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Abstract—Large amounts of satellite data are now becom-
ing available, which, in combination with appropriate change
detection methods, offer the opportunity to derive accurate
information on timing and location of disturbances such as
deforestation events across the earth surface. Typical scenarios
require the analysis of billions of image patches/pixels. While
various change detection techniques have been proposed in the
literature, the associated implementations usually do not scale
well, which renders the corresponding analyses computationally
very expensive or even impossible. In this work, we propose
a novel massively-parallel implementation for a state-of-the-art
change detection method and demonstrate its potential in the
context of monitoring deforestation. The novel implementation
can handle large scenarios in a few hours or days using cheap
commodity hardware, compared to weeks or even years using
the existing publicly available code, and enables researchers, for
the first time, to conduct global-scale analyses covering large
parts of our Earth using little computational resources. From a
technical perspective, we provide a high-level parallel algorithm
specification along with several performance-critical optimiza-
tions dedicated to efficiently map the specified parallelism to
modern parallel devices. While a particular change detection
method is addressed in this work, the algorithmic building blocks
provided are also of immediate relevance to a wide variety of
related approaches in remote sensing and other fields.

I. INTRODUCTION

In the context of climate change, estimating and reducing
global deforestation is crucial to mitigate the effect of global
warming [1]. This makes mapping forest disturbances at large
scales more important than ever before [2]. The availability
of high-quality and detailed satellite data provides a huge
opportunity to detect and monitor deforestation across the pan-
tropics, which usually happen over large and often inaccessible
areas, see Figure 1. In this context, the timely and spatially
accurate detection of such events is critical to enable a better
protection and to trigger countermeasures (e.g., in the context
of deforestation currently occurring in the Brazilian Amazon).

Time-series based change detection of satellite data has
matured to a well-established tool for monitoring such changes
and disturbances in terrestrial ecosystems [3]. Such change
detection methods typically operate on individual pixels to
detect “changes” and have been successfully applied for a
variety of different applications [4]–[15]. One of the state-
of-the-art methods is the so-called break detection for additive
season and trend (BFAST) approach, which combines time se-

Fig. 1: Deforestation visible in a sequence of satellite images
obtained in 1996, 2007, 2009, and 2018. Typically, sequences
with hundreds of images are considered, which yield, for each
individual pixel, a time series of reflectance measurements.

ries based break detection with seasonal-trend modelling [16].
This approach has been used across various domains and for
a wide variety of time series based change monitoring tasks
(e.g., urban expansion [17], water extent changes [18], [19],
burned area detection [20], or biomass estimation [21]).

While such change detection schemes yield robust results,
the induced fitting processes can become a major compu-
tational bottleneck even if only few satellite images are
considered [4], [5]. This has limited the application of
such change detection methods to relatively small areas and
scenarios. In recent years, the quality and availability of remote
sensing data have changed dramatically, starting with the
Landsat mission [22] that made imaging data with a spatial
resolution of 30 m freely available at a global scale. Such
projects yield petabytes of data every year with hundreds of
billions of pixels to be analyzed [22], [23]. For data volumes
at this scale, the application of the aforementioned change
detection schemes has—so far—required immense computa-
tional resources, which, in turn, has rendered the analyses at
continental/global scales infeasible in practice.

This work addresses this computational bottleneck by
providing an efficient massively-parallel implementation for
BFAST (more precisely, for BFAST-Monitor), which can ef-
fectively handle scenarios with billions of pixels. Our approach



is three orders of magnitudes faster than the commonly used
implementation and allows researchers, for the first time,
to handle massive change detection scenarios covering large
parts of our Earth using little computational resources. Our
implementation is made publicly available and will be useful
for numerous applications in remote sensing [4]–[15]. The
particular contributions of this work are described in detail
in Section II-B after presenting the relation with related work.

II. BACKGROUND AND CONTRIBUTIONS

A. Unsupervised Change Detection for Satellite Data
Modern satellites collect multi-spectral image data over

time. For instance, in the case of the Sentinel 2 mission [23],
up to 13 (grayscale) images are obtained for each scene every
five days (Figure 1 shows RBG composites that are based on
such images). Such time series of satellite data often form the
basis for “change” or “break” detection tasks. Typically, the
image data are preprocessed and so-called vegetation indices
are derived. More specifically, for detecting changes in forest
cover, wetness-related spectral vegetation indices such as the
Normalized Difference Moisture Index (NDMI) are used to
extract quantitative information on the amount of vegetation
for every pixel [24]. Given such preprocessed images, semi-
automatic change detection algorithms are typically applied
per pixel on a time series consisting of NDMI values per pixel.

In the literature, a variety of different yet related methods
can be found. A common feature of those methods is the
fact that they often fit “simple” regression models per pixel
time series and that discrepancies are analyzed between the
models and the true data [4], [9]–[14]. The BFAST-Monitor
approach [16] is among the most well-known methods in this
context, see Figure 2 for an illustration of its application on
time series data for two different pixels. This approach fits
a linear regression model based on a period defined as stable
history period. Next, statistical break detection is performed on
the data in a so-called monitoring period [25], i.e., the period
that shall be analyzed for changes (e.g., if a deforestation
event has occurred or not). If the difference between the model
and the data in the monitoring period is significant, a break
is detected. The change magnitude is recorded as the mean
deviation between the model and the data [16]. More formally,
given a time series y1, . . . , yN for a pixel, a model of the form

ŷt = α1 + α2t+

k∑
j=1

γj sin

(
2πjt

f
+ δj

)
+ εt (1)

is assumed. Here, the first and second term determine the in-
tercept and the trend, respectively. The third term specifies the
seasons. More specifically, the time series data are modeled via
amplitudes γ1, ..., γk, and the phases δ1, ..., δk (i.e., seasons).
The parameter f specifies the frequency of the observations.
For instance, f = 365 for time series with an interval of one
day between the different observations or f = 23 for time
series with an interval of 16 days. The parameter k determines
the number of harmonic terms that capture the seasonal pattern
(typically very small, e.g., k = 2 or k = 3). The remaining
error is captured by εt at time t = 1, . . . , N .

Fig. 2: Application of a break detection algorithm [16] on
time-series data from two locations (pixels). For each time
series, a model is derived based on data given for a history
period (green points). In case the predictions generated by this
model are not in line with the data available for the monitoring
phase (blue points), a “break” is detected (red dashed line).
Note that the time series usually vary both w.r.t. the number
and location of measurements (yellow rectangle). For large-
scale experiments, millions or even billions of such models
have to be computed. Currently available implementations can-
not handle such scenarios or require significant computational
resources. Our work addresses this computational bottleneck
and provides an efficient parallel (GPU) implementation that
can deal with large datasets given limited resources.

The model given by Equation (1) can be written as a
standard linear model of the form

ŷt = x>t β + εt (2)

with patterns xt being defined as

xt = (1, t, sin(Ft(1)), cos(Ft(1)), . . . , sin(Ft(k)), cos(Ft(k)))
> (3)

that are generated for each date t, where Ft(j) = 2πjt/f .
The stable history period consists of the first n elements,

and the monitoring period is based on the remaining mea-
surements yn+1, . . . , yN . The second part is used to “test” for
changes. To measure the discrepancy between the model and
the measurements in the monitoring period, one resorts to a
moving sums (MOSUM) process

MOt =
1

σ̂
√
n

t∑
s=t−h+1

(
ys − x>s β̂

)
, (4)

with a user-defined bandwidth 1 ≤ h ≤ n and σ̂ =√∑n
i=1 r

2
i/(n−2)·(k+1). If the observations of the monitoring

period are similar to those of the history period, the process
should stay within the bounds bt specified by the user and
no break should be detected (e.g., bt = λ

√
log+ t/n for some

λ > 0). Otherwise, a break is detected, see again Figure 2.
Thus, the break detection is conducted per pixel by defining

a dataset T = {(x1, y1), . . . , (xN , yN )} ⊂ RK × R with
K = 2 + 2k, which contains, for each date t, the constructed



Fig. 3: The left figure illustrates changes detected by applying
BFAST-Monitor for an area in Peru, where clear-cut defor-
estation due to palm oil plantations occurred. The monitoring
period considered was 2010–2015, masking out from the
analysis areas that were not forest at the moment of 2010 (gray
coloured in figures). While the deforestation is visible also in
the RGB satellite image (right), detecting these changes using
BFAST-Monitor (left) offers an insight on when these events
occurred, and makes them quantifiable in time and space.

pattern xt defined in Equation (3) along with the pixel
value yt. Afterwards, a linear model is computed via

minimize
β∈RK

n∑
i=1

(
yi − x>i β

)2
, (5)

which can be used to obtain the MOSUM process (4) and the
break points. To analyze if changes have occurred in a certain
area, such a model and the associated MOSUM process are
computed for each pixel, see Figure 3.

It is worth stressing the following. First, the only input
required for the application of BFAST-Monitor is the start of
the monitoring period (i.e., the index n+1), the number k of
harmonic terms, as well as some other parameters (e.g., the
size h of the moving window), for which one can often resort
to default values. However, no labels for breaks or changes are
required, i.e., the approach is unsupervised. This is different
from supervised change detection algorithms based on, e.g.,
deep learning, which typically require large amounts of la-
beled data (see, e.g., Reichstein et al. [26]). BFAST-Monitor
and related schemes can therefore be seen as some kind of
unsupervised anomaly detection schemes. Second, the pixel-
wise fitting of “simple” regression models is the main building
block for a variety of such unsupervised change detection
approaches [4], [9]–[14]. For this reason, the implementation
and the algorithmic building blocks provided in this work are
of immediate relevance for those schemes as well.

B. Contributions

While recent work has demonstrated the potential of high-
performance computing for accelerating such break detection
schemes [27], a simpler scenario was considered, which is
based on the assumption that all time series values are valid,
i.e., that all pixels yield time series having the same length
with patterns xt generated for the same dates t. This regularity
could be exploited for the computation of the individual mod-
els (e.g., the inverted squared data matrix—see Algorithm 1—

is the same for all pixels in this special case and has to be
computed only once for all the pixels). Unfortunately, this
restriction makes it impractical for many vegetated areas on
our Earth, where clouds frequently mask image pixels. For
instance, in Figure 1, many pixels would be masked out, since
they are occluded by clouds in at least one image. Such pixel
values would be ignored, which, in turn, would lead to the
individual time series having a different length with “missing
values” occurring at different times, see again Figure 2.

Our approach is fundamentally different and can handle
the general and much more common case. In particular, we
provide a massively-parallel implementation that can be used
for change detection scenarios with potentially many missing
values per time series. From a computational perspective this
case is considerably harder to parallelize, since the single tasks
are very irregular in the sense that one is given very differ-
ent time series for the individual pixels with both different
computational demands and different memory access patterns.
Overall, we make the following contributions:

• We present a high-level specification of our parallel
algorithm that describes all available (nested) parallelism.
We also report a fully-automated compilation strategy
that effectively maps the specified parallelism to modern
graphics processing units (GPUs).

• We propose several performance-critical optimizations
that result in speed-ups as high as 6× at individual-
kernel level and as high as 4.5× at application level.
The GPU implementation is 24 − 48× faster than a
corresponding multi-threaded C implementation using 32
threads. We also provide detailed experimental results that
compare the performances both across different datasets
and between the different optimization recipes.

• We also provide results for a large-scale experiment
covering the entire continental tropical Africa—a scenario
that was basically impossible to handle before.

Our implementation is up to three orders of magnitudes
faster than the commonly used R implementation.1 It allows
researchers, for the first time, to apply the change detection
schemes outlined above for data covering large parts of
our Earth using little computational resources (e.g., a single
desktop computer). Finally, we would like to mention that
all optimizations were implemented as general code trans-
formations in the Futhark language [28]. In fact all code
versions were automatically compiled from high-level Futhark
specifications. This will significantly facilitate the adaptation
of our framework to other related change detection methods.

C. Related Work

A variety of anomaly detection methods can be found in
the data mining literature, see, e.g., Aggarwal [29], [30] for an
overview. The focus of our work is, however, on accelerating
the computations needed by the aforementioned unsupervised

1Available under https://bfast2.github.io. A Python package containing our
implementation is available under https://github.com/gieseke/bfast.



change detection methods—in particular BFAST-Monitor—
which are commonly used in remote sensing [4]–[8], [15],
[17]–[21]. As already pointed, these methods do not require
any labels for the individual pixels and typically resort to
a history and monitoring period for fitting the models. It is
worth stressing that the focus of this work is not on supervised
change detection schemes (or, more general, landcover clas-
sification methods), which require labels for each pixel/patch
that is considered and which are nowadays typically addressed
via deep learning [26].

To the best of our knowledge, all existing unsupervised
change detection implementations resort to high-level pro-
gramming languages such as Python or R with the computa-
tions potentially parallelized over the individual pixels [31],
and “most of the applications [of such change detection
implementations] are limited to small areas due to constraints
of storage and computing resources” [3]. To address large
scenarios, the typical approach in the remote sensing field
is to resort to significant compute resources. For instance,
Bullock et al. [14] combine three such approaches to improve
the accuracy of the change detection and report that the
analysis of three Landsat scenes (each with 6300×6000 pixels)
took 48 hours on a “200 high-speed node machine” [14].
This work is the first that provides a parallel implementation
for unsupervised change detection frameworks given irregular
time series data with potentially many missing values, which
runs efficiently on commodity GPU hardware.

III. ALGORITHMIC FRAMEWORK

A. Detecting Breaks in Time Series with Missing Values

The algorithmic building blocks of BFAST-Monitor are
provided in Algorithm 1: For each individual time series, one
is given a vector y containing the target values for both the
history and the monitoring period. The corresponding data
matrix X consists of the patterns xi defined in Equation (3).
As mentioned above, many of the yi values might be missing.
Those values are filtered out by the function FILTERMISSING
in Line 1, yielding a new target vector y and a new data
matrix X for each time series not containing any missing
values anymore. The original indices are stored in the array I,
which is used to remap the indices at the end. Both y and X
are used to fit a standard linear regression model

β = M
−1

X[:,:n]y[:n] (6)

for the history period, where n specifies the new end of the
history period in X.2

The residuals r, computed in Line 5, are used to obtain the
MOSUM process m. These values along with the boundary
values B are then used to compute the desired break indices in
Line 12. The final step takes care of remapping these indices
such that the indices are in line with the target input values

2We use the following notation: M[:n,:m] denotes the submatrix of M only
containing the first n rows and m columns, M[:,:m] the submatrix containing
the first m columns, and M[:n,:] the submatrix containing the first n rows.
Similarly, a[:n] denotes the vector containing the first n elements of a vector a.

Algorithm 1 BFAST-Monitor

Require: A vector y = (y1, . . . , yN )> ∈ RN containing a
time series with 0 ≤ s < N missing values and the
complete data matrix X = (x1, . . . ,xN ) ∈ RK×N .

Ensure: A vector b = (bn+1, . . . , bN )> ∈ {0, 1}N−n con-
taining the detected breaks for the monitoring period.

1: y,X, I, n,N = FILTERMISSING(y,X, n,N )
2: M = MULTIPLY(X[:,:n], (X[:,:n])

>
) . M ∈ RK×K

3: M
−1

= INVERTMATRIX(M) . M
−1 ∈ RK×K

4: β = M
−1

X[:,:n]y[:n] . β ∈ RK

5: r = X
>
β − y . r ∈ RN

6: for t = n+ 1, . . . , N do
7: m[t− n− 1] = 1

σ̂
√
n
·
∑t
i=t−h ri . m ∈ RN−n

8: end for
9: for t = n+ 1, . . . , N do

10: B[t− n− 1] = λ
√
log+ t/n . B ∈ RN−n

11: end for
12: b = |m| > B . b ∈ RN−n
13: b = REMAPINDICES(b, I) . b ∈ RN−n

y (which can contain missing values). In addition to these
indices, the mean of the MOSUM process is computed and
returned as well (not shown in the algorithm).

The model β for a single pixel can be obtained in O(K3+
K2n) time, where O(KN) time is needed for computing
the predictions for the monitoring period and the steps to
identify the breaks. While being computationally not very de-
manding for a single pixel, the involved computations become
extremely challenging in case scenarios with billions of pixels
are addressed. As explained before, not all measurements yi
are usually available for a certain pixel, which generally leads
to many different individual regression and monitoring tasks.
In particular, assuming an arbitrary amount of missing values
per time series, one is faced with up to

∑n
k=1

n!
k! possible

realizations for the data matrices X, which cannot all be
stored or precomputed in practice. These matrices all form
sub-matrices of X and can, for each pixel, be extracted via
FILTERMISSING in Line 1 of Algorithm 1. However, the
following steps (e.g., Steps 2–4) depend on the particular X
and have, hence, to be individually computed for each pixel.

B. High-Level Parallel Specification

Algorithm 1 shows the main computational steps for an
individual pixel time series, but in practice, we aim to process
a large batch of image pixels simultaneously. This is simply
achieved by wrapping the computation in an outer parallel
loop—because the computation of any pixel is independent of
any other, e.g., each pixel reads the shared data matrix X and
its corresponding target vector y, while the intermediate and
result arrays are private to each pixel.

The difficulty consists in deciding how to best exploit
the inner parallelism available in the computations specific
to each pixel. For example, matrix-matrix and matrix-vector



multiplication (Lines 2, 4, 5), matrix inversion (Line 3), vec-
tor subtraction (Line 5) are well-known parallel operations.
Similarly, the loop between Lines 9 − 11 and the vector
operations in Lines 12 and 13 are also trivially parallelizable.
Finally, the filtering operation in Line 1 and the loop between
Lines 6− 8 can also be parallelized, albeit they require non-
trivial rewriting that uses parallel-prefix sum operators [32].
A further complication is that the inner-parallel operations
have different sizes, but the GPU hardware provides morally
a flat-parallel programming interface. This renders significant
rewriting necessary to map the available parallelism to a form
that GPUs can exploit, as detailed next.

1) Extreme Parallelization Strategies: One extreme of the
design space is to (efficiently) sequentialize the inner paral-
lelism, by mapping the per-pixel computation to one (CUDA)
thread.3 Besides the ease of implementation, this approach
has the advantage that it can more aggressively fuse the
parallel operations into sequential loops in a manner that
significantly reduces the number of accesses to global memory
(which are up to two-orders of magnitude more expensive than
scalar operations). The downsides are that (i) temporal locality
cannot be optimized beyond what the magic of hardware
caches can offer, (ii) thread divergence4 limits the gains of
operating on the logical size of the filtered arrays—because
n and N differ across pixels, and (iii) hardware might be
underutilized if the parallel batch is not large enough.

The other extreme is to apply a well-known transformation
that flattens all parallelism [32], such that it can be mapped
to hardware. This preserves asymptotically the number of
operations of the nested-parallel program, but at the expense
of (i) compromising temporal locality, (ii) accessing global
memory more often, and (iii) introducing many prefix-sum
operations, which are less efficient on GPU than parallel loops.
Furthermore, there are no easy ways or standard tricks to
optimize the resulted flattened code (other than loop fusion).5

2) Our Parallelization Strategy: Our strategy is a midpoint
between the two strategies sketched above: we distribute the
outer parallel loop (of pixels) around (groups of) operations
of same (inner-parallel) size, and pad them to the maximal
size across all threads/pixels,6 such that we can translate each
such group to a (CUDA/OpenCL) kernel. For example, Line 2
of Algorithm 1 will be mapped to a batched matrix-matrix

3We use CUDA terminology [33] for all GPU programming aspects.
4On NVIDIA GPUs a (half-) warp of threads execute in lockstep; it follows

that if the threads in the same warp execute loops of different counts, then
they will all have to wait for the thread executing the largest loop before
advancing to the next computation.

5For example, denoting by M the number of pixels, flattening the padded
version of matrix multiplication at Line 2 in Algorithm 1 would require
3·M ·n·K2 accesses to global memory (with fusion). If filtering is per-
formed and assuming that 90% of values are missing, it would require at
least 4.5·M ·n·K2—because filtering the missing values requires two scan
operations applied on arrays of size m·n·K2, which already cost 4·M ·n·K2

accesses—and 0.4·M ·n·K2 extra memory. In comparison, the technique used
in this work—described in Section III-C—requires no extra memory and has
only 3·m·n·K

30
accesses to global memory, i.e., about 30× and 45× fewer

global-memory accesses than the flattened versions, respectively.
6For example, the (inner) loop between Lines 9 − 11 of Algorithm 1 has

logical count N − n, which we pad to its upper bound N − n.

multiplication-like kernel, Line 3 to a batched-matrix inversion
kernel, and Lines 4 and 5 to three matrix multiplication-like
kernels, etc. The downside of this approach is the overhead
introduced by padding. The advantage is that it enables a
systematic optimization of temporal locality for each kernel.
For example, non-trivial tiling techniques can be applied for
(batched) matrix multiplication. For the other kernels, the
CUDA block size is chosen equal to the inner-parallel size—
i.e., a pixel is processed by a CUDA block—which allows
the intermediate arrays to be explicitly stored and reused from
fast/scratchpad memory (shared memory in CUDA).

For completeness, we provide the full data-parallel hardware
independent specification written in the Futhark language [34]
in the appendix (Figure 12). For readability purposes, we have
organized the discussion of parallelization strategies around
well-known matrix operations, such as matrix multiplica-
tion and inversion. It is important to remark, however, that
about half of the execution time is spent in kernels (ker
7,8,9,10 in Figure 12) that do not correspond to such
matrix operations. The proposed optimizations highlighted in
the next section are not restricted to such matrix operations; for
example, kernels ker 7,8,9,10 are optimized in a similar
way as matrix inversion.

C. Performance-Critical Optimizations

This section discusses two illustrative and performance-
critical optimizations. Their impact at kernel and application
level is demonstrated in Section IV. The optimized com-
putational kernels are (1) a special kind of batch matrix
multiplication, in which the same two matrices are multiplied,
but in which the values of the two matrices are filtered under
a mask that differs across the batch, and (2) a batch matrix
inversion for “small” matrices (e.g., 16× 16).

1) Register Tiling of Batch Matrix Multiplication (Like):
Figure 4a shows C-like pseudocode corresponding to com-
puting Line 2 of Algorithm 1 for M pixels (time-series),
where forall and forseq denote parallel and sequential
loops, respectively. Matrices A and B correspond to X[:,:n]

and XT
[:,:n] of size K×n and n×K, respectively—but the

transformation is valid for different Ks, i.e., K1 and K2 in
the figure. The important thing to notice is that the matrix
X has not been filtered—its inner size is n rather than n.
Instead, the innermost sequential loop has been padded to
count n and the missing values are not accumulated—i.e.,
1-isnan(Y[i,q]) evaluates to 0 under the convention that
a missing value is represented by NaN. It is worth noting that
such a code is only akin to matrix multiplication—due to the
filtering under the Y mask—but, to our knowledge, it is not
yet supported by any GPU or CPU high-performance library.

The code exhibits a key pattern that allows to significantly
optimize temporal locality: the subscripts of any of the ma-
trices A, B, and Y are invariant to exactly two of the three
outer-parallel loops—e.g., A[j1,q] is invariant to the loops
of indices i and j2, and Y[i,q] to the loops j1 and j2.
The result of the transformation is shown in Figure 4b. The
essence of it is that the original three (parallel) loops have



forall(i=0; i<M; i++) { // parallel
forall(j1=0; j1<K1; j1++) { // parallel
forall(j2=0; j2<K2; j2++) { // parallel
float acc = 0.0;
forseq(q=0; q<n; q++) {
float a = A[j1,q], b = B[q,j2], ab=a*b;
acc += ab * (1.0 - isnan(Y[i,q]));

}
M[i,j1,j2] = acc;

} }
(a) Naive Imperative Version

YT = transpose(Y);
forall(ii=0; ii<M; ii+=R) { // grid.z

forall(jj1=0; jj1<K1; jj1+=T1) { // grid.y
forall(jj2=0; jj2<K2; jj2+=T2) { // grid.x
forall(j1=jj1; j1<min(jj1+T1,K1);

j1++) { // block.y
forall(j2=jj2; j2<min(jj2+T2,K2);

j2++) { // block.x
float Yq

sh[R]; // shared memory
float acc[R]; // registers
for(i=0; i<R; i++) // fully unroll
acc[i] = 0.0;

float a, b, ab, y;
forseq(q=0; q<n; q++) { barrier;
float a=A[j1,q], b=B[q,j2], ab=a*b;
// collective copy global-to-shared
Yq
sh[0:R] = YT[q,ii:min(ii+R,M)];

barrier; // block-level synch
forseq(i=0; i<R; i++){//fully unroll
if(ii+i < M)
acc[i] += ab*(1.0-isnan(Y

q
sh[i]));

} }
forseq(i=0; i<R; i++)// fully unroll
if (ii+i<M) M[ii+i,j1,j2] = acc[i];

} } } } }
(b) Register Tiled Implementation

Fig. 4: Batched Matrix Multiplication under Variant Y Mask.

been tiled7 with tile sizes R=30 and T1/2=min(16,K1/2).
The resulting three parallel outer loops of indices ii, jj1,
jj2 morally form the CUDA grid, while their T1/2 tiles—
i.e., the loops of indices j1 and j2—form the CUDA block.8

The R-tile loop of index i has been sequentialized and
moved in the innermost position in the nest by distributing
it across the statements of the original loop-nest body. The
distribution requires to expand the local variables that are
updated with values variant to loop i with an extra array
dimension. For example acc was previously a scalar, but after
distribution it has become a length-R array of floats, but which
is actually stored in registers. In contrast, a and b have been
hoisted outside loop i (and not expanded) because their values
(e.g., A[jj1+j1,q]) are invariant to loop i.

The transformed code promotes temporal locality because it

7Stripming a loop for(i=0; i<M; i++) body with a tile R
corresponds to re-writting the original loop as two nested loops in which
the outer one advances with stride R and the inner one with stride 1, i.e.,
for(ii=0;ii<M;ii+=R){for(i=ii;i<min(M,ii+R);i++)body}.
Tiling corresponds to stripmining a loop, followed by interchanging its tile
in an inner position in the original nest.

8Threads within a CUDA block can be synchronized by barriers and can
utilize scratchpad/fast (shared) memory as a software-managed cache.

float[M][K][K] batchMatInv(float A[M][K][K]) {
float A−1[M][K][K]; // global memory result
forall i = 0...M-1 { // grid.x
float Ash[K][2*K]; // shared memory
// Pad A with identity matrix to the right
forall k1 = 0...K-1 { // block.y

forall k2 = 0...2*K-1 { // block.x
if (k2<K){ Ash[k1,k2] = A[i,k1,k2]; }
else { Ash[k1,k2] = (k2 == K+k1);}
barrier; // block-level synch

} } // end forall k1/2

// Gauss-Jordan Elimination:
forseq q = 0...K-1

float vq = Ash[0,q]
forall k1 = 0...K-1 { // block.y
forall k2 = 0...2*K-1 { // block.x

float tmp = 0.0;
if (vq == 0.0) tmp = Ash[k1,k2];
else {
float x = Ash[0,k2] / vq;
if(k1 == K-1) tmp = x;
else tmp = Ash[k1+1,k2] -

Ash[k1+1,q] * x;
}
barrier; // block-level synch
Ash[k1,k2] = tmp;
barrier; // block-level synch

} } // end forall k1/2

} // end forseq q
// collective copy shared-to-global mem:
A−1[i, 0:K, 0:K] = Ash[0:K, K:2*K];

} } // end forall i

Fig. 5: Batched Matrix Inversion: Loop-Based Specification

performs a factor of R× fewer accesses to arrays A, B and Y,
which are necessarily stored in global memory:

1. the computation of ab has been hoisted outside the loop
of index i, and hence one global-memory access to A/B
is amortized by R accesses to the register holding ab;

2. a collective copy performed in parallel by the threads in
the CUDA block brings the slice YT[q,ii:ii+R] from
global to fast (CUDA-shared) memory, from where it is
also reused R times (transposing Y in YT was necessary
to ensure coalesced accesses in the copying operation).

2) Batched Matrix Inversion in Shared Memory: The next
optimization addresses batched matrix inversion. Figure 5
shows C-like pseudocode for computing the inverses of a size-
M batch of K×K matrices, stored in the global-memory array A,
by means of Gauss-Jordan elimination. The batch dimension—
the loop of index i—is mapped to the CUDA grid, and the
ith CUDA block is responsible to invert matrix A[i], where
the block consists of K×(2K) threads, and are represented by
the parallel loop nests of indices k1,2.

The computation proceeds by semantically adjoining the
identity matrix to the right side of A[i], and by storing the
result in array Ash, which is allocated in fast (shared) memory.
Then each iteration of the sequential loop of index q updates in
parallel all elements of the matrix Ash, until the left side of Ash
is reduced to the identity matrix—this is guaranteed to happen
in maximum K sequential steps. Finally, the inverted matrix



is the right-hand side of the adjoined matrix (i.e., Ash[0:K,
K:2*K]), which is collectively copied by the threads of the
block to the result matrix A−1[i], stored in global memory.

This example demonstrates the benefits of our strategy,
described in Section III-B, which distributes the computation
for a batch of pixels across each group of same-size (inner)
parallel operations. This allows to adjust the CUDA-block size
for each kernel to match the inner-parallel size of that kernel;
in this case K×2·K. At its turn, this allows (i) to allocate array
Ash in shared memory—which offers significantly reduced
latency than global memory—and (ii) to repeatedly use and
update its values within a sequential loop of count K. Our opti-
mized implementation performs a factor of 3K fewer accesses
to global memory in comparison to a “naive” implementation,
which generates a factor of 5− 6× speed-up.

D. Implementation Details

The overall implementation of Algorithm 1 is based on
Python (version 3.6) and resorts to the optimized kernels
outlined above, which are integrated via PyOpenCL [35].
All GPU code is generated automatically from data-parallel
hardware-agnostic Futhark specifications, similar to the one
provided in the appendix (Figure 12). The data are usually pro-
vided as GeoTIFF files, which contain the compressed images.
In case the uncompressed image data are too large to fit in
host/GPU main memory, they first get split into chunks (which
happens on the host). For each chunk, the data are copied from
host to GPU prior to conducting some preprocessing steps
(e.g., data-dependent initialization of parameters or removal
of slices only containing NaN values). Afterwards, the GPU
kernels are invoked via PyOpenCL, followed by copying the
results (e.g., the break indices b) back to the host.

IV. PERFORMANCE ANALYSIS

This section evaluates on synthetic datasets the impact of (i)
the proposed transformations at individual-kernel level, and (ii)
the compilation strategy at application level, respectively.

A. Experimental Setup and Datasets

All experiments described in this section were performed on
an Intel system with 128GB RAM, 16 Xeon cores, model E5-
2650 v2, running at 2.60GHz, using 2-way hyperthreading,
which is also equipped with an RTX2080Ti NVIDIA GPU
with 11GB DRAM, 4352 cores running at 1.55GHz under
CUDA 9.2. The CPU-parallel code is hand-written in C and
compiled with GCC 4.8.5 (-fopenmp -O2); the reported
CPU runtimes were averaged across 20 runs and are based on
32 threads. We measured the total application runtime, minus
the time taken for initializing the GPU context, for loading the
program input onto the GPU, and for copying the results back
to the host; excluding these fixed overheads emphasizes the
performance differences between the kernel implementations.
The reported GPU runtimes were averaged across 250 runs.

We report performance both in milliseconds—the best GPU
runtime is displayed under the x-axis in the performance
figures—and in specification-giga floating-point operations

D1 D2 D3 D4 D5 D6 Peru Africa

(Small) (Small)

M 16384 16384 32768 32768 65536 16384 111556 589824

N 1024 512 512 256 256 1024 235 327

n 512 256 256 128 128 256 113 160

fNaN 50% 50% 50% 50% 50% 75% 69% 92%

TABLE I: The parameters M, N, n, and fNaN denote the number
of pixels, the lengths of the time series, the length of the
history period, and the frequency of (NaN) values, respectively.
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Fig. 6: Performance of Batch-Masked Matrix Multiplication

(flops) per second, dubbed GFlopsSp. The latter computes
the worst-case number of flops directly from the high-level
specification by means of an algebraic formula, which is
written in terms of the dataset-specific sizes M, N, n, K, and
which assumes that all flops have unit cost, including special
functions such as sqrt. In essence, GFlopsSp measures a
notion of normalized runtime, which allows to meaningfully
compare performance both between differently-optimized code
versions and across different datasets.

The performance was analyzed on the datasets shown in
Table I; their parameters M, N, n are named as in Algo-
rithm 1, where M denotes the number of image pixels and
where fNaN denotes the frequency of invalid (NaN) values.
Datasets D1-D5 are thought to vary the values for M and N,
while keeping n = N/2. The rationale of these datasets is to
demonstrate that the performance is relatively stable in such a
context. Dataset D6 is intended as an adversarial/stress case: It
has a rather small n = N/4 and a quite high NaN frequency.
While datasets D1-D6 are artificial9, Peru(Small) and
Africa(Small) are real-world datasets, which exhibit a
high frequency of invalid values, fNaN=69% and 92%, re-
spectively. In spite of the high fNaN, the performance on
Peru(Small) and Africa(Small) is competitive with
D1-D5 and superior to D6, which indicates that the synthetic
datasets are representative (if slightly pessimistic) test cases.
For all experiments, we resort to k=3 and thus K=2·k+2=8,
which is a common case in practice (also, due to tiling, larger
k values result in higher performance).

B. Impact of Optimizations on Individual Kernels

Figure 6 compares the performance of three implementa-
tions for the batch computation that squares matrix X[:,:n]

under the mask given by the time series of each pixel Y[:,:n], as
presented in section III-C1. The number of flops is 4MnK2.

9We use artificial datasets since we can control their characteristics and
can keep their sizes small enough to allow the experimental suite to run in a
reasonable runtime.
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The first bar in the figure refers to our register-tiling contri-
bution, the second bar refers to two-dimensional block tiling
(supported by the Futhark compiler [34]), and the third bar
refers to no tiling at all, i.e., unoptimized).

The performance of register tiling is relatively stable be-
tween 2.6− 3.7 TFlopsSp on all datasets except for D6. The
poorer performance on D6 is due to a compiler inefficiency
that results in the whole matrix Y being transposed rather than
only the slice corresponding to the training set Y[:M,:n]. This
affects all datasets, but predominantly D6, which has n=N/4,
while the others have n=N/2. We remark that solving that
inefficiency would not only raise the performance of D6 to
a level similar to the others, but will generate an additional
∼ 1.25× speed-up for the other datasets. In terms of the whole
application runtime, the discussed (transposition) inefficiency
is responsible for a ∼ 5% slowdown (and ∼ 8% for D6).

In comparison with the other two code versions—which do
not require transposition for Y—the register tiling currently
outperforms them by a 2 − 3× factor. One can observe that,
for this kernel, block tiling offers limited performance gains
over unoptimized code, because the temporal locality of Y is
not optimized (i.e., accessed repeatedly from global memory).

Figure 7 compares, in the case of the batched matrix inver-
sion kernel presented in Section III-C2, our strategy of aggres-
sively utilizing shared memory (first bar) to the one that still
exploits all parallelism, but utilizes only global memory, with
all accesses being coalesced (second bar). Several datasets are
redundant because the number of flops 6MK3 is invariant to
N and n. Our strategy generates a 5−6× speed-up, and offers
stable performance around 400 GFlopsSp. This number may
seem small, but this is due to the arithmetical intensity of the
implementation being low—the number of flops per memory
accesses is under one. In fact the Gbytes/secSp performance
is about 3.5× the peak bandwidth of the system.

C. Application-Level Performance

The overall performance is reported in Figure 8. The bars
denote, in order, several implementations generated under the
different optimization strategies discussed in Section III-B:
Ours uses register tiling and aggressively utilizes inner-

parallelism in fast (shared) memory. The performance
is stable at about 950GFlopsSp for all datasets but D6,
where it drops to 575GFlopsSp. Reasons are (i) the
inefficient-transposition issue discussed in the previous
section, and (ii) the fact that reducing n from N/2
to N/4 diminishes the weight of the efficiently-tiled
computations in the total runtime.

RgTl-EfSeq denotes a version in which matrix multiplication-
like computations have been efficiently tiled, but the inner
parallelism of the remaining code has been efficiently se-
quentialized. The figure shows that the impact of utilizing
inner-parallelism in fast memory is a factor between 2×
and 3× (on D5), except for D6 and Africa(Small),
where the higher weight of missing values narrows the
performance gap.

Full-EfSeq denotes the “naive” strategy that fuses everything
into one kernel and exploits only the outer parallelism of
size M (of the pixels in the image). The performance gap
between RgTl-EfSeq and Full-EfSeq demonstrates the
impact of tiling matrix multiplication-like kernels, which
results in 1.5− 2× speed-up at application level.

C denotes a hand written parallel C implementation based
on OpenMP, which is decently optimized for locality of
reference,10 but vectorization is left to what the GCC
compiler can extract. The parallel-CPU speed-up is about
21×, which is close to optimal given that it was obtained
on a 16-core CPU with 2-way hyperthreading.

The Ours GPU version outperforms the OpenMP-parallel C
by a factor between 24× on D6 to 48× on D5, which validates
the usefulness of the GPU acceleration for BFAST-Monitor.

V. LARGE-SCALE CHANGE DETECTION

Next, we will demonstrate the applicability of the overall
framework in the context of large-scale change detection
scenarios. We would like to stress that the purpose of the
following experiments is not to compare different change
detection methods: Our parallel implementation of BFAST-
Monitor yields the same results as the commonly used R
implementation (up to machine precision) and we do not claim
any algorithmic/methodical improvements over the BFAST-
Monitor approach. For a methodical comparison of different
change detection methods with BFAST-Monitor, we therefore
refer the reader to the related work [3], [30], [31]. Our

10Please note that high-performance libraries, such as Intel’s MKL were
not used for two reasons. First, the (filtered) matrix multiplication under
variant mask—presented in section III-C1—is not supported by such libraries.
Second, in our implementation each thread reuses the memory necessary for
executing one iteration, thus maximizing the cache performance. Using MKL
to implement the batch operations would require distributing the computation
such that matrix multiplication/inversion is performed for all (or a chunk of)
pixels, prior to performing the rest of the computation. This would require a
much-bigger memory footprint, which would likely result in poorer locality.



Fig. 9: Peru(Large): Detected changes (left) as well as
image data (RGB) for one time step (right).

work focuses on the computational performance and it is
very difficult to compare in this respect with other methods
implementations in this field, since they are all implemented
in high-level programming languages such as Python or R
and are not not optimized from a compute perspective [31],
see again Section II-C. Also note that the only existing GPU
implementation for BFAST-Monitor cannot be applied since it
addresses a simpler scenario, in which the time series do not
contain any missing values [27].

A. Experimental Setup

To show the practical benefits of our novel GPU imple-
mentation, we resorted to a standard desktop system with
an Intel(R) Core(TM) i5-8600K CPU at 3.60GHz,
32GB RAM, and a GeForce GTX TITAN Z GPU with
2880 shader units (6GB RAM), and considered large datasets
with up to billions of individual pixels to be processed. The
results were compared with the ones obtained via the available
R implementation executed on the same system using all 6
CPU cores (parallel execution over the pixels). We tested our
implementation on three real-world datasets of increasing size,
which were acquired through the Google Earth Engine [36]
and which are based on data from the Landsat [22] program:11

• Peru(Small): The smallest dataset is based on a
10x10km area in the south of the Loreto region in Peru,
where the main driver for deforestation was agricultural
expansion, see again Figure 3. The dataset is based on
image data with M = 334 · 334 pixels from N = 216
dates between 01/01/2000 and 31/12/2016.

• Peru(Large): The second dataset is based on the
entire province of Padre Abad in the central Amazon
rainforest of Peru, see Figure 9 for an illustration. This
area of over 8800 km2 is one of the most affected regions
in Peru regarding deforestation. The dataset contains
16GB of images with M = 4458 · 3678 pixels from
N = 488 dates (01/01/2000 to 31/12/2013).

• Africa: The third dataset is based on the entire conti-
nental tropical Africa (between 20°N and 20°S latitude).

11Collection 1 Tier 1 Surface Reflectance derived NDMI images of different
Landsat 5, 7, and 8 sensors. Data was only collected for the pixels that were
considered to be forest in 2010 (global tree cover with threshold 30 [37]).

The dataset contains 38234 images (2167GB) with M =
221 ·768 pixels based on 6873 dates between 01/01/2000
and 31/12/2018. Note that for each individual image,
one is given only about N = 350 slices that contain
any data (these slices are extracted efficiently before
applying the core algorithm, see Section III-D).12 The
Africa(Small) dataset considered in the previous
section contains the data from one of the images and
is based on N = 327 dates/slices.

We investigate both the runtime of the different phases as well
as the overall runtimes needed to process the entire scenarios.

B. Practical Runtime Analysis

The practical runtimes of our implementation (based on the
Ours version) on the three datasets are shown in Figure 10.
The single images of both Peru(Large) and Africa were
too big to fit into GPU memory and were, hence, split into
50 chunks. We measured the preprocessing time (host), the
transfer time (between host and GPU), the kernel execution
time (GPU), as well as the overhead for the chunking (host),
see Section III-D. The runtimes reported depict averages over
ten runs for both Peru(Small) and Peru(Large). For
Africa, the average runtime per single image is reported
(computed based on 50 random images).

It can be seen that (1) the transfer time between host and
GPU is generally smaller than the one for the execution of
the kernel and that (2) the preprocessing time and the time
needed to partition the data into chunks are, together, close
to the kernel execution time. Thus, the computations for these
phases can be interleaved, leading to the kernel execution time
dominating the overall runtime (thus, the runtimes allow a
direct comparison with the C implementation that was ana-
lyzed in the previous section). Note that the R implementation
needed more than 25 hours to process Peru(Large) (using
all 6 CPU cores), whereas the GPU implementation could
process this scenario in about 17 seconds, which corresponds
to a speed-up of more than 5000×.13 It is worth noting that
loading the images from disk to host and decompressing them
has become the new bottleneck (e.g., about 25 seconds for
Peru(Large)). However, from a practical perspective, this
is not a problem since many BFAST-Monitor runs are gener-
ally conducted (e.g., for different history/monitoring periods or
for different values for k), which compensates this overhead.

C. Unsupervised Change Detection for Massive Data

Finally, we conducted large-scale experiments for all
datasets, where we varied the start and the end of the monitor-
ing periods. More precisely, different periods starting at 2010
were considered, each lasting one year (i.e., 2010–2011, 2011-
2012, . . . ). In addition to the break indices (and the associated

12For areas extending over multiple satellite swaths (data from adjacent
Landsat swaths are acquired on different days), each image is often extended
with missing values (NaN) to create one data-cube for the entire area.

13The main reason for this significant speed-up is the fact that the baseline
implementation resorts to the high-level programming language R and that is
also not optimized for parallel execution.
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Fig. 10: Practical runtime in seconds (s) needed by our GPU implementation for the three different datasets. For Africa, the
average runtime needed to process a single image is reported (processing all 38234 images takes about 90 hours).

time), BFAST-Monitor outputs the magnitude of the change
for the monitoring period (i.e., the mean of the MOSUM
process). A positive mean can be interpreted as an increase in
greening, or moisture, which are associated with an increase
in vegetation, and vice-versa. The results for Peru(Small),
Peru(Large), and for Africa are shown in Figure 3,
Figure 9, and Figure 11, respectively. In each case, the figure
illustrates where and when a break with negative magnitude
occurred, which can be interpreted as vegetation decrease after
2010 (we refer to the literature in remote sensing [4]–[8], [15],
[17]–[21] for a more detailed discussion of such results).

Using our GPU implementation, it takes about 90 hours
to process a single monitoring period for Africa (e.g.,
2010–2011), and about four weeks to process the whole
Africa scenario using a single GPU.14 Note that scenarios
of this size have never been analyzed before as it would take
years to obtain the results with the available R implementation,
even in case multiple powerful multi-core machines were used.
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APPENDIX

1) Notation: We use i32 and f32 to denote 32-bits integer
and floating-point types, respectively. We use [N][M]f32 as
the type of a two-dimensional array of floats with N rows and
M columns. We use [a1,. . .,an] to denote an array literal
and (0,...,n-1) to denote an array containing the integers
from 0 to n-1. We use for example (i32,[N]f32,[N]f32)
to denote a tuple (record) type containing an integer, and two
length-N arrays of floats. Similarly, we use (a,b) to denote
a tuple value. Here are the semantics of some operators:

map f [a1, . . . , an] = [f a1, . . . , f an]

map2 f [a1, . . . , an][b1, . . . , bn] = [f a1 b1, . . . , f an bn]

reduce ⊕ 0⊕ [a1, . . . , an] = 0⊕ ⊕ a1 ⊕ . . .⊕ an
scan ⊕ 0⊕ [a1, . . . , an] = [a1, a1 ⊕ a2, . . . , a1 ⊕ . . .⊕ an]

Map produces a result array by applying its function ar-
gument f to each element of its input array. The function
can be declared in the program or can be an anonymous
(lambda) function; for example map (λx→x+1) arr adds
one to each element of array arr. Similarly, map2 applies its
function argument to (corresponding) elements from its two
array parameters. Please note that calling function f on two
arguments a and b is written as f a b, i.e., without any
parenthesis or commas. Reduce successively applies a binary-
associative operator (⊕) to the elements of its input array,
and can be parallelized by a reduction-tree computation (0⊕
is the neutral element of ⊕). Scan [32] is similar to reduce,
except that it produces an array of length n containing all
prefix sums of its input array. In addition, replicate n a

creates an array of length n whose elements are all a. Finally,
scatter x is vs updates in place the array x at indices
contained in array is with the values contained in array vs,
but out-of-bounds indices are ignored (not updated). For exam-
ple, scatter [0.5,1.0,1.5] [2,-1,0] [3.5,.5,2.5]

results in array [2.5,1.0,3.5]. We use |> to pipe the
result of a function application as input to another function,
for example map (λx→x+1) arr |> reduce (+) 0 adds
one to each element of arr and then sums up the result array.

Finally, a function declaration consists of a sequence of
typed parameters of form (name: type), optionally a result
type, and an expression (the function body). An expression
can be a function call, binary operation, comparison, an
if cond then e1 else e2 expression—which has similar
semantics to the C expression (cond ? e1 : e2)—or a
let expression. The latter can be seen as a sequence of (let)
statements followed by one return denoted by the in keyword.



2) Details: The data-parallel specification is presented in
Figure 12, where the entry-point function is named bfast.
For the most part we kept the names consistent with those in
section III-A, except that we use Xsqr and Xsqr−1

instead of
M and M

−1
. For example, Y:[M][N]f32 denotes an image

with M pixels and a time-series of N values per pixel, and hf
denotes the fraction of the valid values in the training set that
give the width of the MOSUM window. The result is a length-
M array of tuples, recording the index of the first break (or -1
if none) and the MOSUM mean for each pixel. A preliminary
step computes (once) the matrix X by parallel function mkX,
its transpose XT , and their slices X[:,:n] and XT

[:,:n]. The
main computation consists of the outer map which applies the
anonymous function implementing BFAST-Monitor to the time
series y of each pixel of the image: First, X[:,:n] is squared
under the mask of y[:n], i.e., the matrix multiplication ignores
the elements in the rows of X[:,:n] for which the corresponding
value in y[:n] is invalid (NaN). Then the obtained matrix
is inverted by Gauss-Jordan elimination, and the result is
recorded in Xsqr−1

. These steps—i.e., functions mmMulFilt
and matInv—are discussed in sections III-C1 and III-C2.
Second, the matrix X[:,:n] is multiplied with the vector y[:n]

under the mask y[:n], and the resulting vector is multiplied
with the matrix Xsqr−1

to produce β. The implementation of
mvMulFilt is shown at the top of Figure 12, and the one
of mvMul is the standard matrix-vector multiplication—i.e.,
1.0-(isnan y) is missing. The final matrix-vector multi-
plication between XT and β yields the prediction ŷ for the
whole time series. Third, the error between actual values and
prediction is computed (map2 (-) y ŷ) and the invalid (NaN)
values are filtered out from the result. This is accomplished
by the function filterNaNsWKeys resulting in N—the
number of valid values—together with arrays r and I, which
record consecutively, the prediction error of the valid values
and their indices in the original time series, respectively.15

In the remaining code, the padding is not shown to simplify
the notation. The number of valid entries in the training set n,
the MOSUM process parameter σ̂, and the first value of the
MOSUM process mfst are computed each by a map-reduce
operation. Then the whole MOSUM process m is computed
by a map-scan-map composition, and its mean is computed
by a reduction. Lastly, the index of the first break brk is
computed by a (map-)reduce operating on boolean-integer
tuples recording whether a break was found at the current
index. If it exists, the index of the first break is remapped to
the one in the original time series, otherwise -1 is reported.
The comments -- ker i delimit a computation that is a
composition of operations of same-parallel size, which will
be mapped to a CUDA kernel i, as explained in Section III-B.

15The implementation of filterNaNsWKeys, shown in Figure 12, first
marks in tfs the valid/invalid entries with one/zero, then it scans tfs to
obtain the consecutively-reordered indices for the valid entries. The following
map2 turns the invalid indices to -1, so that they are ignored by the final two
scatter operations that reorder the valid values and their original time-
series indices in arrays vs and ks, respectively. The logical length of vs and
ks is the last element of scanned array indsT. The arrays are padded to
length N because the logical length varies across pixels, leading otherwise to
irregular computation across pixels and expensive bookkeeping overhead.

let mvMulFilt[n][m](xss:[n][m]f32)(ys:[m]f32)=
map(λxs → map2(λx y → x * y * (1.0-(isnan y))

) xs ys |> reduce (+) 0
) xss

let filterNaNsWKeys [N] (vec: [N]f32) :
(i32, [N]f32, [N]i32) =

let tfs = map (λv → 1 - (isnan v)) vec
let indsT = scan (+) 0 tfs
let inds = map2 (λi tf → tf*i-1) indsT tfs
let vs=scatter (replicate N NAN) inds vec
let ks=scatter (replicate N 0) inds (0...N-1)
in (indsT[N-1], vs, ks)

entry bfast[M][N] (k:i32) (n:i32) (f:f32)(λ:f32)
(hf: f32)(Y: [M][N]f32): [M](i32,f32) =

let K = 2*k + 2
let X = mkX K f -- [K][N]f32 -- ker 1
let XT = transpose X
let (X[:,:n],X

T
[:,:n]) = (X[:,:n],XT[:n,:]) in

map(λy → let y[:n] = y[:n]

-- Xsqr,Xsqr−1

:[K][K]f32; β0,β:[K]f32
let Xsqr = mmMulFilt X[:,:n] XT

[:,:n] y[:n] -- ker 2

let Xsqr−1

= matInv Xsqr -- ker 3
let β0 = mvMulFilt X[:,:n] y[:n] -- ker 4

let β = mvMul Xsqr−1

β0 -- ker 5
-- ŷ, r, I : [N]f32
let ŷ = mvMul XT β -- ker 6
let (N,r,I)= map2 (-) y ŷ |> -- ker 7

filterNaNsWKeys -- ker 7
-- ker 8; inner-parallel size: n
let n= map (λv → 1 - (isnan v)) y[:n]

|> reduce (+) 0
let σ̂0 = map (λa → a*a) (r[:n])

|> reduce (+) 0.0
let σ̂ = sqrt (σ̂0 / (r32 (n-K)))
let h = t32 ((r32 n) * hf)
-- ker 9; inner-parallel size: h
let mfst= map(λi → r[i+n-h+1]) (0...h-1)

|> reduce (+) 0.0
-- ker 10; inner-parallel size: N-n
let m0=map(λt→ if t==0 then mfst

else r[n+t]-r[n-h+t]
)(0...N-n-1) |> scan (+) 0.0

let m = map (λm0
t → m0

t/(σ̂*(sqrt (r32 n)))
) m0

let mean = reduce (+) 0.0 m
let (found_break, brk) =

map2 (λmt t →
let bt = λ * (sqrt (log+(

t
n
)))

in ((abs mt) > bt, t)
) m (0...N-n-1) |>

reduce ( λ(b1,i1) (b2,i2) →
if b1 then(b1,i1) else(b2,i2)

) (false,-1)
let brk’= if !found_break then -1

else remapIndices brk n n N I
in (brk’, mean)

) Y

Fig. 12: Functions r32 and t32 implement conversions be-
tween real and integral values. Function isnan returns either
integer or real 0 if the argument is a NAN value, or 1 if it is not.
Function mvMul denotes matrix-vector multiplication and it is
similar to mvMulFilt except that factor 1-(isnan y) is
missing. Functions mmMulFilt and matInv are discussed
in Sections III-C1 and III-C2.


