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Abstract

This paper demonstrates translation schemes by which programs
written in a functional subset of APL can be compiled to code
that is run efficiently on general purpose graphical processing units
(GPGPUs). Furthermore, the generated programs can be straight-
forwardly interoperated with mainstream programming environ-
ments, such as Python, for example for purposes of visualization
and user interaction. Finally, empirical evaluation shows that the
GPGPU translation achieves speedups up to hundreds of times
faster than sequential C compiled code.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming; D.3.4 [Processors]: Compiler

Keywords GPGPU, APL, auto-parallelization, functional lan-
guage

1. Introduction

A major challenge of modern computing is allowing programmers
efficiently to utilize parallel hardware using high-level composi-
tional programming techniques.

One approach to tackling this challenge is parallelizing opti-
mizing compilers, which take sequential programs as input, and
output corresponding parallel programs. While this approach can
be shown to be successful in some cases, very often the parallelism
present in the original algorithm has vanished in the process of the
programmer expressing it as a program. An alternative approach is
to have the programmer express the intent of the algorithm using
high-level array combinators, which, essentially, are parallel oper-
ations, lending themselves to a rich set of algebraic array fusion
techniques and other high-level program transformations.

In this paper, we present a toolbox (languages and compilers)
for executing high-level functional array computations, efficiently,
on parallel hardware. In particular, we demonstrate how programs
written in a functional subset of APL can be compiled into pro-
grams running efficiently on graphics processing units (GPUs).

The toolbox employed includes

1. Futhark [7, 8], a data-parallel, purely functional array language
designed to be used as a target language for higher-level lan-
guages and aimed at efficient GPU execution.
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2. APLtail, a compiler that compiles a subset of APL into TAIL [3,
6], a typed array intermediate language.

3. a compiler that compiles TAIL into Futhark programs.

The contributions of the paper are the following:

• We demonstrate that, with no particular knowledge about the
target architecture, decent parallel high-performance can be
achieved from the finger-tips of APL experts by using native
data-parallel APL language constructs.

• Non-trivial extensions to TAIL and its type system, in particular
support for tuples in conjunction with repeated computations
(power operator). These extensions allow the APL programmer
to tune at a high-level the parallel algorithm to a particular target
architecture. For example moving a convergence loop inside
a bulk-parallel operator may change the GPU behaviour from
memory bound to compute bound.

• We demonstrate that Futhark is suitable as a target language
for efficient GPU computations by describing how the multi-
dimensional array language TAIL can be compiled with all
map nests and reduction-nests made explicit. In particular, for
the domain of multi-dimensional array programming, we show
promising evidence that automatic techniques for array fusion
and transformations for achieving coalesced memory access is
a doable approach for utilizing data-parallel hardware.

• We demonstrate that the generated programs interoperate easily
with visualization and interaction routines in Python. In particu-
lar, we demonstrate how APL programs for Conway’s Game of
Life and a Mandelbrot set explorer can interoperate with Python
for visualization and interaction.

• Finally, on nine APL applications, we report GPU speedups
with a geometric mean of 125× relative to C compiled code,
and make our benchmarking framework publicly available in
order to encourage reproducibility of results.

2. TAIL

The TAIL to Futhark compiler takes TAIL programs as input, for
which the grammar is shown in Figure 1. Compared to previous
presentations of TAIL [3, 6], the present grammar supports charac-
ter arrays, boolean arrays, and tuples—in particular loop structures
over tuples of arrays.

We often write z̄(n) to denote the sequence z0, z1, . . . , zn−1 of
objects of the same kind. If the exact length of the sequence is irrel-
evant, we write z̄. We assume a denumerable infinite set of program
variables (x). A base value (v) is either an integer (i), a float (f ), a
character literal (c), a boolean (tt or ff), or infinity (inf). An
expression is either a value (v), a variable (x), a vector expres-
sion, a tuple expression, a tuple projection, a function call, a fn-
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v ::= i | f | c | tt | ff | inf (base values)

e ::= v | x | [ ē] | (ē) | prj(i,e) (expressions)

| x ι( ē) | fn x: τ => e
| let x: τ = e1 in e2

κ ::= int | float | char | bool | α (base types)

ρ ::= i | γ | ρ+ ρ′ (shape types)

τ ::= [κ]ρ | 〈κ〉ρ | S(κ, ρ) | SV(κ, ρ) (types)

| τ → τ | τ1 × · · · × τn
ι ::= { κ̄, ρ̄} | ǫ (instance lists)

σ ::= ∀ᾱγ̄.τ (type schemes)

Figure 1: Grammar for the TAIL language.

expression, or a let-expression. For presentation purposes, a TAIL
program consists of one top-level expression, with a set of built-in
primitives bound in the top-level initial environment.

Types are segmented into base types (κ), shape types (ρ), types
(τ ), and type schemes (σ). Shape types (ρ) are considered identical
upto associativity and commutativity of + and upto evaluation of
constant shape-type expressions involving +. Types (τ ) include a
type for multi-dimensional arrays of rank ρ, written [κ]ρ, a type
for vectors of a specific length ρ, written 〈κ〉ρ, singleton types for
integers and booleans, written S(κ, ρ), singleton types for single-
element integer and boolean vectors, written SV(κ, ρ), a type for
functions, written τ → τ ′, and the type for n-ary tuples, written
τ1 × . . . × τn. As special notation, we often write κ to denote the
scalar array type [κ]0. Type schemes σ specify the types for built-in
operations. Function calls in TAIL are annotated with instance lists,
which specify the particular instance of a polymorphic function.
The first list contains base type instantiations and the second list
contains rank instantiations. The numbers of elements in the two
lists depend on the function. For example, the type scheme of the
zipWith function is given as:

zipWith : ∀α1α2βγ. (α1 → α2 → β)→ [α1]
γ → [α2]

γ → [β]γ

The type scheme is parameterized over four type parameters α1,
α2, β, and γ, where α1, α2, and β, denote base types and γ a rank.
Notice, as mentioned, that we, for instance, write α1 to denote the
scalar array type [α1]

0. An instantiation list for a call to zipWith

contains the particular values of the type parameters for that call.1

The following call to zipWith has type int:

zipWith{[int,int,int],[1]}(addi,[11,12],[1,2])

Here is the type scheme for powern, TAIL’s equivalent of an
instance of APL’s *̈ operator, which iterates a function over tuples
of size n, a given number of times:

powern : ∀α1 · · ·αnγ1 · · · γn. (τ → τ)→ int→ τ → τ

where τ = [α1]
γ1 × · · · × [αn]

γn

Figure 2 lists the type schemes for a selection of other TAIL oper-
ations, including the APL mnemonic for the operation.

As described in [6], the somewhat elaborate type system of
TAIL allows for expressing a number of complex operations, such
as APL’s inner and outer product operators, as derived operations.
We shall not present a dynamic semantics and a formal type sys-
tem for the TAIL language here, but mention that the semantics
of the reduce and scan operations reduces (or scans) the argu-
ment array along its last dimension, following the traditional APL
semantics [10, 12].

1 Formally, instantiation lists are defined in terms of a notion of substitution,
which we, for space reasons, will not develop here.

APL op(s) Type scheme
+, .. addi,subi : int→ int→ int

-, .. negi,absi : int→ int

ı iota : int→ [int]1

¨ each : ∀α1α2γ.(α1 → α2)→ [α1]
γ → [α2]

γ

/ reduce : ∀αγ.(α→ α→ α)→ α
→[α]1+γ → [α]γ

/ compress : ∀αγ.[bool]γ → [α]γ → [α]γ

\ scan : ∀αγ.(α→ α→ α)→ [α]γ → [α]γ

ρ reshape : ∀αγγ′.〈int〉γ
′

→ α→ [α]γ → [α]γ
′

|◦ rotate : ∀αγ.int→ [α]γ → [α]γ

\◦ transp : ∀αγ.[α]γ → [α]γ

↑ take : ∀αγ.int→ α→ [α]γ → [α]γ

↓ drop : ∀αγ.int→ [α]γ → [α]γ

⊃ first : ∀αγ.α→ [α]γ → α

, cat : ∀αγ.[α]γ+1 → [α]γ+1 → [α]γ+1

, cons : ∀αγ.[α]γ → [α]γ+1 → [α]γ+1

Figure 2: A selection of TAIL operator type schemes.

The implementation of the APL compiler uses a hybrid ap-
proach of type inference and local context querying for resolving
array ranks, scalar extensions, and identity items (neutral elements)
during TAIL program generation. The inference is based on a sim-
ple unification algorithm using conditional unification for the im-
plementation of a limited form of subtyping inference.

3. Futhark

Futhark is a barebones pure functional language in which po-
tentially nested parallelism is expressed via a set of data-parallel
second-order array combinators (SOACs), such as map, reduce,
and scan. The Futhark language itself is high-level and machine-
agnostic, but optimising compilers for both CPUs and GPUs have
been implemented.

As with TAIL, we use x to range over variables and i and
f to range over integer constants and floating point constants,
respectively. Figure 3 presents the abstract syntax of a subset of
the Futhark language. Notice that the syntactical construct denoted
by l can only occur in the SOACs map, reduce and scan. By
representing an algorithm as a composition of SOACs, the compiler
can take advantage of the invariants guaranteed by these constructs
to perform aggressive transformations such as loop fusion [7].

When translating from another language to Futhark, we wish to
make use of as many of the built-in language constructs as possible,
in order to maximise the ability of the Futhark compiler to generate
efficient code.

4. From TAIL to Futhark

When e is some TAIL expression, and e′ is some Futhark expres-
sion we specify the translation as conversion rules of the form
JeK = e′. The rules are syntax-directed in the sense that they follow
the structure of e, recursively.

Figure 5 presents the main part of the compilation scheme and
Figure 6 shows the conversion rules for SOAC function parameters.
For brevity we do not give the complete translation table for bi-
nary and unary operators, but rather assume a translation function
JopKbinop, which translates a TAIL binary operator into a Futhark
infix operator (e.g., addi is translated into +) and a translation
function JopKunop, which translates a TAIL unary operator into a
Futhark unary operator (e.g., absi translates into abs). Where
possible, TAIL primitives have been mapped directly to their cor-
responding versions in the Futhark language. Care is taken to map
the 1-indexed arrays of TAIL to the 0-indexed arrays of Futhark.
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k ::= i | f | [k̄] (scalar or array value)
| true | false

g, h ::= id (function names)
p ::= τ x (typed variable)

t ::= int | bool | f32 | f64 (basic types)
τ ::= []τ | (τ̄) | t (types)

⊙ ::= + | - | abs | . . . (operators)
l ::= fn τ (p̄) => e | ⊙ (fun param)

e ::= x | k (variable or value)

| (ē(n)) (n-tuple exp)
| x[ē] (array indexing)
| e1 ⊙ e2 (binop-call)
| ⊙ e (unop-call)
| g(ē) (function-call)
| if e then e1 else e2 (if binding)
| let (x̄) = e1 in e2 (let-binding)
| iota(e) ([0,. . . , e− 1])
| size@i(x) (size of dim of i)
| concat@i(e1, e2) (catenate along dim i)
| rotate@i(e, e′) (rotate dim i of e′ by e)
| rearrange((ī), x) (permute dims of x)

| zip(ē(n)) (zip n arrays)
| unzip(e) (unzip to n arrays)
| map(l, e) (map)
| reduce(l, e, e′) (reduce with assoc op l)
| scan(l, e, e′) (scan with assoc op l)
| loop (x̄ = ē) = (sequential do-loop)

for s < e′ do e′′ (next iter p̄← e′′)

P ::= fun τ g(p) = e; P | ǫ (named function defs)

Figure 3: Simplified Futhark syntax.

Where direct translation is not possible, the approach has been to
use existing operations as much as possible and generate code to
bridge the gap.

Some TAIL operations, typically those that exhibit significant
dynamic behaviour, do not correspond easily to any single Futhark
construct. For example, take[t](d, a) can be passed a negative
number for the amount of elements d to take from the array a,
which is called undertaking. In this case, the semantics is to take
the last−d elements of a (recall that d is negative), and if necessary
prepend with zeroes to ensure that the final array is of size −d.
In our translation scheme, this maps to a “polymorphic” Futhark
function take1JtK, which is indexed by the (statically known) type
JtK. Futhark itself does not support polymorphic functions, so in
this case our compiler generates a specialised version of take1
from a generic skeleton. This skeleton can be seen on Figure 4.

Another example is the cons TAIL operator, which appends
one element at the beginning of each innermost row of a multi-
dimensional array. While various translations are possible, the one
that is best supported by the current version of Futhark compiler is a
map nest of depth equal to the array’s rank, in which the innermost
map performs the append operation.

4.1 Handling IO

One particular nuisance is that while Futhark is a pure functional
language, APL and TAIL are not. At any point in execution, a TAIL
program can read and write to arbitrary files. However, usually side
effects are only used to read initial program inputs and to write the
final result. We support this common pattern by translating top-
level I/O reads and writes to respectively parameters and return

fun []t take1_t(int l, []t x) =

if 0 <= l then -- not undertake?

if l <= size@0(x) -- padding not needed?

then let (v1, _) = split((l),x) in v1

else concat(x, replicate(abs(l) - size@0(x), 0))

else

if 0 <= l + size@0(x) -- padding not needed?

then let (_, v2) = split(l + size@0(x), x)

in v2

else concat(replicate(abs(l) - size@0(x), 0), x)

Figure 4: Skeleton for take1JtK, type-parametric over t.

values of the Futhark main function. The ordering of parameters
and return values corresponds to the order in which they appear in
the TAIL source code. This is done by a preprocessing step that
filters out the top-level I/O-operations before performing the main
translation step. An example is shown in Figure 7. If any other side-
effecting operations are found, compilation will fail.

5. Bridging APL and Python

A collateral advantage of migrating the application’s code to GPUs
is that it becomes performance-wise irrelevant what language is
used for the CPU glue code that orchestrates the GPU execution.
This enables language interoperability: for example, computational
kernels expressed in APL (and translated to Futhark) can be exe-
cuted in a Python environment that is well suited for ease of script-
ing and visualization.2

We demonstrate this view by reporting a straightforward code
generator from Futhark to Python+PyOpenCL [11]:

• A Futhark program is translated to a Python module. While the
Futhark code generator supports multiple entry points per pro-
gram, the APL translation is currently restricted to export only
one entry point, (the main function) due to the implementation
technique explained in Section 4.1.

• Futhark arrays are mapped to PyOpenCL buffers and basic-
type values are represented with the use of Numpy scalars in
order to maintain the Futhark semantics (e.g., single versus
double-precision floats). The latter indirection leads to ineffi-
cient Python code, but this is not a concern because the runtime
is dominated by the GPU execution.

• Each entry point is translated to a Python function that converts
its parameters to the types expected by the translation. For
example a Numpy array argument is transfomed to a PyOpenCL
(device) buffer, and a device-buffer argument is left unchanged.
Array return values are delivered as PyOpenCL arrays.

• The Python code issues calls to the PyOpenCL library, which
is a thin wrapper around the standard OpenCL library. These
calls are used to transfer code (expressed in OpenCL C) and
data to the GPU. These implementation details are hidden from
the users of the generated Python module.

As a demonstration, computational kernels for Game of Life
and Mandelbrot were implemented in APL, compiled to Futhark
and from there to Python+PyOpenCL code, and used from a Python
program that performs real-time visualization and user interaction
by the use of the Pygame library. For example, the user can in-
teractively insert additional glider guns to Game of Life, and can
zoom and scroll the Mandelbrot set. Note that smooth visualiza-
tion requires a per-frame computation time of about 16 ms; this is
achieved by the GPU code, but not by the sequential C code, which

2 This is similar to work in computer-algebra systems [13], where, for
example, efficient and expressive languages, suitable for library design were
inter-operated with top-level systems based on user-interface priorities.
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JxK = x JiK = i JfK = f
JcK = ascii(c) JttK = true JffK = false

Jnegi(e)K = -JeK
Jlet x : t = e1 in e2K = let x = Je1K in Je2K
J[e1, . . . , en]K = [Je1K, . . . , JenK]
Jop(e1, e2)K = Je1K ⊙ Je2K, if JopKbinop = ⊙
Jop(e)K = ⊙ JeK, if JopKunop = ⊙

Jeach[t1,t2,r](f, a)K =

{

map(JfK
Jt2K
fn , JaK) r = 1

map(fn J[]r−1t2K (J[]r−1t1K x) => Jeach[t1,t2,r−1](f, x)K, JaK) r > 1

Jreduce[t,r](f, n, a)K =

{

reduce(JfK
JtK
fn , JnK, JaK) r = 1

map(fn(J[]r−2tK(J[]r−1tK x))=>(Jreduce[t,r−1](f, n, x)K, JaK)) r > 1

JzipWith[t1,t2,t3,r]
(f, a1, a2)K =











map(JfK
Jt3K
fn ,zip(Ja1K, Ja2K)) r = 1

map(fn J[]r−1t3K (J[]r−1t1K x, J[]
r−1t2K y) => JzipWith[t1,t2,t3,r−1](f, x, y)K

zip(Ja1K, Ja2K)) r > 1
Jrotate[t,r](i, a)K = rotate@(r − 1)(JiK, JaK)
Jcat[t,r](a1, a2)K = concat@(r − 1)(Ja1K, Ja2K)
Jtransp[t,r](a)K = rearrange((r − 1, · · · , 0), JaK)
Jvreverse[t,r](a)K = let y = JaK in map(fn x => y[size@0(y)− x− 1],iota(size@0(y)))
Jreverse[t,r](a)K = rearrange((r − 1, . . . , 0), Jvreverse[t,r](transp[t,r](a))K)
Jreshape[t,r1,r2]

(a1, a2)K = let (x, y) = (Ja1K, Ja2K) in
reshape(x,reshape1JtK(osize,reshape(isize, y)))

where osize = size@0(x) ∗ . . . ∗ size@r1(x)
isize = size@0(y) ∗ . . . ∗ size@r2(y)

Jfirst[t,r](a)K = let x = JaK in x[0̄(r)]
Jtake[t,r](i, a)K = let (x, y) = (JiK, JaK) in

reshape(oshape,take1JtK(osize,reshape(isize, y)))
where oshape = (abs(x),size@1(y), . . . ,size@r(y))

osize = (x ∗ size@1(y) ∗ . . . ∗ size@r(y))
isize = size@0(y) ∗ . . . ∗ size@r(y)

Jdrop[t,r](i, a)K = let (x, y) = (JiK, JaK) in
reshape(oshape,drop1JtK(osize,reshape(isize, y)))

where oshape = (max(0,size@0(y)− abs(x)),size@1(y), . . . ,size@r(y))
osize = x ∗ size@1(y) ∗ . . . ∗ size@r(y)
isize = size@0(y) ∗ . . . ∗ size@r(y)

Jcons[t,r](e, a)K =



























let x = JaK in

map(fn JtK (int y) => if y > 0 then x[y - 1] else JeK

,iota(size@0(x) + 1)) r = 1

map(fn J[]r−1tK(J[]r−2tK x, J[]r−1tK y) =>

Jcons[t,r−1](x, y)K,zip(JeK, JaK)) r > 1
Jiota(a)K = map(fn int (int x) => x + 1,iota(JaK))
Jshape[t,r](a)K = let x = JaK in [size@0(x), . . . ,size@(r − 1)(x)]

Figure 5: Conversion rules for expressions. For each rule, x and y are considered fresh.

JintK = i32 JfloatK = f32 (or f64)
JboolK = bool JcharK = i32

Jτ1 × . . .× τnK = (Jτ1K, . . . , JτnK) J[τ ]0K = JτK
J[τ ]i+1K = []J[τ ]iK J〈τ〉iK = []JτK
JS(τ, i)K = JτK JSV(τ, i)K = []JτK

Jfn x : t => eKτfn = fn τ (JtK x) => JeK
Jfn x : t1 => fn y : t2 => eKτfn = fn τ (Jt1K x, Jt2K y) => JeK
JopKτfn = ⊙ if JopKbinop = ⊙ ∨ JopKunop = ⊙

Figure 6: Conversion rules for types and SOAC function parameters.
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let v1:[int]1 = readIntVecFile("first") in

let v2:[int]1 = readIntVecFile("second") in

let v5:[int]1 = prArrI(zipWith{[int,int,int],[1]}

(subi,v1,v2)) in

let v8:[int]1 = prArrI(zipWith{[int,int,int],[1]}

(subi,v2,v1)) in

0.0

(a) TAIL program with IO.

fun []int main([]int v1, []int v2) =

let v5 = map(-, zip(v1, v2))

let v8 = map(-, zip(v2, v1))

in (v5, v8)

(b) Corresponding Futhark program—the IO operations have been turned into
parameters and return values.

Figure 7: Handling IO operations.

takes hundreds of miliseconds (see Table 1). These demos are part
of our benchmark suite (see Section 6.1). Our benchmark suite also
compiles all benchmark programs using our Python+PyOpenCL
code generator, in order to quantify the performance loss compared
to generating C.

6. Performance

We evaluate the performance of the Futhark backend on a small
number of benchmark programs. Each is compiled to sequential
C using TAIL’s built-in code generator, as well as to Futhark.
The resulting Futhark program is then compiled to both sequential
C, parallel C+OpenCL, and parallel Python+PyOpenCL code. To
measure the quality of the TAIL-to-Futhark translation, we have
also implemented each benchmark by hand in Futhark, and in
sequential C code as a baseline.

6.1 Experimental Methodology and Hardware

Our experimental setup is publicly available at the URL:

https://github.com/HIPERFIT/futhark-fhpc16

We believe in the value of reproducible results, and have attempted
to automate the reproduction of our experiments. We have also
documented common technical problems with running the exper-
iments.

All benchmarks were executed on a system with an Intel Xeon
CPU E5-2650 and an NVIDIA GeForce GTX 780 Ti GPU. Each
benchmark was executed 30 times and we report averages of wall-
clock timings. Time spent on file I/O to read input datasets, or
write results, has not been included in the timing. Likewise, for
GPU executions, the time taken to initialise a GPU context, to
compile the GPU kernel code, and the host-to-device transfer of the
program input and result were also excluded from measurements.
The resulting runtimes are shown in Table 1, and speedups on
Figure 8.

6.2 Results and Analysis

Integral performs numerical integration via sampling. Signal is
a signal processing program derived from the APEX benchmark
suite [1]. Easter is a (modified) program from Dyalog Ltd. that
calculates the date of Easter for all years between year 1 and
106. Black-Scholes valuates European options using a closed form
solution. These applications perform almost no memory accesses,
which is the reason for their extreme speedup.

Game of Life simulates 100 steps of a 1200× 1200 board. This
involves a sequential loop surrounding a rank-1 stencil computa-
tion, and therefore requires efficient interplay between sequential
and parallel parts of the code.

Sobol-π calculates π based on Monte Carlo simulation using
Sobol sequences, where each Sobol number is computed indepen-
dently. While this is not the most efficient way to compute Sobol
numbers, it is embarassingly parallel, which means the only mod-
erate speedup on the GPU is somewhat disappointing. This is due
to a deficiency in the Futhark compiler that leads it to generate code
with non-coalesced memory accesses.

Mandelbrot computes the Mandelbrot set for 1000 × 1000
points with an iteration limit of 255. This benchmark is particularly
interesting, because there are two different ways of representing the
255-iteration sequential per-point loop: either outside the parallel
loops (the “vectorised” programming style), or inside. These are
implemented as mandelbrot1 and mandelbrot2, respectively. The
latter style is dramatically more efficient on the GPU, as it makes
the program as a whole compute-bound instead of memory-bound.
On the CPU, the vectorised style is slightly more efficient. We
believe this is due to the C compiler used for final machine code
generation, which can more easily make use of vectorised SIMD
instructions for this style.

Our final benchmark is HotSpot, originally from the Rodinia [4]
benchmark suite, constituting an outer sequential time-series loop
surrounding an inner rank-1 stencil. It is similar to the Game of Life
benchmark, but with complicated edge conditions implemented us-
ing array concatenation. Our implementation is ported from an ELI
implementation by WM Ching et al [5]. PyOpenCL performance
is disappointing due to a high number of kernel launches. The gen-
erated code sets the OpenCL kernel parameters anew before every
invocation of the kernel, even if they are the same for every launch.
In direct OpenCL, this is a cheap operation, but it is slow in Py-
OpenCL. This pattern also occurs for Game of Life, but the corre-
sponding kernel takes much fewer parameters, somewhat amelio-
rating the problem. We are investigating improvements.

7. Related Work

This paper is a successor to previous work on compiling APL to
parallel GPU code [3]. We are now able to compile every program
in the benchmark suite to parallel GPU code, and achieve better
speedups than previously reported. The TAIL-to-Futhark transla-
tion is based on a bachelor’s thesis by two of the authors [15].

There have been many attempts at compiling APL, including
Timothy Budd’s APL compiler [2], ELI [5], and APEX [1]. More
recent work includes the Co-dfns compiler [9], which is itself writ-
ten in a data-parallel style in APL. Related to TAIL is Remora [14]
which uses dependent types to assigning a static semantics to an
APL-like language.

8. Conclusions and Future Work

We have presented a compiler that compiles a subset of APL to
Futhark through a typed array intermediate language. The gener-
ated Futhark programs can be further compiled to either CPU or
GPU code, and interoperate with mainstream programming envi-
ronments, such as Python.

We rely on the Futhark compiler to perform optimisation and
code generation. Our experimental evaluation shows that we ob-
tain performance close to hand-written Futhark in several cases,
and significant speedups over sequential code in almost all cases.
However, in some cases the APL programming style gives rise to
code that the Futhark compiler is not presently able to compile
efficiently. We are investigating enhancing both the optimisation
passes in the Futhark compiler itself, as well as generating Futhark
code that does not exhibit the problematic patterns.
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TAIL Futhark Hand-written Futhark

Benchmark Problem size Baseline C TAIL C Sequential OpenCL PyOpenCL Sequential Parallel PyOpenCL

Integral N = 10, 000, 000 244.86 235.10 153.40 0.27 0.44 165.45 0.27 0.46
Signal N = 50, 000, 000 306.93 712.20 622.56 1.49 1.59 284.37 0.84 0.93
Game of Life 1200

2, N = 100 847.74 1274.03 1689.76 16.11 19.11 1433.93 13.65 15.52
Easter N = 10, 000, 000 136.92 321.80 315.83 1.80 2.13 165.39 0.94 1.06
Black-Scholes N = 10, 000, 000 5689.88 5396.10 5994.86 9.13 7.95 5418.89 8.63 6.91
Sobol MC-π N = 10, 000, 000 144.95 368.67 281.61 23.68 23.87 71.85 2.04 4.70
HotSpot 512

2, N = 360 874.77 1210.57 874.73 16.84 46.88 645.44 16.10 77.35
Mandelbrot1 1000

2, N = 255 598.85 - 889.63 53.85 55.38 1530.42 57.30 58.14
Mandelbrot2 1000

2, N = 255 1046.13 - 1086.21 1.52 1.63 973.58 1.50 1.57

Table 1: Benchmark timings in miliseconds. The timings are averages over 30 executions. TAIL C is the APL-compiler using a sequential
C-code backend. TAIL Futhark is the APL-compiler using Futhark, which is then compiled to either sequential code or parallel GPU code,
the latter as either C+OpenCL or Python+PyOpenCL.

signal easter integral life blackscholes sobol-pi hotspot mandelbrot1 mandelbrot2
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Figure 8: Relative speedup compared to sequential hand-written C code.
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