse-grained potential, optimized with
the same cost function.

A. Reference potential: CNTs

CNTs are a common type of nanoparticle composed
entirely of carbon, that has attracted attention for many inter-
esting properties, such as high stiffness, strength, and thermal
and electrical conductivity. It has seen use in composites, both
for its mechanical properties as reinforcement and for its other
unique properties. For the purposes of this comparison, it
provides a relatively simple rodlike geometry with straightfor-
ward options for conventional coarse graining (Fig. 9). Being
nonpolar, interactions between CNTs can be modeled using
the Lennard-Jones potential:

VgroupLJ =
∑

i

∑
j

4ε

[(
σ

|d i j |
)12

−
(

σ

|d i j |
)6

]
. (13)
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FIG. 8. Specific network configuration used in comparisons, with a specialization toward rodlike particles. The diagram includes all layers,
parameterized by a single size variable n.

Interactions between groups of Lennard-Jones particles
serve as an interesting benchmark of the model’s performance,
as they present a complex energy landscape with large gradi-
ents and singularities, making them a very challenging case
for approximation with a smooth function.

Here, training data is generated by rejection sampling
of the interaction space between two CNTs with a set
maximum distance between the particles to remove irrelevant
data points, as described in Appendix A 1.

B. Network configuration

The network used for these examples, seen in Fig. 8,
consists of the geometric abstraction layer with a Gaussian ac-
tivation for each pair, followed by two fully connected layers
with tanh activation, followed by a weighted sum for the final
potential. The cutoff uses the distance between line segments
that have the same length as the CNTs without caps, with a

FIG. 9. Atomistic and coarse-grained models used as target and
for comparison, respectively. (a) Two capped carbon nanotubes used
for generating reference data. (b) Beads used for the coarse-grained
representation.

cutoff distance of 2rtube + 3σLJ. The pair-distance smoothing
parameter is set as w = rtube.

V. COARSE-GRAINED REFERENCE

As a baseline for comparison with other methods, a coarse-
grained model similar to the one presented by Chen et al.
[15] is parameterized to replicate the same CNT potential.
This potential models the CNT as a chain of beads, as shown
in Fig. 9(b). For the purpose of comparison, particles are
considered stiff, so only interparticle forces are considered.
Each bead acts as a Lennard-Jones particle, and the parame-
ters σ and ε are optimized by gradient descent with the same
data and method as the network to minimize the cost function.

This model represents the simplest possible, and therefore
most scalable, type of coarse-grained model for a rodlike
particle [15]. The number of beads required to represent each
particle scales linearly with the aspect ratio of the particle,
and the parameters that can be changed are the bead spacing
and bead−bead interaction potential. The smoothness of the
potential along the particles length depends on both the bead
spacing and the hardness and radius of the bead interaction
potential. Assuming for example a hard sphere interaction
between the beads, the bead spacing must be very short
relative to the beads radius to approximate the interaction
between hard cylindrical surfaces well. A softer bead potential
like a Gaussian, on the other hand, would permit signifi-
cantly longer bead spacing without introducing significant
error due to the discretization. The Lennard-Jones interaction
used here falls somewhere in between, having a relatively soft
attractive component and a harder repulsive component. (a)
Two capped carbon nanotubes used for generating reference
data. (b) Beads used for the coarse-grained representation.

VI. NETWORK SIZE AND CONVERGENCE

The complexity of the potential to be approximated and
network size will determine how good a fit is possible and
how much training data is required to avoid overfitting, as seen
in Fig. 10. Given enough training data, larger networks with
more parameters can naturally achieve a better fit, but they are
also more expensive to evaluate, which limits their utility for
large-scale simulation. The optimal network size to use will
therefore depend on both the amount of available training data
and the required accuracy of the approximation.
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FIG. 10. Testing error as a function of the number of training
samples used.

As seen in Fig. 11, the networks with n > 4 have a lower
cost than the coarse-grained reference model for all datasets.
While the fit improves for the full set of configurations, the
greatest improvement is seen in the dataset that excludes
overlapping configurations, where the n = 16 network shows
a cost more than two orders of magnitude smaller than the
coarse-grained model.

A. Error characteristics

While the average cost in the model is useful for mon-
itoring convergence, its distribution in the parameter space
is also of interest. Visualizing the full space of translations
and orientations is infeasible, but two dimensional subspaces,
where two coordinate components change, can be selected
to give a useful representation for comparison, as seen in
Figs. 12–15. These figures show both the potential and local
cost for such a subspace relative coordinates, with plots split

FIG. 11. Errors of networks with different sizes fitted to the
potential, with 107 training samples.

(a)

(b)

(c)

FIG. 12. Comparison for relative translation of parallel particles
in the yz-plane. (a) Particle configuration, (b) Potential, (c) Local
cost.

between the reference data, the coarse-grained model, and two
different networks, to enable comparison. The local cost is
simply the cost function applied to the reference potential and
the approximation at a single point.

The high-energy regions in the middle are configurations
where the particles overlap and are improbable to occur in an
actual simulation, which means that a larger error is accept-
able. This is accounted for by the cost function. It can clearly
be observed that the networks achieve a better fit than the
coarse-grained model in all the subspaces, with the networks
showing relatively small cost outside of the high gradient
regions, and overall looking very similar to the reference
potential. The coarse-grained model is limited in its ability
to fit due to the Lennard-Jones potential used for interaction
between the beads and shows a relatively large error across
much of the space in which interactions would normally take
place. A more general spherical potential could likely achive
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(a)

(b)

(c)

FIG. 13. Comparison for relative translation of perpendicular
particles in the yz-plane. (a) Particle configuration, (b) Potential, (c)
Local cost.

a slighly better fit, but would still be limited by the dis-
cretization of the particle into beads, which limits how large a
gradient the potential can have without introducing roughness
from the beads.

Predicting the actual effect of the error in the potential on
a simulation is difficult, as the local error in individual points
gives an incomplete picture of how well interaction behavior
will be replicated. Particularly in the case of a reference poten-
tial with sharp gradients, small deviations in the geometry of
the potential could give large errors around this gradient, with-
out realistically affecting the simulation much. Similarly, the
fitted function could be unable to fit to very sharp gradients.
This would result in a smoother free-energy landscape for the

(a)

(b)

(c)

FIG. 14. Comparison for relative translation of perpendicular
particles in the xz-plane. (a) Particle configuration, (b) Potential, (c)
Local cost.

approximation, which might have near-identical equilibrium
distribution of particles to the exact potential, but different
behavior in nonequilibrium simulations.

VII. SENSITIVITY TO NOISE IN TRAINING DATA

In some cases, such as when using molecular dynam-
ics free-energy calculations as reference, computing precise
values of the reference potential might be prohibitively ex-
pensive. If noisy data can be used to train the network, such
models become much more viable. Training a model with
noisy data will always result in some error, but depending on
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(a)

(b)

(c)

FIG. 15. Comparison for changing distance �x and rotation θ .
(a) Particle configuration, (b) Potential, (c) Local cost.

the models relative sensitivity to the noise and and the number
of samples, it can be relatively small.

To test the sensitivity of the CNT model, different strengths
of normally distributed noise were added to each sample in

FIG. 16. Cost for different datasets for networks trained using
noisy training data with 107 samples. The green line shows the cost
of the noisy data used for training relative to the clean reference data
and shows how noise is reflected in the cost.

the training dataset, and networks were trained with the same
procedure on each of the resulting noisy datasets. As seen
in Fig. 16, the convergence for the test dataset and training
dataset without the added noise is not significantly affected
up to a noise level of σnoise = 0.25Vmax, although the fit for
the lower energy region is affected somewhat earlier. It can
also be seen that the network shows poor fitting to the noisy
data it is being trained on, with the cost being very similar to
the cost of the noise itself, shown in green. This demonstrates
that the network can reject significant amounts of noise while
still fitting to the underlying model. Since data from molecular
dynamics simulation and Monte Carlo methods is inherently
noisy, and reducing the noise level by running longer simu-
lations or using more samples is expensive, the ability of an
approximator to reject noise could prove very useful in the
derivation of interaction models from data acquired with such
methods.

VIII. IMPLEMENTATION AND PERFORMANCE

The usefulness of the model in any large-scale simulation
ultimately depends on the cost of evaluation. While the actual
performance will depend on both software implementation
and the hardware used to run it, some scaling with the net-
work size n is expected, and for very large networks, matrix
multiplication should dominate the computation, leading to
quadratic scaling with n, but for smaller networks, constant
and linear terms may also be significant.

The proof-of-concept implementation is written in Futhark
[16] and was inspired by the compositional neural networks
by Tran et al. [17], which allows for relatively easy experi-
mentation with complex network structures. The training uses
a modified Adam [18] optimization algorithm with adap-
tive individual learning rates for all model parameters. For
evaluation of a systems potential, interacting pairs of parti-
cles are found in parallel using cell lists implemented with
an approach to irregular flattening shown by Elsman et al.

055305-10



INTERACTION OF COMPLEX PARTICLES: A FRAMEWORK … PHYSICAL REVIEW E 110, 055305 (2024)

FIG. 17. Network evaluations per second for different devices.
For the benchmark, the interaction evaluation is isolated by using
pregenerated coordinates and not accumulating the results.

[19], and forces and torques for each pair are aggregated
as a generalized histogram [20]. The code can be compiled
with multiple backends, including multicore CPU, OpenCL,
HIP, and CUDA, for parallel execution on a variety of hard-
ware. Figure 17 shows the performance of the implementation
running on different platforms and devices. Due to the low
number of parameters in the network, the whole network
can fit in low-level cache, which limits memory bandwidth
requirements, as only particle coordinates need to be loaded
from shared memory. The implementation does not make
use of the tensor-specific hardware present in many modern
GPUs, and since significant parts of the network evaluation
are matrix vector multiplications, this could likely be used
to further improve performance. A comparison with existing
methods in Fig. 18 shows the time to take a simulation step
compared with a state-of-the-art implementation of existing
methods for nonbonded interaction [21]. For larger systems,
the proof-of-concept implementation is clearly faster than the
coarse-grained approach, while simultaneously being much
more accurate.

IX. DISCUSSION

A. Training with unknown potential

The reference potential used for demonstration purposes in
this study is defined in such a way that getting an absolute
potential at any given coordinate is possible without con-
sidering other coordinates. However, this is not the case for
free-energy calculations in molecular dynamics. In methods
like umbrella sampling, the potential is calculated locally
and segments are joined together to give the global function.
This is viable for low dimensional coordinate spaces where
a dense sampling of the full space can be performed, but
quickly becomes infeasible for higher dimensional coordinate

FIG. 18. Comparison of scaling relative to atomistic and coarse-
grained systems in Gromacs, detailed in Appendix C.

spaces, like the one for rigid bodies. The gradient can be
obtained at any point independently however, and assuming
some smoothness of the function and the potential at a single
point, given enough points, the gradient can in principle be
used to define the potential.

In such a case, where only force and torque data are avail-
able, it is also in principle possible to train the network by
differentiating the gradient calculation, with respect to the
model parameters, to get the gradient for directly optimizing
the force and torque components. Since the approximation is
a smooth potential by definition, it should approach the real
potential given the gradient at a sufficient number of points.
This approach would enable direct use of molecular dynamics
simulation data to the training of the network, but the number
of data points required likely makes this infeasible for many
cases.

B. Further generalization

While this study only considers potentials for rigid bodies,
due to the geometric nature of the first layers point pairs,
it could be further generalized by using more general coor-
dinate transformations than rotation and translation. Given
shape functions defining deformation, similar to those used in
finite element modeling, additional displacement of the points
could be defined, and conversely, the potential gradient on the
points could be used in the calculation of deformations in the
particle. With some modification, it might also be possible
to define a potential network for polydisperse systems of
particles where each particles length is used as an additional
input in the network. Both of these extensions would likely
significantly increase the required amount of training data
required for an adequate fit, but could open up for new types
of simulations.

C. Possible improvements

The optimal layer structure and activation functions remain
an open question and are likely dependent on the type of
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potential being interpolated. Considering the random distribu-
tion of the point pairs, a possible way to improve convergence
is to start with a larger network containing more pairs, and
during training, remove less effective pairs, again reducing
the network size. This strategy would reduce sensitivity to the
quality of the initial configuration.

The uniform random sampling in the relevant space of
interactions used in this study is likely suboptimal given a lim-
ited number of training samples due to the apparent clustering
seen in randomly sampled coordinates. It is therefore likely
that the number of samples needed to ensure good general-
ization could be reduced by using a set of coordinates that
fill the space more evenly. Low-discrepancy sequences such
as the Sobol’ sequence [22] are useful for this in Cartesian
coordinates, but are not directly applicable to the combined
space of relative positions and orientations. It is possible to
generate a low-discrepancy sequence in R7 and use rejection
and projection to convert four of the components to a unit
quaternion, but the effects of this process on the discrepancy
and space-filling properties are not known.

Meaningfully quantifying the effect of error in the potential
approximation on the properties of a simulated system is dif-
ficult, and further study is needed to improve understanding
of this. In this study, high-energy configurations were given
a lower weight in the optimization based on assumptions of
their probability of occurrence being lower. This is reasonable
given a sparse system in equilibrium, but for dense systems or
systems subject to external forcing, these high-energy config-
urations become more relevant, and using a higher Vmax would
be necessary. It is also possible that a completely different cost
function would be more suitable. When available, training
data with a known gradient could also be used to improve the
accuracy of forces and torques, which is more relevant when
particles are forced externally.

D. Conclusion

The proposed network architecture demonstrates utility
as a general purpose interpolant in the relative coordinate
space of rigid bodies and achieves orders of magnitude bet-
ter accuracy than typical coarse-grained methods of similar
computational complexity for potentials that cannot feasibly
be directly evaluated at large scales. Network training requires
consideration of pretreatment of training data as well as net-
work size parameters. The geometric first layer makes the
optimal fit coordinate invariant and using back-propagation
to calculate the force and torque ensures conservation of
energy while reducing the required number of network
parameters.

The method principally differs from a traditional coarse-
grained approach in its sparse rather than dense interaction
between points in the particles coordinate systems, and the
more general, nonlinear combination of them. This is advanta-
geous since the size and cost of evaluation of the model scales
linearly with geometric complexity rather than quadratically
and allows for fitting to more general functions.

The main benefit of this method is that realistic but com-
putationally expensive interaction models can be constructed
without the practical consideration of their direct application
in a simulation. As long as the potential can feasibly be

sampled to provide enough training data, around 107 times
in this case, the trained network can reproduce the equivalent
data, including forces and torques, in less than one second,
with much higher accuracy than comparable conventional
coarse-grained methods would provide. The ability to directly
apply it to rigid bodies also reduces overhead from storing
and integrating particle coordinates, and finding the interact-
ing pairs. The removal of internal degrees of freedom can
also drastically increase the length of time steps in simula-
tion. This enables simulation with complex interactions on
spatial and temporal scales that were previously infeasible
and could help bridge the gap between our understanding of
interactions at an atomistic level and observable macroscopic
properties.
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APPENDIX A: TRAINING PROCEDURE

1. Coordinate sampling

To evenly sample data in the whole domain of interac-
tion, rejection sampling is used. First, a plausible interaction
coordinate with uniformly distributed relative position and
orientation is generated and then rejected based on the cutoff
function.

To generate a plausible interaction coordinate, a uniformly
distributed R3 vector in the cube (±1,±1,±1) is generated
and then scaled to a box that includes all possible relative
position where interaction could occur based on the par-
ticle dimensions and cutoff distance. To uniformly sample
the orientation quaternion on the surface of unit hyper-
sphere, uniformly distributed R4 vectors in the hypercube
(±1,±1,±1,±1) are generated and rejected until the vector
falls withing the hypersphere, and then normalized to give the
quaternion components.

2. Initialization

Since the point pairs represent the particle geometry, a
good initialization of the network requires that the scale of the
system is taken into account. Ideally, an initialized network
should provide a usable cost gradient for the whole relevant
interaction space, which will depend on particle geometry and
the range of the interaction. The approach taken in this case
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was to randomly place points in each particles coordinate
system, such that they fall within a sphere encapsulating the
particle.

The distribution of output values from this layer likewise
depends on the size and geometry. For the activation in the
next layer to be effective, the initial weights must be adjusted
so the input to the activation function is distributed in a region
with useful nonlinearity. Assuming sigmoid activation, this
means the input cannot be too small, as it would fall in the
approximately linear part of the function, effectively making
the network incapable of nonlinear regression. It also cannot
be too large, as most inputs are in regions where the function
has almost no gradient, preventing the use of gradient descent
optimization. Since the expected distances at initialization are
proportional to the diameter sphere encapsulating the particle,
its inverse can be used to normalize the initial weights.

APPENDIX B: IMPLEMENTATION DETAILS

1. Rod distance

The distance drod between two rods of length l , with
relative distance d and orientation q, can be expressed as
the minimum distance between line segments, which is a
quadratic optimization problem. With the line segments rep-
resented by the vectors

u =
⎡
⎣ 0

0
l/2

⎤
⎦

v = q

⎡
⎣ 0

0
l/2

⎤
⎦q−1

, (B1)

the optimization problem can be written as

drod =
√

min (au + bv + d)2

{−1 � a � 1
−1 � b � 1 . (B2)

Since it is an optimization in only two variables, a and b,
the problem can be solved by finding the global optimum,
optima on the edges, and corners of the rectangular domain,
filtering out of bound solutions, calculating distances, and
then taking the minimum.

2. Compositional neural networks

When designing a neural network architecture, it is useful
to split the network into different blocks that the data passes
through. Compositional neural networks provide a framework
for transferring these block schematics into functioning code.
A network is defined as a set of the internal parameter and
functions necessary to perform all optimization and evaluation
operations.

The network type is parameterized by the type of the model
parameter p, the type of input i, and the type of output o.

These networks can then be combined with functions that
take the sets of functions and compose them into a new, valid
set of functions. They can be chained, as seen in Fig. 19(a), so
that data input is passed to the first network and its output of
type m is passed as input to the second network. The networks

FIG. 19. Ways to compose smaller networks into bigger net-
works. (a) Chaining networks can be used to represent a path in
a block diagram. (b) Stacking networks can be used to represent
different paths in a block diagram.

can also be stacked, as seen in Fig. 19(b), so the input is split
and each part is passed to one of the networks.

Through this kind of systematic combination of simpler
networks that are easier to verify, complex networks can be
created. Provided that the code of the subnetworks is correct,
their combination will be as well.

3. Adaptive learning rate optimization

The optimization uses an adaptive learning rate η that
adapts independently for each network parameter based on
how correlated the gradient g is to the momentum m for this
parameter. To quantify the correlation in a way that does not
the depend on the magnitude of the quantities,

c = 2gm

g2 + m2
(B3)

FIG. 20. Poor scaling behavior shown when doing updates
on GPU.
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is used. The learning rate is updated for each parameter by

ηn+1 = ηneγ c. (B4)

For parameters with positive correlations, the learning rate
will increase, and for parameters with negative correlations,
the learning rate will decrease. This is motivated by the idea
of trying to get the maximum amount of information at each
step of the optimization. The hyperparameter γ is set so that
change happens at a low rate to avoid instability in case of
spurious correlation between gradient and momentum.

APPENDIX C: GROMACS COMPARISON

To enable a reasonable comparison with a state-of-the-art
implementation of atomistic and coarse-grained nonbonded
interaction, equivalent systems of capped CNTs using the
same particle coordinates were set up for each representa-
tion. The concentration of nanotubes was kept constant at
1.5625000 × 107 per µm3, or approximately 2.5% by volume.

The simulations were set to only calculate nonbonded
interactions and update particle positions, with no bonded
interactions or constraints. To prevent the trajectories from
diverging and maintain the same conditions, the particles
were prevented from moving. In the case of the presented
method, this was achieved by setting the time step to zero,
and in Gromacs, this was done by freezing all atoms. Since
particle coordinates are fixed, the neighbor list is constant;
however, since this does not correspond to real simula-
tion, the update interval was fixed to ten time steps for all
systems.

The Gromacs systems used a spherical cutoff equal to
the cutoff distance for the rod-specific cutoff used for the
network.

The update for the Gromacs simulations using the standard
leapfrog integration, but for the rigid body simulation, a sim-
ple viscous model approximating ellipsoids in a stokes fluid
was used instead. This step is significantly more expensive
per particle than simple rigid body dynamics, but is more in
line with the intended use. All systems were run in the con-
stant particle number, volume, and energy (NVE) ensemble to
remove overhead and variance from thermostats and barostats.

Scaling issue in Gromacs

Prior to using freezing as a method to fix atoms in Gro-
macs, the two largest simulations of both types showed
extremely poor performance, as seen in Fig. 20. Although the
exact cause is not known, it likely involves the cache system
on the RX 6800XT the simulations were run on, as the size
required to store position, velocity, forces, and so on for all
particle would fit in this cache for all other simulations. The
behavior disappeared when freezing the atoms, which forced
the update to take place on CPU, resulting in less information
stored in the GPUs memory. While not indicative of Gromacs
normal performance, this highlights an advantage of the re-
duced state of the rigid body representation; memory will be a
limit for sufficiently large systems, and using a more compact
representation results in better scaling.
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