
Compositional Deep Learning in Futhark
Duc Minh Tran

University of Copenhagen
Denmark

cwz688@alumni.ku.dk

Troels Henriksen
University of Copenhagen

Denmark
athas@sigkill.dk

Martin Elsman
University of Copenhagen

Denmark
mael@di.ku.dk

Abstract
We present a design pattern for composing deep learning
networks in a typed, higher-order fashion. The exposed li-
brary functions are generically typed and the composition
structure allows for networks to be trained (using back-
propagation) and for trained networks to be used for pre-
dicting new results (using forward-propagation). Individual
layers in a network can take different forms ranging over
dense sigmoid layers to convolutional layers. The paper dis-
cusses different typing techniques aimed at enforcing proper
use and composition of networks. The approach is imple-
mented in Futhark, a data-parallel functional language and
compiler targeting GPU architectures, and we demonstrate
that Futhark’s elimination of higher-order functions and
modules leads to efficient generated code.

CCS Concepts • Computing methodologies → Paral-
lel programming languages; Neural networks; • Soft-
ware and its engineering→ Software performance; Soft-
ware libraries and repositories.

Keywords deep learning, data-parallelism, functional lan-
guages

ACM Reference Format:
Duc Minh Tran, Troels Henriksen, and Martin Elsman. 2019. Com-
positional Deep Learning in Futhark. In Proceedings of the 8th ACM
SIGPLAN International Workshop on Functional High-Performance
and Numerical Computing (FHPNC ’19), August 18, 2019, Berlin, Ger-
many. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3331553.3342617

1 Introduction
Deep learning artificial neural networks are becoming in-
creasingly important for a large variety of application areas,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FHPNC ’19, August 18, 2019, Berlin, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6814-8/19/08. . . $15.00
https://doi.org/10.1145/3331553.3342617

including areas such as speech recognition, image classi-
fication, and search. With the rapid development of new
application domains and increased performance demands,
the architectures and configurations of deep neural networks
have increased in complexity. Today’s deep neural network
toolkits, including Caffe [17], Torch [6], CNTK [30], and
TensorFlow [1], allow end users to configure and combine
different kinds of layers in a variety of ways using library
APIs or embedded domain specific languages.

Implementations of particular instances of deep neural
networks benefit, with respect to performance, from spe-
cialisation and the use of massively parallel architectures,
such as GPGPUs. Such specialisations can be achieved, for
instance, using runtime code generation, as supported by,
for instance TensorFlow’s XLA [21], or using computation
graph analysis frameworks, such as R-Stream.TF [24].

In this paper, we present a prototype deep neural network
library, written entirely in the data-parallel functional lan-
guage Futhark [14], which is a statically typed language,
featuring a set of data-parallel second-order array combi-
nators (SOACs), such as map, reduce, scan, and filter. The
language also features polymorphism, higher-order func-
tions [16], and higher-order modules [7]. Common to these
surface language abstraction features is that they come with
zero overhead as the features are compiled away at compile
time. The effect is that traditional compiler optimisations
and optimisations that are essential for obtaining a high de-
gree of data-parallel performance, such as fusion [11–13]
and tiling [14], work for SOACs across modules and function
boundaries. As a consequence of using Futhark for imple-
menting a deep neural network library, the compilation of
specified neural network computation graphs benefits from
fusion and other GPU architecture-specific optimisations
that Futhark implements.
Figure 1 shows a specification of a dense 3-layer neural

network in Futhark. After being trained with images of hand-
written digits and information about the digit each image
represents (the MNIST data set), the network can be used to
infer the denotation of new handwritten digits. The first layer
is the input layer, consisting of 784 neurons representing
28 × 28 grey-scale pixels. The second layer is a so-called
hidden layer, which is essential for representing features in
the image. The third layer is the output layer, from which we
can read 10 output values and infer which digit (0-9) the input
image, most probably, represents. The first two lines import
and instantiate the library module to work with 32-bit floats.

47

https://doi.org/10.1145/3331553.3342617
https://doi.org/10.1145/3331553.3342617
https://doi.org/10.1145/3331553.3342617

FHPNC ’19, August 18, 2019, Berlin, Germany Duc Minh Tran, Troels Henriksen, and Martin Elsman

module dl = deep_learning f32

let (>-) = dl.nn.connect_layers

let mk_dense (i,o) =

let seed = 1

in dl.layers.dense (i,o) dl.nn.identity seed

let nn = mk_dense (784 ,256) >- -- input layer

mk_dense (256 ,256) >- -- hidden layer

mk_dense (256 ,10) -- output layer

let main [m] (input:[m][]dl.t)

(labels :[m][]dl.t) =

let train = 64000

let validation = 10000

let batch_size = 128

let alpha = 0.1

let nn2 = dl.train.gradient_descent nn alpha

input[:train] labels [:train]

batch_size

odl.loss.softmax_cross_entropy

in dl.nn.accuracy nn2

input[train:train+validation]

labels[train:train+validation]

dl.nn.softmax dl.nn.argmax

Figure 1. Futhark code for specifying a dense neural network
for training and inferring hand-written digits based on the
MNIST data set.

The mk_dense function takes a number of input edges and a
number of output edges and creates a layer of neurons. The
infix function >- is used to connect layers. The main function
first trains the network with 64,000 images using batch-based
stochastic gradient descent. It then measures the accuracy
of inferring digits for another 10,000 images.

As we shall see in Section 8, the Futhark program ends up
running faster than when the same network is trained with
TensorFlow. The Futhark DNN library also has support for
convolutional layers. However, due to Futhark not generat-
ing sufficiently efficient code for certain matrix operations,
Futhark is (still) slower than when the same experiment is
performed with TensorFlow.

The contributions of this paper are the following:

• We present a functional and typed design for deep
neural networks that is easily extensible by the user.
• We demonstrate by a nontrivial application that high-
level language constructs such as higher-order func-
tions do not preclude high performance.
• We show that a non-domain-specific parallel func-
tional language can perform competitively with spe-
cialised deep learning frameworks like TensorFlow.

The remainder of this paper is organised as follows. In
Section 2, we present some essential background on deep
neural networks. In Section 3, we present some of the essen-
tial features of the Futhark language. In Section 4, we present
how we can define a network essentially to be a pair of two
functions, one that operates in forward mode through the
layers of the network (for inference) and one that operates in
backwards mode (for learning). We also show how two net-
works are composed by, essentially, composing the forward
and backward functions, individually. In Section 5, we show
how the different kinds of layers are implemented, including
dense layers, convolutional layers, and other administrative
kinds of layers. Sections 6 and 7 present additional network
functionality and how an elaborate convolutional network is
assembled using the library. In Section 8, we evaluate the per-
formance of code generated using the approach. In Section 9,
we present related work and in Section 10, we conclude and
describe possible future work.

2 A Neural Network Primer
A deep neural network is defined as a composition of lay-
ers. Different kinds of layers exist, including dense sigmoid
layers, convolutional layers, max-pooling layers, and others.

Each layer consists of a fixed set of units (or neurons) with
adaptable parameters, which can be changed by a process
called training. When some input data is passed to the net-
work, each successive layer uses the output from the previous
layer as input. The result of evaluating a network on some
input will then be available as the output of the final layer.
The interpretation of the output from a network depends
on the modeling problem. A common one is the multiclass
problem with N prediction classes. The goal of the neural
network is then to predict which class the input data belongs
to. In such a case the output is interpreted as probabilities.

The simplest form of a deep neural network consists of a
number of dense layers, for which each output of a layer is
connected to every neuron in the next layer. We have already
seen an example of such a network in Section 1.
A key property of a deep neural network is that it can

adjust its internal weight parameters by a training process
called back-propagation [22, 26]. This feature comes from the
representation of each neuron, which is a function that takes
n input values and results in a single output value. Based
on the partial derivatives of these n-variate functions that
make up the network layer, we can deduce how a particular
suggested change in the output should affect the weights
defining the neuron functions and how we should suggest
that the output of previous layers should change.
For utilising parallel architectures efficiently, the back-

propagation phase is organised in a so-called batched sto-
chastic gradient descent process, for which we will compute
suggested changes for a batch of training data (e.g., stochasti-
cally chosen sets of training images) in parallel. The process

48

Compositional Deep Learning in Futhark FHPNC ’19, August 18, 2019, Berlin, Germany

... ...
...

xD

x2

x1

zM

z1

yK

y1

Input

layer

Hidden

layer

Output

layer

Figure 2. A 3-layer dense neural network with an input
layer, a hidden layer, and an output layer.

will then repeat the parallel computation of network changes
until the network stabilises. The process is parameterised
over a learning rate (often named α), a batch size, and, of
course, the size of the training data set.
An example 3-layer dense neural network is shown in

Figure 2. We can describe the first layer with M neurons
as havingM linear combinations with D inputs. Using this
formulation and letting x1,x2, · · · ,xD be the input into the
network, we can write the first layer calculation as:

aj =
D∑
i=1

w (1)
ji xi + b

(1)
j (1)

where j ∈ {1...M }. The superscript (1) refers to the layer
being the first layer. The w ji is called the weight, the bj is
called the bias, and each quantity aj is called the activation of
a neuron and is transformed using a differentiable, non-linear
activation function, σ (·) giving

zj = σ (aj) (2)

The zj are the output of the first layer, which are then passed
onto the next layer, where the same process is continued,
until the final layer is reached. Following the same procedure
for the next layer, we can write

ak =
M∑
j=1

w (2)
k j zj + b

(2)
k for k = 1, ..,K (3)

Once the end of a network is reached, the output activations
are transformed using an appropriate activation function
into yk , depending on the problem the network tries to solve.
With multiclass problems, it is common to transform each
output unit into probabilities, by using the softmax function,
which is defined by

softmax (ak) = yk =
eak∑K
i=1 e

ai
for k = 1...K (4)

where 0 ≤ yk ≤ 1 with
∑K

k=1 yk = 1, which can be inter-
preted as a probability. Combining (1), (2), (3), and (4), we

Loss function E (w) ∂E (w)
∂yk

Cross-entropy (CE) −
∑K

k=1 (tk ln yk) −
tk
yk

CE with softmax −
∑K

k=1

(
tk ln

eyk∑K
i=1 e

yi

)
yk − tk

Sum of squares 1
2
∑K

k=1 (yk − tk)
2 yk − tk

Figure 3. Common loss functions and their derivatives.

can express the network as a composition of operations and
the network function therefore takes the form

yk (x,w) = softmax *.
,

M∑
j=1

w (2)
k j σ

*
,

D∑
i=1

w (1)
ji xi + b

(1)
j

+
-
+ b (2)k

+/
-
(5)

Here we have grouped the weights and bias parameters into
w. Thus a dense neural network is a nonlinear function
from a set of input variables x to a set of output variables y,
controlled by a set of adjustable parameters, w. For imple-
mentation purposes, we can rewrite this formulation into
matrix form and use matrix-vector multiplication instead
of summations. For a neuron j in the first layer, we have
that

∑D
i=1w

(1)
ji xi is just the dot-product. As we haveM neu-

rons each with a set of weights, we can therefore represent
the weights in the first layer asW (1) : RM×D with the biases
B (1) : RM . Likewise for the next layer, we defineW (2) : RK×M
with the biases B (2) : RK . All in all, we have

y(x,W) = softmax
(
W (2)σ

(
W (1)x + B (1)

)
+ B (2)

)
(6)

The above process of evaluating (6) is called the forward
propagation of information through the network.
Activation functions (σ (·)) are required to be differen-

tiable, which is necessary when training networks, since
we need to use the derivative of the input for backpropa-
gation through the network. Common activation functions
include tanh, ReLU (i.e., rectified linear unit), sigmoid, and
softmax. As an example, the sigmoid function is defined
as sigmoid (x) = 1

1+e−x with the derivative sigmoid ′(x) =
sigmoid (x) (1 − sigmoid (x)).

2.1 Training
Before we can use a neural network to make a prediction
about a given input, we first need to train the network. The
idea is that we want yk (x,w) to predict our target values
tk for all k . For each set of yk and tk , we can calculate a
loss, defined by some function E (w). Figure 3 shows some
common loss functions.
Notice that the definitions of cross-entropy functions in

Figure 3 assume that target values are encoded as ti = 1 for
exactly one i and is zero otherwise (one-hot). To learn from
training, we want to minimise the loss function with respect
to the weightsw. Letting ▽E (w) denote the gradient, that is,
the direction of the greatest rate of increase of the error func-
tion, we can see that the smallest value of E will occur when

49

FHPNC ’19, August 18, 2019, Berlin, Germany Duc Minh Tran, Troels Henriksen, and Martin Elsman

▽E (w) = 0, as our loss function is a smooth continuous
function of w. To achieve this effect, we want to determine
▽E (w) and subtract it from our weights such that we ap-
proach a minimum, which ideally is a global minimum. By
iterating, we improve the neural network’s prediction power
a small step at a time. This process is called the gradient
descent optimisation algorithm, which can be written

wτ+1 = wτ − α▽E (wτ) (7)

where τ is the iteration step and α denotes the learning rate.
Stochastic gradient descent (SGD) is the method where the

gradients of a single data point (e.g., the vector x) is applied
to the weights at the time. In contrast, for batch gradient
descent, gradients of multiple data points are applied to the
weights at the same time. In short, for batch gradient descent,
Equation (7) becomes:

wτ+1 = wτ − α
1
N

N∑
n=1

▽En (wτ) (8)

The intuition of the backpropagation algorithm is that
starting from the output error, we want the errors to flow
backwards into the network and thereby adjust the weights.
The backbone of the backpropagation algorithm is the chain
rule, which states that if f and д are two differentiable func-
tions then the derivative (f ◦ д)′(x) = f ′(д(x))д′(x), where
◦ means function composition. As we want to determine
▽E (w), we need to determine ∂E

∂W l , by applying the chain
rule recursively back through the network for each layer l .
We shall not present the mathematical foundation for the
back-propagation algorithm in detail here, but rather refer
to [3, Chapter 5]. We shall however, present the backpropa-
gation algorithm in matrix form [25].

Assume a network of depth d with δ (l) ,W (l) , B (l) , and z (l)
denoting the errors, weights, biases, and activations of the
l ’th layer, respectively. Moreover, let the input x into the
network be z (0) . The backpropagation algorithm can then be
expressed as follows:

z (l) = σ (l) (W (l)z (l−1) + B (l)) (9)

δ (d)
=
∂E

∂z (d)
• σ ′(d) (W (d)z (d−1) + B (l)) (10)

δ (l) = (W (l+1))Tδ (l+1)
• σ ′(l) (W (l)z (l−1) + B (l)) (11)

∂E

∂W (l)
= δ (l) (z (l−1))T (12)

∂E

∂B (l)
= δ (l) (13)

Here • denotes the element-wise product, also called the
Hadamard product and (·)T denotes transposition.

3 Futhark
Futhark is a small high-level, purely functional array lan-
guage from the ML-family, which is designed to generate

efficient data-parallel code. The Futhark compiler can gener-
ate GPU code via OpenCL or CUDA, although the language
itself is hardware-independent. A deep knowledge of Futhark
is not required to understand this paper, but a few notational
details will be clarified below. As most languages from the
ML-family, Futhark supports parametric polymorphism via
type parameters, which are written as a name preceded by
an apostrophe. Here is a parametric type abbreviation and a
polymorphic identity function:

type vector 't = []t -- array of 't's

let id 't (x: t): t = x

Futhark also supports size parameters, which can be used
to impose constraints on the sizes of the arrays accepted by
a function, for example that vector addition requires arrays
of identical sizes:

let vadd [n] (xs:[n]f32) (ys:[n]f32) :[n]f32 = ...

Size parameters are not passed explicitly when a function
is applied, but inferred from normal parameters. Size con-
straints are checked dynamically. Futhark supports higher-
order functions with some restrictions [16], and also higher-
order modules. The latter is used in the deep learning library
to abstract over the scalar type—in practice, whether we use
single-precision f32 or double-precision f64 scalars.
Futhark supports regular nested parallelism (i.e., nested

parallelism where all inner parallel constructs do the same
amount of work) through a process called moderate flat-
tening, which translates regular nested parallelism into flat
parallelism suitable for executing on a GPU [14]. Moreover,
Futhark sometimes generates multiple code versions of the
same nested parallel constructs through a process called in-
cremental flattening, which leads to code that, at runtime, se-
lects a code version based on possibly auto-tuned parameters
[15]. Futhark does not, like NESL [4], support irregular par-
allelism, but exposes a number of higher-order library func-
tions for supporting irregular nested parallel patterns [8].

4 Representing Networks
Recall from Section 2 that one aspect of a neural network
is that two layers can be combined by letting the output of
the first layer be the input to the next one and that we can
express this aspect of a neural network as a function that
takes some weights and input and returns some output. From
the derivation of the backpropagation algorithm [3, Chap-
ter 5], we have that errors from the output layer are passed
back through the network, where each layer passes errors
to the previous one. Using these observations, we can view
a neural network as a pair of two functions. That is, for a
network of depth n, we can write fn (fn−1 (· · · (f1 (·))) for the
forward pass and b1 (b2 (· · · (bn (·)))) for the backward pass.
This simple insight is the main idea behind the technique, for

50

Compositional Deep Learning in Futhark FHPNC ’19, August 18, 2019, Berlin, Germany

which neural networks are represented as the composition
of pairs of functions. With this representation, a single layer
is now essentially the same as a one-layer network, which
defines two functions f (·) and b (·). Conceptually the idea is
simple, but the functions need to carry additional informa-
tion for the idea to be implemented efficiently. We first define
a couple of parameterised type abbreviations for specifying
forward functions and backwards functions, respectively:

type forwards 'input 'w 'output 'cache =

bool → w → input → (cache , output)

type backwards 'w 'cache 'err_in 'err_out 'u =

bool → u → w → cache → err_in → (err_out , w)

Intuitively, a function of a particular instance of the forwards
type takes a boolean, some weights, and input and returns
a pair of a cache and the output from the network. The
cache1 stores intermediate results, so that, during backpropa-
gation, values need not be recomputed eagerly. The boolean
argument is there to indicate if the function is called during
training; if it is not, the function just returns an empty cache.
A function of a particular instance of the backwards type

takes a function u for applying the gradients to the weights,
some weights, the information stored in the cache from the
forward pass, and the errors that are backpropagated from
the following layer. The returned value is a pair of the up-
dated weights and errors to be backpropagated further down
the network. The function u is provided by the particular
optimiser used (e.g., gradient descent), which enables the
handling of gradients in different ways. Other types of op-
timisers can use different instantiations of the type u. The
initial boolean argument is there to indicate if it is the first
layer of the network. In this case, we do not need to calculate
and backpropagate errors. This is a minor optimisation, but
can give a performance increase on longer training passes.
In an abstract sense, a neural network (or an individual

layer of a neural network) is a record holding a forwarding
function, a backpropagation function, and a representation
of the network weights. Here is how it can be specified in
Futhark as a parameterised type abbreviation NN:

type NN 'input 'w 'output 'c 'e_in 'e_out 'u =

{ forward : forwards input w output c,

backward: backwards w c e_in e_out u,

weights : w }

We shall later see howwe can allow for networks, given as
instances of the above type, to be composed. Notice, however,
that the specification allows for each layer implementation to
use its own concrete representations of caches and weights.
However, how one layer chooses its concrete types will affect

1The term “cache” is used with the meaning of “stored away for future use”,
and has no relation to memory caches as a computer-architectural concept.

whether the layer can be combined with other layer types,
which in some cases will require a utility layer.

For composing networks, we shall be more specific about
the abstract type u. We first define the following two param-
eterised type abbreviations:

type std_weights 't = ([][]t, []t)

type apply_grad 't = std_weights t → std_weights t

→ std_weights t

Because optimisers operate on weights and gradients, the
concrete types of these concepts need to be known to the
optimisers. As a consequence, apply_grad is defined as a trans-
parent type. Layers that do not use this weight representation
needs to reshape their weights and gradients before applying
the function. Most optimisers update gradients and weights
in bulk operations (e.g., all gradients gets the same learning
rate applied), and therefore reshaping will not affect the up-
date. However, if an optimiser does not treat gradients in
bulk, then this design may be non-optimal.

Here is the type of the function connect_layers, which takes
two networks and combines them into one:

type pair 'x 'y -- abstract

val connect_layers 'w1 'w2 'i 'o1 'o2

'c1 'c2 'e1 'e2 'e :

NN i1 w1 o1 c1 e e1 (apply_grad t) →

NN o1 w2 o2 c2 e2 e (apply_grad t) →

NN i1 (pair w1 w2) o2 (pair c1 c2) e2 e1

(apply_grad t)

Notice that the representation of how caches and weight
structures are composed is kept abstract using type abstrac-
tion at the modules level.

The implementation of the function connect_layers is given
in Figure 4. Forward functions are combined in a forward
fashion whereas backpropagation functions are combined
in a backwards fashion. As mentioned already, some type
restrictions apply when combining two networks, nn1 and
nn2. The output type of nn1 must match the input type of nn2
and the error output type of nn2 must match the error input
type of nn1, which are the only restrictions when connecting
two networks. These restriction are also reflected in the two
neural network types in Figure 4. That is, the output type
from the first network, o1 on line 5 is the same as the input
to the second network on line 7. Weights and caches are
also combined into tuples, which become more and more
nested as the network depth increases. This representation
completely avoids the use of 1D arrays and indexing, but
instead inlines functions and makes use of tuples to repre-
sent a network. The representation allows layer information
to be stored in their native form along with layer-specific
auxiliary information. Additionally, extending the library
with a new layer type, is only limited to the concrete layer
implementation itself and does not affect other parts.

51

FHPNC ’19, August 18, 2019, Berlin, Germany Duc Minh Tran, Troels Henriksen, and Martin Elsman

type pair 'x 'y = (x,y)

let connect_layers 'w1 'w2 'i 'o1 'o2

'c1 'c2 'e1 'e2 'e

({ forward=f1 , backward=b1, weights=ws1}

: NN i1 w1 o1 c1 e e1 (apply_grad t))

({ forward=f2 , backward=b2, weights=ws2}

: NN o1 w2 o2 c2 e2 e (apply_grad t))

: NN i1 (pair w1 w2) o2 (pair c1 c2) e2 e1

(apply_grad t) =

{forward = \is_training (w1,w2) input →

let (c1 ,res) = f1 is_training w1 input

let (c2 ,res2) = f2 is_training w2 res

in ((c1 ,c2), res2),

backward = _ u (w1,w2) (c1,c2) error →

let (err2 ,w2 ') = b2 false u w2 c2 error

let (err1 ,w1 ') = b1 true u w1 c1 err2

in (err1 , (w1 ',w2 ')),

weights = (ws1 , ws2)}

Figure 4. Function for combining two networks.

4.1 Library Structure
Having defined the core types and functions of the library,
this section will provide an overview of the library structure.
The implementation makes use of Futhark’s higher-order
modules [7]. As a neural network consists of many compo-
nents, we naturally separate each of these components into
separate modules. Weight initialisation functions, activation
functions, and loss functions are implemented within their
own modules, respectively. Layer implementations are kept
abstract and each concrete layer implementation must match
an abstract module type layer_type.
All concrete layer implementations are collected in the

module layers, which allows us to access all layer function-
ality through a single module. Optimiser implementations
follow the same structure as layers. As layers and optimisers
in general have more complex implementations, an addi-
tional level of abstraction is used.
Finally, the neural_network module contains a number of

generic utility functions, including the connect_layers func-
tion (or >-) and functions for calculating the loss or accuracy
of a network. The next sections will provide details on the
implementations, starting with activation functions.

4.2 Activation Functions
Recall that an activation function has the characteristic of
being differentiable, so that we can use its derivative during
the backward pass to calculate the gradient. Therefore, an
activation function is represented as a pair, containing the
function itself and its derivative. That is, we can define its
abstract type as follows:

type activation_func 'o = {f:o → o, fd:o → o}

Activation functions provided in this implementation all
use a 1D array as their concrete type, which is required
since the softmax function is applied on a sequence of acti-
vations. A key reason for this representation is that users
can define their own pair of functions and use them should
the library not contain them. This choice ensures a flexible
system, where the user is not limited to the library imple-
mentation. Supported activation functions include sigmoid,
tanh, ReLU, identity, and softmax, although softmax cannot be
used during training in a layer. The implementations are
straightforward and follow the outline in Section 2. Activa-
tion functions can be accessed through the neural_network

module through simple wrappers, following the same inter-
face as TensorFlow.

4.3 Loss Functions
The definition of loss functions follows the same idea as
activation functions, but they have a different signature:

type loss_func 'o 't = {f:o → o → t, fd:o → o → o}

Again, this abstract type allows users to define their own
loss functions and in this implementation, a loss function’s
concrete type of 'o is a 1D array. Following the definitions
in Figure 3, supported loss functions include cross_entropy,
cross_entropy_with_softmax, and sum_of_squares.
Both activation function types and loss function types

are defined globally as they are also used by concrete layer
modules and the neural_network module.

4.4 Optimisers
Optimisers may implement the backpropagation algorithm
by calling the forward and backward passes on a network
and apply the gradients through its own implementation of
the abstract function apply_grad. The library is open in the
sense that end users may implement new optimisers with the
constraint that they must match the optimiser module type,
which is shown in Figure 5. Here learning_rate is allowed
to be a function type, which allows an optimiser implemen-
tation to adapt the learning rate to different training steps
with a user defined function.

A call train nn lrate inp lbls bsz lfun returns the network
nn modified based on the training data, available in the input
and label arrays (inp and lbls), and based on the supplied
learning rate lrate, the batch size bsz, and the loss func-
tion lfun. The restrictions on the abstract function train is
straightforward, given a neural network, the input and out-
put should match the input data and the labels respectively.
The types of the input data and labels must be arrays, where
each data point is an element, such that we can easily loop
through the input data. The loss function given as argument
should also match the output type. The only optimiser the
implementation provides is a stochastic gradient descent
optimiser, which is defined in the gradient_descent module.

52

Compositional Deep Learning in Futhark FHPNC ’19, August 18, 2019, Berlin, Germany

module type optimizer_type = {

type t

type learning_rate

val train 'i 'w 'g 'e2 'o :

NN ([]i) w ([]o) g ([]o) e2 (apply_grad t)

→ learning_rate → (input_data :[]i)

→ (labels :[]o) → (batch_size:i32)

→ loss_func o t

→ NN ([]i) w ([]o) g ([]o) e2 (apply_grad t)

}

Figure 5. Abstract optimiser module.

let train [n] 'w 'g 'o 'e2 'i

({ forward=f, backward=b, weights=w}

: NN ([]i) w ([]o) g ([]o) e2 (apply_grad t))

(alpha:learning_rate) (input:[n]i)

(labels :[n]o) (batch_sz: i32)

({f=_, fd=loss '}: loss_func o t) =

let updater = apply_grad_gd alpha batch_sz

let (w',_) =

loop (w,i) = (w,0) while i < length input do

let input ' = input[i:i+batch_sz]

let label ' = labels[i:i+batch_sz]

let (cache , output) = f true w input '

let error = map2 loss ' output label '

let (_, w') = b false updater w cache error

in (w', i + batch_sz)

in {forward=f, backward=b, weights=w'}

Figure 6. Train function in the gradient_descent module.

Training a network is done by a loop as shown in Figure 6.
At each step, the input is forward propagated and the error
is calculated (line 16 and 17), which is then backpropagated
through the network to get the updated weights (line 18
and 19). The updater value is a function that takes the gradi-
ents and weights of a layer and performs the update using
equation (8). The process is repeated, until all input data has
been processed, returning a network with updated weights.

5 Layers
Errors are backpropagated back through the network as
described by Equation 11, which we restate here:

δ (l)
= (W (l+1))Tδ (l+1)︸ ︷︷ ︸

error′

• σ ′(l) (W (l)z (l−1) + B (l)) (14)

The error’ part is backpropagated as the error term, as it
can be calculated at layer l + 1, but not at layer l . All layer
implementations must follow this convention, so that er-
rors can be backpropagated correctly. The remaining part,
σ ′(l) (W (l)z (l−1) +B (l)) is calculated at layer l , where the term

module type layer_type = {

type t

type input_params

type activations

type input

type output

type weights -- Initialise a layer given

type err_in -- input parameters , an

type err_out -- activation function , and

type cache -- a seed.

val init : input_params → activations → i32 →

NN input weights output cache

err_in err_out (apply_grad t)

}

Figure 7. The generic layer module type.

W (l)z (l−1) + B (l) is retrieved from the cache. The abstract
module type layer_type is defined as shown in Figure 7.

A concrete layer implementationmust define its own input,
output, weights, err_in, err_out, and cache types and it must
provide a function that initialises the layer given its own de-
fined input parameters and activation function. The integer
given is used as a seed parameter, which is used for layers
with random weight initialisation (dense and convolutional
layers). Notice that layer functions are expecting a batch of
data points at the time for forward and backward passes,
such that the parallelism is optimised.

The implemented layers are dense, 2D convolutional, max-
pooling, and flatten. The latter is a utility layer, which allows
a convolutional layer to be combined with a dense one.

5.1 Dense Layers
Dense layers are initialisedwith a tuple (m,n) of two integers,
each of which represents the input and output dimensions,
respectively. The weights are then represented as a matrix
of dimensions n ×m, where each row represents the weights
associated with a neuron, along with a 1D array of length
n for the biases, following the same representation as in
Section 2. The forward pass is implemented directly using
equation (9), with appropriate transposing of the input data,
as it is in row format. Matrix multiplication is performed
using the function matmul from the futlib/linalg library. The
cache in a dense layer consists of the original input and
the result after applying the biases, which are used during
backpropagation. The backward pass is implemented using
equation (11), (12), and (13) directly.

5.2 Convolutional Layers
Implementing a convolutional layer is not as straightforward
as implementing a dense layer. There are many ways con-
volutions can be implemented efficiently, with each method
having different strengths and weaknesses. The need for fast

53

FHPNC ’19, August 18, 2019, Berlin, Germany Duc Minh Tran, Troels Henriksen, and Martin Elsman

convolutions is evident in that convolutional networks are
used in real-time applications, such as self-driving cars for
detecting pedestrians, which requires low latency. Thus, the
success of a convolutional network is limited by how fast
the convolution can be performed [20]. Convolutional oper-
ations are compute-expensive operations and H. Kim et. al.
[19] show that more than 70 percent of the training time is
spent in convolutional layers on the AlexNet network, which
consists of 5 convolutional layers and 4 fully-connected lay-
ers. The search for faster convolutional algorithms is an
active research area, where the common approach is to re-
duce the amount of multiplication operations at the expense
of additions and/or use of auxiliary memory.
The main idea behind convolutional layers is that data,

like images, contain ”hidden” information in the spatial struc-
ture, which can be utilised when searching for patterns. The
input into a convolutional layer is therefore three dimen-
sions, described by height, width and depth, H ×W × D.
We will first consider the case of depth equal to one, thus
reducing the dimensions to two, and since it’s common to
have square images, the input dimensions becomes N × N .
When data is fed into an ordinary dense neural network,
the input is stretched out into a single dimension, resulting
in the spatial information being lost. With a convolutional
network, however, the spacial information is maintained. In
convolutional layers, weights are often called filters,2 which
a layer can have multiples of. These filters are (usually) small
square matrices. Each filter is slided across the input image
in both dimensions with a predetermined stride constant and
computes the dot-product for each stride, which is called the
convolutional operation. Figure 8 shows an example.

An important property of a convolutional layer is weight
sharing. The sharing of weights causes equivariance, which
means that if the input changes, then the output changes
in the same way [9, ch. 9]. Convolutional layers are only
naturally equivariant to shifts, but not to rotation or scaling.
The goal is to have each filter adapt to certain characteristics
of the input images. For example, one filter should detect
edges, another should detect depth, and so on. We can define
a convolutional operation3 for a single output value,ai j given
an image, I and a single filter, Ff of size k × k as:

(I ⊗ Ff)i j = ai j =
k−1∑
m=0

k−1∑
n=0

I [i +m, j + n]Ff [m,n] (15)

The output from a convolutional layer is now called an ac-
tivation map, and we can calculate the dimensions of the
activation map, given an input image of dimensions n × n
2Filters are also called kernels, but in order not to confuse with GPU kernels,
the term filter is used here.
3This is technically a cross-correlation operation, as a convolution operation
requires flipping the filter, but when training a network, it doesn’t matter
which is used, as long as one is consistent during forward and backward
passes. This is also how TensorFlow performs its convolutional operation,
https://tensorflow.org/api_guides/python/nn#Convolution

and filter size of k × k with a stride of s as(
(n − k)

s
+ 1

)
×

(
(n − k)

s
+ 1

)
(16)

In the case of the depth dimension, also called channels, is
larger than one, the image channels must match the filter
channels, because we are doing 2D convolutions,4 (i.e., if the
input is of dimensions n × n × c , then the filter must have
dimensions k × k × c). The output value, ai j is then the sum
of the dot-products from each channel. Therefore, the depth
dimension of the output from a convolutional layer is only
determined by the number of filters, Nf , in a convolutional
layer and we can write the output dimension as(

(n − k)

s
+ 1

)
×

(
(n − k)

s
+ 1

)
× Nf (17)

The activations, ai j from a convolutional layer, given an
image, I of size n × n × c and a filter Ff of size k × k × c is

(I ⊗Ff)i j = ai j =
k−1∑
m=0

k−1∑
n=0

c−1∑
c ′=0

I [i+m, j+n, c ′]Ff [m,n, c ′]+bf

(18)
for i, j = 1, .., (n−k)s + 1. The operation is then repeated for
each filter in F . Notice that there is only one bias value for
each filter. That is, there areNf bias values in a convolutional
layer. The convolutional layer also applies an activation func-
tion σ () resulting in the output from the convolutional layer.

zi j = σ (ai j) (19)

Removing subscripts, the output of a convolutional layer is:

Z = σ (I ⊗ F + B) (20)

Like in the MLP case this is also called the forward propaga-
tion of information, but in this case there is no natural way
to transform it into matrix form.

5.2.1 Backpropagation
The backpropagation algorithm for the convolutional net-
work is similar to the one for a dense neural network, but
with the matrix multiplications replaced by convolutional
operations. The full derivation is omitted here; instead we
refer to [18] for a full derivation. The equations of the back-
propagation algorithm for the convolutional network are:

Z (l) = σ
(
Z (l−1) ⊗ F (l) + B (l)

)
(21)

δ (l)
= δ (l+1)

⊗
(
F (l+1)

)rot (180◦)
• σ ′

(
Z (l−1) ⊗ F (l) + B (l)

)
(22)

∂E

∂F (l)
= Z (l−1) ⊗ δ (l) (23)

∂E

∂B (l)
=

∑
m

∑
n

δ (l)
mn (24)

4The 2D refers to the dimensions the filter is slided in and not the dimensions
of the filter nor the input image.

54

https://tensorflow.org/api_guides/python/nn#Convolution

Compositional Deep Learning in Futhark FHPNC ’19, August 18, 2019, Berlin, Germany

x00 x10 x20
x01 x11 x21
x02 x12 x22

⊗

[
f00 f10
f01 f11

]
=

[
[x00 x10 x01 x11] · f [x10 x20 x11 x21] · f
[x01 x11 x02 x12] · f [x11 x21 x12 x22] · f

]

Figure 8. A convolutional operation, with input image of size 3x3 and filter size 2x2 with a stride 1, where · denotes the
dot-product and f is the vector [f00 f10 f01 f11]T .

Here δ (l) have the same semantics as in the case of a dense
neural network. Notice that in equation (22) each filter is
rotated 180 degrees, 5 (or flipped), since we need to map the
errors back to the input with the corresponding weights, e.g.
from the example in Figure 8 x00 is only affected by f00. In
order to do so, we need to flip the filter and perform a full
convolutional operation, meaning that some of the filter goes
out-of-bounds. This is in practice solved by adding k −1 zero
padding around δ , where k is the filter size and then one can
perform a normal convolutional operation. Figure 9 shows an
example of the full convolutional operation, where one can
see that the result has the same dimensions as the example
in Figure 8, and verify that we have correctly mapped the
errors back to its input through the filter, f .

Having defined the backpropagation algorithms, we now
show how we can combine a convolutional layer with a
dense layer. For the forward pass, we simply stretch out
the output of the convolutional layer, before applying it to
the fully-connected one. For the backward pass we need
to substitute δ (l+1)

⊗
(
F (l+1)

)rot (180◦)
in equation (22) with

(W (l+1))Tδ (l+1) from equation (11) in order to calculate the
errors δ (l) in equation (22). Combining layers in the opposite
order follows the same logic, but is uncommon, because
spatial information is lost in a fully-connected layer.

The simplest implementation of a convolutional operation
follows equation (18) directly, which, however, leads to poor
performance. Another approach is to lower the convolution
into a matrix multiplication, which can be done, in case of
images, by transforming image data into matrices using a
function called im2col, which arranges the image slices into
a column matrix. This approach is called the GEneric Matrix-
Matrix multiplication (GEMM) approach. By representing
filters as matrices as well, we can perform the convolutional
operation as a matrix multiplication. Matrix multiplication
can be done very efficiently on GPUs, as it can utilise the
local memory that has low latency and high bandwidth. The
downside is that it uses a lot of auxiliary memory and also
additional resources to transform the data to matrix form.
As an example, given a 4 × 4 image and a filter of size 2 × 2
with a stride of 1, Figure 10 shows how the transformation
duplicates the data by a factor of 2.25. This factor increases
linearly with the image size.

5This rotation is a consequence of the derivation and is necessary regardless
of whether a cross-correlation or a convolutional operation is used.

The Fast Fourier Transformation (FFT) along with the con-
volution theorem is another popular approach [28], but this
approach performs well only for large filter sizes as the extra
padding on small filters and unused calculations outweighs
the benefit of performing element-wise multiplications. It
also only works with a stride equal to one [19, p. 59]. For
filters of smaller sizes (5 and below), the Winograd minimal
filtering (WMF) algorithm [20] is usually better than FFT. The
WMF algorithm is also based on the GEMM approach and
achieves its performance gain by transforming the data with
pre-computed auxiliary matrices for each filter size, which
reduces the arithmetic complexity of the convolutional oper-
ation. Because these matrices need to be pre-computed, each
filter size requires a special case and therefore theWMF algo-
rithm is applicable only to a small set of filter sizes. The two
latter methods uses an excess amount of auxiliary memory
to hold intermediate results.

Determining which algorithm is fastest cannot always be
predetermined, as it depends on batch size, stride, and so on.
For example, TensorFlow executes all available algorithms
to identify which is best [19, p. 60]. Also the NVIDIA cudNN
library [23] implements all three approaches. Here we shall
be concerned only with implementing the GEMM approach,
which can be applied in the general case and performs rea-
sonably well for small batch sizes, but scales poorly as the
batch sizes increases, because the transformation to matrix
form becomes too expensive [19].

The cudNN library solves this issue by reading fixed sized
submatrices of the input data from the off-chip memory onto
the on-chip memory successively and computes a subset
of the output. This is done while fetching succeeding sub-
matrices onto the on-chip memory, essentially hiding the
memory latency associated with the data transfer. The effect
is that the computation is limited only by the time it takes to
perform the arithmetic, while limiting the auxiliary memory
usage [5, p.5]. The cudNN library provides both options in
their API (i.e., to form the matrix explicitly or implicitly).
The implicit GEMM approach is not possible in Futhark,

and the closest approach is to perform a loop, which iterates
through the input, computing each in chunks, but this ap-
proach does not hide the memory latency and seems like a
half solution to the problem, as different systems have differ-
ent memory capacities. As the memory allocation failures
only occur when calculating the accuracy for many data
points at the same time, well above the normal batch sizes

55

FHPNC ’19, August 18, 2019, Berlin, Germany Duc Minh Tran, Troels Henriksen, and Martin Elsman

0 0 0 0
0 δ00 δ10 0
0 δ01 δ11 0
0 0 0 0

⊗

[
f11 f01
f10 f00

]
=

[0 0 0 δ00] · д [0 0 δ00 δ10] · д [0 0 δ10 0] · д
[0 δ00 0 δ01] · д [δ00 δ10 δ01 δ11] · д [δ10 0 δ11 0] · д
[0 δ01 0 0] · д [δ01 δ1 0 0] · д [δ11 0 0 0] · д

Figure 9. Example of a full convolution operation by padding the errors δ with zeroes and applying the flipped filter,
д = [f11 f01 f10 f00]T from Figure 8.

x00 x01 x02 x03
x10 x11 x12 x13
x20 x21 x22 x23
x30 x31 x32 x33

⇒︸︷︷︸
im2col

x00 x01 x02 x10 x11 x12 x20 x21 x22
x01 x02 x03 x11 x12 x13 x21 x22 x23
x10 x11 x12 x20 x21 x22 x30 x31 x32
x11 x12 x13 x21 x22 x23 x31 x32 x33

Figure 10. Example of im2col operation on a 4 × 4 image
with a 2 × 2 filter and a stride of 1.

[
f000 f010
f100 f110

] [
f001 f011
f101 f111

]
⇒

[
f000 f010 f100 f110 f001 f011 f101 f111

]

Figure 11. A single filter of size 2 × 2 × 2 representation in
a convolutional layer.

used during training, we have implemented only the explicit
GEMM approach, which transforms the input image into
matrix form explicitly.

5.2.2 The Implementation
The convolutional layer implementation takes four param-
eters, number_of_filters, filter_size, stride, and input_depth.
The latter is needed to initialise the proper filter depth to
match the input depth. Currently only square filters are
possible, although it will not be difficult to support also non-
square filter sizes. The input layout for N images is assumed
to be N × D × H ×W , where D, H andW is depth, height,
and width respectively.

5.2.3 The Forward Pass
The forward pass is done by using the im2col function, which
transforms the image, given filter size and image offsets, into
a matrix. By representing filters as a matrix and with the
image matrix in place, the convolutional operation can be
performed by a matrix multiplication. The biases and the
activation function is then applied to the result.

The cache consists of the image matrix, which helps avoid-
ing performing the transformation again during the back-
ward pass. We need, however, to store the original image
dimensions. We also cache, in a suitable format, the result of
the convolutional operation after applying the bias, which
means that we do not have to reshape it when we perform
the Hadamard product during backpropagation.

5.2.4 The Backward Pass
The backward pass is based on equations (22) and (23). Hav-
ing calculated δ (l) , we flatten each of the layers and perform
a matrix multiplication for the convolutional operation in
(23) with the image matrix from the cache. For backpropaga-
tion of the errors to the previous layer, we flip the filters first,
which is done by slicing into the filter vector and reverse
each filter separately using the Futhark function reverse. Re-
call that equation (22) is a full convolution and we need to
pad δ (l) before transforming it into matrix form. From that
representation, we perform a matrix multiplication again to
perform the convolutional operation.

5.3 Max Pooling
A max pooling layer is initialised with a tuple (wm,wn) of
two integers, which represent the dimensions of the sliding
window, where the stride in the two dimensions respectively
is implied from those parameters. The forward pass is done
by sliding the pooling window over the input image, where
each slice is given to the function max_val, which returns
the index of the maximum value in the slice and the value
itself as a tuple. The index is then transformed to an offset
in the original image as if it was a 1D array and stored along
with the maximum value. Finally, we unzip the offsets from
the values and keep the offsets in the cache and forward
propagate the down-sampled values.

The backward pass is implemented using the offsets from
the cache along with the scatter function. The original image
size is first created as a 1D array and filled with zeros. Each
of the 2-dimensional errors given is then flattened, and we
can then perform a scatter operation on each of them with
the corresponding set of offsets. Now every value is in the
correct place and before returning, we reshape the errors
into the correct shape.

6 Additional Network Functions
As we not only want to train a network, but also want to be
able to evaluate a model, a number of additional functions
are provided:

• predict: Given a network, input data, and an activation
function, the predict function performs the forward
pass of the network with the input data and returns
the output activations.

56

Compositional Deep Learning in Futhark FHPNC ’19, August 18, 2019, Berlin, Germany

Layer type Filters/neurons
Filter/

window sz Stride
Activation
function

conv2d 32 5 × 5 1 relu
max pooling 0 2 × 2 2 N/A

conv2d 64 3 × 3 1 relu
max pooling 0 2 × 2 2 N/A

dense 1024 N/A N/A identity
dense 10 N/A N/A identity

Figure 12. CNN with input dimension of 1 × 28 × 28.

module dl = deep_learning f32

open dl.layers dl.nn

let (>-) = connect_layers

let seed = 1

let conv1 = conv2d (32, 5, 1, 1) relu seed

let max_pool1 = max_pooling2d (2,2)

let conv2 = conv2d (64, 3, 1, 32) relu seed

let max_pool2 = max_pooling2d (2,2)

let fc = dense (1600, 1024) identity seed

let output = dense (1024, 10) identity seed

let nn = conv1 >- max_pool1 >- conv2 >-

max_pool2 >- flatten >- fc >- output

Figure 13. Example CNN built with the library.

• accuracy: The accuracy function takes a network, input
data, labels and an activation function and performs
the forward pass like predict, but additionally com-
pares the output activations from the network with
the labels. The choice of comparison is done using
either an argmax or argmin function,6 which is given
to the accuracy function as argument. The function
returns the degree of accuracy of the network.
• loss: The function calculates and returns the accumu-
lated loss on a network given some input data, labels,
and a loss function.

These functions are defined in the neural_network module.

7 Putting it All Together
The implementation defines a deep_learning module, which
combines themodules layers, optimizers, loss, and neural_network

so that we only have to instantiate a single module. Having
defined all of these components, we can now see how one
can build the convolutional network defined in Figure 12.
The network is designed to be trained on the MNIST data-set.

Figure 13 shows how we can put together such a net-
work using the library. Notice that we first define each of
our layers separately. We then build our network using the

6Recall from Section 2 that the outputs are interpreted as probabilities, and
therefore, the output activation with the highest probability will be the
prediction of the input.

let main [m] (inp: [m][]dl.t)

(labs: [m][]dl.t) =

let input = map (\i → [unflatten 28 28 i]) inp

let train = 64000

let validation = 10000

let batch_size = 128

let alpha = 0.1 -- learning rate

let nn ' = dl.train.gradient_descent nn alpha

input[:train] labs[:train]

batch_size

dl.loss.softmax_cross_entropy

in dl.nn.accuracy nn '

input[train:train+validation]

labs[train:train+validation]

dl.nn.softmax dl.nn.argmax

Figure 14. Example of training a network with the library.

Table 1. Benchmark results for the dense neural network.

Batch size
Library 16 32 64 128
TensorFlow 5072ms 2831ms 1614ms 970ms
Futhark 862ms 448ms 215ms 123ms
Relative speedup 5.88 × 6.32 × 7.51 × 7.88 ×

Table 2. Benchmark results for the convolutional network.

Batch size
Library 16 32 64 128
TensorFlow 7158ms 3906ms 2118ms 1358ms
Futhark 4533ms 3091ms 2434ms 2135ms
Relative speedup 1.57× 1.26 × 0.87 × 0.63 ×

connect_layers function. Having defined our network, we can
train it and calculate the accuracy, as shown in Figure 14.

The program first trains the network on 64,000 data points
with a batch size of 128 and a learning rate of 0.1. The ac-
curacy of the trained network is then calculated on 10,000
separate data points.

On a Unix-like system, the program can be compiled with
the futhark-opencl compiler and executed as follows:

$ futhark -opencl mnist_conv.fut

$./ mnist_conv < path/to/mnist_100000_f32.bindata

8 Empirical Evaluation
While the contribution of this paper is not primarily perfor-
mance, we wish to demonstrate that our presented design
can perform well. Therefore, this section compares the per-
formance of our implementation with Aymeric Damien’s

57

FHPNC ’19, August 18, 2019, Berlin, Germany Duc Minh Tran, Troels Henriksen, and Martin Elsman

TensorFlow examples,7 neuralnetwork.py (a multilayer per-
ceptron—MLP) and convolutionalnetwork.py (a convolutional
network), with some minor modifications. Specifically, we
removed the dropout layer in the convolutional network and
changed the optimiser to gradient descent. We then ported
the two networks to Futhark. As training data, we use the
classic MNIST dataset for digit recognition, and both net-
works use the loss function cross entropy with softmax. While
we do not claim that TensorFlow is the fastest neural network
implementation available (performance is lost to interpretive
overhead by going through Python), it is widely used, and so
serves as a good point of comparison to the level of perfor-
mance used in practice. The implementations are available
at https://github.com/diku-dk/futhark-fhpnc19, including
instructions (and scripts) for downloading the MNIST data
set and for executing and benchmarking the code.

We run our experiments on a single NVIDIA RTX 2080 Ti
GPU with CUDA 10 and TensorFlow 1.13.1. Each training
run is done with a single traversal (“epoch”) of 54,000 data
points, with four different batch sizes: 128, 64, 32 and 16.
There is no universally best batch size. In practice, model
developers run their models several times to find the best
value. The batch size is also limited by hardware memory
combined with the size of the network architecture. Thus, a
benchmark should not be limited to only one batch size, but
rather to a range of batch sizes, to provide a comprehensive
performance overview. The training is done ten times (plus
a warmup run), from which we report the average runtime.
The runtime results are shown in Table 1 and 2.

We see that Futhark significantly outperforms TensorFlow
on the MLP. We believe this is due to the individual layers be-
ing relatively simple, and thus easy for the Futhark compiler
to optimise. In contrast, TensorFlow outperforms Futhark on
the convolutional network. This is because of the convolu-
tional layers, which in our implementation are implemented
with the im2col algorithm. The Futhark compiler does a
decent job of optimising the resulting code, but TensorFlow
makes use of NVIDIAs heavily hand-optimised and propri-
etary cuDNN library [5], whose implementation—and per-
haps choice of algorithm—for convolution far outperforms
the ones generated by Futhark.

9 Related Work
The dataflow programming model used by neural network
libraries, such as TensorFlow [1] and Theano [2], is simi-
lar to pure functional programming, but is usually exposed
through object-oriented or procedural interfaces. Such li-
brary approaches suffers from the friction between the low-
level language used for implementing layer primitives, and
the high-level language (often Python) used to describe the
network topology. These libraries can be made available in a

7https://github.com/aymericdamien/TensorFlow-Examples/tree/master/
examples/3_NeuralNetworks

functional language, as seen for example in Hasktorch,8 but
the fundamental friction is still present.
Also related to the present work is the work on imple-

menting a convolutional neural network in APL [29], a dy-
namically typed functional array language. Whereas the APL
implementation itself is not shown to run very efficiently,
it is used as a specification for a hand-compilation into SaC
[27], which shows good performance and is demonstrated to
run faster than TensorFlow on CPU. Compared to our work,
however, their solution implements the forward pass inde-
pendent from the backward pass. An interesting experiment
would be to investigate whether previous work on compiling
APL to Futhark [10] could provide decent performance for
an APL implementation of a convolutional network.

Polyhedral optimisations provide a common technique for
optimising loops, and have also been applied to optimising
TensorFlow graphs [24]. In principle, techniques that directly
take into account the semantics of neural networks should
be able to perform better optimisations than a compiler for
an ordinary parallel language, for example, by exploiting
nondeterminism, which the Futhark compiler will not do, as
Futhark has deterministic semantics.

10 Conclusion
We have shown a functional design for a neural network
library structured as the composition of functions. While
the design is language-agnostic, our implementation is in
Futhark. Our benchmarks suggest that for a multiplayer per-
ceptron, our implementation is capable of competing with
existing libraries like TensorFlow. For convolutional net-
works there is still some work to do to achieve performance
parity, but we are within a factor of two in all cases. Consider-
ing that our library is algorithmically not very sophisticated,
and that we are competing with expertly hand-written GPU
code, our results are promising.
In the future, we would like to extend our approach to

handle more complex network topologies, such as recurrent
neural networks. Further, we would like to extend Futhark’s
support for size parameters to statically verify that the output
of a layer is compatible with the input of the following layer
(such failures are currently not detected until run-time).

Acknowledgments
This work has been supported by the Independent Research
Fund Denmark grant under the research project FUTHARK:
Functional Technology for High-performance Architectures.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,

8https://github.com/hasktorch/hasktorch

58

https://github.com/diku-dk/futhark-fhpnc19
https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/3_NeuralNetworks
https://github.com/aymericdamien/TensorFlow-Examples/tree/master/examples/3_NeuralNetworks
https://github.com/hasktorch/hasktorch

Compositional Deep Learning in Futhark FHPNC ’19, August 18, 2019, Berlin, Germany

Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Distributed Systems. white paper.

[2] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-
Farley, and Yoshua Bengio. 2010. Theano: A CPU and GPU Math
Compiler in Python. In Procs. of the 9th Python in Science Conference,
Stéfan van der Walt and Jarrod Millman (Eds.). 3 – 10.

[3] ChristopherM. Bishop. 2006. Pattern Recognition andMachine Learning
(Information Science and Statistics). Springer-Verlag, Berlin, Heidel-
berg.

[4] Guy E. Blelloch and John Greiner. 1996. A Provable Time and Space
Efficient Implementation of NESL. In Proceedings of the First ACM
SIGPLAN International Conference on Functional Programming (ICFP
’96). ACM, New York, NY, USA, 213–225. https://doi.org/10.1145/
232627.232650

[5] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Co-
hen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN:
Efficient Primitives for Deep Learning. CoRR abs/1410.0759 (2014).

[6] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. 2011.
Torch7: A Matlab-like Environment for Machine Learning. In BigLearn,
NIPS Workshop.

[7] Martin Elsman, Troels Henriksen, Danil Annenkov, and Cosmin E.
Oancea. 2018. Static Interpretation of Higher-order Modules in
Futhark: Functional GPU Programming in the Large. Proceedings
of the ACM on Programming Languages 2, ICFP, Article 97 (July 2018),
30 pages.

[8] Martin Elsman, Troels Henriksen, and Niels Gustav Westphal Serup.
2019. Data-parallel Flattening by Expansion. In Proceedings of the 6th
ACM SIGPLAN International Workshop on Libraries, Languages and
Compilers for Array Programming (ARRAY 2019). ACM, New York, NY,
USA, 14–24. https://doi.org/10.1145/3315454.3329955

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep
Learning. MIT Press. http://www.deeplearningbook.org.

[10] Troels Henriksen, Martin Dybdal, Henrik Urms, Anna Sofie Kiehn,
Daniel Gavin, Hjalte Abelskov, Martin Elsman, and Cosmin Oancea.
2016. APL on GPUs: A TAIL from the Past, Scribbled in Futhark. In
Procs. of the 5th Int. Workshop on Functional High-Performance Com-
puting (FHPC’16). ACM, New York, NY, USA, 38–43.

[11] Troels Henriksen, Martin Elsman, and Cosmin E. Oancea. 2014. Size
Slicing: A Hybrid Approach to Size Inference in Futhark. In Proceedings
of the 3rd ACM SIGPLAN Workshop on Functional High-performance
Computing (FHPC ’14). ACM, New York, NY, USA, 31–42. https:
//doi.org/10.1145/2636228.2636238

[12] Troels Henriksen, Ken Friis Larsen, and Cosmin E. Oancea. 2016. De-
sign and GPGPU Performance of Futhark’s Redomap Construct. In
Proceedings of the 3rd ACM SIGPLAN International Workshop on Li-
braries, Languages, and Compilers for Array Programming (ARRAY
2016). ACM, New York, NY, USA, 17–24.

[13] Troels Henriksen and Cosmin Eugen Oancea. 2013. A T2 Graph-
reduction Approach to Fusion. In Proceedings of the 2Nd ACM SIGPLAN
Workshop on Functional High-performance Computing (FHPC ’13). ACM,
New York, NY, USA, 47–58. https://doi.org/10.1145/2502323.2502328

[14] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein,
and Cosmin E. Oancea. 2017. Futhark: Purely Functional GPU-
programming with Nested Parallelism and In-place Array Updates.

In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2017). ACM, New York,
NY, USA, 556–571. https://doi.org/10.1145/3062341.3062354

[15] Troels Henriksen, Frederik Thorøe, Martin Elsman, and Cosmin
Oancea. 2019. Incremental Flattening for Nested Data Parallelism.
In Proceedings of the 24th Symposium on Principles and Practice of
Parallel Programming (PPoPP ’19). ACM, New York, NY, USA, 53–67.
https://doi.org/10.1145/3293883.3295707

[16] Anders Kiel Hovgaard, Troels Henriksen, and Martin Elsman. 2018.
High-performance defunctionalization in Futhark. In Symposium on
Trends in Functional Programming (TFP’18). Springer-Verlag.

[17] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan
Long, Ross B. Girshick, Sergio Guadarrama, and Trevor Darrell. 2014.
Caffe: Convolutional Architecture for Fast Feature Embedding. CoRR
abs/1408.5093 (2014). arXiv:1408.5093 http://arxiv.org/abs/1408.5093

[18] Jefkine Kafunah. 2016. Backpropagation in Convolutional
Neural Networks. Stanford. https://canvas.stanford.
edu/files/1041875/download?download_frd=1&verifier=
tFv4Jc7bCezxJg9rG2yhEKEERi70zJ3ScmFbNlbN.

[19] H. Kim, H. Nam, W. Jung, and J. Lee. 2017. Performance analysis of
CNN frameworks for GPUs. In 2017 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). 55–64. https:
//doi.org/10.1109/ISPASS.2017.7975270

[20] Andrew Lavin. 2015. Fast Algorithms for Convolutional Neural Net-
works. CoRR abs/1509.09308 (2015). arXiv:1509.09308

[21] Chris Leary and Todd Wang. 2017. XLA: TensorFlow, compiled! Ten-
sorFlow Development Summit 2017.

[22] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. 1989. Backpropagation Applied to Handwritten
Zip Code Recognition. Neural Comput. 1, 4 (Dec. 1989), 541–551.
https://doi.org/10.1162/neco.1989.1.4.541

[23] NVIDIA. 2018. Deep Learning SDK documentation. https://docs.
nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html.

[24] Benoît Pradelle, Benoît Meister, Muthu Baskaran, Jonathan Springer,
and Richard Lethin. 2019. Polyhedral Optimization of TensorFlow
Computation Graphs. In Programming and Performance Visualization
Tools, Abhinav Bhatele, David Boehme, Joshua A. Levine, Allen D.
Malony, and Martin Schulz (Eds.). Springer International Publishing,
Cham, 74–89.

[25] Sudeep Raja. 2017. A Derivation of Backpropagation in Matrix Form.
https://sudeepraja.github.io/Neural/.

[26] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986.
Learning representations by back-propagating errors. Nature 323 (Oct.
1986), 533–. http://dx.doi.org/10.1038/323533a0

[27] Sven-Bodo Scholz. 2003. Single Assignment C: Efficient Support
for High-level Array Operations in a Functional Setting. J. Funct.
Program. 13, 6 (Nov. 2003), 1005–1059. https://doi.org/10.1017/
S0956796802004458

[28] Nicolas Vasilache, Jeff Johnson, Michaël Mathieu, Soumith Chintala,
Serkan Piantino, and Yann LeCun. 2014. Fast Convolutional Nets With
fbfft: A GPU Performance Evaluation. CoRR abs/1412.7580 (2014).

[29] Artjoms Šinkarovs, Robert Bernecky, and Sven-Bodo Scholz. 2019.
Convolutional Neural Networks in APL. In Proceedings of the 6th ACM
SIGPLAN InternationalWorkshop on Libraries, Languages and Compilers
for Array Programming (ARRAY 2019). ACM, New York, NY, USA, 69–
79. https://doi.org/10.1145/3315454.3329960

[30] Dong Yu, Kaisheng Yao, and Yu Zhang. 2015. The Computational
Network Toolkit. IEEE Signal Processing Magazine (November 2015),
123–126.

59

https://doi.org/10.1145/232627.232650
https://doi.org/10.1145/232627.232650
https://doi.org/10.1145/3315454.3329955
http://www.deeplearningbook.org
https://doi.org/10.1145/2636228.2636238
https://doi.org/10.1145/2636228.2636238
https://doi.org/10.1145/2502323.2502328
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3293883.3295707
http://arxiv.org/abs/1408.5093
http://arxiv.org/abs/1408.5093
https://canvas.stanford.edu/files/1041875/download?download_frd=1&verifier=tFv4Jc7bCezxJg9rG2yhEKEERi70zJ3ScmFbNlbN
https://canvas.stanford.edu/files/1041875/download?download_frd=1&verifier=tFv4Jc7bCezxJg9rG2yhEKEERi70zJ3ScmFbNlbN
https://canvas.stanford.edu/files/1041875/download?download_frd=1&verifier=tFv4Jc7bCezxJg9rG2yhEKEERi70zJ3ScmFbNlbN
https://doi.org/10.1109/ISPASS.2017.7975270
https://doi.org/10.1109/ISPASS.2017.7975270
http://arxiv.org/abs/1509.09308
https://doi.org/10.1162/neco.1989.1.4.541
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html
https://sudeepraja.github.io/Neural/
http://dx.doi.org/10.1038/323533a0
https://doi.org/10.1017/S0956796802004458
https://doi.org/10.1017/S0956796802004458
https://doi.org/10.1145/3315454.3329960

	Abstract
	1 Introduction
	2 A Neural Network Primer
	2.1 Training

	3 Futhark
	4 Representing Networks
	4.1 Library Structure
	4.2 Activation Functions
	4.3 Loss Functions
	4.4 Optimisers

	5 Layers
	5.1 Dense Layers
	5.2 Convolutional Layers
	5.3 Max Pooling

	6 Additional Network Functions
	7 Putting it All Together
	8 Empirical Evaluation
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

