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Abstract
Fusion is one of the most important code transformations as it has
the potential to substantially optimize both the memory hierarchy
time overhead and, sometimes asymptotically, the space require-
ment. In functional languages, fusion is naturally and relatively
easily derived as a producer-consumer relation between program
constructs that expose a richer, higher-order algebra of program in-
variants, such as the map-reduce list homomorphisms.

In imperative languages, fusing producer-consumer loops re-
quires dependency analysis on arrays applied at loop-nest level.
Such analysis, however, has often been labeled as “heroic effort”
and, if at all, is supported only in its simplest and most conserva-
tive form in industrial compilers.

Related implementations in the functional context typically ap-
ply fusion only when the to-be-fused producer is used exactly once,
i.e., in the consumer. This guarantees that the transformation is con-
servative: the resulting program does not duplicate computation.

We show that the above restriction is more conservative than
needed, and present a structural-analysis technique, inspired from
the T1-T2 transformation for reducible data flow, that enables fu-
sion even in some cases when the producer is used in different con-
sumers and without duplicating computation.

We report an implementation of the fusion algorithm for a
functional-core language, named L0, which is intended to support
nested parallelism across regular multi-dimensional arrays. We
succinctly describe L0’s semantics and the compiler infrastructure
on which the fusion transformation relies, and present compiler-
generated statistics related to fusion on a set of six benchmarks.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming; D.3.4 [Processors]: Compiler

General Terms Performance, Design, Algorithms

Keywords fusion, autoparallelization, functional language

1. Introduction
One of the main goals of the HIPERFIT project has been to develop
the infrastructure necessary to write real-world, big-data financial
applications in a hardware-independent language that can be effi-
ciently executed on massively parallel hardware, e.g., GPGPU.

In this sense we have examined several such computational
kernels [26], originally implemented in languages such as OCaml,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FHPC’13,, September 23, 2013, Boston, Massachusets..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2381-9/13/09. . . $15.00.
http://dx.doi.org/10.1145/2502323.2502328

Python, C++, C and measuring in the range of hundreds of lines of
compact code, with two main objectives in mind:

1. What should be a suitable core language that, on the one hand,
would allow a relatively straight-forward code translation, and,
on the other hand, would preserve the algorithmic invariants
that are needed to optimize the application globally?

2. What compiler optimizations would result in efficiency compa-
rable to code hand-tuned for the specific hardware?

The answer to the first question has been a functional language,
dubbed L0, supporting map-reduce nested parallelism on regular
arrays, i.e., each row of the array has the same size:
It is regular because our suite does not require irregular arrays
in the sense of NESL or DPH [9, 13], and regular arrays are more
amenable to compiler optimizations, e.g., they allow transposition
and simplified size analysis. It is nested because our suite exhibits
several layers of parallelism that cannot be exploited by flat par-
allelism in the style of REPA [22], e.g., several innermost scan
or reduce operations and at least one (semantically) sequential
loop per benchmark. Finally, it is functional because we would
rather invest compiler effort in exploiting high-level program in-
variants rather than in proving them. The common example here is
parallelism: map-reduce constructs are inherently parallel, while
Fortran-style do loops require sophisticated analysis to decide par-
allelism. Furthermore, such analyses [12, 19, 27, 28] have not yet
been integrated in the repertoire of commercial compilers, likely
due to “heroic effort” concerns, albeit (i) their effectiveness was
demonstrated on comprehensive suites, and (ii) some of them were
developed more than a decade ago.

Perhaps less expectedly, the answer to the second question
seems to be that a common ground needs to be found between
functional and imperative optimizations and, to a lesser extent,
between language constructs. Much in the same way in which
(data) parallelism seems to be generated by a combination of map,
reduce, and scan operations, the optimization opportunities, e.g.,
enhancing the degree of parallelism and reducing the memory time
and space overheads, seem solvable via a combination of fusion,
transposition, loop interchange and distribution [2]. It
follows that loops are necessary in the intermediate representation,
regardless of whether they are provided as a language construct or
are derived from tail-recursive functions via a code transformation.

Finally, an indirect consequence of having to deal with sequen-
tial (dependent) loops is that L0 provides support for “in-place
updates” of array elements. The semantics is the functional one,
i.e., deep copy of the original array but with the corresponding ele-
ment replaced, intersected with the imperative one, i.e., if alias-
ing may prevent an in-place implementation a compile-time error
is signaled. This approach enables the intuitive (optimized) cost
model that the user likely assumes, while preserving the functional
semantics. Section 2 provides an overview of the L0 language and
of the enabling optimizations that set the stage for fusion.



1.1 Fusion and Principal Contributions
The simplest form of fusion is the one that relies on the invariant
that mapping each element of a list by a function f, and then map-
ping each element of the result with a function g is the same as
mapping each element of the original list with the composition of
g with f. In Haskell-like notation this can be written as:
map g . map f ≡ map (g . f), where the semantics of map
is map f [a1,..,an] = [f a1,..,f an]. One can already ob-
serve that fusion may significantly optimise computation since it
may replace some of the array accesses with scalar accesses, e.g.,
if the element type is a basic type.

Furthermore, defining reduce as: reduce ⊕ e [a1,..,an]
≡ e⊕a1⊕...⊕an, it is possible to fuse a reduce with a map as
reduce ⊕ e . map f ≡ reduce ⊕ e . map (reduce ⊕ e
. map f) . splitP , i.e., the list is distributed between P pro-
cessors, each processor executes sequentially its chunk, and at the
end the result is reduced (in parallel) across processors [7]. One
may observe that this fusion may asymptotically improve the space
requirement, e.g., if the input array is the iteration space. The op-
erator ⊕ must be associative with identity e. Another observation
is that both map and reduce have well-known efficient parallel
implementations and that fusion preserves parallelism.

While in a functional language the (richer) semantics of opera-
tors such as map, reduce makes fusion easy to understand and to
implement by the compiler, this is not the case in an imperative con-
text. For example, fusing two parallel loops requires to prove that
the set of array indices written by iteration i of the producer loop,
denotedWi, is a superset of the set of indices read by the consumer
loop, denoted Ri, and also that Wi ∩ Rj = ∅, ∀i 6= j. This anal-
ysis quickly requires “heroic effort” when the loops’ body exhibits
non-affine indexing or non-trivial control flow, e.g., loop nests.

Current fusion work in the functional context takes two main
directions: One approach is to perform fusion aggressively, i.e.,
even when it duplicates computation, and to provide the user with
primitives that inhibit fusion [15, 22]. The other approach performs
fusion conservatively by means of rewrite rules or skeletons [6, 13,
21]. Since the latter relies tightly on the inlining engine, e.g., to
create exploitable patterns, these approaches typically do not fuse
an array that is used multiple times.

Main contributions of this paper are:

• A structural analysis technique that succeeds to conservatively
fuse, i.e., without duplicating computation, even when an array
has multiple uses, if the dependency graph of the producer-
consumer array combinators is reducible (via T2 reduction).
The compositional algebra for fusion includes the map, reduce
and filter operators. These are presented in Section 3.
• An analysis refinement that enables fusion across (otherwise)

“inhibitor” built-in functions such as size, split, transpose.
• Two other transformations (not implemented yet) that enable

and are enabled by fusion and that optimize the use of scan and
reduce. For example, ISWIM interchanges the outer-scan with
an inner map nest, and thus enhances the (exploitable) paral-
lelism degree of the program. These are discussed in Section 4.

Finally, Section 5 compares with related work and Section 6
concludes the paper.

2. Preliminaries: L0 and Enabling Optimizations
L0 is a mostly-monomorphic, statically typed, strictly evalu-
ated, purely functional language. Although some built-in higher-
order functions provide polymorphism, user-defined functions are
monomorphic, and their return- and parameter types must be spec-
ified explicitly. For brevity, we will not cover the typing rules in
detail, as they are quite trivial. The only exception is our notion of
uniqueness types, which is given a cursory treatment in Section 2.2.

t ::= int (Integers)
| real (Floats)
| bool (Booleans)
| char (Characters)
| (t1, ..., tn) (Tuples)
| [t] (Arrays)

v ::= k (Integer)
| x (Decimal number)
| b (Boolean)
| c (Character)
| (v1, . . . , vn) (Tuple)
| {v1, . . . , vn} (Array)

p ::= id (Name pattern)
| (p1, ..., pn) (Tuple pattern)

e ::= v (Constant)
| id (Variable)
| (e1,...,en) (Tuple expression)
| {e1,...,en} (Array expression)
| e1 � e2 (Binary operator)
| ∼ e (Prefix minus)
| not e (Logical negation)
| if e1 then e2 else e3 (Branching)
| id[e1, ..., en] (Indexing)
| id(e1, ..., en) (Function call)
| let p = e1 in e2 (Pattern binding)
| zip(e1, ..., en) (Zipping)
| unzip(e) (Unzipping)
| iota(e) (Range)
| replicate(en, ev) (Replication)
| size(e) (Array length)
| transpose(e) (Transposition)
| split(e1, e2) (Split e2 at index e1)
| concat(e1, e2) (Concatenation)
| let α = β with (In-place update)

[e1,...,en] <- ev
in eb

| loop (p = e1) = (Loop)
for α < e2 do e3

in e4
fun ::= fun t id(t1 id1,...tn idn) = e

prog ::= ε
| fun prog

Figure 1. L0 syntax

The syntax of the first-order fragment of L0 can be seen in
Figure 1. Common arithmetic operators such as + and / are sup-
ported in the usual way. Note that they are polymorphic in the sense
that they accept both integers and floating-points, although both
operands must be of the same type. Pattern matching is supported
in a limited way as the only way of decomposing tuple values, but
there is no case construct. Note that braces denote arrays, not sets.

zip and unzip behave as usual, i.e, zip({1,2,3},{4,5,6})
= {(1,4),(2,5),(3,6)}, but the semantics of zip requires that
the input arrays have outermost dimensions of equal sizes. Other-
wise a compile or runtime error is signalled.

There are two non-standard constructs in the first-order part of
L0. The first is the let-with construct for updating parts of arrays:

let b = a with [i1,..,ik] <- v in body



loop (x = a) =
for i < n do

g(x)
in body

⇒

fun t f(int i, int n, t x) =
if i >= n then x

else f(i+1, n, g(x))

let x = f(i, n, a)
in body

Figure 2. Loop to recursive function

l ::= fn t (t1 id1, ..., tn idn) (Anonymous function)
=> e

| id (e1, ..., en) (Curried function)
| op � (e1, ..., en) (Curried operator)

e ::= map(l, e)
| filter(l, e)
| reduce(l, x, e)
| scan(l, x, e)
| redomap(lr, lm, x, e)

Figure 3. Second-order array combinators

The above evaluates body with b bound to the value of a, except
that the element at position (i1,..,ik) is updated to the value of
v. If a[i1,..,ik] is itself an array, i.e., if a has more than k di-
mensions, v must be an array of the same size as the slice it is
replacing. We write let a[i1,..,ik] = v in body when the
source and destination array share the same name. Section 2.2 de-
scribes our method for doing array updates in-place without losing
referential transparency. This allows a cost model in which the up-
date takes time proportional to the total size of v, rather than a.

The other non-standard construct is the do-loop: It is essentially
syntactic sugar for a certain form of tail-recursive function, and
is used by the user to express certain sequential computation that
would be awkward to write functionally, and by the compiler in
lower-level optimisations, e.g., loop interchange, distribution. For
example, denoting by t the type of x, the loop in Figure 2 has the
semantics of a call to the tail-recursive function on the right side.

2.1 Second-order array combinators
Most array operations in L0 are achieved through built-in second-
order array combinators (SOACs). The available SOACs can be seen
in Figure 3, along with our syntax for anonymous and curried
functions. As L0 is first-order, these anonymous functions are only
syntactically permitted in SOAC invocations. The parentheses may
be omitted when currying if no curried arguments are given.

The semantics of the SOACs is identical to the similarly-named
higher-order functions found in many functional languages, but we
reproduce it here for completeness. Note that the types given are not
L0 types, but a Haskell-inspired notation, since the SOACs cannot
be typed in L0 itself.

map(f,a) :: (α→ β)→ [α]→ [β]

≡ {f(a[0]), ..., f(a[n])}

filter :: (α→ bool)→ [α]→ [α]

filter(f,a) ≡ {a[i] | f(a[i]) = True }

reduce :: (α→ α→ α)→ α→ [α]→ α

reduce(f,x,a) ≡ f(...(f(f(x,a[0]), a[1])...), a[n])

scan :: (α→ α→ α)→ α→ [α]→ [α]

scan(f,x,a) ≡ {f(x,a[0]), f(f(x,a[0]),v[1]),...}

t ::= *[t] (Unique array)

Figure 4. Uniqueness attributes

In particular, note that scan and reduce require binary asso-
ciative operators and scan is an inclusive prefix scan. redomap is
a special case – it is not part of the external L0 language, but used
internally for fusing reduce and map. Its semantics is as follows.

redomap :: (α→ α→ α)→ (α→ β → α)

→ α→ [β]→ α

redomap(�,g,x,v) ≡ foldl(g, x, v)

Note that the runtime semantics is a left-fold, not a normal L0

reduce. We use a Haskell-like syntax to explain the rationale be-
hind redomap: (red � e) . (map f) can be formally trans-
formed, via the list homomorphism (LH) promotion lemma [7], to
an equivalent form:
red � e . map f ≡ red � e . map (red � e . map f) . splitp
where the original list is distributed to p parallel processors, each
of which execute the original map-reduce computation sequentially
and, at the end, reduce in parallel the per-processor result. Hence
the inner map-reduce can be rewritten as a left-fold:
red � e . map f ≡ red � e . map (foldl g e) . splitp
It follows that in order to be generate parallel code for
(red � e) . (map f) we need to record either � and f, or �
and g. We chose the latter, i.e., redomap(�, g, e), because it
allows a richer compositional algebra for fusion. (In particular, it
allows to fuse reduce ◦ map ◦ filter into a redomap without
duplicating computation, see Figure 14 in Section 10.)

2.1.1 Tuple shimming
As a notational convenience, L0 will automatically unwrap tuples
passed to functions in SOACs. Precisely, if a function expects argu-
ments (t1, . . . , tn), and is called with a single argument of type
(t1, . . . , tn) (that is, a tuple containing the exact same types as
expected by the function), L0 will automatically rewrite the func-
tion to expect a tuple, and insert the code necessary to extract the
components. This permits us to write map(op +, zip(xs,ys)),
rather than the following more cumbersome code.

map(fn int ((int, int) a) => let (x,y) = a in x+y,
zip(xs,ys))

We will make use of this shortcut in this paper.

2.2 Safe in-place updates
When writing sequential loops, it is often very convenient to update
the elements of an array in-place. However, in order to perform
such an update without violating referential transparency, we must
be able to guarantee that no other array that is used on any execution
path following the update shares data with the updated array. To
perform this check, L0 uses an extension to the type system in the
form of uniqueness attributes inspired by Clean [4] and Rust [20],
as well as aliasing analysis. We extend the syntax for array types to
permit a prefix asterisk, as in Figure 4, denoting a unique array.

If a type is of the form *t, we say that it is a unique type. The
semantics of uniqueness attributes are as follows. Inside a function,
a parameter having type *α means that neither the argument value
nor any of its aliases are going to be used after the function returns,
implying that the function body can modify the argument freely.
Furthermore, if the return type is unique, its value must not alias
any non-unique arguments. The intuition is that the function can be
considered to have exclusive access to its unique argument, and a
caller to have exclusive access to a unique return value.



In a function call, a parameter having type *β means that what-
ever argument is passed must be modifiable (that is, it must not
be aliased with a non-modifiable function argument), and neither it
nor any of its aliases may be used in any way after the function call.
We say that it has been consumed.

As a concrete example, a function using sequential loops and in-
place modification to compute the LU-factorisation of an array can
be written like this. Note that the two inner loops could be written
as maps, but have been left sequential for expository purposes.

fun (*[[real]], *[[real]]) lu_inplace(*[[real]] a) =
let n = size(a) in
loop ((a,l,u) =

(a, replicate(n,replicate(n,0.0)),
replicate(n,replicate(n,0.0)))) = for k < n do

let u[k,k] = a[k,k] in
loop ((l,u)) = for i < n-k do

let l[i+k,k] = a[i+k,k]/u[k,k] in
let u[k,i+k] = a[k,i+k] in
(l,u) in

loop (a) = for i < n-k do
loop (a) = for j < n-k do

let a[i+k,j+k] =
a[i+k,j+k] - l[i+k,k] * u[k,j+k] in

a in
a in

(a,l,u) in
(l,u)

After an array has been used on the right-hand side of a let-
with, we mark it and all of its aliases as consumed, and it may not
be used afterwards. Our aliasing analysis is rather conservative. In
particular, we assume that if a function returns a non-unique array,
then that array may alias any of the function arguments. We also
do not detect aliasing at a finer granularity than whole arrays, i.e.,
after let a = b[0], a aliases all of b, not only its first row.

2.3 Compiler pipeline
The compilation pipeline in the current L0 compiler is outlined in
Figure 5. Type checking is done on the original program, to en-
sure that any error messages refer to the names written by the pro-
grammer, but all subsequent stages consume and produce programs
in which names are distinct. To begin with, we run a transforma-
tion that converts most uses of tuples to a simpler form, described
in more detail in Section 2.3.1. After this comes let- and tuple-
normalisation, where the program is transformed in such a way
that the only direct operands to functions, SOACs and operators are
variables, and that every tuple-pattern is fully expanded to cover all
elements of the tuple value to be matched. One notable property of
the resulting program is that no variable is ever bound to a tuple.

The enabling optimisations loop consists of:

1. aggressive inlining, i.e., building the program call-graph and in-
lining leaves to a fix point (inlines all non-recursive functions),

2. performing copy/constant propagation and constant folding,

3. dead code and function elimination,

which is repeated until a fixed point is reached. We also plan to add
common-subexpression elimination and loop hoisting. After loop
fusion, the enabling optimisations stage is repeated, as fusion will
often produce code amenable to copy-propagation. By the time the
program enters the enabling optimisations loop, and for the rest of
the compilation pipeline, the following program properties hold:

• No tuple type can appear in an array or tuple type, i.e., flat
tuples,
• unzip has been eliminated, zip has been replaced with assertZip,

which verifies either statically or at runtime that the outer size

Enabling optimisations

Typechecking

Renamer

Tuple transformation

Fusion

Enabling optimisations

Optimised program

Tuple and
let normalisation

Inlining

Copy propagation 
and constant folding

Dead code remover

Loop?

Figure 5. Compiler pipeline

of zip’s input matches, and finally, the original SOACs (map)
have been replaced with their tuple-of-array version (map2, see
Section 2.3.1),
• tuple expressions can appear only as the final result of a func-

tion, SOAC, or if expression, and similarly for the tuple pattern
of a let binding, e.g., a formal argument cannot be a tuple,
• e1 cannot be a let expression when used in let p = e1 in e2,
• each if is bound to a corresponding let expression, and

an if’s condition cannot be in itself an if expression, e.g.,
a + if( if c1 then e1 else e2 ) then e3 else e4→
let c2 = if c1 then e1 else e2 in
let b = if c2 then e3 else e4 in a+b

• function calls, including SOACs, have their own let binding, e.g.,
reduce2(f,a) + x⇒ let y = reduce2(f,e,a) in y+x,
• all actual arguments are vars, e.g., f(a+b)⇒let x=a+b in f(x).

The first three properties are ensured by the tuple transformation
step, while the latter three are due to normalisation.

2.3.1 Tuple transformation
As mentioned above, the tuple-transformation stage flattens all tu-
ples (i.e, (x,(y,z)) becomes (x,y,z)), and converts arrays of
tuples to tuples of arrays. This transformation was first developed
in the context of NESL [11]. Arrays of tuples are in a sense merely
syntactic sugar for tuples of arrays; the type [(int, real)] is
transformed to ([int], [real]) during the compilation process,
and all code interacting with arrays of tuples is likewise trans-
formed. In most cases, this is fully transparent, but there are edge
cases where the transformation is not an isomorphism.

Consider the type [([int], [real])], which is transformed
to ([[int]], [[real]]). These two types are not isomorphic,
as the latter has more stringent demands to the regularity of arrays.
For example, {({1}, {1.0}), ({2,3}, {2.0})} is a value of
the former, but the first element of the corresponding transformed
tuple ({{1}, {2, 3}}, {{1.0}, {2.0}}) is not a regular ar-
ray. Hence, when determining whether a program generates regu-
lar arrays, we must look at the transformed values - in a sense, the
regularity requirement “transcends” the tuples. Also, after tuple-
transformation, zip and unzip disappear.

After tuple transformation, the previously described SOACs are
no longer usable, as they each accept only a single input array.
Hence, we introduce matching tuple-SOACs, which accept as input
an arbitrary number of arrays, and likewise their result is a tuple.



e ::= map2(l, e1, ..., en)
| filter2(l, e1, ..., en)
| reduce2(l, x1, ..., xn, e1, ..., en)
| scan2(l, x1, ..., xn, e1, ..., en)
| redomap2(lr, lm, x1, ..., xn, e1, ..., en)

Figure 6. Second-order tuple-array combinators

Their syntax is depicted in Figure 6, and their semantics is:

map2 :: (α1 → . . .→ αn)→ (β1, . . . , βm)

→ [α1]→ . . .→ [αn]→ ([β1], . . . , [βm]))

map2(f,e1,...,en) ≡ unzip(map(f ′, zip(e1, ..., en)))

reduce2 :: (α1 → . . .→ αn → α1 → . . .→ αn → (α1, . . . αn))

→ (α1, . . . , αn)→ [α1]→ . . .→ [αn]→ ([α1], . . . , [αn])

reduce2(f,x,e1,...,en) ≡ reduce(f ′,x,zip(e1,...,en))

where f ′ has the tuple-transformed body of f and the arguments
of f have been rewritten such that an original argument of tuple
type is expanded into distinct arguments. The remaining SOACs
are similar. For simplicity, the above semantics always describe the
return value as a tuple. In practice, if this would be a one-element
tuple (which is not permitted in L0), we use the element by itself.
The array-arguments to a tuple-SOAC must all have the same length.

As an example, consider the following (contrived) program for
computing the dot product of an array and its inverse.

fun real main([real] a) =
reduce(op +, 0.0,

map(op *,
map(fn (real,real) (real x) => (x,~x),

a)))

Now we perform the tuple-transformation. Note that the return
value of the first map2 is taken apart in a tuple pattern, so that it
can be passed piecewise to the next map2.

fun real main([real] a) =
let (e1, e2) =

map2(fn (real, real) (real x) =>
(x,~x), a) in

let tmp_map2 =
map2(fn real (real x, real y) => x * y,

e1, e2) in
let tmp_red2 =

reduce2(fn real (real x, real y) =>
x + y, 0.0, tmp_map2) in

tmp_red2

3. Fusion: A Structural-Analysis Transformation
The fusion transformation, presented in this section, assumes a nor-
malized program, i.e., by running the transformations introduced in
Section 2 to obtain the properties listed in Section 2.3

Structural analysis is rooted in the T1-T2 transformation [1]
depicted in Figure 7. If repeated application of T1 and T2 to a
control-flow graph (CFG) results in one point, then the CFG is said
to be reducible, i.e., the code can be re-written using only regular
(while) loops, if and goto-free statements (with function calls).

Data-flow optimizations on reducible CFGs can be modeled via
equations that are applied at each T1/T2 reduction, and conse-
quently only one CFG pass is required instead of a fixed-point itera-
tion. In practice, if the CFG is known to be reducible, then analysis
can be conveniently performed source to source: data-flow equa-
tions are associated directly with the language constructs and dic-
tate, for example, how the analysis result is initialized at statement

.....

.....

.....

.....

T2: .....

.....

.....

.....

T1:

Figure 7. T1-T2 Transformation For Testing CFG Reducibility

level, composed between consecutive statements, merged across
branches, aggregated across loops, and translated across call sites.
(An example of such non-trivial analysis is the summarization [29]
of array references into read-write, write-first and read-only set ex-
pressions, used in the context of array-SSA and autoparallelization.)

Since L0 guarantees a reducible CFG, fusion is implemented as
an intra-procedural1 source-to-source transformation: a bottom-up
traversal of the abstract-syntax tree (ABSYN) builds the “fusion
kernels” and a second pass substitutes them in the ABSYN and
cleans up the code. Such an approach is not uncommon.

What is less common is that the data-flow equations themselves
model T2-like reducibility of the data-dependency graph. The re-
maining of this section is organized as follows: Section 3.1 gives
the gist of the technique, and shows several don’t-fuse cases, which
would either lead to illegal programs or to duplicated computation.
Section 3.2 presents the data structures and data-flow rules of the
first analysis pass for several of the L0 constructs. Section 3.3 dis-
cusses the central data-flow rule that merges a second-order ar-
ray combinator (SOAC) to the fusion result. Finally, Section 3.4
presents the compositional algebra under which SOACs are fused,
and briefly discusses the second analysis pass.

3.1 Motivation and Intuitive Solution
Figure 8 depicts the intuitive idea on which our fusion analysis is
based. The top-left figure shows the dependency graph of a simple
program, where an arrow points from the consumer to the producer.
For simplicity, array variables are used only as input or output to
SOAC calls and the control flow is trivial, i.e., a basic block.

The main point is that all SOACs that appear inside the box la-
beled Kernel 3 can be fused without duplicating any computation,
even if several of the to-be-fused arrays are used in different SOACs,
e.g., y1 is used to compute both (z1,z2) and res2. This is accom-
plished by means of T2 reduction on the dependency graph:

The rightmost child, i.e., map2(g,..), of the root SOAC has
only one incoming edge, hence it can be fused (reduced). This is
achieved (i) by replacing in the root SOAC the child’s output with
the child’s input arrays, (ii) by inserting in the root’s lambda a call
to the child’s lambda, which computes the per-element output of
the child, and, finally, (iii) by removing the duplicate input arrays
of the resulting SOAC. The latter introduces copy statements for all
but one of the (former) arguments of the lambda corresponding to
the same duplicated array (and removes those former arguments).

The top-right part of Figure 8 shows in blue the (optimized)
result of the first fusion, where the copy statements have been
eliminated by copy propagation. In the new graph, the leftmost
child of the root, i.e., the one computing (z1,z2), has only one
incoming edge and can be fused. The resulting graph, shown in the

1 The current version of the L0 compiler relies on aggressive inlining and
does not support (yet) inter-procedural analysis.
2 Note also that (i) not all input arrays of a SOAC need to be produced by the
same SOAC, e.g., the qs requires both ys and zs arrays, and (ii) some input
might be produced other than by a SOAC, e.g, Kernel 3 is still fusable even if
we add an arbitrary array as an extra parameter to the root res=map2(..).



res = map2(h, q1, q2, z2, y1, y3)

x1 = map2(f0, x2) x3 = map2(f, x1)
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(Fusable) Kernel 3
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let (z1i, z2i) = f2( y1i, y2i )            in
let (q1i, q2i) = g(y3i, z1i, y2i, y3i) in

h( q1i, q2i, z2i, y1i, y3i )

, y2, y1, y3 ) 

, real y3i ) => 

x1 = map2(f0, x2) x3 = map2(f, x1)
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y1,y2)

map2( fn real ( real z1i,
real y2i, real z2i,
real y1i, real y3i )=>

let (q1i, q2i) = g( y3i, z1i
, y2i, y3i )

in h(q1i, q2i, z2i, y1i, y3i)

, z1, y2, z2, y1, y3 ) 

let (y1i, y2i, y3i) = f1( x1i, x2i )     in

let (z1i, z2i)        = f2( y1i, y2i )     in

let (q1i, q2i) = g(y3i, z1i, y2i, y3i) in

h( q1i, q2i, z2i, y1i, y3i )

Kernel 2

x1 = map2(f0, x2) x3 = map2(f, x1)

(Fusable) Kernel 3

map2(fn real (real x1i, real x2i) => 

, x1, x2[1] ) 

Kernel 1

Figure 8. Fusion By T2 Transformation on the Dependency Graph

// Case 1: don’t fuse if it
//moves an array use across
//its in-place update point
let x = map2(f, a) in
let a[1]= 3.33 in
let y = map2(g, x) in ..

// Case 3: don’t fuse from
//outside in a loop (or λ)
let x = map2(f, a) in
loop(arr) = for i < N do

map2(op +, arr, x)

// Case 5: don’t fuse if x
//used outside SOAC inputs
let x = map2(f, a) in
let y = map2(g, x) in

x[i] + y[i]

// Case 2: not all SOAC
//combinations are fusable
let x = filter2(c1, a) in
let y = filter2(c1, b) in
let z = map2 (f,x,y) in..

// Case 4: don’t fuse in 2
//kernels sharing a CF path
let x = map2(f, arr) in
let y = if c then map2(g1,x)

else map2(g2,x)
in let z = map2(h, x) in ..

// Case 6: x & y used exactly
//once but still don’t fuse
let (x,y) = map2(f, a) in
let u = reduce2(op +,0,x)in
let v = reduce2(op *,1,y)..

Figure 9. Don’t Fuse Cases: Illegal or Duplicates Computation

bottom-left figure can be fused again resulting in the bottom-right
graph of Figure 8. At this point no further T2 reduction is possible
because the SOAC computing x1 has two incoming edges. When no
T2 reduction is possible a new kernel is started, e.g., Kernel 1.

Having presented the intuitive idea, we look next at six cases,
depicted in Figure 9, where fusion is disallowed because it would
result either in incorrect programs or in duplicated computation:

1. A SOAC s cannot be fused across the “in-place update” of an
array a if s uses any variable in the alias set of a. Otherwise,
fusion would violate L0’s semantics because an alias of a is
used on an execution path following a’s in-place update.

2. Not all combinations of SOACs are fusable. For example, a map
whose input arrays are produced by two filter operations can
be fused as a loop, but this is not useful due to the sequential
nature of the resulting loop, i.e., it uses two induction variables
without closed-form solutions.

3. Fusing across a loop (or a SOAC’s lambda) would duplicate
computation and potentially change the time complexity of
the program, because the loop-invariant computation of the
producer would be redundantly executed loop-count times.

4. If a SOAC-produced array x is consumed by two other SOACs at
two program points located on the same execution path p then
the fused program would compute x twice on p. However, if
the two program points are located on disjoint execution paths
then fusion is allowed. For example, if the map2 computing z
is removed, then fusing the x producer in the then and else
branches does not duplicate computation.

5. If a SOAC-produced array x is used other than input to another
SOAC then fusing x is disallowed in our implementation. A
future extension might handle the “negligible-overhead” cases,
e.g., substituting x[i] with f(a[i]) would allow the fusion of
x at the cost of computing f(arr[i]) twice.

6. Finally, fusing two arrays produced by the same SOAC each in
another SOAC still duplicates computation. This case can some-
times be optimized by horizontally fusing the SOAC consumers,
e.g., the two reduce2s are merged in reduce2(g,0,1, x,y),
where g(e1,e2,xi,yi) ≡ (e1+xi, e2*yi).

We conclude this section with two remarks: First, the data-
dependency graph (DDG) does not have to be built since a bottom-
up traversal of the program, i.e., backwards analysis, is guaranteed
to encounter the statements3 in an order that satisfies the DDG.
Second, the intuition is not complete, as it does not solve the issues
described in the “don’t fuse” cases, e.g., violation of the “in-place
update” semantics, handling fusion across loops and branches, etc.
The next two sections present in detail the backward-analysis pass.

3.2 Data Structures and Data-Flow Rules for Fusion
The L0 compiler is implemented in Haskell. Figure 10 shows

the structure of the data-flow result of the bottom-up analysis pass,
i.e., a synthesized attribute. A fused kernel, FusedKer, consists of:

• the SOAC statement, soacStmt, which pairs up the output ar-
rays of a fused SOAC with its SOAC’s (ABSYN) expression,
• the set of input arrays, inp, of the fused SOAC,
• a set of variable names, inplace, which is the union of the

alias sets of all arrays that may have been “consumed4” on any
execution path between the currently-analyzed program point
to the one where the fused SOAC was called; e.g., in Case 1 of
Figure 9, a belongs to the inplace set of the kernel associated
with output y, when analysis reaches the definition of x,
• a set of array variables, fused vars, that have been fused in the

construction of the current kernel; if fused vars = ∅ then no
fusion has taken place, and soacStmt remains in the program.

The analysis result is implemented by the FusionRes structure:

• outArr maps an array name to the kernel (name) producing it,
• inpArr maps an array name x to the set of kernels (names)

whose corresponding SOACs receive x as an input array,
• a set of array names that the analysis up to the current program

point have discovered to be unfusable, because of one of the
cases 3 to 6 in Figure 9, e.g., arrays used other than SOAC input
or in two different kernels that share an execution path, etc., and
• kers maps a kernel name to its associated FusedKer data.

3 Fusion assumes a normalized program, i.e., seen as a set of functions
whose bodies are composed from blocks of let-statements, ifs and loops.
4 An array is consumed either (i) when it is the source of an in-place update
or (ii) when it is passed to a function call as a parameter of unique type.



import qualified
Data.Map as M

import qualified
Data.Set as S

data FusedKer = FusedKer{
soacStmt :: ([Name],Exp)

--^the fused SOAC stmt,eg,
--(z,w)=map2( f(a,b), x,y)

,inp :: S.Set Name
--^the input arrays used
--in SOAC stmt,i.e.,{x,y}

,inplace :: S.Set Name
--^Aliasing set of vars
--used in in-place updates
--that reach this kernel.

,fused_vars :: [Name]
--^not null iff at least
--a fusion was performed
}

data FusionRes = FusionRes{
outArr :: M.Map Name Name

--^maps an array to the name
--of the kernel producing it

,inpArr :: M.Map Name
(S.Set Name)

--^maps an array to the
--names of kernels using it

,unfusable :: S.Set Name
--^Unfusable arrays. Used:
--1.otherwise than input to
-- SOAC kernels (including
-- lambda bodies), or
--2.as input to two kernels
-- not located on disjoint
-- control-flow (branches)

,kers ::M.Map Name FusedKer
--^maps kernel name to data
}

data FusionEnv = FusionEnv {
soacsEnv :: M.Map Name ([Name], Exp)
--^ maps array names to their producing SOAC stmt

, varsEnv :: S.Set Name
--^ set of in-scope variables at current prog point

}

Figure 10. Data Structures for Fusion’s Result and Environment

allOutArrs :: [Name] -> FusionM [Name]
allOutArrs =
-- allOutArrs [x] → [x,y] if let (x,y) = map2(f,a)

foldM (\y nm -> do bnd <- asks $ M.lookup nm . soacsEnv
case bnd of

Nothing -> return (nm:y)
Just (s,_) -> return (s++y)

) [ ]
composeRes :: FusionRes -> FusionRes -> FusionM FusionRes
composeRes res1 res2 = do

let ufus = unfusable res1 ‘S.union‘ unfusable res2
inp_arr1 <- (allOutArrs . M.keys . inpArr) res1
inp_arr2 <- (allOutArrs . M.keys . inpArr) res2
return $ FusedRes

( outArr res1 ‘M.union‘ outArr res2)
( M.unionWith S.union (inpArr res1) (inpArr res2) )
( ufus ‘S.union‘ (inp_arr1 ‘S.intersection‘ inp_arr2))
( kernels res1 ‘M.union‘ kernels res2)

unionRes :: FusionRes -> FusionRes -> FusionM FusionRes
unionRes res1 res2 = ... -- semantically unions results:
--same as composeRes except that the resulting unfusable
--set is ufus (the union of the two input unfusable sets)

Figure 11. Composing two regions on the same and disjoint paths.

We note that inpArr ∪ unfusable covers all the array vari-
ables defined in the program, except for the ones that are currently
out of scope. The analysis uses an environment, FusionEnv, that
records the set of array variables visible at the current program
point, varsEnv, and a map that binds an array name to the SOAC
statement producing it, soacsEnv. The environment is computed
during the top-down ABSYN traversal, i.e., an inherited attribute.
The computation takes place in the FusionM monad that makes the
FusionEnv environment available via a Reader monad interface.

Figure 11 shows the helper functions composeRes and unionRes
that implement the data-flow equations for merging the results of

fusion1 :: FusionRes -> Exp -> FusionM FusionRes
fusion1 r (Var id0) =

if not $ isArrayType id0 then return r
else let ufus’ = S.insert id0 (unfusable r)

in return r { unfusable = ufus’ }

fusion1 r (let id1 = id0 with
[ inds ] <- elem in body) = do

r’ <- bindVarsEnv [id1] $ fusion1 r body
-- Add the aliases set of id0 (included)
-- to the ‘inplace’ field of any kernel:
let kers = M.map (addToInplace id0) (kernels r’)
let r’’ = r’ { kernels = kers }
foldM fusion1 r’’ (elem : Var id0 : inds)

fusion1 r (if ec then ethen else eelse) = do
rthen <- fusion1 mkNullRes ethen
relse <- fusion1 mkNullRes eelse
rcond <- fusion1 r ec
return $ composeRes rcond (unionRes rthen relse)

fusion1 r (fn (ids) => body) = do
r’ <- bindVarsEnv ids $ fusion1 mkNullRes body
return $ composeRes r (composeRes r’ r’)

fusion1 r (let pat = rhs in body) =
case rhs of

map2 (fun, inputs) -> do
r’ <- bindBothEnvs pat rhs $ fusion1 r bdy
r’’ <- fusion1 r’ lam
tryFuseSOAC (freeInBody fun) r’’ (pat, rhs)
-- similar for reduce2, filter2, redomap2.
-- Replicate has a specialized implem (not shown)

_ -> do r’ <- bindVarsEnv pat $ fusion1 r body
fusion1 r’ e

Figure 12. Constructing Fused Kernels at Function Level

two code regions on the same and disjoint control-flow paths, re-
spectively. unionRes performs the (semantic) union of the results
of the two branches, e.g., the union of the unfusable sets and the
union of the fusion kernels, etc, because a SOAC can be fused in
two kernels on separate branches without duplicating computation.
composeRes is similar to unionRes, except that the intersection
between the inpArr key sets becomes unfusable, i.e., because
the arrays in the intersection may be used by two kernels on the
same execution path, and hence further fusion of their producing
SOACs may duplicate computation.

Figure 12 summarizes the most-relevant data-flow rules of the
first analysis pass. Function fusion1 provides the implementation,
where the arguments represent the current data-flow result, denoted
r, and an expression. If the expression is:

• an array variable, Var idd, then the variable’s name is added
to the unfusable set of the result, since it corresponds to an array
used other than as input to a SOAC, i.e., Case 5 in Figure 9,
• an in-place update expression then (i) the new binding is added

to the varsEnv set of in-scope variables, (ii) the inplace field
of each kernel in the current result is updated with the alias
set of the consumed variable, and (iii) the contribution of sub-
expressions is added to the data-flow result. A function call that
“consumes” some of its parameters is treated similarly. This
solves Case 1 of Figure 9.
• an if-then-else then the data-flow result of the then and else

branches are computed independently starting from a (fresh)
null result, because no fusion is possible either across branches
or with the kernels obtained from the expression following
the if (visibility issues). The results, i.e., thenr and elser ,



correspond to disjoint paths and are composed via unionRes.
Finally, the original result r is updated with the contribution
of the if condition, yielding condr , and the overall result is
computed via composeRes since it corresponds to overlapping
control-flow paths. This solves both issues of Case 4 in Figure 9.
• a lambda then the result for the lambda’s body, r’, is computed

from a null result because any of the arrays defined inside the
lambda are invisible outside. Since a lambda’s body is executed
multiple times inside a SOAC then the data flow equation is
semantically: composeRes r (composeRes r’ r’), i.e., the
code regions corresponding to r and r’ share an execution path.
In particular, all variables used in the lambda’s body become
unfusable, which prevents fusion in a lambda (or loop) from
outside it, i.e., Case 3 in Figure 9. The actual implementation
performs less computation and also filters out the variables that
are invisible in the outer scope. A loop is treated similarly.
• the let-binding of a map2, reduce2, redomap2 or filter2

statement, then (i) both environment variables, i.e., soacsEnv
and varsEnv, are updated with the new bindings, (ii) the body
of the SOAC lambda is processed, e.g., the variables used inside
lambda become unfusable, and (iii) tryFuseSOAC (see next
Section 3.3) either fuses the SOAC or creates a new kernel.
• an arbitrary let-binding then the varsEnv environment variable

is updated with the new binding and the sub-expressions, i.e.,
body and e, are processed recursively. scan2 is processed in a
similar fashion since it is not part of the fusion algebra.

3.3 Fusing One SOAC
Figure 13 shows the Haskell pseudo-code that implements the

central step of analysis: the data-flow rules for processing a SOAC
statement, tryFuseSOAC. Its parameters are: (i) the set of variables
that are visible in the current scope and are used in the current-
SOAC’s lambda, lam vars, (ii) the current data-flow result, res,
and (iii) the output arrays and the expression of the to-be-processed
SOAC statement, (out nms,soac).

There are four conditions, all4 ok, that have to be met for the
current SOAC, denoted Sc, to be fused with at least one kernel:

1. None of Sc’s output-array names, out nms, belong to the re-
sult’s unfusable set.

2. There exists some kernels, to fuse kers, found by look-ups
in the result’s inpArr, whose input arrays belong to out nms.
If both conditions are met then it is guaranteed (see Section 3.2)
that all to fuse kers are located on disjoint execution paths,
and that none of them are in a loop or lambda that does not
contain Sc, i.e., Cases 2 to 6 of Figure 9 do not happen.

3. All kernels in to fuse kers are compatible with Sc under
the algebra depicted in Figure 14 of Section 3.4. Otherwise,
if only some kernels are compatible, then computation will be
duplicated since Sc cannot be removed from the program.

4. None of Sc’s variables, including the ones used in its lambda
and as input arrays, belong to the inplace set of any kernels in
to fuse kers. Otherwise, Case 1 of Figure 9 may apply.

The next step is to update the unfusable set of the data-flow
result. At this stage the variables used in the current SOAC (Sc)
lambda have been already made unfusable. It remains to check
whether any input array5 of Sc, i.e., inp nms, is also used in an
existing kernel. If so, then it is used in at least two kernels that may
share an execution path, and hence it is unfusable. We make two
remarks: First, if an array in the input set of Sc was produced by

5 A normalized program guarantees that the input arrays of a SOAC are
variables rather than arbitrary expressions, hence we need not scan them.

tryFuseSOAC:: S.Set Name -> FusionRes ->
-- vars ∈ SOAC’s lamba, current result
([Name], Exp) -> FusionM FusionRes

-- SOAC stmt, result after fusion
tryFuseSOAC lam_vars res (out_nms, soac) = do

inp_ids <- getInpArrsSOAC soac
-- e.g., [x,y] ⇐ map2(f, x, y)

-- Conditions for fusion:
--(1) none of out_nms belongs to the unfusable set
let cond1=not $ any (‘S.member‘ unfusable res) out_nms

--(2) ∃ some kernels that use some of out_nms as inputs
let to_fuse_knms = getKersWithInpArrs res out_nms
let to_fuse_kers =

fromJust $ mapM (‘M.lookup‘ kers res) to_fuse_knms
let cond2 = not $ null to_fuse_kers

--(3) all kernels have to be compatible for fusion,
-- e.g., map2 o filter2 not supported
let cond3 =

all (isCompatibleKer out_nms soac) to_fuse_kers

--(4) fusion cannot move a use of an input array
-- past its in-place update
let used =

S.intersection $ lam_vars ‘S.union‘ S.fromList inp_ids
let cond4 = all (S.null . used . inplace) to_fuse_kers

let is_fusable = cond1 && cond4 && cond3 && cond4

-- Update Unfusable Set with the input-array names that
-- appear as input arrays in kernels /∈ to_fuse_kers,
-- since those are input to at least 2 distinct kernels.
inp_nms <- allOutArrs inp_ids
-- e.g., [x,y] ⇐ map2(g, x) if let (x,y) = map2(f,a)
let mod_kers=if is_fusable then to_fuse_knms else []
let in2_kers=filter (inpArrInRes res mod_kers) inp_nms
let res’ = res { unfusable = unfusable res ‘S.union‘

S.fromList in2_kers }

if is_fusable
then ... -- fuse current soac with all to_fuse_kers

-- update out/inpArr & kers fields of result
else ... -- add a fresh kernel to the result, and

-- update the outArr and inpArr fields

Figure 13. Pseudo-code for Conservatively Fusing one SOAC

another SOAC, S2, then inp nms is extended with all output arrays
of S2; otherwise Case 6 of Figure 9 may apply. This is achieved by
allOutArrs (shown in Figure 11) via looks-ups in soacsEnv.

Second, an input array, x, does not become unfusable if Sc

can be fused and x is used only as input to the kernels with
which Sc will be fused. In this case x would still be used only in
kernels located on disjoint execution paths (This is implemented by
filtering modulo kernels mod kers in the definition of in2 kers.)

Finally, if any of the four fusion conditions are not met, then
a new kernel is created; otherwise the current SOAC is fused with
each of the kernels in to fuse kers.

3.4 Fusion’s Composition Rules and Second Analysis Pass
The algebra under which fusion is performed is depicted in

Figure 14: scan2 is unfusable and reduce2 and redomap2 always
start a new kernel. Since replicate is semantically a map2 with
a constant function, it can always be fused without duplicating
computation, even inside loops and SOAC’s lambdas, except for
the cases when it violates the in-place semantics, i.e., Case 1 of
Figure 9. If the current SOAC, Sc, is a map2 then it can be fused
with a map2, reduce2, or redomap2 kernel, and produces a map2,



// replicate can be fused
// without restrictions
let x = replicate(N,a)in
let y = map2(f, x, b) in
let z = map2(g, x, c) in
let x[i] = ...

≡
let x = replicate(N, a) in
let y = map2( fn β1 (α1 bi)

=> f(a,bi), b)
let z = map2( fn β2 (α2 ci)

=> g(a,ci), c)
in let x[i] = ...

//map2 o map2 ⇒ map2
let (x1, x2) = map2(f, a1)
in map2(g, x1, y)

≡
map2(fn β (α1 a1i, α2 yi)

=>let (x1i, x2i) = f(a1i)
in g(x1i, yi)

, a1, y )

//reduce2 o map2⇒redomap2
let (x1, x2) = map2(f, a1)
in reduce2(⊕,e1,e2, x1,y)

≡
redomap2(⊕
, fn (β1,β2) ( β1 e1, β2 e2

, α1 a1i,α2 yi)
=> let (x1i, x2i) = f(a1i)

in ⊕(e1,e2,x1i,yi)
, (e1, e2), a1, y )

//redomap2 o map2⇒redomap2
let (x1, x2) = map2(f, a1)
in redomap2(⊕, g, e, x1, y)

≡
redomap2(⊕
, fn β (β e, α1 a1i, α2 yi)

=> let (x1i, x2i) = f(a1i)
in g(e, x1i, yi)

, e, a1, y )

//filter2 o filter2⇒filter2
//IFF consumer’s input set
// ⊆ producer’s output set
let (x1,x2)=filter2(c1,a1,a2)
in let y = filter2(c2, x1) ..

≡
let (y, dead) = filter2(

fn bool (α1 a1i,α2 a2i)=>
if c1(a1i, a2i)
then c2(a1i)
else false

, a1, a2 ) ..

//reduce2 o filter2⇒redomap2
//IFF consumer’s input list
// ≡ producer’s output list
let x = filter2(c, a)
in reduce2(⊕, e, x)

≡
reduce2(fn β (β e, β ai) =>

if c(ai) then ⊕(e,ai) else e
, e, a )

//reduce2 o filter2⇒redomap2
//IFF consumer’s input set
// ⊆ producer’s output set
let (x1,x2)=filter2(c, a1, a2)
in reduce2(⊕, e, x1)

≡
redomap2(⊕
, fn β (β e, α1 a1i, α2 a2i)

=> if c(a1i, a2i)
then ⊕(e, a1i) else e

, e, a1, a2 )

//redomap2 o filter2⇒redomap2
//IFF consumer’s input set
// ⊆ producer’s output set
let (x1,x2)=filter2(c, a1, a2)
in redomap2(⊕, g, e, x1)

≡
redomap2(⊕
, fn β (β e, α1 a1i, α2 a2i)

=> if c(a1i, a2i)
then g(e, a1i) else e

, e, a1, a2 )

Figure 14. Compositional Algebra For Fusion

redomap2 and redomap2 kernel, respectively. Note that Sc does
not have to produce all of the kernel’s input arrays.

If Sc is a filter2 then, with the current algebra, it can be
fused with a filter2, reduce2 or redomap2 kernel, but only
when Sc’s result-array set is a superset of the kernel input-array set.
(Note that when the input and output arguments match, reduce2 o
filter2 results in reduce2, rather than redomap2.) In the case of
a filter2 kernel, the output-array set might need to be extended
with fresh (dead) variables, and the order of the input/output arrays
might need adjustment to satisfy the typing rule of filter2.

One can observe that redomap2, which is not part of the user-
visible language, is instrumental in enhancing the composibility de-
gree of the fusion algebra, while preserving the parallel semantics
of the result. For example, a reduce2 can be fused with a filter2,
then with several (partial) map2s, then again with a filter2, etc.

The result of the first (bottom-up) analysis pass has thus been
summarized at each function level. The next step is to filter out
the kernels that have not been fused, i.e., fused vars= ∅, from
the result. The second analysis pass then replaces in the program
the SOAC statements whose output arrays are keys in outArr with

the fused SOAC of their associated kernel. Since successful fusion
may have created opportunities for fusion at an inner level, each
lambda corresponding to a fused SOAC is (i) first cleaned-up by
running the enabling optimizations, and (ii) then the two passes are
re-run on the lambda’s body. Finally, at the very end, the enabling
optimizations are applied to clean up the whole program, e.g., dead-
code elimination removes the SOACs that have been already fused.

4. Discussion, Possible Extensions, and Statistics
This section is structured as follows: Section 4.1 discusses how to
solve certain cases where fusion is inhibited due to calls to some
of the built in functions such as size, split, etc. Section 4.2
presents two code transformations that are aimed at optimizing
uses of scan2 and reduce2. Since these transformations both
enable and are enabled by fusion, we plan to encompass them in
our fusion analysis implementation in the near future. Section 4.3
shows fusion-related statistics from six benchmarks, which were
gathered by compiler instrumentation.

4.1 Fusion Hindrances
We have seen that the structural analysis presented in the previous
section may allow fusion even when a variable is used as (an) input
(array) to several second-order array combinators (SOAC), such as
map2, reduce2. However, often enough, fusion is impeded by a
SOAC input array being used as argument to built-in functions such
as split, transpose, size, assertZips6, etc. For example,

let x = map2(f, a) in let n = size(a)/2 in
let n = size(x)/2 in let (a1,a2)=split(n,a) in
let (x1,x2)=split(n,x) in ⇒ let x1 = map2(f, a1) in
let y = reduce2(g,x1,x2).. let x2 = map2(f, a2) in

let y = reduce2(g,x1,x2)..

the use of x in size and split in the lefthand-side code would
inhibit fusion. The code on the right side suggests that a possible
solution is to propagate the inhibitors as far up in the program as
possible, e.g., a and x are the input and result of a map2, therefore
they must have the same (outermost) size. Now x1 and x2 can be
fused inside the map2 producer of y.

To overcome such cases, we have extended our analysis to as-
sociate call statements of inhibitor functions (for now size and
assertZip) with the kernels that use them, for example, the argu-
ment of size as input, and by performing the necessary transla-
tions, e.g., size(x) ⇒ size(a), at the time when x is fused.

Figure 15 demonstrates the application of our analysis to a ma-
trix multiplication implementation [22] that uses flat-parallelism.
One can observe that (i) the obtained code resembles the common
implementation, i.e., a reduce ◦ map inside two nested maps, (ii)
that all replicates have been eliminated by fusion, and (iii) that
the assertZips have been moved as to not hinder fusion.

4.2 Possible Extensions: ISWIM/IRWIM and REDFLAT

The fusion algebra for reduce2 and scan2 is relatively poor,
for example scan2 is not fused at all, while reduce2 just starts
a new kernel that, under fusion, becomes redomap2. This section
presents three high-level transformations, named ISWIM, IRWIM
and REDFLAT, that have scan2 and reduce2 as principal actors,
and may either enable fusion or be enabled by fusion or both.

The top part of Figure 16 shows the intuitive idea behind
ISWIM: a scan operation on a matrix in which the binary asso-
ciative operator is (zipWith �) has the same semantics as trans-
posing the matrix, mapping each of the rows, i.e., former columns,

6 assertZip checks that all (array) arguments have the same outer size and
is produced by the array-of-tuple transformation when a zip is eliminated.



// FLAT-PARALLELISM MATRIX MULTIPLICATION
fun int redplus1( [int] a) = reduce(op +, 0, a)
fun [int] redplus2([[int]] a) = map (redplus1, a)

fun [int] mul1( [int] a, [int] b)=map(op *,zip(a,b))
fun [[int]] mul2([[int]] a,[[int]] b)=map(mul1,zip(a,b))
fun [[int]] replin(int N, [int] a)=replicate(N, a)

fun [[int]] matmultFun(int N, [[int]] x, [[int]] y ) =
let yt = replicate( N, transpose(b) ) in
let ar = map ( replin(N), x ) in
let abr = map (mul2, zip(ar, yt)) in

map(redplus2, abr)

// MATRIX MULTIPLICATION AFTER FUSION
fun [[int]] matmultFun(int N, [[int]] x, [[int]] y ) =

let yt = transpose(y) in
let d1 = assertZip(x, iota(N)) in
let res=

map2(fn [int] ([int] a) =>
let d2 = assertZip(yt, iota(N)) in
let t1 =

map2(fn int ([int] t2) =>
let d3 = assertZip(t2, a) in
let t3 =

redomap2(fn int (int u, int v )
=> u + v

,fn int(int e,int t4,int t5)
=> let p = t4 * t5

in e + p
,0, a, t2)

in t3
, yt)

in t1
, x)

in res

Figure 15. Matrix Multiplication Before and After Fusion

with (scan �) and transposing back the result. A similar result
can be derived for reduce.

In principal, this transformation interchanges the scan/reduce
with the inner map, hence ISWIM/IRWIM, to the result that the
transformed code can be executed as a segmented scan [10], i.e.,
exploiting both levels of parallelism, rather than choosing between
the parallel scan and the parallel map. Furthermore, pushing the
least parallel construct, i.e., scan, at the innermost position might
reveal a deeper map-nest, e.g., if the original scan was inner to a
map, thus increasing significantly the depth-one parallelism degree.
Finally, if the created map nest exhibits enough parallelism, then
the scan can be executed sequentially rather than in parallel.

The middle part of Figure 16 shows several useful extensions to
our algebra: map2n, defined inductively, is simply a n-level perfect
nest of map2s. The transpose operator receives as arguments the
dimension (number) to be transposed, k, the new position of that
dimension, n, and the multidimensional array. The index-changing
result is that all dimensions between k+1 and n are shifted left by 1.

The bottom part of Figure 16 shows that fusion can operate
across transpose via a transformation similar to the one discussed
in Section 4.1. One can observe that ISWIM is both (i) a fusion
enabler, i.e., interchanging the scan with the map may create fusion
opportunities, and (ii) a beneficiary from fusion, i.e., the perfect
map nest may be created by fusion.

The top part of Figure 17 shows the generalization for ISWIM
(IRWIM) for a depth-n map nest. The differences are (i) that an
extra nth dimension is created for each neutral element, in order to
match the input-array sizes for the map, and (ii) the two-way use
of the generalized transpose for bringing the first dimension to
position n and back again. We remark that the extra replicate can

// Interchanging Scan With Inner Maps (ISWIM) Example:
transpose :: [[α]] → [[α]]
b = transpose(a) ⇒ a[i1,i2] ≡ b[i2,i1]

scan2( fn [real] ([real] x, [real] y) => map2(op +, x, y),
, {0.0,..,0.0}, a ) ≡

transpose( map2 (fn [real] ([real] x)=>scan2(op +,0.0,x)
, transpose(a) )

// Generalization for Nested Map2 (similar for reduce2)
map21(f, a1,.., ak) ≡ map2(g, a1,.., ak)
map2n(f, a1,.., ak) ≡
map2(fn ([β1],..,[βt]) ([α1] x1,..,[αk] xk) =>

map2n−1(f, x1,.., xk)
, a1,.., ak )

// Generalization for Transpose:
transpose :: ( Int, Int, [1[..qα]]) → [1[..qα]]
b=transpose(k,n,a) ⇒ a[i1,..,ik,ik+1,..,ik+n,..,iq] ≡

b[i1,..,ik+1,..,ik+n,ik,..,iq]

// Fusing Across Transpose (Similar for Reshape/Flatten):
let x=map2n(f,a) in let y=transpose(1,n-k,x) in map2n(g,y)

≡
map2n(g o f, transpose(1,n-k,a) )
// i.e., the map2 produced by ISWIM may be further fused.

Figure 16. Interchange Scan With Inner Maps (ISWIM) Transform.

// Arbitrary-Nested-Level Generalization of ISWIM
// similarly Interchange Reduce with Inner Maps (IRWIM)
scan2( fn ( [1[..nα1]], .., [1[..nαk]] )

( [1[..nα1]] x11, .., [1[..nαk]] x1k,

[1[..nα1]] x21, .., [1[..nαk]] x2k ) =>

map2n(⊕, x11,.., x1k, x21,.., x2k)
, (ne1, ..., nek), a1, ..., ak
) ≡

let (.., ret, ..) = (.., mapn( replicate(1), net ), ..)
// replicate dim n of neutral elems so map2 sizes match
let ( y1,.., yk ) =

map2 (fn ( [1[..nα1]], .., [1[..nαk]] )
( [1[..nα1]] x1, .., [1[..nαk]] xk ) =>

map2n−1( fn ([1[..n−1α1]], .., [1[..n−1αk]] )
([1[..n−1α1]] e1,..,[1[..n−1αk]] ek,
[1[..n−1α1]] x1,..,[1[..n−1αk]] xk)

=>scan2(⊕, e1[0],..,ek[0], x1,..,xk)
, re1, ..., rek, x1, .., xk )

, transpose(1,n,a1), .., transpose(1,n,ak) )
in (transpose(n, q1-n, y1), ..., transpose(n, qk-n, yk))
// transpose back the result; qt is the dimension of αt

// Reduce Flattening Transformation (RedFlat)
y = redomap2n ( ⊕

, fn (α1,..,αk) ( α1 e1,.., αk ek,
[α1] x1,..,[αk] xk ) =>

reduce(⊕, e1,..,ek, x1,..,xk)
, e1,..,ek, a1,..,ak )

≡
reduce2(⊕, (e1,..,ek), flatten(n, a1),.., flatten(n, ak))
// flatten(n,a) flattens the first n dims of array a;

Figure 17. ISWIM Formalization & Reduce Flattening Transform.

be compiled away by fusion coupled with a refinement of the copy-
propagation transformation (both supported by current compiler).

The second transformation, named REDFLAT and depicted in
the bottom-part of Figure 17, relies on the well-known equivalence:

let x=map2(fn int ([int] x) => ≡ reduce2( op +, 0,
reduce2(op +,0,x), a) flatten(2, a) )

in reduce2(op +, 0, x)



Fusion Statistics P0 P1 P2 P3 P4 P5
Lines Of Code 283 859 182 23 19 22
map ◦ map 10 1 8 5 3
map ◦ replicate 12 2 2
redomap ◦ filter 1
redomap ◦ map 5
reduce ◦ map 6 12 2 1 1
reduce ◦ replicate 3
Interesting 1 1

Figure 18. Fusion results

which says that a map that reduces each of the input-array elements,
followed by a reduce with the same operator (and neutral element)
has the semantics of reducing the original array in which the first
two dimensions have been flattened. We plan to extend the fusion
analysis to incorporate both transformations.

We remark that all transformations presented in this paper, i.e.,
fusion, ISWIM/IRWIM, REDFLAT, are the result of the rich algebra
exposed by the second-order array combinators, and they require
a difficult implementation in an imperative context. For example,
ISWIM interchanges an inner parallel loop (map) outwards across
a sequential loop (scan). The fact that the inner loop is parallel is
not in general sufficient to guarantee the correctness of loop inter-
change, albeit a parallel loop can always be interchanged inwards.

4.3 Fusion-Analysis Statistics
Since the L0 language is currently interpreted, we cannot measure
directly at this point the effectiveness of our implementation of fu-
sion analysis, which comprises about 1000 lines of Haskell code.
We have instrumented the L0 compiler to keep track of how often
and what types of SOAC it successfully fuses. The results are re-
produced in Figure 18. We count as “interesting” those fusions in
which the number of tuple elements produced by the producer is
less than what is used by the consumer. The test programs are:

P0: a real-world pricing kernel for financial derivatives [26],

P1: a real-world market calibration kernel that computes some of
the parameters of P0,

P2: a real-world kernel for stochastic volatility calibration via
Crank-Nicolson finite differences solver [25],

P3: a flat-parallelism, array-based implementation of the shortest-
path algorithm (whose shape resembles matrix multiplication),

P4: the flat-parallelism implementation of matrix multiplication
shown in Figure 15, i.e., similar to the one of REPA [22],

P5: an implementation of the maximal segment sum problem MSSP.

The results indicate that the (redo)map ◦ map reductions are
the most common, and that there are a significant number of reduc-
tions involving replicate. The reason for the latter case is that
replicate is often used to match either the array sizes, as in the
case of the flat-parallelism style matrix multiplication, or the result
type of a reduce. Our aggressive fusion of replicate eliminates
these inefficiencies, e.g., it transforms the flat-parallel matrix multi-
plication to the typical three-level nest of two maps and a redomap.

There is only one redomap ◦ filter reduction, appearing in
the Sobol random-number generator, albeit an important one: It
would increase the parallelism degree by a factor of 32, i.e., the
size of the input array, and would also allow efficient computation
on GPGPU, i.e., a segmented reduce of a power-of-two size requires
only local barriers, rather than multiple execution of a GPU kernel.

Finally, benchmark P0 presents a case where the application of
ISWIM would have a significant impact: ISWIM would provide an

extra dimension of exploitable parallelism of size 365 on a data set
that starves for additional parallelism.

5. Related Work
Loop fusion is an old technique, dating back at least to the sev-
enties [14], with the treatment of loop fusion in a parallel setting
being covered in [24]. In imperative languages, the word “fusion”
typically does not refer to producer-consumer fusion, but to a com-
plimentary technique, in which two sequential loops that do not de-
pend on each other can fused into a single loop. Single Assignment
C [18] incorporated this in a functional language.

The ideas behind a language algebra date back to the very be-
ginnings of functional programming [3], and an algebra that is a
subset of ours was presented in [8]. In general, functional language
compilers focused on removing intermediate data structures via a
structural techique called deforestation, which also performs cer-
tain kinds of fusion[17].

Data-Parallel Haskell (DPH) [13] makes use of aggressive in-
lining and rewrite rules to perform fusion, including expressing
array operations in terms of streams [16], which have previously
been shown to be easily fusable. While DPH obtains good results,
rewrite rules are quite limited – they are an inherently local view
of the computation, and would be unable to cope with limitations
in the presence of in-place array updates, and whether the result
of an array operation is used multiple times. The Glasgow Haskell
Compiler itself also bases its list fusion on rewrite rules and cross-
module inlining [21].

The Repa [22] approach to fusion is based on a delayed repre-
sentation of arrays, which models an array as a function from in-
dex to value. With this representation, fusion happens automatically
through function composition, although this can cause duplication
of work in many cases. To counteract this, Repa lets the user force
an array, by which it is converted from the delayed representation
to a traditional sequence of values. The pull arrays of Obsidian [15]
use a similar mechanism.

Accelerate [23] uses an elaboration of the delayed arrays rep-
resentation from Repa, and in particular manages to avoid dupli-
cating work. All array operations have a uniform representation as
constructors for delayed arrays, on which fusion is performed by
tree contraction. Accelerate supports multiple arrays as input to the
same array operation (using a zipWith construct). Although arrays
are usually used at least twice (once for getting the size, once for
the data), it does not seem that they can handle the difficult case
where the output of an array operation is used as input to two other
array operations.

NESL has been extended with a GPU backend [6], for which
the authors note that fusion is critical to the performance of the flat-
tened program. Their approach is to use a form of copy-propagation
on the intermediary code, and lift the resulting functions to work on
entire arrays. Their approach only works for what we would term
map ◦ map fusion, however.

Our uniqueness attributes have some similarities to the “own-
ing pointers” found in the impure language Rust [20], albeit there
are deep differences. In Rust, owning pointers are used to manage
memory – when an owning pointer goes out of scope, the mem-
ory it points to is deallocated – while we use uniqueness attributes
to handle side effects. In addition, we allow function calls to con-
sume arrays passed as unique-type parameters, whereas in Rust this
causes a deep copy of the object referenced by the owning pointer.

A closer similarity is found in the pure functional language
Clean, which contains a sophisticated system of uniqueness typ-
ing [5]. Clean employs uniqueness typing to re-use memory in
cases where a function receives a unique argument, but also (and
perhaps more importantly) to control side effects including arbi-
trary I/O. As in L0, alias analysis is used to ensure that uniqueness



properties are not violated. A notable difference is that the Clean
language itself does not have any facilities for consuming unique
objects, apart from specifying a function parameter as unique, but
delegate this to (unsafe) internal functions, that are exposed safely
via the type system. Furthermore, a unique return value in Clean
may alias some of the parameters to the function, which is forbid-
den in L0. We have found that this greatly simplifies analysis, and
allows it to be fully intraprocedural.

6. Conclusions and Future Work
Previous work on fusion has taken two main directions: either
fusion is performed aggressively, and the programmer is provided
primitives to inhibit fusion, e.g., forcing array to materialize, or
fusion is performed via rewriting rules. The latter approach relies
tightly on the inliner engine and its applicability is limited to the
case when each fused array is consumed by one array combinator.

This paper has presented a program-level, structural-analysis
approach to fusion that handles the difficult case in which an array
produced by a second-order array combinator (SOAC), such as
map, is consumed by several other SOACs (if the SOAC producer-
consumer dependency graph is reducible.) This essentially allows
fusion to operates across zip/unzip.

Furthermore, we have shown a compositional algebra for fusion
that includes array combinators, such as map, reduce, filter, and
redomap, and other built-in functions that would otherwise hinder
fusion applicability, such as size, split, transpose, etc.

Finally, we have discussed two transformation, ISWIM and
REDFLAT, that optimize some important uses of scan and reduce,
and that can both enable and be enabled by fusion.
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